Transcriptional Regulatory Networks in Saccharomyces

Science 298, 799-804 DOI: 10.1126/science.1075090

Citation Report

#	Article	IF	CITATIONS
1	Gene function: Getting specific, generally speaking. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16513-16515.	3.3	2
2	SYSTEMS BIOLOGY: Life's Complexity Pyramid. Science, 2002, 298, 763-764.	6.0	444
5	Asymmetric evolving random networks. European Physical Journal B, 2003, 35, 377-389.	0.6	23
6	Is mammalian aging genetically controlled?. Biogerontology, 2003, 4, 119-120.	2.0	16
7	On Learning Gene Regulatory Networks Under the Boolean Network Model. Machine Learning, 2003, 52, 147-167.	3.4	240
8	Computational approaches to protein-protein interaction. Journal of Structural and Functional Genomics, 2003, 4, 245-255.	1.2	11
9	Genetic analysis of NF-ÂB/Rel transcription factors defines functional specificities. EMBO Journal, 2003, 22, 5530-5539.	3.5	302
10	Inferring Genetic Networks and Identifying Compound Mode of Action via Expression Profiling. Science, 2003, 301, 102-105.	6.0	1,026
11	The different (sur)faces of Rap1p. Molecular Genetics and Genomics, 2003, 268, 791-798.	1.0	66
12	Integrated analysis of yeast regulatory sequences for biologically linked clusters of genes. Functional and Integrative Genomics, 2003, 3, 125-134.	1.4	27
13	Function prediction and protein networks. Current Opinion in Cell Biology, 2003, 15, 191-198.	2.6	133
14	Computational methods of analysis of protein–protein interactions. Current Opinion in Structural Biology, 2003, 13, 377-382.	2.6	136
15	Periodic Transcription: A Cycle within a Cycle. Current Biology, 2003, 13, R31-R38.	1.8	124
16	Functional genomics and proteomics: charting a multidimensional map of the yeast cell. Trends in Cell Biology, 2003, 13, 344-356.	3.6	126
17	Global analysis of gene expression using GeneChip microarrays. Current Opinion in Plant Biology, 2003, 6, 418-425.	3.5	79
18	Target validation through high throughput proteomics analysis. Targets, 2003, 2, 217-223.	0.3	3
19	Running with RNA polymerase: eukaryotic transcript elongation. Trends in Genetics, 2003, 19, 543-550.	2.9	49
20	Development and validation of a T7 based linear amplification for genomic DNA. BMC Genomics, 2003, 4, 19.	1.2	102

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
21	Evolution of cis-regulatory elements in duplicated genes of yeast. Trends in Genetics, 2003, 19, 417-422.	2.9	127
22	Genomic analysis of gene expression relationships in transcriptional regulatory networks. Trends in Genetics, 2003, 19, 422-427.	2.9	238
23	Yeast expression-array analysis goes molecular. Trends in Genetics, 2003, 19, 467-469.	2.9	2
24	Building with a scaffold: emerging strategies for high- to low-level cellular modeling. Trends in Biotechnology, 2003, 21, 255-262.	4.9	171
25	From the top down: towards a predictive biology of signalling networks. Trends in Biotechnology, 2003, 21, 290-293.	4.9	58
26	Theoretical and computational studies of the glucose signaling pathways in yeast using global gene expression data. Biotechnology and Bioengineering, 2003, 84, 864-886.	1.7	20
27	Dynamical and integrative cell signaling: challenges for the new biology. Biotechnology and Bioengineering, 2003, 84, 773-782.	1.7	48
28	Tracking evolution's footprints in the genome. , 2003, 2, 9.		5
30	Protein analysis on a proteomic scale. Nature, 2003, 422, 208-215.	13.7	610
31	Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature, 2003, 423, 241-254.	13.7	1,654
32	Global analysis of protein localization in budding yeast. Nature, 2003, 425, 686-691.	13.7	3,884
33	Developing countries and systems biology. Nature Biotechnology, 2003, 21, 491-492.	9.4	0
34	A genome-wide view of antisense. Nature Biotechnology, 2003, 21, 492-492.	9.4	7
35	Delivering zinc fingers. Nature Biotechnology, 2003, 21, 492-493.	9.4	4
36	Reconstructing genetic networks in yeast. Nature Biotechnology, 2003, 21, 1295-1297.	9.4	14
37	Playing tag with the yeast proteome. Nature Biotechnology, 2003, 21, 1297-1299.	9.4	5
38	Computational discovery of gene modules and regulatory networks. Nature Biotechnology, 2003, 21, 1337-1342.	9.4	528
39	Organizing mRNA export. Nature Genetics, 2003, 33, 111-112.	9.4	26

#	Article	IF	CITATIONS
40	Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics, 2003, 34, 166-176.	9.4	1,543
41	Convergent evolution of gene circuits. Nature Genetics, 2003, 34, 264-266.	9.4	177
42	Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nature Genetics, 2003, 35, 57-64.	9.4	583
43	Evolutionary conservation of motif constituents in the yeast protein interaction network. Nature Genetics, 2003, 35, 176-179.	9.4	414
44	Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9440-9445.	3.3	8,800
45	Regulation of Elongating RNA Polymerase II by Forkhead Transcription Factors in Yeast. Science, 2003, 300, 492-495.	6.0	62
46	On the complexity of directed biological networks. SAR and QSAR in Environmental Research, 2003, 14, 199-214.	1.0	31
47	Use of Chromatin Immunoprecipitation Assays in Genome-Wide Location Analysis of Mammalian Transcription Factors. Methods in Enzymology, 2003, 376, 304-315.	0.4	79
48	High-Throughput Screening of Chromatin Immunoprecipitates Using CpG-Island Microarrays. Methods in Enzymology, 2003, 376, 315-334.	0.4	85
49	Finding Functional Features in Saccharomyces Genomes by Phylogenetic Footprinting. Science, 2003, 301, 71-76.	6.0	790
50	Molecular Networks: The Top-Down View. Science, 2003, 301, 1864-1865.	6.0	198
51	The Evolution of Transcriptional Regulation in Eukaryotes. Molecular Biology and Evolution, 2003, 20, 1377-1419.	3.5	1,034
52	RNA asymmetric distribution and daughter/mother differentiation in yeast. Current Opinion in Microbiology, 2003, 6, 614-620.	2.3	46
53	Correlating Protein–DNA and Protein–Protein Interaction Networks. Journal of Molecular Biology, 2003, 333, 75-85.	2.0	34
54	The Coherent Feedforward Loop Serves as a Sign-sensitive Delay Element in Transcription Networks. Journal of Molecular Biology, 2003, 334, 197-204.	2.0	527
55	Dissecting the transcription networks of a cell using computational genomics. Current Opinion in Genetics and Development, 2003, 13, 611-616.	1.5	27
56	Recent advances in computational promoter analysis in understanding the transcriptional regulatory network. Biochemical and Biophysical Research Communications, 2003, 309, 495-501.	1.0	95
57	Protein Feature Based Identification of Cell Cycle Regulated Proteins in Yeast. Journal of Molecular Biology, 2003, 329, 663-674.	2.0	28

#	Article	IF	CITATIONS
58	Response Delays and the Structure of Transcription Networks. Journal of Molecular Biology, 2003, 329, 645-654.	2.0	130
59	Periodic Epi-organization of the Yeast Genome Revealed by the Distribution of Promoter Sites. Journal of Molecular Biology, 2003, 329, 859-865.	2.0	36
60	Program-Specific Distribution of a Transcription Factor Dependent on Partner Transcription Factor and MAPK Signaling. Cell, 2003, 113, 395-404.	13.5	206
61	Transcriptional regulation by the MAP kinase signaling cascades. Gene, 2003, 320, 3-21.	1.0	438
62	A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8164-8169.	3.3	447
63	Posttranscriptional Generation of Macromolecular Complexes. Molecular Cell, 2003, 12, 1347-1349.	4.5	17
64	What drives plant stress genes?. Trends in Plant Science, 2003, 8, 99-102.	4.3	22
65	Motifs, modules and games in bacteria. Current Opinion in Microbiology, 2003, 6, 125-134.	2.3	280
66	Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, 2003, 13, 2498-2504.	2.4	37,062
67	Meta-clustering of gene expression data and literature-based information. SIGKDD Explorations: Newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining, 2003, 5, 101-112.	3.2	35
68	Random Boolean network models and the yeast transcriptional network. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14796-14799.	3.3	468
69	Computational prediction of transcription-factor binding site locations. Genome Biology, 2003, 5, 201.	13.9	237
70	Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks. , 0, , .		36
71	Time series analysis of gene expression and location data. , 0, , .		7
72	Biological Networks: The Tinkerer as an Engineer. Science, 2003, 301, 1866-1867.	6.0	571
73	Prediction and measurement of an autoregulatory genetic module. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7714-7719.	3.3	409
74	Reconstruct transcription networks by combining gene expression correlations with TF binding sites. , 2003, , .		1
75	Importance of Input Perturbations and Stochastic Gene Expression in the Reverse Engineering of Genetic Regulatory Networks: Insights From an Identifiability Analysis of an In Silico Network. Genome Research, 2003, 13, 2396-2405.	2.4	145

#	Article	IF	CITATIONS
76	Identifying cooperativity among transcription factors controlling the cell cycle in yeast. Nucleic Acids Research, 2003, 31, 7024-7031.	6.5	143
77	RtsA and RtsB Coordinately Regulate Expression of the Invasion and Flagellar Genes in Salmonella enterica Serovar Typhimurium. Journal of Bacteriology, 2003, 185, 5096-5108.	1.0	154
78	Detection of regulatory circuits by integrating the cellular networks of protein-protein interactions and transcription regulation. Nucleic Acids Research, 2003, 31, 6053-6061.	6.5	34
79	Functional modules by relating protein interaction networks and gene expression. Nucleic Acids Research, 2003, 31, 6283-6289.	6.5	162
80	Baker's yeast: challenges and future prospects. Topics in Current Genetics, 2003, , 57-97.	0.7	21
81	Systems Biology Is Taking Off. Genome Research, 2003, 13, 2377-2380.	2.4	36
82	Microarray Analysis of Gene Expression in the Kidneys of New- and Post-Onset Diabetic NOD Mice. Diabetes, 2003, 52, 2151-2159.	0.3	59
83	A tool-kit for cDNA microarray and promoter analysis. Bioinformatics, 2003, 19, 1846-1848.	1.8	7
84	Genome-wide discovery of transcriptional modules from DNA sequence and gene expression. Bioinformatics, 2003, 19, i273-i282.	1.8	211
85	Principles of cell-free genetic circuit assembly. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12672-12677.	3.3	248
86	Sfp1 Plays a Key Role in Yeast Ribosome Biogenesis. Eukaryotic Cell, 2003, 2, 1061-1068.	3.4	107
87	A Multiplicity of Coactivators Is Required by Gcn4p at Individual Promoters In Vivo. Molecular and Cellular Biology, 2003, 23, 2800-2820.	1.1	131
88	Inventories to insights. Journal of Cell Biology, 2003, 161, 465-469.	2.3	21
89	ExpressYourself: a modular platform for processing and visualizing microarray data. Nucleic Acids Research, 2003, 31, 3477-3482.	6.5	38
90	From Gene Networks to Gene Function. Genome Research, 2003, 13, 2568-2576.	2.4	142
91	The senX3–regX3 two-component regulatory system of Mycobacterium tuberculosis is required for virulence. Microbiology (United Kingdom), 2003, 149, 1423-1435.	0.7	167
92	E2F6 Negatively Regulates BRCA1 in Human Cancer Cells without Methylation of Histone H3 on Lysine 9. Journal of Biological Chemistry, 2003, 278, 42466-42476.	1.6	80
93	Comprehensive quantitative analyses of the effects of promoter sequence elements on mRNA transcription. Nucleic Acids Research, 2003, 31, 3824-3828.	6.5	17

#	Article	IF	Citations
94	Sum1 and Ndt80 Proteins Compete for Binding to Middle Sporulation Element Sequences That Control Meiotic Gene Expression. Molecular and Cellular Biology, 2003, 23, 4814-4825.	1.1	118
95	Protein-DNA interaction mapping using genomic tiling path microarrays in Drosophila. Proceedings of the United States of America, 2003, 100, 9428-9433.	3.3	73
96	Protein complexes and functional modules in molecular networks. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12123-12128.	3.3	1,327
97	Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13134-13139.	3.3	345
98	The essential transcription factor Reb1p interacts with the CLB2 UAS outside of the G2/M control region. Nucleic Acids Research, 2003, 31, 4597-4607.	6.5	12
99	Discovering Novel cis-Regulatory Motifs Using Functional Networks. Genome Research, 2003, 13, 883-895.	2.4	19
100	On schemes of combinatorial transcription logic. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5136-5141.	3.3	586
101	Supervised Detection of Regulatory Motifs in DNA Sequences. Statistical Applications in Genetics and Molecular Biology, 2003, 2, Article5.	0.2	15
102	Combining phylogenetic data with co-regulated genes to identify regulatory motifs. Bioinformatics, 2003, 19, 2369-2380.	1.8	227
103	Controlling false-negative errors in microarray differential expression analysis: a PRIM approach. Bioinformatics, 2003, 19, 1808-1816.	1.8	105
104	Beyond expression profiling: Next generation uses of high density oligonucleotide arrays. Briefings in Functional Genomics & Proteomics, 2003, 2, 47-56.	3.8	30
105	Structure and function of the feed-forward loop network motif. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11980-11985.	3.3	1,635
106	Network component analysis: Reconstruction of regulatory signals in biological systems. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15522-15527.	3.3	550
107	Distribution of NF-ÂB-binding sites across human chromosome 22. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12247-12252.	3.3	298
108	Expression of the Yeast PIS1 Gene Requires Multiple Regulatory Elements Including a Rox1p Binding Site. Journal of Biological Chemistry, 2003, 278, 38646-38652.	1.6	15
109	G1 Transcription Factors Are Differentially Regulated in Saccharomyces cerevisiae by the Swi6-Binding Protein Stb1. Molecular and Cellular Biology, 2003, 23, 5064-5077.	1.1	60
110	Transcription of genes encoding trans-acting factors required for rRNA maturation/ribosomal subunit assembly is coordinately regulated with ribosomal protein genes and involves Rap1 in Saccharomyces cerevisiae. Nucleic Acids Research, 2003, 31, 1969-1973.	6.5	20
111	Whole-Genome Discovery of Transcription Factor Binding Sites by Network-Level Conservation. Genome Research, 2003, 14, 99-108.	2.4	86

#	Article	IF	CITATIONS
112	Multiple Pathways Are Co-regulated by the Protein Kinase Snf1 and the Transcription Factors Adr1 and Cat8. Journal of Biological Chemistry, 2003, 278, 26146-26158.	1.6	247
113	Identification of functional clusters of transcription factor binding motifs in genome sequences: the MSCAN algorithm. Bioinformatics, 2003, 19, i169-i176.	1.8	69
114	HOW CELLS AVOID ERRORS IN METABOLIC AND SIGNALING NETWORKS. International Journal of Modern Physics B, 2003, 17, 2005-2022.	1.0	4
115	Integrating regulatory motif discovery and genome-wide expression analysis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3339-3344.	3.3	319
116	Aft1p and Aft2p Mediate Iron-responsive Gene Expression in Yeast through Related Promoter Elements. Journal of Biological Chemistry, 2003, 278, 27636-27643.	1.6	181
117	Active repression by unliganded retinoid receptors in development. Journal of Cell Biology, 2003, 161, 223-228.	2.3	117
118	Prediction of regulatory networks: genome-wide identification of transcription factor targets from gene expression data. Bioinformatics, 2003, 19, 1917-1926.	1.8	116
119	Does Selection Mold Molecular Networks?. Science Signaling, 2003, 2003, pe41-pe41.	1.6	28
120	Similarities and Differences in Genome-Wide Expression Data of Six Organisms. PLoS Biology, 2003, 2, e9.	2.6	294
121	Hierarchy of Sequence-Dependent Features Associated With Prokaryotic Translation. Genome Research, 2003, 13, 2665-2673.	2.4	120
122	Reconciling Gene Expression Data With Known Genome-Scale Regulatory Network Structures. Genome Research, 2003, 13, 2423-2434.	2.4	96
123	Exhaustive search for fuzzy gene networks from microarray data. , 0, , .		0
124	Computational detection of cis -regulatory modules. Bioinformatics, 2003, 19, ii5-ii14.	1.8	104
125	Probing Chromatin Immunoprecipitates with CpG-Island Microarrays to Identify Genomic Sites Occupied by DNA-Binding Proteins. Methods in Enzymology, 2003, 371, 577-596.	0.4	58
126	Food preservation and the development of microbial resistance. , 2003, , 524-551.		3
127	Motif selection in a model of evolving replicators: The role of surfaces and limited transport in network topology. Europhysics Letters, 2003, 64, 557-563.	0.7	11
128	A non-parametric model for transcription factor binding sites. Nucleic Acids Research, 2003, 31, 116e-116.	6.5	49
129	ROBUST IDENTIFICATION OF LARGE GENETIC NETWORKS. , 2003, , 486-97.		35

	ΟΙΤΑΤΙΟ	n Report	
#	Article	IF	CITATIONS
130	Unravelling Nature's networks. Biochemical Society Transactions, 2003, 31, 1457-1461.	1.6	17
131	Supervised classification for gene network reconstruction. Biochemical Society Transactions, 2003, 31, 1497-1502.	1.6	17
132	Transcription-Based Solenoidal Model of Chromosomes. Complexus, 2003, 1, 171-180.	0.7	31
133	Incorporating Basic Nutrition Science into Health Interventions for Cancer Prevention. Journal of Nutrition, 2003, 133, 3820S-3826S.	1.3	33
134	Epigenomic profiling using microarrays. BioTechniques, 2003, 35, 346-357.	0.8	57
135	Error-Rate and Decision-Theoretic Methods of Multiple Testing: Which Genes Have High Objective Probabilities of Differential Expression?. Statistical Applications in Genetics and Molecular Biology, 2004, 3, 1-20.	0.2	18
136	Mammalian Genomes Ease Location of Human DNA Functional Segments but Not Their Description. Statistical Applications in Genetics and Molecular Biology, 2004, 3, 1-12.	0.2	4
137	Methods for Studying Transcription Factors. , 2004, , 23-53.		0
138	Seeing the Unseen: Microarray-Based Gene Expression Profiling in Vision. , 2004, 45, 2457.		10
139	Learning Bayesian Networks by Lamarckian Genetic Algorithm and Its Application to Yeast Cell-Cycle Gene Network Reconstruction from Time-Series Microarray Data. Lecture Notes in Computer Science, 2004, , 49-62.	1.0	4
140	Network Brownian Motion: A New Method to Measure Vertex-Vertex Proximity and to Identify Communities and Subcommunities. Lecture Notes in Computer Science, 2004, , 1062-1069.	1.0	88
141	Kaposi's sarcoma-associated herpesvirus immediate early gene activity. Frontiers in Bioscience - Landmark, 2004, 9, 2245.	3.0	11
142	Ras and Gpa2 Mediate One Branch of a Redundant Glucose Signaling Pathway in Yeast. PLoS Biology, 2004, 2, e128.	2.6	127
143	Gcn4p and Novel Upstream Activating Sequences Regulate Targets of the Unfolded Protein Response. PLoS Biology, 2004, 2, e246.	2.6	143
144	COMPACTNESS AND CYCLES IN SIGNAL TRANSDUCTION AND TRANSCRIPTIONAL REGULATION NETWORKS: SIGNATURE OF NATURAL SELECTION?. International Journal of Modeling, Simulation, and Scientific Computing, 2004, 07, 419-432.	A 0.9	5
145	Measurement of Protein–DNA Interactions In Vivo by Chromatin Immunoprecipitation. , 2004, 284, 129-146.		86
146	Genomic approaches in dissecting complex biological pathways. Pharmacogenomics, 2004, 5, 163-179.	0.6	19
147	Highly conserved upstream sequences for transcription factor genes and implications for the regulatory network. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17156-17161.	3.3	37

#	Article	IF	Citations
148	A discriminative model for identifying spatial cis-regulatory modules. , 2004, , .		5
149	Probabilistic discovery of overlapping cellular processes and their regulation. , 2004, , .		14
150	Predicting protein-peptide interactions via a network-based motif sampler. Bioinformatics, 2004, 20, i274-i282.	1.8	40
151	Physical Network Models. Journal of Computational Biology, 2004, 11, 243-262.	0.8	149
152	Networking genetic regulation and neural computation: Directed network topology and its effect on the dynamics. Physical Review E, 2004, 70, 061908.	0.8	13
153	Search for organising principles: understanding in systems biology. IET Systems Biology, 2004, 1, 19-27.	2.0	125
154	Topological generalizations of network motifs. Physical Review E, 2004, 70, 031909.	0.8	152
155	Dynamic algorithm for inferring qualitative models of gene regulatory networks. , 2004, , 353-62.		3
156	Multilevel Modeling and Inference of Transcription Regulation. Journal of Computational Biology, 2004, 11, 357-375.	0.8	10
157	A First Version of the Caenorhabditis elegans Promoterome. Genome Research, 2004, 14, 2169-2175.	2.4	155
158	A Gateway-Compatible Yeast One-Hybrid System. Genome Research, 2004, 14, 2093-2101.	2.4	189
159	Gene Regulation and Molecular Toxicology. Toxicology Mechanisms and Methods, 2004, 15, 1-23.	1.3	8
160	Inference of boolean models of genetic networks using monotonic time transformations. , 0, , .		5
161	Defining In Vivo Targets of Nuclear Proteins by Chromatin Immunoprecipitation and Microarray Analysis. Current Protocols in Molecular Biology, 2004, 68, Unit 21.9.	2.9	2
162	DBRF-MEGN method: an algorithm for deducing minimum equivalent gene networks from large-scale gene expression profiles of gene deletion mutants. Bioinformatics, 2004, 20, 2662-2675.	1.8	18
163	The topological relationship between the large-scale attributes and local interaction patterns of complex networks. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17940-17945.	3.3	267
164	In silico identification of transcriptional regulators associated with c-Myc. Nucleic Acids Research, 2004, 32, 4955-4961.	6.5	26
165	Cbf1p Is Required for Chromatin Remodeling at Promoter-proximal CACGTG Motifs in Yeast. Journal of Biological Chemistry, 2004, 279, 27116-27123.	1.6	53

#	Article	IF	CITATIONS
166	Genome-Wide Analysis of the Biology of Stress Responses through Heat Shock Transcription Factor. Molecular and Cellular Biology, 2004, 24, 5249-5256.	1.1	377
167	Gene co-regulation is highly conserved in the evolution of eukaryotes and prokaryotes. Nucleic Acids Research, 2004, 32, 4725-4731.	6.5	99
168	Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2981-2986.	3.3	344
169	Annotation Transfer Between Genomes: Protein-Protein Interologs and Protein-DNA Regulogs. Genome Research, 2004, 14, 1107-1118.	2.4	516
170	What better measure than ribosome synthesis?. Genes and Development, 2004, 18, 2431-2436.	2.7	185
171	Translational profiling: The genome-wide measure of the nascent proteome. Briefings in Functional Genomics & Proteomics, 2004, 3, 103-111.	3.8	50
172	Genome-wide Analysis of ARS (Autonomously Replicating Sequence) Binding Factor 1 (Abf1p)-mediated Transcriptional Regulation in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 34865-34872.	1.6	43
174	Statistical resynchronization and Bayesian detection of periodically expressed genes. Nucleic Acids Research, 2004, 32, 447-455.	6.5	55
175	Design of a directed molecular network. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10872-10877.	3.3	193
176	New methods for joint analysis of biological networks and expression data. Bioinformatics, 2004, 20, 1517-1521.	1.8	68
177	TopNet: a tool for comparing biological sub-networks, correlating protein properties with topological statistics. Nucleic Acids Research, 2004, 32, 328-337.	6.5	80
178	Phylogenetic Analysis of 5â€ ² -Noncoding Regions From the ABA-Responsive rab16/17 Gene Family of Sorghum, Maize and Rice Provides Insight Into the Composition, Organization and Function of cis-Regulatory ModulesSequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession no. AY177889 Genetics. 2004. 168. 1639-1654.	1.2	17
179	Inferring quantitative models of regulatory networks from expression data. Bioinformatics, 2004, 20, i248-i256.	1.8	162
180	Nrg1 and Nrg2 Transcriptional Repressors Are Differently Regulated in Response to Carbon Source. Eukaryotic Cell, 2004, 3, 311-317.	3.4	34
181	DNA axial rotation and the merge of oppositely supercoiled DNA domains in Escherichia coli: Effects of DNA bends. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8608-8613.	3.3	22
182	Activation of the Saccharomyces cerevisiae Heat Shock Transcription Factor Under Glucose Starvation Conditions by Snf1 Protein Kinase. Journal of Biological Chemistry, 2004, 279, 5169-5176.	1.6	142
183	A Motif Co-Occurrence Approach for Genome-Wide Prediction of Transcription-Factor-Binding Sites in Escherichia coli. Genome Research, 2004, 14, 201-208.	2.4	55
184	ORFeome Cloning and Systems Biology: Standardized Mass Production of the Parts From the Parts-List. Genome Research, 2004, 14, 2001-2009.	2.4	69

#	Article	IF	CITATIONS
185	Proteomic Studies Using Microarrays. Current Proteomics, 2004, 1, 283-295.	0.1	22
186	In silico representation and discovery of transcription factor binding sites. Briefings in Bioinformatics, 2004, 5, 217-236.	3.2	74
187	Comment on "Network Motifs: Simple Building Blocks of Complex Networks" and "Superfamilies of Evolved and Designed Networks". Science, 2004, 305, 1107c-1107c.	6.0	195
188	A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes and Development, 2004, 18, 2491-2505.	2.7	553
189	Transcription factor binding element detection using functional clustering of mutant expression data. Nucleic Acids Research, 2004, 32, 2362-2371.	6.5	13
190	Identification of sparsely distributed clusters of cis-regulatory elements in sets of co-expressed genes. Nucleic Acids Research, 2004, 32, 2889-2900.	6.5	45
191	Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5934-5939.	3.3	479
192	Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16594-16599.	3.3	225
193	Interaction Networks of the Molecular Machines That Decode, Replicate, and Maintain the Integrity of the Human Genome. Molecular and Cellular Proteomics, 2004, 3, 851-856.	2.5	18
194	An extended transcriptional regulatory network of Escherichia coli and analysis of its hierarchical structure and network motifs. Nucleic Acids Research, 2004, 32, 6643-6649.	6.5	184
195	Promoter-dependent Roles for the Srb10 Cyclin-dependent Kinase and the Hda1 Deacetylase in Tup1-mediated Repression inSaccharomyces cerevisiae. Molecular Biology of the Cell, 2004, 15, 4191-4202.	0.9	69
196	Computational inference of transcriptional regulatory networks from expression profiling and transcription factor binding site identification. Nucleic Acids Research, 2004, 32, 179-188.	6.5	99
197	Challenges and prospects in the analysis of large-scale gene expression data. Briefings in Bioinformatics, 2004, 5, 313-327.	3.2	19
198	CARRIE web service: automated transcriptional regulatory network inference and interactive analysis. Nucleic Acids Research, 2004, 32, W213-W216.	6.5	30
199	Reconstructing Boolean networks from noisy gene expression data. , 0, , .		0
200	Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal protein gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14315-14322.	3.3	335
201	Global network analysis of phenotypic effects: Protein networks and toxicity modulation in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 18006-18011.	3.3	123
202	Quantifying Modularity in the Evolution of Biomolecular Systems. Genome Research, 2004, 14, 391-397.	2.4	91

#	Article	IF	CITATIONS
203	Fkh2p and Sep1p regulate mitotic gene transcription in fission yeast. Journal of Cell Science, 2004, 117, 5623-5632.	1.2	61
204	RECONSTRUCTING GENETIC NETWORKS FROM TIME ORDERED GENE EXPRESSION DATA USING BAYESIAN METHOD WITH GLOBAL SEARCH ALGORITHM. Journal of Bioinformatics and Computational Biology, 2004, 02, 441-458.	0.3	11
205	Excess Mannose Limits the Growth of Phosphomannose Isomerase PMI40 Deletion Strain of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 55737-55743.	1.6	30
206	Coevolution of gene expression among interacting proteins. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9033-9038.	3.3	221
207	Identification of Genetic Networks. Genetics, 2004, 166, 1037-1052.	1.2	72
208	Spatiotemporal control of gene expression with pulse-generating networks. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6355-6360.	3.3	433
209	Universality and flexibility in gene expression from bacteria to human. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3765-3769.	3.3	139
210	Inactivation of Transcription Factor Gene ACE2 in the Fungal Pathogen Candida glabrata Results in Hypervirulence. Eukaryotic Cell, 2004, 3, 546-552.	3.4	70
211	Transcriptome-based determination of multiple transcription regulator activities in Escherichia coli by using network component analysis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 641-646.	3.3	129
212	Differential metabolic networks unravel the effects of silent plant phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7809-7814.	3.3	376
213	Analyzing Cellular Biochemistry in Terms of Molecular Networks. Annual Review of Biochemistry, 2004, 73, 1051-1087.	5.0	133
214	Protein Interaction Networks. Expert Review of Proteomics, 2004, 1, 239-249.	1.3	79
215	COMBINING MICROARRAYS AND BIOLOGICAL KNOWLEDGE FOR ESTIMATING GENE NETWORKS VIA BAYESIAN NETWORKS. Journal of Bioinformatics and Computational Biology, 2004, 02, 77-98.	0.3	96
216	MOLECULAR NETWORKS IN MODEL SYSTEMS. Annual Review of Genomics and Human Genetics, 2004, 5, 177-187.	2.5	20
217	Enrichment of transcriptional regulatory sites in non-coding genomic region. Bioinformatics, 2004, 20, 569-575.	1.8	7
218	Back to the biology in systems biology: What can we learn from biomolecular networks?. Briefings in Functional Genomics & Proteomics, 2004, 2, 279-297.	3.8	109
219	Conservation and Evolution of Cis-Regulatory Systems in Ascomycete Fungi. PLoS Biology, 2004, 2, e398.	2.6	207
220	Predicting rules on organization of cis-regulatory elements, taking the order of elements into account. Bioinformatics, 2004, 20, 1119-1128.	1.8	17

#	ARTICLE	IF	CITATIONS
221	Combining pattern discovery and discriminant analysis to predict gene co-regulation. Bioinformatics, 2004, 20, 2370-2379.	1.8	30
222	Predicting genetic regulatory response using classification. Bioinformatics, 2004, 20, i232-i240.	1.8	72
223	Rapid tagging of endogenous mouse genes by recombineering and ES cell complementation of tetraploid blastocysts. Nucleic Acids Research, 2004, 32, e128-e128.	6.5	30
224	Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle. Bioinformatics, 2004, 20, 1914-1927.	1.8	93
225	PathBLAST: a tool for alignment of protein interaction networks. Nucleic Acids Research, 2004, 32, W83-W88.	6.5	360
226	The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence. Molecular Microbiology, 2004, 53, 969-983.	1.2	166
227	Functional and Physical Interactions between Autonomously Replicating Sequence-Binding Factor 1 and the Nuclear Transport Machinery. Traffic, 2004, 5, 925-935.	1.3	3
228	Promoter analysis and transcription profiling: Integration of genetic data enhances understanding of gene expression. Physiologia Plantarum, 2004, 120, 74-83.	2.6	23
229	Exploiting biological complexity for strain improvement through systems biology. Nature Biotechnology, 2004, 22, 1261-1267.	9.4	166
230	Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae. Nature Biotechnology, 2004, 22, 86-92.	9.4	233
231	Gaining confidence in high-throughput protein interaction networks. Nature Biotechnology, 2004, 22, 78-85.	9.4	428
232	Analysis of genomic context: prediction of functional associations from conserved bidirectionally transcribed gene pairs. Nature Biotechnology, 2004, 22, 911-917.	9.4	166
233	Gene regulatory network growth by duplication. Nature Genetics, 2004, 36, 492-496.	9.4	475
234	Periodic gene expression program of the fission yeast cell cycle. Nature Genetics, 2004, 36, 809-817.	9.4	472
235	Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays. Nature Genetics, 2004, 36, 1331-1339.	9.4	341
236	Design of gene circuits: lessons from bacteria. Nature Reviews Genetics, 2004, 5, 34-42.	7.7	206
237	Maximizing the potential of functional genomics. Nature Reviews Genetics, 2004, 5, 190-201.	7.7	83
238	The Zap1 transcriptional activator also acts as a repressor by binding downstream of the TATA box in ZRT2. EMBO Journal, 2004, 23, 1123-1132.	3.5	74

# 239	ARTICLE E2Fs link the control of G1/S and G2/M transcription. EMBO Journal, 2004, 23, 4615-4626.	IF 3.5	Citations 298
240	The yeast coexpression network has a smallâ€world, scaleâ€free architecture and can be explained by a simple model. EMBO Reports, 2004, 5, 280-284.	2.0	228
241	Genomes for medicine. Nature, 2004, 429, 440-445.	13.7	72
242	Genomic analysis of regulatory network dynamics reveals large topological changes. Nature, 2004, 431, 308-312.	13.7	921
243	Transcriptional regulatory code of a eukaryotic genome. Nature, 2004, 431, 99-104.	13.7	1,969
244	Long-lasting self-inhibition of neocortical interneurons mediated by endocannabinoids. Nature, 2004, 431, 312-316.	13.7	266
245	The transcription factor lfh1 is a key regulator of yeast ribosomal protein genes. Nature, 2004, 432, 1054-1058.	13.7	193
246	Growth-regulated recruitment of the essential yeast ribosomal protein gene activator lfh1. Nature, 2004, 432, 1058-1061.	13.7	203
247	High throughput gene expression profiling: a molecular approach to integrative physiology. Journal of Physiology, 2004, 554, 22-30.	1.3	40
248	Interrogating the transcriptome. Trends in Biotechnology, 2004, 22, 23-30.	4.9	58
249	Synthetic biology evolves. Trends in Biotechnology, 2004, 22, 321-324.	4.9	16
250	Extracting novel information from gene expression data. Trends in Biotechnology, 2004, 22, 381-383.	4.9	6
251	Genomic analysis of essentiality within protein networks. Trends in Genetics, 2004, 20, 227-231.	2.9	303
252	How much expression divergence after yeast gene duplication could be explained by regulatory motif evolution?. Trends in Genetics, 2004, 20, 403-407.	2.9	77
253	Structure and evolution of transcriptional regulatory networks. Current Opinion in Structural Biology, 2004, 14, 283-291.	2.6	683
254	WRKY transcription factors: from DNA binding towards biological function. Current Opinion in Plant Biology, 2004, 7, 491-498.	3.5	832
255	Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network. BMC Bioinformatics, 2004, 5, 10.	1.2	206
256	VisANT: an online visualization and analysis tool for biological interaction data. BMC Bioinformatics, 2004, 5, 17.	1.2	220

#	Article	IF	CITATIONS
257	Quantifying the relationship between co-expression, co-regulation and gene function. BMC Bioinformatics, 2004, 5, 18.	1.2	313
258	Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach. BMC Bioinformatics, 2004, 5, 199.	1.2	158
259	MiCoViTo: a tool for gene-centric comparison and visualization of yeast transcriptome states. BMC Bioinformatics, 2004, 5, 20.	1.2	4
260	Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data. BMC Bioinformatics, 2004, 5, 31.	1.2	212
261	Predicting co-complexed protein pairs using genomic and proteomic data integration. BMC Bioinformatics, 2004, 5, 38.	1.2	139
262	Computational identification of transcription factor binding sites by functional analysis of sets of genes sharing overrepresented upstream motifs. BMC Bioinformatics, 2004, 5, 57.	1.2	30
263	Upstream plasticity and downstream robustness in evolution of molecular networks. BMC Evolutionary Biology, 2004, 4, 9.	3.2	62
264	Cell cycle goes global. Current Opinion in Cell Biology, 2004, 16, 602-613.	2.6	32
265	Statistical Analysis of the Spatial Distribution of Operons in the Transcriptional Regulation Network of Escherichia coli. Journal of Molecular Biology, 2004, 342, 1379-1390.	2.0	62
266	An Arabidopsis Promoter Microarray and its Initial Usage in the Identification of HY5 Binding Targets in Vitro. Plant Molecular Biology, 2004, 54, 683-699.	2.0	35
267	Analyzing time series gene expression data. Bioinformatics, 2004, 20, 2493-2503.	1.8	385
268	Protein microarray technology and ultraviolet crosslinking combined with mass spectrometry for the analysis of protein–DNA interactions. Analytical Biochemistry, 2004, 331, 303-313.	1.1	35
269	In silico biotechnology. Current Opinion in Biotechnology, 2004, 15, 50-51.	3.3	26
270	Mathematical models of diffusion-constrained polymerase chain reactions: basis of high-throughput nucleic acid assays and simple self-organizing systems. Journal of Theoretical Biology, 2004, 228, 31-46.	0.8	14
271	A proposal for using the ensemble approach to understand genetic regulatory networks. Journal of Theoretical Biology, 2004, 230, 581-590.	0.8	116
272	Transcriptional networks controlling pancreatic development and beta cell function. Diabetologia, 2004, 47, 597-613.	2.9	205
273	Ubiquitin-proteasome system. Cellular and Molecular Life Sciences, 2004, 61, 1615-1632.	2.4	18
274	Data-based model and parameter evaluation in dynamic transcriptional regulatory networks. Proteins: Structure, Function and Bioinformatics, 2004, 55, 339-350.	1.5	5

#	Article	IF	Citations
275	Four permeases import proline and the toxic proline analogue azetidine-2-carboxylate into yeast. Yeast, 2004, 21, 193-199.	0.8	60
276	The evolution of molecular genetic pathways and networks. BioEssays, 2004, 26, 479-484.	1.2	116
277	A panorama of lineage-specific transcription in hematopoiesis. BioEssays, 2004, 26, 1276-1287.	1.2	17
278	Expression genomics and cancer drug development. Drug Development Research, 2004, 62, 295-302.	1.4	2
279	Molecular evolution in the yeast transcriptional regulation network. The Journal of Experimental Zoology, 2004, 302B, 392-411.	1.4	38
280	From Databases to Modelling of Functional Pathways. Comparative and Functional Genomics, 2004, 5, 179-183.	2.0	3
281	Mapping phenotypic landscapes using DNA micro-arrays. Metabolic Engineering, 2004, 6, 177-185.	3.6	11
282	A Boolean algorithm for reconstructing the structure of regulatory networks. Metabolic Engineering, 2004, 6, 326-339.	3.6	34
283	On the dynamics of random Boolean networks with scale-free outgoing connections. Physica A: Statistical Mechanics and Its Applications, 2004, 339, 665-673.	1.2	30
284	The ensemble approach to understand genetic regulatory networks. Physica A: Statistical Mechanics and Its Applications, 2004, 340, 733-740.	1.2	39
285	Inferring models of gene expression dynamics. Journal of Theoretical Biology, 2004, 230, 289-299.	0.8	55
286	From large networks to small molecules. Current Opinion in Chemical Biology, 2004, 8, 81-90.	2.8	98
287	Reconstruction of microbial transcriptional regulatory networks. Current Opinion in Biotechnology, 2004, 15, 70-77.	3.3	149
288	Model evaluation for glycolytic oscillations in yeast biotransformations of xenobiotics. Biophysical Chemistry, 2004, 109, 413-426.	1.5	8
289	Learning kernels from biological networks by maximizing entropy. Bioinformatics, 2004, 20, i326-i333.	1.8	98
290	Boolean Logic Functions of a Synthetic Peptide Network. Journal of the American Chemical Society, 2004, 126, 11140-11141.	6.6	210
291	Inferring Cellular Networks Using Probabilistic Graphical Models. Science, 2004, 303, 799-805.	6.0	1,003
292	Network component analysis of Saccharamyces cerevisiae stress response. , 2004, 2004, 2937-40.		1

#	Article	IF	CITATIONS
293	Genetic networks with canalyzing Boolean rules are always stable. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17102-17107.	3.3	283
294	Complex network study of Brazilian soccer players. Physical Review E, 2004, 70, 037103.	0.8	65
295	Transcriptional Control of DNA-Based Nanomachines. Nano Letters, 2004, 4, 689-691.	4.5	85
296	Global Transcription Profiling Reveals Multiple Sugar Signal Transduction Mechanisms in Arabidopsis[W]. Plant Cell, 2004, 16, 2128-2150.	3.1	493
297	GENEVESTIGATOR. Arabidopsis Microarray Database and Analysis Toolbox. Plant Physiology, 2004, 136, 2621-2632.	2.3	2,232
298	A systems view of mRNP biology. Genes and Development, 2004, 18, 2845-2860.	2.7	137
299	Synthetic biology evolves. Trends in Biotechnology, 2004, 22, 321.	4.9	1
300	Use of a multi-virus array for the study of human viral and retroviral pathogens: gene expression studies and ChIP-chip analysis. Retrovirology, 2004, 1, 10.	0.9	15
301	Metal-Responsive Transcription Factors That Regulate Iron, Zinc, and Copper Homeostasis in Eukaryotic Cells. Eukaryotic Cell, 2004, 3, 1-13.	3.4	244
302	Combining biological networks to predict genetic interactions. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15682-15687.	3.3	225
303	Transient responses and adaptation to steady state in a eukaryotic gene regulation system. Physical Biology, 2004, 1, 67-76.	0.8	28
304	A Mixed Model Approach to Identify Yeast Transcriptional Regulatory Motifs via Microarray Experiments. Statistical Applications in Genetics and Molecular Biology, 2004, 3, 1-20.	0.2	7
305	Control of Pancreas and Liver Gene Expression by HNF Transcription Factors. Science, 2004, 303, 1378-1381.	6.0	1,202
306	Integrating phenotypic and expression profiles to map arsenic-response networks. Genome Biology, 2004, 5, R95.	13.9	167
307	How biologically relevant are interaction-based modules in protein networks?. Genome Biology, 2004, 5, R93.	13.9	47
308	Global nucleosome occupancy in yeast. Genome Biology, 2004, 5, R62.	13.9	309
309	Comprehensive de novo structure prediction in a systems-biology context for the archaea Halobacterium sp. NRC-1. Genome Biology, 2004, 5, R52.	13.9	45
310	Identifying combinatorial regulation of transcription factors and binding motifs. Genome Biology, 2004, 5, R56.	13.9	150

#	Article	IF	Citations
311	From co-expression to co-regulation: how many microarray experiments do we need?. Genome Biology, 2004, 5, R48.	13.9	88
312	Transcriptional regulation of protein complexes in yeast. Genome Biology, 2004, 5, R33.	13.9	40
313	Enriching for direct regulatory targets in perturbed gene-expression profiles. Genome Biology, 2004, 5, R29.	13.9	10
314	Identifying transcriptional targets. Genome Biology, 2004, 5, 210.	13.9	34
315	An Overview of Spotfire for Geneâ€Expression Studies. Current Protocols in Bioinformatics, 2004, 6, Unit 7.7.	25.8	4
316	Flagellar Biosynthesis In Silico. Cell, 2004, 117, 689-690.	13.5	4
317	Mapping Global Histone Acetylation Patterns to Gene Expression. Cell, 2004, 117, 721-733.	13.5	561
318	Robustness of Cellular Functions. Cell, 2004, 118, 675-685.	13.5	930
319	Defining the CREB Regulon. Cell, 2004, 119, 1041-1054.	13.5	506
320	TOR Regulates Ribosomal Protein Gene Expression via PKA and the Forkhead Transcription Factor FHL1. Cell, 2004, 119, 969-979.	13.5	418
321	Network responses to DNA damaging agents. DNA Repair, 2004, 3, 1123-1132.	1.3	48
322	Development through the eyes of functional genomics. Current Opinion in Genetics and Development, 2004, 14, 336-342.	1.5	12
323	Bioinformatics and Systems Biology, rapidly evolving tools for interpreting plant response to global change. Field Crops Research, 2004, 90, 117-131.	2.3	11
324	Identification of region-specific transcription factor genes in the adult mouse brain by medium-scale real-time RT-PCR. FEBS Letters, 2004, 573, 214-218.	1.3	18
325	Learning module networks from genome-wide location and expression data. FEBS Letters, 2004, 578, 297-304.	1.3	48
326	A genome-wide and nonredundant mouse transcription factor database. Biochemical and Biophysical Research Communications, 2004, 322, 787-793.	1.0	137
327	Conserved elements in Pax6 intron 7 involved in (auto)regulation and alternative transcription. Developmental Biology, 2004, 265, 462-477.	0.9	105
328	ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics, 2004, 83, 349-360.	1.3	536

#	Article	IF	CITATIONS
329	Construction of representative transcript and protein sets of human, mouse, and rat as a platform for their transcriptome and proteome analysis. Genomics, 2004, 84, 913-921.	1.3	23
330	A walk-through of the yeast mating pheromone response pathway. Peptides, 2004, 25, 1465-1476.	1.2	236
331	A systems approach to dissecting immunity and inflammation. Seminars in Immunology, 2004, 16, 55-67.	2.7	70
332	Networks of transcription factors with roles in environmental stress response. Trends in Plant Science, 2004, 9, 591-596.	4.3	254
333	Mathematical models in microbial systems biology. Current Opinion in Microbiology, 2004, 7, 513-518.	2.3	145
334	Analyzing protein function on a genomic scale: the importance of gold-standard positives and negatives for network prediction. Current Opinion in Microbiology, 2004, 7, 535-545.	2.3	167
335	Sense and sensibility: nutritional response and signal integration in yeast. Current Opinion in Microbiology, 2004, 7, 624-630.	2.3	98
336	Transcriptional networks: reverse-engineering gene regulation on a global scale. Current Opinion in Microbiology, 2004, 7, 638-646.	2.3	56
337	Hot Spots for Modulating Toxicity Identified by Genomic Phenotyping and Localization Mapping. Molecular Cell, 2004, 16, 117-125.	4.5	90
338	Global Position and Recruitment of HATs and HDACs in the Yeast Genome. Molecular Cell, 2004, 16, 199-209.	4.5	212
339	Constrained Binding Site Diversity within Families of Transcription Factors Enhances Pattern Discovery Bioinformatics. Journal of Molecular Biology, 2004, 338, 207-215.	2.0	157
340	Distinct DNA Elements Contribute to Rap1p Affinity for its Binding Sites. Journal of Molecular Biology, 2004, 338, 877-893.	2.0	12
341	Methods in Comparative Genomics: Genome Correspondence, Gene Identification and Regulatory Motif Discovery. Journal of Computational Biology, 2004, 11, 319-355.	0.8	88
342	Systems Biology, Proteomics, and the Future of Health Care:Â Toward Predictive, Preventative, and Personalized Medicine. Journal of Proteome Research, 2004, 3, 179-196.	1.8	680
343	Superfamilies of Evolved and Designed Networks. Science, 2004, 303, 1538-1542.	6.0	1,182
344	Circuits of the cell. Drug Discovery Today Biosilico, 2004, 2, 120-126.	0.7	0
345	Minimum information about a functional genomics experiment: the state of microarray standards and their extension to other technologies. Drug Discovery Today: TARGETS, 2004, 3, 159-164.	0.5	5
346	Specificity in Signal Transduction. Cell, 2004, 116, 191-203.	13.5	774

ARTICLE IF CITATIONS # Unbiased Mapping of Transcription Factor Binding Sites along Human Chromosomes 21 and 22 Points 347 13.5 1,047 to Widespread Regulation of Noncoding RNAs. Cell, 2004, 116, 499-509. 348 Predicting Gene Expression from Sequence. Cell, 2004, 117, 185-198. 13.5 A MyoD-generated feed-forward circuit temporally patterns gene expression during skeletal muscle 349 2.7 159 differentiation. Genes and Development, 2004, 18, 2348-2353. A Nonlinear Discrete Dynamical Model for Transcriptional Regulation: Construction and Properties. Biophysical Journal, 2004, 86, 1922-1945. Injury research in the genomic era. Lancet, The, 2004, 363, 2076-2083. 351 6.3 130 Loading and Preparing Data for Analysis in Spotfire. Current Protocols in Bioinformatics, 2004, 6, 25.8 Unit 7.8 Charting gene regulatory networks: strategies, challenges and perspectives. Biochemical Journal, 353 1.7 73 2004, 381, 1-12. Computational analysis of membrane proteins: genomic occurrence, structure prediction and helix 354 2.4 interactions. Quarterly Reviews of Biophysics, 2004, 37, 121-146. RANDOM FOREST SIMILARITY FOR PROTEIN-PROTEIN INTERACTION PREDICTION FROM MULTIPLE SOURCES., 355 78 2004,,. Expression of YAP4 in Saccharomyces cerevisiae under osmotic stress. Biochemical Journal, 2004, 379, 1.7 367-374. Analyzing Networks with VisANT. Current Protocols in Bioinformatics, 2004, 8, Unit 8.8. 358 25.8 13 A Systems Approach to Modeling and Analyzing Biological Regulation. IFAC Postprint Volumes IPPV / 0.4 Intérnational Federation of Automatic Control, 2004, 37, 11-22. Genomic Approaches That Aid in the Identification of Transcription Factor Target Genes. Experimental 360 1.1 51 Biology and Medicine, 2004, 229, 705-721. DISCRIMINATIVE DETECTION OF CIS-ACTING REGULATORY VARIATION FROM LOCATION DATA., 2005, , . Motif Discovery Through Predictive Modeling of Gene Regulation. Lecture Notes in Computer Science, 362 1.0 12 2005, , 538-552. Pattern Matching for Motifs., 2005, , 299-312. Protein Interaction Prediction by Integrating Genomic Features and Protein Interaction Network 364 3 Analysis., 2005, , 61-81. COMPUTATIONAL STRATEGY FOR DISCOVERING DRUGGABLE GENE NETWORKS FROM GENOME-WIDE RNA EXPRESSION PROFILES., 2005, , .

