Piezoelectric cement-based materials with large coupling

Cement and Concrete Research 32, 335-339 DOI: 10.1016/s0008-8846(01)00682-2

Citation Report

#	Article	IF	CITATIONS
1	Pyroelectric behavior of cement-based materials. Cement and Concrete Research, 2003, 33, 1675-1679.	11.0	42
2	Piezoelectric effect of hardened cement paste. Cement and Concrete Composites, 2004, 26, 717-720.	10.7	50
3	Cement-based electronics. , 2004, 5272, 369.		1
4	Electrically conductive cement-based materials. Advances in Cement Research, 2004, 16, 167-176.	1.6	137
5	Guide to the Literature of Piezoelectricity and Pyroelectricity. 23. Ferroelectrics, 2005, 321, 91-204.	0.6	27
6	Electrically induced temperature difference and deformation in hardened cement pastes. Cement and Concrete Research, 2006, 36, 2164-2168.	11.0	5
7	Impedance spectroscopy study of saturated mortar samples. Electrochimica Acta, 2008, 53, 7549-7555.	5.2	63
8	Cement-based piezoelectret. Materials and Structures/Materiaux Et Constructions, 2009, 42, 541-557.	3.1	11
9	Simulating the effect of electric warming concrete layer in ANSYS. , 2011, , .		0
10	Effect of Pozzolanic Materials and Poling Field on Electromechanical Coupling Coefficient of Cement-Based Piezoelectric Composites. Advanced Materials Research, 0, 512-515, 2867-2872.	0.3	2
11	Carbon nanotube cement-based transducers for dynamic sensing of strain. Cement and Concrete Composites, 2013, 37, 2-11.	10.7	205
12	Influence of aluminium inclusions on dielectric properties of three-phase PZT–cement–aluminium composites. Advances in Cement Research, 2014, 26, 63-76.	1.6	16
13	Aging of 0–3 piezoelectric PZT ceramic–Portland cement composites. Ceramics International, 2014, 40, 13579-13584.	4.8	39
14	Piezoelectric response of MWCNTs/cement nanocomposites. Microelectronic Engineering, 2015, 146, 53-56.	2.4	8
15	Piezoelectric and dielectric properties of PZT–cement–aluminum nano-composites. Ceramics International, 2015, 41, 819-833.	4.8	22
16	Cements in the 21 st century: Challenges, perspectives, and opportunities. Journal of the American Ceramic Society, 2017, 100, 2746-2773.	3.8	168
17	Functional Cementitious Composites for Pyroelectric Applications. Journal of Electronic Materials, 2018, 47, 2378-2385.	2.2	12
18	Electromagnetic radiation detection in 0-3 cement-PZT composite under impact loading. Integrated Ferroelectrics, 2018, 192, 67-79.	0.7	8

TATION REDO

	CITATION RI	CITATION REPORT	
#	Article	IF	CITATIONS
19	Dynamic response of a 2-2 multi-layered cement-based piezoelectric composite under arbitrary mechanical load. Journal of Intelligent Material Systems and Structures, 2019, 30, 3080-3099.	2.5	4
20	Electromagnetic radiation response from cement paste: a tool to monitor hydration and extent of deformation. Journal of Sustainable Cement-Based Materials, 2019, 8, 20-38.	3.1	5
21	Piezoelectric materials for sustainable building structures: Fundamentals and applications. Renewable and Sustainable Energy Reviews, 2019, 101, 14-25.	16.4	115
22	Effects of Water Content and Temperature on Bulk Resistivity of Hybrid Cement/Carbon Nanofiber Composites. Materials, 2020, 13, 2884.	2.9	5
23	A review on deformation-induced electromagnetic radiation detection: history and current status of the technique. Journal of Materials Science, 2021, 56, 4500-4551.	3.7	20
24	Emerging Resilience-Enabling Technologies. , 2021, , 207-246.		0
25	Emerging Technologies for Resilient Infrastructure: Conspectus and Roadmap. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2021, 7, .	1.7	9
26	Energy-harvesting concrete for smart and sustainable infrastructures. Journal of Materials Science, 2021, 56, 16243-16277.	3.7	15
27	Effect of carbonation on bulk resistivity of cement/carbon nanofiber composites. Construction and Building Materials, 2021, 305, 124794.	7.2	14
28	Composite materials for dielectric applications. Engineering Materials and Processes, 2003, , 125-166.	0.4	1
29	Electrically conductive cement-based materials. Advances in Cement Research, 2004, 16, 167-176.	1.6	13
30	CARBON–CEMENT COMPOSITES. , 0, , 219-242.		2
32	Electrical resistance and capacitance responses of smart ultra-high performance concrete with compressive strain by DC and AC measurements. Construction and Building Materials, 2022, 327, 127007.	7.2	14
34	Review and Outlook of Self-Sensing, Self-Healing, Piezoelectric Pozzolans, and Piezoelectric Fibers in "Smart―Engineered Cementitious Composites (ECC). Iranian Journal of Science and Technology - Transactions of Civil Engineering, 2023, 47, 639-662.	1.9	3
35	A Review of Self-Sensing in Carbon Fiber Structural Composite Materials. , 2023, 01, .		1
36	Developing a Prototype Piezoelectric Wafer-Box for Optimal Energy Harvesting. Lecture Notes in Networks and Systems, 2023, , 1-15.	0.7	0
37	EFFECT OF INTERFACIAL TRANSITION ZONE ON POWER GENERATION ASSOCIATED WITH LOADING OF CEMENTITOUS MATERIALS. Cement Science and Concrete Technology, 2023, 76, 229-237.	0.1	0
38	POWER GENERATION TO CYCLIC LOADING IN CEMENT PASTE COMPOSITES WITH DIFFERENT CONDUCTIVES. Cement Science and Concrete Technology, 2023, 76, 220-228.	0.1	0

		CITATION	on Report		
#	Article		IF	CITATIONS	
39	A review of cement-based materials as electroceramics. Ceramics International, 2023, 4	49, 24621-24642.	4.8	7	
40	A Non-destructive Radar Device for Detecting Additive Materials in Concrete. Engineeri & Applied Science Research, 2023, 13, 10969-10972.	ing, Technology	1.9	О	
41	New-generation pavement empowered by smart and multifunctional concretes: A revie Construction and Building Materials, 2023, 402, 132980.	ew.	7.2	3	
42	Mineral-impregnated carbon-fiber based reinforcing grids as thermal energy harvesters: proof-of-concept study towards multifunctional building materials. Energy and Building 113564.	: A gs, 2023, 298,	6.7	2	