High-pressure Raman spectroscopy study of wurtzite Z

Physical Review B 65, DOI: 10.1103/physrevb.65.092101

Citation Report

#	Article	IF	Citations
1	Epitaxial growth of ZnO films on Si(111). Journal of Materials Research, 2002, 17, 2480-2483.	2.6	48
2	Pressure-induced softening of shear modes in wurtzite ZnO: A theoretical study. Physical Review B, 2002, 66, .	3.2	90
3	High pressure Raman spectroscopy of spinel-type ferrite ZnFe2O4. Journal of Physics and Chemistry of Solids, 2003, 64, 2517-2523.	4.0	230
4	Simultaneous thermogravimetric analysis and in situ thermo-Raman spectroscopic investigation of thermal decomposition of zinc acetate dihydrate forming zinc oxide nanoparticles. Chemical Physics Letters, 2003, 381, 262-270.	2.6	62
5	Investigations on solution derived aluminium doped zinc oxide thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 103, 16-25.	3.5	121
6	Dependence of phonon widths on pressure and isotopic mass: ZnO. Physica Status Solidi (B): Basic Research, 2003, 235, 260-266.	1.5	57
7	Local structure of condensed zinc oxide. Physical Review B, 2003, 68, .	3.2	249
8	Raman and photoluminescence of ZnO films deposited on Si (111) using low-pressure metalorganic chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 979-982.	2.1	43
9	Dispersive Phonon Linewidths: TheE2Phonons of ZnO. Physical Review Letters, 2003, 90, 055510.	7.8	174
10	Catalytic growth and characterization of ZnO nano-needles. , 2003, , .		0
11	Preparation of gallium-doped ZnO films by oxidized ZnS films. Semiconductor Science and Technology, 2003, 18, L27-L30.	2.0	27
12	Two-step oxygen injection process for growing ZnO nanorods. Journal of Materials Research, 2003, 18, 2837-2844.	2.6	47
13	Optical properties of the isoelectronic trap Hg in ZnO. Applied Physics Letters, 2003, 82, 3448-3450.	3.3	12
14	Low-temperature growth and Raman scattering study of vertically aligned ZnO nanowires on Si substrate. Applied Physics Letters, 2003, 83, 4631-4633.	3.3	194
15	Coherent optical phonon mode oscillations in wurtzite ZnO excited by femtosecond pulses. Journal of Applied Physics, 2003, 93, 4939-4941.	2.5	33
16	Metal-catalyst-free epitaxial growth of aligned ZnO nanowires on silicon wafers at low temperature. Journal Physics D: Applied Physics, 2004, 37, 413-415.	2.8	26
17	Polymorphic transformation of dense ZnO nanoparticles: Implications for chair/boat-type Peierls distortions of AB semiconductor. Journal of Chemical Physics, 2004, 121, 11309.	3.0	12
18	Production of high-quality ZnO films by the two-step annealing method. Journal of Applied Physics, 2004, 96, 5308-5310.	2.5	48

ATION RED

2

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
19	Pressure dependence of the lattice dynamics of ZnO: Anab initioapproach. Physical Review B, 2004, 69, .	3.2	382
20	Size dependence of electron-phonon coupling in ZnO nanowires. Physical Review B, 2004, 69, .	3.2	254
21	Multiphonon resonant Raman scattering inZnOcrystals and nanostructured layers. Physical Review B, 2004, 70, .	3.2	113
22	Effects of pressure on the phonon–phonon and electron–phonon interactions in semiconductors. Physica Status Solidi (B): Basic Research, 2004, 241, 3128-3137.	1.5	14
23	Effect of Sn dopant on the properties of ZnO nanowires. Journal Physics D: Applied Physics, 2004, 37, 2274-2282.	2.8	98
24	Photoluminescence and resonant Raman scattering from ZnO-opal structures. Journal of Applied Physics, 2004, 96, 1001-1006.	2.5	44
25	The vibrational properties of one-dimensional ZnO:Ce nanostructures. Applied Physics Letters, 2004, 84, 416-418.	3.3	128
26	Raman scattering and absorption study of the high-pressure wurtzite to rocksalt phase transition of GaN. Physical Review B, 2004, 69, .	3.2	49
27	Unifying description of the wurtzite-to-rocksalt phase transition in wide-gap semiconductors: The effect ofdelectrons on the elastic constants. Physical Review B, 2004, 70, .	3.2	93
28	Influences of biaxial strains on the vibrational and exciton energies in ZnO. Journal of Applied Physics, 2004, 96, 289-293.	2.5	80
29	Phonon widths versus pressure. High Pressure Research, 2004, 24, 17-23.	1.2	18
30	The vibration and photoluminescence properties of one-dimensional ZnO nanowires. Journal of Crystal Growth, 2005, 274, 506-511.	1.5	31
31	Multipod zinc oxide nanowhiskers. Journal of Crystal Growth, 2005, 277, 330-334.	1.5	22
32	Magnetic and spectroscopic characteristics of ZnMnO system. Applied Surface Science, 2005, 252, 1628-1633.	6.1	18
33	A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 2005, 98, 041301.	2.5	9,857
34	Raman Scattering and Photoluminescence Studies of Zn _{1-x} Mn _x O Nanowires via Vapor Phase Growth. Materials Science Forum, 2005, 475-479, 3525-3530.	0.3	3
35	Cubic MgxZn1â^'xO wide band gap solid solutions synthesized at high pressures. Journal of Physics Condensed Matter, 2005, 17, 3377-3384.	1.8	12
36	Pressure-dependent photoluminescence of ZnO nanosheets. Journal of Applied Physics, 2005, 98, 106106.	2.5	27

#	Article	IF	CITATIONS
37	One-step growth of ZnO from film to vertically well-aligned nanorods and the morphology-dependent Raman scattering. Applied Physics Letters, 2005, 87, 231903.	3.3	100
38	Interpretation of the Phonon Frequency Shifts in ZnO Quantum Dots. Materials Research Society Symposia Proceedings, 2005, 872, 1.	0.1	1
39	Origin of the optical phonon frequency shifts in ZnO quantum dots. Applied Physics Letters, 2005, 86, 053103.	3.3	347
40	Arsenic doping of ZnO nanowires by post-annealing treatment. Nanotechnology, 2005, 16, 764-768.	2.6	28
41	Raman scattering and photoluminescence of quasi-aligned ternary ZnCdO nanorods. Journal Physics D: Applied Physics, 2005, 38, 2919-2922.	2.8	44
42	A nondestructive tool for nanomaterials: Raman and photoluminescence spectroscopy. American Journal of Physics, 2005, 73, 224-233.	0.7	23
43	Micro-Raman investigation of optical phonons in ZnO nanocrystals. Journal of Applied Physics, 2005, 97, 124313.	2.5	556
44	Resonant coupling of bound excitons with LO phonons in ZnO: Excitonic polaron states and Fano interference. Journal of Chemical Physics, 2005, 123, 221105.	3.0	30
45	Ab initioinvestigations of optical properties of the high-pressure phases of ZnO. Physical Review B, 2005, 71, .	3.2	363
46	Growth of ZnO thin films—experiment and theory. Journal of Materials Chemistry, 2005, 15, 139-148.	6.7	364
47	Hollow cadmium selenide semiconductor tetrapods. Applied Physics Letters, 2006, 88, 083102.	3.3	14
48	ZnO-Based Hollow Microspheres:Â Biopolymer-Assisted Assemblies from ZnO Nanorods. Journal of Physical Chemistry B, 2006, 110, 15847-15852.	2.6	137
49	Surfactant-Assisted Route to Synthesize Well-Aligned ZnO Nanorod Arrays on Solâ^'Gel-Derived ZnO Thin Films. Journal of Physical Chemistry B, 2006, 110, 14266-14272.	2.6	86
50	Thermal modification of magnetism in cobalt-doped ZnO nanowires grown at low temperatures. Physical Review B, 2006, 74, .	3.2	47
51	Engineering white light-emitting Eu-doped ZnO urchins by biopolymer-assisted hydrothermal method. Applied Physics Letters, 2006, 89, 123125.	3.3	108
52	Defect-related vibrational and photoluminescence spectroscopy of a codoped ZnO : Al : N film. Physics D: Applied Physics, 2006, 39, 2339-2342.	Journal	15
53	Synthesis and photoluminescence properties of vertically aligned ZnO nanorod–nanowall junction arrays on a ZnO-coated silicon substrate. Nanotechnology, 2006, 17, 3740-3744.	2.6	59
54	Growth and Optical Properties of Faceted Hexagonal ZnO Nanotubes. Journal of Physical Chemistry B, 2006, 110, 14714-14718.	2.6	123

#	Article	IF	CITATIONS
55	Stability of rocksalt phase of zinc oxide under strong compression: Synchrotron x-ray diffraction experiments and first-principles calculation studies. Journal of Applied Physics, 2006, 100, 093509.	2.5	60
56	Optical properties of ZnO nanoplatelets and rectangular cross-sectioned nanowires. Chemical Physics Letters, 2006, 422, 46-50.	2.6	22
57	The effect of post-annealing treatment on photoluminescence of ZnO nanorods prepared by hydrothermal synthesis. Journal of Crystal Growth, 2006, 287, 157-161.	1.5	83
58	The activation energy of the nitrogen acceptor in p-type ZnO film grown by plasma-assisted molecular beam epitaxy. Solid State Communications, 2006, 140, 345-348.	1.9	28
59	The effects of oxygen partial pressure on local structural properties for Ga-doped ZnO thin films. Thin Solid Films, 2006, 494, 38-41.	1.8	53
60	Pressure dependence of the near-band-edge photoluminescence from ZnO microrods at low temperature. Journal of Physics and Chemistry of Solids, 2006, 67, 2376-2381.	4.0	15
61	Grain evolution of nano-crystals ZnO under HP and HT. Science in China Series G: Physics, Mechanics and Astronomy, 2006, 49, 281-290.	0.2	1
62	Synthesis of ordered ZnO nanorods film on zinc-coated Si substrate and their photoluminescence property. Materials Chemistry and Physics, 2006, 99, 50-53.	4.0	21
63	Luminescence of selective area growth of epitaxial ZnO nanowires and random-growth-oriented nanobelts. Nanotechnology, 2006, 17, 1404-1407.	2.6	20
64	Optical and field emission properties of ZnO nanorod arrays synthesized on zinc foils by the solvothermal route. Nanotechnology, 2006, 17, 1533-1540.	2.6	92
65	Terahertz dielectric properties of high-resistivity single-crystal ZnO. Applied Physics Letters, 2006, 88, 021103.	3.3	52
66	Photoluminescence and Raman spectra in Ga-doped ZnO layers on sapphire. Materials Research Society Symposia Proceedings, 2007, 1035, 1.	0.1	0
67	Nitrogen-related recombination mechanisms in p-type ZnO films grown by plasma-assisted molecular beam epitaxy. Journal of Applied Physics, 2007, 102, .	2.5	59
68	Terahertz Dielectric Properties and Low-Frequency Phonon Resonances of ZnO Nanostructures. Journal of Physical Chemistry C, 2007, 111, 13000-13006.	3.1	29
69	Size Dependence of Gas Sensitivity of ZnO Nanorods. Journal of Physical Chemistry C, 2007, 111, 1900-1903.	3.1	393
70	ZnO Films Grown on Si Substrates with Au Nanocrystallites as Nuclei. Crystal Growth and Design, 2007, 7, 564-568.	3.0	7
71	Luminescence and Photocatalytic Activity of ZnO Nanocrystals:  Correlation between Structure and Property. Inorganic Chemistry, 2007, 46, 6675-6682.	4.0	514
72	Optical absorption edge shifts in electrodeposited ZnO thin films. Thin Solid Films, 2007, 515, 7976-7983.	1.8	39