#	Article	IF	CITATIONS
367	A modular systems biology analysis of cell cycle entrance into S-phase. Topics in Current Genetics, 2005, , 325-347.	0.7	5
368	High-throughput metabolic state analysis: the missing link in integrated functional genomics of yeasts. Biochemical Journal, 2005, 388, 669-677.	1.7	147
369	Transcriptional regulation and metabolism. Biochemical Society Transactions, 2005, 33, 1423-1426.	1.6	6
370	Transcriptional regulation and metabolism. Biochemical Society Transactions, 2005, 33, 1423.	1.6	7
371	A feedforward loop motif in transcriptional regulation: induction and repression. Journal of Theoretical Biology, 2005, 234, 133-143.	0.8	28
372	Evaluation of the performance of mechanisms for noise attenuation in a single-gene expression. Journal of Theoretical Biology, 2005, 235, 241-264.	0.8	16
373	Learning dynamic Bayesian network models via cross-validation. Pattern Recognition Letters, 2005, 26, 2295-2308.	2.6	23
374	Contribution of the transcriptional regulator Leu3p to physiology and gene expression in nitrogen- and carbon-limited chemostat cultures. FEMS Yeast Research, 2005, 5, 885-897.	1.1	45
375	gNCA: A framework for determining transcription factor activity based on transcriptome: identifiability and numerical implementation. Metabolic Engineering, 2005, 7, 128-141.	3.6	98
376	Mass spectrometric screening of transcriptional regulators using DNA affinity capture assay. Analytical Biochemistry, 2005, 344, 152-154.	1.1	19
377	Genomic studies of transcription factor–DNA interactions. Current Opinion in Chemical Biology, 2005, 9, 38-45.	2.8	60
378	Unconventional systems analysis problems in molecular biology: a case study in gene regulatory network modeling. Computers and Chemical Engineering, 2005, 29, 547-563.	2.0	14
379	Large-scale inference of the transcriptional regulation of Bacillus subtilis. Computers and Chemical Engineering, 2005, 29, 565-576.	2.0	17
380	The Yeast Systems Biology Network: mating communities. Current Opinion in Biotechnology, 2005, 16, 356-360.	3.3	22
381	Regulation of metabolic networks: understanding metabolic complexity in the systems biology era. New Phytologist, 2005, 168, 9-24.	3.5	149
382	Transcriptome analysis and kidney research: Toward systems biology. Kidney International, 2005, 67, 2114-2122.	2.6	25
383	Transcriptional regulation of the one-carbon metabolism regulon in Saccharomyces cerevisiae by Bas1p. Molecular Microbiology, 2005, 57, 53-69.	1.2	27
384	Facilitated diffusion in chromatin lattices: mechanistic diversity and regulatory potential. Molecular Microbiology, 2005, 57, 889-899.	1.2	20

#	Article	IF	CITATIONS
385	The search for genenotype/phenotype associations and the phenome scan. Paediatric and Perinatal Epidemiology, 2005, 19, 264-275.	0.8	36
386	Cross talking of network motifs in gene regulation that generates temporal pulses and spatial stripes. Genes To Cells, 2005, 10, 1025-1038.	0.5	86
387	Functional annotation and network reconstruction through cross-platform integration of microarray data. Nature Biotechnology, 2005, 23, 238-243.	9.4	137
388	Systematic interpretation of genetic interactions using protein networks. Nature Biotechnology, 2005, 23, 561-566.	9.4	391
389	A bacterial one-hybrid system for determining the DNA-binding specificity of transcription factors. Nature Biotechnology, 2005, 23, 988-994.	9.4	180
390	Combined static and dynamic analysis for determining the quality of time-series expression profiles. Nature Biotechnology, 2005, 23, 1503-1508.	9.4	32
391	From parts catalog to wiring diagram. Nature Genetics, 2005, 37, 1-1.	9.4	17
392	Mapping of genetic and epigenetic regulatory networks using microarrays. Nature Genetics, 2005, 37, S18-S24.	9.4	110
393	From signatures to models: understanding cancer using microarrays. Nature Genetics, 2005, 37, S38-S45.	9.4	331
394	Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genetics, 2005, 37, 853-862.	9.4	1,591
396	Mapping DNA-protein interactions in large genomes by sequence tag analysis of genomic enrichment. Nature Methods, 2005, 2, 47-53.	9.0	108
397	Tag-based approaches for transcriptome research and genome annotation. Nature Methods, 2005, 2, 495-502.	9.0	165
398	Multicomponent therapeutics for networked systems. Nature Reviews Drug Discovery, 2005, 4, 71-78.	21.5	665
399	Central role of Ifh1p–Fhl1p interaction in the synthesis of yeast ribosomal proteins. EMBO Journal, 2005, 24, 533-542.	3.5	161
400	Cell cycle-dependent transcription in yeast: promoters, transcription factors, and transcriptomes. Oncogene, 2005, 24, 2746-2755.	2.6	172
401	Global analysis of protein phosphorylation in yeast. Nature, 2005, 438, 679-684.	13.7	915
403	High-throughput two-hybrid analysis. The promise and the peril. FEBS Journal, 2005, 272, 5391-5399.	2.2	163
404	Topology, tinkering and evolution of the human transcription factor network. FEBS Journal, 2005, 272, 6423-6434.	2.2	62

#	Article	IF	CITATIONS
405	Molecular chaperones as regulatory elements of cellular networks. Current Opinion in Cell Biology, 2005, 17, 210-215.	2.6	85
406	Dynamics of transcription and mRNA export. Current Opinion in Cell Biology, 2005, 17, 332-339.	2.6	45
407	New probabilistic graphical models for genetic regulatory networks studies. Journal of Biomedical Informatics, 2005, 38, 443-455.	2.5	27
408	Replication-Independent Histone Deposition by the HIR Complex and Asf1. Current Biology, 2005, 15, 2044-2049.	1.8	189
409	Chromosomal organization is shaped by the transcription regulatory network. Trends in Genetics, 2005, 21, 138-142.	2.9	69
410	Network motifs are enriched with transcription factors whose transcripts have short half-lives. Trends in Genetics, 2005, 21, 492-495.	2.9	45
411	The evolution of noncoding DNA: how much junk, how much func?. Trends in Genetics, 2005, 21, 533-536.	2.9	35
412	Cnidarians and ancestral genetic complexity in the animal kingdom. Trends in Genetics, 2005, 21, 536-539.	2.9	116
413	De novo ribosome biosynthesis is transcriptionally regulated in Eimeria tenella, dependent on its life cycle stage. Molecular and Biochemical Parasitology, 2005, 139, 239-248.	0.5	15
414	CAGER: classification analysis of gene expression regulation using multiple information sources. BMC Bioinformatics, 2005, 6, 114.	1.2	6
415	Dynamic modeling of cis-regulatory circuits and gene expression prediction via cross-gene identification. BMC Bioinformatics, 2005, 6, 258.	1.2	31
416	Genome-wide identification of the regulatory targets of a transcription factor using biochemical characterization and computational genomic analysis. BMC Bioinformatics, 2005, 6, 275.	1.2	18
417	A microarray data-based semi-kinetic method for predicting quantitative dynamics of genetic networks. BMC Bioinformatics, 2005, 6, 299.	1.2	11
418	Structural comparison of metabolic networks in selected single cell organisms. BMC Bioinformatics, 2005, 6, 8.	1.2	71
419	A quantization method based on threshold optimization for microarray short time series. BMC Bioinformatics, 2005, 6, S11.	1.2	30
420	Gene expression analysis reveals that histone deacetylation sites may serve as partitions of chromatin gene expression domains. BMC Genomics, 2005, 6, 44.	1.2	9
421	Inferring yeast cell cycle regulators and interactions using transcription factor activities. BMC Genomics, 2005, 6, 90.	1.2	64
422	Developmental control via GATA factor interplay at chromatin domains. Journal of Cellular Physiology, 2005, 205, 1-9.	2.0	89

#	Article	IF	CITATIONS
423	Distributed robustness versus redundancy as causes of mutational robustness. BioEssays, 2005, 27, 176-188.	1.2	258
424	Inferring gene regulatory relationships by combining target-target pattern recognition and regulator-specific motif examination. Biotechnology and Bioengineering, 2005, 89, 53-77.	1.7	8
425	The YJR127C/ZMS1 gene product is involved in glycerol-based respiratory growth of the yeast Saccharomyces cerevisiae. Current Genetics, 2005, 48, 235-246.	0.8	25
426	Genomic sources of regulatory variation in cis and in trans. Cellular and Molecular Life Sciences, 2005, 62, 1779-1783.	2.4	64
427	Analysis and generic properties of gene regulatory networks with graded response functions. Physica D: Nonlinear Phenomena, 2005, 201, 150-176.	1.3	96
428	Integrating mRNA Decay Information into Co-Regulation Study. Journal of Computer Science and Technology, 2005, 20, 434-438.	0.9	1
429	Applications of DNA tiling arrays to experimental genome annotation and regulatory pathway discovery. Chromosome Research, 2005, 13, 259-274.	1.0	72
430	Predicting transcription factor activities from combined analysis of microarray and ChIP data: a partial least squares approach. Theoretical Biology and Medical Modelling, 2005, 2, 23.	2.1	98
431	Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. Journal of Biology, 2005, 4, 6.	2.7	154
432	Phenotype analysis using network motifs derived from changes in regulatory network dynamics. Proteins: Structure, Function and Bioinformatics, 2005, 60, 525-546.	1.5	3
433	Comparative analysis of promoter regions containing binding sites of the heterodimeric transcription factor Ino2/Ino4 involved in yeast phospholipid biosynthesis. Yeast, 2005, 22, 601-613.	0.8	19
434	Quantitative analysis of wine yeast gene expression profiles under winemaking conditions. Yeast, 2005, 22, 369-383.	0.8	107
435	New weakly expressed cell cycle-regulated genes in yeast. Yeast, 2005, 22, 1191-1201.	0.8	48
436	Genetic and pharmacological inactivation of adenosine A2A receptor reveals an Egr-2-mediated transcriptional regulatory network in the mouse striatum. Physiological Genomics, 2005, 23, 89-102.	1.0	17
437	Accessible Protein Interaction Data for Network Modeling. Structure of the Information and Available Repositories. Lecture Notes in Computer Science, 2005, , 1-13.	1.0	3
438	Seven years of yeast microarray analysis. , 2005, , .		1
439	Reverse engineering gene regulatory networks. , 2005, , .		0
442	Functional networks in mammalian cells. , 2005, , .		0

#	Article	IF	CITATIONS
443	Predicting Genetic Regulatory Response Using Classification: Yeast Stress Response. Lecture Notes in Computer Science, 2005, , 1-13.	1.0	2
444	Gene network analysis in plant development by genomic technologies. International Journal of Developmental Biology, 2005, 49, 745-759.	0.3	33
445	Analysis of Gene Regulatory Circuits. , 2005, , 265-276.		0
446	Inferring Cis-region Hierarchies from Patterns in Time-Course Gene Expression Data. Lecture Notes in Computer Science, 2005, , 88-97.	1.0	0
447	Modeling the Combinatorial Functions of Multiple Transcription Factors. Lecture Notes in Computer Science, 2005, , 506-521.	1.0	0
448	Glucocorticoid Receptor-Dependent Gene Regulatory Networks. PLoS Genetics, 2005, 1, e16.	1.5	207
449	Inference of transcriptional regulatory network by two-stage constrained space factor analysis. Bioinformatics, 2005, 21, 4033-4038.	1.8	62
450	Fast protein classification with multiple networks. Bioinformatics, 2005, 21, ii59-ii65.	1.8	170
451	Genome-wide decoding of hierarchical modular structure of transcriptional regulation by cis-element and expression clustering. Bioinformatics, 2005, 21, ii197-ii203.	1.8	9
452	CREDO: a web-based tool for computational detection of conserved sequence motifs in noncoding sequences. Bioinformatics, 2005, 21, 4304-4306.	1.8	4
453	Distinct Profiles of REST Interactions with Its Target Genes at Different Stages of Neuronal Development. Molecular Biology of the Cell, 2005, 16, 5630-5638.	0.9	157
454	Estimating gene regulatory networks and protein-protein interactions of Saccharomyces cerevisiae from multiple genome-wide data. Bioinformatics, 2005, 21, ii206-ii212.	1.8	33
455	Design optimization methods for genomic DNA tiling arrays. Genome Research, 2005, 16, 271-281.	2.4	46
456	Genomic approaches for reconstructing gene networks. Pharmacogenomics, 2005, 6, 245-258.	0.6	17
457	Structure theorems and the dynamics of nitrogen catabolite repression in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5647-5652.	3.3	26
458	Harnessing Natural Diversity to Probe Metabolic Pathways. PLoS Genetics, 2005, 1, e80.	1.5	58
459	Dynamic Properties of Network Motifs Contribute to Biological Network Organization. PLoS Biology, 2005, 3, e343.	2.6	319
460	Single-Nucleosome Mapping of Histone Modifications in S. cerevisiae. PLoS Biology, 2005, 3, e328.	2.6	451

	CHARLON		
#	Article	IF	CITATIONS
461	Enhanced position weight matrices using mixture models. Bioinformatics, 2005, 21, i204-i212.	1.8	36
462	Finding regulatory modules through large-scale gene-expression data analysis. Bioinformatics, 2005, 21, 1172-1179.	1.8	39
463	The Expression of Cell Cycle Proteins in Neurons and its Relevance for Alzheimers Disease. CNS and Neurological Disorders, 2005, 4, 293-306.	4.3	37
464	Inference of combinatorial regulation in yeast transcriptional networks: A case study of sporulation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1998-2003.	3.3	95
465	Genetical Genomics Analysis of a Yeast Segregant Population for Transcription Network Inference. Genetics, 2005, 170, 533-542.	1.2	90
466	Developmental Networks. Plant Physiology, 2005, 138, 548-549.	2.3	2
467	A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics, 2005, 21, 2883-2890.	1.8	146
468	The Arabidopsis genome: A foundation for plant research. Genome Research, 2005, 15, 1632-1642.	2.4	110
469	CIS: compound importance sampling method for protein-DNA binding site p-value estimation. Bioinformatics, 2005, 21, 596-600.	1.8	23
470	A network of transcriptionally coordinated functional modules in Saccharomyces cerevisiae. Genome Research, 2005, 15, 1298-1306.	2.4	29
471	Defining the mammalian CArGome. Genome Research, 2005, 16, 197-207.	2.4	255
472	Validation of alternative methods of data normalization in gene co-expression studies. Bioinformatics, 2005, 21, 1112-1120.	1.8	80
473	Sum1p, the Origin Recognition Complex, and the Spreading of a Promoter-Specific Repressor in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2005, 25, 5920-5932.	1.1	27
474	Reciprocal Transcriptional Regulation of Pou5f1 and Sox2 via the Oct4/Sox2 Complex in Embryonic Stem Cells. Molecular and Cellular Biology, 2005, 25, 6031-6046.	1.1	599
475	Unsupervised pattern recognition: An introduction to the whys and wherefores of clustering microarray data. Briefings in Bioinformatics, 2005, 6, 331-343.	3.2	97
476	Genomewide Identification of Sko1 Target Promoters Reveals a Regulatory Network That Operates in Response to Osmotic Stress in Saccharomyces cerevisiae. Eukaryotic Cell, 2005, 4, 1343-1352.	3.4	68
477	Distinct Regulatory Elements Mediate Similar Expression Patterns in the Excretory Cell of Caenorhabditis elegans*. Journal of Biological Chemistry, 2005, 280, 38787-38794.	1.6	32
478	Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3581-3586.	3.3	451

λτιωνι Ρ

~		<u> </u>	
(``		REDC	D T
\sim	$\Pi \cap \Pi$	ILLI U	

#	Article	IF	CITATIONS
479	Eukaryotic cells are dynamically ordered or critical but not chaotic. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13439-13444.	3.3	211
480	Genomes, phylogeny, and evolutionary systems biology. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6630-6635.	3.3	58
481	Discovering regulatory binding-site modules using rule-based learning. Genome Research, 2005, 15, 856-866.	2.4	41
482	Local correlation of expression profiles with gene annotations—proof of concept for a general conciliatory method. Bioinformatics, 2005, 21, 1037-1045.	1.8	6
483	Incorporating Biological Information as a Prior in an Empirical Bayes Approach to Analyzing Microarray Data. Statistical Applications in Genetics and Molecular Biology, 2005, 4, Article12.	0.2	19
484	A causal inference approach for constructing transcriptional regulatory networks. Bioinformatics, 2005, 21, 4007-4013.	1.8	38
485	Discrimination of yeast genes involved in methionine and phosphate metabolism on the basis of upstream motifs. Bioinformatics, 2005, 21, 3490-3500.	1.8	11
486	Computational discovery of transcriptional regulatory rules. Bioinformatics, 2005, 21, ii101-ii107.	1.8	15
487	A Regulatory Network Analysis of Phenotypic Plasticity in Yeast. American Naturalist, 2005, 165, 515-523.	1.0	40
488	A new measure of the robustness of biochemical networks. Bioinformatics, 2005, 21, 2698-2705.	1.8	71
489	Identification of functional transcription factor binding sites using closely related Saccharomyces species. Genome Research, 2005, 15, 701-709.	2.4	52
490	Construction of gene interaction and regulatory networks in bovine skeletal muscle from expression data. Australian Journal of Experimental Agriculture, 2005, 45, 821.	1.0	12
491	Identifying the conserved network of cis-regulatory sites of a eukaryotic genome. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17400-17405.	3.3	68
492	Analytical solution of a stochastic content-based network model. Journal of Physics A, 2005, 38, 9599-9620.	1.6	13
493	Dynamical Convergence Trajectory in Networks. Chinese Physics Letters, 2005, 22, 2447-2450.	1.3	2
494	From Networks to Systems to Complex Systems: A Signaling Pathway Coordination Case Study. , 0, , .		0
495	Research in Computational Molecular Biology. Lecture Notes in Computer Science, 2005, , .	1.0	2
496	A Transcriptional Approach to Gene Clustering. , 2005, , .		0

#	Article	IF	CITATIONS
498	Canalizing Kauffman Networks: Nonergodicity and Its Effect on Their Critical Behavior. Physical Review Letters, 2005, 94, 218702.	2.9	59
499	DNA Sequence-Specific Transcription Factors. , 2005, , 91-109.		3
500	Discriminative discovery of transcription factor binding sites from location data., 2005, , 86-9.		1
501	A Discriminative Model for Identifying Spatial cis-Regulatory Modules. Journal of Computational Biology, 2005, 12, 822-834.	0.8	27
502	An Overview of Spotfire for Geneâ€Expression Studies. Current Protocols in Human Genetics, 2005, 45, Unit 11.9.	3.5	2
503	Systematic identification of statistically significant network measures. Physical Review E, 2005, 71, 016110.	0.8	26
504	Multi-Class Biclustering and Classification Based on Modeling of Gene Regulatory Networks. , 0, , .		6
505	Stability of functions in Boolean models of gene regulatory networks. Chaos, 2005, 15, 034101.	1.0	27
506	EXPLORATORY MODELING OF YEAST STRESS RESPONSE AND ITS REGULATION WITH gCCA AND ASSOCIATIVE CLUSTERING. International Journal of Neural Systems, 2005, 15, 237-246.	3.2	6
507	Transcriptional Response of Saccharomyces cerevisiae to the Plasma Membrane-Perturbing Compound Chitosan. Eukaryotic Cell, 2005, 4, 703-715.	3.4	144
508	A Statistical Method for Constructing Transcriptional Regulatory Networks Using Gene Expression and Sequence Data. Journal of Computational Biology, 2005, 12, 229-246.	0.8	30
509	Identification of Direct Serum-response Factor Gene Targets during Me2SO-induced P19 Cardiac Cell Differentiation. Journal of Biological Chemistry, 2005, 280, 19115-19126.	1.6	74
510	Systematic yeast synthetic lethal and synthetic dosage lethal screens identify genes required for chromosome segregation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13956-13961.	3.3	126
511	The use of oscillatory signals in the study of genetic networks. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7063-7068.	3.3	53
512	Comparison of computational methods for the identification of cell cycle-regulated genes. Bioinformatics, 2005, 21, 1164-1171.	1.8	190
513	Cyclic Peptides, A Chemical Genetics Tool for Biologists. Cell Cycle, 2005, 4, 552-555.	1.3	46
514	Peak levels of BMP in the Drosophila embryo control target genes by a feed-forward mechanism. Development (Cambridge), 2005, 132, 1637-1647.	1.2	40
515	Direct isolation and identification of promoters in the human genome. Genome Research, 2005, 15, 830-839.	2.4	76

#	Article	IF	CITATIONS
516	Rapid evolution of expression and regulatory divergences after yeast gene duplication. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 707-712.	3.3	179
518	Reconstructing the pathways of a cellular system from genome-scale signals by using matrix and tensor computations. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17559-17564.	3.3	41
519	Genetic Interactions Between Mediator and the Late G1-Specific Transcription Factor Swi6 in Saccharomyces cerevisiae. Genetics, 2005, 171, 477-488.	1.2	13
520	Reliable prediction of transcription factor binding sites by phylogenetic verification. Proceedings of the United States of America, 2005, 102, 16945-16950.	3.3	43
521	Changing perspectives in yeast research nearly a decade after the genome sequence. Genome Research, 2005, 15, 1611-1619.	2.4	39
522	Topology of biological networks and reliability of information processing. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18414-18419.	3.3	164
523	Dynamical Remodeling of the Transcriptome during Short-Term Anaerobiosis in Saccharomyces cerevisiae: Differential Response and Role of Msn2 and/or Msn4 and Other Factors in Galactose and Glucose Media. Molecular and Cellular Biology, 2005, 25, 4075-4091.	1.1	72
524	Constructing transcriptional regulatory networks. Genes and Development, 2005, 19, 1499-1511.	2.7	220
526	MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12449-12454.	3.3	251
527	A data integration methodology for systems biology: Experimental verification. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17302-17307.	3.3	124
528	A data integration methodology for systems biology. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17296-17301.	3.3	293
529	Microarray-based functional protein profiling using peptide nucleic acid-encoded libraries. Expert Review of Proteomics, 2005, 2, 937-947.	1.3	28
530	The promoters of human cell cycle genes integrate signals from two tumor suppressive pathways during cellular transformation. Molecular Systems Biology, 2005, 1, 2005.0022.	3.2	64
531	Identifying Regulatory Subnetworks for a Set of Genes. Molecular and Cellular Proteomics, 2005, 4, 683-692.	2.5	61
532	Direct Activation of Genes Involved in Intracellular Iron Use by the Yeast Iron-Responsive Transcription Factor Aft2 without Its Paralog Aft1. Molecular and Cellular Biology, 2005, 25, 6760-6771.	1.1	100
533	TIME SERIES ANALYSIS OF GENE EXPRESSION AND LOCATION DATA. International Journal on Artificial Intelligence Tools, 2005, 14, 755-769.	0.7	5
534	Combined Global Localization Analysis and Transcriptome Data Identify Genes That Are Directly Coregulated by Adr1 and Cat8. Molecular and Cellular Biology, 2005, 25, 2138-2146.	1.1	139
535	Gene Set Coregulated by the Saccharomyces cerevisiae Nonsense-Mediated mRNA Decay Pathway. Eukaryotic Cell, 2005, 4, 2066-2077.	3.4	19

~			~
$C1^{-}$	ΓΔΤΙ	ON	REDUBL
\sim			KLI OKI

#	Article	IF	CITATIONS
536	Genome-wide Analysis Reveals Inositol, Not Choline, as the Major Effector of Ino2p-Ino4p and Unfolded Protein Response Target Gene Expression in Yeast. Journal of Biological Chemistry, 2005, 280, 9106-9118.	1.6	112
537	Assessing the limits of genomic data integration for predicting protein networks. Genome Research, 2005, 15, 945-953.	2.4	182
538	VisANT: data-integrating visual framework for biological networks and modules. Nucleic Acids Research, 2005, 33, W352-W357.	6.5	172
539	A boosting approach for motif modeling using ChIP-chip data. Bioinformatics, 2005, 21, 2636-2643.	1.8	54
540	From The Cover: Inferring network mechanisms: The Drosophila melanogaster protein interaction network. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3192-3197.	3.3	177
541	Statistical methods for identifying yeast cell cycle transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13532-13537.	3.3	94
542	Expression dynamics of a cellular metabolic network. Molecular Systems Biology, 2005, 1, 2005.0016.	3.2	70
543	Genomic Analysis of PIS1 Gene Expression. Eukaryotic Cell, 2005, 4, 604-614.	3.4	13
544	Discovery, validation, and genetic dissection of transcription factor binding sites by comparative and functional genomics. Genome Research, 2005, 15, 1145-1152.	2.4	31
545	Benchmarking the CATMA Microarray. A Novel Tool forArabidopsis Transcriptome Analysis. Plant Physiology, 2005, 137, 588-601.	2.3	91
546	Computational architecture of the yeast regulatory network. Physical Biology, 2005, 2, S94-S100.	0.8	23
547	Temporal Control of Cell Cycle Gene Expression Mediated by E2F Transcription Factors. Cell Cycle, 2005, 4, 633-636.	1.3	18
548	The Opportunity for Canalization and the Evolution of Genetic Networks. American Naturalist, 2005, 165, 147-162.	1.0	104
549	Sensing Your Surroundings: How Transcription-Regulatory Networks of the Cell Discern Environmental Signals. Science Signaling, 2005, 2005, pe20-pe20.	1.6	23
550	Identifying active transcription factors and kinases from expression data using pathway queries. Bioinformatics, 2005, 21, ii115-ii122.	1.8	14
551	Extraction of transcription regulatory signals from genome-wide DNA-protein interaction data. Nucleic Acids Research, 2005, 33, 605-615.	6.5	52
552	T-profiler: scoring the activity of predefined groups of genes using gene expression data. Nucleic Acids Research, 2005, 33, W592-W595.	6.5	190
553	WordSpy: identifying transcription factor binding motifs by building a dictionary and learning a grammar. Nucleic Acids Research, 2005, 33, W412-W416.	6.5	45

#	Article	IF	CITATIONS
554	A mathematical and computational framework for quantitative comparison and integration of large-scale gene expression data. Nucleic Acids Research, 2005, 33, 2580-2594.	6.5	14
555	Identification of regulatory targets of tissue-specific transcription factors: application to retina-specific gene regulation. Nucleic Acids Research, 2005, 33, 3479-3491.	6.5	59
556	Identifying cooperative transcriptional regulations using protein-protein interactions. Nucleic Acids Research, 2005, 33, 4828-4837.	6.5	44
557	Control of replication initiation and heterochromatin formation in Saccharomyces cerevisiae by a regulator of meiotic gene expression. Genes and Development, 2005, 19, 1811-1822.	2.7	50
558	A thermodynamic model of transcriptome formation. Nucleic Acids Research, 2005, 33, 6587-6592.	6.5	16
559	RSIR: regularized sliced inverse regression for motif discovery. Bioinformatics, 2005, 21, 4169-4175.	1.8	61
560	Protein-DNA Recognition Patterns and Predictions. Annual Review of Biophysics and Biomolecular Structure, 2005, 34, 379-398.	18.3	164
561	Data Mining and Knowledge Management. Lecture Notes in Computer Science, 2004, , .	1.0	12
562	The Network of Transcriptional Interactions Imposes Linear Constrains in the Genome. OMICS A Journal of Integrative Biology, 2005, 9, 139-145.	1.0	4
563	A Generalized Framework for Network Component Analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2005, 2, 289-301.	1.9	39
564	Gene classification and regulatory prediction based on transcriptional modeling. , 0, , .		0
565	Associative Clustering for Exploring Dependencies between Functional Genomics Data Sets. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2005, 2, 203-216.	1.9	14
566	Metabolic Engineering in the -omics Era: Elucidating and Modulating Regulatory Networks. Microbiology and Molecular Biology Reviews, 2005, 69, 197-216.	2.9	105
567	Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics, 2005, 21, i302-i310.	1.8	421
568	Scale-free networks in cell biology. Journal of Cell Science, 2005, 118, 4947-4957.	1.2	1,041
569	Phosphatidylinositol biosynthesis: Biochemistry and regulation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1735, 89-100.	1.2	82
570	The SCAN domain family of zinc finger transcription factors. Gene, 2005, 359, 1-17.	1.0	104
571	Genome-wide Map of Nucleosome Acetylation and Methylation in Yeast. Cell, 2005, 122, 517-527.	13.5	1,242

		FORT	
# 572	ARTICLE Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells. Cell, 2005, 122, 947-956.	IF 13.5	Citation: 4,000
573	Modelling gene networks at different organisational levels. FEBS Letters, 2005, 579, 1859-1866.	1.3	47
574	Variation and evolution of biomolecular systems: Searching for functional relevance. FEBS Letters, 2005, 579, 1839-1845.	1.3	14
575	Pathway information for systems biology. FEBS Letters, 2005, 579, 1815-1820.	1.3	107
576	Re-analysis of data and its integration. FEBS Letters, 2005, 579, 1802-1807.	1.3	8
577	In vitro selection of DNA binding sites for ABF1 protein fromSaccharomyces cerevisiae. FEBS Letters, 2005, 579, 4535-4540.	1.3	29
578	A walk-through of the yeast mating pheromone response pathway. Peptides, 2005, 26, 339-350.	1.2	319
579	Keeping an eye on the fly genome. Developmental Biology, 2005, 282, 285-293.	0.9	2
580	Computational representation of developmental genetic regulatory networks. Developmental Biology, 2005, 283, 1-16.	0.9	207
581	Applications of DNA tiling arrays for whole-genome analysis. Genomics, 2005, 85, 1-15.	1.3	376
582	Network thinking in ecology and evolution. Trends in Ecology and Evolution, 2005, 20, 345-353.	4.2	728
583	Dynamic Complex Formation During the Yeast Cell Cycle. Science, 2005, 307, 724-727.	6.0	382
584	A coherent feedâ€forward loop with a SUM input function prolongs flagella expression in Escherichia coli. Molecular Systems Biology, 2005, 1, 2005.0006.	3.2	185
585	GENOME-WIDE RESPONSES TO DNA-DAMAGING AGENTS. Annual Review of Microbiology, 2005, 59, 357-377.	2.9	78
586	Quantitative Measures of Network Complexity. , 2005, , 191-235.		77
587	A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics, 2005, 21, 349-356.	1.8	247
588	Epigenetic Mechanisms and Gene Networks in the Nervous System. Journal of Neuroscience, 2005, 25, 10379-10389.	1.7	128
589	Cell-Cycle Control of Gene Expression in Budding and Fission Yeast. Annual Review of Genetics, 2005, 39, 69-94.	3.2	199

#	Article	IF	CITATIONS
590	Nonlinear software sensor for monitoring genetic regulation processes with noise and modeling errors. Physical Review E, 2005, 72, 011919.	0.8	6
591	Environmental selection of the feed-forward loop circuit in gene-regulation networks. Physical Biology, 2005, 2, 81-88.	0.8	86
593	Gene-to-phenotype models and complex trait genetics. Australian Journal of Agricultural Research, 2005, 56, 895.	1.5	100
594	A compendium of Caenorhabditis elegans regulatory transcription factors: a resource for mapping transcription regulatory networks. Genome Biology, 2005, 6, R110.	13.9	175
595	Chipper: discovering transcription-factor targets from chromatin immunoprecipitation microarrays using variance stabilization. Genome Biology, 2005, 6, R96.	13.9	37
596	ChIPOTle: a user-friendly tool for the analysis of ChIP-chip data. Genome Biology, 2005, 6, R97.	13.9	137
597	Validation and refinement of gene-regulatory pathways on a network of physical interactions. Genome Biology, 2005, 6, R62.	13.9	76
598	Genomic analysis of heat-shock factor targets in Drosophila. Genome Biology, 2005, 6, R63.	13.9	76
599	Title is missing!. Genome Biology, 2005, 6, P7.	13.9	63
600	Dissection of a DNA-damage-induced transcriptional network using a combination of microarrays, RNA interference and computational promoter analysis. Genome Biology, 2005, 6, R43.	13.9	71
601	An evolutionary and functional assessment of regulatory network motifs. Genome Biology, 2005, 6, R35.	13.9	112
602	Genome-wide analysis of the context-dependence of regulatory networks. Genome Biology, 2005, 6, 206.	13.9	13
603	Fast and systematic genome-wide discovery of conserved regulatory elements using a non-alignment based approach. Genome Biology, 2005, 6, R18.	13.9	112
604	Automatic layout and visualization of biclusters. Algorithms for Molecular Biology, 2006, 1, 15.	0.3	37
605	A combinatorial optimization approach for diverse motif finding applications. Algorithms for Molecular Biology, 2006, 1, 13.	0.3	25
606	Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae. Genome Biology, 2006, 7, R107.	13.9	205
607	Functional genomics of the yeast DNA-damage response. Genome Biology, 2006, 7, 233.	13.9	8
608	Zebrafish promoter microarrays identify actively transcribed embryonic genes. Genome Biology, 2006, 7, R71.	13.9	80

#	Article	IF	CITATIONS
609	Statistical assessment of the global regulatory role of histone acetylation in Saccharomyces cerevisiae. Genome Biology, 2006, 7, R70.	13.9	24
610	Design principles of molecular networks revealed by global comparisons and composite motifs. Genome Biology, 2006, 7, R55.	13.9	19
611	A steganalysis-based approach to comprehensive identification and characterization of functional regulatory elements. Genome Biology, 2006, 7, R49.	13.9	25
612	Inferring transcriptional modules from ChIP-chip, motif and microarray data. Genome Biology, 2006, 7, R37.	13.9	89
613	The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biology, 2006, 7, R36.	13.9	456
614	Ranked prediction of p53 targets using hidden variable dynamic modeling. Genome Biology, 2006, 7, R25.	13.9	102
617	The natural history of the WRKY–GCM1 zinc fingers and the relationship between transcription factors and transposons. Nucleic Acids Research, 2006, 34, 6505-6520.	6.5	157
618	Reconstruct feedback control of cell cycle-regulated networks of the yeast by neural network computing. , 2006, , .		Ο
619	Modeling the Combinatorial Functions of Multiple Transcription Factors. Journal of Computational Biology, 2006, 13, 463-480.	0.8	9
620	Efficient Detection of Network Motifs. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2006, 3, 347-359.	1.9	304
621	Multiple Testing Methods For ChIP–Chip High Density Oligonucleotide Array Data. Journal of Computational Biology, 2006, 13, 579-613.	0.8	44
622	A Fuzzy Data Mining Technique for the Reconstruction of Gene Regulatory Networks from Time Series Expression Data. , 2006, , .		1
623	Enhancers Located within Two Introns of the Vitamin D Receptor Gene Mediate Transcriptional Autoregulation by 1,25-Dihydroxyvitamin D3. Molecular Endocrinology, 2006, 20, 1231-1247.	3.7	140
624	Genome-wide computational prediction of transcriptional regulatory modules reveals new insights into human gene expression. Genome Research, 2006, 16, 656-668.	2.4	229
625	Visualization of complementary systems biology data with parallel heatmaps. IBM Journal of Research and Development, 2006, 50, 575-581.	3.2	6
626	Mining Correlation between Motifs and Gene Expression. IEEE International Conference on Data Mining, 2006, , .	0.0	1
627	Identifying synergistic transcriptional factors involved in the yeast cell cycle using Microarray and ChIP-chip data. , 2006, , .		5
628	Some statistical aspects of microarray analysis. , 2006, , .		0

-			_		
CIT		ON	DE	DO	DT
	AL		IVE	РU	IK I

#	Article	IF	CITATIONS
629	Characterization of Binding Sites of Eukaryotic Transcription Factors. Genomics, Proteomics and Bioinformatics, 2006, 4, 67-79.	3.0	2
630	Reconstructing Chain Functions in Genetic Networks. SIAM Journal on Discrete Mathematics, 2006, 20, 727-740.	0.4	1
631	Channeling the Data Flood: Handling Large-Scale Biomolecular Measurements in Silico. Proceedings of the IEEE, 2006, 94, 692-709.	16.4	7
632	Correlated Discretized Expression Score: A Method for Identifying Gene Interaction Networks from Time Course Microarray Expression Data. , 2006, 2006, 5842-5.		2
633	How Scale-Free Are Biological Networks. Journal of Computational Biology, 2006, 13, 810-818.	0.8	198
634	Graph-based methods for analysing networks in cell biology. Briefings in Bioinformatics, 2006, 7, 243-255.	3.2	368
635	Versatility and Connectivity Efficiency of Bipartite Transcription Networks. Biophysical Journal, 2006, 91, 2749-2759.	0.2	6
636	Applying whole-genome studies of epigenetic regulation to study human disease. Cytogenetic and Genome Research, 2006, 114, 1-15.	0.6	54
637	PathSys: integrating molecular interaction graphs for systems biology. BMC Bioinformatics, 2006, 7,	1.2	50
	55.		
638	Genomics and Biodiversity in Yeasts. , 2006, , 45-66.		5
638 639	Genomics and Biodiversity in Yeasts. , 2006, , 45-66. Systems interface biology. Journal of the Royal Society Interface, 2006, 3, 603-616.	1.5	5 53
638 639 640	Genomics and Biodiversity in Yeasts. , 2006, , 45-66. Systems interface biology. Journal of the Royal Society Interface, 2006, 3, 603-616. Integrating Evolution and Development: The Need for Bioinformatics in Evo-Devo. BioScience, 2006, 56, 301.	1.5	5 53 16
638 639 640 641	S5. Genomics and Biodiversity in Yeasts. , 2006, , 45-66. Systems interface biology. Journal of the Royal Society Interface, 2006, 3, 603-616. Integrating Evolution and Development: The Need for Bioinformatics in Evo-Devo. BioScience, 2006, 56, 301. Ribosomal protein gene regulation: what about plants?. Canadian Journal of Botany, 2006, 84, 342-362.	1.5 2.2 1.2	5 53 16 46
 638 639 640 641 642 	Genomics and Biodiversity in Yeasts., 2006, , 45-66. Systems interface biology. Journal of the Royal Society Interface, 2006, 3, 603-616. Integrating Evolution and Development: The Need for Bioinformatics in Evo-Devo. BioScience, 2006, 56, 301. Ribosomal protein gene regulation: what about plants?. Canadian Journal of Botany, 2006, 84, 342-362. Multistability and Multicellularity: Cell Fates as High-Dimensional Attractors of Gene Regulatory Networks., 2006, 293-326.	1.5 2.2 1.2	5 53 16 46 11
 638 639 640 641 642 643 	Genomics and Biodiversity in Yeasts. , 2006, , 45-66. Systems interface biology. Journal of the Royal Society Interface, 2006, 3, 603-616. Integrating Evolution and Development: The Need for Bioinformatics in Evo-Devo. BioScience, 2006, 56, 301. Ribosomal protein gene regulation: what about plants?. Canadian Journal of Botany, 2006, 84, 342-362. Multistability and Multicellularity: Cell Fates as High-Dimensional Attractors of Gene Regulatory Networks. , 2006, , 293-326. Reuniting the contrasting functions of H2A.ZThis paper is one of a selection of papers published in this Special Issue, entitled 27th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process Biochemistry and Cell Biology, 2006, 84, 528-535.	1.5 2.2 1.2 0.9	5 53 16 46 11 90
 638 639 640 641 642 643 644 	Genomics and Biodiversity in Yeasts., 2006, , 45-66. Systems interface biology. Journal of the Royal Society Interface, 2006, 3, 603-616. Integrating Evolution and Development: The Need for Bioinformatics in Evo-Devo. BioScience, 2006, 56, 301. Ribosomal protein gene regulation: what about plants?. Canadian Journal of Botany, 2006, 84, 342-362. Multistability and Multicellularity: Cell Fates as High-Dimensional Attractors of Gene Regulatory Networks., 2006, , 293-326. Reuniting the contrasting functions of H2A.ZThis paper is one of a selection of papers published in this Special Issue, entitled 27th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process Biochemistry and Cell Biology, 2006, 84, 528-535. Genome-Wide Analysis of Protein-DNA Interactions. Annual Review of Genomics and Human Genetics, 2006, 7, 81-102.	1.5 2.2 1.2 0.9	5 53 16 46 11 90
 638 639 640 641 642 643 644 645 	Genomics and Biodiversity in Yeasts., 2006, , 45-66. Systems interface biology. Journal of the Royal Society Interface, 2006, 3, 603-616. Integrating Evolution and Development: The Need for Bioinformatics in Evo-Devo. BioScience, 2006, 56, 301. Ribosomal protein gene regulation: what about plants?. Canadian Journal of Botany, 2006, 84, 342-362. Multistability and Multicellularity: Cell Fates as High-Dimensional Attractors of Gene Regulatory Networks., 2006, , 293-326. Reuniting the contrasting functions of H2A.ZThis paper is one of a selection of papers published in this Special Issue, entitled 27th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process Biochemistry and Cell Biology, 2006, 84, 528-535. Genome-Wide Analysis of Protein-DNA Interactions. Annual Review of Genomics and Human Genetics, 2006, 7, 81-102. Genome-wide Analysis Reveals New Roles for the Activation Domains of the Saccharomyces cerevisiae Heat Shock Transcription Factor (Hsf1) during the Transient Heat Shock Response. Journal of Biological Chemistry, 2006, 281, 32909-32921.	1.5 2.2 1.2 0.9 2.5 1.6	 5 53 16 46 11 90 148 75
ARTICLE IF CITATIONS Gene Regulation Bioinformatics of Microarray Data., 0,, 55-98. 0 647 BMI1 is a target gene of E2F-1 and is strongly expressed in primary neuroblastomas. Nucleic Acids 648 6.5 Research, 2006, 34, 1745-1754. Inferring biomolecular regulatory networks from phase portraits of time-series expression profiles. 649 1.3 10 FEBS Letters, 2006, 580, 3511-3518. Systems Analyses Reveal Two Chaperone Networks with Distinct Functions in Eukaryotic Cells. Cell, 2006, 124, 75-88. Chromatin profiling, DamID and the emerging landscape of gene expression. Current Opinion in 651 1.5 33 Genetics and Development, 2006, 16, 157-164. Genomic structure and transcriptional studies on the mouse ribosomal protein S3 gene: Expression of U15 small nucleolar RNA. Gene, 2006, 368, 12-20. 1.0 Model of interactions in biology and application to heterogeneous network in yeast. Comptes Rendus 653 0.1 7 - Biologies, 2006, 329, 945-952. The Incoherent Feed-forward Loop Accelerates the Response-time of the gal System of Escherichia 654 296 coli. Journal of Molecular Biology, 2006, 356, 1073-1081. Integrated Prediction of the Helical Membrane Protein Interactome in Yeast. Journal of Molecular 655 2.0 25 Biology, 2006, 357, 339-349. Evolutionary Dynamics of Prokaryotic Transcriptional Regulatory Networks. Journal of Molecular 254 Biology, 2006, 358, 614-633. Co-expressed Yeast Genes Cluster Over a Long Range but are not Regularly Spaced. Journal of 657 2.0 36 Molecular Biology, 2006, 359, 825-831. Uncovering a Hidden Distributed Architecture Behind Scale-free Transcriptional Regulatory 658 64 Networks. Journal of Molecular Biology, 2006, 360, 204-212. Comprehensive Analysis of Combinatorial Regulation using the Transcriptional Regulatory Network 659 2.0 207 of Yeast. Journal of Molecular Biology, 2006, 360, 213-227. Modularity of the Transcriptional Response of Protein Complexes in Yeast. Journal of Molecular Biology, 2006, 363, 589-610. Complex Functionality of Gene Groups Identified from High-throughput Data. Journal of Molecular 661 2.0 19 Biology, 2006, 363, 289-296. Genome-Wide Location of the Coactivator Mediator: Binding without Activation and Transient Cdk8 138 Interaction on DNA. Molecular Cell, 2006, 22, 179-192. Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage 663 0.9 147 specification. Developmental Biology, 2006, 294, 525-540. The chemical defensome: Environmental sensing and response genes in the Strongylocentrotus 664 purpuratus genome. Developmental Biology, 2006, 300, 366-384.

