Recent developments in the chemistry of halogen-free

Progress in Polymer Science 27, 1661-1712 DOI: 10.1016/s0079-6700(02)00018-7

Citation Report

#	Article	IF	Citations
1	Polymers in Everyday Use: Principles, Properties and Environmental Effects. , 0, , 17-46.		2
2	A review of flame retardant polypropylene fibres. Progress in Polymer Science, 2003, 28, 1517-1538.	24.7	490
3	Synthesis, characterization and polymerization of isobutylbis(glycidylpropylether) phosphine oxide. Polymer, 2003, 44, 7291-7298.	3.8	32
4	Flammability characterization and synergistic effects of expandable graphite with magnesium hydroxide in halogen-free flame-retardant EVA blends. Polymer Degradation and Stability, 2003, 81, 401-408.	5.8	204
5	Preparation, thermal properties, and flame retardance of epoxy-silica hybrid resins. Journal of Polymer Science Part A, 2003, 41, 2354-2367.	2.3	151
6	Novel flame retardant polyarylethers: synthesis and testing. Polymer, 2003, 44, 3709-3714.	3.8	18
9	Novel phosphorilated flame retardant thermosets: epoxy–benzoxazine–novolac systems. Polymer, 2004, 45, 6103-6109.	3.8	103
10	Thermal degradation and flammability characteristics of some polystyrenes and poly(methyl) Tj ETQq1 1 0.7843 Stability, 2004, 83, 181-185.	l 4 rgBT /O 5.8	verlock 10 Tr 29
11	Extraction of flame retardants from electronic printed circuit board by supercritical carbon dioxide. Journal of Supercritical Fluids, 2004, 29, 251-256.	3.2	27
12	Development of novel flame-retardant thermosets based on benzoxazine-phenolic resins and a glycidyl phosphinate. Journal of Polymer Science Part A, 2004, 42, 279-289.	2.3	61
13	Preparation and properties of epoxy/amine hybrid resins from in situ polymerization. Journal of Polymer Science Part A, 2004, 42, 1868-1875.	2.3	30
14	Novel flame-retardant thermosets: Phosphine oxide-containing diglycidylether as curing agent of phenolic novolac resins. Journal of Polymer Science Part A, 2004, 42, 3516-3526.	2.3	52
15	Thermotropic liquid-crystalline polyphosphate esters containing phenolphthalein moiety. Journal of Applied Polymer Science, 2004, 92, 194-200.	2.6	8
16	Preparation and Combustion Properties of Flame Retardant Styrene-Butyl Acrylate Copolymer/Graphite Oxide Nanocomposites. Macromolecular Materials and Engineering, 2004, 289, 355-359.	3.6	25
17	A Novel Phosphorus-Containing Polymer as a Highly Effective Flame Retardant. Macromolecular Materials and Engineering, 2004, 289, 703-707.	3.6	109
18	Structure–property relationship in intumescent polymeric formulations containing waste zeolite-based material as a synergistic agent. European Polymer Journal, 2004, 40, 1503-1513.	5.4	7
19	Characterization of organosilicon films synthesized by N2-PACVD. Application to fire retardant properties of coated polymers. Surface and Coatings Technology, 2004, 180-181, 265-270.	4.8	35
20	Enhancement of thermal stability of polystyrene and poly(methyl methacrylate) by cyclotriphosphazene derivatives. Polymer Degradation and Stability, 2004, 84, 87-93.	5.8	27

TATION REDO

ARTICLE IF CITATIONS # Evaluation of polar ethylene copolymers as fire retardant nanocomposite matrices. Polymer 21 5.8 71 Degradation and Stability, 2004, 84, 533-544. Chemistry of green encapsulating molding compounds at interfaces with other materials in 6.1 electronić devices. Applied Surface Science, 2004, 235, 65-72. SYNTHESIS OF α, ω-PHOSPHONATE POLYSTYRENE VIA DEAD END POLYMERIZATION. Phosphorus, Sulfur and 23 1.6 2 Silicon and the Related Elements, 2004, 179, 2627-2634. A New Route to Organoboron Polymers via Highly Selective Polymer Modification Reactions. 24 Macromolecules, 2004, 37, 7123-7131. Hydrotreating Catalysts and Processes., 2005, , 1357-1365. 25 0 lonizing radiation graft polymerized and modified flame retardant cotton fabric. Radiation Physics and Chemistry, 2005, 72, 511-516. 2.8 Flame retardancy of biodegradable polymers and biocomposites. Polymer Degradation and Stability, 27 5.8 114 2005, 88, 138-145. The effect of silicon sources on the mechanism of phosphorus–silicon synergism of flame 28 5.8 retardation of epoxy resins. Polymer Degradation and Stability, 2005, 90, 515-522. 29 Flame retardant aircraft epoxy resins containing phosphorus. Polymer, 2005, 46, 5012-5024. 3.8 226 Synthesis and properties evaluation of novel halogenated polyimides designed to prepare functional 3.8 polymers. Polymer, 2005, 46, 11247-11254. Epoxidation of 1,4-diallyloxybutane to 1-allyloxy-4-glycidyloxybutane by the method of phase transfer 31 4.8 6 catalysis. Journal of Molecular Catalysis A, 2005, 235, 52-56. Investigation of thermal crosslinking and pyrolysis of ladderlike silsesquioxanes in vacuum by XRD measurements and weight analysis. Thermóchimica Acta, 2005, 438, 164-171. Phosphazene cyclomatrix network polymers: Some aspects of the synthesis, characterization, and 33 2.6 45 flame-retardant mechanisms of polymer. Journal of Applied Polymer Science, 2005, 95, 880-889. Novel nitrogen-containing epoxy resin. I. Synthetic kinetics. Journal of Applied Polymer Science, 2005, 34 2.6 96, 723-731 Synergistic effect of phosphorus, nitrogen, and silicon on flame-retardant properties and char yield 35 139 2.6 in polypropylene. Journal of Applied Polymer Science, 2005, 96, 854-860. Thermal degradation behaviors of polypropylene with novel silicon-containing intumescent flame 36 retardant. Journal of Applied Polymer Science, 2005, 98, 2487-2492. Thermal Degradation Behavior of Poly(propylene) with a Novel Silicon-Containing Intumescent Flame 37 3.6 27 Retardant. Macromolecular Materials and Engineering, 2005, 290, 912-919. Polyurethane Networks Nanoreinforced by Polyhedral Oligomeric Silsesquioxane. Macromolecular 38 221

