
CITATION REPORT List of articles citing

DOI: 10.1002/ppp.410 Permafrost and Periglacial Processes, 2002, 13, 1-15.

Source: https://exaly.com/paper-pdf/34844085/citation-report.pdf

Version: 2024-04-23

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
259	The influence of snow cover on the ground thermal regime. 1982 , 19, 421-432		374
258	The mean annual temperature at the top of permafrost, the TTOP model, and the effect of unfrozen water. <i>Permafrost and Periglacial Processes</i> , 2002 , 13, 137-143	4.2	25
257	Palaeotemperature reconstructions of the European permafrost zone during marine oxygen isotope Stage 3 compared with climate model results. 2003 , 18, 453-464		52
256	The role of snow cover in the warming of arctic permafrost. 2003 , 30,		205
255	Beaver Damming and Palsa Dynamics in a Subarctic Mountainous Environment, Wolf Creek, Yukon Territory, Canada. 2004 , 36, 208-218		12
254	Influences of local factors on permafrost occurrence and their implications for Qinghai-Xizang Railway design. 2004 , 47, 704-709		52
253	Relations between air and surface temperature in discontinuous permafrost terrain near Mayo, Yukon Territory. 2004 , 41, 1437-1451		50
252	Thermal conductivity of soils in the active layer of Eastern Siberia. <i>Permafrost and Periglacial Processes</i> , 2005 , 16, 217-222	4.2	4
251	Geomorphological, hydrological and climatic significance of rock glaciers in the Andes of Central Chile (33B5°S). <i>Permafrost and Periglacial Processes</i> , 2005 , 16, 231-240	4.2	109
250	Permafrost Thaw Accelerates in Boreal Peatlands During Late-20th Century Climate Warming. <i>Climatic Change</i> , 2005 , 68, 135-152	4.5	162
249	A roadbed cooling approach for the construction of Qinghaillibet Railway. <i>Cold Regions Science and Technology</i> , 2005 , 42, 169-176	3.8	125
248	Holocene permafrost aggradation in Svalbard. 2005 , 242, 119-129		27
247	Soil temperature in Canada during the twentieth century: Complex responses to atmospheric climate change. 2005 , 110,		91
246	Long-term evaluation of the Hydro-Thermodynamic Soil-Vegetation Scheme's frozen ground/permafrost component using observations at Barrow, Alaska. 2006 , 111,		28
245	Temporal and spatial changes of permafrost in Canada since the end of the Little Ice Age. 2006 , 111,		46
244	What determines the current presence or absence of permafrost in the TornetrEk region, a sub-arctic landscape in northern Sweden?. 2006 , 35, 190-7		66
243	The application of Regional Climate Model output for the simulation of high-mountain permafrost scenarios. 2007 , 56, 188-202		64

(2009-2007)

242	Thermal characteristics and impact of climate change on mountain permafrost in Iceland. 2007 , 112,		38
241	Coevolution of continental ice cover and permafrost extent over the last glacial-interglacial cycle in North America. 2007 , 112,		39
240	PERIGLACIAL LANDFORMS Permafrost. 2007 , 2191-2199		2
239	The effect of transient conditions on an equilibrium permafrost-climate model. <i>Permafrost and Periglacial Processes</i> , 2007 , 18, 21-32	4.2	20
238	The regional distribution of mountain permafrost in Iceland. <i>Permafrost and Periglacial Processes</i> , 2007 , 18, 185-199	4.2	87
237	Towards a TTOP ground temperature model for mountainous terrain in central-eastern Norway. <i>Permafrost and Periglacial Processes</i> , 2007 , 18, 161-184	4.2	51
236	Relationships between permafrost distribution and surface organic layers near Esso, central Kamchatka, Russian Far East. <i>Permafrost and Periglacial Processes</i> , 2008 , 19, 85-92	4.2	16
235	Numeric simulation of permafrost degradation in the eastern Tibetan Plateau. <i>Permafrost and Periglacial Processes</i> , 2008 , 19, 93-99	4.2	5
234	Recent advances in permafrost modelling. Permafrost and Periglacial Processes, 2008, 19, 137-156	4.2	251
233	Evaluation of miniature temperature-loggers to monitor snowpack evolution at mountain permafrost sites, northwestern Canada. <i>Permafrost and Periglacial Processes</i> , 2008 , 19, 323-331	4.2	61
232	Transient projections of permafrost distribution in Canada during the 21st century under scenarios of climate change. 2008 , 60, 443-456		81
231	Mountain permafrost probability mapping using the BTS method in two climatically dissimilar locations, northwest Canada. 2008 , 45, 443-455		27
230	Permafrost and Periglacial Geomorphology at Zackenberg. 2008, 40, 151-174		47
229	Ground temperature variability on a glacier foreland, Storbreen, Jotunheimen, Norway. 2008 , 62, 290-	302	2
228	Impacts of changes in vegetation cover on soil water heat coupling in an alpine meadow of the Qinghai-Tibet Plateau, China. 2009 , 13, 327-341		12
227	A new approach for assessing geothermal response to climate change in permafrost regions. 2009 , 59, 213-227		13
226	Past permafrost on the Mid-Atlantic Coastal Plain, eastern United States. <i>Permafrost and Periglacial Processes</i> , 2009 , 20, 285-294	4.2	25
225	Using the MODIS land surface temperature product for mapping permafrost: an application to northern QuBec and Labrador, Canada. <i>Permafrost and Periglacial Processes</i> , 2009 , 20, 407-416	4.2	60