#	Article	IF	CITATIONS
73	Optical properties of ZnO films grown by atmospheric-pressure chemical vapor deposition using Zn and H2O as source materials. Thin Solid Films, 2007, 516, 159-164.	1.8	13
74	Nonpolar a-plane ZnO films fabricated on (302)Î ³ -LiAlO2 by pulsed laser deposition. Journal of Crystal Growth, 2007, 303, 510-514.	1.5	25
75	The effect of growth time on the morphology of ZnO structures deposited on Si (100) by the aqueous chemical growth technique. Journal of Crystal Growth, 2007, 308, 105-109.	1.5	36
76	Pressure behaviour of the UV and green emission bands in ZnO micro-rods. Physica Status Solidi (B): Basic Research, 2007, 244, 87-92.	1.5	2
77	Pressure-induced phase transition in Co-doped ZnO. Physica Status Solidi (B): Basic Research, 2007, 244, 234-238.	1.5	14
78	ZnO: From basics towards applications. Physica Status Solidi (B): Basic Research, 2007, 244, 3027-3073.	1.5	854
79	Formation conditions and temperature dependence of forbidden reflections during resonant X-ray diffraction in zinc oxide single crystals. Crystallography Reports, 2007, 52, 604-610.	0.6	2
80	Fabrication and Optical Properties of Large-Scale ZnO Nanotube Bundles via a Simple Solution Route. Journal of Physical Chemistry C, 2007, 111, 17521-17526.	3.1	112
81	On the Optical, Thermal, and Vibrational Properties of Nano-ZnO:Mn, A Diluted Magnetic Semiconductor. International Journal of Thermophysics, 2007, 28, 1353-1370.	2.1	13
82	Zinc Oxide Nanorods Grown by Arc Discharge. Journal of Electronic Materials, 2007, 36, 494-497.	2.2	9
83	Hydrothermal synthesis and photoluminescent properties of ZnO sub-micrometer and micrometer rods. Optical Materials, 2007, 29, 532-538.	3.6	10
84	Study of the bandgap renormalization in Ga-doped ZnO films by means of optical absorption under high pressure and photoelectron spectroscopy. Superlattices and Microstructures, 2008, 43, 362-367.	3.1	13
85	Pulsed-laser deposition of ZnO thin-films on MgO substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3288-3292.	0.8	4
86	Firstâ€principles calculations of transition phase and thermodynamic properties of CdO. Physica Status Solidi (B): Basic Research, 2008, 245, 1113-1117.	1.5	9
87	Synthesis and Characterisation of Some New Zinc Carbamate Complexes Formed by CO2Fixation and Their Use as Precursors for ZnO Particles under Mild Conditions. European Journal of Inorganic Chemistry, 2008, 2008, 3177-3185.	2.0	22
88	Photoluminescence and Raman analysis of ZnO nanowires deposited on Si(100) via vapor–liquid–solid process. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 920-923.	2.7	78
89	Raman study of oriented ZnO thin films deposited by sol–gel method. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 71, 1234-1238.	3.9	140
90	Improvement of electrical and optical properties of Ga and N co-doped p-type ZnO thin films with thermal treatment. Applied Surface Science, 2008, 254, 6446-6449.	6.1	19

#	Article	IF	CITATIONS
91	First-principles calculations on phase transition and elasticity of CdO under pressure. Solid State Communications, 2008, 148, 6-9.	1.9	29
92	ZnO:Al nanostructures synthesized on pre-deposited aluminum (Al)/Si template: Formation, photoluminescence and electron field emission. Thin Solid Films, 2008, 517, 1268-1273.	1.8	19
93	Growth of Oriented Zinc Oxide Nanowire Array into Novel Hierarchical Structures in Aqueous Solutions. Journal of Physical Chemistry C, 2008, 112, 17546-17553.	3.1	29
94	Growth Mechanism and Optical Properties of Aligned Hexagonal ZnO Nanoprisms Synthesized by Noncatalytic Thermal Evaporation. Inorganic Chemistry, 2008, 47, 4088-4094.	4.0	40
96	Optical Properties of ZnO and Related Compounds. Springer Series in Materials Science, 2008, , 79-124.	0.6	34
97	Phase transformation and resistivity of dumbbell-like ZnO microcrystals under high pressure. Journal of Applied Physics, 2008, 103, 114901.	2.5	16
98	Competing intermediates in the pressure-induced wurtzite to rocksalt phase transition in ZnO. Physical Review B, 2008, 78, .	3.2	33
99	Facile Synthesis of Novel Photoluminescent ZnO Micro- and Nanopencils. Langmuir, 2008, 24, 13640-13645.	3.5	43
100	Ultraviolet-Emitting ZnO Nanostructures on Steel Alloy Substrates: Growth and Properties. Crystal Growth and Design, 2008, 8, 2741-2747.	3.0	54
101	Efficient Energy Transfer in Monodisperse Eu-Doped ZnO Nanocrystals Synthesized from Metal Acetylacetonates in High-Boiling Solvents. Journal of Physical Chemistry C, 2008, 112, 12234-12241.	3.1	212
102	Low-temperature synthesis and characterization of ZnO quantum dots. Journal of Alloys and Compounds, 2008, 463, 92-95.	5.5	36
103	Characterization of nanocrystalline ZnO grown on silicon substrates by dc reactive magnetron sputtering. , 2008, , .		0
104	Hierarchical Construction of ZnO Architectures Promoted by Heterogeneous Nucleation. Crystal Growth and Design, 2008, 8, 3609-3615.	3.0	81
105	Pressure-Stiffened Raman Phonons in Group III Nitrides: A Local Bond Average Approach. Journal of Physical Chemistry B, 2008, 112, 5027-5031.	2.6	29
106	A Simple Route of Morphology Control and Structural and Optical Properties of ZnO Grown by Metal-Organic Chemical Vapour Deposition. Chinese Physics Letters, 2008, 25, 3063-3066.	3.3	3
107	Non-monotonic size dependence of the elastic modulus of nanocrystalline ZnO embedded in a nanocrystalline silver matrix. Journal of Physics Condensed Matter, 2008, 20, 345224.	1.8	2
108	Biaxial stress-dependent optical band gap, crystalline, and electronic structure in wurtzite ZnO: Experimental and <i>ab initio</i> study. Journal of Applied Physics, 2008, 104, .	2.5	57
109	Lattice dynamics of wurtzite and rocksalt AlN under high pressure: Effect of compression on the crystal anisotropy of wurtzite-type semiconductors. Physical Review B, 2008, 77, .	3.2	61

#	ARTICLE	IF	CITATIONS
110	Anisotropy of the momentum matrix element, dichroism, and conduction-band dispersion relation of wurtzite semiconductors. Physical Review B, 2008, 78, .	3.2	43
111	Crystal symmetry breaking of wurtzite to orthorhombic in nonpolar a-ZnO epifilms. Applied Physics Letters, 2009, 95, 011905.	3.3	20
112	Phonon assisted photoluminescence and surface optical mode of Zn embedded ZnO nanostructure. Journal Physics D: Applied Physics, 2009, 42, 075416.	2.8	28
113	Photoluminescence and Raman scattering of ZnO nanorods. Solid State Sciences, 2009, 11, 865-869.	3.2	403
114	Low temperature hydrothermal growth and optical properties of ZnO nanorods. Crystal Research and Technology, 2009, 44, 87-91.	1.3	73
115	Solvothermal growth of highly oriented wurtziteâ€structured ZnO nanotube arrays on zinc foil. Crystal Research and Technology, 2009, 44, 619-623.	1.3	23
116	Photoluminescence and electrical properties of epitaxial Alâ€doped ZnO transparent conducting thin films. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2133-2138.	1.8	14
117	Phase transition and elasticity of CdO under pressure. Physica Status Solidi (B): Basic Research, 2009, 246, 71-76.	1.5	35
118	Effect of the oxygen pressure on the microstructure and optical properties of ZnO films prepared by laser molecular beam epitaxy. Physica B: Condensed Matter, 2009, 404, 4075-4082.	2.7	43
119	Structural Regulation and Optical Properties of One-Dimensional ZnO Nanomaterials in Situ Grown from and on Brass Substrates. Journal of Physical Chemistry C, 2009, 113, 170-173.	3.1	32
120	Photoluminescence and electrical transport characteristics of ZnO nanorods grown by vapor-solid technique. Journal of Applied Physics, 2009, 106, .	2.5	22
121	Structure and Electric Properties in Tin-Doped Zinc Oxide Films Synthesized by Pulsed Laser Deposition. Journal of the Electrochemical Society, 2009, 156, H424.	2.9	20
122	Growth mechanism and optical properties of ZnO nanotube by the hydrothermal method on Si substrates. Journal of Alloys and Compounds, 2009, 475, 741-744.	5.5	44
123	Effect of different annealing atmospheres on the structure and optical properties of ZnO nanoparticles. Journal of Alloys and Compounds, 2009, 485, 743-746.	5.5	22
124	X-ray diffraction, Raman, and photoacoustic studies of ZnTe nanocrystals. Journal of Applied Physics, 2009, 105, .	2.5	33
125	Influence of substrate surface polarity on homoepitaxial growth of ZnO layers by chemical vapor deposition. Physical Review B, 2009, 79, .	3.2	47
126	Symmetry of residual stress fields of ZnO below an indent measured by three-dimensional Raman spectroscopy. Journal of Applied Physics, 2009, 106, .	2.5	7
127	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> < mml:mrow > < mml:mtext > ZnO < /mml:mtext > < mml:mo > : < /mml:mo > < mml:msub > < mml:mi > M < / xmlns:mml="http://www.w3.org/1998/Math/MathML"	/mml:mi><	mml:mrow><