	CITA	ation Report	
#	Article	IF	CITATIONS
665	Transcriptional network dynamics in macrophage activation. Genomics, 2006, 88, 133-142.	1.3	125
666	Integrated Regulatory and Metabolic Models. , 2006, , 191-204.		0
667	Chromatin Immunoprecipitation (ChIP). , 2006, , 317-324.		0
668	Mapping cis-acting regulatory variation in recombinant congenic strains. Physiological Genomics, 2006, 25, 294-302.	1.0	20
669	Functional Partitioning of Yeast Co-Expression Networks after Genome Duplication. PLoS Biology, 2006, 4, e109.	2.6	129
670	Transcriptome and Proteome: Macromolecular Networks. , 0, , 169-209.		0
675	Dynamic algorithm for inferring qualitative models of Gene Regulatory Networks. International Journal of Data Mining and Bioinformatics, 2006, 1, 111.	0.1	8
676	Inference of Genetic Regulatory Networks via Best-Fit Extensions. , 2006, , 259-278.		0
677	Regulation of purine nucleotide biosynthesis: in yeast and beyond. Biochemical Society Transactions, 2006, 34, 786-790.	1.6	56
678	Transcriptional regulatory networks downstream of TAL1/SCL in T-cell acute lymphoblastic leukemia. Blood, 2006, 108, 986-992.	0.6	62
679	Microarray analysis of gene expression: considerations in data mining and statistical treatment. Physiological Genomics, 2006, 25, 355-363.	1.0	67
680	Global gene expression of Prochlorococcus ecotypes in response to changes in nitrogen availability. Molecular Systems Biology, 2006, 2, 53.	3.2	150
681	Architecture of a MicroRNA-controlled Gene Regulatory Network That Diversifies Neuronal Cell Fates. Cold Spring Harbor Symposia on Quantitative Biology, 2006, 71, 181-188.	2.0	58
682	Connectionist Modelling of Dynamics of Gene Expression and Reverse Engineering Gene Regulatory Networks. , 0, , .		0
683	Combining Microarray and Location Data for Reconstructing Gene Regulatory Networks with Multi-time Delay. , 2006, , .		0
684	Global genetic regulatory networks controlling hematopoietic cell fates. Current Opinion in Hematology, 2006, 13, 229-236.	1.2	28
685	Communication between levels of transcriptional control improves robustness and adaptivity. Molecular Systems Biology, 2006, 2, 65.	3.2	29
686	Towards Understanding the Role and Function of Regulatory Networks in Microorganisms. , 0, , 223-264.		5

#	ARTICLE	IF	CITATIONS
687	Isolation and characterization of promoters suitable for a multidrug-resistant markerCuYAP1 in the yeastCandida utilis. Yeast, 2006, 23, 23-34.	0.8	7
688	The budding yeast rRNA and ribosome biosynthesis (RRB) regulon contains over 200 genes. Yeast, 2006, 23, 293-306.	0.8	85
689	Yeast systems biology to unravel the network of life. Yeast, 2006, 23, 227-238.	0.8	66
690	Elucidating the murine brain transcriptional network in a segregating mouse population to identify core functional modules for obesity and diabetes. Journal of Neurochemistry, 2006, 97, 50-62.	2.1	89
691	Network regulation of calcium signal in stomatal development1. Acta Pharmacologica Sinica, 2006, 27, 950-958.	2.8	2
692	A stress regulatory network for coâ€ordinated activation of proteasome expression mediated by yeast heat shock transcription factor. Molecular Microbiology, 2006, 60, 240-251.	1.2	114
693	Microarray analysis of the transcriptome as a stepping stone towards understanding biological systems: practical considerations and perspectives. Plant Journal, 2006, 45, 630-650.	2.8	82
694	Development of Arabidopsis whole-genome microarrays and their application to the discovery of binding sites for the TGA2 transcription factor in salicylic acid-treated plants. Plant Journal, 2006, 47, 152-162.	2.8	116
695	High-resolution computational models of genome binding events. Nature Biotechnology, 2006, 24, 963-970.	9.4	82
696	Chromatin immunoprecipitation and microarray-based analysis of protein location. Nature Protocols, 2006, 1, 729-748.	5.5	671
697	Filtering transcriptional noise during development: concepts and mechanisms. Nature Reviews Genetics, 2006, 7, 34-44.	7.7	247
698	Proteome chips for whole-organism assays. Nature Reviews Molecular Cell Biology, 2006, 7, 617-622.	16.1	69
699	Global and gene-specific analyses show distinct roles for Myod and Myog at a common set of promoters. EMBO Journal, 2006, 25, 502-511.	3.5	227
700	Rb, whi it's not just for metazoans anymore. Oncogene, 2006, 25, 5228-5232.	2.6	41
701	Cell growth control: little eukaryotes make big contributions. Oncogene, 2006, 25, 6392-6415.	2.6	223
702	Dynamical properties of model gene networks and implications for the inverse problem. BioSystems, 2006, 84, 115-123.	0.9	9
703	DNA microarray technologies for measuring protein–DNA interactions. Current Opinion in Biotechnology, 2006, 17, 422-430.	3.3	164
704	Content-based network model with duplication and divergence. Physica A: Statistical Mechanics and Its Applications, 2006, 365, 446-462.	1.2	4

#	ARTICLE	IF	CITATIONS
705	Improving the efficiency of attractor cycle identification in Boolean networks. Physica D: Nonlinear Phenomena, 2006, 217, 7-21.	1.3	48
706	Perturbation avalanches and criticality in gene regulatory networks. Journal of Theoretical Biology, 2006, 242, 164-170.	0.8	107
707	Relationships between probabilistic Boolean networks and dynamic Bayesian networks as models of gene regulatory networks. Signal Processing, 2006, 86, 814-834.	2.1	106
708	On the way to understand biological complexity in plants: S-nutrition as a case study for systems biology. Cellular and Molecular Biology Letters, 2006, 11, 37-56.	2.7	14
709	Systems Biology Approaches to Bioprocess Development. Engineering in Life Sciences, 2006, 6, 455-469.	2.0	24
710	An efficient top-down search algorithm for learning Boolean networks of gene expression. Machine Learning, 2006, 65, 229-245.	3.4	32
711	Kinase Cak1 functionally interacts with the PAF1 complex and phosphatase Ssu72 via kinases Ctk1 and Bur1. Molecular Genetics and Genomics, 2006, 275, 136-147.	1.0	8
712	The yeast CPC2/ASC1 gene is regulated by the transcription factors Fhl1p and Ifh1p. Current Genetics, 2006, 49, 218-228.	0.8	11
713	Global analysis of gene transcription regulation in prokaryotes. Cellular and Molecular Life Sciences, 2006, 63, 2260-2290.	2.4	49
714	Decoding transcriptional regulatory interactions. Physica D: Nonlinear Phenomena, 2006, 224, 174-181.	1.3	0
715	Stochastic kinetics description of a simple transcription model. Bulletin of Mathematical Biology, 2006, 68, 1681-1713.	0.9	23
716	The impact of functional genomics on microbiological food quality and safety. International Journal of Food Microbiology, 2006, 112, 195-199.	2.1	26
717	The transcriptional regulatory code of eukaryotic cells – insights from genome-wide analysis of chromatin organization and transcription factor binding. Current Opinion in Cell Biology, 2006, 18, 291-298.	2.6	108
718	Evolution of transcriptional regulatory networks in microbial genomes. Current Opinion in Structural Biology, 2006, 16, 420-429.	2.6	61
719	Complexity of the TOR signaling network. Trends in Cell Biology, 2006, 16, 206-212.	3.6	176
720	Combinatorial gene regulation in Plasmodium falciparum. Trends in Genetics, 2006, 22, 73-78.	2.9	48
721	Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. , 2006, 110, 135-370.		483
722	An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics, 2006, 7, 113.	1.2	617

#	ARTICLE	IF	CITATIONS
723	INTEGRATOR: interactive graphical search of large protein interactomes over the Web. BMC Bioinformatics, 2006, 7, 146.	1.2	2
724	Unraveling condition specific gene transcriptional regulatory networks in Saccharomyces cerevisiae. BMC Bioinformatics, 2006, 7, 165.	1.2	27
725	Meta-analysis discovery of tissue-specific DNA sequence motifs from mammalian gene expression data. BMC Bioinformatics, 2006, 7, 229.	1.2	38
726	Bounded search for de novo identification of degenerate cis-regulatory elements. BMC Bioinformatics, 2006, 7, 254.	1.2	21
727	Phylogeny based discovery of regulatory elements. BMC Bioinformatics, 2006, 7, 266.	1.2	9
728	BLISS: binding site level identification of shared signal-modules in DNA regulatory sequences. BMC Bioinformatics, 2006, 7, 287.	1.2	4
729	Genome-wide prediction of transcriptional regulatory elements of human promoters using gene expression and promoter analysis data. BMC Bioinformatics, 2006, 7, 330.	1.2	24
730	Simulation of microarray data with realistic characteristics. BMC Bioinformatics, 2006, 7, 349.	1.2	55
731	Modelling the network of cell cycle transcription factors in the yeast Saccharomyces cerevisiae. BMC Bioinformatics, 2006, 7, 381.	1.2	31
732	Computational reconstruction of transcriptional regulatory modules of the yeast cell cycle. BMC Bioinformatics, 2006, 7, 421.	1.2	59
733	Design of a combinatorial DNA microarray for protein-DNA interaction studies. BMC Bioinformatics, 2006, 7, 429.	1.2	24
734	Topological basis of signal integration in the transcriptional-regulatory network of the yeast, Saccharomyces cerevisiae. BMC Bioinformatics, 2006, 7, 478.	1.2	23
735	Using local gene expression similarities to discover regulatory binding site modules. BMC Bioinformatics, 2006, 7, 505.	1.2	12
736	Detection of compound mode of action by computational integration of whole-genome measurements and genetic perturbations. BMC Bioinformatics, 2006, 7, 51.	1.2	16
737	A specialized learner for inferring structured cis-regulatory modules. BMC Bioinformatics, 2006, 7, 528.	1.2	6
738	Integrated analysis of gene expression by Association Rules Discovery. BMC Bioinformatics, 2006, 7, 54.	1.2	100
739	In search of functional association from time-series microarray data based on the change trend and level of gene expression. BMC Bioinformatics, 2006, 7, 69.	1.2	23
740	A classification-based framework for predicting and analyzing gene regulatory response. BMC Bioinformatics, 2006, 7, S5.	1.2	15

#	Article	IF	CITATIONS
741	Inferring direct regulatory targets from expression and genome location analyses: a comparison of transcription factor deletion and overexpression. BMC Genomics, 2006, 7, 215.	1.2	18
742	Coding limits on the number of transcription factors. BMC Genomics, 2006, 7, 239.	1.2	78
743	Analyzing the dose-dependence of the Saccharomyces cerevisiae global transcriptional response to methyl methanesulfonate and ionizing radiation. BMC Genomics, 2006, 7, 305.	1.2	36
744	Differential evolutionary conservation of motif modes in the yeast protein interaction network. BMC Genomics, 2006, 7, 89.	1.2	21
746	Endomesoderm specification inCaenorhabditis elegans and other nematodes. BioEssays, 2006, 28, 1010-1022.	1.2	44
747	Differential activity of the FGF-4 enhancer in F9 and P19 embryonal carcinoma cells. Journal of Cellular Physiology, 2006, 208, 97-108.	2.0	14
748	Exploring the cell's network with molecular imaging. Journal of Magnetic Resonance Imaging, 2006, 24, 257-266.	1.9	3
749	Estimating the Prevalence and Regulatory Potential of the Telomere Looping Effect in Yeast Transcription Regulation. Cell Cycle, 2006, 5, 2354-2363.	1.3	7
750	Genome-wide prediction and characterization of interactions between transcription factors in Saccharomyces cerevisiae. Nucleic Acids Research, 2006, 34, 917-927.	6.5	68
751	Simulation of biochemical networks - Cellular networks as dynamic control systems. , 2006, 2006, 44-50.		1
752	Genomewide Screen Reveals a Wide Regulatory Network for Di/Tripeptide Utilization in Saccharomyces cerevisiae. Genetics, 2006, 172, 1459-1476.	1.2	42
753	Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE. Bioinformatics, 2006, 22, e141-e149.	1.8	259
754	Identifying cycling genes by combining sequence homology and expression data. Bioinformatics, 2006, 22, e314-e322.	1.8	15
755	An equilibrium partitioning model connecting gene expression and cis-motif content. Bioinformatics, 2006, 22, e368-e374.	1.8	0
756	Probabilistic inference of transcription factor concentrations and gene-specific regulatory activities. Bioinformatics, 2006, 22, 2775-2781.	1.8	87
757	Computational identification of transcriptional regulatory elements in DNA sequence. Nucleic Acids Research, 2006, 34, 3585-3598.	6.5	117
758	Positional artifacts in microarrays: experimental verification and construction of COP, an automated detection tool. Nucleic Acids Research, 2006, 35, e8-e8.	6.5	12
759	Advances in the Discovery of cis-Regulatory Elements. Current Bioinformatics, 2006, 1, 321-336.	0.7	10

#	Article	IF	CITATIONS
760	Quantitative Analysis of in Vivo Initiator Selection by Yeast RNA Polymerase II Supports a Scanning Model. Journal of Biological Chemistry, 2006, 281, 14119-14128.	1.6	75
761	Computational analysis of tissue-specific combinatorial gene regulation: predicting interaction between transcription factors in human tissues. Nucleic Acids Research, 2006, 34, 4925-4936.	6.5	134
762	[12] Genomic DNA as a General Cohybridization Standard for Ratiometric Microarrays. Methods in Enzymology, 2006, 410, 237-279.	0.4	6
763	Inferring Transcriptional Networks by Mining Omics Data. Current Bioinformatics, 2006, 1, 301-313.	0.7	19
764	[13] Analysis of Sequence Specificities of DNAâ€Binding Proteins with Protein Binding Microarrays. Methods in Enzymology, 2006, 410, 279-299.	0.4	32
765	A probabilistic dynamical model for quantitative inference of the regulatory mechanism of transcription. Bioinformatics, 2006, 22, 1753-1759.	1.8	34
766	Least absolute regression network analysis of the murine osteoblast differentiation network. Bioinformatics, 2006, 22, 477-484.	1.8	66
767	Assessing Systems Properties of Yeast Mitochondria through an Interaction Map of the Organelle. PLoS Genetics, 2006, 2, e170.	1.5	67
768	Matrix Formalism to Describe Functional States of Transcriptional Regulatory Systems. PLoS Computational Biology, 2006, 2, e101.	1.5	84
769	Global Analysis of the Relationship between the Binding of the Bas1p Transcription Factor and Meiosis-Specific Double-Strand DNA Breaks in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2006, 26, 1014-1027.	1.1	64
770	Modularity and Dynamics of Cellular Networks. PLoS Computational Biology, 2006, 2, e174.	1.5	73
771	Integrated Assessment and Prediction of Transcription Factor Binding. PLoS Computational Biology, 2006, 2, e70.	1.5	82
772	Understanding the Dynamic Behavior of Genetic Regulatory Networks by Functional Decomposition. Current Genomics, 2006, 7, 333-341.	0.7	13
773	Feed-Forward Loop Circuits as a Side Effect of Genome Evolution. Molecular Biology and Evolution, 2006, 23, 1931-1936.	3.5	65
774	DBD: a transcription factor prediction database. Nucleic Acids Research, 2006, 34, D74-D81.	6.5	186
775	An unusual Zn-finger/FH2 domain protein controls a left/right asymmetric neuronal fate decision in C. elegans. Development (Cambridge), 2006, 133, 3317-3328.	1.2	47
776	Dynamic Changes in Subgraph Preference Profiles of Crucial Transcription Factors. PLoS Computational Biology, 2006, 2, e47.	1.5	14
777	Connectivity in the Yeast Cell Cycle Transcription Network: Inferences from Neural Networks. PLoS Computational Biology, 2006, 2, e169.	1.5	14

ARTICLE IF CITATIONS # Meta-analysis based on control of false discovery rate: combining yeast ChIP-chip datasets. 778 1.8 21 Bioinformatics, 2006, 22, 2516-2522. Identification of transcription factor cooperativity via stochastic system model. Bioinformatics, 779 1.8 2006, 22, 2276-2282. 780 Regulation of 1D-myo-Inositol-3-Phosphate Synthase in Yeast., 2006, 39, 135-156. 7 A Functional Module of Yeast Mediator That Governs the Dynamic Range of Heat-Shock Gene 1.2 44 Expression. Genetics, 2006, 172, 2169-2184. Polynomial model approach for resynchronization analysis of cell-cycle gene expression data. 782 1.8 10 Bioinformatics, 2006, 22, 959-966. Target hub proteins serve as master regulators of development in yeast. Genes and Development, 2006, 20, 435-448. 2.7 153 Metabolic-State-Dependent Remodeling of the Transcriptome in Response to Anoxia and Subsequent 784 3.4 83 Reoxygenation in Saccharomyces cerevisiae. Eukaryotic Cell, 2006, 5, 1468-1489. The complete set of Toxoplasma gondii ribosomal protein genes contains two conserved promoter elements. Parasitology, 2006, 133, 19. 785 Modelling in molecular biology: describing transcription regulatory networks at different scales. 786 1.8 28 Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 483-494. Cell Cycle-Dependent Regulation of Saccharomyces cerevisiae Donor Preference during Mating-Type 1.1 Switching by SBF (Swi4/Swi6) and Fkh1. Molecular and Cellular Biology, 2006, 26, 5470-5480 Reconstructing repressor protein levels from expression of gene targets in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 788 22 3.3 18592-18596. The Function and Properties of the Azf1 Transcriptional Regulator Change with Growth Conditions in 789 3.4 Saccharomyces cerevisiae. Eukaryotic Cell, 2006, 5, 313-320. Role of the Transcription Activator Ste12p as a Repressor of PRY3 Expression. Molecular and Cellular 790 1.1 11 Biology, 2006, 26, 7901-7912. Disentangling information flow in the Ras-cAMP signaling network. Genome Research, 2006, 16, 791 2.4 520-526 Characterization and prediction of protein-protein interactions within and between complexes. 792 92 3.3 Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14718-14723. Using a state-space model with hidden variables to infer transcription factor activities. 793 1.8 Bioinformatics, 2006, 22, 747-754. PCR-based tandem epitope tagging system forEscherichia coligenome engineering. BioTechniques, 2006, 794 0.8 52 40, 67-72. Method for identifying transcription factor binding sites in yeast. Bioinformatics, 2006, 22, 1675-1681. 1.8

#	Article	IF	CITATIONS
796	Whole-genome comparison of Leu3 binding in vitro and in vivo reveals the importance of nucleosome occupancy in target site selection. Genome Research, 2006, 16, 1517-1528.	2.4	125
797	Context-specific infinite mixtures for clustering gene expression profiles across diverse microarray dataset. Bioinformatics, 2006, 22, 1737-1744.	1.8	29
798	Core transcriptional regulatory circuitry in human hepatocytes. Molecular Systems Biology, 2006, 2, 2006.0017.	3.2	179
799	The interpretation of morphogen gradients. Development (Cambridge), 2006, 133, 385-394.	1.2	422
800	sall4 acts downstream of tbx5 and is required for pectoral fin outgrowth. Development (Cambridge), 2006, 133, 1165-1173.	1.2	52
801	Origins and impact of constraints in evolution of gene families. Genome Research, 2006, 16, 1529-1536.	2.4	56
804	Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics, 2006, 22, 815-822.	1.8	341
805	A Gibbs sampler for the identification of gene expression and network connectivity consistency. Bioinformatics, 2006, 22, 3040-3046.	1.8	18
806	Protein Binding Microarrays for the Characterization of DNA–Protein Interactions. , 2007, 104, 65-85.		38
807	The LEAFY target LMI1 is a meristem identity regulator and acts together with LEAFY to regulate expression of CAULIFLOWER. Development (Cambridge), 2006, 133, 1673-1682.	1.2	163
808	Histone acetylation and transcriptional regulation in the genome of Saccharomyces cerevisiae. Bioinformatics, 2006, 22, 392-399.	1.8	16
809	Network motif identification in stochastic networks. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9404-9409.	3.3	45
810	Bayesian error analysis model for reconstructing transcriptional regulatory networks. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7988-7993.	3.3	44
811	Feedback control of morphogenesis in fungi by aromatic alcohols. Genes and Development, 2006, 20, 1150-1161.	2.7	388
812	The Forkhead transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phase gap in the transcriptional circuitry of the cell cycle. Genes and Development, 2006, 20, 2266-2278.	2.7	250
813	Extensive low-affinity transcriptional interactions in the yeast genome. Genome Research, 2006, 16, 962-972.	2.4	222
814	MARD: a new method to detect differential gene expression in treatment-control time courses. Bioinformatics, 2006, 22, 2650-2657.	1.8	9
815	Signal propagation in nonlinear stochastic gene regulatory networks. IET Systems Biology, 2006, 153, 120.	2.0	12

#	Article	IF	CITATIONS
816	Methods of robustness analysis for Boolean models of gene control networks. IET Systems Biology, 2006, 153, 154.	2.0	126
817	Quantifying gene network connectivity in silico: scalability and accuracy of a modular approach. IET Systems Biology, 2006, 153, 236.	2.0	6
818	Reconstructing gene regulatory networks: from random to scale-free connectivity. IET Systems Biology, 2006, 153, 247.	2.0	20
819	Network growth models and genetic regulatory networks. Physical Review E, 2006, 73, 031912.	0.8	32
820	Principles of microRNA regulation of a human cellular signaling network. Molecular Systems Biology, 2006, 2, 46.	3.2	321
821	Inference of Gene Regulatory Networks from Time Series Expression Data: A Data Mining Approach. , 2006, , .		1
822	Unraveling transcription regulatory networks by protein-DNA and protein-protein interaction mapping. Genome Research, 2006, 16, 1445-1454.	2.4	136
823	Structure and timescale analysis in genetic regulatory networks. , 2006, , .		2
824	Interrogating Genomes with Combinatorial Artificial Transcription Factor Libraries: Asking Zinc Finger Questions. Assay and Drug Development Technologies, 2006, 4, 317-331.	0.6	20
825	Emergent criticality from coevolution in random Boolean networks. Physical Review E, 2006, 74, 041910.	0.8	40
826	Machine learning methods for transcription data integration. IBM Journal of Research and Development, 2006, 50, 631-643.	3.2	9
827	Topology regulates the distribution pattern of excitations in excitable dynamics on graphs. Physical Review E, 2006, 74, 016112.	0.8	28
828	Iterated maps for annealed Boolean networks. Physical Review E, 2006, 74, 046104.	0.8	17
829	ACRIS and AtRegNet. A Platform to Link cis-Regulatory Elements and Transcription Factors into Regulatory Networks. Plant Physiology, 2006, 140, 818-829.	2.3	249
830	A Systems Approach to Mapping DNA Damage Response Pathways. Science, 2006, 312, 1054-1059.	6.0	248
831	Connectionist Modelling of Dynamics of Gene Expression and Reverse Engineering Gene Regulatory Networks. , 2006, , .		0
832	Oscillations and variability in the p53 system. Molecular Systems Biology, 2006, 2, 2006.0033.	3.2	539
833	Hotspots of transcription factor colocalization in the genome of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12027-12032.	3.3	182

#	Article	IF	CITATIONS
834	Genomic analysis of the hierarchical structure of regulatory networks. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14724-14731.	3.3	299
835	Full and partial genome-wide assembly and disassembly of the yeast transcription machinery in response to heat shock. Genes and Development, 2006, 20, 2250-2265.	2.7	100
836	Establishing glucose- and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a Relevance Vector Machine. Genome Research, 2006, 16, 414-427.	2.4	229
837	The tYNA platform for comparative interactomics: a web tool for managing, comparing and mining multiple networks. Bioinformatics, 2006, 22, 2968-2970.	1.8	63
838	COMPARATIVE GENOMICS OF TRANSCRIPTIONAL REGULATION IN YEASTS AND ITS APPLICATION TO IDENTIFICATION OF A CANDIDATE ALPHA-ISOPROPYLMALATE TRANSPORTER. Journal of Bioinformatics and Computational Biology, 2006, 04, 981-998.	0.3	8
839	Transcriptome network component analysis with limited microarray data. Bioinformatics, 2006, 22, 1886-1894.	1.8	55
840	Hidden Markov Model for Defining Genomic Changes in Lung Cancer Using Gene Expression Data. OMICS A Journal of Integrative Biology, 2006, 10, 276-288.	1.0	2
841	Interspecies difference in the regulation of melanocyte development by SOX10 and MITF. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9081-9085.	3.3	117
842	Fine-Structure Analysis of Ribosomal Protein Gene Transcription. Molecular and Cellular Biology, 2006, 26, 4853-4862.	1.1	89
843	A large-scale full-length cDNA analysis to explore the budding yeast transcriptome. Proceedings of the United States of America, 2006, 103, 17846-17851.	3.3	213
844	Autogenous and nonautogenous control of response in a genetic network. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12718-12723.	3.3	57
845	A systematic model to predict transcriptional regulatory mechanisms based on overrepresentation of transcription factor binding profiles. Genome Research, 2006, 16, 405-413.	2.4	65
846	Reconstruction of transcriptional regulatory networks via integer linear programming. Computer Aided Chemical Engineering, 2006, , 1687-1692.	0.3	0
847	SCALE-FREE NETWORKS IN BIOLOGY. Complex Systems and Interdisciplinary Science, 2007, , 1-19.	0.2	6
848	AN EFFECTIVE DATA MINING TECHNIQUE FOR RECONSTRUCTING GENE REGULATORY NETWORKS FROM TIME SERIES EXPRESSION DATA. Journal of Bioinformatics and Computational Biology, 2007, 05, 651-668.	0.3	12
849	USING GRAPH CONCEPTS TO UNDERSTAND THE ORGANIZATION OF COMPLEX SYSTEMS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2007, 17, 2201-2214.	0.7	33
850	EVOLUTION OF REGULATORY NETWORKS. Complex Systems and Interdisciplinary Science, 2007, , 257-289.	0.2	0
851	Potential Interface between Ribosomal Protein Production and Pre-rRNA Processing. Molecular and Cellular Biology, 2007, 27, 4815-4824.	1.1	99

#	Article	IF	CITATIONS
852	Transcriptional Profiling of Cross Pathway Control in Neurospora crassa and Comparative Analysis of the Gcn4 and CPC1 Regulons. Eukaryotic Cell, 2007, 6, 1018-1029.	3.4	73
853	Expression evolution in yeast genes of single-input modules is mainly due to changes in <i>trans</i> -acting factors. Genome Research, 2007, 17, 1161-1169.	2.4	45
854	Stb3 Binds to Ribosomal RNA Processing Element Motifs That Control Transcriptional Responses to Growth in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2007, 282, 26623-26628.	1.6	62
855	Systems Biology and Computational Proteomics. Lecture Notes in Computer Science, 2007, , .	1.0	1
856	Approaching a complete repository of sequence-verified protein-encoding clones for Saccharomyces cerevisiae. Genome Research, 2007, 17, 536-543.	2.4	99
857	A Portrait of State-of-the-Art Research at the Technical University of Lisbon. , 2007, , .		13
858	A MULTIVARIATE EXTENSION OF THE GENE SET ENRICHMENT ANALYSIS. Journal of Bioinformatics and Computational Biology, 2007, 05, 1139-1153.	0.3	36
860	Exchangeable Random Networks. Internet Mathematics, 2007, 4, 357-400.	0.7	1
861	Discovering Motifs in Ranked Lists of DNA Sequences. PLoS Computational Biology, 2007, 3, e39.	1.5	633
862	Total ancestry measure: quantifying the similarity in tree-like classification, with genomic applications. Bioinformatics, 2007, 23, 2163-2173.	1.8	45
863	Computationally Derived Points of Fragility of a Human Cascade Are Consistent with Current Therapeutic Strategies. PLoS Computational Biology, 2007, 3, e142.	1.5	94
864	Empirical Multiscale Networks of Cellular Regulation. PLoS Computational Biology, 2007, 3, e207.	1.5	8
865	Estrogen-Regulated Gene Networks in Human Breast Cancer Cells: Involvement of E2F1 in the Regulation of Cell Proliferation. Molecular Endocrinology, 2007, 21, 2112-2123.	3.7	112
866	Similarities and differences of gene expression in yeast stress conditions. Bioinformatics, 2007, 23, e184-e190.	1.8	24
867	The Importance of Bottlenecks in Protein Networks: Correlation with Gene Essentiality and Expression Dynamics. PLoS Computational Biology, 2007, 3, e59.	1.5	849
868	A novel non-overlapping bi-clustering algorithm for network generation using living cell array data. Bioinformatics, 2007, 23, 2306-2313.	1.8	22
869	Identification of eukaryotic promoter regulatory elements using nonhomologous random recombination. Nucleic Acids Research, 2007, 35, 5851-5860.	6.5	6
870	Network Genomics. , 2007, , 89-115.		14

#	Article	IF	CITATIONS
871	Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles. PLoS Biology, 2007, 5, e8.	2.6	1,308
872	Predicting Gene Expression from Sequence: A Reexamination. PLoS Computational Biology, 2007, 3, e243.	1.5	59
873	Computational and Experimental Approaches for Modeling Gene Regulatory Networks. Current Pharmaceutical Design, 2007, 13, 1415-1436.	0.9	51
874	Genetic networks: processing data, regulatory network modelling and their analysis. Optimization Methods and Software, 2007, 22, 169-185.	1.6	3
875	SPINE: a framework for signaling-regulatory pathway inference from cause-effect experiments. Bioinformatics, 2007, 23, i359-i366.	1.8	93
876	Binding Site Graphs: A New Graph Theoretical Framework for Prediction of Transcription Factor Binding Sites. PLoS Computational Biology, 2007, 3, e90.	1.5	16
877	Recent Computational Approaches to Understand Gene Regulation: Mining Gene Regulation In Silico. Current Genomics, 2007, 8, 79-91.	0.7	6
878	Exploring biological network structure using exponential random graph models. Bioinformatics, 2007, 23, 2604-2611.	1.8	71
879	Predicting transcription factor affinities to DNA from a biophysical model. Bioinformatics, 2007, 23, 134-141.	1.8	184
880	Nonlinear differential equation model for quantification of transcriptional regulation applied to microarray data of Saccharomyces cerevisiae. Nucleic Acids Research, 2007, 35, 279-287.	6.5	71
881	GenomeTrafac: a whole genome resource for the detection of transcription factor binding site clusters associated with conventional and microRNA encoding genes conserved between mouse and human gene orthologs. Nucleic Acids Research, 2007, 35, D116-D121.	6.5	24
882	Genome-wide analysis of transcriptional dependence and probable target sites for Abf1 and Rap1 in Saccharomyces cerevisiae. Nucleic Acids Research, 2007, 35, 193-202.	6.5	592
883	Positional clustering improves computational binding site detection and identifies novel cis -regulatory sites in mammalian GABA A receptor subunit genes. Nucleic Acids Research, 2007, 35, e20-e20.	6.5	6
884	Evaluation of predicted network modules in yeast metabolism using NMR-based metabolite profiling. Genome Research, 2007, 17, 510-519.	2.4	64
885	TRANSCRIPTIONAL NETWORKS. Complex Systems and Interdisciplinary Science, 2007, , 83-131.	0.2	0
886	PROTEIN INTERACTION NETWORKS. Complex Systems and Interdisciplinary Science, 2007, , 133-161.	0.2	2
887	HETEROGENEOUS MOLECULAR NETWORKS. Complex Systems and Interdisciplinary Science, 2007, , 199-255.	0.2	0
888	Evolution of Cell Cycle Control: Same Molecular Machines, Different Regulation. Cell Cycle, 2007, 6, 1819-1825.	1.3	31

#	Article	IF	CITATIONS
889	A new dynamic Bayesian network for integrating multiple data in estimating gene networks. , 2007, , .		3
890	General Trends in the Evolution of Prokaryotic Transcriptional Regulatory Networks. , 2007, 3, 66-80.		14
891	Inferring Regulatory Interactions between Transcriptional Factors and Genes by Propagating Known Regulatory Links. , 2007, , .		0
892	Analysing microarray data in drug discovery using systems biology. Expert Opinion on Drug Discovery, 2007, 2, 755-768.	2.5	15
893	Context-dependent clustering for dynamic cellular state modeling of microarray gene expression. Bioinformatics, 2007, 23, 3039-3047.	1.8	6
894	Canalization and symmetry in Boolean models for genetic regulatory networks. Journal of Physics A: Mathematical and Theoretical, 2007, 40, 4339-4350.	0.7	28
895	c-Myb Contributes to G 2 /M Cell Cycle Transition in Human Hematopoietic Cells by Direct Regulation of Cyclin B1 Expression. Molecular and Cellular Biology, 2007, 27, 2048-2058.	1.1	79
896	Learning Methods for DNA Binding in Computational Biology. Neural Networks (IJCNN), International Joint Conference on, 2007, , .	0.0	0
897	Integrating multi-source biological data for transcriptional regulatory module discovery. , 2007, , .		0
898	Finding Clusters of Positive and Negative Coregulated Genes in Gene Expression Data. , 2007, , .		3
899	Detecting Regulator-Target Gene Pairs from Expression Profile of Microarray. , 2007, , .		0
900	Random networks tossing biased coins. Physical Review E, 2007, 75, 056109.	0.8	2
901	Entropy of complex relevant components of Boolean networks. Physical Review E, 2007, 76, 036115.	0.8	30
902	On the Detection of Gene Network Interconnections using Directed Mutual Information. , 2007, , .		10
903	Geometric Local Structure in Biological Networks. , 2007, , .		2
904	Dynamics of network motifs in genetic regulatory networks. Chinese Physics B, 2007, 16, 2587-2594.	1.3	5
905	Edge-based scoring and searching method for identifying condition-responsive protein protein interaction sub-network. Bioinformatics, 2007, 23, 2121-2128.	1.8	139
906	Genome-Wide Expression and Location Analyses of the <i>Candida albicans</i> Tac1p Regulon. Eukaryotic Cell, 2007, 6, 2122-2138.	3.4	118

		CITATION REPORT		
#	Article		IF	CITATIONS
907	Functional Analysis of Gene Duplications in Saccharomyces cerevisiae. Genetics, 2007,	175, 933-943.	1.2	148
908	Variable gene expression in eukaryotes: a network perspective. Journal of Experimental 210, 1567-1575.	Biology, 2007,	0.8	56
909	Membrane-active Compounds Activate the Transcription Factors Pdr1 and Pdr3 Connec Drug Resistance and Membrane Lipid Homeostasis in <i>Saccharomyces cerevisiae</i> . Biology of the Cell, 2007, 18, 4932-4944.	cting Pleiotropic Molecular	0.9	47
910	Cellular Processes and Pathways That Protect Saccharomyces cerevisiae Cells against the Membrane-Perturbing Compound Chitosan. Eukaryotic Cell, 2007, 6, 600-608.	ne Plasma	3.4	62
911	Zic3 Is Required for Maintenance of Pluripotency in Embryonic Stem Cells. Molecular Bi Cell, 2007, 18, 1348-1358.	ology of the	0.9	121
912	An <i>Arabidopsis</i> gene network based on the graphical Gaussian model. Genome R 1614-1625.	Research, 2007, 17,	2.4	235
913	Activation of the ADE Genes Requires the Chromatin Remodeling Complexes SAGA and Eukaryotic Cell, 2007, 6, 1474-1485.	SWI/SNF.	3.4	7
914	Regulation of HDAC9 Gene Expression by MEF2 Establishes a Negative-Feedback Loop i Transcriptional Circuitry of Muscle Differentiation. Molecular and Cellular Biology, 2007	in the 7, 27, 518-525.	1.1	124
915	Genomic characterization of perturbation sensitivity. Bioinformatics, 2007, 23, i354-i35	58.	1.8	15
916	Expansion of adult beta-cell mass in response to increased metabolic demand is depend Genes and Development, 2007, 21, 756-769.	lent on HNF-4Â.	2.7	145
918	Transcriptional responses to fatty acid are coordinated by combinatorial control. Molec Biology, 2007, 3, 115.	ular Systems	3.2	58
919	Learning probabilistic models of cis-regulatory modules that represent logical and spati Bioinformatics, 2007, 23, e156-e162.	al aspects.	1.8	14
920	Functional annotation of regulatory pathways. Bioinformatics, 2007, 23, i377-i386.		1.8	17
921	Inferring transcriptional regulatory networks from high-throughput data. Bioinformatics 3056-3064.	s, 2007, 23,	1.8	42
922	In vitro analysis of DNA-protein interactions by proximity ligation. Proceedings of the Na Academy of Sciences of the United States of America, 2007, 104, 3067-3072.	ational	3.3	68
923	Reconstructing Gene Regulatory Networks with Bayesian Networks by Combining Expr with Multiple Sources of Prior Knowledge. Statistical Applications in Genetics and Mole Biology, 2007, 6, Article15.	ession Data cular	0.2	204
924	Statistical Epistasis Is a Generic Feature of Gene Regulatory Networks. Genetics, 2007,	175, 411-420.	1.2	99
925	Hierarchy and feedback in the evolution of the Escherichia coli transcription network. P of the National Academy of Sciences of the United States of America, 2007, 104, 5516	roceedings -5520.	3.3	84

#	Article	IF	CITATIONS
926	LICORN: learning cooperative regulation networks from gene expression data. Bioinformatics, 2007, 23, 2407-2414.	1.8	40
927	Biological network mapping and source signal deduction. Bioinformatics, 2007, 23, 1783-1791.	1.8	8
928	MYBS: a comprehensive web server for mining transcription factor binding sites in yeast. Nucleic Acids Research, 2007, 35, W221-W226.	6.5	26
929	24 Bioinformatic Prediction of Yeast Gene Function. Methods in Microbiology, 2007, , 597-628.	0.4	4
930	YEASTRACT-DISCOVERER: new tools to improve the analysis of transcriptional regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Research, 2007, 36, D132-D136.	6.5	140
931	Assembly of Regulatory Factors on rRNA and Ribosomal Protein Genes in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 2007, 27, 6686-6705.	1.1	69
932	Predictive Modeling of Genome-Wide mRNA Expression: From Modules to Molecules. Annual Review of Biophysics and Biomolecular Structure, 2007, 36, 329-347.	18.3	75
933	Precise physical models of protein-DNA interaction from high-throughput data. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 501-506.	3.3	67
934	Transcriptional network governing the angiogenic switch in human pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12890-12895.	3.3	198
935	Noise in timing and precision of gene activities in a genetic cascade. Molecular Systems Biology, 2007, 3, 71.	3.2	54
936	Chemical combination effects predict connectivity in biological systems. Molecular Systems Biology, 2007, 3, 80.	3.2	243
937	Prediction of phenotype and gene expression for combinations of mutations. Molecular Systems Biology, 2007, 3, 96.	3.2	43
939	Between the cross and the sword: the crisis of the gene concept. Genetics and Molecular Biology, 2007, 30, 297-307.	0.6	26
940	14 Yeast Protein Microarrays. Methods in Microbiology, 2007, 36, 303-705.	0.4	1
941	26 Yeast Gene Analysis: The Remaining Challenges. Methods in Microbiology, 2007, 36, 667-683.	0.4	0
942	Meta-Analysis of Microarray Data. , 2007, , 329-352.		1
943	Nonlinear Dynamic Trans/Cis Regulatory Circuit for Gene Transcription via Microarray Data. Gene Regulation and Systems Biology, 2007, 1, 117762500700100.	2.3	0
944	Identifying synergistic regulation involving c-Myc and sp1 in human tissues. Nucleic Acids Research, 2007, 35, 1098-1107.	6.5	33

#	Article	IF	CITATIONS
945	Structure and evolution of gene regulatory networks in microbial genomes. Research in Microbiology, 2007, 158, 787-794.	1.0	47
946	Redundancy and evolution of GATA factor requirements in development of the myocardium. Developmental Biology, 2007, 311, 623-635.	0.9	73
947	Transcriptional regulation in eukaryotic ribosomal protein genes. Genomics, 2007, 90, 421-423.	1.3	49
948	Analysis of transcription, chromatin dynamics and epigenetic changes in neural genes. Progress in Neurobiology, 2007, 83, 195-210.	2.8	8
949	Integrative Analysis of Transcriptomic and Proteomic Data: Challenges, Solutions and Applications. Critical Reviews in Biotechnology, 2007, 27, 63-75.	5.1	224
950	Transcriptional regulation of yeast phospholipid biosynthetic genes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 310-321.	1.2	77
951	Getting connected: analysis and principles of biological networks. Genes and Development, 2007, 21, 1010-1024.	2.7	477
952	Perspectives on mechanisms of gene regulation by 1,25-dihydroxyvitamin D3 and its receptor. Journal of Steroid Biochemistry and Molecular Biology, 2007, 103, 389-395.	1.2	70
953	Distinctive Topologies of Partner-switching Signaling Networks Correlate with their Physiological Roles. Journal of Molecular Biology, 2007, 369, 1333-1352.	2.0	44
954	Interplay Between Network Structures, Regulatory Modes and Sensing Mechanisms of Transcription Factors in the Transcriptional Regulatory Network of E. coli. Journal of Molecular Biology, 2007, 372, 1108-1122.	2.0	53
955	Modeling for evolving biological networks with scale-free connectivity, hierarchical modularity, and disassortativity. Mathematical Biosciences, 2007, 208, 454-468.	0.9	19
956	Efficient algorithms for ordinary differential equation model identification of biological systems. IET Systems Biology, 2007, 1, 120-129.	0.8	49
957	Graph theory and networks in Biology. IET Systems Biology, 2007, 1, 89-119.	0.8	322
958	Systems-level insights into cellular regulation: inferring, analysing, and modelling intracellular networks. IET Systems Biology, 2007, 1, 61-77.	0.8	51
959	A minimal mathematical model combining several regulatory cycles from the budding yeast cell cycle. IET Systems Biology, 2007, 1, 326-341.	0.8	5
960	Network Inference, Analysis, and Modeling in Systems Biology. Plant Cell, 2007, 19, 3327-3338.	3.1	156
961	Metallosensors, The Ups and Downs of Gene Regulation. Advances in Microbial Physiology, 2007, 53, 231-267.	1.0	20
962	Coordination of crosstalk between MAPK–PKC pathways: an exploratory study. IET Systems Biology, 2007, 1, 33-40.	0.8	12

ARTICLE IF CITATIONS # Gata-3 and mammary cell fate. Breast Cancer Research, 2007, 9, 302. 2.2 14 964 Prediction of synergistic transcription factors by function conservation. Genome Biology, 2007, 8, 24 R257. 966 The determinants of gene order conservation in yeasts. Genome Biology, 2007, 8, R233. 13.9 58 Harnessing naturally randomized transcription to infer regulatory relationships among genes. 109 Genome Biology, 2007, 8, R219. Dynamic cumulative activity of transcription factors as a mechanism of quantitative gene regulation. 968 13.9 11 Genome Biology, 2007, 8, R181. Network motif analysis of a multi-mode genetic-interaction network. Genome Biology, 2007, 8, R160. Modular organization in the reductive evolution of protein-protein interaction networks. Genome 970 13.9 29 Biology, 2007, 8, R94. Clustering of genes into regulons using integrated modeling-COGRIM. Genome Biology, 2007, 8, R4. 971 3.8 973 Network visualization and network analysis., 2007, 97, 245-275. 22 974 Microarray Data Analysis. Methods in Molecular Biology, 2007, , . 0.4 Networks in Cell Biology., 2007, , 203-226. 976 0 How to infer gene networks from expression profiles. Molecular Systems Biology, 2007, 3, 78. 3.2 SwissRegulon: a database of genome-wide annotations of regulatory sites. Nucleic Acids Research, 979 6.5 123 2007, 35, D127-D131. Pathway analysis software as a tool for drug target selection, prioritization and validation of drug 980 1.5 mechanism. Expert Opinion on Therapeutic Targets, 2007, 11, 411-421. Recovering Genetic Regulatory Networks by Integrating Multiple Data Sources., 2007, , . 982 0 Chromatin profiling in model organisms. Briefings in Functional Genomics & Proteomics, 2007, 6, 133-140. A Novel Method for Signal Transduction Network Inference from Indirect Experimental Evidence. 984 0.8 52 Journal of Computational Biology, 2007, 14, 927-949. Mining Co-regulated Genes Using Association Rules Combined with Hash-tree and Genetic Algorithms., 2007,,.

