Damage evolution during freeze–thaw cycling of cem resistivity measurement

Cement and Concrete Research 32, 1657-1661 DOI: 10.1016/s0008-8846(02)00856-6

Citation Report

#	Article	IF	CITATIONS
1	Damage in cement-based materials, studied by electrical resistance measurement. Materials Science and Engineering Reports, 2003, 42, 1-40.	14.8	90
2	Microstructural effect of the shrinkage of cement-based materials during hydration, as indicated by electrical resistivity measurement. Cement and Concrete Research, 2004, 34, 1893-1897.	4.6	14
3	Internal Deterioration of Mortars in Freeze-Thawing: Non-Destructive Evaluation by Means of Electrical Impedance. Advanced Materials Research, 0, 68, 1-11.	0.3	9
4	Freeze–thaw resistance of blended cements containing calcined paper sludge. Construction and Building Materials, 2009, 23, 2862-2868.	3.2	89
6	Electrical Properties. Engineering Materials and Processes, 2010, , 203-275.	0.2	0
7	Binders and Concretes. , 2011, , 75-129.		2
8	The Assessment of Prediction Methodology of Concrete Freezing and Thawing Resistance. Medziagotyra, 2012, 18, .	0.1	1
9	Sustainable monitoring of concrete structures: strength and durability performance of polymer-modified self-sensing concrete. International Journal of Sustainable Engineering, 2012, 5, 170-174.	1.9	4
10	Cohesive fracture and probabilistic damage analysis of freezing–thawing degradation of concrete. Construction and Building Materials, 2013, 47, 879-887.	3.2	32
11	Characterizing blended cement pastes under cyclic freeze–thaw actions by electrical resistivity. Construction and Building Materials, 2013, 44, 477-486.	3.2	56
12	Analysis of Structural and Material Degradation of a Car-Park's RC Bearing Structure Due to City Environmental Influences. Procedia Engineering, 2013, 57, 183-192.	1.2	4
13	Aging and durability of ternary cements containing fly ash and activated paper sludge. Construction and Building Materials, 2014, 52, 253-260.	3.2	29
14	Effect of moisture content on freeze–thaw behavior of cement paste by electrical resistance measurements. Journal of Materials Science, 2014, 49, 4305-4314.	1.7	23
15	Freeze–thaw durability of cement-based geothermal grouting materials. Construction and Building Materials, 2014, 55, 390-397.	3.2	26
16	Durability studies on steelmaking slag concretes. Materials & Design, 2014, 63, 168-176.	5.1	95
17	Self-monitoring of freeze–thaw damage using triphasic electric conductive concrete. Construction and Building Materials, 2015, 101, 440-446.	3.2	39
18	Using COMSOL modeling to investigate the efficiency of PCMs at modifying temperature changes in cementitious materials – Case study. Construction and Building Materials, 2015, 101, 965-974.	3.2	43
19	Conductivity/activation energy relationships for cement-based materials undergoing cyclic thermal excursions. Journal of Materials Science, 2015, 50, 1129-1140.	1.7	35

CITATION REPORT

#	Article	IF	CITATIONS
20	Electrical Resistivity of Cement Pastes Undergoing Cyclic Freeze-Thaw Action. Journal of Materials in Civil Engineering, 2015, 27, 04014109.	1.3	14
21	Application of phase change materials to improve the thermal performance of cementitious material. Energy and Buildings, 2015, 103, 83-95.	3.1	60
22	Electrical response of mortar with different degrees of saturation and deicing salt solutions during freezing and thawing. Cement and Concrete Composites, 2015, 59, 49-59.	4.6	75
23	Frost resistance of concrete surfaces coated with waterproofing materials. AIP Conference Proceedings, 2015, , .	0.3	2
24	Characterization of Ag/AgCl electrode manufactured by immersion in sodium hypochloride acid for monitoring chloride content in concrete. Construction and Building Materials, 2016, 122, 310-319.	3.2	26
25	Application of lightweight aggregate and rice husk ash to incorporate phase change materials into cementitious materials. Journal of Sustainable Cement-Based Materials, 2016, 5, 349-369.	1.7	18
26	Daily and seasonal thermal stresses in tilings: a field survey combined with numeric modeling. Materials and Structures/Materiaux Et Constructions, 2016, 49, 1917-1933.	1.3	12
27	Ice-Templating and Freeze-Casting: Control of the Processes, Microstructures, and Architectures. Engineering Materials and Processes, 2017, , 351-438.	0.2	4
28	Freezing Colloids: Natural and Technological Occurrences. Engineering Materials and Processes, 2017, , 1-46.	0.2	1
29	Capacitance-based defect detection and defect location determination for cement-based material. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	14
30	Characterization of internal damage of concrete subjected to freeze-thaw cycles by electrochemical impedance spectroscopy. Construction and Building Materials, 2017, 152, 702-707.	3.2	15
31	Durability performance of rubberized mortar and concrete with NaOH-Solution treated rubber particles. Construction and Building Materials, 2017, 153, 496-505.	3.2	136
32	Evaluation of cement mortar suitability for repairing concrete in hydraulic structures. KSCE Journal of Civil Engineering, 2017, 21, 2814-2820.	0.9	11
33	Electrical and thermal characterisation of cement-based mortars containing recycled metallic waste. Journal of Cleaner Production, 2018, 190, 737-751.	4.6	19
34	Capacitance-based nondestructive detection of aggregate proportion variation in a cement-based slab. Composites Part B: Engineering, 2018, 134, 18-27.	5.9	10
35	Piezoelectricity-based self-sensing of compressive and flexural stress in cement-based materials without admixture requirement and without poling. Smart Materials and Structures, 2018, 27, 105011.	1.8	16
36	Water transport in binary eco-cements containing coal mining waste. Cement and Concrete Composites, 2019, 104, 103373.	4.6	22
37	Piezoresistive behaviours of cement-based sensor with carbon black subjected to various temperature and water content. Composites Part B: Engineering, 2019, 178, 107488.	5.9	111