#	Article	IF	CITATIONS
128	Doping Effect on High-Pressure Structural Stability of ZnO Nanowires. Journal of Physical Chemistry C, 2009, 113, 1164-1167.	3.1	22
129	Growth of ZnO nanostructures on metallic and semiconducting substrates by pulsed laser deposition technique. Journal Physics D: Applied Physics, 2009, 42, 045415.	2.8	45
130	Fabrication of ZnO Nanospikes and Nanopillars on ITO Glass by Templateless Seed-Layer-Free Electrodeposition and Their Field-Emission Properties. ACS Applied Materials & Interfaces, 2009, 1, 789-796.	8.0	53
131	Cation order–disorder phase transitions in LiGaO2: Observation of the pathways of ternary wurtzite under high pressure. Journal of Applied Physics, 2010, 108, .	2.5	16
132	Stress Analysis by Means of Raman Microscopy. Springer Series in Optical Sciences, 2010, , 259-278.	0.7	4
133	Low-symmetry Td-distorted Co2+ centres in ceramic ZnO:Co. Chemical Physics Letters, 2010, 488, 173-176.	2.6	9
134	Optical properties of ZnO nanotubes. Crystal Research and Technology, 2010, 45, 647-650.	1.3	14
135	Optical and room temperature sensing properties of highly oxygen deficient flower-like ZnO nanostructures. Applied Surface Science, 2010, 257, 1544-1549.	6.1	59
136	SIMS and Raman characterizations of ZnO:N thin films grown by MOCVD. Journal of Crystal Growth, 2010, 312, 3063-3068.	1.5	14
137	Annealing and partial pressure ratio effects on ZnO films grown by metal-organic chemical vapor deposition using tert-butanol as oxidant. Thin Solid Films, 2010, 518, 6870-6875.	1.8	11
138	Origin of swift heavy ion induced stress in textured ZnO thin films: An in situ X-ray diffraction study. Solid State Communications, 2010, 150, 1751-1754.	1.9	36
139	Novel insight into the alignment and structural ordering of supported ZnO nanorods. Chemical Physics Letters, 2010, 500, 287-290.	2.6	25
140	ZnO nanoparticles prepared by an electroexploding wire technique. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2153-2158.	1.8	11
142	Numerical simulation of the forbidden Bragg reflection spectra observed in ZnO. Journal of Physics Condensed Matter, 2010, 22, 355404.	1.8	10
143	Anharmonic effects in ZnO optical phonons probed by Raman spectroscopy. Applied Physics Letters, 2010, 96, .	3.3	35
144	Exciton Luminescence Dynamics in ZnO Crystal Observed under One- and Two-Photon Excitation. Japanese Journal of Applied Physics, 2010, 49, 121102.	1.5	3
145	ZnO grown by chemical solution deposition. , 2010, , .		2
146	Thermal instability of implanted Mn ions in ZnO. Journal of Applied Physics, 2010, 107, 023507.	2.5	7

#	Article	IF	CITATIONS
147	Reduction of the transverse effective charge of optical phonons in ZnO under pressure. Applied Physics Letters, 2010, 96, .	3.3	43
148	Mechanically Stiffened and Thermally Softened Raman Modes of ZnO Crystal. Journal of Physical Chemistry B, 2010, 114, 1648-1651.	2.6	28
149	Enhanced Optical and Sensing Properties of One-Step Synthesized Ptâ^'ZnO Nanoflowers. Journal of Physical Chemistry C, 2010, 114, 18607-18611.	3.1	74
150	Influence of External Fields. Springer Series in Materials Science, 2010, , 201-232.	0.6	2
151	Oriented growth of ZnO nanostructures on different substrates via a hydrothermal method. Journal of Alloys and Compounds, 2010, 489, 51-55.	5.5	63
152	Growth of non-polar ZnO films on a-GaN/r-Al2O3 templates by radio-frequency magnetron sputtering. Journal of Alloys and Compounds, 2010, 489, 519-522.	5.5	17
153	Ageing effect on mechanically alloyed ZnTe nanocrystals. Journal of Alloys and Compounds, 2010, 493, 294-298.	5.5	7
154	ZnO interconnected network nanostructures grown on cracked GaN by the aqueous solution method. Journal of Alloys and Compounds, 2010, 505, L27-L30.	5.5	9
155	Study of active surface defects in Ti doped ZnO nanoparticles. Journal of Applied Physics, 2010, 107, .	2.5	48
156	ZnO Nanobridge Array UV Photodetectors. Journal of Physical Chemistry C, 2010, 114, 3204-3208.	3.1	77
157	Lattice Dynamics and Crystalline Properties of Wurtzite Zn _{1–<i>x</i>} Mg _{<i>x</i>} O Powders under High Pressure. Journal of Physical Chemistry C, 2011, 115, 19962-19970.	3.1	12
158	Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers. Physical Review B, 2011, 84, .	3.2	157
159	Impurity induced bond-softening and defect states in ZnO:Cu. Journal of Applied Physics, 2011, 110, 043523.	2.5	11
160	Single-crystal like mesoporous ZnO:Mn2+ nanorings of high optoelectronic quality formed by self-assembly of nanoparticles in an ultrasonic hydrolysis process. Nanoscale, 2011, 3, 4962.	5.6	3
161	High-pressure study of the infrared active modes in wurtzite and rocksalt ZnO. Physical Review B, 2011, 84, .	3.2	12
162	Softening of phonons by lattice defects and structural strain in heavy ion irradiated nanocrystalline zinc oxide films. Journal of Applied Physics, 2011, 110, .	2.5	59
163	Effect of compressive stress on stability of N-doped p-type ZnO. Applied Physics Letters, 2011, 99, 091908.	3.3	24
164	Low-cost set-up for Fourier-transform infrared spectroscopy in diamond anvil cell from 4000 to 400Âcm ^{â°1}	1.2	9

#	Article	IF	CITATIONS
165	Synthesis and optical properties of ZnO nanorods on indium tin oxide substrate. Applied Surface Science, 2011, 258, 93-97.	6.1	17
166	High-quality vertically aligned ZnO nanorods synthesized by microwave-assisted CBD with ZnO–PVA complex seed layer on Si substrates. Journal of Alloys and Compounds, 2011, 509, 6711-6719.	5.5	84
167	Synthesis and optical properties of Eu-doped ZnO nanosheets by hydrothermal method. Materials Science in Semiconductor Processing, 2011, 14, 247-252.	4.0	76
168	Growth and characterization of Cl-doped ZnO hexagonal nanodisks. Journal of Solid State Chemistry, 2011, 184, 2678-2682.	2.9	48
169	White light emission from nano-fibrous ZnO thin films/porous silicon nanocomposite. Journal of Sol-Gel Science and Technology, 2011, 59, 364-370.	2.4	27
170	Fabrication and photocatalytic activity of mushroom-like ZnO microcrystals via a solvothermal route. Rare Metals, 2011, 30, 173-176.	7.1	3
171	Effects of Growth Temperature on Properties of Nonpolar a-Plane ZnO Films on GaN Templates by Pulsed Laser Deposition. Journal of Electronic Materials, 2011, 40, 446-452.	2.2	5
172	The structural and optical properties of Volmer–Weberâ€ŧype ZnO nanorods. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 1021-1026.	1.8	5
173	Structural and Electrical Characterization of ZnO Films Grown by Spray Pyrolysis and Their Application in Thinâ \in Film Transistors. Advanced Functional Materials, 2011, 21, 525-531.	14.9	100
174	The effect of ZnO buffer layer on structural and optical properties of ZnO nanorods. Crystal Research and Technology, 2011, 46, 691-696.	1.3	6
175	Synthesis and optical properties of flower-like ZnO nanorods by thermal evaporation method. Applied Surface Science, 2011, 257, 5083-5087.	6.1	196
176	Effects of cooling rate and post-heat treatment on properties of ZnO thin films deposited by sol–gel method. Applied Surface Science, 2011, 257, 9019-9023.	6.1	27
177	Growth and characterization of ZnO nanowires grown on the Si(111) and Si(100) substrates: Optical properties and biaxial stress of nanowires. Materials Science in Semiconductor Processing, 2011, 14, 170-174.	4.0	53
178	Photocatalytic behavior of ZnO and Pt-incorporated ZnO nanoparticles in phenol degradation. Applied Catalysis A: General, 2011, 394, 269-275.	4.3	131
179	Structural and spectroscopic modifications of nanocrystalline zinc oxide films induced by swift heavy ions. Vacuum, 2011, 86, 87-90.	3.5	16
180	High quality ZnO and Ga:ZnO thin films grown onto crystalline Si (100) by RF magnetron sputtering. Solar Energy Materials and Solar Cells, 2011, 95, 2327-2334.	6.2	50
181	Sublattice-specific ordering of ZnO layers during the heteroepitaxial growth at different temperatures. Journal of Applied Physics, 2011, 110, 113516.	2.5	9
182	Synthesis of ZnO nanoflower arrays on patterned sapphire by aqueous solutions. , 2012, , .		2