224	Factors Controlling The Distribution of Mountain Permafrost in The Northern Hemisphere and Their Influence on Sediment Transfer. 2009 , 41, 48-58		28
223	Water regime shifts in the active soil layer of the Qinghaillibet Plateau permafrost region, under different levels of vegetation. <i>Geoderma</i> , 2009 , 149, 280-289	6.7	35
222	Permafrost and climate change at Herschel Island (Qikiqtaruq), Yukon Territory, Canada. 2009 , 114,		75
221	Processes and modes of permafrost degradation on the Qinghai-Tibet Plateau. 2010 , 53, 150-158		30
220	Modeling ground thermal conditions and the limit of permafrost within the nearshore zone of the Mackenzie Delta, Canada. 2010 , 115,		7
219	Permafrost and terrain conditions at northern drilling-mud sumps: Impacts of vegetation and climate change and the management implications. <i>Cold Regions Science and Technology</i> , 2010 , 64, 46-56	3.8	25
218	Paleo-Eskimo kitchen midden preservation in permafrost under future climate conditions at Qajaa, West Greenland. 2011 , 38, 1331-1339		21
217	Characteristics of Discontinuous Permafrost based on Ground Temperature Measurements and Electrical Resistivity Tomography, Southern Yukon, Canada. <i>Permafrost and Periglacial Processes</i> , 2011 , 22, 320-342	4.2	71
216	Shallow ground temperatures and periglacial processes on Iztaccfluatl volcano, Mexico. <i>Permafrost and Periglacial Processes</i> , 2011 , 22, 188-194	4.2	6
215	Degrading Mountain Permafrost in Southern Norway: Spatial and Temporal Variability of Mean Ground Temperatures, 1999\(\textbf{0}009. \) Permafrost and Periglacial Processes, 2011 , 22, 361-377	4.2	71
214	Air and Ground Temperature Variations Observed along Elevation and Continentality Gradients in Southern Norway. <i>Permafrost and Periglacial Processes</i> , 2011 , 22, 343-360	4.2	48
213	Modelling climate change effects on the spatial distribution of mountain permafrost at three sites in northwest Canada. <i>Climatic Change</i> , 2011 , 105, 293-312	4.5	18
212	Climate vulnerability of ecosystems and landscapes on Alaska North Slope. 2011 , 11, 249-264		26
211	Permafrost-thaw-induced land-cover change in the Canadian subarctic: implications for water resources. 2011 , 25, 152-158		130
210	Soil temperature response to 21st century global warming: the role of and some implications for peat carbon in thawing permafrost soils in North America. 2011 ,		9
209	Soil temperature response to 21st century global warming: the role of and some implications for peat carbon in thawing permafrost soils in North America. 2011 , 2, 121-138		43
208	Modeling the temperature evolution of Svalbard permafrost during the 20th and 21st century. 2011 , 5, 67-79		70
207	Modelling borehole temperatures in Southern Norway Insights into permafrost dynamics during the 20th and 21st century. 2012 , 6, 553-571		38

206	Derivation and analysis of a high-resolution estimate of global permafrost zonation. 2012 , 6, 221-233		312
205	Interactions between Seasonal Snow Cover, Ground Surface Temperature and Topography (Andes of Santiago, Chile, 33.5°S). <i>Permafrost and Periglacial Processes</i> , 2012 , 23, 277-291	4.2	19
204	Climate and ground temperature relations at sites across the continuous and discontinuous permafrost zones, northern Canada1This article is one of a series of papers published in this CJES Special Issue on the theme of Fundamental and applied research on permafrost in Canada.2Earth		56
203	Factors influencing permafrost temperatures across tree line in the uplands east of the Mackenzie Delta, 2004\(\textit{D}\) 0101This article is one of a series of papers published in this CJES Special Issue on the theme of Fundamental and applied research on permafrost in Canada. 2Polar Continental Shelf		31
202	A comparison of permafrost prediction models along a section of Trail Ridge Road, Rocky Mountain National Park, Colorado, USA. 2012 , 138, 111-120		16
201	The relative age of mountain permafrost lestimation of Holocene permafrost limits in Norway. 2012 , 92-93, 209-223		59
200	Influence of snow cover and grain size on the ground thermal regime in the discontinuous permafrost zone, Swiss Alps. 2012 , 175-176, 176-189		31
199	Satellite Microwave remote sensing of contrasting surface water inundation changes within the Arctic B oreal Region. 2012 , 127, 223-236		48
198	Active layer thickness variations on the Qinghaillibet Plateau under the scenarios of climate change. 2012 , 66, 849-857		37
197	Spatial and thermal characteristics of mountain permafrost, northwest canada. 2012 , 94, 195-213		35
196	Snow cornice dynamics as a control on plateau edge erosion in central Svalbard. 2013 , 38, 466-476		15
195	The active-layer hydrology of a peat plateau with thawing permafrost (Scotty Creek, Canada). 2013 , 21, 201-220		68
194	New Estimates of Permafrost Evolution during the Last 21 k Years in Eurasia using Numerical Modelling. <i>Permafrost and Periglacial Processes</i> , 2013 , 24, 286-303	4.2	17
193	Anticipating the consequences of climate change for Canadal boreal forest ecosystems. 2013 , 21, 322-3	365	312
192	Holocene development and geomorphic processes at Omnsbreen, southern Norway: Evidence for glacierpermafrost interactions. 2013 , 23, 796-809		8
191	Representing permafrost properties in CoLM for the Qinghai K izang (Tibetan) Plateau. <i>Cold Regions Science and Technology</i> , 2013 , 87, 68-77	3.8	38
190	Influences of winter climatic conditions on the relation between annual mean soil and air temperatures from central to northern Japan. <i>Cold Regions Science and Technology</i> , 2013 , 85, 217-224	3.8	16
189	Impact of permafrost development on groundwater flow patterns: a numerical study considering freezing cycles on a two-dimensional vertical cut through a generic river-plain system. 2013 , 21, 257-270	0	30