CITATION REPORT

3

Rapid Communications, 2005, 26, 196-200.

# 39	ARTICLE Polyhedral Oligomeric Silsesquioxane (POSS) Nanoscale Reinforcement of Thermosetting Resin from Benzoxazine and Bisoxazoline. Macromolecular Rapid Communications, 2005, 26, 1878-1882.	IF 3.9	CITATIONS
40	A phosphate-based epoxy resin for flame retardance: synthesis, characterization, and cure properties. Colloid and Polymer Science, 2005, 283, 593-603.	2.1	13
41	Borylated Polyolefins and their Applications. Journal of Inorganic and Organometallic Polymers and Materials, 2005, 15, 293-307.	3.7	74
42	Review Synthesis and characterization of cage octa(cyclohexylsilsesquioxane). Journal of Materials Science, 2005, 40, 4721-4726.	3.7	27
43	Studies on the properties of polypropylene with a new silicon-containing intumescent flame retardant. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2548-2556.	2.1	36
44	Advanced flame-retardant epoxy resins from phosphorus-containing diol. Journal of Polymer Science Part A, 2005, 43, 3510-3515.	2.3	46
45	Preparation and properties of high performance epoxy-silsesquioxane hybrid resins prepared using a maleimide-alkoxysilane compound as a modifier. Journal of Polymer Science Part A, 2005, 43, 5787-5798.	2.3	27
46	Synthesis, polymerization, and effects on the flame retardancy of boron-containing styrenic monomers. Journal of Polymer Science Part A, 2005, 43, 6419-6430.	2.3	19
47	Thermal Stability and Flame Retardancy of Polypropylene with Phosphorus, Nitrogen and Silicon-Containing Compounds. Polymers and Polymer Composites, 2005, 13, 697-707.	1.9	2
48	Synthesis, Characterization, and Cure Properties of a Halogen-Free Phosphate-Based Inherently Flame Retardant Epoxy Resin. ACS Symposium Series, 2005, , 266-279.	0.5	0
50	Flame Retardant Composites. , 2006, , 237-286.		4
51	Carboranyl Units Bringing Unusual Thermal and Structural Properties to Hybrid Materials Prepared by Solâ^'Gel Process. Chemistry of Materials, 2006, 18, 4344-4353.	6.7	63
52	Synthesis and Characterization of Halogen-Free Antiflammable Polyphosphonates Containing 4,4â€~-Bishydroxydeoxybenzoin. Macromolecules, 2006, 39, 5974-5975.	4.8	80
53	Synthesis of Small Carboranylsilane Dendrons as Scaffolds for Multiple Functionalizations. Organic Letters, 2006, 8, 4549-4552.	4.6	38
54	Flame retardancy of epoxy resin with phosphorus-containing reactive amine and clay minerals. Polymers for Advanced Technologies, 2006, 17, 778-781.	3.2	31
55	Synthesis, characteristic, and application of new flame retardant containing phosphorus, nitrogen, and silicon. Polymer Engineering and Science, 2006, 46, 344-350.	3.1	61
56	Development of novel flame-retardant thermosets based on boron-modified phenol–formaldehyde resins. Journal of Polymer Science Part A, 2006, 44, 3503-3512.	2.3	49
57	Microwave-assisted synthesis of a novel phosphorus-containing spiroorthoester, characterization and cationic polymerization. Journal of Polymer Science Part A, 2006, 44, 4722-4730.	2.3	15