		15	Circiana
#		IF	CITATIONS
987	Random Hypergraph Models of Learning and Memory in Biomolecular Networks: Shorter-Term Adaptability vs. Longer-Term Persistency. , 2007, , .		6
988	On the Robust Circuit Design Schemes of Biochemical Networks: Steady-State Approach. IEEE Transactions on Biomedical Circuits and Systems, 2007, 1, 91-104.	2.7	34
989	Content-based networks: A pedagogical overview. Chaos, 2007, 17, 026108.	1.0	11
990	GenMiner: Mining Informative Association Rules from Genomic Data. , 2007, , .		13
991	Transcription factor concentrations versus binding site affinities in the yeast S. cerevisiae. Physical Biology, 2007, 4, 134-143.	0.8	6
993	Functionalin Silico Analysis of Gene Regulatory Polymorphism. , 0, , 281-309.		1
994	What are Microarrays?. , 0, , 369-387.		0
995	Predicting Gene Expression from Combined Expression and Promoter Profile Similarity with Application to Missing Value Imputation. , 2007, , 97-104.		1
996	Data acquisition, analysis, and mining: Integrative tools for discerning metabolic function in Saccharomyces cerevisiae. Topics in Current Genetics, 2007, , 159-187.	0.7	0
997	From Gene Expression to Metabolic Fluxes. , 2007, , 37-66.		2
998	The Information Coded in the Yeast Response Elements Accounts for Most of the Topological Properties of Its Transcriptional Regulation Network. PLoS ONE, 2007, 2, e501.	1.1	16
999	Oct4 Targets Regulatory Nodes to Modulate Stem Cell Function. PLoS ONE, 2007, 2, e553.	1.1	82
1000	Direct Selection on Genetic Robustness Revealed in the Yeast Transcriptome. PLoS ONE, 2007, 2, e911.	1.1	33
1001	ChIP-on-chip significance analysis reveals large-scale binding and regulation by human transcription factor oncogenes. Nature Precedings, 2007, , .	0.1	0
1003	Computational identification of combinatorial regulation and transcription factor binding sites. Biotechnology and Bioengineering, 2007, 97, 1594-1602.	1.7	6
1004	Epigenetics in development. Developmental Dynamics, 2007, 236, 1144-1156.	0.8	227
1005	Identifying transcription factor targets using enhanced Bayesian classifier. Computational Biology and Chemistry, 2007, 31, 355-360.	1.1	2
1006	Alternative routes and mutational robustness in complex regulatory networks. BioSystems, 2007, 88, 163-172.	0.9	48

#	Article	IF	CITATIONS
1007	Analysis of gene regulatory network models with graded and binary transcriptional responses. BioSystems, 2007, 90, 323-339.	0.9	26
1008	Large-scale inference and graph-theoretical analysis of gene-regulatory networks in B. Subtilis. Physica A: Statistical Mechanics and Its Applications, 2007, 373, 796-810.	1.2	21
1009	Order or chaos in Boolean gene networks depends on the mean fraction of canalizing functions. Physica A: Statistical Mechanics and Its Applications, 2007, 384, 747-757.	1.2	28
1010	Superstability of the yeast cell-cycle dynamics: Ensuring causality in the presence of biochemical stochasticity. Journal of Theoretical Biology, 2007, 245, 638-643.	0.8	64
1011	Boolean dynamics of Kauffman models with a scale-free network. Journal of Theoretical Biology, 2007, 247, 138-151.	0.8	38
1012	Do scale-free regulatory networks allow more expression than random ones?. Journal of Theoretical Biology, 2007, 247, 331-336.	0.8	12
1013	Ranking of network elements based on functional substructures. Journal of Theoretical Biology, 2007, 248, 471-479.	0.8	40
1014	Comparative study of the transcriptional regulatory networks of E. coli and yeast: Structural characteristics leading to marginal dynamic stability. Journal of Theoretical Biology, 2007, 248, 618-626.	0.8	14
1015	Modelling dynamic processes in yeast. Yeast, 2007, 24, 943-959.	0.8	26
1016	Towards zoomable multidimensional maps of the cell. Nature Biotechnology, 2007, 25, 547-554.	9.4	84
1017	Drug—target network. Nature Biotechnology, 2007, 25, 1119-1126.	9.4	1,584
1018	A genome-wide analysis in Saccharomyces cerevisiae demonstrates the influence of chromatin modifiers on transcription. Nature Genetics, 2007, 39, 303-309.	9.4	68
1019	Genetic reconstruction of a functional transcriptional regulatory network. Nature Genetics, 2007, 39, 683-687.	9.4	379
1020	Network motifs: theory and experimental approaches. Nature Reviews Genetics, 2007, 8, 450-461.	7.7	2,789
1021	The evolution of genetic networks by non-adaptive processes. Nature Reviews Genetics, 2007, 8, 803-813.	7.7	266
1022	MAPK-mediated bimodal gene expression and adaptive gradient sensing in yeast. Nature, 2007, 446, 46-51.	13.7	277
1023	Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature, 2007, 446, 572-576.	13.7	610
1024	Genomic analysis of protein-DNA interactions in bacteria: insights into transcription and chromosome organization. Molecular Microbiology, 2007, 65, 21-26.	1.2	112

#	Article	IF	CITATIONS
1025	The zinc cluster transcription factor Tac1p regulates PDR16 expression in Candida albicans. Molecular Microbiology, 2007, 66, 440-452.	1.2	81
1026	From functional genomics to systems biology. FEBS Journal, 2007, 274, 2439-2448.	2.2	5
1027	Statistical Reconstruction of Transcription Factor Activity Using Michaelis-Menten Kinetics. Biometrics, 2007, 63, 816-823.	0.8	30
1028	Evolutionary conservation and over-representation of functionally enriched network patterns in the yeast regulatory network. BMC Systems Biology, 2007, 1, 1.	3.0	71
1029	RMBNToolbox: random models for biochemical networks. BMC Systems Biology, 2007, 1, 22.	3.0	3
1030	Nonlinear regulation enhances the phenotypic expression of trans- acting genetic polymorphisms. BMC Systems Biology, 2007, 1, 32.	3.0	12
1031	Revealing cell cycle control by combining model-based detection of periodic expression with novel cis-regulatory descriptors. BMC Systems Biology, 2007, 1, 45.	3.0	8
1032	Publishing perishing? Towards tomorrow's information architecture. BMC Bioinformatics, 2007, 8, 17.	1.2	59
1033	Identifying regulatory targets of cell cycle transcription factors using gene expression and ChIP-chip data. BMC Bioinformatics, 2007, 8, 188.	1.2	35
1034	Normalization and experimental design for ChIP-chip data. BMC Bioinformatics, 2007, 8, 219.	1.2	42
1035	Bayesian hierarchical model for transcriptional module discovery by jointly modeling gene expression and ChIP-chip data. BMC Bioinformatics, 2007, 8, 283.	1.2	25
1036	EDISA: extracting biclusters from multiple time-series of gene expression profiles. BMC Bioinformatics, 2007, 8, 334.	1.2	52
1037	Differential analysis for high density tiling microarray data. BMC Bioinformatics, 2007, 8, 359.	1.2	6
1038	fREDUCE: Detection of degenerate regulatory elements using correlation with expression. BMC Bioinformatics, 2007, 8, 399.	1.2	14
1039	Predicting combinatorial binding of transcription factors to regulatory elements in the human genome by association rule mining. BMC Bioinformatics, 2007, 8, 445.	1.2	17
1040	Transcription factor target prediction using multiple short expression time series from Arabidopsis thaliana. BMC Bioinformatics, 2007, 8, 454.	1.2	28
1041	A systematic approach to detecting transcription factors in response to environmental stresses. BMC Bioinformatics, 2007, 8, 473.	1.2	14
1042	Modeling human cancer-related regulatory modules by GA-RNN hybrid algorithms. BMC Bioinformatics, 2007, 8, 91.	1.2	29

ARTICLE IF CITATIONS # A stochastic differential equation model for transcriptional regulatory networks. BMC 1043 1.2 22 Bioinformatics, 2007, 8, S4. Finding regulatory elements and regulatory motifs: a general probabilistic framework. BMC 1044 1.2 Bioinformatics, 2007, 8, S4. Autocorrelation analysis reveals widespread spatial biases in microarray experiments. BMC Genomics, 1045 1.2 23 2007, 8, 164. Exploiting combinatorial cultivation conditions to infer transcriptional regulation. BMC Genomics, 1046 1.2 2007, 8, <u>25</u>. The ins and outs of ATP-dependent chromatin remodeling in budding yeast: Biophysical and proteomic 1047 2.4 38 perspectives. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2007, 1769, 153-171. Inferring gene regulatory networks by integrating static and dynamic data. International Journal of Medical Informatics, 2007, 76, S462-S475. 1048 1.6 A new framework for identifying combinatorial regulation of transcription factors: A case study of 1049 2.531 the yeast cell cycle. Journal of Biomedical Informatics, 2007, 40, 707-725. Perturbations to uncover gene networks. Trends in Genetics, 2007, 23, 34-41. 2.9 1050 Activation of mitochondrial respiration in chlorophyll-deficient rice mutant seedlings. Journal of 1051 0.9 2 Plant Biology, 2007, 50, 430-439. The gateway to transcription: identifying, characterizing and understanding promoters in the 2.4 eukaryotic genome. Cellular and Molecular Life Sciences, 2007, 64, 386-400 A boolean network modelling of receptor mosaics relevance of topology and cooperativity. Journal 1053 1.4 45 of Neural Transmission, 2007, 114, 77-92. The transcription factor Gcr1 stimulates cell growth by participating in nutrient-responsive gene 1054 1.0 expression on a global level. Molecular Genetics and Genomics, 2007, 277, 171-188. Machine learning for regulatory analysis and transcription factor target prediction in yeast. Systems 1055 1.0 21 and Synthetic Biology, 2007, 1, 25-46. Design and implementation of three incoherent feed-forward motif based biological concentration 1.0 sensors. Systems and Synthetic Biology, 2007, 1, 119-128. Unravelling the world of cis-regulatory elements. Medical and Biological Engineering and Computing, 2007, 45, 709-718. 1057 13 1.6 Post-transcriptional gene regulation: From genome-wide studies to principles. Cellular and 1058 2.4 163 Molecular Life Sciences, 2008, 65, 798-813. Prediction of anther-expressed gene regulation in Arabidopsis. Science Bulletin, 2008, 53, 3198-3203. 1059 4.3 2 Augmenting the bootstrap to analyze high dimensional genomic data. Test, 2008, 17, 1-18.

#	Article	IF	Citations
1061	Effects of Gene Orientation and Use of Multiple Promoters on the Expression of XYL1 and XYL2 in Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 2008, 145, 69-78.	1.4	11
1062	Control of Nucleosome Positions by DNA Sequence and Remodeling Machines. Cell Biochemistry and Biophysics, 2008, 51, 67-80.	0.9	39
1063	Synchronization of coupled stochastic oscillators: The effect of topology. Pramana - Journal of Physics, 2008, 70, 1165-1174.	0.9	0
1064	Inferring (Biological) Signal Transduction Networks viaÂTransitive Reductions of Directed Graphs. Algorithmica, 2008, 51, 129-159.	1.0	20
1065	Better estimation of protein-DNA interaction parameters improve prediction of functional sites. BMC Biotechnology, 2008, 8, 94.	1.7	9
1066	Single and multiple input modules in regulatory networks. Proteins: Structure, Function and Bioinformatics, 2008, 73, 320-324.	1.5	14
1067	Controlling false discoveries in genetic studies. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 637-644.	1.1	60
1068	Supporting Creativity: Towards Associative Discovery of New Insights. , 2008, , 14-25.		12
1069	Impact of systems biology on metabolic engineering of <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2008, 8, 122-131.	1.1	131
1070	A Flexible and Powerful Bayesian Hierarchical Model for ChIP–Chip Experiments. Biometrics, 2008, 64, 468-478.	0.8	31
1071	Transcriptional and signaling regulation in neural crest stem cell-derived melanocyte development: do all roads lead to Mitf?. Cell Research, 2008, 18, 1163-1176.	5.7	168
1072	Heat shock response relieves ER stress. EMBO Journal, 2008, 27, 1049-1059.	3.5	138
1073	ChIPping away at gene regulation. EMBO Reports, 2008, 9, 337-343.	2.0	67
1074	Global control of cell-cycle transcription by coupled CDK and network oscillators. Nature, 2008, 453, 944-947.	13.7	269
1075	The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nature Biotechnology, 2008, 26, 659-667.	9.4	491
1076	Learning biological networks: from modules to dynamics. Nature Chemical Biology, 2008, 4, 658-664.	3.9	117
1077	Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nature Genetics, 2008, 40, 854-861.	9.4	515
1078	Epitope tagging of endogenous proteins for genome-wide ChIP-chip studies. Nature Methods, 2008, 5, 163-165.	9.0	92

#	Article	IF	CITATIONS
1079	'Calling Cards' method for high-throughput identification of targets of yeast DNA-binding proteins. Nature Protocols, 2008, 3, 1569-1577.	5.5	14
1080	Using RSAT oligo-analysis and dyad-analysis tools to discover regulatory signals in nucleic sequences. Nature Protocols, 2008, 3, 1589-1603.	5.5	58
1081	Coupling and coordination in gene expression processes: a systems biology view. Nature Reviews Genetics, 2008, 9, 38-48.	7.7	184
1082	Modelling and analysis of gene regulatory networks. Nature Reviews Molecular Cell Biology, 2008, 9, 770-780.	16.1	1,002
1083	Using Dynamic Gene Module Map Analysis To Identify Targets That Modulate Free Fatty Acid Induced Cytotoxicity. Biotechnology Progress, 2008, 24, 29-37.	1.3	10
1084	Transcription regulation of the <i>Saccharomyces cerevisiae PIS1</i> gene by inositol and the pleiotropic regulator, Ume6p. Molecular Microbiology, 2008, 70, 1529-1539.	1.2	12
1085	Dynamics of RpaB–promoter interaction during high light stress, revealed by chromatin immunoprecipitation (ChIP) analysis in <i>Synechococcus elongatus</i> PCC 7942. Plant Journal, 2008, 56, 327-335.	2.8	67
1086	Supervised inference of gene-regulatory networks. BMC Bioinformatics, 2008, 9, 2.	1.2	19
1087	Network motif-based identification of transcription factor-target gene relationships by integrating multi-source biological data. BMC Bioinformatics, 2008, 9, 203.	1.2	35
1088	Inferring the role of transcription factors in regulatory networks. BMC Bioinformatics, 2008, 9, 228.	1.2	11
1089	Prioritization of gene regulatory interactions from large-scale modules in yeast. BMC Bioinformatics, 2008, 9, 32.	1.2	7
1090	Mining protein networks for synthetic genetic interactions. BMC Bioinformatics, 2008, 9, 426.	1.2	59
1091	Genome-scale study of the importance of binding site context for transcription factor binding and gene regulation. BMC Bioinformatics, 2008, 9, 484.	1.2	17
1092	Systematic identification of yeast cell cycle transcription factors using multiple data sources. BMC Bioinformatics, 2008, 9, 522.	1.2	37
1093	Motif-directed network component analysis for regulatory network inference. BMC Bioinformatics, 2008, 9, S21.	1.2	22
1095	Topological comparison of methods for predicting transcriptional cooperativity in yeast. BMC Genomics, 2008, 9, 137.	1.2	13
1096	Transcription factor control of growth rate dependent genes in Saccharomyces cerevisiae: A three factor design. BMC Genomics, 2008, 9, 341.	1.2	50
1097	Identifying gene regulatory modules of heat shock response in yeast. BMC Genomics, 2008, 9, 439.	1.2	42

#	Article	IF	CITATIONS
1098	DroID: the Drosophila Interactions Database, a comprehensive resource for annotated gene and protein interactions. BMC Genomics, 2008, 9, 461.	1.2	107
1099	A toolbox for epitope-tagging and genome-wide location analysis in Candida albicans. BMC Genomics, 2008, 9, 578.	1.2	89
1100	Dissecting microregulation of a master regulatory network. BMC Genomics, 2008, 9, 88.	1.2	36
1101	Regulon organization of Arabidopsis. BMC Plant Biology, 2008, 8, 99.	1.6	90
1102	On the origin of distribution patterns of motifs in biological networks. BMC Systems Biology, 2008, 2, 73.	3.0	34
1103	Stochastic analysis of the GAL genetic switch in Saccharomyces cerevisiae: Modeling and experiments reveal hierarchy in glucose repression. BMC Systems Biology, 2008, 2, 97.	3.0	7
1104	A molecular interpretation of genetic interactions in yeast. FEBS Letters, 2008, 582, 1245-1250.	1.3	12
1105	KIBRA interacts with discoidin domain receptor 1 to modulate collagen-induced signalling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 383-393.	1.9	53
1106	Quantitative genetics in the age of omics. Current Opinion in Plant Biology, 2008, 11, 123-128.	3.5	69
1107	Genes regulated by caloric restriction have unique roles within transcriptional networks. Mechanisms of Ageing and Development, 2008, 129, 580-592.	2.2	24
1108	Can yeast systems biology contribute to the understanding of human disease?. Trends in Biotechnology, 2008, 26, 584-590.	4.9	87
1109	Comparison of transcription regulatory interactions inferred from high-throughput methods: what do they reveal?. Trends in Genetics, 2008, 24, 319-323.	2.9	18
1110	The incoherent feedâ€forward loop can generate nonâ€monotonic input functions for genes. Molecular Systems Biology, 2008, 4, 203.	3.2	167
1112	Functions of Bifans in Context of Multiple Regulatory Motifs in Signaling Networks. Biophysical Journal, 2008, 94, 2566-2579.	0.2	37
1113	A Top-Down Approach to Mechanistic Biological Modeling: Application to the Single-Chain Antibody Folding Pathway. Biophysical Journal, 2008, 95, 3535-3558.	0.2	9
1114	Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae. Microbial Cell Factories, 2008, 7, 18.	1.9	86
1115	Classifying transcription factor targets and discovering relevant biological features. Biology Direct, 2008, 3, 22.	1.9	9
1116	Chemostat-Based Micro-Array Analysis in Baker's Yeast. Advances in Microbial Physiology, 2008, 54, 257-417.	1.0	50

CITATION REPORT ARTICLE IF CITATIONS Mining the oncoproteome and studying molecular interactions for biomarker development by 2DE, 1.3 21 ChIP and SPR technologies. Expert Review of Proteomics, 2008, 5, 469-496. How<i>Saccharomyces</i>Responds to Nutrients. Annual Review of Genetics, 2008, 42, 27-81. 3.2 469 High-Quality Binary Protein Interaction Map of the Yeast Interactome Network. Science, 2008, 322, 6.0 1,297 104-110. NetGrep: fast network schema searches in interactomes. Genome Biology, 2008, 9, R138. 13.9 34 Computational identification of the normal and perturbed genetic networks involved in myeloid 13.9 26 differentiation and acute promyelocytic leukemia. Genome Biology, 2008, 9, R38. Text-mining assisted regulatory annotation. Genome Biology, 2008, 9, R31. Combining guilt-by-association and guilt-by-profiling to predict Saccharomyces cerevisiae gene 13.9 78 function. Genome Biology, 2008, 9, S7. Networks in Biology., 0, , 1-14. Global Network Properties., 0,, 29-63. 19 Modelling, Computation and Optimization in Information Systems and Management Sciences. 0.4 Communications in Computer and Information Science, 2008, , . MicroRNA Systems Biology., 2008, , 69-86. 6 Diverse Two-Dimensional Input Functions Control Bacterial Sugar Genes. Molecular Cell, 2008, 29, 4.5 124 786-792. Integrated approaches to uncovering transcription regulatory networks in mammalian cells. 1.3 38 Genomics, 2008, 91, 219-231. Assessing TF regulatory relationships of divergently transcribed genes. Genomics, 2008, 92, 316-321. 1.3 Toward a systems-level understanding of developmental regulatory networks. Current Opinion in 1.5 36 Genetics and Development, 2008, 18, 521-529. Cooperation of Two mRNA-Binding Proteins Drives Metabolic Adaptation to Iron Deficiency. Cell Metabolism, 2008, 7, 555-564. Intron Delays and Transcriptional Timing during Development. Developmental Cell, 2008, 14, 324-330. 3.1112

1137	Systematic screens for human disease genes, from yeast to human and back. Molecular BioSystems, 2008, 4, 18-29.	2.9	45
------	---	-----	----

#

1117

1118

1119

1120

1121

1123

1126

1129

1132

1134

#	Article	IF	CITATIONS
1139	Steps towards a repertoire of comprehensive maps of human protein interaction networks: the Human Proteotheque Initiative (HuPI)This paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Systems and Chemical Biology, and has undergone the Journal's usual peer review process Biochemistry and Cell Biology, 2008, 86, 149-156.	0.9	5
1140	Genomic distribution and functional analyses of potential G-quadruplex-forming sequences in Saccharomyces cerevisiae. Nucleic Acids Research, 2008, 36, 144-156.	6.5	245
1141	Incorporating Gene Functions into Regression Analysis of DNA-Protein Binding Data and Gene Expression Data to Construct Transcriptional Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2008, 5, 401-415.	1.9	5
1142	Estimating True and False Positive Rates in Higher Dimensional Problems and Its Data Mining Applications. , 2008, , .		4
1143	Inferring Gene Regulatory Networks From Expression Data by Discovering Fuzzy Dependency Relationships. IEEE Transactions on Fuzzy Systems, 2008, 16, 455-465.	6.5	14
1144	Identifying Combinatorial Transcription Factor Interactions with Microarray Data and ChIP-Chip Data. , 2008, , .		0
1145	Variable Selection in Nonparametric Varying-Coefficient Models for Analysis of Repeated Measurements. Journal of the American Statistical Association, 2008, 103, 1556-1569.	1.8	250
1146	Gene networks in Arabidopsis thaliana for metabolic and environmental functions. Molecular BioSystems, 2008, 4, 199.	2.9	18
1147	Combining multiple types of biological data in constraint-based learning of gene regulatory networks. , 2008, , .		11
1148	Development of a Novel Oligonucleotide Array-Based Transcription Factor Assay Platform for Genome-Wide Active Transcription Factor Profiling in <i>Saccharomyces cerevisiae</i> . Journal of Proteome Research, 2008, 7, 1315-1325.	1.8	5
1149	A systematic characterization of factors that regulate Drosophila segmentation via a bacterial one-hybrid system. Nucleic Acids Research, 2008, 36, 2547-2560.	6.5	152
1150	Discovering gapped binding sites of yeast transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2527-2532.	3.3	26
1151	W-AlignACE: an improved Gibbs sampling algorithm based on more accurate position weight matrices learned from sequence and gene expression/ChIP-chip data. Bioinformatics, 2008, 24, 1121-1128.	1.8	36
1152	Towards patterns tree of gene coexpression in eukaryotic species. Bioinformatics, 2008, 24, 1367-1373.	1.8	12
1153	An End to Endless Forms: Epistasis, Phenotype Distribution Bias, and Nonuniform Evolution. PLoS Computational Biology, 2008, 4, e1000202.	1.5	50
1154	Model-based deconvolution of genome-wide DNA binding. Bioinformatics, 2008, 24, 396-403.	1.8	44
1155	ChIPCodis: mining complex regulatory systems in yeast by concurrent enrichment analysis of chip-on-chip data. Bioinformatics, 2008, 24, 1208-1209.	1.8	9
1156	Interspecies variation reveals a conserved repressor of α-specific genes in <i>Saccharomyces</i> yeasts. Genes and Development, 2008, 22, 1704-1716.	2.7	26

#	Article	IF	CITATIONS
1157	Incorporating gene networks into statistical tests for genomic data via a spatially correlated mixture model. Bioinformatics, 2008, 24, 404-411.	1.8	75
1158	Probabilistic Cross-Species Inference of Orthologous Genomic Regions Created by Whole-Genome Duplication in Yeast. Genetics, 2008, 179, 1681-1692.	1.2	50
1159	GENE ONTOLOGY-BASED SEMANTIC ALIGNMENT OF BIOLOGICAL PATHWAYS BY EVOLUTIONARY SEARCH. Journal of Bioinformatics and Computational Biology, 2008, 06, 825-842.	0.3	5
1160	S. POMBEGENE REGULATORY NETWORK INFERENCE USING THE FUZZY LOGIC NETWORK. New Mathematics and Natural Computation, 2008, 04, 61-76.	0.4	1
1161	Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models. Bioinformatics, 2008, 24, 932-942.	1.8	87
1162	Recovering Genetic Regulatory Networks from Chromatin Immunoprecipitation and Steady-State Microarray Data. Eurasip Journal on Bioinformatics and Systems Biology, 2008, 2008, 1-12.	1.4	8
1163	Development of Software Facilities to Characterize Regulatory Binding Motifs and Application to Streptococcaceae. Journal of Molecular Microbiology and Biotechnology, 2008, 14, 67-73.	1.0	8
1164	Ensemble Machine Methods for DNA Binding. , 2008, , .		2
1165	Biological evaluation of biclustering algorithms using Gene Ontology and chIP-chip data. , 2008, , .		4
1166	Classification of gene expression levels using activator and repressor motifs. , 2008, , .		0
1167	Current research trends in systems biology. Animal Cells and Systems, 2008, 12, 181-191.	0.8	2
1170	ROBUSTNESS IN SCALE-FREE NETWORKS: COMPARING DIRECTED AND UNDIRECTED NETWORKS. International Journal of Modern Physics C, 2008, 19, 717-726.	0.8	13
1171	A systems approach to delineate functions of paralogous transcription factors: Role of the Yap family in the DNA damage response. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2934-2939.	3.3	55
1172	Energy-dependent fitness: A quantitative model for the evolution of yeast transcription factor binding sites. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12376-12381.	3.3	107
1173	A canonical promoter organization of the transcription machinery and its regulators in the <i>Saccharomyces</i> genome. Genome Research, 2009, 19, 360-371.	2.4	160
1174	Implementing Arithmetic and Other Analytic Operations By Transcriptional Regulation. PLoS Computational Biology, 2008, 4, e1000064.	1.5	6
1175	Statistical Modeling of Transcription Factor Binding Affinities Predicts Regulatory Interactions. PLoS Computational Biology, 2008, 4, e1000039.	1.5	54
1176	Global Transcriptome and Deletome Profiles of Yeast Exposed to Transition Metals. PLoS Genetics, 2008, 4, e1000053.	1.5	140

#	Article	IF	CITATIONS
1177	Dynamic Analysis of Integrated Signaling, Metabolic, and Regulatory Networks. PLoS Computational Biology, 2008, 4, e1000086.	1.5	182
1178	Evolution of Evolvability in Gene Regulatory Networks. PLoS Computational Biology, 2008, 4, e1000112.	1.5	195
1179	A Feature-Based Approach to Modeling Protein–DNA Interactions. PLoS Computational Biology, 2008, 4, e1000154.	1.5	89
1180	Mechanisms of Cell Cycle Control Revealed by a Systematic and Quantitative Overexpression Screen in S. cerevisiae. PLoS Genetics, 2008, 4, e1000120.	1.5	63
1181	GraphWeb: mining heterogeneous biological networks for gene modules with functional significance. Nucleic Acids Research, 2008, 36, W452-W459.	6.5	81
1182	Unraveling Protein Networks with Power Graph Analysis. PLoS Computational Biology, 2008, 4, e1000108.	1.5	105
1183	A Predictive Model of the Oxygen and Heme Regulatory Network in Yeast. PLoS Computational Biology, 2008, 4, e1000224.	1.5	40
1184	Diverse RNA-Binding Proteins Interact with Functionally Related Sets of RNAs, Suggesting an Extensive Regulatory System. PLoS Biology, 2008, 6, e255.	2.6	540
1185	Fast network component analysis (FastNCA) for gene regulatory network reconstruction from microarray data. Bioinformatics, 2008, 24, 1349-1358.	1.8	77
1186	Dynamic Remodeling of Individual Nucleosomes Across a Eukaryotic Genome in Response to Transcriptional Perturbation. PLoS Biology, 2008, 6, e65.	2.6	353
1187	Predicting Co-Complexed Protein Pairs from Heterogeneous Data. PLoS Computational Biology, 2008, 4, e1000054.	1.5	65
1188	Analysis of regulatory network topology reveals functionally distinct classes of microRNAs. Nucleic Acids Research, 2008, 36, 6494-6503.	6.5	81
1189	Dynamics of gene expression and the regulatory inference problem. Europhysics Letters, 2008, 82, 28010.	0.7	12
1190	Accuracy and application of the motif expression decomposition method in dissecting transcriptional regulation. Nucleic Acids Research, 2008, 36, 3185-3193.	6.5	2
1191	Gene Network Inference via Structural Equation Modeling in Genetical Genomics Experiments. Genetics, 2008, 178, 1763-1776.	1.2	104
1192	Nonchaoticity of Ordinary Differential Equations Describing Autonomous Transcriptional Regulatory Circuits. Communications in Theoretical Physics, 2008, 49, 1639-1642.	1.1	0
1193	Genome-wide Expression Profiling, In Vivo DNA Binding Analysis, and Probabilistic Motif Prediction Reveal Novel Abf1 Target Genes during Fermentation, Respiration, and Sporulation in Yeast. Molecular Biology of the Cell, 2008, 19, 2193-2207.	0.9	29
1194	A review on models and algorithms for motif discovery in protein-protein interaction networks. Briefings in Functional Genomics & Proteomics, 2008, 7, 147-156.	3.8	80

#	Article	IF	CITATIONS
1195	Systems biology at the Institute for Systems Biology. Briefings in Functional Genomics & Proteomics, 2008, 7, 239-248.	3.8	65
1196	Structural systems identification of genetic regulatory networks. Bioinformatics, 2008, 24, 553-560.	1.8	17
1197	Optimization of experimental design parameters for high-throughput chromatin immunoprecipitation studies. Nucleic Acids Research, 2008, 36, e144-e144.	6.5	28
1198	Broad edge of chaos in strongly heterogeneous Boolean networks. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 415001.	0.7	12
1200	Additivity of noise propagation in a protein cascade. Journal of Chemical Physics, 2008, 128, 165104.	1.2	5
1201	Discerning static and causal interactions in genome-wide reverse engineering problems. Bioinformatics, 2008, 24, 1510-1515.	1.8	31
1202	Measuring the Similarity of Co-Regulated Genes by Integrating Quantity and Tendency of Gene Expression Changing. , 2008, , .		2
1203	Inversion method for content-based networks. Physical Review E, 2008, 77, 036122.	0.8	32
1204	Assessing the Exceptionality of Network Motifs. Journal of Computational Biology, 2008, 15, 1-20.	0.8	70
1205	Computational approaches to study transcriptional regulation. Biochemical Society Transactions, 2008, 36, 758-765.	1.6	25
1206	Highâ€order combination effects and biological robustness. Molecular Systems Biology, 2008, 4, 215.	3.2	86
1207	Robustness of Attractor States in Complex Networks. AIP Conference Proceedings, 2008, , .	0.3	6
1208	Network Motifs. , 0, , 85-111.		12
1209	Robust Control in Biology: From Genes to Cells to Systems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2008, 41, 3470-3479.	0.4	4
1210	Transcriptome and Proteome Analyses of Drug Interactions with Natural Products. Current Drug Metabolism, 2008, 9, 1038-1048.	0.7	18
1211	Mapping Key Features of Transcriptional Regulatory Circuitry in Embryonic Stem Cells. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 183-193.	2.0	34
1213	Centrality Analysis Methods for Biological Networks and Their Application to Gene Regulatory Networks. Gene Regulation and Systems Biology, 2008, 2, GRSB.S702.	2.3	238
1214	Transcriptional Regulatory Networks in Entamoeba histolytica. Current Drug Targets, 2008, 9, 931-937.	1.0	6

C^{1-}		ON	DED	ODT
	IAL	UN	KEP	URI

#	Article	IF	CITATIONS
1215	Transcriptional Regulatory Networks in Embryonic Stem Cells. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 203-209.	2.0	70
1220	Complex networks: the key to systems biology. Genetics and Molecular Biology, 2008, 31, 591-601.	0.6	71
1221	Assessment of sera for chromatin-immunoprecipitation. BioTechniques, 2008, 44, 66-68.	0.8	5
1222	Organization of Physical Interactomes as Uncovered by Network Schemas. PLoS Computational Biology, 2008, 4, e1000203.	1.5	16
1223	A Publish-Subscribe Model of Genetic Networks. PLoS ONE, 2008, 3, e3245.	1.1	1
1224	Discovery and Expansion of Gene Modules by Seeking Isolated Groups in a Random Graph Process. PLoS ONE, 2008, 3, e3358.	1.1	3
1225	Logic motif of combinatorial control in transcriptional networks. Nature Precedings, 0, , .	0.1	1
1228	METHODS FOR STUDYING TRANSCRIPTION FACTORS. , 2008, , 29-67.		0
1229	Evidence of Highly Regulated Genes (in-Hubs) in Gene Networks of Saccharomyces Cerevisiae. Bioinformatics and Biology Insights, 2008, 2, BBI.S853.	1.0	1
1232	Graph Theory and Analysis of Biological Data in Computational Biology. , 0, , .		3
1233	An Effective Tri-Clustering Algorithm Combining Expression Data with Gene Regulation Information. Gene Regulation and Systems Biology, 2009, 3, GRSB.S1150.	2.3	16
1234	Practical network approaches and biologic interpretations of co-expression analyses in plants. Plant Biotechnology, 2009, 26, 3-7.	0.5	3
1235	Revealing the functional modularity of yeast transcriptional regulatory network by using a novel topological measurement. , 2009, , .		2
1236	Observer-based identification of a Multi-Output Feedforward Loop from gene expression data. , 2009, ,		0
1237	Modelling uncertainty in transcriptome measurements enhances network component analysis of yeast metabolic cycle. , 2009, , .		1
1238	A Statistical Framework to Infer Functional Gene Relationships From Biologically Interrelated Microarray Experiments. Journal of the American Statistical Association, 2009, 104, 465-473.	1.8	18
1239	Feedback topology and XOR-dynamics in Boolean networks with varying input structure. Physical Review E, 2009, 80, 026122.	0.8	3
1240	JBigin: A Java Package for Bayesian Inference of Genetic Interaction Networks from Micro-Array Data. , 2009, , .		0

# 1241	ARTICLE Putative Cell Cycle Related Genes in Plasmodium Falciparum. , 2009, , .	IF	CITATIONS 0
1242	From Modules to Models: Advanced Analysis Methods for Large-Scale Data. , 2009, , 59-83.		0
1243	Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Research, 2009, 19, 1301-1308.	2.4	125
1244	Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in <i>Saccharomyces cerevisiae</i> . Genes and Development, 2009, 23, 1077-1090.	2.7	116
1245	Functional Targets of the Monogenic Diabetes Transcription Factors HNF-1α and HNF-4α Are Highly Conserved Between Mice and Humans. Diabetes, 2009, 58, 1245-1253.	0.3	24
1246	Protein kinase A and TORC1 activate genes for ribosomal biogenesis by inactivating repressors encoded by <i>Dot6</i> and its homolog <i>Tod6</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19928-19933.	3.3	116
1247	Repression of DNA-binding dependent glucocorticoid receptor-mediated gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16598-16603.	3.3	94
1248	NFIL3 and cAMP Response Element-Binding Protein Form a Transcriptional Feedforward Loop that Controls Neuronal Regeneration-Associated Gene Expression. Journal of Neuroscience, 2009, 29, 15542-15550.	1.7	68
1249	Advances in Genetics, Genomics and Control of Rice Blast Disease. , 2009, , .		41
1250	Complex Networks. Studies in Computational Intelligence, 2009, , .	0.7	9
1251	Modularity optimization in community detection of complex networks. Europhysics Letters, 2009, 87, 38002.	0.7	80
1252	Systems Biology: Understanding Function from Genes to Networks. Current Proteomics, 2009, 6, 93-103.	0.1	1
1253	Towards Systems Biology of Heterosis: A Hypothesis about Molecular Network Structure Applied for the Arabidopsis Metabolome. Eurasip Journal on Bioinformatics and Systems Biology, 2009, 2009, 1-12.	1.4	9
1254	Using a State-Space Model and Location Analysis to Infer Time-Delayed Regulatory Networks. Eurasip Journal on Bioinformatics and Systems Biology, 2009, 2009, 1-14.	1.4	10
1255	Modelling Transcriptional Regulation with a Mixture of Factor Analyzers and Variational Bayesian Expectation Maximization. Eurasip Journal on Bioinformatics and Systems Biology, 2009, 2009, 1-26.	1.4	4
1256	Adaptive Dynamics of Regulatory Networks: Size Matters. Eurasip Journal on Bioinformatics and Systems Biology, 2009, 2009, 1-10.	1.4	5
1257	Cell cycle regulation by feedâ€forward loops coupling transcription and phosphorylation. Molecular Systems Biology, 2009, 5, 236.	3.2	44
1258	Prevalence of transcription promoters within archaeal operons and coding sequences. Molecular Systems Biology, 2009, 5, 285.	3.2	114

#	Article	IF	CITATIONS
1259	Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture. Molecular Systems Biology, 2009, 5, 294.	3.2	146
1260	A network biology approach to aging in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1145-1150.	3.3	69
1261	Dominant Negative Autoregulation Limits Steady-State Repression Levels in Gene Networks. Journal of Bacteriology, 2009, 191, 4487-4491.	1.0	17
1262	Backup in gene regulatory networks explains differences between binding and knockout results. Molecular Systems Biology, 2009, 5, 276.	3.2	76
1263	The NK-2 class homeodomain factor CEH-51 and the T-box factor TBX-35 have overlapping function in <i>C. elegans</i> mesoderm development. Development (Cambridge), 2009, 136, 2735-2746.	1.2	54
1264	Protein Chips and Chromatin Immunoprecipitation – Emerging Technologies to Study Macromolecule Interactions in M. grisea. , 2009, , 73-82.		2
1265	Identification of an inter-transcription factor regulatory network in human hepatoma cells by Matrix RNAi. Nucleic Acids Research, 2009, 37, 1049-1060.	6.5	32
1266	Bck2 is a phase-independent activator of cell cycle-regulated genes in yeast. Cell Cycle, 2009, 8, 239-252.	1.3	28
1267	Finding Time-Delayed Gene Regulation Patterns from Microarray Data. , 2009, , .		5
1268	A Graph-Based Approach for Clustering Analysis of Gene Expression Data by Using Topological Features. , 2009, , .		1
1269	Fluctuation Resonance of Feed Forward Loops in Gene Regulatory Networks. Chinese Journal of Chemical Physics, 2009, 22, 359-365.	0.6	0
1270	Identifying functional modules using expression profiles and confidence-scored protein interactions. Bioinformatics, 2009, 25, 1158-1164.	1.8	111
1271	Capturing truthiness. , 2009, , .		0
1272	<i>M</i> are better than one: an ensemble-based motif finder and its application to regulatory element prediction. Bioinformatics, 2009, 25, 868-874.	1.8	19
1273	A Phenotypic Profile of the Candida albicans Regulatory Network. PLoS Genetics, 2009, 5, e1000783.	1.5	409
1274	Coordinated Regulation of Virulence during Systemic Infection of Salmonella enterica Serovar Typhimurium. PLoS Pathogens, 2009, 5, e1000306.	2.1	143
1275	A Factor Graph Nested Effects Model To Identify Networks from Genetic Perturbations. PLoS Computational Biology, 2009, 5, e1000274.	1.5	34
1276	How eukaryotic genes are transcribed. Critical Reviews in Biochemistry and Molecular Biology, 2009, 44, 117-141.	2.3	129

#	Article	IF	CITATIONS
1277	Using Network Component Analysis to Dissect Regulatory Networks Mediated by Transcription Factors in Yeast. PLoS Computational Biology, 2009, 5, e1000311.	1.5	28
1278	Coupling Phosphate Homeostasis to Cell Cycle-Specific Transcription: Mitotic Activation of <i>Saccharomyces cerevisiae PHO5</i> by Mcm1 and Forkhead Proteins. Molecular and Cellular Biology, 2009, 29, 4891-4905.	1.1	19
1279	GeneCodis: interpreting gene lists through enrichment analysis and integration of diverse biological information. Nucleic Acids Research, 2009, 37, W317-W322.	6.5	391
1280	The Cerebellin 4 Precursor Gene Is a Direct Target of SRY and SOX9 in Mice1. Biology of Reproduction, 2009, 80, 1178-1188.	1.2	44
1281	Functional States of the Genome-Scale Escherichia Coli Transcriptional Regulatory System. PLoS Computational Biology, 2009, 5, e1000403.	1.5	34
1282	Construction and application of a protein and genetic interaction network (yeast interactome). Nucleic Acids Research, 2009, 37, e54-e54.	6.5	9
1283	Utilizing gene pair orientations for HMM-based analysis of promoter array ChIP-chip data. Bioinformatics, 2009, 25, 2118-2125.	1.8	7
1284	ChIP-on-chip significance analysis reveals large-scale binding and regulation by human transcription factor oncogenes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 244-249.	3.3	74
1285	Robust and Adaptive MicroRNA-Mediated Incoherent Feedforward Motifs. Chinese Physics Letters, 2009, 26, 028701.	1.3	3
1286	Learning a Prior on Regulatory Potential from eQTL Data. PLoS Genetics, 2009, 5, e1000358.	1.5	177
1287	Epitope Tagging of Endogenous Proteins for Genome-Wide Chromatin Immunoprecipitation Analysis. Methods in Molecular Biology, 2009, 567, 87-98.	0.4	12
1288	Serial Analysis of Binding Elements for Transcription Factors. Methods in Molecular Biology, 2009, 567, 113-132.	0.4	0
1289	GeNGe: systematic generation of gene regulatory networks. Bioinformatics, 2009, 25, 1205-1207.	1.8	31
1290	Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. Journal of Cell Biology, 2009, 187, 525-536.	2.3	451
1291	Hyphal Chain Formation in <i>Candida albicans</i> : Cdc28-Hgc1 Phosphorylation of Efg1 Represses Cell Separation Genes. Molecular and Cellular Biology, 2009, 29, 4406-4416.	1.1	71
1292	Cooperative Regulation of <i>ADE3</i> Transcription by Gcn4p and Bas1p in <i>Saccharomyces cerevisiae</i> . Eukaryotic Cell, 2009, 8, 1268-1277.	3.4	13
1293	Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data. Nucleic Acids Research, 2009, 37, 5943-5958.	6.5	48
1294	Model-based redesign of global transcription regulation. Nucleic Acids Research, 2009, 37, e38-e38.	6.5	28

	CITATION REF	PORT	
Article		IF	CITATIONS
Postrecruitment Regulation of RNA Polymerase II Directs Rapid Signaling Responses at of Estrogen Target Genes. Molecular and Cellular Biology, 2009, 29, 1123-1133.	the Promoters	1.1	77
Predicting functionality of protein–DNA interactions by integrating diverse evidence 2009, 25, i137-i144.	. Bioinformatics,	1.8	38
cis-Regulatory elements in plant cell signaling. Current Opinion in Plant Biology, 2009,	12, 643-649.	3.5	105
Ablation of Stat3 by siRNA Alters Gene Expression Profiles in JEG-3 Cells: A Systems Bic Placenta, 2009, 30, 806-815.	ology Approach.	0.7	10
Granger causality vs. dynamic Bayesian network inference: a comparative study. BMC 2009, 10, 122.	Bioinformatics,	1.2	97
A joint finite mixture model for clustering genes from independent Gaussian and beta BMC Bioinformatics, 2009, 10, 165.	distributed data.	1.2	11
Filtering Genes for Cluster and Network Analysis. BMC Bioinformatics, 2009, 10, 193.		1.2	39
Strategies for analyzing highly enriched IP-chip datasets. BMC Bioinformatics, 2009, 10	0, 305.	1.2	7
Uncovering transcriptional interactions via an adaptive fuzzy logic approach. BMC Bioi 2009, 10, 400.	informatics,	1.2	13
Identifying promoter features of co-regulated genes with similar network motifs. BMC Bioinformatics, 2009, 10, S1.		1.2	10
Modeling post-transcriptional regulation activity of small non-coding RNAs in Escherich Bioinformatics, 2009, 10, S6.	nia coli. BMC	1.2	11
Evolutionary constraints permeate large metabolic networks. BMC Evolutionary Biolog	y, 2009, 9, 231.	3.2	34
Discovery of cis-elements between sorghum and rice using co-expression and evolution conservation. BMC Genomics, 2009, 10, 284.	nary	1.2	26
A genome-wide deletion mutant screen identifies pathways affected by nickel sulfate i	n Saccharomyces	12	44

1308	A genome-wide deletion mutant screen identifies pathways affected by nickel sulfate in Saccharomyces cerevisiae. BMC Genomics, 2009, 10, 524.	1.2	44
1309	Reverse engineering module networks by PSO-RNN hybrid modeling. BMC Genomics, 2009, 10, S15.	1.2	34
1310	Reconstruct gene regulatory network using slice pattern model. BMC Genomics, 2009, 10, S2.	1.2	6
1311	An ensemble learning approach to reverse-engineering transcriptional regulatory networks from time-series gene expression data. BMC Genomics, 2009, 10, S8.	1.2	5
1312	MINER: exploratory analysis of gene interaction networks by machine learning from expression data. BMC Genomics, 2009, 10, S17.	1.2	5