#	Article	IF	CITATIONS
183	EFFECT OF SUBSTRATE TEMPERATURE ON THE CRYSTALLINITY AND BAND EDGE LUMINESCENCE OF ZnO THIN FILMS DEPOSITED BY PULSED LASER DEPOSITION. International Journal of Modern Physics B, 2012, 26, 1250161.	2.0	1
184	Effect of GaN/Si(111) template on structural and optical properties of ZnO nanostructures. Materials Research Innovations, 2012, 16, 368-371.	2.3	0
185	ZnO Meso-Mechano-Thermo Physical Chemistry. Chemical Reviews, 2012, 112, 2833-2852.	47.7	77
186	Thickness-dependent lattice relaxation and the associated optical properties of ZnO epitaxial films grown on Si (111). CrystEngComm, 2012, 14, 8103.	2.6	6
187	Microwave assisted chemical bath deposition of vertically aligned ZnO nanorods on a variety of substrates seeded by PVA–Zn(OH)2 nanocomposites. Applied Surface Science, 2012, 258, 4467-4472.	6.1	26
188	Effect of calcination temperature on the structural and optical properties of ZnO:Fe powders. Applied Surface Science, 2012, 258, 6103-6106.	6.1	8
189	Effect of Cu ions on the morphology, structure and luminescence properties of ZnO nanorod arrays prepared by hydrothermal method. Applied Surface Science, 2012, 258, 7118-7125.	6.1	21
190	Photoluminescence studies of ZnO thin films on R-plane sapphire substrates grown by sol–gel method. Journal of Luminescence, 2012, 132, 2581-2585.	3.1	16
191	Effect of doping concentration on absorbance, structural, and magnetic properties of cobalt-doped ZnO nano-crystallites. International Nano Letters, 2012, 2, 1.	5.0	28
192	Photoluminescence studies of ZnO thin films prepared using a laser-assisted sol-gel method. Journal of the Korean Physical Society, 2012, 61, 1826-1830.	0.7	1
193	Pressure-induced structural transition of ZnO nanocrystals studied with molecular dynamics. Computational Materials Science, 2012, 65, 450-455.	3.0	15
194	Characterization of self-assembled ordered ZnO nanowire networks applied to photodetection. Microelectronic Engineering, 2012, 100, 16-19.	2.4	5
196	Effect of oxygen pressure on the structural and magnetic properties of thin Zn _{0.98} Mn _{0.02} O films. EPJ Applied Physics, 2012, 57, 10301.	0.7	5
197	Role of point defects on the enhancement of room temperature ferromagnetism in ZnO nanorods. CrystEngComm, 2012, 14, 4713.	2.6	49
198	Laser-assisted sol-gel growth and characteristics of ZnO thin films. Applied Physics Letters, 2012, 100, 252108.	3.3	13
199	<i>Ab initio</i> calculations of the forbidden Bragg reflections energy spectra in wurtzites versus temperature. Journal of Physics Condensed Matter, 2012, 24, 245403.	1.8	4
200	Enhanced UV emission from ZnO nanoflowers synthesized by the hydrothermal process. Journal Physics D: Applied Physics, 2012, 45, 425103.	2.8	38
201	Diameter―and densityâ€controlled synthesis of wellâ€aligned ZnO nanowire arrays and their properties using a thermal evaporation technique. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1498-1510.	1.8	15

#	Article	IF	CITATIONS
202	Raman tensor elements of wurtzite ZnO. Physical Review B, 2012, 85, .	3.2	55
203	ZnO/PVA Macroscopic Fibers Bearing Anisotropic Photonic Properties. Advanced Functional Materials, 2012, 22, 3994-4003.	14.9	20
204	Atom Probe Tomography of Zinc Oxide Nanowires. Journal of Electronic Materials, 2012, 41, 801-808.	2.2	24
205	A study on rapid growth and piezoelectric effect of ZnO nanowires array. Materials Chemistry and Physics, 2012, 135, 112-116.	4.0	7
206	Structural and magnetic properties of low-energy Gd implanted ZnO single crystals. Nuclear Instruments & Methods in Physics Research B, 2012, 272, 100-103.	1.4	21
207	The field emission of indium-doped ZnO films fabricated by room temperature DC magnetron sputtering. Physica B: Condensed Matter, 2012, 407, 64-67.	2.7	12
208	Swift heavy ion induced modifications in structural, optical & magnetic properties of pure and V doped ZnO films. Vacuum, 2013, 95, 66-70.	3.5	19
209	Differences in n-type doping efficiency between Al- and Ga-ZnO films. Journal of Applied Physics, 2013, 113, .	2.5	64
211	Effects of the AlN buffer layer thickness on the properties of ZnO films grown on c-sapphire substrate by pulsed laser deposition. Journal of Alloys and Compounds, 2013, 554, 104-109.	5.5	19
212	Investigations on the growth and optical properties of one dimensional ZnO nanostructures grown by radio frequency magnetron sputter deposition. Materials Research Bulletin, 2013, 48, 3811-3816.	5.2	10
213	Structural, optical and ferroelectric behavior of hydrothermally grown ZnO nanostructures. Superlattices and Microstructures, 2013, 64, 331-342.	3.1	36
214	ZnO: phonon frequencies, mode-Grüneisen parameters. , 2013, , 145-153.		1
215	Fabrication of ZnO nanorod/p-GaN high-brightness UV LED by microwave-assisted chemical bath deposition with Zn(OH)2–PVA nanocomposites as seed layer. Optical Materials, 2013, 35, 1035-1041.	3.6	24
216	Comparison of the structural and optical properties of ZnO thin films deposited by three different methods for optoelectronic applications. Superlattices and Microstructures, 2013, 64, 283-293.	3.1	57
217	Effects of strain on the valence band structure and exciton-polariton energies in ZnO. Physical Review B, 2013, 88, .	3.2	42
218	Nanocrystalline ZnO films prepared by pulsed laser deposition and their abnormal optical properties. Applied Surface Science, 2013, 283, 781-787.	6.1	24
219	Dielectric properties and Raman spectra of ZnO from a first principles finite-differences/finite-fields approach. Scientific Reports, 2013, 3, 2999.	3.3	110
220	First-principles study of negative thermal expansion in zinc oxide. Journal of Applied Physics, 2013, 114, .	2.5	38

#	Article	IF	CITATIONS
221	Size-Dependent Correlations between Strain and Phonon Frequency in Individual ZnO Nanowires. ACS Nano, 2013, 7, 8891-8898.	14.6	37
222	Modelling of infrared optical constants for polycrystalline low pressure chemical vapour deposition ZnO:B films. Journal of Applied Physics, 2013, 113, 123104.	2.5	17
223	Less contribution of nonradiative recombination in ZnO nails compared with rods. Journal of Luminescence, 2013, 134, 35-41.	3.1	16
224	High-pressure Raman spectroscopy study of LiGaO2. Solid State Communications, 2013, 164, 6-10.	1.9	15
225	Carbonaceous spheres—an unusual template for solid metal oxide mesoscale spheres: Application to ZnO spheres. Journal of Solid State Chemistry, 2013, 202, 291-299.	2.9	16
226	Eco-friendly synthetic route for layered zinc compound and its conversion to ZnO with photocatalytical properties. Solid State Sciences, 2013, 23, 58-64.	3.2	22
227	Fabrication of ZnO/CdS/Cu ₂ ZnSnS ₄ p–n heterostructure nanorod arrays via a solution-based route. CrystEngComm, 2013, 15, 1139-1145.	2.6	24
228	Defects in Zn1â^'xâ^'yCoxMgyO nanoparticles: Probed by XRD, RAMAN and PAS techniques. Materials Science in Semiconductor Processing, 2013, 16, 659-666.	4.0	3
229	Synthesis, characterization and photocatalytic recital of nest-like zinc oxide photocatalyst. Korean Journal of Chemical Engineering, 2013, 30, 2001-2006.	2.7	9
230	A Model for the Mechanisms of Charge Transport Controlled by the Short-range Mobility. Materials Research Society Symposia Proceedings, 2013, 1556, 1.	0.1	0
231	ZnO/PVA Macroscopic Fibers Bearing Anisotropic Photonic Properties. Materials Research Society Symposia Proceedings, 2013, 1512, 1.	0.1	0
232	Optimizations of ZnO/Si(100) with ZnO/ZnMgO Super Lattice Buffer Layers Grown by Molecular Beam Epitaxy. Advanced Materials Research, 0, 706-708, 172-175.	0.3	0
233	Frequency shifts of the E2high Raman mode due to residual stress in epitaxial ZnO thin films. Applied Physics Letters, 2013, 103, .	3.3	18
234	High pressure phase transition of ZnO/SiO2 core/shell nanospheres. Journal of Applied Physics, 2013, 113, 054314.	2.5	5
235	ZnO NANONEEDLES DEPOSITED ON CHEMICALLY ETCHED SILICON NANOWIRES VIA HYDROTHERMAL PROCESS. Functional Materials Letters, 2013, 06, 1350010.	1.2	1
236	Augmentation of band gap and photoemission in ZnO by Li doping. Journal of Materials Science: Materials in Electronics, 2014, 25, 5201-5207.	2.2	5
237	Improvement of Crystal and Optical Properties of ZnO Film Grown on Hydrogen-Implanted Compliant Si Substrate. Advanced Materials Research, 0, 1015, 18-22.	0.3	0
238	Optical and Magnetic Properties of Fe Doped ZnO Nanoparticles Obtained by Hydrothermal Synthesis. Journal of Nanomaterials, 2014, 2014, 1-6.	2.7	56