#	Article	IF	CITATIONS
58	Flame retardant epoxy resins based on diglycidyloxymethylphenylsilane. Journal of Polymer Science Part A, 2006, 44, 5580-5587.	2.3	53
59	Synthesis of novel boron-containing epoxy–novolac resins and properties of cured products. Journal of Polymer Science Part A, 2006, 44, 6332-6344.	2.3	64
60	Phosphorylated copolymers containing pendant, crosslinkable spiro orthoester moieties. Journal of Polymer Science Part A, 2006, 44, 6728-6737.	2.3	7
61	Synthesis and characterization of α-methylstilbene- and azobenzene-based thermotropic liquid crystalline polymers. Polymer International, 2006, 55, 151-157.	3.1	16
62	Reactivity of silicon-based epoxy monomers as studied by near-infrared spectroscopy and multivariate curve resolution methods. Journal of Polymer Science Part A, 2006, 44, 1447-1456.	2.3	14
63	Curing studies of epoxy resins with phosphorus-containing amines. Journal of Polymer Science Part A, 2006, 44, 1676-1685.	2.3	32
64	Photopolymerization and thermal behaviors of acrylated benzenephosphonates/epoxy acrylate as flame retardant resins. European Polymer Journal, 2006, 42, 2261-2269.	5.4	43
65	Flammability, microhardness and transparency of nanocomposites based on functionalized polyethylenes. European Polymer Journal, 2006, 42, 2228-2235.	5.4	26
66	Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres. Polymer Degradation and Stability, 2006, 91, 255-261.	5.8	297
67	Boron-containing novolac resins as flame retardant materials. Polymer Degradation and Stability, 2006, 91, 747-754.	5.8	106
68	Polypropylene metal functionalised POSS nanocomposites: A study by thermogravimetric analysis. Polymer Degradation and Stability, 2006, 91, 1064-1070.	5.8	106
69	Synthetic hydromagnesite as flame retardant. Evaluation of the flame behaviour in a polyethylene matrix. Polymer Degradation and Stability, 2006, 91, 989-994.	5.8	109
70	Study on flame-retardant mechanism of polycarbonate containing sulfonate-silsesquioxane-fluoro retardants by TGA and FTIR. Polymer Degradation and Stability, 2006, 91, 1808-1814.	5.8	79
71	Metal functionalized POSS as fire retardants in polypropylene. Polymer Degradation and Stability, 2006, 91, 2275-2281.	5.8	203
72	Silicon-containing flame retardant epoxy resins: Synthesis, characterization and properties. Polymer Degradation and Stability, 2006, 91, 2588-2594.	5.8	116
73	Synthesis of novel bisphenol containing phthalazinone and azomethine moieties and thermal properties of cured diamine/bisphenol/DGEBA polymers. Polymer, 2006, 47, 1785-1795.	3.8	32
74	Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites. Polymer, 2006, 47, 8495-8508.	3.8	389
75	Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochimica Acta, 2006, 440, 36-42.	2.7	336

ARTICLE IF CITATIONS # Effect of DOP-based compounds on fire retardancy, thermal stability, and mechanical properties of 3.7 71 76 DGEBA cured with 4,4â€²-DDS. Journal of Materials Science, 2006, 41, 341-353. Effective halogen-free flame retardants for carbon fibre-reinforced epoxy composites. Journal of Materials Science, 2006, 41, 4981-4984. Thermal characteristics of novel NaH2PO4/NaHSO4 flame retardant system for polyurethane foams. 78 3.6 13 Journal of Thermal Analysis and Calorimetry, 2006, 86, 475-478. Synthesis, crosslinking and flame retardance of polymers of boron-containing difunctional styrenic monomers. Reactive and Functional Polymers, 2006, 66, 1047-1054. Epoxidation of 1,4-bis(allyloxy)butane by hydrogen peroxide using phase transfer catalysis. Journal of 80 4.8 8 Molecular Catalysis A, 2006, 244, 173-178. Synthesis and Characterization of a Novel Cyclomatrix Phosphazene Polymer. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2006, 1, 71-76. 0.4 Flame retardant epoxy resins based on diglycidyl ether of isobutyl bis(hydroxypropyl)phosphine oxide. 82 2.6 38 Journal of Applied Polymer Science, 2006, 99, 1367-1373. Preparation and characterization of organic–inorganic hybrid composites based on multiepoxy silsesquioxane and cyanate resin. Journal of Applied Polymer Science, 2006, 101, 3652-3658. 2.6 Halogen-free flame retardant epoxy resins from hybrids of phosphorus- or silicon-containing epoxies 84 2.6 20 with an amine resin. Journal of Applied Polymer Science, 2006, 102, 1071-1077. A novel flame retardant of spirocyclic pentaerythritol bisphosphorate for epoxy resins. Journal of Applied Polymer Science, 2006, 102, 4978-4982. Synergistic Flame Retardant Effect of SiO2in LLDPE/EVA/ATH Blends. Journal of Fire Sciences, 2006, 24, 2.0 23 86 487-498. A Novel and Effective Synthetic Approach to 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) Derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2007, 182, 2131-2148. 87 1.6 38 Synthesis, Characterization and Properties of Novel Self-Extinguishing Organic/Inorganic Epoxy Nanocomposites Containing Nitrogen/Silicon/Phosphorus via Sol-Gel Method. Key Engineering 88 0.4 6 Materials, 2007, 334-335, 665-668. Halogen Free Flame Retardant Agents for Polypropylene in Wire Coating Process. Macromolecular Symposia, 2007, 247, 371-378. Improvement of thermal properties and flame retardancy of epoxy-amine thermosets by introducing 90 2.1 25 bisphenol containing azomethine moiety. EXPRESS Polymer Letters, 2007, 1, 326-332. Toughening, Thermal Stability, Flame Retardancy, and Scratch–Wear Resistance of Polymer–Clay Nanocomposites. Australian Journal of Chemistry, 2007, 60, 496. Nanocomposites with Halogen and Nonintumescent Phosphorus Flame Retardant Additives., 0,, 93 7 191-233. 94 Flame retardancy of highly filled polyamide 6/clay nanocomposites. Nanotechnology, 2007, 18, 445602. 64