188	The active layer: A conceptual review of monitoring, modelling techniques and changes in a warming climate. 2013 , 37, 352-376		50
187	Multi-decadal degradation and persistence of permafrost in the Alaska Highway corridor, northwest Canada. 2013 , 8, 045013		40
186	Ground Thermal Regime and Permafrost Distribution under a Changing Climate in Northern Norway. <i>Permafrost and Periglacial Processes</i> , 2013 , 24, 20-38	4.2	45
185	CryoGRID 1.0: Permafrost Distribution in Norway estimated by a Spatial Numerical Model. <i>Permafrost and Periglacial Processes</i> , 2013 , 24, 2-19	4.2	48
184	Characteristics and Persistence of Relict High-Altitude Permafrost on Mahan Mountain, Loess Plateau, China. <i>Permafrost and Periglacial Processes</i> , 2013 , 24, 200-209	4.2	5
183	Influence of the physical terrestrial Arctic in the eco-climate system. 2013, 23, 1778-97		16
182	Impacts of mean annual air temperature change on a regional permafrost probability model for the southern Yukon and northern British Columbia, Canada. 2013 , 7, 935-946		12
181	References. 2013 , 388-448		
180	PERMAFROST AND PERIGLACIAL FEATURES Permafrost. 2013, 464-471		3
179	A statistical approach to represent small-scale variability of permafrost temperatures due to snow cover. 2014 , 8, 2063-2074		49
178	Numerical studies on the Impact of the Last Glacial Cycle on recent borehole temperature profiles: implications for terrestrial energy balance. <i>Climate of the Past</i> , 2014 , 10, 1693-1706	3.9	9
177	Arctic Pipelines. 2014 , 465-485		1
176	Application of a Bayesian belief network for assessing the vulnerability of permafrost to thaw and implications for greenhouse gas production and climate feedback. 2014 , 38, 28-44		10
175	The Last Permafrost Maximum (LPM) map of the Northern Hemisphere: permafrost extent and mean annual air temperatures, 25¶7 ka BP. 2014 , 43, 652-666		127
174	A field-based model of permafrost-controlled rockslide deformation in northern Norway. 2014 , 208, 34-49		47
173	Spatiotemporal variations of climate warming in northern Northeast China as indicated by freezing and thawing indices. 2014 , 349, 187-195		40
172	Distribution and changes of active layer thickness (ALT) and soil temperature (TTOP) in the source area of the Yellow River using the GIPL model. 2014 , 57, 1834-1845		38
171	Extrapolating active layer thickness measurements across Arctic polygonal terrain using LiDAR and data sets. 2014 , 50, 6339-6357		45

(2016-2015)

170	Temperature regimes of northern taiga soils in the isolated permafrost zone of Western Siberia. 2015 , 48, 1329-1340		18	
169	Snow as a driving factor of rock surface temperatures in steep rough rock walls. <i>Cold Regions Science and Technology</i> , 2015 , 118, 64-75	3.8	27	
168	Modeling permafrost properties in the Qinghai-Xizang (Tibet) Plateau. 2015 , 58, 2309-2326		20	
167	Active Layer Thickness Prediction on the Western Antarctic Peninsula. <i>Permafrost and Periglacial Processes</i> , 2015 , 26, 188-199	4.2	10	
166	Eighteen Year Record of Forest Fire Effects on Ground Thermal Regimes and Permafrost in the Central Mackenzie Valley, NWT, Canada. <i>Permafrost and Periglacial Processes</i> , 2015 , 26, 289-303	4.2	20	
165	A ground temperature map of the North Atlantic permafrost region based on remote sensing and reanalysis data. 2015 , 9, 1303-1319		62	
164	Large-area land surface simulations in heterogeneous terrain driven by global data sets: application to mountain permafrost. 2015 , 9, 411-426		33	
163	Advancement toward coupling of the VAMPER permafrost model within the Earth system model & lt;l>i</l>LOVECLIM (version 1.0): description and validation. 2015 , 8, 1445-1460		5	
162	Cryosphere: ice on Niwot Ridge and in the Green Lakes Valley, Colorado Front Range. 2015 , 8, 625-638		13	
161	Thermal characteristics of permafrost in the steep alpine rock walls of the Aiguille du Midi (Mont Blanc Massif, 3842 m a.s.l). 2015 , 9, 109-121		59	
160	Evaluation of airBoil temperature relationships simulated by land surface models during winter across the permafrost region. 2016 , 10, 1721-1737		29	
159	Presence of rapidly degrading permafrost plateaus in south-central Alaska. 2016 , 10, 2673-2692		27	
158	Effects of stratified active layers on high-altitude permafrost warming: a case study on the Qinghailibet Plateau. 2016 , 10, 1591-1603		16	
157	Modelling the spatial distribution of permafrost in Labrador Ungava using the temperature at the top of permafrost. 2016 , 53, 1010-1028		15	
156	Solar Radiation and Air and Ground Temperature Relations in the Cold and Hyper-Arid Quartermain Mountains, McMurdo Dry Valleys of Antarctica. <i>Permafrost and Periglacial Processes</i> , 2016 , 27, 163-176	4.2	23	
155	Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow. 2016 , 52, 1286-1305		79	
154	Performance comparison of permafrost models in Wudaoliang Basin, Qinghai-Tibet Plateau, China. 2016 , 13, 1162-1173		11	
153	Hydrologic Impacts of Thawing Permafrost™ Review. 2016 , 15, vzj2016.01.0010		340	