#	Article	IF	CITATIONS
239	Red shift of optical band gap in ZnO doped with K synthesized by solution combustion technique. , 2014, , .		0
240	Gallium ion implantation greatly reduces thermal conductivity and enhances electronic one of ZnO nanowires. AlP Advances, 2014, 4, .	1.3	8
241	Effects of rare-earth (Er, La and Yb) doping on morphology and structure properties of ZnO nanostructures prepared by wet chemical method. Ceramics International, 2014, 40, 523-529.	4.8	143
242	Structurally enhanced photocatalytic activity of flower-like ZnO synthesized by PEG-assited hydrothermal route. Ceramics International, 2014, 40, 1951-1959.	4.8	41
243	Optical, electrical and structural properties of nano-pyramidal ZnO films grown on glass substrate by spray pyrolysis technique. Optical Materials, 2014, 36, 1123-1130.	3.6	33
244	Synthesis of ZnO nanowires on aluminum flake by aqueous method. Applied Physics A: Materials Science and Processing, 2014, 114, 1209-1213.	2.3	2
245	Nanograins: I. Elasticity and Compressibility. Springer Series in Chemical Physics, 2014, , 535-569.	0.2	0
246	The pressure-induced phase transition studies of In2S3 and In2S3:Ce nanoparticles. Journal of Solid State Chemistry, 2014, 210, 150-154.	2.9	10
247	Preparation and characterization of ZnO–SiO2 thin films as highly efficient photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 275, 37-46.	3.9	58
248	Thermodynamics of Nanoparticles: Experimental Protocol Based on a Comprehensive Ginzburg-Landau Interpretation. Nano Letters, 2014, 14, 269-276.	9.1	14
249	A low temperature process for phosphorous doped ZnO nanorods via a combination of hydrothermal and spin-on dopant methods. Nanoscale, 2014, 6, 2046-2051.	5.6	31
250	Enhanced ethanol sensing properties based on Sm ₂ O ₃ -doped ZnO nanocomposites. RSC Advances, 2014, 4, 64093-64098.	3.6	15
251	ZnO nanoparticles embedded in polyethylene-glycol (PEG) matrix as sensitive strain gauge elements. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	5
252	CL from ZnO nanowires and microneedles Co-doped with N and Mn. Semiconductor Science and Technology, 2014, 29, 055003.	2.0	3
253	Specific features of optical phonons in raman spectra of an array of vertical ZnO microrods on silicon. Physics of the Solid State, 2014, 56, 561-567.	0.6	0
254	Dependence on pressure of the refractive indices of wurtzite ZnO, GaN, and AlN. Physical Review B, 2014, 90, .	3.2	13
255	Investigate the interface structure and growth mechanism of high quality ZnO films grown on multilayer graphene layers. Applied Surface Science, 2014, 301, 391-395.	6.1	19
256	Construction of 3-dimensional ZnO-nanoflower structures for high quantum and photocurrent efficiency in dye sensitized solar cell. Applied Surface Science, 2014, 318, 32-36.	6.1	49

#	Article	IF	CITATIONS
257	Synthesis and characterization of Fe and Ni co-doped ZnO nanorods synthesized by a hydrothermal method. Ceramics International, 2014, 40, 14635-14640.	4.8	32
259	Effects of substitution, pressure, and temperature on the phonon mode in layered-rocksalt-type Li(1â^'x)/2Ga(1â^'x)/2ZnxO (x = 0.036–0.515) alloys. Journal of Applied Physics, 2015, 118, 185903.	2.5	5
260	Raman study of insulating and conductive ZnO:(Al, Mn) thin films. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2345-2354.	1.8	16
261	Fabrication and Characterization of Highly Oriented N-Doped ZnO Nanorods by Selective Area Epitaxy. Journal of Nanomaterials, 2015, 2015, 1-9.	2.7	5
262	Si/ZnO nanorods/Ag/AZO structures as promising photovoltaic plasmonic cells. Journal of Applied Physics, 2015, 117, .	2.5	17
263	Passivation of native defects of ZnO by doping Mg detected through various spectroscopic techniques. RSC Advances, 2015, 5, 44390-44397.	3.6	30
264	Structural and optical properties of ZnO nanoparticles prepared by direct precipitation method. Superlattices and Microstructures, 2015, 85, 7-23.	3.1	197
265	Spatially resolved optical properties of ZnO sub-microstructures on a graphene monolayer. Journal of the Korean Physical Society, 2015, 67, 1634-1638.	0.7	0
266	Pressure-induced phase transition in hydrothermally grown ZnO nanoflowers investigated by Raman and photoluminescence spectroscopy. Journal of Physics Condensed Matter, 2015, 27, 385401.	1.8	5
267	Modification of electrical and piezoelectric properties of ZnO nanorods based on arsenic incorporation via low temperature spin-on-dopant method. Journal of the Korean Physical Society, 2015, 67, 930-935.	0.7	2
268	Point defects assisted NH3 gas sensing properties in ZnO nanostructures. Sensors and Actuators B: Chemical, 2015, 212, 10-17.	7.8	58
269	Fabrication of low cost UV photo detector using ZnO nanorods grown onto nylon substrate. Journal of Materials Science: Materials in Electronics, 2015, 26, 1322-1331.	2.2	57
270	On the synthesis, structural, optical and magnetic properties of nano-size Zn–MgO. Superlattices and Microstructures, 2015, 85, 886-893.	3.1	17
271	Density functional perturbation theory calculations of vibrational and thermodynamic properties of Zn1â^Be O alloys. Materials Science in Semiconductor Processing, 2015, 40, 209-217.	4.0	4
272	Effect of growth temperature on the optical properties of ZnO nanostructures grown by simple hydrothermal method. RSC Advances, 2015, 5, 60365-60372.	3.6	58
273	Some physical investigations on hexagonal-shaped nanorods of lanthanum-doped ZnO. Journal of Alloys and Compounds, 2015, 648, 826-837.	5.5	65
274	A general, eco-friendly synthesis procedure of self-assembled ZnO-based materials with multifunctional properties. Dalton Transactions, 2015, 44, 7844-7853.	3.3	16
275	Solubility enhancement and epitaxial core–shell structure of Si-doped ZnO via a specific pulsed laser ablation route. Applied Physics A: Materials Science and Processing, 2015, 120, 1033-1045.	2.3	2

#	Article	IF	CITATIONS
276	First-principles study on the lattice dynamics of the layered ZnO in comparison with the wurtzite structure. Solid State Communications, 2015, 223, 19-23.	1.9	3
277	Structural and dielectric studies of hexagonal ZnO nanoparticles. Optik, 2015, 126, 4232-4236.	2.9	27
278	Theoretical investigation of elastic and phononic properties of Zn1â^'xBexO alloys. Modern Physics Letters B, 2015, 29, 1550140.	1.9	5
279	3dtransition metal doped Zn0.95Tm0.05O (Tm= Mn, Co, Ni, Cu): structure, microstructure, Raman, dielectric constant and magnetism. Materials Research Express, 2015, 2, 106102.	1.6	4
280	Investigation of the photoluminescence properties of Au/ZnO/sapphire and ZnO/Au/sapphire films by experimental study and electromagnetic simulation. Journal of Alloys and Compounds, 2015, 625, 175-181.	5.5	17
281	Quenching and blue shift of UV emission intensity of hydrothermally grown ZnO:Mn nanorods. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 191, 1-6.	3.5	17
282	Biopolymer starch mediated synthetic route of multi-spheres and donut ZnO structures. Carbohydrate Polymers, 2015, 115, 285-293.	10.2	42
283	Micro-stress dominant displacive reconstructive transition in lithium aluminate. Applied Physics Letters, 2016, 109, .	3.3	8
284	Preparation of Well-Defined Poly(styrene- <i>co</i> -acrylonitrile)/ZnO Hybrid Nanoparticles by an Efficient Ligand Exchange Strategy. Langmuir, 2016, 32, 13207-13213.	3.5	26
285	Pressure-induced structural transition of CdxZn1â^'xO alloys. Applied Physics Letters, 2016, 108, .	3.3	10
286	Fabrication and characterization of ultraviolet photosensors from ZnO nanowires prepared using chemical bath deposition method. Journal of Applied Physics, 2016, 119, 084306.	2.5	33
287	Importance of the Hubbard correction on the thermal conductivity calculation of strongly correlated materials: a case study of ZnO. Scientific Reports, 2016, 6, 36875.	3.3	16
288	The effect of boron on the doping efficiency of nitrogen in ZnO. Journal of Alloys and Compounds, 2016, 672, 260-264.	5.5	10
289	Copper and iron doped zinc oxide: chemical synthesis, characterization and their properties. Journal of Materials Science: Materials in Electronics, 2016, 27, 12287-12290.	2.2	8
290	Hydrothermal Synthesis of ZnO Structures Formed by High-Aspect-Ratio Nanowires for Acetone Detection. Nanoscale Research Letters, 2016, 11, 347.	5.7	19
291	Ethanol sensing characteristics of Zn _{0.99} M _{0.01} O (M = Al/Ni) nanopowders. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 203-209.	1.8	5
292	Grain size disposed structural, optical and polarization tuning in ZnO. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	13
293	Low temperature growth of ZnO nanotubes for fluorescence quenching detection of DNA. Journal of Materials Science: Materials in Medicine, 2016, 27, 189.	3.6	6