#	Article	IF	CITATIONS
95	Fire retardant polymers: recent developments and opportunities. Journal of Materials Chemistry, 2007, 17, 2283.	6.7	558
97	Pyrolysis of epoxy resins and fire behavior of epoxy resin composites flame-retarded with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide additives. Journal of Applied Polymer Science, 2007, 104, 2260-2269.	2.6	200
98	Investigation on stilbene- and azobenzene-based liquid crystalline organophosphorus polymers. Journal of Applied Polymer Science, 2007, 104, 2760-2768.	2.6	6
99	Flame retardancy and mechanical properties of EVA nanocomposites based on magnesium hydroxide nanoparticles/microcapsulated red phosphorus. Journal of Applied Polymer Science, 2007, 105, 333-340.	2.6	47
100	Novel phosphorus-containing hardeners with tailored chemical structures for epoxy resins: Synthesis and cured resin properties. Journal of Applied Polymer Science, 2007, 105, 2744-2759.	2.6	40
101	Novel flame retardant thermosets from nitrogenâ€containing and phosphorusâ€containing epoxy resins cured with dicyandiamide. Journal of Applied Polymer Science, 2007, 106, 2391-2397.	2.6	47
102	Synthesis of a soluble azomethineâ€containing bisphenol and the properties of its modified epoxy thermosets. Journal of Applied Polymer Science, 2007, 106, 1632-1639.	2.6	10
103	Synthesis, characterization, and properties of novel organic/inorganic epoxy hybrids containing nitrogen/silicon via the sol–gel method. Journal of Applied Polymer Science, 2007, 106, 3290-3297.	2.6	8
104	Thermal degradation behaviors and flame retardancy of PC/ABS with novel silicon ontaining flame retardant. Fire and Materials, 2007, 31, 411-423.	2.0	81
105	Environmentally friendly flame retardants. A detailed solid-state NMR study of melamine orthophosphate. Magnetic Resonance in Chemistry, 2007, 45, S231-S246.	1.9	24
106	Flame retarding mechanism of polycarbonate containing methylphenyl-silicone. Thermochimica Acta, 2007, 452, 43-48.	2.7	53
107	Thermal stability and degradation kinetics of novel organic/inorganic epoxy hybrid containing nitrogen/silicon/phosphorus by sol–gel method. Thermochimica Acta, 2007, 453, 97-104.	2.7	143
108	New organic–inorganic nanohybrids via ring opening polymerization of (di)lactones initiated by functionalized polyhedral oligomeric silsesquioxane. European Polymer Journal, 2007, 43, 4103-4113.	5.4	80
109	Kinetic analysis of reactions of Si-based epoxy resins by near-infrared spectroscopy, 13C NMR and soft–hard modelling. Analytica Chimica Acta, 2007, 583, 392-401.	5.4	13
110	s-Triazine containing flame retardant hyperbranched polyamines: Synthesis, characterization and properties evaluation. Polymer Degradation and Stability, 2007, 92, 947-955.	5.8	90
111	Intrinsically flame retardant epoxy resin – Fire performance and background – Part I. Polymer Degradation and Stability, 2007, 92, 2223-2230.	5.8	93
112	Copolymerization of a silicon-containing spiroorthoester with a phosphorus-containing diglycidyl compound: Influence on flame retardancy and shrinkage. Polymer Degradation and Stability, 2007, 92, 1934-1941.	5.8	20
113	Novel phosphorus-modified polysulfone as a combined flame retardant and toughness modifier for epoxy resins. Polymer, 2007, 48, 778-790.	3.8	91

#	Article	IF	CITATIONS
114	Understanding the decomposition and fire performance processes in phosphorus and nanomodified high performance epoxy resins and composites. Polymer, 2007, 48, 2345-2354.	3.8	64
115	Structural engineering of polyurethane coatings for high performance applications. Progress in Polymer Science, 2007, 32, 352-418.	24.7	1,457
116	Synthesis, thermal properties, and flame retardance of the epoxy-silsesquioxane hybrid resins. Polymer Engineering and Science, 2007, 47, 225-234.	3.1	25
117	Synergistic effects of expandable graphite with magnesium hydroxide on the flame retardancy and thermal properties of polypropylene. Polymer Engineering and Science, 2007, 47, 1756-1760.	3.1	62
118	Crosslinking of a polyacrylate bearing a spiroorthoester pendant group with mixtures of diglycidyl ether of bisphenol A and phosphorus-containing glycidyl derivatives. Journal of Polymer Science Part A, 2007, 45, 1920-1930.	2.3	12
119	Synthesis of a novel bis-spiroorthoester containing 9,10-dihydro-9-oxa-10-phosphaphenantrene-10-oxide as a substituent: Homopolymerization and copolymerization with diglycidyl ether of bisphenol A. Journal of Polymer Science Part A, 2007, 45, 1980-1992.	2.3	21
120	Flame retardant epoxy resins based on diglycidyl ether of (2,5-dihydroxyphenyl)diphenyl phosphine oxide. Journal of Polymer Science Part A, 2007, 45, 2142-2151.	2.3	51
121	Novel siliconâ€containing spiroorthoester to confer combined flame retardancy and low shrinkage properties to epoxy resins. Journal of Polymer Science Part A, 2007, 45, 4211-4224.	2.3	12
122	Polymeric nanocomposites containing polyhedral oligomeric silsesquioxanes prepared via frontal polymerization. Journal of Polymer Science Part A, 2007, 45, 4514-4521.	2.3	49
123	Synthesis and characteristics of a novel silicon-containing flame retardant and its application in poly[2,2-propane-(bisphenol)carbonate]/acrylonitrile butadiene styrene. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1542-1551.	2.1	54
124	Fireproofing of polyurethane by organophosphonates. Journal of Thermal Analysis and Calorimetry, 2007, 90, 489-494.	3.6	31
125	Aluminum hydroxide filled ethylene vinyl acetate (EVA) composites: effect of the interfacial compatibilizer and the particle size. Journal of Materials Science, 2007, 42, 4227-4232.	3.7	51
126	Preparation and properties of flame retardant high impact polystyrene. Fire Safety Journal, 2007, 42, 232-239.	3.1	17
127	Halogen-free flame retarding NBR/GTR foams. Journal of Industrial and Engineering Chemistry, 2008, 14, 387-395.	5.8	29
128	Synthesis, characterization and properties of novel self-extinguishing organic–inorganic nanocomposites containing nitrogen, silicon and phosphorus via sol–gel method. Composites Science and Technology, 2008, 68, 2849-2857.	7.8	48
129	Phosphorus-containing thermosets obtained by cationic copolymerisation of glycidyl compounds with a spiroorthoester or Î ³ -butyrolactone. Polymer Degradation and Stability, 2008, 93, 59-67.	5.8	10
130	Thermal degradation of deoxybenzoin polymers studied by pyrolysis-gas chromatography/mass spectrometry. Polymer Degradation and Stability, 2008, 93, 1059-1066.	5.8	37
131	Liquid crystalline and photoactive poly[4,4′-stilbeneoxy]alkylbiphenylphosphates. Polymer Degradation and Stability, 2008, 93, 1564-1570.	5.8	13