#

1295

1296

1297

1299

1303

1304

1305

1307

1301 Filtering

#	Article	IF	CITATIONS	
1313	Identification of cell cycle-related regulatory motifs using a kernel canonical correlation analysis. BMC Genomics, 2009, 10, S29.	1.2	6	
1314	Inferring a transcriptional regulatory network of the cytokinesis-related genes by network component analysis. BMC Systems Biology, 2009, 3, 110.	3.0	10	
1315	Specialized or flexible feed-forward loop motifs: a question of topology. BMC Systems Biology, 2009, 3, 84.	3.0	32	
1316	Growth control and ribosome biogenesis. Current Opinion in Cell Biology, 2009, 21, 855-863.	2.6	316	
1317	Genome-wide system analysis reveals stable yet flexible network dynamics in yeast. IET Systems Biology, 2009, 3, 219-228.	0.8	10	
1318	Dynamics of microRNA-mediated motifs. IET Systems Biology, 2009, 3, 496-504.	0.8	6	
1322	Uncovering genetic regulatory network divergence between duplicate genes using yeast eQTL landscape. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2009, 312B, 722-733.	0.6	9	
1323	Computational identification of altered metabolism using gene expression and metabolic pathways. Biotechnology and Bioengineering, 2009, 103, 835-843.	1.7	11	
1324	Apprehending multicellularity: Regulatory networks, genomics, and evolution. Birth Defects Research Part C: Embryo Today Reviews, 2009, 87, 143-164.	3.6	15	
1325	Transcription factor network reconstruction using the living cell array. Journal of Theoretical Biology, 2009, 256, 393-407.	0.8	8	
1326	Intrinsic properties of Boolean dynamics in complex networks. Journal of Theoretical Biology, 2009, 256, 351-369.	0.8	11	
1327	Bistability in a model of mesoderm and anterior mesendoderm specification in Xenopus laevis. Journal of Theoretical Biology, 2009, 260, 41-55.	0.8	8	
1328	Computational challenges in systems biology. Computer Science Review, 2009, 3, 1-17.	10.2	38	
1329	Comparative analysis of distinct non-coding characteristics potentially contributing to the divergence of human tissue-specific genes. Genetica, 2009, 136, 127-134.	0.5	2	
1330	A mixed-integer optimization framework for the synthesis and analysis of regulatory networks. Journal of Global Optimization, 2009, 43, 263-276.	1.1	10	
1331	Evaluation of subgraph searching algorithms detecting network motif in biological networks. Frontiers of Computer Science, 2009, 3, 412-416.	0.6	2	
1332	Cross-talks of sensory transcription networks in response to various environmental stresses. Interdisciplinary Sciences, Computational Life Sciences, 2009, 1, 46-54.	2.2	10	
1333	Social network theory: new insights and issues for behavioral ecologists. Behavioral Ecology and Sociobiology, 2009, 63, 975-988.	0.6	316	
		CITATION RE	EPORT	
------	--	--------------------------	-------	-----------
#	Article		IF	CITATIONS
1334	Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature, 200	9, 461, 186-192.	13.7	476
1335	An approach for extensibly profiling the molecular states of cellular subpopulations. Nat Methods, 2009, 6, 759-765.	ture	9.0	65
1336	Systems biology of stem cell fate and cellular reprogramming. Nature Reviews Molecula Biology, 2009, 10, 672-681.	r Cell	16.1	330
1337	Mechanisms of oxygen regulation in microorganisms. Microbiology, 2009, 78, 535-546		0.5	3
1338	Regulation by transcription factors in bacteria: beyond description. FEMS Microbiology 33, 133-151.	Reviews, 2009,	3.9	185
1339	Concordant gene regulation related to perturbations of three GDP-mannose-related ger Yeast Research, 2009, 9, 63-72.	nes. FEMS	1.1	1
1340	Semi-Supervised Learning. Journal of the Royal Statistical Society Series A: Statistics in S 172, 530-530.	Society, 2009,	0.6	8
1341	Inferring Gene Networks: Dream or Nightmare?. Annals of the New York Academy of Sci 1158, 246-256.	ences, 2009,	1.8	23
1342	Modular gene expression in Poplar: a multilayer network approach. New Phytologist, 20	09, 181, 315-322.	3.5	20
1343	A robust correlation estimator and nonlinear recurrent model to infer genetic interactio Saccharomyces cerevisiae and pathways of pulmonary disease in Homo sapiens. BioSys 160-175.	ns in tems, 2009, 98,	0.9	2
1344	Protein functional class prediction with a combined graph. Expert Systems With Applica 3284-3292.	itions, 2009, 36,	4.4	23
1345	Reverse engineering and verification of gene networks: Principles, assumptions, and lim present methods and future perspectives. Journal of Biotechnology, 2009, 144, 190-20	itations of 3.	1.9	67
1346	A model of sequential branching in hierarchical cell fate determination. Journal of Theor Biology, 2009, 260, 589-597.	etical	0.8	44
1347	Perspectives and new directions for the production of bioethanol using consolidated bio of lignocellulose. Current Opinion in Biotechnology, 2009, 20, 364-371.	oprocessing	3.3	278
1348	Gene regulatory network inference: Data integration in dynamic models—A review. Bio 96, 86-103.	oSystems, 2009,	0.9	663
1349	The evolutionary influence of binding site organisation on gene regulatory networks. Bi 2009, 96, 185-193.	oSystems,	0.9	8
1350	Methods to Reconstruct and Compare Transcriptional Regulatory Networks. Methods in Biology, 2009, 541, 163-180.	ו Molecular	0.4	36
1351	Prediction and Integration of Regulatory and Protein–Protein Interactions. Methods i Biology, 2009, 541, 101-143.	n Molecular	0.4	12

		CITATION REPORT		
#	Article		IF	CITATIONS
1352	The capacity for multistability in small gene regulatory networks. BMC Systems Biolog	y, 2009, 3, 96.	3.0	33
1353	Integrating Proteomic, Transcriptional, and Interactome Data Reveals Hidden Component and Regulatory Networks. Science Signaling, 2009, 2, ra40.	ents of Signaling	1.6	161
1354	Partial Correlation Estimation by Joint Sparse Regression Models. Journal of the Americ Association, 2009, 104, 735-746.	an Statistical	1.8	469
1355	A Novel Computational Approach To Predict Transcription Factor DNA Binding Preferer Proteome Research, 2009, 8, 999-1003.	nce. Journal of	1.8	41
1356	KELLER: estimating time-varying interactions between genes. Bioinformatics, 2009, 25	, i128-i136.	1.8	67
1357	Linking high-resolution metabolic flux phenotypes and transcriptional regulation in year by the global regulator Gcn4p. Proceedings of the National Academy of Sciences of the of America, 2009, 106, 6477-6482.	st modulated e United States	3.3	154
1358	Discrete Dynamic Modeling of Cellular Signaling Networks. Methods in Enzymology, 24	009, 467, 281-306.	0.4	56
1359	Constructing Yeast Phenotypic Gene Network Using Morphological Inclusion Relations	.,2009,,.		0
1360	Cancer-related transcriptional targets of the circadian gene NPAS2 identified by genon ChIP-on-chip analysis. Cancer Letters, 2009, 284, 149-156.	ne-wide	3.2	36
1361	A Yeast Synthetic Network for In Vivo Assessment of Reverse-Engineering and Modelin Cell, 2009, 137, 172-181.	g Approaches.	13.5	348
1362	A MicroRNA Imparts Robustness against Environmental Fluctuation during Developme 137, 273-282.	nt. Cell, 2009,	13.5	432
1363	Dissecting Regulatory Networks in Host-Pathogen Interaction Using ChIP-on-chip Tech Host and Microbe, 2009, 5, 430-437.	nology. Cell	5.1	14
1364	Structure and evolution of the C. elegans embryonic endomesoderm network. Biochim Biophysica Acta - Gene Regulatory Mechanisms, 2009, 1789, 250-260.	iica Et	0.9	41
1365	Stem Cell States, Fates, and the Rules of Attraction. Cell Stem Cell, 2009, 4, 387-397.		5.2	307
1366	Computational approaches to the integration of gene expression, ChIP-chip and seque inference of gene regulatory networks. Seminars in Cell and Developmental Biology, 20	nce data in the 209, 20, 863-868.	2.3	13
1367	Inference of active transcriptional networks by integration of gene expression kinetics multisource data. Genomics, 2009, 93, 426-433.	modeling and	1.3	15
1368	Investigating transcriptional regulation: From analysis of complex networks to discove cis-regulatory elements. Methods, 2009, 48, 277-286.	ry of	1.9	4
1369	Evidence that Fold-Change, and Not Absolute Level, of β-Catenin Dictates Wnt Signali Cell, 2009, 36, 872-884.	ng. Molecular	4.5	283

ARTICLE IF CITATIONS # The Incoherent Feedforward Loop Can Provide Fold-Change Detection in Gene Regulation. Molecular 1370 4.5 394 Cell, 2009, 36, 894-899. Protein-binding microarrays: probing disease markers at the interface of proteomics and genomics. Trends in Molecular Medicine, 2009, 15, 352-358. 1371 3.5 Genomic Tools for Analyzing Transcriptional Regulatory Networks., 2009, , 119-136. 0 1372 Reverse engineering gene regulatory networks. IEEE Signal Processing Magazine, 2009, 26, 76-97. 1373 Inferring Dynamic Genetic Networks with Low Order Independencies. Statistical Applications in 1374 0.2 97 Genetics and Molecular Biology, 2009, 8, 1-38. Auditory and Vestibular Research. Methods in Molecular Biology, 2009, , . 0.4 Systems Biology and Biotechnology of Escherichia coli., 2009,,. 1376 22 Plant Metabolic Networks., 2009,,. 1377 1378 Pattern Recognition in Bioinformatics. Lecture Notes in Computer Science, 2009, , . 1.0 0 1379 Computational Systems Biology. Methods in Molecular Biology, 2009, , . 0.4 Plant Systems Biology. Methods in Molecular Biology, 2009, , . 1380 0.4 5 Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental 1381 conditions. Genome Biology, 2009, 10, R96. MicroRNA Interference Technologies., 2009,,. 1382 19 Chromatin Immunoprecipitation Assays. Methods in Molecular Biology, 2009, , . 1384 0.4 Functional models for large-scale gene regulation networks: realism and fiction. Molecular 1385 2.9 20 BioSystems, 2009, 5, 335. Computational methods for discovering gene networks from expression data. Briefings in 185 Bioinformatics, 2009, 10, 408-23. A new optimization algorithm for network component analysis based on convex programming. , 2009, , 1387 2 1388 ANN-based simulation of transcriptional networks in Yeast., 2009, , .

#	Article	IF	CITATIONS
1389	A comparative evolutionary study of transcription networks. The global role of feedback and hierachical structures. Molecular BioSystems, 2009, 5, 170-179.	2.9	12
1390	On the basic computational structure of gene regulatory networks. Molecular BioSystems, 2009, 5, 1617.	2.9	36
1391	Explorations in topology–delving underneath the surface of genetic interaction maps. Molecular BioSystems, 2009, 5, 1473.	2.9	12
1392	Scoring overlapping and adjacent signals from genome-wide ChIP and DamID assays. Molecular BioSystems, 2009, 5, 1429.	2.9	13
1393	A Combined Expression-Interaction Model for Inferring the Temporal Activity of Transcription Factors. Journal of Computational Biology, 2009, 16, 1035-1049.	0.8	14
1394	A Network-Based Method for Predicting Disease-Causing Genes. Journal of Computational Biology, 2009, 16, 181-189.	0.8	92
1395	Network Benchmarking: A Happy Marriage between Systems and Synthetic Biology. Chemistry and Biology, 2009, 16, 239-241.	6.2	5
1396	Detecting Hierarchical Modularity in Biological Networks. Methods in Molecular Biology, 2009, 541, 145-160.	0.4	44
1397	Nonnegative Network Component Analysis by Linear Programming for Gene Regulatory Network Reconstruction. Lecture Notes in Computer Science, 2009, , 395-402.	1.0	1
1398	Transcriptional control of the quorum sensing response in yeast. Molecular BioSystems, 2009, 6, 134-141.	2.9	55
1399	Identifying cell cycle regulators and combinatorial interactions among transcription factors with microarray data and ChIP-chip data. International Journal of Bioinformatics Research and Applications, 2009, 5, 625.	0.1	0
1400	Modeling and verifying a broad array of network properties. Europhysics Letters, 2009, 86, 28003.	0.7	20
1401	Development of a Novel Output Value for Quantitative Assessment in Methylated DNA Immunoprecipitation-CpG Island Microarray Analysis. DNA Research, 2009, 16, 275-286.	1.5	35
1402	Modeling a Regulatory Network Using Temporal Gene Expression Data: Why and How?. , 0, , 69-96.		1
1403	Identification of condition-specific regulatory modules through multi-level motif and mRNA expression analysis. International Journal of Computational Biology and Drug Design, 2009, 2, 1.	0.3	0
1406	Co-regulated gene fuzzy cluster by expression changing quantity and tendency. , 2010, , .		0
1407	Widespread Transcriptional Autosomal Dosage Compensation in Drosophila Correlates with Gene Expression Level. Genome Biology and Evolution, 2010, 2, 44-52.	1.1	35
1408	Regulatory factors controlling transcription of <i>Saccharomyces cerevisiae IXR1</i> by oxygen levels: a model of transcriptional adaptation from aerobiosis to hypoxia implicating <i>ROX1</i> and <i>IXR1</i> cross-regulation. Biochemical Journal, 2010, 425, 235-243.	1.7	20

#	Article	IF	CITATIONS
1409	Revealing a signaling role of phytosphingosineâ€1â€phosphate in yeast. Molecular Systems Biology, 2010, 6, 349.	3.2	49
1410	Unraveling conditionâ€dependent networks of transcription factors that control metabolic pathway activity in yeast. Molecular Systems Biology, 2010, 6, 432.	3.2	59
1412	Dynamic CRM occupancy reflects a temporal map of developmental progression. Molecular Systems Biology, 2010, 6, 383.	3.2	44
1413	Transcriptional regulation is only half the story. Molecular Systems Biology, 2010, 6, 406.	3.2	40
1414	Structure, evolution and dynamics of transcriptional regulatory networks. Biochemical Society Transactions, 2010, 38, 1155-1178.	1.6	21
1415	Systems biotechnology – Rational wholeâ€cell biocatalyst and bioprocess design. Engineering in Life Sciences, 2010, 10, 384-397.	2.0	51
1416	Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Current Genetics, 2010, 56, 1-32.	0.8	189
1417	Enriched partial correlations in genome-wide gene expression profiles of hybrids (A. thaliana): a systems biological approach towards the molecular basis of heterosis. Theoretical and Applied Genetics, 2010, 120, 249-259.	1.8	26
1418	Analysis of DNA–protein interactions: from nitrocellulose filter binding assays to microarray studies. Analytical and Bioanalytical Chemistry, 2010, 398, 2551-2561.	1.9	42
1419	Quantifying transcriptional regulatory networks by integrating sequence features and microarray data. Bioprocess and Biosystems Engineering, 2010, 33, 495-505.	1.7	1
1420	Challenges in Understanding Genome-Wide DNA Methylation. Journal of Computer Science and Technology, 2010, 25, 26-34.	0.9	4
1421	Genome-Wide Analysis of Epigenetic Modifications. Journal of Computer Science and Technology, 2010, 25, 35-41.	0.9	1
1422	Identifying changed protein-protein interactions in biological processes by gene coexpression analysis. Science Bulletin, 2010, 55, 1396-1402.	1.7	0
1423	Bioinformatics — Mining the genome for information. Frontiers of Electrical and Electronic Engineering in China: Selected Publications From Chinese Universities, 2010, 5, 391-404.	0.6	0
1424	Structure and dynamics of artificial regulatory networks evolved by segmental duplication and divergence model. International Journal of Automation and Computing, 2010, 7, 105-114.	4.5	0
1425	Identification of Regulatory Network Motifs from Gene Expression Data. Mathematical Modelling and Algorithms, 2010, 9, 233-245.	0.5	6
1426	GOAL: A software tool for assessing biological significance of genes groups. BMC Bioinformatics, 2010, 11, 229.	1.2	27
1427	A computational evaluation of over-representation of regulatory motifs in the promoter regions of differentially expressed genes. BMC Bioinformatics, 2010, 11, 267.	1.2	11

#	Article	IF	CITATIONS
1428	The identification of informative genes from multiple datasets with increasing complexity. BMC Bioinformatics, 2010, 11, 32.	1.2	6
1429	Quantized correlation coefficient for measuring reproducibility of ChIP-chip data. BMC Bioinformatics, 2010, 11, 399.	1.2	2
1430	Comparative study of three commonly used continuous deterministic methods for modeling gene regulation networks. BMC Bioinformatics, 2010, 11, 459.	1.2	17
1431	FragViz: visualization of fragmented networks. BMC Bioinformatics, 2010, 11, 475.	1.2	2
1432	BiologicalNetworks 2.0 - an integrative view of genome biology data. BMC Bioinformatics, 2010, 11, 610.	1.2	21
1433	An integrative modular approach to systematically predict gene-phenotype associations. BMC Bioinformatics, 2010, 11, S62.	1.2	10
1434	A novel parametric approach to mine gene regulatory relationship from microarray datasets. BMC Bioinformatics, 2010, 11, S15.	1.2	3
1435	Systematic investigation of global coordination among mRNA and protein in cellular society. BMC Genomics, 2010, 11, 364.	1.2	34
1436	The spatial distribution of cis regulatory elements in yeast promoters and its implications for transcriptional regulation. BMC Genomics, 2010, 11, 581.	1.2	42
1437	Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae. BMC Genomics, 2010, 11, 660.	1.2	146
1438	Regulatory network modelling of iron acquisition by a fungal pathogen in contact with epithelial cells. BMC Systems Biology, 2010, 4, 148.	3.0	31
1439	Global analysis of phase locking in gene expression during cell cycle: the potential in network modeling. BMC Systems Biology, 2010, 4, 167.	3.0	8
1440	Statistical model comparison applied to common network motifs. BMC Systems Biology, 2010, 4, 18.	3.0	8
1441	Composite functional module inference: detecting cooperation between transcriptional regulation and protein interaction by mantel test. BMC Systems Biology, 2010, 4, 82.	3.0	6
1442	It's the machine that matters: Predicting gene function and phenotype from protein networks. Journal of Proteomics, 2010, 73, 2277-2289.	1.2	111
1443	Yeast proteomics and protein microarrays. Journal of Proteomics, 2010, 73, 2147-2157.	1.2	31
1444	Anomalies in the transcriptional regulatory network of the Yeast Saccharomyces cerevisiae. Journal of Theoretical Biology, 2010, 263, 328-336.	0.8	3
1445	Distributions for negative-feedback-regulated stochastic gene expression: Dimension reduction and numerical solution of the chemical master equation. Journal of Theoretical Biology, 2010, 264, 377-385.	0.8	26

#	Article	IF	CITATIONS
1446	Attractor analysis of asynchronous Boolean models of signal transduction networks. Journal of Theoretical Biology, 2010, 266, 641-656.	0.8	163
1447	Algebraic connectivity may explain the evolution of gene regulatory networks. Journal of Theoretical Biology, 2010, 267, 7-14.	0.8	5
1448	Comparison of stationary and oscillatory dynamics described by differential equations and Boolean maps in transcriptional regulatory circuits. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 4749-4755.	0.9	2
1449	A multiway approach to data integration in systems biology based on Tucker3 and N-PLS. Chemometrics and Intelligent Laboratory Systems, 2010, 104, 101-111.	1.8	30
1450	Structural characterization and modeling of ncRNA–protein interactions. BioSystems, 2010, 101, 10-19.	0.9	18
1451	Spindle assembly checkpoint genes reveal distinct as well as overlapping expression that implicates MDF-2/Mad2 in postembryonic seam cell proliferation in Caenorhabditis elegans. BMC Cell Biology, 2010, 11, 71.	3.0	7
1452	Rrd1 isomerizes RNA polymerase II in response to rapamycin. BMC Molecular Biology, 2010, 11, 92.	3.0	16
1453	Novel topological descriptors for analyzing biological networks. BMC Structural Biology, 2010, 10, 18.	2.3	30
1454	Identification of transcription factor's targets using tissue-specific transcriptomic data in Arabidopsis thaliana. BMC Systems Biology, 2010, 4, S2.	3.0	35
1455	Circuitry of mRNA regulation. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2010, 2, 245-251.	6.6	20
1456	Algorithmic and analytical methods in network biology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2010, 2, 277-292.	6.6	28
1457	Evolution of transcriptional regulatory networks in yeast populations. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2010, 2, 324-335.	6.6	8
1458	The Yap family and its role in stress response. Yeast, 2010, 27, 245-258.	0.8	136
1459	Multiple bHLH proteins regulate <i>CIT2</i> expression in <i>Saccharomyces cerevisiae</i> . Yeast, 2010, 27, 345-359.	0.8	12
1460	lxr1p regulates oxygen-dependent HEM13 transcription. FEMS Yeast Research, 2010, 10, 309-321.	1.1	13
1461	Prospects of yeast systems biology for human health: integrating lipid, protein and energy metabolism. FEMS Yeast Research, 2010, 10, 1046-1059.	1.1	59
1462	Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks. FEMS Microbiology Reviews, 2010, 34, 628-645.	3.9	209
1463	Base pairing small RNAs and their roles in global regulatory networks. FEMS Microbiology Reviews, 2010, 34, 866-882.	3.9	256

#	Article	IF	CITATIONS
1464	Global analysis of functional relationships between histone point mutations and the effects of histone deacetylase inhibitors. Genes To Cells, 2010, 15, 553-594.	0.5	6
1465	DNA zip codes control an ancient mechanism for gene targeting to the nuclear periphery. Nature Cell Biology, 2010, 12, 111-118.	4.6	170
1466	Rationally designed logic integration of regulatory signals in mammalian cells. Nature Nanotechnology, 2010, 5, 666-670.	15.6	103
1467	Sparse Partial Least Squares Regression for Simultaneous Dimension Reduction and Variable Selection. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2010, 72, 3-25.	1.1	646
1468	Network-based genomic discovery: application and comparison of Markov random-field models. Journal of the Royal Statistical Society Series C: Applied Statistics, 2010, 59, 105-125.	0.5	19
1472	Gene regulatory networks governing haematopoietic stem cell development and identity. International Journal of Developmental Biology, 2010, 54, 1201-1211.	0.3	51
1473	Systems Biology: The Next Frontier for Bioinformatics. Advances in Bioinformatics, 2010, 2010, 1-10.	5.7	51
1474	Time-Resolved Expression Profiling of the Nuclear Receptor Superfamily in Human Adipogenesis. PLoS ONE, 2010, 5, e12991.	1.1	26
1475	DREAM4: Combining Genetic and Dynamic Information to Identify Biological Networks and Dynamical Models. PLoS ONE, 2010, 5, e13397.	1.1	201
1476	Dissection of Combinatorial Control by the Met4 Transcriptional Complex. Molecular Biology of the Cell, 2010, 21, 456-469.	0.9	69
1477	Quantitative cell array screening to identify regulators of gene expression. Briefings in Functional Genomics, 2010, 9, 13-23.	1.3	2
1478	Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in <i>Escherichia coli</i> and <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17845-17850.	3.3	378
1479	Analysis of diverse regulatory networks in a hierarchical context shows consistent tendencies for collaboration in the middle levels. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6841-6846.	3.3	65
1480	Rapid reorganization of the transcriptional regulatory network after genome duplication in yeast. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 869-876.	1.2	23
1481	Knowledge-based data analysis comes of age. Briefings in Bioinformatics, 2010, 11, 30-39.	3.2	16
1482	Snf1 Dependence of Peroxisomal Gene Expression Is Mediated by Adr1. Journal of Biological Chemistry, 2010, 285, 10703-10714.	1.6	39
1483	Comparing genomes to computer operating systems in terms of the topology and evolution of their regulatory control networks. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9186-9191.	3.3	75
1484	Inhibition and Role of let-7d in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 220-229.	2.5	454

#	Article	IF	CITATIONS
1485	Experimental strategies for studying transcription factor-DNA binding specificities. Briefings in Functional Genomics, 2010, 9, 362-373.	1.3	77
1486	Multilevel support vector regression analysis to identify condition-specific regulatory networks. Bioinformatics, 2010, 26, 1416-1422.	1.8	20
1487	Protein evolution in yeast transcription factor subnetworks. Nucleic Acids Research, 2010, 38, 5959-5969.	6.5	23
1488	Measurement variation determines the gene network topology reconstructed from experimental data: a case study of the yeast cyclin network. FASEB Journal, 2010, 24, 3468-3478.	0.2	7
1489	Parameter identification of biological networks using extended Kalman filtering and χ ² criteria. , 2010, , .		5
1490	Comparative Analysis of Transcriptome and Fitness Profiles Reveals General and Condition-Specific Cellular Functions Involved in Adaptation to Environmental Change in <i>Saccharomyces cerevisiae</i> . OMICS A Journal of Integrative Biology, 2010, 14, 603-614.	1.0	8
1491	Stability and chaos in coupled two-dimensional maps on gene regulatory network of bacterium <i>E. coli</i> . Chaos, 2010, 20, 033115.	1.0	17
1492	Identification of yeast cell cycle transcription factors using dynamic system model. , 2010, , .		0
1493	An Integrative Scoring Approach to Identify Transcriptional Regulations Controlling Lung Surfactant Homeostasis. , 2010, , .		0
1494	Functional genomics and networks: new approaches in the extraction of complex gene modules. Expert Review of Proteomics, 2010, 7, 55-63.	1.3	10
1495	MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems. Genes and Development, 2010, 24, 1339-1344.	2.7	340
1496	Stability of attractors in biological networks. , 2010, , .		0
1499	Derepression of <i>INO1</i> Transcription Requires Cooperation between the Ino2p-Ino4p Heterodimer and Cbf1p and Recruitment of the ISW2 Chromatin-Remodeling Complex. Eukaryotic Cell, 2010, 9, 1845-1855.	3.4	24
1500	Yeast Transcriptional Module Identification Based on Line Manifold. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0
1501	Modeling of Stress-induced Regulatory Cascades Involving Transcription Factor Dimers. , 2010, , .		0
1502	Revisiting the Contribution of cis-Elements to Expression Divergence between Duplicated Genes: The Role of Chromatin Structure. Molecular Biology and Evolution, 2010, 27, 1461-1466.	3.5	8
1503	A Systems Biology Approach to Dissection of the Effects of Small Bicyclic Peptidomimetics on a Panel of Saccharomyces cerevisiae Mutants. Journal of Biological Chemistry, 2010, 285, 23477-23485.	1.6	13
1504	Evolutionary Tinkering with Conserved Components of a Transcriptional Regulatory Network. PLoS Biology, 2010, 8, e1000329.	2.6	133

#	Article	IF	CITATIONS
1505	Characterization of the rice glup4 mutant suggests a role for the small GTPase Rab5 in the biosynthesis of carbon and nitrogen storage reserves in developing endosperm. Breeding Science, 2010, 60, 556-567.	0.9	16
1506	Analysis of Combinatorial Regulation: Scaling of Partnerships between Regulators with the Number of Governed Targets. PLoS Computational Biology, 2010, 6, e1000755.	1.5	21
1507	Plato's Cave Algorithm: Inferring Functional Signaling Networks from Early Gene Expression Shadows. PLoS Computational Biology, 2010, 6, e1000828.	1.5	11
1508	Simultaneous Genome-Wide Inference of Physical, Genetic, Regulatory, and Functional Pathway Components. PLoS Computational Biology, 2010, 6, e1001009.	1.5	20
1509	Prediction of human functional genetic networks from heterogeneous data using RVM-based ensemble learning. Bioinformatics, 2010, 26, 807-813.	1.8	28
1510	Learning combinatorial transcriptional dynamics from gene expression data. Bioinformatics, 2010, 26, 1623-1629.	1.8	22
1511	Network-Free Inference of Knockout Effects in Yeast. PLoS Computational Biology, 2010, 6, e1000635.	1.5	11
1512	Toxicology of the Skin. , 0, , .		28
1513	Learning transcriptional networks from the integration of ChIP–chip and expression data in a non-parametric model. Bioinformatics, 2010, 26, 1879-1886.	1.8	16
1514	Identifying a Transcription Factor's Regulatory Targets from its Binding Targets. Gene Regulation and Systems Biology, 2010, 4, GRSB.S6458.	2.3	3
1515	Discovering transcriptional modules by Bayesian data integration. Bioinformatics, 2010, 26, i158-i167.	1.8	56
1516	Identification and Genomic Analysis of Transcription Factors in Archaeal Genomes Exemplifies Their Functional Architecture and Evolutionary Origin. Molecular Biology and Evolution, 2010, 27, 1449-1459.	3.5	72
1517	Rewiring of Transcriptional Regulatory Networks: Hierarchy, Rather Than Connectivity, Better Reflects the Importance of Regulators. Science Signaling, 2010, 3, ra79.	1.6	55
1518	Learning gene regulatory networks based on Dempster-Shafer evidence theory. , 2010, , .		0
1519	Deconstructing the Superorganism: Social Physiology, Groundplans, and Sociogenomics. Quarterly Review of Biology, 2010, 85, 57-79.	0.0	125
1520	Statistical Issues in the Analysis of ChIP-Seq and RNA-Seq Data. Genes, 2010, 1, 317-334.	1.0	17
1521	Detection, Profiling, and Quantification of miRNA Expression. , 2010, , 3-64.		2
1523	Comparative Functional Genomics of Stress Responses in Yeasts. OMICS A Journal of Integrative Biology, 2010, 14, 501-515.	1.0	12

#	Article	IF	CITATIONS
1524	Refining current knowledge on the yeast FLR1 regulatory network by combined experimental and computational approaches. Molecular BioSystems, 2010, 6, 2471.	2.9	22
1525	A Competitive Transcription Factor Binding Mechanism Determines the Timing of Late Cell Cycle-Dependent Gene Expression. Molecular Cell, 2010, 38, 29-40.	4.5	39
1526	A systems biology approach to the mutual interaction between yeast and the immune system. Immunobiology, 2010, 215, 762-769.	0.8	11
1527	Frequency control of cell cycle oscillators. Current Opinion in Genetics and Development, 2010, 20, 605-612.	1.5	22
1528	Combinatorial Transcriptional Control In Blood Stem/Progenitor Cells: Genome-wide Analysis of Ten Major Transcriptional Regulators. Cell Stem Cell, 2010, 7, 532-544.	5.2	623
1529	Challenges for modeling global gene regulatory networks during development: Insights from Drosophila. Developmental Biology, 2010, 340, 161-169.	0.9	57
1530	Human transcriptome nexuses: Basic-eukaryotic and metazoan. Genomics, 2010, 95, 345-354.	1.3	13
1531	A Molecular Perspective on Exposure–Dose–Response. , 2010, , 9-26.		0
1532	Bioinformatic and Computational Analysis for Genomic Medicine. , 2010, , 111-130.		0
1533	Epistatic relationships reveal the functional organization of yeast transcription factors. Molecular Systems Biology, 2010, 6, 420.	3.2	50
1534	CONSTRUCTING AN YEAST PHENOTYPIC GENE NETWORK USING MORPHOLOGICAL INCLUSION RELATIONS. International Journal on Artificial Intelligence Tools, 2010, 19, 235-250.	0.7	1
1536	Heterochronic evolution reveals modular timing changes in budding yeast transcriptomes. Genome Biology, 2010, 11, R105.	13.9	12
1537	The transcriptional network activated by Cln3 cyclin at the G1-to-S transition of the yeast cell cycle. Genome Biology, 2010, 11, R67.	13.9	66
1538	The developmental expression dynamics of Drosophila melanogaster transcription factors. Genome Biology, 2010, 11, R40.	13.9	21
1540	Inference of the Molecular Mechanism of Action from Genetic Interaction and Gene Expression Data. OMICS A Journal of Integrative Biology, 2010, 14, 357-367.	1.0	3
1541	Predictive tools for the evaluation of microbial effects on drugs during gastrointestinal passage. Expert Opinion on Drug Metabolism and Toxicology, 2010, 6, 747-760.	1.5	8
1542	Toward the dynamic interactome: it's about time. Briefings in Bioinformatics, 2010, 11, 15-29.	3.2	230
1543	Exploiting the determinants of stochastic gene expression in <i>Saccharomyces cerevisiae</i> for genome-wide prediction of expression noise. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10472-10477.	3.3	30

#	Article	IF	CITATIONS
1544	Modeling and analysis of retinoic acid induced differentiation of uncommitted precursor cells. Integrative Biology (United Kingdom), 2011, 3, 578.	0.6	21
1545	Active Protein Interaction Network and Its Application on Protein Complex Detection. , 2011, , .		8
1546	Evolution of biological interaction networks: from models to real data. Genome Biology, 2011, 12, 235.	13.9	37
1547	Enrichment and aggregation of topological motifs are independent organizational principles of integrated interaction networks. Molecular BioSystems, 2011, 7, 2769.	2.9	15
1548	Learning Genetic Regulatory Network Connectivity from Time Series Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8, 152-165.	1.9	19
1549	Gene network inference via sparse structural equation modeling with genetic perturbations. , 2011, , .		5
1550	Robustness Analysis of a Boolean Model of Gene Regulatory Network with Memory. Journal of Computational Biology, 2011, 18, 559-577.	0.8	30
1551	Comparative transcriptome analysis of yeast strains carrying slt2, rlm1, and pop2 deletions. Genome, 2011, 54, 99-109.	0.9	3
1552	Fluctuations and Correlations in Physical and Biological Nanosystems: The Tale Is in the Tails. ACS Nano, 2011, 5, 2425-2432.	7.3	10
1553	Identification of Transcription Factor–DNA Interactions In Vivo. Sub-Cellular Biochemistry, 2011, 52, 175-191.	1.0	7
1555	Transcriptional Regulatory Networks in Embryonic Stem Cells. , 2011, 67, 239-252.		21
1556	Insights into Global Mechanisms and Disease by Gene Expression Profiling. Methods in Molecular Biology, 2011, 719, 269-298.	0.4	2
1557	Influence of Prior Knowledge in Constraint-Based Learning of Gene Regulatory Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8, 130-142.	1.9	25
1558	Yeast Systems Biology. Methods in Molecular Biology, 2011, , .	0.4	7
1559	A Handbook of Transcription Factors. Sub-Cellular Biochemistry, 2011, , .	1.0	14
1560	Epigenetics and Disease. , 2011, , .		5
1561	A high throughput molecular force assay for protein–DNA interactions. Lab on A Chip, 2011, 11, 856.	3.1	18
1562	Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights. Genome Biology, 2011, 12, R125.	13.9	103

ARTICLE IF CITATIONS Impulse Control: Temporal Dynamics in Gene Transcription. Cell, 2011, 144, 886-896. 13.5 227 1563 Interactome Networks and Human Disease. Cell, 2011, 144, 986-998. 1564 13.5 1,543 Phosphoribosylamidotransferase, the first enzyme for purine de novo synthesis, is required for 1565 conidiation in the sclerotial mycoparasite Coniothyrium minitans. Fungal Genetics and Biology, 2011, 0.9 21 48,956-965. ANAT: A Tool for Constructing and Analyzing Functional Protein Networks. Science Signaling, 2011, 4, A Comprehensive Genomic Binding Map of Gene and Chromatin Regulatory Proteins in Saccharomyces. 1567 4.5 269 Molecular Cell, 2011, 41, 480-492. Structure–function relations are subtle in genetic regulatory networks. Mathematical Biosciences, 2011, 231, 61-68. Large cliques in Arabidopsis gene coexpression network and motif discovery. Journal of Plant 1569 1.6 24 Physiology, 2011, 168, 611-618. Interplay between Posttranscriptional and Posttranslational Interactions of RNA-Binding Proteins. 1570 2.0 Journal of Molecular Biology, 2011, 409, 466-479. A comprehensive assessment of methods for de-novo reverse-engineering of genome-scale regulatory 1571 1.3 45 networks. Genomics, 2011, 97, 7-18. Data Mining Pubmed Using Natural Language Processing to Generate the Î²-Catenin Biological 1573 Association Network., 2011, , . Soybean Rust: Five Years of Research., 0,,. 0 1574 Discovering Networks of Perturbed Biological Processes in Hepatocyte Cultures. PLoS ONE, 2011, 6, 1.1 e15247. Global Geometric Affinity for Revealing High Fidelity Protein Interaction Network. PLoS ONE, 2011, 6, 1576 1.1 18 e19349. Topological Structure of the Space of Phenotypes: The Case of RNA Neutral Networks. PLoS ONE, 2011, 1.1 6, e26324. The Nuclear Pore Complex Mediates Binding of the Mig1 Repressor to Target Promoters. PLoS ONE, 1578 19 1.1 2011, 6, e27117. The reconstruction of gene regulatory network based On Multi-Agent System by fusing multiple data The yeast ABC transporter Pdr18 (ORF <i>YNR070w</i>) controls plasma membrane sterol composition, 1581 1.7 53 playing a role in multidrug resistance. Biochemical Journal, 2011, 440, 195-202. Double-negative feedback loops as a common design motif in the transcriptional networks regulating cell fate. International Journal of Design Engineering, 2011, 4, 41.

#	Article	IF	CITATIONS
1584	Neuronal homeostasis: time for a change?. Journal of Physiology, 2011, 589, 4811-4826.	1.3	68
1585	Transcription of functionally related constitutive genes is not coordinated. Nature Structural and Molecular Biology, 2011, 18, 27-34.	3.6	102
1586	Reconstruction of the regulatory network of <i>Lactobacillus plantarum</i> WCFS1 on basis of correlated gene expression and conserved regulatory motifs. Microbial Biotechnology, 2011, 4, 333-344.	2.0	26
1587	Reconstructing regulatory network transitions. Trends in Cell Biology, 2011, 21, 442-451.	3.6	26
1588	Genome-wide transcription factor binding: beyond direct target regulation. Trends in Genetics, 2011, 27, 141-148.	2.9	187
1589	A cost-aggregating integer linear program for motif finding. Journal of Discrete Algorithms, 2011, 9, 326-334.	0.7	2
1590	Protein function prediction: towards integration of similarity metrics. Current Opinion in Structural Biology, 2011, 21, 180-188.	2.6	42
1591	Modelling and analysis of an ensemble of eukaryotic translation initiation models. IET Systems Biology, 2011, 5, 2-14.	0.8	19
1592	Networks for systems biology: conceptual connection of data and function. IET Systems Biology, 2011, 5, 185-207.	0.8	105
1593	Predicting RNA-Protein Interactions Using Only Sequence Information. BMC Bioinformatics, 2011, 12, 489.	1.2	399
1594	Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Advances in Physics, 2011, 60, 329-412.	35.9	532
1595	Target of Rapamycin (TOR) in Nutrient Signaling and Growth Control. Genetics, 2011, 189, 1177-1201.	1.2	732
1596	Alkaline-stress response in Glycine soja leaf identifies specific transcription factors and ABA-mediated signaling factors. Functional and Integrative Genomics, 2011, 11, 369-379.	1.4	25
1597	Systematic characterization of protein-DNA interactions. Cellular and Molecular Life Sciences, 2011, 68, 1657-1668.	2.4	33
1598	Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Applied Microbiology and Biotechnology, 2011, 90, 809-825.	1.7	209
1599	Integration of Metabolic Reactions and Gene Regulation. Molecular Biotechnology, 2011, 47, 70-82.	1.3	8
1600	Network modelling of gene regulation. Biophysical Reviews, 2011, 3, 1-13.	1.5	4
1601	Knowledge based construction of functional modules for genetic network in Saccharomyces Cerevisiae. Biochip Journal, 2011, 5, 145-150.	2.5	0

#	Article	IF	CITATIONS
1602	The next generation models for crops and agro-ecosystems. Science China Information Sciences, 2011, 54, 589-597.	2.7	20
1603	Review and application of group theory to molecular systems biology. Theoretical Biology and Medical Modelling, 2011, 8, 21.	2.1	26
1604	A proof of the DBRF-MEGN method, an algorithm for deducing minimum equivalent gene networks. Source Code for Biology and Medicine, 2011, 6, 12.	1.7	0
1605	Negative auto-regulation increases the input dynamic-range of the arabinose system of Escherichia coli. BMC Systems Biology, 2011, 5, 111.	3.0	89
1606	An integrative approach to inferring biologically meaningful gene modules. BMC Systems Biology, 2011, 5, 117.	3.0	12
1607	Modeling the evolution of a classic genetic switch. BMC Systems Biology, 2011, 5, 24.	3.0	5
1608	Elementary signaling modes predict the essentiality of signal transduction network components. BMC Systems Biology, 2011, 5, 44.	3.0	68
1609	A modulated empirical Bayes model for identifying topological and temporal estrogen receptor \hat{I}_{\pm} regulatory networks in breast cancer. BMC Systems Biology, 2011, 5, 67.	3.0	29
1610	Modeling and analysis of the dynamic behavior of the XInR regulon in Aspergillus niger. BMC Systems Biology, 2011, 5, S14.	3.0	11
1611	Using graph theory to analyze biological networks. BioData Mining, 2011, 4, 10.	2.2	547
1612	A novel method to identify cooperative functional modules: study of module coordination in the Saccharomyces cerevisiae cell cycle. BMC Bioinformatics, 2011, 12, 281.	1.2	17
1613	Investigating the effect of paralogs on microarray gene-set analysis. BMC Bioinformatics, 2011, 12, 29.	1.2	1
1614	Unraveling gene regulatory networks from time-resolved gene expression data a measures comparison study. BMC Bioinformatics, 2011, 12, 292.	1.2	40
1615	Motif-guided sparse decomposition of gene expression data for regulatory module identification. BMC Bioinformatics, 2011, 12, 82.	1.2	13
1616	Coregulation of transcription factors and microRNAs in human transcriptional regulatory network. BMC Bioinformatics, 2011, 12, S41.	1.2	84
1617	ChIP-chip versus ChIP-seq: Lessons for experimental design and data analysis. BMC Genomics, 2011, 12, 134.	1.2	128
1618	Transcriptional double-autorepression feedforward circuits act for multicellularity and nervous system development. BMC Genomics, 2011, 12, 228.	1.2	2
1619	Advances in analysis of transcriptional regulatory networks. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2011, 3, 21-35.	6.6	29

#	Article	IF	CITATIONS
1620	Network biology: a direct approach to study biological function. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2011, 3, 379-391.	6.6	53
1621	Adaptation of cells to new environments. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2011, 3, 544-561.	6.6	148
1622	Identification of transcription factors perturbed by the synthesis of high levels of a foreign protein in yeast <i>saccharomyces cerevisiae</i> . Biotechnology Progress, 2011, 27, 925-936.	1.3	3
1623	Profiling a Caenorhabditis elegans behavioral parametric dataset with a supervised K-means clustering algorithm identifies genetic networks regulating locomotion. Journal of Neuroscience Methods, 2011, 197, 315-323.	1.3	12
1624	Diverse protein kinase interactions identified by protein microarrays reveal novel connections between cellular processes. Genes and Development, 2011, 25, 767-778.	2.7	60
1625	Cell Cycle Regulated Gene Expression in Yeasts. Advances in Genetics, 2011, 73, 51-85.	0.8	26
1626	High-Dimensional ODEs Coupled With Mixed-Effects Modeling Techniques for Dynamic Gene Regulatory Network Identification. Journal of the American Statistical Association, 2011, 106, 1242-1258.	1.8	64
1627	Biological Network Querying Techniques: Analysis and Comparison. Journal of Computational Biology, 2011, 18, 595-625.	0.8	24
1628	Computationally efficient measure of topological redundancy of biological and social networks. Physical Review E, 2011, 84, 036117.	0.8	26
1629	Dynamical Properties of a Boolean Model of Gene Regulatory Network with Memory. Journal of Computational Biology, 2011, 18, 1291-1303.	0.8	56
1631	LLM3D: a log-linear modeling-based method to predict functional gene regulatory interactions from genome-wide expression data. Nucleic Acids Research, 2011, 39, 5313-5327.	6.5	19
1632	How to infer gene networks from expression profiles, revisited. Interface Focus, 2011, 1, 857-870.	1.5	154
1633	Variable selection and estimation in high-dimensional varying-coefficient models. Statistica Sinica, 2011, 21, 1515-1540.	0.2	98
1634	Compensation for differences in gene copy number among yeast ribosomal proteins is encoded within their promoters. Genome Research, 2011, 21, 2114-2128.	2.4	51
1635	Fine-tuning of the Msn2/4–mediated yeast stress responses as revealed by systematic deletion of Msn2/4 partners. Molecular Biology of the Cell, 2011, 22, 3127-3138.	0.9	75
1636	Physical Module Networks: an integrative approach for reconstructing transcription regulation. Bioinformatics, 2011, 27, i177-i185.	1.8	37
1637	Yeast response and tolerance to polyamine toxicity involving the drug : H+ antiporter Qdr3 and the transcription factors Yap1 and Gcn4. Microbiology (United Kingdom), 2011, 157, 945-956.	0.7	36
1638	Promoter Reliability in Modular Transcriptional Networks. Methods in Enzymology, 2011, 497, 31-49.	0.4	5

#	Article	IF	CITATIONS
1639	Motor-driven intracellular transport powers bacterial gliding motility. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7559-7564.	3.3	153
1640	Structural and functional organization of RNA regulons in the post-transcriptional regulatory network of yeast. Nucleic Acids Research, 2011, 39, 9108-9117.	6.5	23
1641	Identification of Potential Calorie Restriction-Mimicking Yeast Mutants with Increased Mitochondrial Respiratory Chain and Nitric Oxide Levels. Journal of Aging Research, 2011, 2011, 1-16.	0.4	27
1642	Two Proteins with Different Functions Are Derived from the <i>KlHEM13</i> Gene. Eukaryotic Cell, 2011, 10, 1331-1339.	3.4	1
1643	Sequential Recruitment of SAGA and TFIID in a Genomic Response to DNA Damage in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 2011, 31, 190-202.	1.1	29
1644	Toxicity Testing in the 21st Century: Defining New Risk Assessment Approaches Based on Perturbation of Intracellular Toxicity Pathways. PLoS ONE, 2011, 6, e20887.	1.1	175
1645	MicroRNAs and atrial fibrillation: new fundamentals. Cardiovascular Research, 2011, 89, 710-721.	1.8	97
1647	Motifs emerge from function in model gene regulatory networks. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17263-17268.	3.3	69
1648	Optimally Orienting Physical Networks. Journal of Computational Biology, 2011, 18, 1437-1448.	0.8	15
1649	MEET: Motif elements estimation toolkit. , 2011, 2011, 6483-6.		1
1650	sREVEAL: Scalable extensions of REVEAL towards regulatory network inference. , 2011, , .		3
1651	Synthetic incoherent feedforward circuits show adaptation to the amount of their genetic template. Molecular Systems Biology, 2011, 7, 519.	3.2	150
1652	The Transcription Factor FgStuAp Influences Spore Development, Pathogenicity, and Secondary Metabolism in <i>Fusarium graminearum</i> . Molecular Plant-Microbe Interactions, 2011, 24, 54-67.	1.4	85
1653	Modular analysis of the probabilistic genetic interaction network. Bioinformatics, 2011, 27, 853-859.	1.8	10
1654	lxr1 Is Required for the Expression of the Ribonucleotide Reductase Rnr1 and Maintenance of dNTP Pools. PLoS Genetics, 2011, 7, e1002061.	1.5	64
1655	Large-scale learning of combinatorial transcriptional dynamics from gene expression. Bioinformatics, 2011, 27, 1277-1283.	1.8	21
1656	An efficient network querying method based on conditional random fields. Bioinformatics, 2011, 27, 3173-3178.	1.8	14
1657	Construction and Analysis of an Integrated Regulatory Network Derived from High-Throughput Sequencing Data. PLoS Computational Biology, 2011, 7, e1002190.	1.5	92