CITATION REPORT

#	Article	IF	CITATIONS
38	Piezoresistive properties of cement-based sensors: Review and perspective. Construction and Building Materials, 2019, 203, 146-163.	3.2	214
39	Effect of freeze-thaw cycles on the mechanical behavior of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials. Construction and Building Materials, 2019, 200, 94-103.	3.2	117
40	Insights into surface crack propagation of cement mortar with different cement fineness subjected to freezing/thawing. Construction and Building Materials, 2020, 233, 117207.	3.2	9
41	Multifunctional cement composites with expanded graphite for temperature monitoring of buildings. Advances in Cement Research, 2020, 32, 413-420.	0.7	6
42	Assessing the freezing process of early age concrete by resistivity method. Construction and Building Materials, 2020, 238, 117689.	3.2	28
43	Developing a Multi-Element Sensor to Non-Destructively Monitor Several Fundamental Parameters Related to Concrete Durability. Sensors, 2020, 20, 5607.	2.1	8
44	Deviceless cement-based structures as energy sources that enable structural self-powering. Applied Energy, 2020, 280, 115916.	5.1	11
45	Deterioration of the Anti-Frost Performance of Concrete with Construction Waste Composite Powder Materials. Emerging Materials Research, 2020, 9, 1-14.	0.4	1
46	Self-sensing concrete: from resistance-based sensing to capacitance-based sensing. International Journal of Smart and Nano Materials, 2021, 12, 1-19.	2.0	51
47	Properties of Green Mortar Containing Granite Sawmill. Applied Sciences (Switzerland), 2021, 11, 2136.	1.3	1
48	Empirical Models for Prediction of Frost Resistance of Normal- and High-Strength Concretes. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 2021, 45, 2107-2131.	1.0	5
49	An Experimental Approach for Characterisation of Concrete Damage Using the Wheatstone Bridge Circuit. International Journal of Civil Engineering, 2022, 20, 75-89.	0.9	2
50	Applications of Cement-Based Smart Composites to Civil Structural Health Monitoring: A Review. Applied Sciences (Switzerland), 2021, 11, 8530.	1.3	12
51	Self-Sensing Cementitious Composites: Review and Perspective. Nanomaterials, 2021, 11, 2355.	1.9	31
52	Development of novel form-stable phase change material (PCM) composite using recycled expanded glass for thermal energy storage in cementitious composite. Renewable Energy, 2021, 175, 14-28.	4.3	55
54	Eco-friendly High-Strength Concrete Engineered by Micro Crumb Rubber from Recycled Tires and Plastics for Railway Components. Advances in Civil Engineering Materials, 2020, 9, 210-226.	0.2	8
55	Effect of Confining Pressure on the Damage Evolution and Failure Behaviors of Intact Sandstone Samples During Cyclic Disturbance. Rock Mechanics and Rock Engineering, 2022, 55, 19-33.	2.6	14
56	Effects of Interaction of Static Load and Frost on Damage Mechanism of Concrete Elements. Journal of Sustainable Architecture and Civil Engineering, 2012, 1, .	0.3	1

#	Article	IF	CITATIONS
58	Effects of exposure temperature on the piezoresistive sensing performances of MWCNT-embedded cementitious sensor. Journal of Building Engineering, 2022, 47, 103816.	1.6	14
59	Research on Real-Time Monitoring of Strain Behavior of Concrete under Freezing-Thawing Cycle by White Light Interferometer. Advances in Materials Science and Engineering, 2022, 2022, 1-7.	1.0	0
60	Effects of eco powders from solid waste on freeze-thaw resistance of mortar. Construction and Building Materials, 2022, 333, 127405.	3.2	13
61	Investigation on water absorption of concrete under the coupling action of uniaxial compressive load and freeze-thaw cycles. Materials and Structures/Materiaux Et Constructions, 2022, 55, .	1.3	1
62	The challenge of measuring rock moisture–a laboratory experiment using eight types of sensors. Geomorphology, 2022, 416, 108430.	1.1	3
63	Early-Stage Geopolymerization Process of Metakaolin-Based Geopolymer. Materials, 2022, 15, 6125.	1.3	7
64	Effect of Sulfate Crystallization on Uniaxial Compressive Behavior of Concrete Subjected to Combined Actions of Dry–Wet and Freeze–Thaw Cycles. Journal of Cold Regions Engineering - ASCE, 2023, 37, .	0.5	5
65	The Effect of Exposure Conditions on the Properties of Cementitious Composites with Reduced Electrical Resistivity. Buildings, 2022, 12, 2124.	1.4	2
66	Piezoresistivity and AC Impedance Spectroscopy of Cement-Based Sensors: Basic Concepts, Interpretation, and Perspective. Materials, 2023, 16, 768.	1.3	3
67	Evaluation of the durability of concretes containing alkali-activated slag exposed to the alkali-silica reaction by measuring electrical resistivity. Construction and Building Materials, 2023, 367, 130094.	3.2	4
68	Effects of Climate Change on Rendered Façades: Expected Degradation in a Progressively Warmer and Drier Climate—A Review Based on the Literature. Buildings, 2023, 13, 352.	1.4	1
69	The "mica crisis―in Donegal, Ireland – A case of internal sulfate attack?. Cement and Concrete Research, 2023, 168, 107149.	4.6	6

CITATION REPORT