Flexible graphite as a heating element

Carbon 40, 2285-2289 DOI: 10.1016/s0008-6223(02)00141-0

Citation Report

#	Article	IF	CITATIONS
1	Carbon fiber mats as resistive heating elements. Carbon, 2003, 41, 2436-2440.	5.4	36
3	Electrical applications of carbon materials. Journal of Materials Science, 2004, 39, 2645-2661.	1.7	276
4	Computation of Temperature Distribution in Infiltration of Metal in Opal Using a Graphite Furnace Heating Assembly. Materials Research Society Symposia Proceedings, 2005, 878, 1.	0.1	0
5	A novel electrode-bipolar plate assembly for vanadium redox flow battery applications. Journal of Power Sources, 2008, 175, 613-620.	4.0	117
6	Sorption of lead, mercury and cadmium ions in multi-component system using carbon aerogel as adsorbent. Journal of Hazardous Materials, 2008, 153, 502-507.	6.5	122
7	<i>Ab Initio</i> Study of Water Clusters Adsorption on Graphite Surface. Advanced Materials Research, 0, 105-106, 499-501.	0.3	0
8	Thermoelectrical properties of intercalated recycled carbon fibre composite. Composites Part A: Applied Science and Manufacturing, 2011, 42, 1406-1411.	3.8	23
9	Zirconia-modified exfoliated graphite. Inorganic Materials, 2011, 47, 603-608.	0.2	0
10	Expandable graphite modification by boric acid. Journal of Materials Research, 2012, 27, 1054-1059.	1.2	5
11	Percolation backbone structure analysis in electrically conductive carbon fiber reinforced cement composites. Composites Part B: Engineering, 2012, 43, 3270-3275.	5.9	41
12	Three-dimensional evaluation of the compression and recovery behavior in a flexible graphite sheet by synchrotron radiation microtomography. Materials Characterization, 2012, 69, 52-62.	1.9	21
13	Compression and recovery micro-mechanisms in flexible graphite. Carbon, 2013, 59, 184-191.	5.4	15
14	An in situ small angle neutron scattering study of expanded graphite under a uniaxial stress. Carbon, 2013, 57, 460-469.	5.4	13
15	Thermal decomposition of graphite nitrate. Carbon, 2013, 59, 337-343.	5.4	14
16	Interface-derived extraordinary viscous behavior of exfoliated graphite. Carbon, 2014, 68, 646-652.	5.4	34
17	Determination of chlorine and sulfur in high purity flexible graphite using ion chromatography (IC) and inductively coupled plasma optical emission spectrometry (ICP OES) after pyrohydrolysis sample preparation. Analytical Methods, 2015, 7, 2129-2134.	1.3	30
18	Building Threeâ€Dimensional Graphene Frameworks for Energy Storage and Catalysis. Advanced Functional Materials, 2015, 25, 324-330.	7.8	156
19	Nitrogen and Sulfur Codoped Graphite Foam as a Self‣upported Metalâ€Free Electrocatalytic Electrode for Water Oxidation. Advanced Energy Materials, 2016, 6, 1501492.	10.2	153

TATION PEDO

#	Article	IF	CITATIONS
20	Microwave-induced combustion of high purity nuclear flexible graphite for the determination of potentially embrittling elements using atomic spectrometric techniques. Microchemical Journal, 2016, 124, 321-325.	2.3	10
21	A review of exfoliated graphite. Journal of Materials Science, 2016, 51, 554-568.	1.7	205
22	Cobalt disulfide/graphite foam composite films as self-standing electrocatalytic electrodes for overall water splitting. Physical Chemistry Chemical Physics, 2017, 19, 4821-4826.	1.3	42
23	Electrochemical Fabrication of High Quality Graphene in Mixed Electrolyte for Ultrafast Electrothermal Heater. Chemistry of Materials, 2017, 29, 6214-6219.	3.2	60
24	Trace Level Co–N Doped Graphite Foams as High-Performance Self-Standing Electrocatalytic Electrodes for Hydrogen and Oxygen Evolution. ACS Catalysis, 2018, 8, 4637-4644.	5.5	53
25	Epitaxial MoS2 nanosheets on nitrogen doped graphite foam as a 3D electrode for highly efficient electrochemical hydrogen evolution. Electrochimica Acta, 2018, 292, 407-418.	2.6	31
26	Electric and Hydraulic Properties of Carbon Felt Immersed in Different Dielectric Liquids. Materials, 2018, 11, 650.	1.3	5
27	Polyurethane/carbon fiber composite tubular electrode featuring three-dimensional interpenetrating conductive network. Carbon, 2018, 139, 999-1009.	5.4	34
28	Theoretical Description of Carbon Felt Electrical Properties Affected by Compression. Applied Sciences (Switzerland), 2019, 9, 4030.	1.3	6
29	Electret, piezoelectret, dielectricity and piezoresistivity discovered in exfoliated-graphite-based flexible graphite, with applications in mechanical sensing and electric powering. Carbon, 2019, 150, 531-548.	5.4	28
30	LADRC based TEC Temperature Control System. , 2019, , .		2
31	MoSi2-based cylindrical susceptor for rapid high-temperature induction heating in air. Ceramics International, 2020, 46, 23636-23642.	2.3	8
32	A review on thermophysical properties of flexible graphite. Procedia Structural Integrity, 2020, 26, 187-198.	0.3	11
33	Mechanical properties of flexible graphite: review. Procedia Structural Integrity, 2020, 25, 420-429.	0.3	17
34	Effect of Processing Parameters on the Thermal and Electrical Properties of Electroless Nickel-Phosphorus Plated Carbon Fiber Heating Elements. Journal of Carbon Research, 2020, 6, 6.	1.4	4
35	Environment-friendly preparation of exfoliated graphite and functional graphite sheets. Journal of Materiomics, 2021, 7, 136-145.	2.8	25
36	Composite materials for electrical applications. Engineering Materials and Processes, 2003, , 73-89.	0.2	12
37	Nanoindentation of flexible graphite: experimental versus simulation studies. Advanced Material Science, 2018, 3, .	0.3	1

IF CITATIONS # ARTICLE High Boron-Doping-Induced Electrical and Thermal Conductivities of a Pan-Based Carbon Fiber. SSRN Electronic Journal, O, , . 0.4 0 38 High electrical and thermal conductivities of a PAN-based carbon fiber via boron-assisted catalytic graphitization. Carbon, 2022, 199, 70-79. Effect of catalytic graphitization on the electric heating performance of electroless nickel-coated carbon fibers. Current Applied Physics, 2022, 42, 86-91. 40 1.1 2 Observation of electric polarization continuity in graphite. Materials Chemistry and Physics, 2023, 297, 127357. High-temperature thermal conductivity measurements of macro-porous graphite., 2023,,. 44 0

CITATION REPORT