#	Article	IF	CITATIONS
132	Studies on thermal and flame retardant behaviour of mixtures of bis(m-aminophenyl)methylphosphine oxide based benzoxazine and glycidylether or benzoxazine of Bisphenol A. Polymer Degradation and Stability, 2008, 93, 2158-2165.	5.8	40
133	Mechanical properties, fire performance and thermal stability of magnesium hydroxide sulfate hydrate whiskers flame retardant silicone rubber. Journal of Materials Science, 2008, 43, 1057-1062.	3.7	143
134	Synthesis and characterization of new aromatic polyesters and poly(ester-imide)s containing phosphorous cyclic bulky groups. Polymer Bulletin, 2008, 60, 657-664.	3.3	33
135	Synthesis and Characterization of Novel Betti Type Cyanate Esters. Polymer Bulletin, 2008, 61, 197-206.	3.3	8
136	Synthesis, crystal structure, and thermal properties of N,N′-di(diethoxythiophosphoryl)-1,4-phenylenediamine. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2008, 3, 304-308.	0.4	1
137	Flame retardancy effect of surface-modified metal hydroxides on linear low density polyethylene. Central South University, 2008, 15, 779-785.	0.5	13
138	Synthesis and study of the thermal crosslinking of bis(<i>m</i> â€aminophenyl) methylphosphine oxide based benzoxazine. Journal of Polymer Science Part A, 2008, 46, 7162-7172.	2.3	39
139	Novel efficient DOPOâ€based flameâ€retardants for PWB relevant epoxy resins with high glass transition temperatures. Polymers for Advanced Technologies, 2008, 19, 507-515.	3.2	121
140	Thermal behaviors of a novel UV cured flame retardant coatings containing phosphorus, nitrogen and silicon. Polymer Engineering and Science, 2008, 48, 116-123.	3.1	43
141	Polyamide 6 Filled with Melamine Cyanurate and Layered Silicates: Evaluation of Flame Retardancy and Physical Properties. Macromolecular Materials and Engineering, 2008, 293, 740-751.	3.6	38
142	Thermal properties and flame retardancy of polyglycidyloxypropyl silsesquioxane/layered titanate nanocomposites. Journal of Applied Polymer Science, 2008, 110, 2649-2655.	2.6	2
143	Polyamideâ€enhanced flame retardancy of ammonium polyphosphate on epoxy resin. Journal of Applied Polymer Science, 2008, 108, 2644-2653.	2.6	103
144	Phosphorusâ€containing terephthaldialdehyde adducts—Structure determination and their application as flame retardants in epoxy resins. Journal of Applied Polymer Science, 2008, 108, 264-271.	2.6	26
145	Flame retardancy and dielectric properties of dicyclopentadieneâ€based benzoxazine cured with a phosphorusâ€containing phenolic resin. Journal of Applied Polymer Science, 2008, 110, 2413-2423.	2.6	33
146	Preparation and properties of epoxy/phenol formaldehyde novolac/hexakis(methoxymethyl)melamine hybrid resins from <i>in situ</i> polymerization. Journal of Applied Polymer Science, 2008, 110, 4084-4092.	2.6	4
147	Novel high Tg flame retardancy approach for epoxy resins. Polymer Degradation and Stability, 2008, 93, 557-560.	5.8	69
148	Intrinsically flame retardant epoxy resin – Fire performance and background – Part II. Polymer Degradation and Stability, 2008, 93, 2007-2013.	5.8	43
149	Preparation, thermal properties and flame retardancy of phosphorus- and silicon-containing epoxy resins. Polymer Degradation and Stability, 2008, 93, 2025-2031.	5.8	92