152	A new soil-temperature module for SWAT application in regions with seasonal snow cover. 2016 , 538, 863-877		38
151	Assessing an Enhanced Version of SWAT on Water Quantity and Quality Simulation in Regions with Seasonal Snow Cover. 2016 , 30, 5021-5037		21
150	An ecoregional assessment of freezing season air and ground surface temperature in the Mackenzie Valley corridor, NWT, Canada. <i>Cold Regions Science and Technology</i> , 2016 , 125, 152-161	3.8	6
149	Contrasting Soil Thermal Regimes in the Forest-Tundra Transition Near Nadym, West Siberia, Russia. <i>Permafrost and Periglacial Processes</i> , 2017 , 28, 108-118	4.2	12
148	Development of moderate-resolution gridded monthly air temperature and degree-day maps for the Labrador-Ungava region of northern Canada. 2017 , 37, 493-508		11
147	Over-Winter Channel Bed Temperature Regimes Generated by Contrasting Snow Accumulation in a High Arctic River. <i>Permafrost and Periglacial Processes</i> , 2017 , 28, 339-346	4.2	8
146	Effects of changing permafrost and snow conditions on tundra wildlife: critical places and times. <i>Arctic Science</i> , 2017 , 3, 65-90	2.2	41
145	Effects of local factors and climate on permafrost conditions and distribution in Beiluhe basin, Qinghai-Tibet Plateau, China. 2017 , 581-582, 472-485		48
144	An engineering evaluation index of thermal asymmetry in subgrade and its optimal design in cold regions. <i>Cold Regions Science and Technology</i> , 2017 , 137, 1-6	3.8	5
143	Freeze/thaw conditions at periglacial landforms in Kapp Linn[Svalbard, investigated using field observations, in situ, and radar satellite monitoring. 2017 , 293, 433-447		11
142	Long-Term Use of Diatomite Slope Embankments in Warm Permafrost Regions. 2017 , 31, 04017003		2
141	Spatial variability of active layer thickness detected by ground-penetrating radar in the Qilian Mountains, Western China. 2017 , 122, 574-591		31
140	Quantifying Surface Temperature Inversions and Their Impact on the Ground Thermal Regime at a High Arctic Site. 2017 , 49, 173-185		6
139	Distinguishing streamflow trends caused by changes in climate, forest cover, and permafrost in a large watershed in northeastern China. 2017 , 31, 1938-1951		24
138	Near-shore talik development beneath shallow water in expanding thermokarst lakes, Old Crow Flats, Yukon. 2017 , 122, 1070-1089		27
137	Spatiotemporal variations of differences between surface air and ground temperatures in China. 2017 , 122, 7990-7999		9
136	Potential weathering by freeze-thaw action in alpine rocks in the European Alps during a nine year monitoring period. 2017 , 296, 113-131		12
135	Chapter 5 Periglacial and permafrost ground models for Great Britain. 2017 , 28, 501-597		15