#	Article	IF	CITATIONS
294	Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics – a Comparative Study with Gallium Nitride. Scientific Reports, 2016, 6, 22504.	3.3	119
295	A facile synthesis of mesoporous PdZnO nanocomposites as efficient chemical sensor. Superlattices and Microstructures, 2016, 95, 128-139.	3.1	25
296	First-principles study on the physical properties of a layered ZnO with hexagonal α-BN structure. Solid State Communications, 2016, 233, 41-45.	1.9	1
297	Luminescent properties of ZnO and ZnMgO epitaxial layers under high hydrostatic pressure. Journal of Alloys and Compounds, 2016, 672, 125-130.	5.5	8
298	Comparison of the Reactive Adsorption Desulfurization Performance of Ni/ZnO–Al ₂ O ₃ Adsorbents Prepared by Different Methods. Energy & Fuels, 2016, 30, 2874-2881.	5.1	33
299	Structure, morphology, optical and magnetic response of ZnO, Mn3O4and doped Zn0.5Mn0.5O nanoparticles as-synthesized using a chemical co-precipitation method. Semiconductor Science and Technology, 2016, 31, 035017.	2.0	6
300	Extrusion-based Integrative Chemistry: Generation and applications of inorganic fibers. Comptes Rendus Chimie, 2016, 19, 674-683.	0.5	1
301	Synthesis and photoluminescence characterizations of the Er 3+ -doped ZnO nanosheets with irregular porous microstructure. Materials Science in Semiconductor Processing, 2016, 41, 32-37.	4.0	20
302	Development of transparent conductive indium and fluorine co-doped ZnO thin films: Effect of F concentration and post-annealing temperature. Thin Solid Films, 2016, 601, 7-12.	1.8	29
303	F-Center-Mediated Ferromagnetic Ordering in K-Doped ZnO. Journal of Superconductivity and Novel Magnetism, 2016, 29, 245-251.	1.8	8
304	Structural, optical, electrical properties, and strain/stress of electrochemically deposited highly doped ZnO layers and nanostructured ZnO antireflective coatings for cost-effective photovoltaic device technology. Thin Solid Films, 2016, 605, 215-231.	1.8	16
305	Synthesis of three-dimensional flower-like hierarchical ZnO nanostructure and its enhanced acetone gas sensing properties. Journal of Alloys and Compounds, 2016, 654, 371-378.	5.5	143
306	ZnO nanopowders and their excellent solar light/UV photocatalytic activity on degradation of dye in wastewater. Science China Chemistry, 2016, 59, 142-149.	8.2	12
307	Formation Mechanisms in β-Ca3(PO4)2–ZnO Composites: Structural Repercussions of Composition and Heat Treatments. Inorganic Chemistry, 2017, 56, 1289-1299.	4.0	19
308	Effect of Gd 3+ and Al 3+ on optical and dielectric properties of ZnO nanoparticle prepared by two-step hydrothermal method. Ceramics International, 2017, 43, 6932-6941.	4.8	51
309	Piezoelectric, elastic, Infrared and Raman behavior of ZnO wurtzite under pressure from periodic DFT calculations. Chemical Physics, 2017, 485-486, 98-107.	1.9	16
310	xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:mrow> < mml:mi mathvariant="normal">C < /mml:mi> < mml:msub> < mml:mi mathvariant="normal">S < /mml:mi> < mml:mn>2 < /mml:mn> < /mml:msub> < mml:mi> CoC < /mml:mi> < mml:msub> < /mml:msub> < /mml:msub> < /mml:mi> < mml:msub> < /mml:msub> < /ml:msub> < /mml:msub> < /ml:msub> < /ml:msub	nm1 : mi	4
311	Identification of a pressure-induced piezochromic phase at high pressure. Physical Review B, 2017, 95, . Surface photo-charge effect in doped-ZnO nanorods for high-performance self-powered ultraviolet photodetectors. Nanoscale, 2017, 9, 4536-4543.	5.6	44

#	Article	IF	CITATIONS
312	Enhanced dielectric behavior and ac electrical response in Gd-Mn-ZnO nanoparticles. Journal of Alloys and Compounds, 2017, 726, 11-21.	5.5	27
313	Low temperature synthesis of ZnO nanowires on GAZO thin films annealed at different temperatures for solar cell application. Materials Science in Semiconductor Processing, 2017, 68, 80-86.	4.0	14
314	Spatially distinct Raman scattering characteristics of individual ZnO nanorods under controlled polarization: intense end scattering from forbidden modes. Nanoscale, 2017, 9, 8470-8480.	5.6	28
315	Controlled morphological modifications of ZnO thin films by ion irradiation. Materials Research Express, 2017, 4, 116402.	1.6	12
316	High-pressure zinc oxide phase as visible-light-active photocatalyst with narrow band gap. Journal of Materials Chemistry A, 2017, 5, 20298-20303.	10.3	101
317	Structural and chemical disorder in semiconductors under pressure: Evidence in II–VI's, role of photoactive defects, material predictions. Japanese Journal of Applied Physics, 2017, 56, 05FA05.	1.5	2
318	Rapid Dissolution of ZnO Nanoparticles Induced by Biological Buffers Significantly Impacts Cytotoxicity. Chemical Research in Toxicology, 2017, 30, 1641-1651.	3.3	50
319	Effect of O2/Ar flow ratio on Ga and Al co-doped ZnO thin films by rf sputtering for optoelectronic device fabrication. Materials Research Bulletin, 2017, 95, 123-128.	5.2	19
320	Molecular dynamics simulation of ZnO wurtzite phase under high and low pressures and temperatures. Materials Research Express, 2017, 4, 115016.	1.6	1
321	Stress Analysis by Means of Raman Microscopy. Springer Series in Surface Sciences, 2018, , 509-529.	0.3	3
322	ZnAl ₂ O ₄ â€Functionalized Zinc Oxide Microstructures for Highly Selective Hydrogen Gas Sensing Applications. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700772.	1.8	16
323	Active Nano Metal Oxide Coating for Bio-fouling Resistance. Transactions of the Indian Institute of Metals, 2018, 71, 1323-1329.	1.5	3
324	Pressure induced solid-solid reconstructive phase transition in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>LiGa </mml:mi> <mml:msub> <mml:r mathvariant="normal">O <mml:mn>2 </mml:mn> </mml:r </mml:msub> </mml:mrow> dominated by elastic strain, Physical Review B, 2018, 97</mml:math 	mi 3.2	10
325	High-throughput density-functional perturbation theory phonons for inorganic materials. Scientific Data, 2018, 5, 180065.	5.3	122
326	Biosynthesis of ZnO Nanoparticles by Adansonia Digitata Leaves Dye Extract: Structural and Physical Properties. MRS Advances, 2018, 3, 2487-2497.	0.9	9
327	Piezoelectric Effect Tuning on ZnO Microwire Whispering-Gallery Mode Lasing. ACS Nano, 2018, 12, 11899-11906.	14.6	51
328	Facile fabrication and optimization of bowl-like ZnO/CdS nano-composite thin films with hierarchical nanopores and nano-cracks for high-performance photoelectrochemistry. International Journal of Hydrogen Energy, 2018, 43, 22046-22054.	7.1	8
329	Tailoring the properties of zinc oxide films by incorporating gold nanoparticles using RF magnetron sputtering. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	5

#	Article	IF	CITATIONS
330	Structural, morphological, composition and optical properties of undoped zinc oxide thin films prepared by spray pyrolysis method: effect of solution concentrations. Spectroscopy Letters, 2018, 51, 524-530.	1.0	2
331	Modifications of ZnO/ZnS Core Shell Surface by Varying ZnO Seed Layer Electrodeposition Conditions. Journal of the Electrochemical Society, 2018, 165, D635-D640.	2.9	4
332	Anomalous pressure effect on the thermal conductivity of ZnO, GaN, and AlN from first-principles calculations. Physical Review B, 2018, 98, .	3.2	42
333	Studies of Graphdiyneâ€ZnO Nanocomposite Material and Application in Polymer Solar Cells. Solar Rrl, 2018, 2, 1800211.	5.8	20
334	Linear, third order nonlinear and optical limiting studies on MZO/FTO thin film system fabricated by spin coating technique for electro-optic applications. Journal of Materials Research, 2018, 33, 3880-3889.	2.6	21
335	Joint improvement of conductivity and Seebeck coefficient in the ZnO:Al thermoelectric films by tuning the diffusion of Au layer. Materials and Design, 2018, 154, 41-50.	7.0	23
336	Investigation on structural, linear, nonlinear and optical limiting properties of sol-gel derived nanocrystalline Mg doped ZnO thin films for optoelectronic applications. Journal of Molecular Structure, 2018, 1173, 375-384.	3.6	58
337	Synthesis, characterization and photocatalytic degradation of chlorpyrifos by novel Fe: ZnO nanocomposite material. Nanotechnology for Environmental Engineering, 2018, 3, 1.	3.3	48
338	Zinc Interstitial Rich ZnO Honeycomb Nanostructures for Deep UV Photodetection. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800241.	2.4	19
339	A Systematic Study on the Structural and Optical Properties of Vertically Aligned Zinc Oxide Nanorods Grown by High Pressure Assisted Pulsed Laser Deposition Technique. Nanomaterials, 2018, 8, 62.	4.1	34
340	Crystal growth and piezoelectric characterization of mechanically stable ZnO nanostructure arrays. CrystEngComm, 2018, 20, 5688-5694.	2.6	14
341	Surface enhanced lithography with adhesion agent to achieve large-scale ZnO nanostructure on stainless steel substrate. Functional Materials Letters, 2018, 11, 1850084.	1.2	3
342	Facile synthesis of Al-doping 1D ZnO nanoneedles by co-precipitation method for efficient removal of methylene blue. Nano Structures Nano Objects, 2018, 16, 250-257.	3.5	19
343	Raman spectroscopy and optical properties of GAZO thin films deposited at various substrate temperatures. European Physical Journal Plus, 2018, 133, 1.	2.6	2
344	The correlation between surface defects and the behavior of hydrogen adsorption over ZnO under UV light irradiation. Catalysis Science and Technology, 2018, 8, 3260-3277.	4.1	39
345	Pooleâ€Frenkel Conduction Mechanism in ZnO:N Nanobelts. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800233.	1.8	4
346	Light-trapping enhanced ZnO–MoS ₂ core–shell nanopillar arrays for broadband ultraviolet-visible-near infrared photodetection. Journal of Materials Chemistry C, 2018, 6, 7077-7084.	5.5	52
347	ZnO/Cu2O-decorated rGO: Heterojunction photoelectrode with improved solar water splitting performance. International Journal of Hydrogen Energy, 2019, 44, 19177-19192.	7.1	44

