A comparative study of carbons for use as an electrically manganese dioxide cathode of an electrochemical cell

Carbon 40, 447-449 DOI: 10.1016/s0008-6223(01)00233-0

Citation Report

#	Article	IF	CITATIONS
1	Carbon black dispersions as thermal pastes that surpass solder in providing high thermal contact conductance. Carbon, 2003, 41, 2459-2469.	5.4	126
2	Electrical applications of carbon materials. Journal of Materials Science, 2004, 39, 2645-2661.	1.7	276
3	Electrical conductivity of carbon blacks under compression. Carbon, 2005, 43, 741-747.	5.4	225
4	Carbon Nanotube Thermal Pastes for Improving Thermal Contacts. Journal of Electronic Materials, 2007, 36, 1181-1187.	1.0	46
5	Tailoring Composite Materials. Engineering Materials and Processes, 2010, , 157-201.	0.2	3
6	Structural and electrochemical modification of graphitic carbons by vapor-phase iodine-incorporation. Carbon, 2010, 48, 4178-4189.	5.4	18
8	Electrical Properties. Engineering Materials and Processes, 2010, , 203-275.	0.2	0
9	The Effect of Carbon Additives on the Microstructure and Conductivity of Alkaline Battery Cathodes. Journal of the Electrochemical Society, 2014, 161, A1691-A1697.	1.3	15
10	Dielectric and electrical conduction behavior of carbon paste electrochemical electrodes, with decoupling of carbon, electrolyte and interface contributions. Carbon, 2014, 72, 135-151.	5.4	49
11	Application of carbon materials in redox flow batteries. Journal of Power Sources, 2014, 253, 150-166.	4.0	262
12	Optical and electrical characterization of carbon nanoparticles produced in laminar premixed flames. Combustion and Flame, 2014, 161, 3201-3210.	2.8	33
13	Dielectric constant and electrical conductivity of carbon black as an electrically conductive additive in a manganese-dioxide electrochemical electrode, and their dependence on electrolyte permeation. Carbon, 2015, 91, 76-87.	5.4	29
14	Fabrication of flexible tactile force sensor using conductive ink and silicon elastomer. Sensors and Actuators A: Physical, 2016, 237, 72-80.	2.0	31
15	Engineering radical polymer electrodes for electrochemical energy storage. Journal of Power Sources, 2017, 352, 226-244.	4.0	73
17	Development of Functionalized Graphene Supported Highly Durable Pt-Free Bi-metallic Electrocatalysts for PEMFC. Materials Today: Proceedings, 2019, 18, 660-670.	0.9	2