#	Article	IF	CITATIONS
1658	Is the whole the sumof its parts? Agent-basedmodelling of wastewater treatment systems. Water Science and Technology, 2011, 63, 1590-1598.	1.2	10
1659	Dynamical and Structural Analysis of a T Cell Survival Network Identifies Novel Candidate Therapeutic Targets for Large Granular Lymphocyte Leukemia. PLoS Computational Biology, 2011, 7, e1002267.	1.5	162
1660	Measuring the Evolutionary Rewiring of Biological Networks. PLoS Computational Biology, 2011, 7, e1001050.	1.5	96
1661	Stitching together Multiple Data Dimensions Reveals Interacting Metabolomic and Transcriptomic Networks That Modulate Cell Regulation. PLoS Biology, 2012, 10, e1001301.	2.6	173
1662	Contrasting Properties of Gene-Specific Regulatory, Coding, and Copy Number Mutations in Saccharomyces cerevisiae: Frequency, Effects, and Dominance. PLoS Genetics, 2012, 8, e1002497.	1.5	88
1663	The Enigmatic Conservation of a Rap1 Binding Site in the <i>Saccharomyces cerevisiae HMR-E</i> Silencer. G3: Genes, Genomes, Genetics, 2012, 2, 1555-1562.	0.8	5
1664	Analysis of High Dimensionality Yeast Gene Expression Data Using Data Mining. Applied Mechanics and Materials, 2012, 197, 515-522.	0.2	0
1665	Evolution of Double Positive Autoregulatory Feedback Loops in CYCLOIDEA2 Clade Genes Is Associated with the Origin of Floral Zygomorphy. Plant Cell, 2012, 24, 1834-1847.	3.1	119
1666	Regulatory Network Structure as a Dominant Determinant of Transcription Factor Evolutionary Rate. PLoS Computational Biology, 2012, 8, e1002734.	1.5	6
1667	Characterizing the roles of Met31 and Met32 in coordinating Met4-activated transcription in the absence of Met30. Molecular Biology of the Cell, 2012, 23, 1928-1942.	0.9	25
1668	The magnitude and colour of noise in genetic negative feedback systems. Nucleic Acids Research, 2012, 40, 7084-7095.	6.5	35
1669	Modeling Drug- and Chemical-Induced Hepatotoxicity with Systems Biology Approaches. Frontiers in Physiology, 2012, 3, 462.	1.3	53
1670	Genome scale inference of transcriptional regulatory networks using mutual information on complex interactions. , 2012, , .		1
1671	YeTFaSCo: a database of evaluated yeast transcription factor sequence specificities. Nucleic Acids Research, 2012, 40, D169-D179.	6.5	195
1672	Evaluation and Properties of the Budding Yeast Phosphoproteome. Molecular and Cellular Proteomics, 2012, 11, M111.009555.	2.5	44
1673	One Hand Clapping: detection of condition-specific transcription factor interactions from genome-wide gene activity data. Nucleic Acids Research, 2012, 40, 8883-8892.	6.5	2
1674	Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon. Nucleic Acids Research, 2012, 40, 8240-8254.	6.5	145
1675	Combinatorial control of diverse metabolic and physiological functions by transcriptional regulators of the yeast sulfur assimilation pathway. Molecular Biology of the Cell, 2012, 23, 3008-3024.	0.9	36

#	Article	IF	CITATIONS
1676	<i>De novo</i> motif discovery facilitates identification of interactions between transcription factors in <i>Saccharomyces cerevisiae</i> . Bioinformatics, 2012, 28, 701-708.	1.8	15
1677	Transcriptional Regulation and the Diversification of Metabolism in Wine Yeast Strains. Genetics, 2012, 190, 251-261.	1.2	25
1678	Analyzing incomplete biological pathways using network motifs. , 2012, , .		2
1679	Response to the BMP gradient requires highly combinatorial inputs from multiple patterning systems in the <i>Drosophila</i> embryo. Development (Cambridge), 2012, 139, 1956-1964.	1.2	15
1680	In silico identification of endo16 regulators in the sea urchin endomesoderm gene regulatory network. , 2012, , .		1
1681	Computing with Competition in Biochemical Networks. Physical Review Letters, 2012, 109, 208102.	2.9	43
1682	Coordinated regulation of cholinergic motor neuron traits through a conserved terminal selector gene. Nature Neuroscience, 2012, 15, 205-214.	7.1	170
1683	A non-Gaussian factor analysis approach to transcription Network Component Analysis. , 2012, , .		0
1684	Mechanisms generating bistability and oscillations in microRNA-mediated motifs. Physical Review E, 2012, 85, 041916.	0.8	26
1685	Biological network motif detection: principles and practice. Briefings in Bioinformatics, 2012, 13, 202-215.	3.2	134
1686	Critical Role of N-terminal End-localized Nuclear Export Signal in Regulation of Activating Transcription Factor 2 (ATF2) Subcellular Localization and Transcriptional Activity. Journal of Biological Chemistry, 2012, 287, 8621-8632.	1.6	14
1687	MAVisto: A Tool for Biological Network Motif Analysis. Methods in Molecular Biology, 2012, 804, 263-280.	0.4	9
1688	INFERRING THE REGULATORY INTERACTION MODELS OF TRANSCRIPTION FACTORS IN TRANSCRIPTIONAL REGULATORY NETWORKS. Journal of Bioinformatics and Computational Biology, 2012, 10, 1250012.	0.3	5
1689	sColn: A scoring algorithm based on complex interactions for reverse engineering regulatory networks. , 2012, , .		1
1690	Metabolism and Regulation of Glycerolipids in the Yeast <i>Saccharomyces cerevisiae</i> . Genetics, 2012, 190, 317-349.	1.2	437
1691	Why Transcription Factor Binding Sites Are Ten Nucleotides Long. Genetics, 2012, 192, 973-985.	1.2	132
1692	Binding Motifs in Bacterial Gene Promoters Modulate Transcriptional Effects of Global Regulators CRP and ArcA. Gene Regulation and Systems Biology, 2012, 6, GRSB.S9357.	2.3	6
1693	Finding Transcription Factor Binding Motifs for Coregulated Genes by Combining Sequence Overrepresentation with Cross-Species Conservation. Journal of Probability and Statistics, 2012, 2012, 1-18.	0.3	2

		CITATION RE	EPORT	
#	Article		IF	Citations
1694	An Analytical Approach to Network Motif Detection in Samples of Networks with Pairv Vertex Labels. Computational and Mathematical Methods in Medicine, 2012, 2012, 1-	vise Different 12.	0.7	5
1695	Analysis of Gal4-directed transcription activation using Tra1 mutants selectively defect interaction with Gal4. Proceedings of the National Academy of Sciences of the United America, 2012, 109, 1997-2002.	ive for States of	3.3	28
1696	Considerations for creating and annotating the budding yeast Genome Map at SGD: a Database: the Journal of Biological Databases and Curation, 2012, 2012, bar057-bar05	progress report. 7.	1.4	10
1697	Parameter Estimation, Analysis, and Design of Synthetic Gene Switching Models: Syste Performance-based Approaches. IFAC Postprint Volumes IPPV / International Federatio Control, 2012, 45, 946-951.	em Behavior- and n of Automatic	0.4	2
1698	Omics Approaches to Meat Quality Management. , 2012, , 266-299.			0
1699	Transcription Network Analysis by A Sparse Binary Factor Analysis Algorithm. Journal o Bioinformatics, 2012, 9, 68-79.	f Integrative	1.0	2
1700	A new clustering approach for learning transcriptional modules. International Journal o Mining and Bioinformatics, 2012, 6, 304.	f Data	0.1	2
1701	MicroRNA Regulation in Cellular Networks. , 2012, , 35-46.			0
1702	Discovery of Transcription Factor Binding Sites and Its Applications in Cancer Study. , 2	2012, , 113-128.		0
1703	Prokaryotic genome regulation: A revolutionary paradigm. Proceedings of the Japan Ac Physical and Biological Sciences, 2012, 88, 485-508.	ademy Series B:	1.6	86
1704	Noniterative Convex Optimization Methods for Network Component Analysis. IEEE/AC on Computational Biology and Bioinformatics, 2012, 9, 1472-1481.	M Transactions	1.9	10
1705	Bridging Omics Technologies with Synthetic Biology in Yeast Industrial Biotechnology.	, 2012, , 271-327.		2
1706	Transcriptional Network Structure Has Little Effect on the Rate of Regulatory Evolution Molecular Biology and Evolution, 2012, 29, 1899-1905.	ı in Yeast.	3.5	9
1707	Identification of a complex genetic network underlying <i><scp>S</scp>accharomyce colony morphology. Molecular Microbiology, 2012, 86, 225-239.</i>	s cerevisiae	1.2	71
1708	Production of recombinant proteins by yeast cells. Biotechnology Advances, 2012, 30,	1108-1118.	6.0	272
1709	Genomics of Yeast Tolerance and In Situ Detoxification. Microbiology Monographs, 20	12, , 1-28.	0.3	0
1710	Quantitative modeling of transcriptional regulatory networks by integrating multiple s knowledge. Bioprocess and Biosystems Engineering, 2012, 35, 1555-1565.	ource of	1.7	5
1711	The temporal analysis of yeast exponential phase using shotgun proteomics as a ferme monitoring technique. Journal of Proteomics, 2012, 75, 5206-5214.	entation	1.2	7

#	Article	IF	CITATIONS
1712	Eigen-Genomic System Dynamic-Pattern Analysis (ESDA): Modeling mRNA Degradation and Self-Regulation. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9, 430-437.	1.9	3
1713	Sparse Reduced-Rank Regression for Simultaneous Dimension Reduction and Variable Selection. Journal of the American Statistical Association, 2012, 107, 1533-1545.	1.8	166
1714	Biological pathway completion using network motifs and random walks on graphs. , 2012, , .		4
1715	A Multidimensional Matrix for Systems Biology Research and Its Application to Interaction Networks. Journal of Proteome Research, 2012, 11, 5204-5220.	1.8	5
1716	The Zinc Finger Proteins Mxr1p and Repressor of Phosphoenolpyruvate Carboxykinase (ROP) Have the Same DNA Binding Specificity but Regulate Methanol Metabolism Antagonistically in Pichia pastoris. Journal of Biological Chemistry, 2012, 287, 34465-34473.	1.6	19
1717	From plant gene regulatory grids to network dynamics. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 454-465.	0.9	41
1718	Differences in local genomic context of bound and unbound motifs. Gene, 2012, 506, 125-134.	1.0	3
1719	DNA–Protein Binding Force Chip. Small, 2012, 8, 3269-3273.	5.2	11
1720	Reverse engineering of gene regulatory networks from biological data. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2012, 2, 365-385.	4.6	12
1721	Stem cell bioengineering at the interface of systemsâ€based models and highâ€throughput platforms. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2012, 4, 525-545.	6.6	2
1722	Histone modification pattern evolution after yeast gene duplication. BMC Evolutionary Biology, 2012, 12, 111.	3.2	9
1723	The population genetics of cooperative gene regulation. BMC Evolutionary Biology, 2012, 12, 173.	3.2	3
1724	Harnessing the complexity of gene expression data from cancer: from single gene to structural pathway methods. Biology Direct, 2012, 7, 44.	1.9	23
1725	Inferring transcriptional gene regulation network of starch metabolism in Arabidopsis thaliana leaves using graphical Gaussian model. BMC Systems Biology, 2012, 6, 100.	3.0	36
1726	Identifying biologically interpretable transcription factor knockout targets by jointly analyzing the transcription factor knockout microarray and the ChIP-chip data. BMC Systems Biology, 2012, 6, 102.	3.0	22
1727	Crosstalk between transcription factors and microRNAs in human protein interaction network. BMC Systems Biology, 2012, 6, 18.	3.0	53
1728	Organizational structure and the periphery of the gene regulatory network in B-cell lymphoma. BMC Systems Biology, 2012, 6, 38.	3.0	22
1729	Early gene regulation of osteogenesis in embryonic stem cells. Integrative Biology (United Kingdom), 2012, 4, 1470.	0.6	4

#	Article	IF	Citations
1730	ChIPâ€exo Method for Identifying Genomic Location of DNAâ€Binding Proteins with Nearâ€6ingleâ€Nucleotide Accuracy. Current Protocols in Molecular Biology, 2012, 100, Unit 21.24.	2.9	141
1731	Architecture of the human regulatory network derived from ENCODE data. Nature, 2012, 489, 91-100.	13.7	1,384
1732	Universal construction mechanism for networks from one-dimensional symbol sequences. Applied Mathematics and Computation, 2012, 219, 1020-1030.	1.4	2
1733	The Generalized Feed-forward Loop Motif: Definition, Detection and Statistical Significance. Procedia Computer Science, 2012, 11, 75-87.	1.2	6
1734	Introduction to Network Biology. , 2012, , 1-13.		1
1735	Chromatin Immunoprecipitation-Based Analysis of Gene Regulatory Networks Operative in Human Embryonic Stem Cells. Methods in Molecular Biology, 2012, 873, 269-280.	0.4	1
1736	Boolean modeling in systems biology: an overview of methodology and applications. Physical Biology, 2012, 9, 055001.	0.8	353
1737	Metabolic Adaptation and Protein Complexes in Prokaryotes. Metabolites, 2012, 2, 940-958.	1.3	5
1738	Evolutionary Principles Underlying Structure and Response Dynamics of Cellular Networks. Advances in Experimental Medicine and Biology, 2012, 751, 225-247.	0.8	7
1739	A Genome-Wide Regulator–DNA Interaction Network in the Human Pathogen Mycobacterium tuberculosis H37Rv. Journal of Proteome Research, 2012, 11, 4682-4692.	1.8	19
1740	Temporal dynamics, spatial range, and transcriptional interpretation of the Dorsal morphogen gradient. Current Opinion in Genetics and Development, 2012, 22, 542-546.	1.5	45
1742	Combing the hairball with BioFabric: a new approach for visualization of large networks. BMC Bioinformatics, 2012, 13, 275.	1.2	34
1743	HIDEN: Hierarchical decomposition of regulatory networks. BMC Bioinformatics, 2012, 13, 250.	1.2	9
1744	A checkpoints capturing timing-robust Boolean model of the budding yeast cell cycle regulatory network. BMC Systems Biology, 2012, 6, 129.	3.0	12
1745	Systems Metabolic Engineering. , 2012, , .		11
1746	Bacterial Molecular Networks. Methods in Molecular Biology, 2012, , .	0.4	13
1747	Genome-Wide Analyses of Nkx2-1 Binding to Transcriptional Target Genes Uncover Novel Regulatory Patterns Conserved in Lung Development and Tumors. PLoS ONE, 2012, 7, e29907.	1.1	42
1748	Integrating Phosphorylation Network with Transcriptional Network Reveals Novel Functional Relationships. PLoS ONE, 2012, 7, e33160.	1.1	8

#	Article	IF	CITATIONS
1749	Prediction of Phenotype-Associated Genes via a Cellular Network Approach: A Candida albicans Infection Case Study. PLoS ONE, 2012, 7, e35339.	1.1	9
1750	A Self-Organized Model for Cell-Differentiation Based on Variations of Molecular Decay Rates. PLoS ONE, 2012, 7, e36679.	1.1	15
1751	The Role of the Yap5 Transcription Factor in Remodeling Gene Expression in Response to Fe Bioavailability. PLoS ONE, 2012, 7, e37434.	1.1	55
1752	Theory on the Dynamics of Feedforward Loops in the Transcription Factor Networks. PLoS ONE, 2012, 7, e41027.	1.1	16
1753	Gene Expression Network Reconstruction by LEP Method Using Microarray Data. Scientific World Journal, The, 2012, 2012, 1-6.	0.8	0
1755	Stem cell genomeâ€ŧoâ€systems biology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2012, 4, 39-49.	6.6	4
1756	A distributionâ€matching method for parameter estimation and model selection in computational biology. International Journal of Robust and Nonlinear Control, 2012, 22, 1065-1081.	2.1	24
1757	HOT DNAs: a novel class of developmental enhancers. Genes and Development, 2012, 26, 873-876.	2.7	7
1758	A complete workflow for the analysis of full-size ChIP-seq (and similar) data sets using peak-motifs. Nature Protocols, 2012, 7, 1551-1568.	5.5	92
1759	Exact and approximate distributions of protein and mRNA levels in the low-copy regime of gene expression. Journal of Mathematical Biology, 2012, 64, 829-854.	0.8	71
1760	Transcription regulation of the <i>Saccharomyces cerevisiae PHO5</i> gene by the Ino2p and Ino4p basic helix–loop–helix proteins. Molecular Microbiology, 2012, 83, 395-407.	1.2	7
1761	Persipeptides A and B, two cyclic peptides from Streptomyces sp. UTMC 1154. Bioorganic and Medicinal Chemistry, 2012, 20, 335-339.	1.4	16
1762	Identification of Partially Linear Structure in Additive Models with an Application to Gene Expression Prediction from Sequences. Biometrics, 2012, 68, 437-445.	0.8	15
1763	Global relative parameter sensitivities of the feed-forward loops in genetic networks. Neurocomputing, 2012, 78, 155-165.	3.5	80
1764	The state observer as a tool for the estimation of gene expression. Journal of Mathematical Analysis and Applications, 2012, 391, 382-396.	0.5	7
1765	Influence of Pluronic 85 and ketoconazole on disposition and efficacy of ivermectin in sheep infected with a multiple resistant Haemonchus contortus isolate. Veterinary Parasitology, 2012, 187, 464-472.	0.7	26
1766	Regulatory interactions for iron homeostasis in Aspergillus fumigatus inferred by a Systems Biology approach. BMC Systems Biology, 2012, 6, 6.	3.0	37
1767	Combined gene expression and protein interaction analysis of dynamic modularity in glioma prognosis. Journal of Neuro-Oncology, 2012, 107, 281-288.	1.4	45

#	Article	IF	Citations
1768	Transcriptome response to alkane biofuels in Saccharomyces cerevisiae: identification of efflux pumps involved in alkane tolerance. Biotechnology for Biofuels, 2013, 6, 95.	6.2	74
1769	Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation. Journal of Biotechnology, 2013, 168, 155-173.	1.9	34
1770	Inferring microRNA and transcription factor regulatory networks in heterogeneous data. BMC Bioinformatics, 2013, 14, 92.	1.2	35
1771	Structured association analysis leads to insight into Saccharomyces cerevisiaegene regulation by finding multiple contributing eQTL hotspots associated with functional gene modules. BMC Genomics, 2013, 14, 196.	1.2	6
1772	Functional characteristics of a double negative feedback loop mediated by microRNAs. Cognitive Neurodynamics, 2013, 7, 417-429.	2.3	20
1773	Dynamics of Influenza Virus and Human Host Interactions During Infection and Replication Cycle. Bulletin of Mathematical Biology, 2013, 75, 988-1011.	0.9	26
1774	Systems Biology. , 2013, , .		9
1775	A review of spatial computational models for multi-cellular systems, with regard to intestinal crypts and colorectal cancer development. Journal of Mathematical Biology, 2013, 66, 1409-1462.	0.8	48
1776	In vitro regulatory models for systems biology. Biotechnology Advances, 2013, 31, 789-796.	6.0	13
1777	Cross Talk and Interference Enhance Information Capacity of a Signaling Pathway. Biophysical Journal, 2013, 104, 1170-1180.	0.2	14
1778	The evolution of complex gene regulation by low-specificity binding sites. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131313.	1.2	13
1779	Dynamic trans-Acting Factor Colocalization in Human Cells. Cell, 2013, 155, 713-724.	13.5	142
1780	Introduction to Focus Issue: Quantitative Approaches to Genetic Networks. Chaos, 2013, 23, 025001.	1.0	25
1781	Computational Systems Biology Approaches for Deciphering Traditional Chinese Medicine. , 2013, , 337-368.		1
1782	Basics of Bioinformatics. , 2013, , .		5
1783	Protocell design through modular compartmentalization. Journal of the Royal Society Interface, 2013, 10, 20130496.	1.5	16
1784	Integrated analysis, transcriptome-lipidome, reveals the effects of INO- level (INO2 and INO4) on lipid metabolism in yeast. BMC Systems Biology, 2013, 7, S7.	3.0	22
1785	How reliable is the linear noise approximation of gene regulatory networks?. BMC Genomics, 2013, 14, S5.	1.2	31

		CITATION REPORT	
#	Article	IF	CITATIONS
1786	POMO - Plotting Omics analysis results for Multiple Organisms. BMC Genomics, 2013, 14, 918.	1.2	4
1787	An approach for dynamical network reconstruction of simple network motifs. BMC Systems Biolog 2013, 7, S4.	y, 3.0	Ο
1788	Active enhancer positions can be accurately predicted from chromatin marks and collective sequen motif data. BMC Systems Biology, 2013, 7, S16.	ice 3.0	15
1789	Inferring functional transcription factor-gene binding pairs by integrating transcription factor binding data with transcription factor knockout data. BMC Systems Biology, 2013, 7, S13.	3.0	9
1790	Nrg1 functions as a global transcriptional repressor of glucose-repressed genes through its direct binding to the specific promoter regions. Biochemical and Biophysical Research Communications, 2 439, 501-505.	2013, 1.0	13
1791	The RNA-Binding Protein Whi3 Is a Key Regulator of Developmental Signaling and Ploidy in Saccharomyces cerevisiae. Genetics, 2013, 195, 73-86.	1.2	3
1792	Learning a nonlinear dynamical system model of gene regulation: A perturbed steady-state approad Annals of Applied Statistics, 2013, 7, .	:h. 0.5	19
1793	Mapping functional transcription factor networks from gene expression data. Genome Research, 20 23, 1319-1328.	013, 2.4	48
1794	Time delay estimation in gene regulatory networks. , 2013, , .		3
1795	Reconstruction of Transcriptional Regulatory Networks by Stability-Based Network Component Analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2013, 10, 1347-13	58. ^{1.9}	12
1796	ROBNCA: Robust Network Component Analysis for recovering transcription factor activities. , 2013	},,.	1
1797	Direct Conversion of Fibroblasts to Neurons by Reprogramming PTB-Regulated MicroRNA Circuits. Cell, 2013, 152, 82-96.	13.5	508
1798	An effective framework for reconstructing gene regulatory networks from genetical genomics data Bioinformatics, 2013, 29, 246-254.	. 1.8	13
1799	Gene Regulatory Networks. , 2013, , 65-88.		4
1800	Mechanism-Oriented Controllability of Intracellular Quantum Dots Formation: The Role of Glutathione Metabolic Pathway. ACS Nano, 2013, 7, 2240-2248.	7.3	96
1801	Transcriptome analysis of Chlamydomonas reinhardtii during the process of lipid accumulation. Genomics, 2013, 101, 229-237.	1.3	102
1802	Decoupling Epigenetic and Genetic Effects through Systematic Analysis of Gene Position. Cell Repo 2013, 3, 128-137.	orts, 2.9	56
1803	Directed evolution as a powerful synthetic biology tool. Methods, 2013, 60, 81-90.	1.9	92

#	Article	IF	CITATIONS
1804	The <scp>TOL</scp> network of <i><scp>P</scp>seudomonas putida</i> mtâ€2 processes multiple environmental inputs into a narrow <i>response space</i> . Environmental Microbiology, 2013, 15, 271-286.	1.8	14
1805	Boolean Models of Cellular Signaling Networks. , 2013, , 197-210.		2
1806	Genotype Networks and Evolutionary Innovations in Biological Systems. , 2013, , 251-264.		2
1807	Analysis Strategy of Protein–Protein Interaction Networks. Methods in Molecular Biology, 2013, 939, 141-181.	0.4	4
1808	A Genome-Wide Activity Assessment of Terminator Regions in <i>Saccharomyces cerevisiae</i> Provides a ″Terminatome″ Toolbox. ACS Synthetic Biology, 2013, 2, 337-347.	1.9	117
1809	CTCF and Cohesin: Linking Gene Regulatory Elements with Their Targets. Cell, 2013, 152, 1285-1297.	13.5	323
1810	Temporal mapping of CEBPA and CEBPB binding during liver regeneration reveals dynamic occupancy and specific regulatory codes for homeostatic and cell cycle gene batteries. Genome Research, 2013, 23, 592-603.	2.4	73
1811	On Modeling and State Estimation for Genetic Regulatory Networks With Polytopic Uncertainties. IEEE Transactions on Nanobioscience, 2013, 12, 13-20.	2.2	24
1812	A Guide to Integrating Transcriptional Regulatory and Metabolic Networks Using PROM (Probabilistic) Tj ETQq0 (0.1900 O.1900 /0	Dverlock 10 T
1813	The logic of gene regulatory networks in early vertebrate forebrain patterning. Mechanisms of Development, 2013, 130, 95-111.	1.7	62
1813 1814	The logic of gene regulatory networks in early vertebrate forebrain patterning. Mechanisms of Development, 2013, 130, 95-111. Efficient transcription initiation in bacteria: an interplay of protein–DNA interaction parameters. Integrative Biology (United Kingdom), 2013, 5, 796-806.	1.7 0.6	62 12
1813 1814 1815	The logic of gene regulatory networks in early vertebrate forebrain patterning. Mechanisms of Development, 2013, 130, 95-111. Efficient transcription initiation in bacteria: an interplay of protein–DNA interaction parameters. Integrative Biology (United Kingdom), 2013, 5, 796-806. Translational Bioinformatics for Genomic Medicine. , 2013, , 272-286.	1.7 0.6	62 12 4
1813 1814 1815 1816	The logic of gene regulatory networks in early vertebrate forebrain patterning. Mechanisms of Development, 2013, 130, 95-111. Efficient transcription initiation in bacteria: an interplay of protein–DNA interaction parameters. Integrative Biology (United Kingdom), 2013, 5, 796-806. Translational Bioinformatics for Genomic Medicine. , 2013, , 272-286. Approaches to Modeling Gene Regulatory Networks: A Gentle Introduction. Methods in Molecular Biology, 2013, 1021, 13-35.	1.7 0.6 0.4	62 12 4 15
1813 1814 1815 1816 1817	The logic of gene regulatory networks in early vertebrate forebrain patterning. Mechanisms of Development, 2013, 130, 95-111. Efficient transcription initiation in bacteria: an interplay of protein–DNA interaction parameters. Integrative Biology (United Kingdom), 2013, 5, 796-806. Translational Bioinformatics for Genomic Medicine. , 2013, , 272-286. Approaches to Modeling Gene Regulatory Networks: A Gentle Introduction. Methods in Molecular Biology, 2013, 1021, 13-35. Network function shapes network structure: the case of the Arabidopsis flower organ specification genetic network. Molecular BioSystems, 2013, 9, 1726.	1.7 0.6 0.4 2.9	62 12 4 15 17
1813 1814 1815 1816 1817 1818	The logic of gene regulatory networks in early vertebrate forebrain patterning. Mechanisms of Development, 2013, 130, 95-111. Efficient transcription initiation in bacteria: an interplay of protein–DNA interaction parameters. Integrative Biology (United Kingdom), 2013, 5, 796-806. Translational Bioinformatics for Genomic Medicine. , 2013, , 272-286. Approaches to Modeling Gene Regulatory Networks: A Gentle Introduction. Methods in Molecular Biology, 2013, 1021, 13-35. Network function shapes network structure: the case of the Arabidopsis flower organ specification genetic network. Molecular BioSystems, 2013, 9, 1726. Boolean modeling of biological regulatory networks: A methodology tutorial. Methods, 2013, 62, 3-12.	1.7 0.6 0.4 2.9 1.9	 62 12 4 15 17 121
1813 1814 1815 1816 1817 1818	The logic of gene regulatory networks in early vertebrate forebrain patterning. Mechanisms of Development, 2013, 130, 95-111. Efficient transcription initiation in bacteria: an interplay of protein–DNA interaction parameters. Integrative Biology (United Kingdom), 2013, 5, 796-806. Translational Bioinformatics for Genomic Medicine., 2013, , 272-286. Approaches to Modeling Gene Regulatory Networks: A Gentle Introduction. Methods in Molecular Biology, 2013, 1021, 13-35. Network function shapes network structure: the case of the Arabidopsis flower organ specification genetic network. Molecular BioSystems, 2013, 9, 1726. Boolean modeling of biological regulatory networks: A methodology tutorial. Methods, 2013, 62, 3-12. Systems Metabolic Engineering. Methods in Molecular Biology, 2013,	1.7 0.6 0.4 2.9 1.9	 62 12 4 15 17 121 3
1813 1814 1815 1816 1817 1818 1820	The logic of gene regulatory networks in early vertebrate forebrain patterning. Mechanisms of Development, 2013, 130, 95-111. Efficient transcription initiation in bacteria: an interplay of protein–DNA interaction parameters. Integrative Biology (United Kingdom), 2013, 5, 796-806. Translational Bioinformatics for Genomic Medicine. , 2013, , 272-286. Approaches to Modeling Gene Regulatory Networks: A Gentle Introduction. Methods in Molecular Biology, 2013, 1021, 13-35. Network function shapes network structure: the case of the Arabidopsis flower organ specification genetic network. Molecular BioSystems, 2013, 9, 1726. Boolean modeling of biological regulatory networks: A methodology tutorial. Methods, 2013, 62, 3-12. Systems Metabolic Engineering. Methods in Molecular Biology, 2013, The Utility of Paradoxical Components in Biological Circuits. Molecular Cell, 2013, 49, 213-221.	 1.7 0.6 0.4 2.9 1.9 0.4 4.5 	 62 12 4 15 17 121 3 142

\sim		<u> </u>	
			ЪΤ
\sim	ITAL	KLPU	IN I

#	Article	IF	CITATIONS
1823	Integration of New Genes into Cellular Networks, and Their Structural Maturation. Genetics, 2013, 195, 1407-1417.	1.2	57
1824	Using topology to tame the complex biochemistry of genetic networks. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20110548.	1.6	6
1825	Functional Characterization of Fission Yeast Transcription Factors by Overexpression Analysis. Genetics, 2013, 194, 873-884.	1.2	19
1826	Mapping Yeast Transcriptional Networks. Genetics, 2013, 195, 9-36.	1.2	72
1827	Functional Dissection of Regulatory Models Using Gene Expression Data of Deletion Mutants. PLoS Genetics, 2013, 9, e1003757.	1.5	7
1828	Transcriptional regulatory network shapes the genome structure of <i>Saccharomyces cerevisiae</i> . Nucleus, 2013, 4, 216-228.	0.6	9
1829	Under-Dominance Constrains the Evolution of Negative Autoregulation in Diploids. PLoS Computational Biology, 2013, 9, e1002992.	1.5	13
1830	Systematic genetic analysis of transcription factors to map the fission yeast transcription-regulatory network. Biochemical Society Transactions, 2013, 41, 1696-1700.	1.6	6
1831	Inference of Gene Regulatory Networks with Sparse Structural Equation Models Exploiting Genetic Perturbations. PLoS Computational Biology, 2013, 9, e1003068.	1.5	115
1832	The cost of sensitive response and accurate adaptation in networks with an incoherent type-1 feed-forward loop. Journal of the Royal Society Interface, 2013, 10, 20130489.	1.5	27
1833	A comprehensive gene regulatory network for the diauxic shift in Saccharomyces cerevisiae. Nucleic Acids Research, 2013, 41, 8452-8463.	6.5	26
1834	Nanobody®-based chromatin immunoprecipitation/micro-array analysis for genome-wide identification of transcription factor DNA binding sites. Nucleic Acids Research, 2013, 41, e59-e59.	6.5	25
1835	Synthetic mammalian transgene negative autoregulation. Molecular Systems Biology, 2013, 9, 670.	3.2	36
1836	Complexity in cancer biology: is systems biology the answer?. Cancer Medicine, 2013, 2, 164-177.	1.3	36
1837	Prior Knowledge Driven Causality Analysis in Gene Regulatory Network Discovery. , 2013, , .		0
1838	Truth-Content and Phase Transitions of Random Boolean Networks with Generic Logics. SIAM Journal on Applied Dynamical Systems, 2013, 12, 315-351.	0.7	1
1839	Inferring regulatory networks through orthologous gene mapping. , 2013, , .		1
1840	Acetyl-CoA induces transcription of the key G1 cyclin <i>CLN3</i> to promote entry into the cell division cycle in <i>Saccharomyces cerevisiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7318-7323.	3.3	120

			2
#		IF	CITATIONS
1841	Differential Regulation of White-Opaque Switching by Individual Subunits of Candida albicans Mediator. Eukaryotic Cell, 2013, 12, 1293-1304.	3.4	40
1842	Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 459-464.	3.3	23
1843	The human disease network. Systems Biomedicine (Austin, Tex), 2013, 1, 20-28.	0.7	38
1844	SetNet: Ensemble Method Techniques for Learning Regulatory Networks. , 2013, , .		1
1845	Integrating machine learning techniques into robust data enrichment approach and its application to gene expression data. International Journal of Data Mining and Bioinformatics, 2013, 8, 247.	0.1	2
1846	BREEDING AND GENETICS SYMPOSIUM: Networks and pathways to guide genomic selection1–3. Journal of Animal Science, 2013, 91, 537-552.	0.2	57
1847	Some Perspectives on Network Modeling in Therapeutic Target Prediction. Biomedical Engineering and Computational Biology, 2013, 5, BECB.S10793.	0.8	5
1848	Characterization of regulatory features of housekeeping and tissue-specific regulators within tissue regulatory networks. BMC Systems Biology, 2013, 7, 112.	3.0	6
1849	Integrative analysis of time course microarray data and DNA sequence data via log-linear models for identifying dynamic transcriptional regulatory networks. International Journal of Data Mining and Bioinformatics, 2013, 7, 38.	0.1	1
1850	Nanonetworks: The graph theory framework for modeling nanoscale systems. The Nanoscale Systems: Mathematical Modelingory and Applications, 2013, 2, 30-48.	0.3	7
1851	Salt Induced Change of Gene Expression in Salt Sensitive and Tolerant Rice Species. Journal of Agricultural Science, 2013, 5, .	0.1	4
1852	Prioritizing Disease Candidate Proteins in Cardiomyopathy-Specific Protein-Protein Interaction Networks Based on "Guilt by Association―Analysis. PLoS ONE, 2013, 8, e71191.	1.1	14
1853	The Genome-Wide Early Temporal Response of Saccharomyces cerevisiae to Oxidative Stress Induced by Cumene Hydroperoxide. PLoS ONE, 2013, 8, e74939.	1.1	29
1854	The Exosome Cofactor Rrp47 Is Critical for the Stability and Normal Expression of Its Associated Exoribonuclease Rrp6 in Saccharomyces cerevisiae. PLoS ONE, 2013, 8, e80752.	1.1	28
1855	Inference of Gene Regulatory Networks from Genetic Perturbations with Linear Regression Model. PLoS ONE, 2013, 8, e83263.	1.1	16
1856	Personalized medicine: Has it started yet? A reconstruction of the early history. Frontiers in Genetics, 2012, 3, 313.	1.1	17
1857	Modeling regulatory cascades using Artificial Neural Networks: the case of transcriptional regulatory networks shaped during the yeast stress response. Frontiers in Genetics, 2013, 4, 110.	1.1	5
1858	Enhancing systems medicine beyond genotype data by dynamic patient signatures: having information and using it too. Frontiers in Genetics, 2013, 4, 241.	1.1	4

		CITATION	Report	
#	Article		IF	CITATIONS
1859	Genetic interaction networks: better understand to better predict. Frontiers in Genetics, 2	013, 4, 290.	1.1	80
1860	Spectral Analysis on Time-Course Expression Data: Detecting Periodic Genes Using a Real-V Iterative Adaptive Approach. Advances in Bioinformatics, 2013, 2013, 1-10.	Valued	5.7	1
1861	De-Novo Learning of Genome-Scale Regulatory Networks in S. cerevisiae. PLoS ONE, 2014,	, 9, e106479.	1.1	18
1862	Characterisation ofDrosophila UbxCPTI000601andhthCPTI000378Protein Trap Lines. Scier Journal, The, 2014, 2014, 1-14.	ntific World	0.8	3
1863	Regulatory network features in Listeria monocytogenes—changing the way we talk. Fron Cellular and Infection Microbiology, 2014, 4, 14.	tiers in	1.8	23
1864	Algorithmic Perspectives of Network Transitive Reduction Problems and their Applications Synthesis and Analysis of Biological Networks. Biology, 2014, 3, 1-21.	to	1.3	10
1865	Condensing Biochemistry into Gene Regulatory Networks. International Journal of Natural Computing Research, 2014, 4, 1-25.		0.5	0
1866	Structure and Evolution of Transcriptional Regulatory Networks. , 2014, , 1-16.			1
1867	Predicting Phenotype from Genotype Through Reconstruction and Integrative Modeling of and Regulatory Networks. , 2014, , 307-325.	Metabolic		2
1868	Rad9 interacts with Aft1 to facilitate genome surveillance in fragile genomic sites under no damage-inducing conditions in S. cerevisiae. Nucleic Acids Research, 2014, 42, 12650-126	on-DNA 67.	6.5	19
1869	Evolution of regulatory networks towards adaptability and stability in a changing environn Physical Review E, 2014, 90, 052822.	ient.	0.8	5
1870	Kernelized Bayesian Matrix Factorization. IEEE Transactions on Pattern Analysis and Machi Intelligence, 2014, 36, 2047-2060.	ne	9.7	45
1871	The TAF9 C-Terminal Conserved Region Domain Is Required for SAGA and TFIID Promoter C Promote Transcriptional Activation. Molecular and Cellular Biology, 2014, 34, 1547-1563.	Occupancy To	1.1	21
1872	The yeast Cyc8–Tup1 complex cooperates with Hda1p and Rpd3p histone deacetylases repress transcription of the subtelomeric FLO1 gene. Biochimica Et Biophysica Acta - Gene Mechanisms, 2014, 1839, 1242-1255.	to robustly Regulatory	0.9	39
1873	Phenotypic Robustness and the Assortativity Signature of Human Transcription Factor Net PLoS Computational Biology, 2014, 10, e1003780.	works.	1.5	11
1874	Stability Depends on Positive Autoregulation in Boolean Gene Regulatory Networks. PLoS Computational Biology, 2014, 10, e1003916.		1.5	23
1875	Biophysical Fitness Landscapes for Transcription Factor Binding Sites. PLoS Computationa 2014, 10, e1003683.	l Biology,	1.5	32
1876	Community detection for networks with unipartite and bipartite structure. New Journal of 2014, 16, 093001.	Physics,	1.2	9

#	Article	IF	CITATIONS
1877	Survey of Network-Based Approaches to Research of Cardiovascular Diseases. BioMed Research International, 2014, 2014, 1-10.	0.9	8
1878	biomvRhsmm:Genomic Segmentation with Hidden Semi-Markov Model. BioMed Research International, 2014, 2014, 1-11.	0.9	4
1879	Protection against cisplatin in calorie-restricted <i>Saccharomyces cerevisiae</i> is mediated by the nutrient-sensor proteins Ras2, Tor1, or Sch9 through its target Glutathione. FEMS Yeast Research, 2014, 14, 1147-1159.	1.1	4
1880	Top-level dynamics and the regulated gene response of feed-forward loop transcriptional motifs. Physical Review E, 2014, 90, 032706.	0.8	5
1881	Topological implications of negative curvature for biological and social networks. Physical Review E, 2014, 89, 032811.	0.8	45
1882	Periodic <scp>mRNA</scp> synthesis and degradation coâ€operate during cell cycle gene expression. Molecular Systems Biology, 2014, 10, 717.	3.2	80
1883	Dominance and interloci interactions in transcriptional activation cascades: Models explaining compensatory mutations and inheritance patterns. BioEssays, 2014, 36, 84-92.	1.2	14
1884	Exploration of protein–protein interaction effects on α-2-macroglobulin in an inhibition of serine protease through gene expression and molecular simulations studies. Journal of Biomolecular Structure and Dynamics, 2014, 32, 1841-1854.	2.0	7
1885	On bistability in genetic double-negative feedback loop with positive autoregulations. , 2014, , .		2
1886	Checkpoints couple transcription network oscillator dynamics to cell-cycle progression. Genome Biology, 2014, 15, 446.	3.8	21
1887	It is not the parts, but how they interact that determines the behaviour of circadian rhythms across scales and organisms. Interface Focus, 2014, 4, 20130076.	1.5	28
1888	Evolutionary Conservation and Expression of Human RNA-Binding Proteins and Their Role in Human Genetic Disease. Advances in Experimental Medicine and Biology, 2014, 825, 1-55.	0.8	119
1889	Analysis of a synthetic gene switching motif: Systems and control approaches. Journal of Process Control, 2014, 24, 341-347.	1.7	2
1890	Using VisANT to Analyze Networks. Current Protocols in Bioinformatics, 2014, 45, 8.8.1-39.	25.8	13
1891	Inferring transcription factor collaborations in gene regulatory networks. BMC Systems Biology, 2014, 8, S1.	3.0	10
1892	Aging genomes: A necessary evil in the logic of life. BioEssays, 2014, 36, 282-292.	1.2	20
1893	Enterococcus faecalis reconfigures its transcriptional regulatory network activation at different copper levels. Metallomics, 2014, 6, 572.	1.0	31
1894	Topology and Control of the Cell-Cycle-Regulated Transcriptional Circuitry. Genetics, 2014, 196, 65-90.	1.2	71

#	Article	IF	CITATIONS
1895	The DNA-Binding Domain of Yeast Rap1 Interacts with Double-Stranded DNA in Multiple Binding Modes. Biochemistry, 2014, 53, 7471-7483.	1.2	13
1896	Social insect colony as a biological regulatory system: modelling information flow in dominance networks. Journal of the Royal Society Interface, 2014, 11, 20140951.	1.5	16
1897	The Scc2–Scc4 complex acts in sister chromatid cohesion and transcriptional regulation by maintaining nucleosome-free regions. Nature Genetics, 2014, 46, 1147-1151.	9.4	114
1898	Digital biology and chemistry. Lab on A Chip, 2014, 14, 3225.	3.1	81
1899	Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription. Genes and Development, 2014, 28, 1695-1709.	2.7	109
1900	Yeast cells with impaired drug resistance accumulate glycerol and glucose. Molecular BioSystems, 2014, 10, 93-102.	2.9	12
1901	Transcriptional response to the [<i>ISP</i> ⁺] prion of <i>Saccharomyces cerevisiae</i> differs from that induced by the deletion of its structural gene, <i>SFP1</i> . FEMS Yeast Research, 2014, 14, 1160-1170.	1.1	6
1902	Characterizing a collective and dynamic component of chromatin immunoprecipitation enrichment profiles in yeast. BMC Genomics, 2014, 15, 494.	1.2	2
1903	Large-Scale Genetic Perturbations Reveal Regulatory Networks and an Abundance of Gene-Specific Repressors. Cell, 2014, 157, 740-752.	13.5	248
1904	The Impact of Next-Generation Sequencing Technology on Bacterial Genomics. , 2014, , 31-58.		2
1905	A Systems Theoretic Approach to Systems and Synthetic Biology II: Analysis and Design of Cellular Systems. , 2014, , .		0
1906	Improved Production of a Heterologous Amylase in Saccharomyces cerevisiae by Inverse Metabolic Engineering. Applied and Environmental Microbiology, 2014, 80, 5542-5550.	1.4	29
1907	The future of genomeâ€scale modeling of yeast through integration of a transcriptional regulatory network. Quantitative Biology, 2014, 2, 30-46.	0.3	8
1908	Overexpression of genes encoding asparagine-glutamine-rich transcriptional factors causes nonsense suppression in Saccharomyces cerevisiae. Russian Journal of Genetics: Applied Research, 2014, 4, 122-130.	0.4	6
1909	Simple transcriptional networks for differentially expressed genes. , 2014, , .		2
1911	Optimization in Science and Engineering. , 2014, , .		1
1912	The ICY1 gene from Saccharomyces cerevisiae affects nitrogen consumption during alcoholic fermentation. Electronic Journal of Biotechnology, 2014, 17, 150-155.	1.2	14
1913	A review on the computational approaches for gene regulatory network construction. Computers in Biology and Medicine, 2014, 48, 55-65.	3.9	216