134	Effect of climate changes in the holocene on the distribution of humic substances in the profile of forest-tundra peat mounds. 2017 , 50, 1271-1282		5
133	Snow cover evolution, on 2009-2014, at the Limnopolar Lake CALM-S site on Byers Peninsula, Livingston Island, Antarctica 2017 , 149, 538-547		23
132	Ground temperature and permafrost distribution in Hurd Peninsula (Livingston Island, Maritime Antarctic): An assessment using freezing indexes and TTOP modelling. 2017 , 149, 560-571		25
131	Wind-driven snow conditions control the occurrence of contemporary marginal mountain permafrost in the Chic-Choc Mountains, south-eastern Canada: a case study from Mont Jacques-Cartier. 2017 , 11, 1351-1370		7
130	A new map of permafrost distribution on the Tibetan Plateau. 2017 , 11, 2527-2542		242
129	Impact of the Little Ice Age cooling and 20th century climate change on peatland vegetation dynamics in central and northern Alberta using a multi-proxy approach and high-resolution peat chronologies. 2018 , 185, 230-243		26
128	The Influence of Shallow Taliks on Permafrost Thaw and Active Layer Dynamics in Subarctic Canada. 2018 , 123, 281-297		58
127	Fine-scale influences on thaw depth in a forested peat plateau landscape in the Northwest Territories, Canada: Vegetation trumps microtopography. <i>Permafrost and Periglacial Processes</i> , 2018 , 29, 60-70	4.2	7
126	Sorted patterned ground in a karst cave, Ledenica pod Hrulto, Slovenia. <i>Permafrost and Periglacial Processes</i> , 2018 , 29, 121-130	4.2	9
125	Environmental controls on ground temperature and permafrost in Labrador, northeast Canada. <i>Permafrost and Periglacial Processes</i> , 2018 , 29, 73-85	4.2	20
124	Spatiotemporal changes of freezing/thawing indices and their response to recent climate change on the Qinghailibet Plateau from 1980 to 2013. <i>Theoretical and Applied Climatology</i> , 2018 , 132, 1187-17	199	16
123	Difference between near-surface air, land surface and ground surface temperatures and their influences on the frozen ground on the Qinghai-Tibet Plateau. <i>Geoderma</i> , 2018 , 312, 74-85	6.7	57
122	Modelling present and future permafrost thermal regimes in Northeast Greenland. <i>Cold Regions Science and Technology</i> , 2018 , 146, 199-213	3.8	16
121	Thermal regime of warm-dry permafrost in relation to ground surface temperature in the Source Areas of the Yangtze and Yellow rivers on the Qinghai-Tibet Plateau, SW China. 2018 , 618, 1033-1045		69
120	Circumpolar patterns of potential mean annual ground temperature based on surface state obtained from microwave satellite data. 2018 , 12, 2349-2370		7
119	Elevation-dependent thermal regime and dynamics of frozen ground in the Bayan Har Mountains, northeastern Qinghai-Tibet Plateau, southwest China. <i>Permafrost and Periglacial Processes</i> , 2018 , 29, 257-270	4.2	33
118	Dependence of C-Band Backscatter on Ground Temperature, Air Temperature and Snow Depth in Arctic Permafrost Regions. <i>Remote Sensing</i> , 2018 , 10, 142	5	14
117	Characteristics and fate of isolated permafrost patches in coastal Labrador, Canada. 2018 , 12, 2667-268	8	16

116	Thermal Characteristics and Recent Changes of Permafrost in the Upper Reaches of the Heihe River Basin, Western China. 2018 , 123, 7935		19
115	Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghailibet Plateau. 2018 , 12, 595-608		110
114	Impacts of snow on soil temperature observed across the circumpolar north. 2018, 13, 044012		25
113	Ground surface temperature and the detection of permafrost in the rugged topography on NE Qinghai-Tibet Plateau. <i>Geoderma</i> , 2019 , 333, 57-68	6.7	20
112	Coupling of VAMPERS within iLOVECLIM: experiments during the LGM and Last Deglaciation. 2019 , 34, 215-227		2
111	Long-term monitoring of sporadic permafrost at the eastern margin of the European Alps (Hochreichart, Seckauer Tauern range, Austria). <i>Permafrost and Periglacial Processes</i> , 2019 , 30, 260-277	4.2	8
110	Influence of snow cover on soil temperatures: Meso- and micro-scale topographic effects (a case study from the northern West Siberia discontinuous permafrost zone). 2019 , 183, 104224		10
109	Controlling factors of microclimate in blocky surface layers of two nearby relict rock glaciers (Niedere Tauern Range, Austria). 2019 , 101, 310-333		8
108	New insights into the environmental factors controlling the ground thermal regime across the Northern Hemisphere: a comparison between permafrost and non-permafrost areas. 2019 , 13, 693-707		21
107	References. 2019 , 547-617		
107	References. 2019, 547-617 Northern Hemisphere permafrost map based on TTOP modelling for 2000\(\text{2016} \) at 1 km2 scale. 2019, 193, 299-316		203
ŕ	Northern Hemisphere permafrost map based on TTOP modelling for 2000\(\textbf{Q}\)016 at 1 km2 scale.		203
106	Northern Hemisphere permafrost map based on TTOP modelling for 2000\(\textit{D}016 \) at 1 km2 scale. 2019 , 193, 299-316 Modeling soil temperature in a temperate region: A comparison between empirical and physically		y de la constant de l
106	Northern Hemisphere permafrost map based on TTOP modelling for 2000\(\textit{D}\)016 at 1 km2 scale. 2019, 193, 299-316 Modeling soil temperature in a temperate region: A comparison between empirical and physically based methods in SWAT. 2019, 129, 134-143 GlobSim (v1.0): deriving meteorological time series for point locations from multiple global reanalyses. 2019, 12, 4661-4679	3.5	17
106 105 104	Northern Hemisphere permafrost map based on TTOP modelling for 2000\(\textit{D}\)016 at 1 km2 scale. 2019, 193, 299-316 Modeling soil temperature in a temperate region: A comparison between empirical and physically based methods in SWAT. 2019, 129, 134-143 GlobSim (v1.0): deriving meteorological time series for point locations from multiple global reanalyses. 2019, 12, 4661-4679	3.5	17 8
106 105 104	Northern Hemisphere permafrost map based on TTOP modelling for 2000\(\textit{\textit{2016}}\) at 1 km2 scale. 2019, 193, 299-316 Modeling soil temperature in a temperate region: A comparison between empirical and physically based methods in SWAT. 2019, 129, 134-143 GlobSim (v1.0): deriving meteorological time series for point locations from multiple global reanalyses. 2019, 12, 4661-4679 Transient Modelling of Permafrost Distribution in Iceland. Frontiers in Earth Science, 2019, 7, Large-scale permafrost degradation as a primary factor in Larix sibirica forest dieback in the Khentii massif, northern Mongolia. 2020, 31, 197-208 Modeling permafrost changes on the Qinghai\(\textit{Iii}\) ibetan plateau from 1966 to 2100: A case study	3·5 4·2	17 8 10
106 105 104 103	Northern Hemisphere permafrost map based on TTOP modelling for 2000\(\textit{\textit{2016}}\) at 1 km2 scale. 2019, 193, 299-316 Modeling soil temperature in a temperate region: A comparison between empirical and physically based methods in SWAT. 2019, 129, 134-143 GlobSim (v1.0): deriving meteorological time series for point locations from multiple global reanalyses. 2019, 12, 4661-4679 Transient Modelling of Permafrost Distribution in Iceland. Frontiers in Earth Science, 2019, 7, Large-scale permafrost degradation as a primary factor in Larix sibirica forest dieback in the Khentii massif, northern Mongolia. 2020, 31, 197-208 Modeling permafrost changes on the Qinghai\(\textit{Iibetan plateau from 1966 to 2100: A case study from two boreholes along the Qinghai\(\textit{Iibet engineering corridor. Permafrost and Periglacial}\)		17 8 10