#	Article	IF	CITATIONS
150	Thermal stabilities and flame retardancies of nitrogen–phosphorus flame retardants based on bisphosphoramidates. Polymer Degradation and Stability, 2008, 93, 1037-1043.	5.8	105
151	A flame-retardant epoxy resin based on a reactive phosphorus-containing monomer of DODPP and its thermal and flame-retardant properties. Polymer Degradation and Stability, 2008, 93, 1308-1315.	5.8	167
152	The influence of tissue phosphate on plant flammability: A kinetic study. Polymer Degradation and Stability, 2008, 93, 1930-1934.	5.8	14
153	Thermal and physical properties of flame-retardant epoxy resins containing 2-(6-oxido-6H-dibenzã€^c,e〉ã€^1,2〉oxaphosphorin-6-yl)-1,4-naphthalenediol and cured with dicyanate est Polymer Degradation and Stability, 2008, 93, 2077-2083.	te 5. 8	34
154	An overview of policies for managing polybrominated diphenyl ethers (PBDEs) in the Great Lakes basin. Environment International, 2008, 34, 1148-1156.	10.0	60
155	Thermal Degradation Kinetics of N,N'-Di(diethoxythiophosphoryl)-1,4-phenylenediamine. Chemical Research in Chinese Universities, 2008, 24, 628-631.	2.6	5
156	Carboranyl Substituted Siloxanes and Octasilsesquioxanes: Synthesis, Characterization, and Reactivity. Macromolecules, 2008, 41, 8458-8466.	4.8	57
157	Recycling and disposal of flame retarded materials. , 2008, , 213-230.		1
158	Halogen-free flame retardants. , 2008, , 67-94.		5
159	PROGRESS IN THE DEVELOPMENT OF FLAME RETARDANTS. Reviews in Chemical Engineering, 2008, 24, .	4.4	2
160	Novel flame retardant epoxy/clay nanocomposites prepared with a pre-ground phosphorus-containing organoclay. Journal of Materials Research, 2008, 23, 1618-1630.	2.6	6
161	Effects of High-Energy Electron Beam Irradiation on the Properties of Flame-Retardant HDPE/EVA/Mg(OH) ₂ Composites. Polymer-Plastics Technology and Engineering, 2008, 47, 1097-1100.	1.9	11
162	Combustion and Thermal Behavior of Polyurethane Acrylate Modified with a Phosphorus Monomer. Journal of Fire Sciences, 2008, 26, 93-108.	2.0	7
163	Production of huntite and hydromagnesite with flame retardant featured by flotation. Mining, Metallurgy and Exploration, 2009, 26, 109-113.	0.8	2
164	Combustion Characteristics of Polypropylene/Magnesium Hydroxide/Expandable Graphite Composites. Journal of Macromolecular Science - Physics, 2009, 48, 1081-1092.	1.0	22
165	Novel halogen-free flame retardant thermoset from a hybrid hexakis (methoxymethyl) melamine/phosphorus-containing epoxy resin cured with phenol formaldehyde novolac. EXPRESS Polymer Letters, 2009, 3, 788-796.	2.1	12
166	Research on Flame-Retardant Technique in Application of Asphalt Pavement in Highway Tunnel. , 2009, ,		2
167	Effects of Boric Acid on Flame Retardancy of Intumescent Flame-Retardant Polypropylene Systems Containing a Caged Bicyclic Phosphate. ACS Symposium <u>Series, 2009, , 225-248.</u>	0.5	4

#	Article	IF	CITATIONS
168	Combustion Study of Synergism of Urea-Sodium Polymetaphosphate on the Flame-Retardancy of a Cotton Fabric Monitored by TG. Polymer-Plastics Technology and Engineering, 2009, 48, 232-238.	1.9	0
169	2,2′-Dimethyl-4,4′-(sulfonyldi-p-phenylene)dibut-3-yn-2-ol dihydrate. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o212-o212.	0.2	0
170	Estimation of Flame Retardancy Effect by Thermal Analysis Using Kinetic Parameters Obtained under Nonâ€Isothermal Conditions in Air. Chinese Journal of Chemistry, 2009, 27, 1919-1924.	4.9	4
171	Flame resistant electrospun polymer nanofibers from deoxybenzoinâ€based polymers. Journal of Applied Polymer Science, 2009, 111, 301-307.	2.6	30
172	Synthesis, characterization, and curing properties of novel phosphorusâ€containing naphthyl epoxy systems. Journal of Applied Polymer Science, 2009, 113, 541-546.	2.6	15
173	Synthesis, characterization, and thermal stability of PMMA/SiO ₂ /TiO ₂ tertiary nanocomposites via nonâ€hydrolytic sol–gel method. Journal of Applied Polymer Science, 2009, 113, 1959-1965.	2.6	26
174	Preparation and investigation of ethylene–vinyl acetate copolymer/silicone rubber/clay nanocomposites. Journal of Applied Polymer Science, 2009, 113, 1664-1670.	2.6	24
175	Highly thermally stable novolac derivatives and their properties in epoxy composites. Journal of Applied Polymer Science, 2009, 113, 3782-3790.	2.6	5
176	Synthesis and photopolymerizations of new phosphonated methacrylates from alkyl αâ€hydroxymethacrylates and glycidyl methacrylate. Journal of Applied Polymer Science, 2009, 114, 97-106.	2.6	18
177	Cure kinetics and thermal properties of tetramethylbiphenyl epoxy resin/phthalazinoneâ€containing diamine/hexa(phenoxy)cyclotriphophazene system. Journal of Applied Polymer Science, 2009, 114, 1397-1404.	2.6	5
178	Development of flame retardant phosphorus- and silicon-containing polybenzoxazines. Polymer Degradation and Stability, 2009, 94, 145-150.	5.8	49
179	Development of a DOPO-containing benzoxazine and its high-performance flame retardant copolybenzoxazines. Polymer Degradation and Stability, 2009, 94, 1693-1699.	5.8	97
180	Effects of zinc borate and microcapsulated red phosphorus on mechanical properties and flame retardancy of polypropylene/magnesium hydroxide composites. Journal of Polymer Research, 2009, 16, 357-362.	2.4	46
181	Study on thermal decomposition kinetics of N,N′-bis(5,5-dimethyl-2-phospha-2-thio-1,3-dioxan-2-yl)ethylenediamine in air. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2009, 4, 136-141.	0.4	3
182	Effect of flame retardant containing phosphorus and silicone on thermal performance of PC/ABS. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 235-240.	1.0	10
183	Preparation and characterization of phosphorusâ€containing Mannichâ€type bases as curing agents for epoxy resin. Polymers for Advanced Technologies, 2009, 20, 753-758.	3.2	31
184	A review on flame retardant technology in China. Part I: development of flame retardants. Polymers for Advanced Technologies, 2010, 21, 1-26.	3.2	123
185	Flame resistance and foaming properties of NBR compounds with halogenâ€free flame retardants. Polymer Composites, 2009, 30, 1732-1742.	4.6	22