#	Article	IF	CITATIONS
348	On the structural, optical and electrical properties of Cu2+ doped Zn0.94Cd0.06O nanomaterials. Chinese Journal of Physics, 2019, 61, 166-179.	3.9	12
349	High proportion ZnO/CuO nanocomposites: Synthesis, structural and optical properties, and their photocatalytic behavior. Surfaces and Interfaces, 2019, 17, 100367.	3.0	39
350	The Path of Gallium from Chemical Bath into ZnO Nanowires: Mechanisms of Formation and Incorporation. Inorganic Chemistry, 2019, 58, 10269-10279.	4.0	15
351	Morphological, structural and optical properties of Mg-doped ZnO nanocrystals synthesized using polyol process. Materials Science in Semiconductor Processing, 2019, 102, 104595.	4.0	33
352	Two Photon–Pumped Whisperingâ€Gallery Mode Lasing and Dynamic Regulation. Advanced Science, 2019, 6, 1900916.	11.2	9
354	Effect of induced defects on the properties of ZnO nanocrystals: surfactant role and spectroscopic analysis. SN Applied Sciences, 2019, 1, 1.	2.9	43
355	Pressure dependence of elastic properties of wurtzite ZnO crystal. Phase Transitions, 2019, 92, 798-805.	1.3	4
356	Multifield-resolved phonon spectrometrics: structured crystals and liquids. Progress in Solid State Chemistry, 2019, 55, 20-66.	7.2	23
357	Enhancing the structural, optical and electrical properties of ZnO nanopowders through (Al + Mn) doping. Results in Physics, 2019, 12, 1686-1696.	4.1	113
358	Photocatalytic decomposition of rhodamine B by newly designed one-dimension ZnO using chemical method. SN Applied Sciences, 2019, 1, 1.	2.9	1
359	Evolution of symmetry forbidden and silent Raman modes of cadmium doped zinc oxide films activated by swift heavy ion irradiation. Physica B: Condensed Matter, 2019, 570, 13-18.	2.7	10
360	Synthesis and characterization of undoped and Er-doped ZnO nano-structure thin films deposited by sol-gel spin coating technique. Materials Research Express, 2019, 6, 085916.	1.6	21
361	Origin of the piezochromism in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Cs</mml:mi><mml:n : Electron-phonon and crystal-structure correlations. Physical Review B, 2019, 99, .</mml:n </mml:msub></mml:mrow></mml:math 	nn 82x/mm	าl:r ธ n>
362	Direct growth of ZnO crystals on various Cu substrates by Cu-catalyzed chemical bath deposition. CrystEngComm, 2019, 21, 2476-2480.	2.6	2
363	Structure and Optical Properties of ZnO and ZnO ₂ Nanoparticles. Journal of Nano Research, 0, 56, 49-62.	0.8	11
364	The antibacterial and anticancer properties of zinc oxide coated iron oxide nanotextured composites. Colloids and Surfaces B: Biointerfaces, 2019, 177, 512-519.	5.0	43
365	Effects of cadmium insertion in blue-excited photoluminescence of ZnO. Optical Materials, 2019, 89, 344-348.	3.6	8
366	Preparation of Co and Ni doped ZnO nanoparticles served as encouraging nano-catalytic application. Materials Research Express, 2019, 6, 1250d5.	1.6	32

		CITATION REPORT	
#	Article	IF	Citation
367	Effective ways to enhance the photocatalytic activity of ZnO nanopowders: high crystalline c more oxygen vacancies, and preferential growth. New Journal of Chemistry, 2019, 43, 19223	egree, 2.8 -19231. 2.8	19
368	The Effect of RF Power on the Properties of Gallium and Aluminium Co-doped Zinc Oxide (GA Films. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 49-58.	ZO) Thin 3.7	2
369	Effect of Synthesis Temperature on Structural, Optical, and Magnetic Properties of ZnO Nanoparticles Synthesized by Combustion Method. Journal of Superconductivity and Novel Magnetism, 2019, 32, 2175-2183.	1.8	11
370	Propose for Raman mode position for Mn-doped ZnO nanoparticles. Physica B: Condensed N 555, 1-8.	atter, 2019, 2.7	19
371	w-ZnO nanostructures with distinct morphologies: Properties and integration into dye sensit solar cells. Ceramics International, 2020, 46, 8174-8184.	ized 4.8	3 10
372	Connecting theory with experiment to understand the photocatalytic activity of CuO–ZnC heterostructure. Ceramics International, 2020, 46, 9446-9454.	4.8	50
373	Near-infrared emission from modified zinc oxide hybrid nanostructures. Applied Surface Scier 509, 144874.	ıce, 2020, 6.1	. 2
374	A remarkable improvement in photocatalytic activity of ZnO nanoparticles through Sr doping synthesized by one pot flash combustion technique for water treatments. Colloids and Surfa Physicochemical and Engineering Aspects, 2020, 587, 124340.	ces A: 4.7	60
375	Enhancing the Performance of Rubber with Nano ZnO as Activators. ACS Applied Materials & Interfaces, 2020, 12, 48007-48015.	amp; 8.C) 45
376	Surface coordination layer passivates oxidation of copper. Nature, 2020, 586, 390-394.	27.	8 154
377	Synthesis and characterization of high-purity SnO ₂ (ZnO:Sn) _m sup nanowire arrays with broad-spectrum emissions. CrystEngComm, 2020, 22, 5355-5362.	erlattice 2.6	6
378	Single-step fabrication of ZnO microflower thin films for highly efficient and reusable photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2020, 31, 1357	8-13587. 2.2	10
379	Flower-Like ZnO Nanorods Synthesized by Microwave-Assisted One-Pot Method for Detectin Reducing Gases: Structural Properties and Sensing Reversibility. Frontiers in Chemistry, 2020	g 3.6	21
380	Microwave Irradiation to Produce High Performance Thermoelectric Material Based on Al Dop Nanostructures. Crystals, 2020, 10, 610.	ed ZnO 2.2	13
381	Raman scattering from irradiated nanocrystalline zinc oxide thin films: Perspective view on el energy loss, ion fluence, and ion flux. Vacuum, 2020, 181, 109598.	fects of 3.5	14
382	Visible light-driven ZnO/g-C3N4/carbon xerogel ternary photocatalyst with enhanced activity 4-chlorophenol degradation. Materials Chemistry and Physics, 2020, 256, 123651.	for 4.0) 34
383	Antibody Immobilization in Zinc Oxide Thin Films as an Easy-Handle Strategy for <i>Escherich Detection. ACS Omega, 2020, 5, 20473-20480.</i>	ia coli3.5	5 14
384	ZnO nanoparticles embedded in graphene xerogel as anode materials in Zn/Ni batteries with electrochemical performances. Ionics, 2020, 26, 5597-5605.	superior 2.4	5

#	Article	IF	CITATIONS
385	Impact of polytypism on the ground state properties of zinc oxide: A first-principles study. Results in Physics, 2020, 18, 103316.	4.1	8
386	Growth evolution and customized attributes of catalyst-free ZnO nanowires: role of varied Ar/O2 flow rate. Journal of Materials Science: Materials in Electronics, 2020, 31, 17422-17431.	2.2	0
387	The origin of additional modes in Raman spectra of ZnO:Sb films. Physica B: Condensed Matter, 2020, 593, 412256.	2.7	3
388	The Photophysical Properties of Ga-doped ZnO Thin Films Grown by Spray Pyrolysis Method. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 4895-4904.	3.7	1
389	Charge carrier density, mobility, and Seebeck coefficient of melt-grown bulk ZnGa2O4 single crystals. AIP Advances, 2020, 10, .	1.3	11
390	ZnO nanowire-based fluorometric enzymatic assays for lactate and cholesterol. Mikrochimica Acta, 2020, 187, 180.	5.0	16
391	Localized surface plasmon resonance of Cu-doped ZnO nanostructures and the material's integration in dye sensitized solar cells (DSSCs) enabling high open-circuit potentials. Journal of Alloys and Compounds, 2020, 829, 154497.	5.5	27
392	Cation impurity-defect complex induced ferromagnetism and hopping conduction in Sb-doped ZnO synthesized under high pressure. Journal of Alloys and Compounds, 2020, 823, 153713.	5.5	4
393	Optical, electrical and photoluminescence studies on Al2O3 doped PVA capped ZnO nanoparticles for optoelectronic device application. Optik, 2020, 205, 164236.	2.9	9
394	Strain-modulated high-quality ZnO cavity modes on different crystal orientations. Nanotechnology, 2020, 31, 225202.	2.6	0
395	Excitonic emission in heavily Ga-doped zinc oxide films grown on GaN. Journal of Luminescence, 2020, 223, 117265.	3.1	7
396	Novel Mg@ZnO nanoparticles synthesized by facile one-step combustion route for anti-microbial, cytotoxicity and photocatalysis applications. Journal of Nanostructure in Chemistry, 2021, 11, 147-163.	9.1	34
397	Semiconductor/relaxor 0–3 type composites: A novel strategy for energy storage capacitors. Journal of Science: Advanced Materials and Devices, 2021, 6, 19-26.	3.1	10
398	One-step hydrothermal synthesis of ZnO nanorods as efficient oxygen evolution reaction catalyst. Inorganic and Nano-Metal Chemistry, 2022, 52, 101-107.	1.6	1
399	Polymer Thermal Treatment Production of Cerium Doped Willemite Nanoparticles: An Analysis of Structure, Energy Band Gap and Luminescence Properties. Materials, 2021, 14, 1118.	2.9	7
400	Effect on the dielectric properties due to In–N co-doping in ZnO particles. Journal of Materials Science: Materials in Electronics, 2021, 32, 8991-9004.	2.2	13
401	High-pressure and high-temperature vibrational properties and anharmonicity of carbonate minerals up to 6 GPa and 500 ŰC by Raman spectroscopy. American Mineralogist, 2021, 106, 581-598.	1.9	7
402	ZnO–Sb ₂ O ₃ –Bi ₂ O ₃ Actional Spectroscopic Characterization. Inorganic Chemistry, 2021, 60, 8640-8650.	4.0	3