(2021-2020)

98	Modeling soil organic carbon spatial distribution for a complex terrain based on geographically weighted regression in the eastern Qinghai-Tibetan Plateau. 2020 , 187, 104399		15
97	Modelling ground thermal regime in bordering (dis)continuous permafrost environments. 2020 , 181, 108901		6
96	Characteristics of ground surface temperature at Chalaping in the Source Area of the Yellow River, northeastern Tibetan Plateau. 2020 , 281, 107819		35
95	Wildfire-Initiated Talik Development Exceeds Current Thaw Projections: Observations and Models From Alaska's Continuous Permafrost Zone. 2020 , 47, e2020GL087565		8
94	Bioclimatic gradients and soil property trends from northernmost mainland Norway to the Svalbard archipelago. Does the arctic biome extend into mainland Norway?. 2020 , 15, e0239183		
93	Remote sensing spatiotemporal patterns of frozen soil and the environmental controls over the Tibetan Plateau during 20020016. 2020 , 247, 111927		18
92	Variability of soil freeze depth in association with climate change from 1901 to 2016 in the upper Brahmaputra River Basin, Tibetan Plateau. <i>Theoretical and Applied Climatology</i> , 2020 , 142, 19-28	3	9
91	The Combination of Wildfire and Changing Climate Triggers Permafrost Degradation in the Khentii Mountains, Northern Mongolia. 2020 , 11, 155		7
90	Drivers of Holocene palsa distribution in North America. 2020 , 240, 106337		3
89	Observations and modelling of ground temperature evolution in the discontinuous permafrost zone in Nadym, north-west Siberia. <i>Permafrost and Periglacial Processes</i> , 2020 , 31, 264-280	4.2	9
89		4.2	9
	zone in Nadym, north-west Siberia. <i>Permafrost and Periglacial Processes</i> , 2020 , 31, 264-280 Ground surface temperature variability and permafrost distribution over mountainous terrain in	4.2	
88	zone in Nadym, north-west Siberia. <i>Permafrost and Periglacial Processes</i> , 2020 , 31, 264-280 Ground surface temperature variability and permafrost distribution over mountainous terrain in northern Mongolia. 2020 , 52, 13-26 Time Variant Sensitivity Analysis of Hydrological Model Parameters in a Cold Region Using Flow	4.2	5
88	zone in Nadym, north-west Siberia. <i>Permafrost and Periglacial Processes</i> , 2020 , 31, 264-280 Ground surface temperature variability and permafrost distribution over mountainous terrain in northern Mongolia. 2020 , 52, 13-26 Time Variant Sensitivity Analysis of Hydrological Model Parameters in a Cold Region Using Flow Signatures. 2020 , 12, 961 Pan-Antarctic map of near-surface permafrost temperatures at 1 km² scale.	4.2	5
88 87 86	Zone in Nadym, north-west Siberia. <i>Permafrost and Periglacial Processes</i> , 2020 , 31, 264-280 Ground surface temperature variability and permafrost distribution over mountainous terrain in northern Mongolia. 2020 , 52, 13-26 Time Variant Sensitivity Analysis of Hydrological Model Parameters in a Cold Region Using Flow Signatures. 2020 , 12, 961 Pan-Antarctic map of near-surface permafrost temperatures at 1 km² scale. 2020 , 14, 497-519 Utilizing the TTOP model to understand spatial permafrost temperature variability in a High Arctic		5 4 16
88 87 86 85	Cround surface temperature variability and permafrost distribution over mountainous terrain in northern Mongolia. 2020, 52, 13-26 Time Variant Sensitivity Analysis of Hydrological Model Parameters in a Cold Region Using Flow Signatures. 2020, 12, 961 Pan-Antarctic map of near-surface permafrost temperatures at 1 km ² scale. 2020, 14, 497-519 Utilizing the TTOP model to understand spatial permafrost temperature variability in a High Arctic landscape, Cape Bounty, Nunavut, Canada. Permafrost and Periglacial Processes, 2021, 32, 19-34 Permafrost Thaw in Northern Peatlands: Rapid Changes in Ecosystem and Landscape Functions.		5 4 16 2
88 87 86 85 84	Zone in Nadym, north-west Siberia. Permafrost and Periglacial Processes, 2020, 31, 264-280 Ground surface temperature variability and permafrost distribution over mountainous terrain in northern Mongolia. 2020, 52, 13-26 Time Variant Sensitivity Analysis of Hydrological Model Parameters in a Cold Region Using Flow Signatures. 2020, 12, 961 Pan-Antarctic map of near-surface permafrost temperatures at 1 km ² scale. 2020, 14, 497-519 Utilizing the TTOP model to understand spatial permafrost temperature variability in a High Arctic landscape, Cape Bounty, Nunavut, Canada. Permafrost and Periglacial Processes, 2021, 32, 19-34 Permafrost Thaw in Northern Peatlands: Rapid Changes in Ecosystem and Landscape Functions. 2021, 27-67 Mapping Frozen Ground in the Qilian Mountains in 2004\(2019\) Using Google Earth Engine Cloud	4.2	5 4 16 2