#	Article	IF	CITATIONS
186	Synthesis, thermal properties, and flame retardance of phosphorusâ€containing epoxyâ€silica hybrid resins. Polymer Composites, 2010, 31, 334-339.	4.6	5
187	Synthesis of a novel oligomeric intumescent flame retardant and its application in polypropylene. Polymer Engineering and Science, 2009, 49, 1326-1331.	3.1	72
188	Preparation and properties of novel phosphorus ontaining binaphthyl epoxy polymer. Polymer Engineering and Science, 2009, 49, 1879-1885.	3.1	7
189	A straightforward strategy for the efficient synthesis of acrylate and phosphine oxideâ€containing vegetable oils and their crosslinked materials. Journal of Polymer Science Part A, 2009, 47, 4051-4063.	2.3	30
190	Development of reactive phosphonated methacrylates. Journal of Polymer Science Part A, 2009, 47, 5737-5746.	2.3	11
191	Fatty acid derived phosphorusâ€containing polyesters via acyclic diene metathesis polymerization. Journal of Polymer Science Part A, 2009, 47, 5760-5771.	2.3	64
192	Development of an aromatic triamine-based flame-retardant benzoxazine and its high-performance copolybenzoxazines. European Polymer Journal, 2009, 45, 680-689.	5.4	51
193	Cone calorimetry studies of benzoxazine–epoxy systems flame retarded by chemically bonded phosphorus or silicon. Polymer Degradation and Stability, 2009, 94, 102-106.	5.8	86
194	Metal compound-enhanced flame retardancy of intumescent epoxy resins containing ammonium polyphosphate. Polymer Degradation and Stability, 2009, 94, 625-631.	5.8	154
195	Structure characteristics contributing to flame retardancy in diazo modified novolac resins. Polymer Degradation and Stability, 2009, 94, 987-995.	5.8	9
196	Halogen-free flame retarded poly(butylene terephthalate) (PBT) using metal oxides/PBT nanocomposites in combination with aluminium phosphinate. Polymer Degradation and Stability, 2009, 94, 1245-1253.	5.8	178
197	Roles of graphite oxide, clay and POSS during the combustion of polyamide 6. Polymer, 2009, 50, 1577-1587.	3.8	113
198	Thermal stability and flame retardancy of polyurethanes. Progress in Polymer Science, 2009, 34, 1068-1133.	24.7	1,366
199	Copolymerization of (10-oxo-10-hydro-9-oxa-10λ5-phospha-phenanthrene-10-yl)-methyl acrylate with styrene. Chinese Chemical Letters, 2009, 20, 881-884.	9.0	2
200	A new organic/inorganic electroluminescent material with a silsesquioxane core. Acta Materialia, 2009, 57, 1938-1946.	7.9	24
201	Advanced Flame-Retardant Epoxy Resins for Composite Materials. ACS Symposium Series, 2009, , 174-190.	0.5	11
202	Development of advanced textile materials: Natural fibre composites, anti-microbial, and flame-retardant fabrics. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2009, 223, 91-102.	1.1	12
203	Silicon-Containing Soybean-Oil-Based Copolymers. Synthesis and Properties. Biomacromolecules, 2009, 10, 2678-2685.	5.4	39

#	Article	IF	CITATIONS
204	The Synthesis and Flame Retardance of a High Phosphorus-containing Unsaturated Polyester Resin. Chemistry Letters, 2010, 39, 1270-1272.	1.3	15
205	Mechanical and thermal properties and flame retardancy of phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS)/polycarbonate composites. Polymer Degradation and Stability, 2010, 95, 2541-2546.	5.8	138
206	Synthesis, characteristic of a novel flame retardant containing phosphorus, silicon and its application in ethylene vinyl-acetate copolymer (EVM) rubber. Journal of Polymer Research, 2010, 17, 891-902.	2.4	52
207	Prolonging the combustion duration of wood by TiO2 coating synthesized using cosolvent-controlled hydrothermal method. Journal of Materials Science, 2010, 45, 6661-6667.	3.7	36
208	Combustion and thermal properties of epoxy/phenyltrisilanol polyhedral oligomeric silsesquioxane nanocomposites. Journal of Thermal Analysis and Calorimetry, 2010, 100, 1009-1015.	3.6	32
209	Influence of surface modification on thermal stability and flammability of cross-linked rubbers. Journal of Thermal Analysis and Calorimetry, 2010, 100, 1037-1044.	3.6	5
210	Thermal stability of phosphinated diethyl tartrate. Journal of Thermal Analysis and Calorimetry, 2010, 102, 493-498.	3.6	26
211	Thermal decomposition of 2,4,4,5,5-pentaphenyl-1,3,2-dioxaphospholane. Journal of Thermal Analysis and Calorimetry, 2010, 102, 517-521.	3.6	4
212	Synthesis of novolacâ€based char former: Siliconâ€containing phenolic resin and its synergistic action with magnesium hydroxide in polyamideâ€6. Fire and Materials, 2010, 34, 407-419.	2.0	19
213	New polyol for production of rigid polyurethaneâ€polyisocyanurate foams, Part 2: Preparation of rigid polyurethaneâ€polyisocyanurate foams with the new polyol. Journal of Applied Polymer Science, 2010, 118, 2250-2256.	2.6	5
214	Synthesis of polymeric flame retardants containing phosphorusâ€nitrogenâ€bromide and their application in acrylonitrileâ€butadieneâ€styrene. Journal of Applied Polymer Science, 2010, 115, 957-962.	2.6	13
215	Copolymerization of 1â€oxoâ€2,6,7â€trioxaâ€1â€phorsphabicyclo[2,2,2]octâ€4â€yl methyl acrylate and (10â€oxoâ€10â€hydroâ€9â€oxaâ€10â€phosphaphenanthreneâ€10â€yl) methyl acrylate with styrene and their t degradation characteristics. Journal of Applied Polymer Science, 2010, 115, 1032-1038.	h e ::mal	9
216	Thermal and flame resistance properties of natural rubberâ€ <i>g</i> â€polyâ€{dimethyl(methacryloyloxymethyl)phosphonate). Journal of Applied Polymer Science, 2010, 115, 255-262.	2.6	8
217	Flame retardancy, thermal, rheological, and mechanical properties of polycarbonate/polysilsesquioxane system. Journal of Applied Polymer Science, 2010, 115, 330-337.	2.6	34
218	Fireâ€retardant copolymer of acrylonitrile with <i>O,O</i> â€diethylâ€ <i>O</i> â€allyl thiophosphate. Journal of Applied Polymer Science, 2010, 115, 1489-1494.	2.6	16
219	Investigation of flame retardancy and physical–mechanical properties of zinc borate/boric acid polyester composites. Journal of Applied Polymer Science, 2010, 115, 2550-2555.	2.6	19
220	Synthesis, thermal degradation, and flame retardance of novel triazine ring ontaining macromolecules for intumescent flame retardant polypropylene. Journal of Applied Polymer Science, 2010, 116, 2157-2165.	2.6	56
221	Flammability characteristics and performance of halogenâ€free flameâ€retarded polyoxymethylene based on phosphorus–nitrogen synergistic effects. Journal of Applied Polymer Science, 2010, 118, 611-622.	2.6	41