# 1914	ARTICLE Construction of a metabolome library for transcription factor-related single gene mutants of Saccharomyces cerevisiae. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 966, 83-92.	IF 1.2	Citations
1915	Variable selection for BART: An application to gene regulation. Annals of Applied Statistics, 2014, 8, .	0.5	91
1917	A comprehensive performance evaluation on the prediction results of existing cooperative transcription factors identification algorithms. BMC Systems Biology, 2014, 8, S9.	3.0	9
1918	A regulatory similarity measure using the location information of transcription factor binding sites in Saccharomyces cerevisiae. BMC Systems Biology, 2014, 8, S9.	3.0	2
1919	Exploiting Gene Regulatory Networks for Robust Wireless Sensor Networking. , 2014, , .		2
1920	Methods for biological data integration: perspectives and challenges. Journal of the Royal Society Interface, 2015, 12, 20150571.	1.5	196
1921	Functional role of histone variant Htz1Âin the stress response to oleate in <i>Saccharomyces cerevisiae</i> . Bioscience Reports, 2015, 35, .	1.1	1
1922	Parameter Estimation for Gene Regulatory Networks from Microarray Data: Cold Shock Response in Saccharomyces cerevisiae. Bulletin of Mathematical Biology, 2015, 77, 1457-1492.	0.9	8
1923	Biconnectivity of the cellular metabolism: A cross-species study and its implication for human diseases. Scientific Reports, 2015, 5, 15567.	1.6	5
1924	Computing interaction probabilities in signaling networks. Eurasip Journal on Bioinformatics and Systems Biology, 2015, 2015, 10.	1.4	5
1925	The meaning and making of union delegate networks. Economic and Labour Relations Review, 2015, 26, 596-613.	0.9	2
1926	Feedback-Induced Variations of Distribution in a Representative Gene Model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1540008.	0.7	4
1927	"Hitâ€andâ€runâ€r Transcription factors get caught in the act. BioEssays, 2015, 37, 748-754.	1.2	17
1928	Systems medicine: evolution of systems biology from bench to bedside. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2015, 7, 141-161.	6.6	62
1929	An Overview of NCA-Based Algorithms for Transcriptional Regulatory Network Inference. Microarrays (Basel, Switzerland), 2015, 4, 596-617.	1.4	7
1930	Dynamical properties of gene regulatory networks involved in long-term potentiation. Frontiers in Molecular Neuroscience, 2015, 8, 42.	1.4	6
1931	Metabolic and Chaperone Gene Loss Marks the Origin of Animals: Evidence for Hsp104 and Hsp78 Chaperones Sharing Mitochondrial Enzymes as Clients. PLoS ONE, 2015, 10, e0117192.	1.1	58
1932	Phenotype Accessibility and Noise in Random Threshold Gene Regulatory Networks. PLoS ONE, 2015, 10, e0119972.	1.1	2

~			~
(`ІТ	ΔΤΙ	ON	REDUBL
	A 11		KLI OKI

#	Article	IF	CITATIONS
1933	Generating Behavior in the University-Industry Collaboration Network: Based on the Configuration of Motifs. Journal of Systems Science and Information, 2015, 3, 434-450.	0.2	0
1934	Integrative analysis and expression profiling of secondary cell wall genes in C4 biofuel model Setaria italica reveals targets for lignocellulose bioengineering. Frontiers in Plant Science, 2015, 6, 965.	1.7	33
1935	Reverse Engineering of Genome-wide Gene Regulatory Networks from Gene Expression Data. Current Genomics, 2015, 16, 3-22.	0.7	79
1936	Deconstructing the genetic basis of spent sulphite liquor tolerance using deep sequencing of genome-shuffled yeast. Biotechnology for Biofuels, 2015, 8, 53.	6.2	25
1937	An <i>Arabidopsis</i> Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors. Molecular Biology and Evolution, 2015, 32, 1767-1773.	3.5	175
1938	Protein–DNA binding in high-resolution. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 269-283.	2.3	41
1939	Gene Regulation Network Modeling via Improved Multi-agent System and Dynamic Bayesian Network. , 2015, , .		1
1940	Inference of gene regulatory networks via multiple data sources and a recommendation method. , 2015, , .		2
1941	In silico identification of potential transcriptional regulators associated with human MAPK signaling. , 2015, , .		0
1942	RABBIC: Rank-Based BIClustering Algorithm. , 2015, , .		0
1942 1943	RABBIC: Rank-Based BIClustering Algorithm. , 2015, , . Exploiting Gene Regulatory Networks for Robust Wireless Sensor Networking. , 2015, , .		0
1942 1943 1944	RABBIC: Rank-Based BIClustering Algorithm. , 2015, , . Exploiting Gene Regulatory Networks for Robust Wireless Sensor Networking. , 2015, , . Proper evaluation of alignment-free network comparison methods. Bioinformatics, 2015, 31, 2697-2704.	1.8	0 6 46
1942 1943 1944 1945	RABBIC: Rank-Based BIClustering Algorithm. , 2015, , . Exploiting Gene Regulatory Networks for Robust Wireless Sensor Networking. , 2015, , . Proper evaluation of alignment-free network comparison methods. Bioinformatics, 2015, 31, 2697-2704. A new transcription factor for mitosis: in <i> Schizosaccharomyces pombe </i> , the RFX transcription factor so regulate mitotic expression. Nucleic Acids Research, 2015, 43, 6874-6888.	1.8	0 6 46 28
1942 1943 1944 1945 1946	RABBIC: Rank-Based BIClustering Algorithm. , 2015, , . Exploiting Gene Regulatory Networks for Robust Wireless Sensor Networking. , 2015, , . Proper evaluation of alignment-free network comparison methods. Bioinformatics, 2015, 31, 2697-2704. A new transcription factor for mitosis: in <i> Schizosaccharomyces pombe</i> , the RFX transcription factors to regulate mitotic expression. Nucleic Acids Research, 2015, 43, 6874-6888. Mapping Transcription Regulatory Networks with ChIP-seq and RNA-seq. Advances in Experimental Medicine and Biology, 2015, 883, 119-134.	1.8 6.5 0.8	0 6 46 28 20
1942 1943 1944 1945 1946	RABBIC: Rank-Based BIClustering Algorithm. , 2015, , . Exploiting Gene Regulatory Networks for Robust Wireless Sensor Networking. , 2015, , . Proper evaluation of alignment-free network comparison methods. Bioinformatics, 2015, 31, 2697-2704. A new transcription factor for mitosis: in <i>> Schizosaccharomyces pombe</i> , the RFX transcription factor Sak1 works with forkhead factors to regulate mitotic expression. Nucleic Acids Research, 2015, 43, 6874-6888. Mapping Transcription Regulatory Networks with ChIP-seq and RNA-seq. Advances in Experimental Medicine and Biology, 2015, 883, 119-134. Computing interaction probabilities in signaling networks. , 2015, , .	1.8 6.5 0.8	0 6 46 28 20 0
1942 1943 1944 1945 1946 1947	RABBIC: Rank-Based BIClustering Algorithm. , 2015, , . Exploiting Gene Regulatory Networks for Robust Wireless Sensor Networking. , 2015, , . Proper evaluation of alignment-free network comparison methods. Bioinformatics, 2015, 31, 2697-2704. A new transcription factor for mitosis: in <i>> Schizosaccharomyces pombe</i> >, the RFX transcription factor Sak1 works with forkhead factors to regulate mitotic expression. Nucleic Acids Research, 2015, 43, 6874-6888. Mapping Transcription Regulatory Networks with ChIP-seq and RNA-seq. Advances in Experimental Medicine and Biology, 2015, 883, 119-134. Computing interaction probabilities in signaling networks. , 2015, , . A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development. Nature Communications, 2015, 6, 8821.	1.8 6.5 0.8 5.8	0 6 46 28 20 0
 1942 1943 1944 1945 1945 1946 1947 1948 1949 	RABBIC: Rank-Based BIClustering Algorithm., 2015, , . Exploiting Gene Regulatory Networks for Robust Wireless Sensor Networking., 2015, , . Proper evaluation of alignment-free network comparison methods. Bioinformatics, 2015, 31, 2697-2704. A new transcription factor for mitosis: in <i>> Schizosaccharomyces pombe</i> >, the RFX transcription factor sto regulate mitotic expression. Nucleic Acids Research, 2015, 43, 6874-6888. Mapping Transcription Regulatory Networks with ChIP-seq and RNA-seq. Advances in Experimental Medicine and Biology, 2015, 883, 119-134. Computing interaction probabilities in signaling networks., 2015,,. A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development. Nature Communications, 2015, 6, 8821. Bacterial Transcriptional Control. Methods in Molecular Biology, 2015, 1276, v.	1.8 6.5 0.8 5.8	0 6 46 28 20 0 70

#	Article	IF	CITATIONS
1951	Analysis of the hierarchical structure of the B. subtilis transcriptional regulatory network. Molecular BioSystems, 2015, 11, 930-941.	2.9	12
1952	A Systems Approach to Drug Discovery in Alzheimer's Disease. Neurotherapeutics, 2015, 12, 126-131.	2.1	8
1953	Mean field analysis of a spatial stochastic model of a gene regulatory network. Journal of Mathematical Biology, 2015, 71, 921-959.	0.8	8
1954	A History of Genomic Structures: The Big Picture. , 2015, , 131-178.		0
1955	Effect of environmental stress on regulation of gene expression in the yeast. Physica A: Statistical Mechanics and Its Applications, 2015, 430, 224-235.	1.2	0
1956	Transcription factor and microRNA-regulated network motifs for cancer and signal transduction networks. BMC Systems Biology, 2015, 9, S5.	3.0	27
1957	Discovery of Core Biotic Stress Responsive Genes in Arabidopsis by Weighted Gene Co-Expression Network Analysis. PLoS ONE, 2015, 10, e0118731.	1.1	88
1958	Systems biology approaches to defining transcription regulatory networks in halophilic archaea. Methods, 2015, 86, 102-114.	1.9	16
1959	The yeast Hot1 transcription factor is critical for activating a single target gene, <i>STL1</i> . Molecular Biology of the Cell, 2015, 26, 2357-2374.	0.9	12
1960	An approach for determining and measuring network hierarchy applied to comparing the phosphorylome and the regulome. Genome Biology, 2015, 16, 63.	3.8	27
1961	ChIP on Chip and ChIP-Seq Assays: Genome-Wide Analysis of Transcription Factor Binding and Histone Modifications. Methods in Molecular Biology, 2015, 1288, 447-472.	0.4	8
1962	Making Sense of Transcription Networks. Cell, 2015, 161, 714-723.	13.5	133
1964	Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors. Integrative Biology (United Kingdom), 2015, 7, 560-568.	0.6	18
1966	Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4689-96.	3.3	138
1967	Integrative random forest for gene regulatory network inference. Bioinformatics, 2015, 31, i197-i205.	1.8	152
1968	Regulation of Ace2-dependent genes requires components of the PBF complex in Schizosaccharomyces pombe. Cell Cycle, 2015, 14, 3124-3137.	1.3	9
1969	Systems and Synthetic Biology. , 2015, , .		7
1970	Feed-forward transcriptional programming by nuclear receptors: Regulatory principles and therapeutic implications. , 2015, 145, 85-91.		15

	Сп	TATION REPORT	
#	Article	IF	CITATIONS
1971	An argument for mechanism-based statistical inference in cancer. Human Genetics, 2015, 134, 479-49	95. 1.8	9
1972	Searching for repetitions in biological networks: methods, resources and tools. Briefings in Bioinformatics, 2015, 16, 118-136.	3.2	24
1973	Network motifs that recur across species, including gene regulatory and protein–protein interactior networks. Archives of Toxicology, 2015, 89, 489-499.	1.9	5
1974	Semiparametric Bayes Local Additive Models for Longitudinal Data. Statistics in Biosciences, 2015, 7, 90-107.	0.6	1
1975	Parasite Genomics Protocols. Methods in Molecular Biology, 2015, 1201, v-vi.	0.4	2
1976	Monte Carlo Algorithms for Identifying Densely Connected Subgraphs. Journal of Computational and Graphical Statistics, 2015, 24, 827-845.	0.9	1
1977	Genome-wide survey of tissue-specific microRNA and transcription factor regulatory networks in 12 tissues. Scientific Reports, 2014, 4, 5150.	1.6	175
1978	A novel role for IncRNAs in cell cycle control during stress adaptation. Current Genetics, 2015, 61, 299-308.	0.8	42
1979	A Gaussian Process Model for Inferring the Dynamic Transcription Factor Activity. , 2016, , .		1
1980	Inference of gene regulation functions from dynamic transcriptome data. ELife, 2016, 5, .	2.8	12
1981	Constructing gene network based on biclusters of expression data. Genetics and Molecular Research, 2016, 15, .	0.3	0
1982	Biophysically Motivated Regulatory Network Inference: Progress and Prospects. Human Heredity, 2010 81, 62-77.	5, 0.4	29
1983	Transcriptional Network Architecture of Breast Cancer Molecular Subtypes. Frontiers in Physiology, 2016, 7, 568.	1.3	48
1984	BioNSi: A Discrete Biological Network Simulator Tool. Journal of Proteome Research, 2016, 15, 2871-2880.	1.8	16
1985	Transcriptional Regulation of Atp-Dependent Chromatin Remodeling Factors: Smarcal1 and Brg1 Mutually Co-Regulate Each Other. Scientific Reports, 2016, 6, 20532.	1.6	18
1986	Complexity of generic biochemical circuits: topology versus strength of interactions. Physical Biology, 2016, 13, 066012.	0.8	9
1987	Transcription Factor Networks. , 2016, , 63-71.		2
1988	Structure, organization and evolution of ADP-ribosylation factors in rice and foxtail millet and their expression in rice. Scientific Reports, 2016, 6, 24008.	1.6	42

#	Article	IF	CITATIONS
1989	Identification of gene network motifs for cancer disease diagnosis. , 2016, , .		6
1990	The Local Edge Machine: inference of dynamic models of gene regulation. Genome Biology, 2016, 17, 214.	3.8	24
1991	A model of gene expression based on random dynamical systems reveals modularity properties of gene regulatory networks. Mathematical Biosciences, 2016, 276, 82-100.	0.9	5
1992	The CDK-APC/C Oscillator Predominantly Entrains Periodic Cell-Cycle Transcription. Cell, 2016, 165, 475-487.	13.5	50
1993	Inferring gene regulatory networks using a time-delayed mass action model. Journal of Bioinformatics and Computational Biology, 2016, 14, 1650012.	0.3	2
1994	Comparison of module detection algorithms in protein networks and investigation of the biological meaning of predicted modules. BMC Bioinformatics, 2016, 17, 129.	1.2	28
1995	Integrated network analysis reveals distinct regulatory roles of transcription factors and microRNAs. Rna, 2016, 22, 1663-1672.	1.6	36
1996	Magnesium ions in yeast: setting free the metabolism from glucose catabolite repression. Metallomics, 2016, 8, 1193-1203.	1.0	14
1997	MIST1 and PTF1 Collaborate in Feed-Forward Regulatory Loops That Maintain the Pancreatic Acinar Phenotype in Adult Mice. Molecular and Cellular Biology, 2016, 36, 2945-2955.	1.1	38
2000	Development and targeting of transcriptional regulatory network controlling FLU1 activation in Candida albicans for novel antifungals. Journal of Molecular Graphics and Modelling, 2016, 69, 1-7.	1.3	7
2001	Evolution ofÂTOR and Translation Control. , 2016, , 327-411.		8
2002	Robust Yet Fragile: Expression Noise, Protein Misfolding, and Gene Dosage in the Evolution of Genomes. Annual Review of Genetics, 2016, 50, 113-131.	3.2	29
2003	Profiling of Transcription Factor Binding Events by Chromatin Immunoprecipitation Sequencing (ChIPâ€seq). Current Protocols in Plant Biology, 2016, 1, 293-306.	2.8	24
2004	Transient amplification limits noise suppression in biochemical networks. Physical Review E, 2016, 93, 012415.	0.8	4
2005	A comparative study of qualitative and quantitative dynamic models of biological regulatory networks. EPJ Nonlinear Biomedical Physics, 2016, 4, .	0.8	32
2006	Form and function in gene regulatory networks: the structure of network motifs determines fundamental properties of their dynamical state space. Journal of the Royal Society Interface, 2016, 13, 20160179.	1.5	26
2007	Identification of key player genes in gene regulatory networks. BMC Systems Biology, 2016, 10, 88.	3.0	32
2008	Networking Omic Data to Envisage Systems Biological Regulation. Advances in Biochemical Engineering/Biotechnology, 2016, 160, 121-141.	0.6	0
ARTICLE IF CITATIONS Flexible model-based clustering of mixed binary and continuous data: application to genetic 2009 6.5 4 regulation and cancer. Nucleic Acids Research, 2016, 45, gkw1270. A prior-based integrative framework for functional transcriptional regulatory network inference. 6.5 Nucleic Acids Research, 2017, 45, gkw963. 2011 Noise propagation with interlinked feed-forward pathways. Scientific Reports, 2016, 6, 23607. 1.6 36 Defining the Essential Function of Yeast Hsf1 Reveals a Compact Transcriptional Program for 143 Maintaining Eukaryotic Proteostasis. Molecular Cell, 2016, 63, 60-71. Compartmentalized gene regulatory network of the pathogenic fungus <i>Fusarium graminearum </i>. 2013 3.5 48 New Phytologist, 2016, 211, 527-541. Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function. Physics of Life Reviews, 2016, 17, 124-158. 1.5 Blue light-mediated transcriptional activation and repression of gene expression in bacteria. Nucleic 2015 6.5 101 Acids Research, 2016, 44, 6994-7005. Methods of information theory and algorithmic complexity for network biology. Seminars in Cell and 2.3 40 Developmental Biology, 2016, 51, 32-43. 2017 14 Mating-Type Structure, Function, Regulation and Evolution in the Pezizomycotina., 2016, , 351-385. 34 Modeling and Model Simplification to Facilitate Biological Insights and Predictions. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2016, 301-325. Modeling co-occupancy of transcription factors using chromatin features. Nucleic Acids Research, 2019 6.5 30 2016, 44, e49-e49. No tradeoff between versatility and robustness in gene circuit motifs. Physica A: Statistical 1.2 Mechanics and Its Applications, 2016, 449, 192-199. Supervised Sparse and Functional Principal Component Analysis. Journal of Computational and 2021 0.9 17 Graphical Statistics, 2016, 25, 859-878. Self-referring DNA and protein: a remark on physical and geometrical aspects. Philosophical 1.6 14 Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150070. 2023 Models of human core transcriptional regulatory circuitries. Genome Research, 2016, 26, 385-396. 223 2.4 Relative stability of network states in Boolean network models of gene regulation in development. 2024 BioSystems, 2016, 142-143, 15-24. Mixed Integer Linear Programming based machine learning approach identifies<i>regulators</i>of 2025 6.5 10 telomerase in yeast. Nucleic Acids Research, 2016, 44, e93-e93. Understanding the combinatorial action of transcription factors and microRNA regulation from regions of open chromatin. Molecular BioSystems, 2016, 12, 371-378.

#	Article	IF	CITATIONS
2027	Create, activate, destroy, repeat: Cdk1 controls proliferation by limiting transcription factor activity. Current Genetics, 2016, 62, 271-276.	0.8	22
2028	A Computational Method for Identifying Yeast Cell Cycle Transcription Factors. Methods in Molecular Biology, 2016, 1342, 209-219.	0.4	0
2029	Prediction of Growth Factor-Dependent Cleft Formation During Branching Morphogenesis Using A Dynamic Graph-Based Growth Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2016, 13, 350-364.	1.9	11
2030	Methods to Study Transcription Factor Structure and Function. , 2016, , 13-33.		4
2031	Discovery of microRNAs and Transcription Factors Co-Regulatory Modules by Integrating Multiple Types of Genomic Data. IEEE Transactions on Nanobioscience, 2017, 16, 51-59.	2.2	11
2032	Repairing inconsistent answer set programs using rules of thumb: A gene regulatory networks case study. International Journal of Approximate Reasoning, 2017, 83, 243-264.	1.9	7
2033	Constructing backbone network by using tinker algorithm. Frontiers of Physics, 2017, 12, 1.	2.4	3
2034	A global characterization of the translational and transcriptional programs induced by methionine restriction through ribosome profiling and RNA-seq. BMC Genomics, 2017, 18, 189.	1.2	27
2035	Transcriptomic analysis of basidiocarp development in Ustilago maydis (DC) Cda Fungal Genetics and Biology, 2017, 101, 34-45.	0.9	13
2036	Selection of working correlation structure in generalized estimating equations. Statistics in Medicine, 2017, 36, 2206-2219.	0.8	11
2037	Functional characterization of the antioxidant enzymes in rice plants exposed to salinity stress. Biologia Plantarum, 2017, 61, 540-550.	1.9	72
2038	The influence of nuclear compartmentalisation on stochastic dynamics of self-repressing gene expression. Journal of Theoretical Biology, 2017, 424, 55-72.	0.8	12
2040	The multi-output incoherent feedforward loop constituted by the transcriptional regulators LasR and RsaL confers robustness to a subset of quorum sensing genes in Pseudomonas aeruginosa. Molecular BioSystems, 2017, 13, 1080-1089.	2.9	19
2041	Adaptation with transcriptional regulation. Scientific Reports, 2017, 7, 42648.	1.6	25
2042	Computational Approaches to Study Gene Regulatory Networks. Methods in Molecular Biology, 2017, 1629, 283-295.	0.4	7
2043	Yeast Expression Systems: Current Status and Future Prospects. , 2017, , 215-250.		2
2044	Structural identification and variable selection in high-dimensional varying-coefficient models. Journal of Nonparametric Statistics, 2017, 29, 258-279.	0.4	5
2045	Connecting virulence pathways to cell-cycle progression in the fungal pathogen Cryptococcus neoformans. Current Genetics, 2017, 63, 803-811.	0.8	9

#	ARTICLE	IF	CITATIONS
2046	Inference and interrogation of a coregulatory network in the context of lipid accumulation in Yarrowia lipolytica. Nni Systems Biology and Applications, 2017, 3, 21	1.4	15
2047	Reconciling conflicting models for global control of cell-cycle transcription. Cell Cycle, 2017, 16, 1965-1978.	1.3	16
2048	Diffusion dynamics and synchronizability of hierarchical products of networks. Physical Review E, 2017, 96, 042302.	0.8	1
2049	Engineering Yeast as Cellular Factory. , 2017, , 173-208.		1
2051	Sensitivity of directed networks to the addition and pruning of edges and vertices. Physical Review E, 2017, 96, 022317.	0.8	2
2052	On the role of topology in regulating transcriptional cascades. Physical Chemistry Chemical Physics, 2017, 19, 25168-25179.	1.3	8
2053	Multiplexed gene control reveals rapid mRNA turnover. Science Advances, 2017, 3, e1700006.	4.7	78
2054	Local network component analysis for quantifying transcription factor activities. Methods, 2017, 124, 25-35.	1.9	14
2055	Two-Element Transcriptional Regulation in the Canonical Wnt Pathway. Current Biology, 2017, 27, 2357-2364.e5.	1.8	16
2056	A Clb/Cdk1-mediated regulation of Fkh2 synchronizes CLB expression in the budding yeast cell cycle. Npj Systems Biology and Applications, 2017, 3, 7.	1.4	32
2057	Factor-dependent archaeal transcription termination. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6767-E6773.	3.3	35
2058	Sequential Co-Sparse Factor Regression. Journal of Computational and Graphical Statistics, 2017, 26, 814-825.	0.9	16
2059	Scale invariance in natural and artificial collective systems: a review. Journal of the Royal Society Interface, 2017, 14, 20170662.	1.5	46
2060	Thirty years of the HAP2/3/4/5 complex. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 543-559.	0.9	23
2061	Towards Unambiguous Edge Bundling: Investigating Confluent Drawings for Network Visualization. IEEE Transactions on Visualization and Computer Graphics, 2017, 23, 541-550.	2.9	46
2062	A matter of time — How transient transcription factor interactions create dynamic gene regulatory networks. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 75-83.	0.9	58
2063	Challenges at the interface of control engineering and synthetic biology. , 2017, , .		9
2064	Evolution of the Human Genome I. Evolutionary Studies, 2017, , .	0.2	1

#	Article	IF	CITATIONS
2065	Transcription Factor Genes. Evolutionary Studies, 2017, , 241-263.	0.2	1
2066	The autorepressor: A case study of the importance of model selection. , 2017, , .		4
2067	Oscillatory stimuli differentiate adapting circuit topologies. Nature Methods, 2017, 14, 1010-1016.	9.0	44
2068	Big Cellular Mechanisms in the Cell Cycle by System Identification and Big Data Mining. , 2017, , 39-86.		0
2069	Multiscale Information Theory and the Marginal Utility of Information. Entropy, 2017, 19, 273.	1.1	28
2070	A review of active learning approaches to experimental design for uncovering biological networks. PLoS Computational Biology, 2017, 13, e1005466.	1.5	52
2071	A conceptual and computational framework for modelling and understanding the non-equilibrium gene regulatory networks of mouse embryonic stem cells. PLoS Computational Biology, 2017, 13, e1005713.	1.5	7
2072	An improved Bayesian network method for reconstructing gene regulatory network based on candidate auto selection. BMC Genomics, 2017, 18, 844.	1.2	32
2073	Big Regulatory Mechanisms in the Transcriptional Regulation Control of Gene Expression Using a Stochastic System Model and Genome-Wide Experimental Data. , 2017, , 87-154.		1
2074	Big Mechanisms of Aging via System Identification and Big Database Mining. , 2017, , 671-735.		0
2075	SparseNCA: Sparse Network Component Analysis for Recovering Transcription Factor Activities with Incomplete Prior Information. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 387-395.	1.9	8
2076	ChIP-ping the branches of the tree: functional genomics and the evolution of eukaryotic gene regulation. Briefings in Functional Genomics, 2018, 17, 116-137.	1.3	5
2077	Genome-scale biological models for industrial microbial systems. Applied Microbiology and Biotechnology, 2018, 102, 3439-3451.	1.7	14
2078	Deciphering the mechanism of action of 089, a compound impairing the fungal cell cycle. Scientific Reports, 2018, 8, 5964.	1.6	6
2079	Accurate and sensitive quantification of protein-DNA binding affinity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3692-E3701.	3.3	83
2080	A novel <i>k</i> -mer set memory (KSM) motif representation improves regulatory variant prediction. Genome Research, 2018, 28, 891-900.	2.4	42
2081	lxr1 Regulates Ribosomal Gene Transcription and Yeast Response to Cisplatin. Scientific Reports, 2018, 8, 3090.	1.6	11
2083	ModuleDiscoverer: Identification of regulatory modules in protein-protein interaction networks. Scientific Reports, 2018, 8, 433.	1.6	57

#	Article	IF	CITATIONS
2084	Investigating the Network Basis of Negative Genetic Interactions inSaccharomyces cerevisiaewith Integrated Biological Networks and Triplet Motif Analysis. Journal of Proteome Research, 2018, 17, 1014-1030.	1.8	4
2085	Loci That Control Nonlinear, Interdependent Responses to Combinations of Drought and Nitrogen Limitation. G3: Genes, Genomes, Genetics, 2018, 8, 1481-1496.	0.8	1
2086	TGMI: an efficient algorithm for identifying pathway regulators through evaluation of triple-gene mutual interaction. Nucleic Acids Research, 2018, 46, e67-e67.	6.5	16
2087	Organization of feed-forward loop motifs reveals architectural principles in natural and engineered networks. Science Advances, 2018, 4, eaap9751.	4.7	40
2088	DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals. Chemical Reviews, 2018, 118, 4-72.	23.0	141
2089	Variable selection in rank regression for analyzing longitudinal data. Statistical Methods in Medical Research, 2018, 27, 2447-2458.	0.7	5
2090	Differential gene regulatory networks in development and disease. Cellular and Molecular Life Sciences, 2018, 75, 1013-1025.	2.4	78
2091	Living cell synthesis of CdSe quantum dots: Manipulation based on the transformation mechanism of intracellular Se-precursors. Nano Research, 2018, 11, 2498-2511.	5.8	23
2092	Discovering Regulators in Post-Transcriptional Control of the Biological Clock of \$Neurospora~crassa\$ Using Variable Topology Ensemble Methods on GPUs. IEEE Access, 2018, 6, 54582-54594.	2.6	6
2093	Gene Regulatory Networks Reconstruction Using the Flooding-Pruning Hill-Climbing Algorithm. Genes, 2018, 9, 342.	1.0	7
2094	A Survey of Methods for Genome Functional Analysis in Comparative Genomics. International Journal of Engineering and Technology(UAE), 2018, 7, 681.	0.2	3
2096	Target of rapamycin, a master regulator of multiple signalling pathways and a potential candidate gene for crop improvement. Plant Biology, 2019, 21, 190-205.	1.8	28
2098	Recurrence-based information processing in gene regulatory networks. Chaos, 2018, 28, 106313.	1.0	14
2099	Ambiguity in logic-based models of gene regulatory networks: An integrative multi-perturbation analysis. PLoS ONE, 2018, 13, e0206976.	1.1	2
2101	Comparative genome analysis of marine purple sulfur bacterium Marichromatium gracile YL28 reveals the diverse nitrogen cycle mechanisms and habitat-specific traits. Scientific Reports, 2018, 8, 17803.	1.6	12
2102	Transcription Factor Co-expression Networks of Adipose RNA-Seq Data Reveal Regulatory Mechanisms of Obesity. Current Genomics, 2018, 19, 289-299.	0.7	9
2103	Detection of network motifs using three-way ANOVA. PLoS ONE, 2018, 13, e0201382.	1.1	4
2104	Feedbacks from the metabolic network to the genetic network reveal regulatory modules in E. coli and B. subtilis. PLoS ONE, 2018, 13, e0203311.	1.1	8

	C	ITATION REPORT	
#	Article	IF	Citations
2105	Omics Applications for Systems Biology. Advances in Experimental Medicine and Biology, 2018, , .	0.8	12
2106	Integrative Multi-Omics Through Bioinformatics. Advances in Experimental Medicine and Biology, 20 1102, 69-80.	18, 0.8	15
2107	Topological Structure and Biological Function of Gene Network Regulated by MicroRNA. , 2018, , 75-123.		0
2108	Dynamical Criticality in Gene Regulatory Networks. Complexity, 2018, 2018, 1-14.	0.9	23
2109	Integrated Systems and Chemical Biology Approach for Targeted Therapies. , 2018, , 1-19.		0
2110	Genetic and epigenetic determinants establish a continuum of Hsf1 occupancy and activity across th yeast genome. Molecular Biology of the Cell, 2018, 29, 3168-3182.	ie 0.9	51
2112	Topological and statistical analyses of gene regulatory networks reveal unifying yet quantitatively different emergent properties. PLoS Computational Biology, 2018, 14, e1006098.	1.5	48
2113	Layers of regulation of cell-cycle gene expression in the budding yeast <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 2018, 29, 2644-2655.	0.9	17
2114	Machine-Learning Approach for Ribonucleic Acid Primary and Secondary Structure Prediction from Images. , 2018, , 203-221.		2
2115	An incoherent feedforward loop facilitates adaptive tuning of gene expression. ELife, 2018, 7, .	2.8	21
2116	Function, dynamics and evolution of network motif modules in integrated gene regulatory networks of worm and plant. Nucleic Acids Research, 2018, 46, 6480-6503.	6.5	33
2117	Asymmetry in indegree and outdegree distributions of gene regulatory networks arising from dynamical robustness. Physical Review E, 2018, 97, 062315.	0.8	5
2118	Reconstruction of a Global Transcriptional Regulatory Network for Control of Lipid Metabolism in Yeast by Using Chromatin Immunoprecipitation with Lambda Exonuclease Digestion. MSystems, 201	1.7	32
2119	Collection and Curation of Transcriptional Regulatory Interactions in Aspergillus nidulans and Neurospora crassa Reveal Structural and Evolutionary Features of the Regulatory Networks. Frontiers in Microbiology, 2018, 9, 27.	1.5	10
2120	Network Analyses in Plant Pathogens. Frontiers in Microbiology, 2018, 9, 35.	1.5	18
2121	Promoter choice: Selection vs. rejection. Gene Reports, 2018, 13, 38-41.	0.4	0
2122	Nonparametric independence screening for ultra-high-dimensional longitudinal data under additive models. Journal of Nonparametric Statistics, 2018, 30, 884-905.	0.4	3
2123	Dynamic genome wide expression profiling of Drosophila head development reveals a novel role of Hunchback in retinal glia cell development and blood-brain barrier integrity. PLoS Genetics, 2018, 14 e1007180.	, 1.5	11

# 2124	ARTICLE Coupling Cell Division to Metabolic Pathways Through Transcription. , 2019, , 74-93.	IF	CITATIONS
2125	Cell Modeling and Simulation. , 2019, , 864-873.		1
2126	Hysteretic Genetic Circuit for Detection of Proteasomal Degradation in Mammalian Cells. ACS Synthetic Biology, 2019, 8, 2025-2035.	1.9	3
2127	<i>Colloquium</i> : Proteins: The physics of amorphous evolving matter. Reviews of Modern Physics, 2019, 91, .	16.4	27
2128	The engineering principles of combining a transcriptional incoherent feedforward loop with negative feedback. Journal of Biological Engineering, 2019, 13, 62.	2.0	18
2129	ChIP-exo analysis highlights Fkh1 and Fkh2 transcription factors as hubs that integrate multi-scale networks in budding yeast. Nucleic Acids Research, 2019, 47, 7825-7841.	6.5	11
2130	Evolution of Nucleicâ€Acidâ€Based Constitutional Dynamic Networks Revealing Adaptive and Emergent Functions. Angewandte Chemie, 2019, 131, 12366-12373.	1.6	26
2131	Microbial life cycles link global modularity in regulation to mosaic evolution. Nature Ecology and Evolution, 2019, 3, 1184-1196.	3.4	18
2132	Transcription Factors Indirectly Regulate Genes through Nuclear Colocalization. Cells, 2019, 8, 754.	1.8	6
2133	Reconstruction of the Global Neural Crest Gene Regulatory Network InÂVivo. Developmental Cell, 2019, 51, 255-276.e7.	3.1	108
2134	Big data in yeast systems biology. FEMS Yeast Research, 2019, 19, .	1.1	15
2136	Gene networks that compensate for crosstalk with crosstalk. Nature Communications, 2019, 10, 4028.	5.8	26
2137	Fine-tuning the expression of target genes using a DDI2 promoter gene switch in budding yeast. Scientific Reports, 2019, 9, 12538.	1.6	9
2138	Determination of the Gene Regulatory Network of a Genome-Reduced Bacterium Highlights Alternative Regulation Independent of Transcription Factors. Cell Systems, 2019, 9, 143-158.e13.	2.9	36
2139	Influence of non-Gaussian noise on the coherent feed-forward loop with time delay. Chaos, Solitons and Fractals, 2019, 129, 46-55.	2.5	2
2140	Parametric and non-parametric gradient matching for network inference: a comparison. BMC Bioinformatics, 2019, 20, 52.	1.2	3
2141	Leveraging chromatin accessibility for transcriptional regulatory network inference in T Helper 17 Cells. Genome Research, 2019, 29, 449-463.	2.4	87
2142	Synergy of Hir1, Ssn6, and Snf2 global regulators is the functional determinant of a Mac1 transcriptional switch in S. cerevisiae copper homeostasis. Current Genetics, 2019, 65, 799-816.	0.8	5

# 2143	ARTICLE De Novo PITX1 Expression Controls Bi-Stable Transcriptional Circuits to Govern Self-Renewal and	IF 5.2	CITATIONS
2144	The cell-cycle transcriptional network generates and transmits a pulse of transcription once each cell cycle. Cell Cycle, 2019, 18, 363-378.	1.3	15
2145	Effective induction of gene regulatory networks using a novel recommendation method. International Journal of Data Mining and Bioinformatics, 2019, 22, 91.	0.1	1
2146	Evolution of Nucleicâ€Acidâ€Based Constitutional Dynamic Networks Revealing Adaptive and Emergent Functions. Angewandte Chemie - International Edition, 2019, 58, 12238-12245.	7.2	11
2147	Boolean gene regulatory network model of centromere function in Saccharomyces cerevisiae. Journal of Biological Physics, 2019, 45, 235-251.	0.7	3
2148	Transcriptional Regulation of Abscission Zones. Plants, 2019, 8, 154.	1.6	19
2149	Fusing gene expressions and transitive protein-protein interactions for inference of gene regulatory networks. BMC Systems Biology, 2019, 13, 37.	3.0	6
2150	Comparative transcriptomic analysis of dermal wound healing reveals de novo skeletal muscle regeneration in Acomys cahirinus. PLoS ONE, 2019, 14, e0216228.	1.1	27
2151	Feed-forward regulation adaptively evolves via dynamics rather than topology when there is intrinsic noise. Nature Communications, 2019, 10, 2418.	5.8	11
2152	Computational inference of the transcriptional regulatory network of Candida glabrata. FEMS Yeast Research, 2019, 19, .	1.1	0
2153	Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans. Theoretical Biology and Medical Modelling, 2019, 16, 7.	2.1	20
2154	Introduction to Graph and Network Theory. , 2019, , 111-150.		0
2155	A transcriptome-wide analysis deciphers distinct roles of G1 cyclins in temporal organization of the yeast cell cycle. Scientific Reports, 2019, 9, 3343.	1.6	9
2156	Transcription-dependent spreading of the Dal80 yeast GATA factor across the body of highly expressed genes. PLoS Genetics, 2019, 15, e1007999.	1.5	8
2157	Validation of growth enhancing, immunostimulatory and disease resistance properties of Achyranthes aspera in Labeo rohita fry in pond conditions. Heliyon, 2019, 5, e01246.	1.4	18
2158	FisherMP: fully parallel algorithm for detecting combinatorial motifs from large ChIP-seq datasets. DNA Research, 2019, 26, 231-242.	1.5	4
2159	Accuracy of parameter estimation for auto-regulatory transcriptional feedback loops from noisy data. Journal of the Royal Society Interface, 2019, 16, 20180967.	1.5	39
2160	Pervasive System Biology for Active Compound Valorization in Jatropha. , 2019, , 199-251.		0

		TION REPORT	
#	Article	IF	CITATIONS
2161	Established and Upcoming Yeast Expression Systems. Methods in Molecular Biology, 2019, 1923, 1-74.	0.4	25
2162	Reactive SINDy: Discovering governing reactions from concentration data. Journal of Chemical Physics, 2019, 150, 025101.	1.2	84
2163	Hierarchical Transcription Factor and Chromatin Binding Network for Wood Formation in <i>Populus trichocarpa</i> . Plant Cell, 2019, 31, 602-626.	3.1	109
2164	Construction of Incoherent Feedforward Loop Circuits in a Cell-Free System and in Cells. ACS Synthetic Biology, 2019, 8, 606-610.	1.9	30
2165	Sensitivities of Regulation Intensities in Feed-Forward Loops with Multistability. , 2019, 2019, 1969-197	2.	1
2166	Genomic Prediction Including SNP-Specific Variance Predictors. G3: Genes, Genomes, Genetics, 2019, 9, 3333-3343.	0.8	5
2167	D3GRN: a data driven dynamic network construction method to infer gene regulatory networks. BMC Genomics, 2019, 20, 929.	1.2	6
2168	Fhl1p protein, a positive transcription factor in Pichia pastoris, enhances the expression of recombinant proteins. Microbial Cell Factories, 2019, 18, 207.	1.9	8
2169	A developmental gene regulatory network for <i>C. elegans</i> anchor cell invasion. Development (Cambridge), 2020, 147, .	1.2	30
2170	BiXGBoost: a scalable, flexible boosting-based method for reconstructing gene regulatory networks. Bioinformatics, 2019, 35, 1893-1900.	1.8	59
2171	Endogenous miRNA sponges mediate the generation of oscillatory dynamics for a non-coding RNA network. Journal of Theoretical Biology, 2019, 481, 54-60.	0.8	5
2172	A qualitative analysis of ubiquitous regulatory motifs in Saccharomyces cerevisiae genetic networks. Communications in Nonlinear Science and Numerical Simulation, 2019, 69, 148-167.	1.7	0
2173	Contributions of regulated transcription and mRNA decay to the dynamics of gene expression. Wiley Interdisciplinary Reviews RNA, 2019, 10, e1508.	3.2	32
2174	Discovering cooperative biomarkers for heterogeneous complex disease diagnoses. Briefings in Bioinformatics, 2019, 20, 89-101.	3.2	12
2175	Switched Latent Force Models for Reverse-Engineering Transcriptional Regulation in Gene Expression Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 322-335.	1.9	4
2176	Non-coding RNA regulatory networks. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194417.	0.9	262
2177	Foreseeing the future of mutualistic communities beyond collapse. Ecology Letters, 2020, 23, 2-15.	3.0	37
2178	Ultrahigh dimensional feature screening for additive model with multivariate response. Journal of Statistical Computation and Simulation, 2020, 90, 775-799.	0.7	0

#	Article	IF	CITATIONS
2179	A fully Bayesian approach to sparse reduced-rank multivariate regression. Statistical Modelling, 2020, , 1471082X2094869.	0.5	1
2180	Reconstructing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors. Nature Communications, 2020, 11, 5089.	5.8	111
2181	Identifying Regulatory Elements via Deep Learning. Annual Review of Biomedical Data Science, 2020, 3, 315-338.	2.8	14
2182	ChIP-exo: A method to study chromatin structure and organization at near-nucleotide resolution. , 2020, , 323-352.		2
2183	Motifs enable communication efficiency and fault-tolerance in transcriptional networks. Scientific Reports, 2020, 10, 9628.	1.6	11
2184	Functional Constitutional Dynamic Networks Revealing Evolutionary Reproduction/Variation/Selection Principles. Journal of the American Chemical Society, 2020, 142, 14437-14442.	6.6	10
2185	Increased RNA production in Saccharomyces cerevisiae by simultaneously overexpressing FHL1, IFH1, and SSF2 and deleting HRP1. Applied Microbiology and Biotechnology, 2020, 104, 7901-7913.	1.7	4
2186	Network motif-based analysis of regulatory patterns in paralogous gene pairs. Journal of Bioinformatics and Computational Biology, 2020, 18, 2040008.	0.3	4
2187	Analysis of time-series regulatory networks. Current Opinion in Systems Biology, 2020, 21, 16-24.	1.3	11
2188	Assessing regulatory features of the current transcriptional network of Saccharomyces cerevisiae. Scientific Reports, 2020, 10, 17744.	1.6	8
2189	Robust and Tunable Toggle Switches with Interlocked Positive Feedback Loops. Journal of the Korean Physical Society, 2020, 77, 323-331.	0.3	0
2190	Ultra highâ€dimensional semiparametric longitudinal data analysis. Biometrics, 2021, 77, 903-913.	0.8	4
2191	Modeling and Analysis of Bio-molecular Networks. , 2020, , .		6
2192	Modeling and Analysis of Simple Genetic Circuits. , 2020, , 107-214.		0
2193	Robust Filtering and Noise Suppression in Intragenic miRNA-Mediated Host Regulation. IScience, 2020, 23, 101595.	1.9	8
2194	The information isn't lost in gene expression. Biochemistry and Biophysics Reports, 2020, 22, 100749.	0.7	0
2195	Transcriptional regulatory proteins in central carbon metabolism of Pichia pastoris and Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2020, 104, 7273-7311.	1.7	18
2196	Systematic Analysis of Targets of Pumilio-Mediated mRNA Decay Reveals that PUM1 Repression by DNA Damage Activates Translesion Synthesis. Cell Reports, 2020, 31, 107542.	2.9	19

#	Article	IF	CITATIONS
2197	DiNeR: a Differential graphical model for analysis of co-regulation Network Rewiring. BMC Bioinformatics, 2020, 21, 281.	1.2	5
2198	Bayesian sparse multiple regression for simultaneous rank reduction and variable selection. Biometrika, 2020, 107, 205-221.	1.3	11
2199	Dual Feedforward Loops Modulate Type I Interferon Responses and Induce Selective Gene Expression during TLR4 Activation. IScience, 2020, 23, 100881.	1.9	7
2200	Hierarchical and Dynamic Regulation of Defense-Responsive Specialized Metabolism by WRKY and MYB Transcription Factors. Frontiers in Plant Science, 2019, 10, 1775.	1.7	24
2201	Discovering CsgD Regulatory Targets in Salmonella Biofilm Using Chromatin Immunoprecipitation and High-Throughput Sequencing (ChIP-seq). Journal of Visualized Experiments, 2020, , .	0.2	0
2202	Deep-gKnock: Nonlinear group-feature selection with deep neural networks. Neural Networks, 2021, 135, 139-147.	3.3	9
2203	Scalable network estimation with <i>L</i> ₀ penalty. Statistical Analysis and Data Mining, 2021, 14, 18-30.	1.4	1
2204	Gene Regulatory Networks: Dissecting Structure and Dynamics. , 2021, , 77-85.		1
2205	Population-Based Parameter Identification for Dynamical Models of Biological Networks with an Application to Saccharomyces cerevisiae. Processes, 2021, 9, 98.	1.3	3
2206	Dynamic Regulation of T Cell Activation by Coupled Feedforward Loops. Mathematics of Planet Earth, 2021, , 241-255.	0.1	1
2207	MKL-GRNI: A parallel multiple kernel learning approach for supervised inference of large-scale gene regulatory networks. PeerJ Computer Science, 2021, 7, e363.	2.7	5
2208	Application of Systems Biology Approaches for Host-Fungal Interaction in Animals. Fungal Biology, 2021, , 49-62.	0.3	0
2209	A Survey of Molecular Communication in Cell Biology: Establishing a New Hierarchy for Interdisciplinary Applications. IEEE Communications Surveys and Tutorials, 2021, 23, 1494-1545.	24.8	42
2211	Internetwork connectivity of molecular networks across species of life. Scientific Reports, 2021, 11, 1168.	1.6	2
2212	Variation, Variegation and Heritable Gene Repression in S. cerevisiae. Frontiers in Genetics, 2021, 12, 630506.	1.1	3
2213	A simple yet powerful test for assessing goodnessâ€ofâ€fit ofÂhighâ€dimensional linear models. Statistics in Medicine, 2021, 40, 3153-3166.	0.8	0
2214	Nonequilibrium thermodynamics of the RNA-RNA interaction underlying a genetic transposition program. Physical Review E, 2021, 103, 042410.	0.8	3
2217	Transcriptional circuitry atlas of genetic diverse unstimulated murine and human macrophages define disparity in population-wide innate immunity. Scientific Reports, 2021, 11, 7373.	1.6	7