80	Mapping the Vulnerability of Arctic Wetlands to Global Warming. 2021, 9, e2020EF001858	6
79	Does tall vegetation warm or cool the ground surface? Constraining the ground thermal impacts of upright vegetation in northern environments. 2021 , 16, 054077	3
78	Climatic Factors Influencing the Anthrax Outbreak of 2016 in Siberia, Russia. 2021 , 18, 217-228	8
77	Modeling Reactive Solute Transport in Permafrost-Affected Groundwater Systems. 2021 , 57, e2020WR02877	14
76	Formation and evolution of suprapermafrost taliks beneath earth-filled embankments along the Qinghai-Tibet Railway in permafrost regions. <i>Cold Regions Science and Technology</i> , 2021 , 188, 103300	1
75	Conventional and UAV-Based Aerial Surveys for Long-Term Monitoring (1954\(\bar{\textsf{Q}}\)020) of a Highly Active Rock Glacier in Austria. 2021 , 2,	2
74	Permafrost changes in the Nanwenghe Wetlands Reserve on the southern slope of the Da Xing'anling-Yile'huli mountains, Northeast China. 2021 , 12, 696-709	6
73	Increased mean annual temperatures in 2014\(\mathbb{Q}\)019 indicate permafrost thaw in Alaskan national parks. 2021 , 53, 1-19	2
72	Permafrost Distribution and Stability. 126-146	3
71	Effect of climate and moss vegetation on ground surface temperature and the active layer among different biogeographical regions in Antarctica. 2020 , 190, 104562	9
70	Permafrost active layer. 2020 , 208, 103301	9
69	Circumpolar permafrost maps and geohazard indices for near-future infrastructure risk assessments. 2019 , 6, 190037	31
68	Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems. 2021 , 16, 015001	12
67	Distribution and current status of permafrost in the highest volcano in North America: Citlaltepetl (Pico de Orizaba), Mexico. 2020 , 59, 39-53	3
66	Coupled Northern Hemisphere permafrostike-sheet evolution over the last glacial cycle. <i>Climate of the Past</i> , 2015 , 11, 1165-1180	12
65	Coupled Northern Hemisphere permafrost-ice sheet evolution over the last glacial cycle.	1
64	The ERA5-Land soil temperature bias in permafrost regions. 2020 , 14, 2581-2595	26
63	Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change. 2020 , 14, 3155-3174	32

(2021-2015)

62	The influence of surface characteristics, topography and continentality on mountain permafrost in British Columbia. 2015 , 9, 1025-1038		28
61	Modelling past and future permafrost conditions in Svalbard.		1
60	Derivation and analysis of a high-resolution estimate of global permafrost zonation.		1
59	Modelling borehole temperatures in Southern Norway 🛭 Insights into permafrost dynamics during the 20th and 21st century.		1
58	Observing Muostakh Island disappear: erosion of a ground-ice-rich coast in response to summer warming and sea ice reduction on the East Siberian shelf.		7
57	Large area land surface simulations in heterogeneous terrain driven by global datasets: application to mountain permafrost.		5
56	The influence of surface characteristics, topography, and continentality on mountain permafrost in British Columbia.		2
55	A ground temperature map of the North Atlantic permafrost region based on remote sensing and reanalysis data.		5
54	Spatial Distribution of Permafrost in the Xinglin Mountains of Northeast China from 2001 to 2018. Land, 2021 , 10, 1127	3.5	1
53	Warming effects on arctic tundra biogeochemistry are limited but habitat-dependent: a meta-analysis. <i>Ecosphere</i> , 2021 , 12, e03777	3.1	2
52	Thermal Modelling of Post-Fire Permafrost Change under a Warming Coastal Subarctic Climate, Eastern Canada. 2021 ,		
51	Impacts of changes in vegetation cover on soil water heat coupling in an alpine meadow, Qinghai-Tibet Plateau, China.		
50	References. 505-553		
49	Impact of the Last Glacial Cycle on Late-Holocene temperature and energy reconstructions from terrestrial borehole temperatures in North America.		
48	Thermal characteristics of permafrost in the steep alpine rock walls of the Aiguille du Midi (Mont Blanc Massif, 3842 m a.s.l.).		
47	Coupling of the VAMPER permafrost model within the earth system model & lt;i>iLOVECLIM (version 1.0): description and validation.		
46	References. 423-501		
45	Modelling Permafrost Distribution in Western Himalaya Using Remote Sensing and Field Observations. <i>Remote Sensing</i> , 2021 , 13, 4403	5	1

