Origin of the thermoelectric behavior of steel fiber cem

Cement and Concrete Research 32, 821-823 DOI: 10.1016/s0008-8846(01)00754-2

Citation Report

#	Article	IF	CITATIONS
1	Thermoelectric behavior of carbon–cement composites. Carbon, 2002, 40, 2495-2497.	10.3	28
2	Composite materials for thermoelectric applications. Engineering Materials and Processes, 2003, , 101-124.	0.4	0
3	Effect of fiber content on the thermoelectric behavior of cement. Journal of Materials Science, 2004, 39, 4103-4106.	3.7	27
4	Electrically conductive cement-based materials. Advances in Cement Research, 2004, 16, 167-176.	1.6	137
5	Role of moisture in the Seebeck effect in cement-based materials. Cement and Concrete Research, 2005, 35, 810-812.	11.0	22
6	Early age stability of concrete pavement by using hybrid fiber together with MgO expansion agent in high altitude locality. Construction and Building Materials, 2013, 48, 685-690.	7.2	44
7	Energy harvesting from solar irradiation in cities using the thermoelectric behavior of carbon fiber reinforced cement composites. RSC Advances, 2014, 4, 48128-48134.	3.6	59
8	Enhanced thermoelectric effect of cement composite by addition of metallic oxide nanopowders for energy harvesting in buildings. Construction and Building Materials, 2016, 115, 576-581.	7.2	51
9	Smart textile reinforcement with embedded stainless steel yarns for the detection of wetting and infiltration in TRC structures. Sensors and Actuators A: Physical, 2016, 243, 139-150.	4.1	13
10	Capacitance-based nondestructive detection of aggregate proportion variation in a cement-based slab. Composites Part B: Engineering, 2018, 134, 18-27.	12.0	10
11	P- and n-type thermoelectric cement composites with CVD grown p- and n-doped carbon nanotubes: Demonstration of a structural thermoelectric generator. Energy and Buildings, 2019, 191, 151-163.	6.7	77
12	Multifunctional cement composites with expanded graphite for temperature monitoring of buildings. Advances in Cement Research, 2020, 32, 413-420.	1.6	6
13	Thermoelectric figure of merit enhancement in cement composites with graphene and transition metal oxides. Materials Today Energy, 2020, 18, 100492.	4.7	27
14	State of the art in composition, fabrication, characterization, and modeling methods of cement-based thermoelectric materials for low-temperature applications. Renewable and Sustainable Energy Reviews, 2021, 137, 110361.	16.4	24
15	Experimental investigation of Seebeck effect in metakaolin-based geopolymer. Construction and Building Materials, 2021, 272, 121615.	7.2	10
16	High-performance cement/SWCNT thermoelectric nanocomposites and a structural thermoelectric generator device towards large-scale thermal energy harvesting. Journal of Materials Chemistry C, 2021, 9, 14421-14438.	5.5	21
17	Thermoelectric Energy Harvesting from Single-Walled Carbon Nanotube Alkali-Activated Nanocomposites Produced from Industrial Waste Materials. Nanomaterials, 2021, 11, 1095.	4.1	13
18	Energy-harvesting concrete for smart and sustainable infrastructures. Journal of Materials Science, 2021, 56, 16243-16277.	3.7	15

ITATION REDO

CITATION REPORT

#	Article	IF	CITATIONS
19	Thermoelectric energy harvesting using cement-based composites: a review. Materials Today Energy, 2021, 21, 100714.	4.7	27
20	Fiber-based thermoelectrics for solid, portable, and wearable electronics. Energy and Environmental Science, 2021, 14, 729-764.	30.8	143
21	Electrically conductive cement-based materials. Advances in Cement Research, 2004, 16, 167-176.	1.6	13
22	The applicability of shungite as an electrically conductive additive in cement composites. Journal of Building Engineering, 2022, 45, 103469.	3.4	7
23	Development and use of geopolymers for energy conversion: An overview. Construction and Building Materials, 2022, 315, 125774.	7.2	18
24	THE NATURE AND CONDITIONS OF FORMATION OF THERMOELECTRIC PROPERTIES IN NATURAL AND ARTIFICIAL LAYERED ALUMOSILICATES. Ukrainian Chemistry Journal, 2022, 88, 70-90.	0.5	0
25	Unveiling the Remarkable Potential of Geopolymerâ€Based Materials by Harnessing Manganese Dioxide Incorporation. Small, 2024, 20, .	10.0	1
26	Carrier type control in cement-based thermoelectric composites with carbon nanotube and SrTiO3 nanoparticles. Materials Today Communications, 2023, 37, 106973.	1.9	0
27	Thermoelectric ultra-lightweight high-performance ECC using cenospheres and calcined petroleum coke. Construction and Building Materials, 2023, 407, 133513.	7.2	1
28	Thermoelectric properties of cement mortar doped with steel fiber under heating conditions. International Journal of Heat and Fluid Flow, 2024, 106, 109274.	2.4	0
29	Thermoelectric properties of the modified natural aluminosilicates. Voprosy Khimii I Khimicheskoi Tekhnologii, 2023, , 13-24.	0.4	0
30	A Study of Thermoelectric Energy Harvesting on Asphalt Concrete Pavement. Transportation Infrastructure Geotechnology, 0, , .	3.1	Ο