#	Article	IF	CITATIONS
403	Optimization and characterization of SILAR synthesized ZnO nanorods for UV photodetector sensor. Sensors and Actuators A: Physical, 2021, 323, 112656.	4.1	24
404	Structural, optical, antimicrobial and ferromagnetic properties of Zn1â^'xLaxO nanorods synthesized by chemical route. Journal of Alloys and Compounds, 2021, 865, 158937.	5.5	20
405	Towards high-performance linear piezoelectrics: Enhancing the piezoelectric response of zinc oxide thin films through epitaxial growth on flexible substrates. Applied Surface Science, 2021, 556, 149798.	6.1	9
406	Pressure-softening of zone-edge TA phonons and the fourfold to sixfold phase change. Physical Review B, 2021, 104, .	3.2	7
407	Transformation of free-standing ZnO nanorods upon Er doping. Applied Surface Science, 2021, 562, 150217.	6.1	21
408	High energy (MeV) ion beam induced modifications in Al2O3-ZnO multilayers thin films grown by ALD and enhancement in photoluminescence, optical and structural properties. Vacuum, 2021, 192, 110435.	3.5	9
409	Highly conductive and flexible electrodes based on ultrathin aluminum-doped zinc oxide epitaxial films. Applied Surface Science, 2021, 568, 150925.	6.1	7
410	Self-assembled and highly faceted growth of Mo and V doped ZnO nanoflowers for high-performance supercapacitors. Journal of Alloys and Compounds, 2021, 886, 161234.	5.5	49
411	Raman and X-ray photoelectron spectroscopic investigation of solution processed Alq3/ZnO hybrid thin films. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 265, 120377.	3.9	16
412	Tuning the interfacial electronic transitions of bi-dimensional nanocomposites (pGO/ZnO) towards photocatalytic degradation and energy application. Environmental Research, 2022, 204, 112050.	7.5	18
413	Structural, optical & magnetic properties of (Fe, Al) co-doped zinc oxide nanoparticles. Nanoscale Reports, 2019, 2, 3-16.	0.5	5
414	Photoluminescence and Raman properties of Sb-doped ZnO thin film. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 247701.	0.5	4
415	Growth and properties of ZnO film grown on AlN buffer layer by PLD. , 2012, , .		1
416	ZnO: dielectric constant, effective charge. , 2013, , 171-175.		0
417	ZnO: phase transition. , 2013, , 102-108.		0
418	Modification of the Crystalline Structure of ZnO Nanoparticles Embedded Within a SiO2 Matrix due to Thermal Stress Effects. Materials Research, 2019, 22, .	1.3	4
419	Electrochemical Synthesis and Characterization of ZnO Nanocomposite Copolymer Containing Fluorescent Feature Dye. Cumhuriyet Science Journal, 2019, 40, 433-439.	0.3	0
420	Effect and mechanism of cyanide degradation and Cu/Zn recovery by photoelectro-catalytic oxidation. Separation and Purification Technology, 2022, 282, 120050.	7.9	5

#	Article	IF	CITATIONS
421	Sized Crystals. , 2020, , 447-468.		0
422	Zinc Oxide (ZnO). , 2004, , 65-97.		0
423	Cold plasma treatment of ZnO:Er nano- and microrods: The effect on luminescence and defects creation. Journal of Alloys and Compounds, 2022, 895, 162671.	5.5	16
424	Synthesis and characterization of ZnO nanoflowers by using simple spray pyrolysis technique. Solid-State Electronics, 2022, 189, 108225.	1.4	10
425	Nanomolar detection of food additive tert-butylhydroquinone in edible oils based on novel ternary metal oxide embedded β-cyclodextrin functionalized carbon black. Food Chemistry, 2022, 377, 131867.	8.2	18
426	The Fluorescence Detection of Phenolic Compounds in Plicosepalus curviflorus Extract Using Biosynthesized ZnO Nanoparticles and Their Biomedical Potential. Plants, 2022, 11, 361.	3.5	7
427	Facile synthesis of Mn-doped ZnO nanoparticles by flash combustion route and their characterizations for optoelectronic applications. Journal of Materials Science: Materials in Electronics, 2022, 33, 3849-3869.	2.2	13
428	Synthesis of novel p-n heterojunction by the decoration of CuFe2O4 on ZnO nanorod: Characterization, enhanced visible light driven photocatalytic activity and intrinsic mechanism. Surfaces and Interfaces, 2022, 29, 101726.	3.0	6
429	Altering interfacial properties through the integration of C60 into ZnO ceramic via cold sintering process. Carbon, 2022, 190, 255-261.	10.3	12
430	Modulating the growth of chemically deposited ZnO nanowires and the formation of nitrogen- and hydrogen-related defects using pH adjustment. Nanoscale Advances, 2022, 4, 1793-1807.	4.6	11
431	A novel observation upon the nearâ€resonant Raman excitation of zinc oxide nanoparticles: Widening of the E ₂ (high) band. Journal of Raman Spectroscopy, 2022, 53, 872-879.	2.5	2
432	Plasma Treatment of Gaâ€Đoped ZnO Nanorods. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	1.8	1
433	Removal of methyl orange using combined ZnO/Fe2O3/ZnO-Zn composite coated to the aluminium foil in the presence of simulated solar radiation. Environmental Science and Pollution Research, 2022, 29, 51521-51536.	5.3	3
434	Novel ZnFe2O4 decorated on ZnO nanorod: Synergistic photocatalytic degradation of tetracycline, kinetics, degradation pathway and antifungal activity. Journal of Environmental Chemical Engineering, 2022, 10, 107673.	6.7	13
435	Investigation of the Effects of Rapid Thermal Annealing on the Electron Transport Mechanism in Nitrogen-Doped ZnO Thin Films Grown by RF Magnetron Sputtering. Nanomaterials, 2022, 12, 19.	4.1	6
436	Constructing a Channel to Regulate the Electron-Transfer Behavior of CO Adsorption and Light-Driven CO Reduction by H ₂ over CuO–ZnO. ACS Applied Materials & Interfaces, 2022, 14, 22531-22543.	8.0	11
437	Crystal-facet and microstructure engineering in ZnO for photocatalytic NO oxidation. Journal of Hazardous Materials, 2022, 435, 129073.	12.4	19
438	ZnO under Pressure: From Nanoparticles to Single Crystals. Crystals, 2022, 12, 744.	2.2	8

#	Article	IF	CITATIONS
439	A self-powered ZnO nanoarrays/GaN heterojunction ultraviolet photodetectors grown on Si(111) substrate. Bulletin of Materials Science, 2022, 45, .	1.7	1
440	Al ₂ O ₃ /ZnO Heterostructure-Based Sensors for Volatile Organic Compounds in Safety Applications. ACS Applied Materials & Interfaces, 2022, 14, 29331-29344.	8.0	15
441	X-ray Diffraction, Micro-Raman and X-ray Photoemission Spectroscopic Investigations for Hydrothermally Obtained Hybrid Compounds of Delafossite CuGaO2 and Wurtzite ZnO. Ceramics, 2022, 5, 655-672.	2.6	2
442	Zinc additions in calcium phosphate system. Phase behavior, microstructural and mechanical compatibility during sequential heat treatments. Journal of Alloys and Compounds, 2022, 929, 167173.	5.5	2
443	High-responsivity self-powered UV photodetector performance of pristine and V-doped ZnO nano-flowers. Optics and Laser Technology, 2023, 157, 108776.	4.6	5
444	Bryophyllum pinnatum leaf extract mediated ZnO nanoparticles with prodigious potential for solar driven photocatalytic degradation of industrial contaminants. Environmental Research, 2023, 216, 114751.	7.5	23
445	Polar and Non-Polar Zn1â ^{~'} xMgxO:Sb Grown by MBE. Materials, 2022, 15, 8409.	2.9	0
446	Heavily Doped Zinc Oxide with Plasma Frequencies in the Telecommunication Wavelength Range. Advanced Photonics Research, 2023, 4, .	3.6	3
447	Growth of undoped ZnO thin films by spray pyrolysis: effect of precursor concentration. Journal of Optics (India), 2023, 52, 1782-1788.	1.7	4
448	The role of saturable absorbers thickness in the Q-switching of the erbium-doped fiber laser. Laser Physics Letters, 2023, 20, 035101.	1.4	4
449	Effect of solution molarity on the structural, optical, electrical and photo-response properties of SILAR-deposited ZnO films. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	0
450	Al2O3/ZnO composite-based sensors for battery safety applications: An experimental and theoretical investigation. Nano Energy, 2023, 109, 108301.	16.0	8
451	Structural design of SiO2/TiO2 materials and their adsorption-photocatalytic activities and mechanism of treating cyanide wastewater. Journal of Molecular Liquids, 2023, 377, 121519.	4.9	6
452	Size reduction process by novel TVA technique and its effect on enhancement of physical properties of oxide semiconductor pellets. Advances in Materials and Processing Technologies, 0, , 1-18.	1.4	0
453	PEG functionalized ZnO nanoparticles by fusion of precipitation-cum-hydrothermal method with enhanced photocatalytic activity. Functional Composites and Structures, 2023, 5, 025002.	3.4	1
454	Interaction Study of Anti― <i>E. coli</i> Immobilization on 1DZnO at Nanoscale for Optical Biosensing Application. Advanced Materials Interfaces, 0, , .	3.7	2
455	Anisotropic thermal property characterizations and optical phonon contribution analysis of ZnO under high pressure. Journal of Materials Research and Technology, 2023, 24, 5337-5346.	5.8	2
456	Annular pupil confocal Brillouin–Raman microscopy for high spectral resolution multi-information mapping. Nanophotonics, 2023,	6.0	0

#	Article	IF	CITATIONS
457	Improved responsivity and detectivity photodetector based on ZnO-rGO nanocomposite nanostructures. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	0
458	One-Step Dry Coating of Hybrid ZnO–WO3 Nanosheet Photoanodes for Photoelectrochemical Water Splitting with Composition-Dependent Performance. Micromachines, 2023, 14, 2189.	2.9	0
459	Investigation on the effect of annealing period on the structural and optical properties of ZnO thin films prepared using a polymer precursor. Journal of Physics: Conference Series, 2023, 2603, 012006.	0.4	0
460	High Response of ZIF-8-Derived ZnO Nanorods to Low-Concentration Ethylene Glycol. ACS Applied Nano Materials, 2023, 6, 22069-22079.	5.0	0
461	Electric field-assisted laser ablation fabrication and assembly of zinc oxide/carbon nanocomposites into hierarchical structures for supercapacitor electrodes. Nanoscale, 0, , .	5.6	0
462	Cd-supported CuO-ZnO binary oxide thin films: Synthesis, microstructural, and optoelectronic properties. Optical Materials, 2024, 148, 114851.	3.6	0
463	Growth of ZnO Polytypes: Multiple Facets of Diverse Applications. Crystal Growth and Design, 2024, 24, 871-885.	3.0	1
464	Artificial neural network for deciphering the structural transformation of condensed ZnO by extended x-ray absorption fine structure spectroscopy. Journal of Physics Condensed Matter, 2024, 36, 195402.	1.8	0
466	Predicting Phase Stability at Interfaces. Physical Review Letters, 2024, 132, .	7.8	0
467	Ag-Li-ZnO nanostructures for efficient photocatalytic degradation of organic dyes and textile wastewater under visible light treatment. Journal of Molecular Structure, 2024, 1305, 137750.	3.6	0
468	Phase transition in silver niobate under high pressures. Physical Review B, 2024, 109, .	3.2	0