44 Introduction. **2020**, 1-50

43	The Energy Balance of Permafrost Soils and Ecosystems. 2020 , 51-106		
42	Climatic assessment of circum-Arctic permafrost zonation over the last 122 kyr. <i>Polar Science</i> , 2021 , 10	00265	O
41	Spatial and Temporal Variations of Freezing and Thawing Indices From 1960 to 2020 in Mongolia. <i>Frontiers in Earth Science</i> , 2021 , 9,	3.5	1
40	The link between permafrost evolution and winter discharge of the river Indigirka, north-east Siberia, "####################################		
39	Effects of fire history on thermal regimes of permafrost in the northern Da Xing&nling Mountains, NE China. <i>Geoderma</i> , 2022 , 410, 115670	6.7	1
38	Lake and drained lake basin systems in lowland permafrost regions. <i>Nature Reviews Earth & Environment</i> , 2022 , 3, 85-98	30.2	6
37	Thermal Recovery of Backfilled Pit in the Gulianhe Strip Coalmine in the Hola Basin in Northern Da XingAnling Mountains, NE China. <i>Frontiers in Earth Science</i> , 2022 , 10,	3.5	
36	Analysis of Necessity and Feasibility for Ground Improvement in Warm and Ice-Rich Permafrost Regions. <i>Advances in Civil Engineering</i> , 2022 , 2022, 1-12	1.3	
35	The changing thermal state of permafrost. <i>Nature Reviews Earth & Environment</i> , 2022 , 3, 10-23	30.2	16
34	Thermal conductivity contrast effect of organic soils and its environmental implications. <i>Cold Regions Science and Technology</i> , 2022 , 196, 103485	3.8	0
33	Global maps of soil temperature Global Change Biology, 2021,	11.4	8
32	Winters are changing: snow effects on Arctic and alpine tundra ecosystems. Arctic Science,	2.2	1
31	Evidence of Warming From Long-Term Records of Climate and Permafrost in the Hinterland of the Qinghailibet Plateau. <i>Frontiers in Environmental Science</i> , 2022 , 10,	4.8	О
30	On the Spin-Up Strategy for Spatial Modeling of Permafrost Dynamics: A Case Study on the Qinghai-Tibet Plateau. <i>Journal of Advances in Modeling Earth Systems</i> , 2022 , 14,	7.1	О
29	A new perspective on permafrost boundaries in France during the Last Glacial Maximum. <i>Climate of the Past</i> , 2021 , 17, 2559-2576	3.9	3
28	CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5-8.5 scenario. <i>Climatic Change</i> , 2021 , 169, 1	4.5	2
27	Presentation_1.PPTX. 2019 ,		

26	Presentation_2.PPTX. 2019 ,		
25	Presentation_3.PPTX. 2019 ,		
24	Presentation_4.PPTX. 2019 ,		
23	Presentation_5.PPTX. 2019 ,		
22	Presentation_6.PPTX. 2019 ,		
21	Presentation_7.PPTX. 2019 ,		
20	Presentation_8.PPTX. 2019 ,		
19	Presentation_9.PPTX. 2019 ,		
18	Long-term soil temperature dynamics of the Kunlun Pass permafrost region on the Qinghai-Tibetan Plateau. <i>Theoretical and Applied Climatology</i> ,	3	O
17	Permafrost Geomorphology. <i>Geological Society Memoir</i> , M58-2022-11	0.4	3
16	TTOP-model-based maps of permafrost distribution in Northeast China for 1961\(\textbf{Q} 020. \) Permafrost and Periglacial Processes,	4.2	1
15	Active layer variability and change in the Mackenzie Valley, Northwest Territories between 1991-2014: An ecoregional assessment. 2022 , 54, 274-293		
14	Impact of climate warming on permafrost changes in the Qinghai-Tibet Plateau. 2023, 205, 103692		O
13	Modelling Permafrost Characteristics and Its Relationship with Environmental Constraints in the Gaize Area, Qinghai-Tibet Plateau, China. 2022 , 14, 5610		Ο
12	Water and heat coupling processes and its simulation in frozen soils: Current status and future research directions. 2023 , 222, 106844		O
11	Spatial memporal Characteristics of Freezing/Thawing Index and Permafrost Distribution in Heilongjiang Province, China. 2022 , 14, 16899		Ο
10	Significant underestimation of peatland permafrost along the Labrador Sea coastline in northern Canada. 2023 , 17, 63-78		О
9	Surface-based temperature inversion characteristics and impact on surface air temperatures in northwestern Canada from radiosonde data between 1990 and 2016.		O

8	Genesis and preservation of patterned ground in permafrost non-affected soils ©entral Apennines, Italy. 2023 , 32, e00604	О
7	Simulating the effect of subsurface drainage on the thermal regime and ground ice in blocky terrain in Norway. 2023 , 11, 33-50	o
6	A calculation model for the spatial distribution and reserves of ground ice - A case study of the Northeast China permafrost area. 2023 , 315, 107022	1
5	Hydrometeorological Conditions of the Volga Flow Generation into the Caspian Sea during the Last Glacial Maximum. 2023 , 11, 36	O
4	Thermal remote sensing for mapping the sub-Arctic permafrost and refining its southern limits.	
4	2023 , 118, 103235	О
3	2023, 118, 103235 Response of soil hydrothermal processes within the active layer to variable alpine vegetation conditions on the Qinghai-Tibet Plateau. 2023,	0
	Response of soil hydrothermal processes within the active layer to variable alpine vegetation	