#	Article	IF	CITATIONS
2219	MMFGRN: a multi-source multi-model fusion method for gene regulatory network reconstruction. Briefings in Bioinformatics, 2021, 22, .	3.2	10
2220	A KMT2A-AFF1 gene regulatory network highlights the role of core transcription factors and reveals the regulatory logic of key downstream target genes. Genome Research, 2021, 31, 1159-1173.	2.4	16
2221	Designing Biological Circuits: Synthetic Biology Within the Operon Model and Beyond. Annual Review of Biochemistry, 2021, 90, 221-244.	5.0	28
2222	In Silico Prediction of Transcription Factor Collaborations Underlying Phenotypic Sexual Dimorphism in Zebrafish (Danio rerio). Genes, 2021, 12, 873.	1.0	0
2224	Transcriptional control of ribosome biogenesis in yeast: links to growth and stress signals. Biochemical Society Transactions, 2021, 49, 1589-1599.	1.6	39
2225	Predicting synchronized gene coexpression patterns from fibration symmetries in gene regulatory networks in bacteria. BMC Bioinformatics, 2021, 22, 363.	1.2	4
2227	New Results on Global Exponential Stability of Genetic Regulatory Networks with Diffusion Effect and Time-Varying Hybrid Delays. Neural Processing Letters, 2021, 53, 3947-3963.	2.0	5
2228	Exact Probability Landscapes of Stochastic Phenotype Switching in Feed-Forward Loops: Phase Diagrams of Multimodality. Frontiers in Genetics, 2021, 12, 645640.	1.1	6
2229	Parallel integrative learning for large-scale multi-response regression with incomplete outcomes. Computational Statistics and Data Analysis, 2021, 160, 107243.	0.7	3
2230	Differences in evolutionary accessibility determine which equally effective regulatory motif evolves to generate pulses. Genetics, 2021, 219, .	1.2	7
2231	Investigating statistical analysis for network motifs. , 2021, , .		0
2232	Network Reconstruction in Terms of the Priori Structure Information. Frontiers in Physics, 2021, 9, .	1.0	4
2234	Dyads, triads, and tetrads: a multivariate simulation approach to uncovering network motifs in social graphs. Applied Network Science, 2021, 6, .	0.8	6
2236	Balanced Functional Module Detection in genomic data. Bioinformatics Advances, 2021, 1, .	0.9	0
2237	Autonomous clocks that regulate organelle biogenesis, cytoskeletal organization, and intracellular dynamics. ELife, 2021, 10, .	2.8	22
2238	Localization and Universality of Eigenvectors in Directed Random Graphs. Physical Review Letters, 2021, 126, 040604.	2.9	12
2239	Motifs in Biological Networks. , 2021, , 101-123.		1
2240	Computational biology approaches for mapping transcriptional regulatory networks. Computational and Structural Biotechnology Journal, 2021, 19, 4884-4895.	1.9	14

#	Article	IF	CITATIONS
2241	Germ Layer Induction in ESC—Following the Vertebrate Roadmap. Current Protocols in Stem Cell Biology, 2007, 1, Unit 1D.1.	3.0	5
2243	The Plant Genome: Decoding the Transcriptional Hardwiring. , 0, , 196-228.		4
2245	The Role of Computation in Complex Regulatory Networks. , 2006, , 206-225.		15
2246	Extracting Information for Meaningful Function Inference through Text-Mining. , 2006, , 57-73.		2
2247	Effects of Spatial Growth on Gene Expression Dynamics and on Regulatory Network Reconstruction. Lecture Notes in Computer Science, 2005, , 825-834.	1.0	3
2249	Frequency Concepts and Pattern Detection for the Analysis of Motifs in Networks. Lecture Notes in Computer Science, 2005, , 89-104.	1.0	56
2250	Dynamics of Content-Based Networks. Lecture Notes in Computer Science, 2006, , 1083-1090.	1.0	4
2251	A Compact Mathematical Programming Formulation for DNA Motif Finding. Lecture Notes in Computer Science, 2006, , 233-245.	1.0	7
2252	Property-Driven Statistics of Biological Networks. Lecture Notes in Computer Science, 2006, , 1-15.	1.0	2
2254	The Genomics of Stress Response in Fission Yeast. , 2006, , 97-111.		1
2255	Yeast functional genomics and metabolic engineering: past, present and future. Topics in Current Genetics, 2003, , 331-360.	0.7	2
2256	Cell Biology: NetworksNetwork , RegulationRegulation and PathwaysPathways. , 2009, , 719-741.		6
2257	Complex Gene Regulatory Networks– from Structure to Biological Observables: Cell Fate Determination. , 2009, , 1180-1213.		26
2258	Sulfur in plants as part of a metabolic network. Plant Ecophysiology, 2007, , 107-142.	1.5	9
2259	Genome-Scale Reconstruction, Modeling, and Simulation of E. coliâ,,‰s Metabolic Network. , 2009, , 149-176.		1
2260	A Systems Approach to Discovering Signaling and Regulatory Pathways —or, how to digest large interaction networks into relevant pieces. Advances in Experimental Medicine and Biology, 2004, 547, 21-30.	0.8	28
2261	Gene Regulatory Networks. , 2013, , 801-805.		4
2262	Functional/Signature Network Module for Target Pathway/Gene Discovery. , 2013, , 773-777.		1

#	Article	IF	CITATIONS
2263	Complex Gene Regulatory Networks– from Structure to Biological Observables: Cell Fate Determination. , 2012, , 527-560.		9
2264	Cell Cycle-Regulated Transcription: Effectively Using a Genomics Toolbox. Methods in Molecular Biology, 2014, 1170, 3-27.	0.4	7
2265	Techniques to Study Epigenetic Control and the Epigenome in Parasites. Methods in Molecular Biology, 2015, 1201, 177-191.	0.4	6
2266	ChIP-Seq for Genome-Scale Analysis of Bacterial DNA-Binding Proteins. Methods in Molecular Biology, 2015, 1276, 327-340.	0.4	19
2267	Genomewide Identification of Protein Binding Locations Using Chromatin Immunoprecipitation Coupled with Microarray. Methods in Molecular Biology, 2008, 439, 131-145.	0.4	10
2268	ChIP on Chip Assays: Genome-Wide Analysis of Transcription Factor Binding and Histone Modifications. Methods in Molecular Biology, 2009, 523, 341-366.	0.4	27
2269	Methods for the Inference of Biological Pathways and Networks. Methods in Molecular Biology, 2009, 541, 225-245.	0.4	18
2270	Learning Clobal Models of Transcriptional Regulatory Networks from Data. Methods in Molecular Biology, 2009, 541, 181-210.	0.4	12
2271	In-Depth Query of Large Genomes Using Tiling Arrays. Methods in Molecular Biology, 2007, 377, 163-173.	0.4	6
2272	Fastcompare. Methods in Molecular Biology, 2007, , 349-366.	0.4	6
2273	Identification of Transcription Factor–DNA Interactions Using Chromatin Immunoprecipitation Assays. Methods in Molecular Biology, 2009, 493, 311-322.	0.4	7
2274	Reporter-Based Synthetic Genetic Array Analysis: A Functional Genomics Approach for Investigating the Cell Cycle in Saccharomyces cerevisiae. Methods in Molecular Biology, 2009, 548, 55-73.	0.4	4
2275	Inference of Signal Transduction Networks from Double Causal Evidence. Methods in Molecular Biology, 2010, 673, 239-251.	0.4	5
2276	Stochastic Analysis of Gene Expression. Methods in Molecular Biology, 2011, 734, 123-151.	0.4	1
2277	High-Throughput Analyses and Curation of Protein Interactions in Yeast. Methods in Molecular Biology, 2011, 759, 381-406.	0.4	5
2278	A Brief Introduction to Tiling Microarrays: Principles, Concepts, and Applications. Methods in	0.4	3
	Molecular Biology, 2013, 1067, 3-19.		
2279	QAP Analysis of Company Co-mention Network. Lecture Notes in Computer Science, 2018, , 83-98.	1.0	6

ARTICLE IF CITATIONS # Ranking Gene Regulatory Network Models with Microarray Data and Bayesian Network. Lecture Notes 2282 1.0 3 in Computer Science, 2004, , 109-118. An Interaction-Dependent Model for Transcription Factor Binding., 2005, 225-234. Toward Understanding the Structure and Function of Cellular Interaction Networks. Bolyai Society 2284 0.31 Mathematical Studies, 2008, , 239-275. Gene Regulatory Network Modeling: A Data Driven Approach., 2007, , 247-281. 2285 Rough Sets in Bioinformatics., 2007, , 225-243. 10 2286 2287 Nucleosome Occupancy Information Improves de novo Motif Discovery., 2007, , 107-121. Toward a Solution of the Reverse Engineering Problem Using FPGAs., 2006, , 304-312. 2288 1 Identification and Evaluation of Functional Modules in Gene Co-expression Networks. Lecture Notes 2289 in Computer Science, 2006, , 57-76. A Linear Discrete Dynamic System Model for Temporal Gene Interaction and Regulatory Network 2290 Influence in Response to Bioethanol Conversion Inhibitor HMF for Ethanologenic Yeast. Lecture 7 1.0 Notes in Computer Science, 2006, , 77-95. Inferring Gene Regulatory Networks from Multiple Data Sources Via a Dynamic Bayesian Network with 2291 Structural EM., 2007, , 204-214. Protein Function Prediction Based on Patterns in Biological Networks., 2008, 197-213. 19 2292 Using Formal Concept Analysis for the Extraction of Groups of Co-expressed Genes. Communications 2293 0.4 in Computer and Information Science, 2008, , 439-449. 2295 miRNAs Targeting and Targeting miRNAs., 2009, , 1-57. 1 Optimally Orienting Physical Networks. Lecture Notes in Computer Science, 2011, , 424-436. 2296 1.0 Integration of Epigenetic Data in Bayesian Network Modeling of Gene Regulatory Network. Lecture 2297 1.0 7 Notes in Computer Science, 2011, , 87-96. The Genome and Beyond., 2004, , 13-25. 2298 Systems Biology: Developments and Applications., 2014, , 83-96. 2299 3 2300 Plant Systems Biology: Insights and Advancements., 2015, , 791-819.

#	Article	IF	CITATIONS
2301	Complex Networks and Systems Biology. , 2015, , 129-150.		5
2302	Self-organization in the Nervous System. , 2006, , 5-33.		8
2303	Bayesian Networks and Informative Priors: Transcriptional Regulatory Network Models. , 0, , 401-424.		6
2304	Transcriptional Regulatory Networks Involved in C3–C4 Alcohol Stress Response and Tolerance in Yeast. ACS Synthetic Biology, 2021, 10, 19-28.	1.9	7
2305	Reverse engineering of gene regulatory networks. IET Systems Biology, 2007, 1, 149-163.	0.8	100
2307	Genomic adaptation of <i>Saccharomyces cerevisiae</i> to inhibitors for lignocellulosic biomass conversion to ethanol , 2009, , 136-155.		3
2308	Bayesian Causal Phenotype Network Incorporating Genetic Variation and Biological Knowledge. , 2014, , 165-195.		3
2309	Identification of Genetic Networks. Genetics, 2004, 166, 1037-1052.	1.2	18
2315	Prediction, Annotation, and Analysis of Human Promoters. Cold Spring Harbor Symposia on Quantitative Biology, 2003, 68, 217-226.	2.0	7
2316	Systems Approaches Applied to the Study of Saccharomyces cerevisiae and Halobacterium sp Cold Spring Harbor Symposia on Quantitative Biology, 2003, 68, 345-358.	2.0	12
2317	Harvesting the Genome's Bounty: Integrative Genomics. Cold Spring Harbor Symposia on Quantitative Biology, 2003, 68, 431-444.	2.0	9
2319	The Parameter-Fitness Landscape of <i>lexA</i> Autoregulation in Escherichia coli. MSphere, 2020, 5, .	1.3	7
2320	LEARNING POSITION WEIGHT MATRICES FROM SEQUENCE AND EXPRESSION DATA. , 2007, , .		6
2321	SYSTEMS BIOLOGY: A FOUR-STEP PROCESS. Advanced Series in Biomechanics, 2008, , 387-399.	0.1	1
2322	Analysis of Regulatory and Interaction Networks from Clusters of Co-expressed Genes. , 2009, , 53-82.		2
2323	GSE: A COMPREHENSIVE DATABASE SYSTEM FOR THE REPRESENTATION, RETRIEVAL, AND ANALYSIS OF MICROARRAY DATA. , 2007, , .		7
2324	Propagating distributions on a hypergraph by dual information regularization. , 2005, , .		15
2325	Graph-based network analysis of transcriptional regulation pattern divergence in duplicated yeast gene pairs. , 2019, , .		1

#	Article	IF	CITATIONS
2326	Modeling dependencies in protein-DNA binding sites. , 2003, , .		106
2327	Whole-genome comparative annotation and regulatory motif discovery in multiple yeast species. , 2003, , .		8
2328	Epidermal barrier formation and recovery in skin disorders. Journal of Clinical Investigation, 2006, 116, 1150-1158.	3.9	406
2329	Adaptive Dynamics of Regulatory Networks: Size Matters. Eurasip Journal on Bioinformatics and Systems Biology, 2009, 2009, 618502.	1.4	7
2330	Bayesian variable selection and data integration for biological regulatory networks. Annals of Applied Statistics, 2007, 1, .	0.5	16
2331	CyREST: Turbocharging Cytoscape Access for External Tools via a RESTful API. F1000Research, 2015, 4, 478.	0.8	81
2332	Pathways and Networks of Nuclear Receptors and Modeling of Syndrome X. Chem-Bio Informatics Journal, 2003, 3, 130-156.	0.1	6
2333	Phenotypic Anchoring of Gene Expression Changes during Estrogen-Induced Uterine Growth. Environmental Health Perspectives, 2004, 112, 1589-1606.	2.8	81
2334	Phenotypic Anchoring of Gene Expression Changes during Estrogen-Induced Uterine Growth. Environmental Health Perspectives, 2004, 112, 1589-1606.	2.8	54
2335	Reconstructing the regulatory circuit of cell fate determination in yeast mating response. PLoS Computational Biology, 2017, 13, e1005671.	1.5	5
2336	Determining Physical Constraints in Transcriptional Initiation Complexes Using DNA Sequence Analysis. PLoS ONE, 2007, 2, e1199.	1.1	8
2337	Probabilistic Inference of Transcription Factor Binding from Multiple Data Sources. PLoS ONE, 2008, 3, e1820.	1.1	42
2338	A Test of Highly Optimized Tolerance Reveals Fragile Cell-Cycle Mechanisms Are Molecular Targets in Clinical Cancer Trials. PLoS ONE, 2008, 3, e2016.	1.1	16
2339	Network Evolution of Body Plans. PLoS ONE, 2008, 3, e2772.	1.1	62
2340	What Determines the Assembly of Transcriptional Network Motifs in Escherichia coli?. PLoS ONE, 2008, 3, e3657.	1.1	14
2341	Shortest-Path Network Analysis Is a Useful Approach toward Identifying Genetic Determinants of Longevity. PLoS ONE, 2008, 3, e3802.	1.1	119
2342	An Integrated Approach to Identifying Cis-Regulatory Modules in the Human Genome. PLoS ONE, 2009, 4, e5501.	1.1	17
2343	Systems Biology of the da Gene Cluster in Neurospora crassa, PLoS ONF, 2011, 6, e20671.	1.1	24

# 2344	ARTICLE Transcription Factor Binding Site Positioning in Yeast: Proximal Promoter Motifs Characterize	IF 1.1	Citations 30
2345	Identification of the CRE-1 Cellulolytic Regulon in Neurospora crassa. PLoS ONE, 2011, 6, e25654.	1.1	164
2346	Principal-Oscillation-Pattern Analysis of Gene Expression. PLoS ONE, 2012, 7, e28805.	1.1	7
2347	Interpreting Patterns of Gene Expression: Signatures of Coregulation, the Data Processing Inequality, and Triplet Motifs. PLoS ONE, 2012, 7, e31969.	1.1	11
2348	Role of Relaxation Time Scale in Noisy Signal Transduction. PLoS ONE, 2015, 10, e0123242.	1.1	11
2349	From System-Wide Differential Gene Expression to Perturbed Regulatory Factors: A Combinatorial Approach. PLoS ONE, 2015, 10, e0142147.	1.1	2
2350	Inferring Gene Regulatory Networks Using Conditional Regulation Pattern to Guide Candidate Genes. PLoS ONE, 2016, 11, e0154953.	1.1	16
2351	An Algorithm for Finding the Singleton Attractors and Pre-Images in Strong-Inhibition Boolean Networks. PLoS ONE, 2016, 11, e0166906.	1.1	5
2352	Using single-index ODEs to study dynamic gene regulatory network. PLoS ONE, 2018, 13, e0192833.	1.1	8
2353	Transcriptional regulation by Pax3 and TGFbeta2 signaling: a potential gene regulatory network in neural crest development. International Journal of Developmental Biology, 2009, 53, 69-79.	0.3	10
2354	Evidence for the association of chromatin and microRNA regulation in the human genome. Oncotarget, 2017, 8, 70958-70966.	0.8	18
2355	Algorithmic and Stochastic Representations of Gene Regulatory Networks and Protein-Protein Interactions. Current Topics in Medicinal Chemistry, 2019, 19, 413-425.	1.0	7
2356	Stability and Flexibility from a System Analysis of Gene Regulatory Networks Based on Ordinary Differential Equations. Open Bioinformatics Journal, 2011, 5, 26-33.	1.0	2
2357	Limits And Prospects Of Methods For The Analysis Of DNA-Protein Interaction. , 2013, , 124-148.		15
2358	Gene Duplication Models and Reconstruction of Gene Regulatory Network Evolution from Network Structure. Baltic Journal of Modern Computing, 2016, 4, .	0.2	2
2359	Inferring regulatory networks. Frontiers in Bioscience - Landmark, 2008, 13, 263.	3.0	33
2361	Genome-wide transcription factor localization and function in stem cells. Stembook, 2008, , .	0.3	3
2362	The simulation of gene knock-out in scale-free random Boolean models of genetic networks. Networks and Heterogeneous Media, 2008, 3, 333-343.	0.5	15

#	Article	IF	CITATIONS
2363	What are Gene Regulatory Networks?. , 2010, , 1-27.		9
2364	Inferring Gene Regulatory Networks from Genetical Genomics Data. , 2010, , 79-107.		4
2365	A Linear Programming Framework for Inferring Gene Regulatory Networks by Integrating Heterogeneous Data. , 2010, , 450-475.		1
2366	Biclustering of DNA Microarray Data. , 2011, , 148-186.		8
2367	Integration and Prediction of PPI Using Multiple Resources from Public Databases. Journal of Proteomics and Bioinformatics, 2008, 01, 166-187.	0.4	9
2368	How is the biological information arranged in genome?. American Journal of Molecular Biology, 2012, 02, 171-186.	0.1	4
2369	Incorporating heterogeneous biological data sources in clustering gene expression data. Health, 2009, 01, 17-23.	0.1	3
2370	On varying-coefficient independence screening for high-dimensional varying-coefficient models. Statistica Sinica, 2014, , .	0.2	14
2371	WRKY transcription factor superfamily: Structure, origin and functions. African Journal of Biotechnology, 2012, 11, .	0.3	6
2372	Protein interaction network for Alzheimer's disease using computational approach. Bioinformation, 2013, 9, 968-972.	0.2	15
2374	Complexities in Genome Structure and Evolution. , 2010, , 117-134.		2
2375	Buffered Qualitative Stability explains the robustness and evolvability of transcriptional networks. ELife, 2014, 3, e02863.	2.8	31
2376	Inherent regulatory asymmetry emanating from network architecture in a prevalent autoregulatory motif. ELife, 2020, 9, .	2.8	17
2377	GRNsight: a web application and service for visualizing models of small- to medium-scale gene regulatory networks. PeerJ Computer Science, 0, 2, e85.	2.7	2
2378	Influence of the experimental design of gene expression studies on the inference of gene regulatory networks: environmental factors. PeerJ, 2013, 1, e10.	0.9	9
2379	A novel approach in analyzing agriculture and food systems: Review of modeling and its applications. Korean Journal of Agricultural Science, 2016, 43, 163-175.	0.2	5
2380	Inferring primase-DNA specific recognition using a data driven approach. Nucleic Acids Research, 2021, 49, 11447-11458.	6.5	1
2383	Modeling transcription programs. , 2003, , .		2

#	Article	IF	Citations
2384	FINDING OPTIMAL MODELS FOR SMALL GENE NETWORKS. , 2003, , 557-67.		38
2385	Incorporation of quantitative knowledge into genetic information systems. , 2004, , 557-564.		0
2386	Genomic Approaches to the Study of Transcription Factors. Handbook of Experimental Pharmacology, 2004, , 69-93.	0.9	0
2387	(Post) Genomic Stem Cell. , 2004, , 21-46.		0
2388	Exploring Dependencies Between Yeast Stress Genes and Their Regulators. Lecture Notes in Computer Science, 2004, , 92-98.	1.0	0
2389	Reactive oxygen species regulate gene networks of stress response. Ecological Genetics, 2004, 2, 4-12.	0.1	2
2390	SPARSE FACTORIZATIONS OF GENE EXPRESSION DATA GUIDED BY BINDING DATA. , 2004, , .		3
2391	Estimating Gene Networks from Expression Data and Binding Location Data via Boolean Networks. Lecture Notes in Computer Science, 2005, , 349-356.	1.0	7
2392	Computational Biology and Toxicogenomics. , 2005, , 37-92.		0
2393	Computational Biology and Toxicogenomics. , 2005, , 49-104.		1
2396	Yeast Naked DNA Spatial Organization Predisposes to Transcriptional Regulation. Lecture Notes in Computer Science, 2006, , 222-231.	1.0	1
2398	A METHODOLOGY FOR MOTIF DISCOVERY EMPLOYING ITERATED CLUSTER RE-ASSIGNMENT. , 2006, , .		0
2399	Transcription Factors Regulating Plant Defense Responses. , 2006, , 159-205.		0
2401	Effects of Gene Orientation and Use of Multiple Promoters on the Expression of XYL1 and XYL2 in Saccharomyces cerevisiae. , 2007, , 69-78.		0
2402	A Novel Method for Signal Transduction Network Inference from Indirect Experimental Evidence. Lecture Notes in Computer Science, 2007, , 407-419.	1.0	1
2403	Inference of Genetic Regulatory Modules Using ChIP-on-chip and mRNA Expression Data. Interdisciplinary Bio Central, 2007, 1, 62-65.	0.1	0
2405	Cells and Genomes. , 2007, , 1-44.		0
2406	Web-Based Resources for Clinical Bioinformatics. Methods in Molecular Medicine, 2008, 141, 309-329.	0.8	0

#	Article	IF	CITATIONS
2407	Saccharomyces pombe and Saccharomyces cerevisiae Gene Regulatory Network Inference Using the Fuzzy Logic Network. Studies in Computational Intelligence, 2008, , 237-256.	0.7	0
2409	A biophysical approach to large-scale protein-DNA binding data. , 2008, , 91-103.		0
2410	Motif-based Classification in Journal Citation Networks. Journal of Software Engineering and Applications, 2008, 01, 53-59.	0.8	1
2411	Topology of Plant Metabolic Networks. , 2009, , 173-209.		0
2412	6. Épigénomique et morphodynamique. , 2008, , 113-125.		0
2414	Integrative Systems Approaches to Study Innate Immunity. , 2009, , 1-13.		0
2415	Topological Analysis of Cellular Networks. , 0, , .		1
2416	Statistical Tools for Gene Expression Analysis and Systems Biology and Related Web Resources. , 2009, , 181-205.		2
2417	Methods for Reverse Engineering of Gene Regulatory Networks. , 2009, , 497-515.		0
2418	Automatic Control in Systems Biology. , 2009, , 1335-1360.		2
2419	Modelling Transcriptional Regulation with a Mixture of Factor Analyzers and Variational Bayesian Expectation Maximization. Eurasip Journal on Bioinformatics and Systems Biology, 2009, 2009, 601068.	1.4	2
2420	An Efficient Convex Nonnegative Network Component Analysis for Gene Regulatory Network Reconstruction. Lecture Notes in Computer Science, 2009, , 56-66.	1.0	2
2421	Transcriptional Networks Regulating Embryonic Stem Cell Fate Decisions. , 2009, , 87-100.		1
2422	Detecting and Characterizing the Modular Structure of the Yeast Transcription Network. Studies in Computational Intelligence, 2009, , 35-46.	0.7	0
2423	Methods for Structural Inference and Functional Module Identification in Intracellular Networks. , 2009, , 517-539.		0
2424	A Probabilistic Approach to Study YeastÂ's Gene Regulatory Network. Journal of Computer Science and Systems Biology, 2009, 02, .	0.0	4
2425	Functional Genomics for Characterization of Genome Sequences. , 2009, , 3964-3985.		0
2426	Bioinformatic and Computational Analysis for Genomic Medicine. , 2009, , 206-225.		0

		CITATION RE	PORT	
#	Article		IF	CITATIONS
2427	Protein Interactions and Diseases. , 2009, , 694-713.			0
2428	Integration of Metabolic Reactions and Gene Regulation. Methods in Molecular Biolog 265-285.	y, 2009, 553,	0.4	0
2429	Molecular Evolution, Networks in. , 2009, , 5655-5667.			0
2430	Biomolecular Network Structure and Function. , 2009, , 570-589.			0
2431	Data Integration for Regulatory Gene Module Discovery. , 2009, , 516-529.			0
2432	Graph-based Approaches for Motif Discovery. , 2009, , 83-99.			0
2433	Study of Cellular Concentration Change Effects on Phenotypic Behavior of Escherichia Metabolic Network. Asian Journal of Biotechnology, 2009, 1, 171-179.	coli iAF1260	0.3	1
2434	Determining the Properties of Gene Regulatory Networks from Expression Data. , 2010), , 405-428.		0
2435	Problems for Structure Learning. , 2010, , 310-333.			1
2437	S.cerevisiae Complex Function Prediction with Modular Multi-Relational Framework. Le Computer Science, 2010, , 82-91.	cture Notes in	1.0	1
2438	A Self-organizing State Space Approach to Inferring Time-Varying Causalities between Proteins. Lecture Notes in Computer Science, 2010, , 158-171.	Regulatory	1.0	0
2439	Cellular Response Networks. , 2010, , 233-252.			0
2440	Network model with synchronously increasing nodes and edges based on Web 2.0. W Physica Sinica, 2010, 59, 6889.	uli Xuebao/Acta	0.2	11
2442	An Evaluation of Gene Module Concepts inÂtheÂInterpretation of Gene Expression Dat Biology, 2010, , 331-349.	a. Computational	0.1	1
2443	Nonlinear Stochastic Differential Equations Method for Reverse Engineering of Gene R Network. , 2010, , 219-243.	egulatory		0
2444	Structural Learning of Genetic Regulatory Networks Based on Prior Biological Knowled Microarray Gene Expression Measurements. , 2010, , 289-309.	ge and		0
2446	A Novel Method to Identify The Condition-specific Regulatory Sub-network That Contro Cell Cycle Based on Gene Expression Model*. Progress in Biochemistry and Biophysics,	ols The Yeast 2010, 37, 402-415.	0.3	0
2447	The Non-coding Landscape of the Genome of Arabidopsis thaliana. , 2011, , 67-121.			0

#	Article	IF	CITATIONS
2448	Genomic and Transcriptomic Analyses of Foodborne Bacterial Pathogens. , 2011, , 311-341.		0
2450	Modules in Biological Networks. , 2011, , 248-274.		0
2451	Biologische Grundlagen. , 2011, , 7-44.		0
2452	Influence of Promoter Length on Network Convergence in GRN-Based Evolutionary Algorithms. Lecture Notes in Computer Science, 2011, , 302-309.	1.0	0
2453	Computational Drug Target Pathway Discovery: A Bayesian Network Approach. , 2011, , 501-532.		0
2454	Regulation of the Transcription of G Protein-Coupled Receptor Genes. Neuromethods, 2011, , 49-69.	0.2	0
2455	Large-Scale Statistical Inference of Gene Regulatory Networks: Local Network-Based Measures. Intelligent Systems Reference Library, 2011, , 179-193.	1.0	0
2456	Yeast Transcriptional Regulatory Module Identification by Integrating Gene Expression Data and ChIP-chip Data. Sheng Wu Wu Li Hsueh Bao, 2011, 27, 242-256.	0.1	0
2457	Computational Analysis of Promoter Elements and Chromatin Features in Yeast. Methods in Molecular Biology, 2012, 809, 217-235.	0.4	0
2458	Gene Duplication and Functional Consequences. Translational Bioinformatics, 2012, , 139-156.	0.0	0
2459	MULTI-LEVEL DYNAMIC MODELING IN BIOLOGICAL SYSTEMS - Application of Hybrid Petri Nets to Network Simulation. , 2012, , .		1
2460	Problems for Structure Learning Aggregation and Computational Complexity. , 2012, , 1699-1720.		0
2462	Reverse Engineering Gene Regulatory Networks by Integrating Multi-Source Biological Data. , 0, , .		0
2463	Complex Regulatory Interplay Between Multidrug Resistance and Oxidative Stress Response in Yeast: The FLR1 Regulatory Network as a Systems Biology Case-Study. , 0, , .		0
2464	Detecting cell cycle-regulated genes using Self-Organizing Maps with statistical Phase Synchronization (SOMPS) algorithm. Journal of the Korea Academia-Industrial Cooperation Society, 2012, 13, 3952-3961.	0.0	0
2465	Emergence of Gene Regulatory Networks Under Functional Constraints. Springer Proceedings in Complexity, 2013, , 477-482.	0.2	0
2466	Emergence of Motifs in Model Gene Regulatory Networks. Lecture Notes in Computer Science, 2013, , 212-215.	1.0	0
2467	Emergent Properties of Gene Regulatory Networks: Models and Data. , 2013, , 65-93.		1

		CITATION RE	PORT	
#	Article		IF	CITATIONS
2468	Control of few node genetic regulatory networks. Wuli Xuebao/Acta Physica Sinica, 201	3, 62, 010507.	0.2	1
2469	Computational Tools and Resources for Integrative Modeling in Systems Biology. , 2013	, , 399-428.		0
2471	Overexpression of genes encoding asparagine-glutamine rich transcriptional factors caus suppression in Saccharomyces cerevisiae. Ecological Genetics, 2013, 11, 49.	ses nonsense	0.1	0
2472	Why the New Atheism is Bad Science: Culture and the Philosophy of Nature after Systen 2013, , 101-118.	ıs Biology. ,		0
2473	Extracting Labeled Topological Patterns from Samples of Networks. PLoS ONE, 2013, 8,	e70497.	1.1	0
2474	And and And**. , 2013, , 198-213.			4
2475	Identifying Functional Transcription Factor Binding Sites in Yeast by Considering Their Po Preference in the Promoters. PLoS ONE, 2013, 8, e83791.	ositional	1.1	2
2476	Computational Complexities of Optimization Problems Related to Model-Based Clusterin Networks. , 2014, , 97-113.	ng of		0
2477	Robustness Model Validation of Bistability in Biomolecular Systems. , 2014, , 141-167.			0
2478	A Molecular Perspective on Exposure–Dose–Responseâ~†. , 2014, , .			0
2479	Computational Methods for Analysis of Transcriptional Regulation. , 2014, , 327-353.			0
2480	In silico prediction of. Veterinary Research, 2014, 45, 80.		1.1	9
2481	Path Finding in Biological Networks. , 2014, , 289-309.			0
2483	Principles and Practice of DNA Microarray Technology. , 0, , 978-994.			0
2484	Subspace Clustering of DNA Microarray Data. International Journal of Computational Mc Algorithms in Medicine, 2014, 4, 1-52.	odels and	0.4	1
2485	Systems Biology and Evolutionary Biology. , 2015, , 329-347.			0
2487	Biomolecular Network Structure and Function. , 2015, , 1-25.			0
2488	Using Rules of Thumb for Repairing Inconsistent Answer Set Programs. Lecture Notes in Science, 2015, , 368-381.	Computer	1.0	0

		CITATION REF	PORT	
#	Article		IF	CITATIONS
2489	Can Tests for Jumps be Viewed as Tests for Clusters?. Statistica Sinica, 2015, , .		0.2	0
2491	The Analyses of Global Gene Expression and Transcription Factor Regulation. Translation Bioinformatics, 2016, , 1-35.	bnal	0.0	2
2493	Predicting Gene and Genomic Regulation in Saccharomyces cerevisiae, using the YEAS Step-by-Step Guided Analysis. Methods in Molecular Biology, 2016, 1361, 391-404.	TRACT Database: A	0.4	1
2494	Overview of Cellular Computing-Basic Principles and Applications. Advances in Compu Intelligence and Robotics Book Series, 2016, , 637-662.	tational	0.4	0
2495	Neurospora: A Gateway to Biology. , 2016, , 207-226.			0
2497	How Fair Is Your Network to New and Old Objects?: A Modeling of Object Selection in User-Object Networks. Lecture Notes in Computer Science, 2017, , 90-97.	Web Based	1.0	2
2501	Zellen und Genome. , 0, , 1-47.			0
2502	Dynamic gene regulatory network analysis using Saccharomyces cerevisiae large-scale microarray data. , 2017, , .	time-course		2
2507	Reconstruction of the Regulatory Network in a Minimal Bacterium Reveals Extensive Non-Transcription Factor Dependent Regulation. SSRN Electronic Journal, 0, , .		0.4	0
2515	Next-Generation Genome-Scale Models Incorporating Multilevel â€~Omics Data: From Methods in Molecular Biology, 2019, 2049, 347-363.	Yeast to Human.	0.4	1
2516	Directed Acyclic Graph Reconstruction Leveraging Prior Partial Ordering Information. L in Computer Science, 2019, , 458-471.	ecture Notes	1.0	1
2517	Production and Utilisation of Yeast Biomass for Wine Fermentation. , 2019, , 263-281.			0
2518	Subspace Clustering of DNA Microarray Data. , 2019, , 210-264.			0
2528	Karyopherin Kap114pâ€mediated transâ€repression controls ribosomal gene expressio EMBO Reports, 2020, 21, e48324.	on under saline stress.	2.0	11
2530	G1/S transcription factors assemble in increasing numbers of discrete clusters through Journal of Cell Biology, 2020, 219, .	G1 phase.	2.3	8
2533	Diagrammatic expansion of information flows in stochastic Boolean networks. Physica Research, 2020, 2, .	l Review	1.3	2
2534	Genome-wide Identification of DNA-protein Interaction to Reconstruct Bacterial Transc Regulatory Network. Biotechnology and Bioprocess Engineering, 2020, 25, 944-954.	ription	1.4	6
2535	Transcription for Protein Biosynthesis. Biological and Medical Physics Series, 2020, , 47	77-508.	0.3	0

#	Article	IF	CITATIONS
2537	Overview of Cellular Computing-Basic Principles and Applications. , 2020, , 1895-1920.		0
2540	Biclustering of DNA Microarray Data. , 0, , 513-551.		3
2541	Modules in Biological Networks. , 0, , 637-663.		0
2542	Computational Inference of Gene Regulation from Whole-Transcriptome Analysis of Early Embryos. Advances in Medical Technologies and Clinical Practice Book Series, 0, , 241-279.	0.3	0
2543	The Drosophila Protein Interaction Network May Be neither Power-Law nor Scale-Free. , 2006, , 53-64.		0
2544	Gene Regulatory Networks. , 2006, , 106-122.		1
2546	Structures in Molecular Networks. , 2004, , 181-193.		0
2547	Regulators of Candida glabrata Pathogenicity. , 2006, , 205-219.		Ο
2549	DBRF-MEGN Method: An Algorithm for Inferring Gene Regulatory Networks from Large-Scale Gene Expression Profiles. , 2007, , 435-448.		0
2550	Dissecting Transcriptional Control Networks. , 2007, , 106-123.		Ο
2551	Dynamic Properties of Cell-Cycle and Life-Cycle Networks in Budding Yeast. , 2007, , 217-227.		0
2552	An Efficient Algorithm for Deciphering Regulatory Motifs. , 2007, , 249-269.		Ο
2553	Build a Dictionary, Learn a Grammar, Decipher Stegoscripts, and Discover Genomic Regulatory Elements. , 2005, , 80-94.		0
2554	Evolutionary Search for Improved Path Diagrams. , 2007, , 114-121.		0
2555	Synthetic Biology: Life, Jim, but Not As We Know It. Natural Computing Series, 2008, , 53-68.	2.2	0
2558	Systems Biology: Developments and Applications. , 2014, , 83-96.		0
2562	Assessing and combining reliability of protein interaction sources. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2007, , 433-44.	0.7	4
2563	GSE: a comprehensive database system for the representation, retrieval, and analysis of microarray data. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2008, , 539-50.	0.7	6

#	Article	IF	CITATIONS
2565	Nonlinear dynamic trans/cis regulatory circuit for gene transcription via microarray data. Gene Regulation and Systems Biology, 2007, 1, 151-66.	2.3	1
2567	Modelling gene regulation networks via multivariate adaptive splines. Cancer Genomics and Proteomics, 2008, 5, 55-62.	1.0	0
2569	On Varying-coefficient Independence Screening for High-dimensional Varying-coefficient Models. Statistica Sinica, 2014, 24, 1735-1752.	0.2	22
2571	Extended Robust Boolean Network of Budding Yeast Cell Cycle. Journal of Medical Signals and Sensors, 2020, 10, 94-104.	0.5	0
2572	Abf1 Is an Essential Protein That Participates in Cell Cycle Progression and Subtelomeric Silencing in Candida glabrata. Journal of Fungi (Basel, Switzerland), 2021, 7, 1005.	1.5	0
2573	Challenges and opportunities in network-based solutions for biological questions. Briefings in Bioinformatics, 2022, 23, .	3.2	10
2574	Reconstruction and analysis of transcriptome regulatory network of Methanobrevibacter ruminantium M1. Gene Reports, 2022, 26, 101489.	0.4	1
2575	Biochemical Problems, Mathematical Solutions. AIMS Mathematics, 2022, 7, 5662-5669.	0.7	0
2576	Controlling gene expression timing through gene regulatory architecture. PLoS Computational Biology, 2022, 18, e1009745.	1.5	5
2577	microRNA-Mediated Encoding and Decoding of Time-Dependent Signals in Tumorigenesis. Biomolecules, 2022, 12, 213.	1.8	0
2578	Impact of Metabolic Regulation in Understanding the Status of Human Health and Diseases: A Review. International Journal of Pharma and Bio Sciences, 2022, 12, 19-31.	0.1	0
2579	Generation of Realistic Gene Regulatory Networks by Enriching for Feed-Forward Loops. Frontiers in Genetics, 2022, 13, 815692.	1.1	1
2581	Ensemble Methods for Identifying RNA Operons and Regulons in the Clock Network of Neurospora Crassa. IEEE Access, 2022, 10, 32510-32524.	2.6	3
2582	Biocode: A Data-Driven Procedure to Learn the Growth of Biological Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, PP, 1-1.	1.9	0
2583	Additional insights into the organization of transcriptional regulatory modules based on a 3D model of the Saccharomyces cerevisiae genome. BMC Research Notes, 2022, 15, 67.	0.6	2
2584	Information transmission among multiple investors: a micro-perspective revealed by motifs. Nonlinear Dynamics, 2022, 108, 2833-2850.	2.7	0
2585	Timeâ€series transcriptomics and proteomics reveal alternative modes to decode p53 oscillations. Molecular Systems Biology, 2022, 18, e10588.	3.2	16
2586	Cancer progression as a learning process. IScience, 2022, 25, 103924.	1.9	8

#	Article	IF	CITATIONS
2587	Modular, robust, and extendible multicellular circuit design in yeast. ELife, 2022, 11, .	2.8	3
2588	A hierarchical transcriptional network activates specific CDK inhibitors that regulate G2 to control cell size and number in Arabidopsis. Nature Communications, 2022, 13, 1660.	5.8	22
2589	The microprotein Nrs1 rewires the G1/S transcriptional machinery during nitrogen limitation in budding yeast. PLoS Biology, 2022, 20, e3001548.	2.6	10
2590	Transcriptional and post-transcriptional control of epithelial-mesenchymal plasticity: why so many regulators?. Cellular and Molecular Life Sciences, 2022, 79, 182.	2.4	18
2591	Sparse reduced-rank regression for simultaneous rank and variable selection via manifold optimization. Computational Statistics, 2023, 38, 53-75.	0.8	4
2592	Finite-time synchronization of the drive-response networks by event-triggered aperiodic intermittent control. Neurocomputing, 2022, 485, 89-102.	3.5	27
2593	Testing biological network motif significance with exponential random graph models. Applied Network Science, 2021, 6, 91.	0.8	4
2595	Cyclin/Forkhead-mediated coordination of cyclin waves: an autonomous oscillator rationalizing the quantitative model of Cdk control for budding yeast. Npj Systems Biology and Applications, 2021, 7, 48.	1.4	4
2596	TReNCo: Topologically associating domain (TAD) aware regulatory network construction. F1000Research, 0, 11, 426.	0.8	0
2597	ABC Transporters in Yeast – Drug Resistance and Stress Response in a Nutshell. , 2007, , 289-314.		0
2598	Yeast as a Model to Study the Immunosuppressive and Chemotherapeutic Drug Rapamycin. , 2007, , 347-374.		0
2601	Fastcompare: A Nonalignment Approach for Genome-Scale Discovery of DNA and mRNA Regulatory Elements Using Network-Level Conservation. , 0, , 349-366.		1
2624	An Overview of Systems Biology. , 0, , 41-66.		1
2627	Transcription network analysis by a sparse binary factor analysis algorithm. Journal of Integrative Bioinformatics, 2012, 9, 198.	1.0	0
2628	Community structure of non-coding RNA interaction network. Journal of Integrative Bioinformatics, 2013, 10, 217.	1.0	3
2631	Discovery and identification of genes involved in DNA damage repair in yeast. Gene, 2022, , 146549.	1.0	2
2632	Cell Biology: Networks, Regulation and Pathways. , 2009, , 449-476.		0
2633	Proteome allocations change linearly with the specific growth rate of Saccharomyces cerevisiae under glucose limitation. Nature Communications, 2022, 13, .	5.8	28

#	Article	IF	CITATIONS
2634	Gene Regulatory Network Inference and Gene Module Regulating Virulence in Fusarium oxysporum. Frontiers in Microbiology, 2022, 13, .	1.5	0
2636	Model Plants and Crop Improvement. , 2006, , .		1
2637	A novel approach GRNTSTE to reconstruct gene regulatory interactions applied to a case study for rat pineal rhythm gene. Scientific Reports, 2022, 12, .	1.6	2
2638	Gene-Regulated Release of Distinctive Volatile Organic Compounds from Stressed Living Cells. Environmental Science & Technology, 0, , .	4.6	1
2639	Systematic inference of indirect transcriptional regulation by protein kinases and phosphatases. PLoS Computational Biology, 2022, 18, e1009414.	1.5	1
2640	Stochastic analysis of a complex gene-expression model. Chaos, Solitons and Fractals, 2022, 160, 112261.	2.5	1
2641	How alternative splicing changes the properties of plant proteins. Quantitative Plant Biology, 2022, 3, .	0.8	5
2642	Biogenesis of Quantum Dots: An Update. ChemistrySelect, 2022, 7, .	0.7	4
2644	Selection of Malicious Attack Nodes for Complex Networks Based on Structural Controllability. , 2022, , .		0
2646	A Gene Circuit Combining the Endogenous I-E Type CRISPR-Cas System and a Light Sensor to Produce Poly-β-Hydroxybutyric Acid Efficiently. Biosensors, 2022, 12, 642.	2.3	3
2647	Feedforward Loops: Evolutionary Conserved Network Motifs Redesigned for Synthetic Biology Applications. Applied Sciences (Switzerland), 2022, 12, 8292.	1.3	2
2648	Semiconductor technologies and related topics for implementation of electronic reservoir computing systems. Semiconductor Science and Technology, 0, , .	1.0	0
2649	Visualization and assessment of model selection uncertainty. Computational Statistics and Data Analysis, 2023, 178, 107598.	0.7	0
2650	Cellular Interactions Networking in Interactive Models of Diseases. , 2022, , 1-21.		0
2651	Nucleotide-based genetic networks: Methods and applications. Journal of Biosciences, 2022, 47, .	0.5	0
2652	Severe testing with high-dimensional omics data for enhancing biomedical scientific discovery. Npj Systems Biology and Applications, 2022, 8, .	1.4	1
2653	Experimental guidance for discovering genetic networks through hypothesis reduction on time series. PLoS Computational Biology, 2022, 18, e1010145.	1.5	0
2655	Transcription Factor Networks. , 2016, , 232-241.		0

ARTICLE IF CITATIONS # Information restriction in two-step cascade: role of fidelity and fluctuations. Journal of Statistical 2656 0.9 0 Mechanics: Theory and Experiment, 2022, 2022, 123502. Broad misappropriation of developmental splicing profile by cancer in multiple organs. Nature 5.8 Communications, 2022, 13, . 2658 Cellular Interactions Networking in Interactive Models of Diseases. , 2023, , 65-85. 0 Cells as the first data scientists. Journal of the Royal Society Interface, 2023, 20, . Comparative Research: Regulatory Mechanisms of Ribosomal Gene Transcription in Saccharomyces 2661 1.8 5 cerevisiae and Schizosaccharomyces pombe. Biomolecules, 2023, 13, 288. Community Structure inÂTranscriptional Regulatory Networks ofÂYeast Species. Springer Proceedings in Complexity, 2023, , 38-49. 2664 0.2 Structural characteristics in network control of molecular multiplex networks. PLoS ONE, 2023, 18, 2665 1.1 0 e0283768. Differential Hsp90-dependent gene expression is strain-specific and common among yeast strains. 2667 1.9 IScience, 2023, 26, 106635. SIR telomere silencing depends on nuclear envelope lipids and modulates sensitivity to a lysolipid. 2668 2.3 1 Journal of Cell Biology, 2023, 222, . 2674 Automatic Control in Systems Biology. Springer Handbooks, 2023, , 1189-1208. Gene regulatory network inference in the era of single-cell multi-omics. Nature Reviews Genetics, 2675 7.7 40 2023, 24, 739-754. Cellular Interactions Network in Cancer: Integrative Disease Models., 2023, , 1-20.