#	Article	IF	CITATIONS
222	Effect of boron ontaining materials on the flammability and thermal degradation of polyamide 6 composites containing melamine. Journal of Applied Polymer Science, 2010, 118, 2722-2727.	2.6	13
223	Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Progress in Polymer Science, 2010, 35, 902-958.	24.7	956
224	Characterization of chars obtained from cellulose treated with phosphoramidate flame retardants. Journal of Analytical and Applied Pyrolysis, 2010, 87, 93-98.	5.5	48
225	Thermal stability and flame retardancy of novel phloroglucinol based organo phosphorus compound. Polymer Degradation and Stability, 2010, 95, 1092-1098.	5.8	47
226	Cone calorimetry studies of fire retardant soybean-oil-based copolymers containing silicon or boron: Comparison of additive and reactive approaches. Polymer Degradation and Stability, 2010, 95, 1269-1274.	5.8	78
227	Phosphorus-containing liquid cycloaliphatic epoxy resins for reworkable environment-friendly electronic packaging materials. Polymer, 2010, 51, 4776-4783.	3.8	100
228	Synthesis and properties of boron-containing soybean oil based thermosetting copolymers. Polymer, 2010, 51, 6099-6106.	3.8	36
229	Polypropylene–polysilsesquioxane blends. European Polymer Journal, 2010, 46, 14-23.	5.4	108
230	Phosphorusâ€containing renewable polyesterâ€polyols via ADMET polymerization: Synthesis, functionalization, and radical crosslinking. Journal of Polymer Science Part A, 2010, 48, 1649-1660.	2.3	63
231	Synthesis, characterization, electrochromic properties, and electrochromic device application of a novel star polymer consisting of thiophene endâ€capped poly(εâ€caprolactone) arms emanating from a hexafunctional cyclotriphosphazene core. Journal of Polymer Science Part A, 2010, 48, 3668-3682.	2.3	25
232	Synthesis and properties of novel phosphorus ontaining thermotropic liquid crystalline copoly(ester imide)s. Journal of Polymer Science Part A, 2010, 48, 5391-5403.	2.3	25
233	Polymer reaction of poly(p-phenylene–ethynylene) by addition of decaborane: modulation of luminescence and heat resistance. Polymer Journal, 2010, 42, 363-367.	2.7	25
234	Flame retardancy of polymer–clay nanocomposites. , 2010, , 347-403.		0
235	Synergistic Effect between a Novel Hyperbranched Flame Retardant and Melamine Pyrophosphate on the Char Forming of Polyamide 6. Polymer-Plastics Technology and Engineering, 2010, 49, 1489-1497.	1.9	12
236	Flame Retardant Polyethylene Terephthalate Fibers Added with Melamine Based FR Additive. Materials Science Forum, 0, 659, 135-140.	0.3	2
237	New Polyol for Production of Rigid Potyurethane-polyisocyanurate Foams Part 2: Preparation of Rigid Polyurethane-polyisocyanurate Foams with the New Polyol. Journal of Polymer Engineering, 2010, 30, .	1.4	2
238	Flammability of Natural Fiber-reinforced Composites and Strategies for Fire Retardancy: A Review. Journal of Thermoplastic Composite Materials, 2010, 23, 871-893.	4.2	244
239	Grafting of Phosphonate Monomer onto Natural Rubber Latexes via Emulsion Polymerization. Advanced Materials Research, 0, 93-94, 125-128.	0.3	3

#	Article	IF	CITATIONS
240	New Trends in Reaction and Resistance to Fire of Fire-retardant Epoxies. Materials, 2010, 3, 4476-4499.	2.9	51
241	Oleic and Undecylenic Acids as Renewable Feedstocks in the Synthesis of Polyols and Polyurethanes. Polymers, 2010, 2, 440-453.	4.5	87
242	Aryl Polyphosphonates: Useful Halogen-Free Flame Retardants for Polymers. Materials, 2010, 3, 4746-4760.	2.9	79
243	Phosphorus-based Flame Retardancy Mechanisms—Old Hat or a Starting Point for Future Development?. Materials, 2010, 3, 4710-4745.	2.9	486
244	Novel Flame-Retardant and Antidripping Branched Polyesters Prepared via Phosphorus-Containing Ionic Monomer as End-Capping Agent. Industrial & Engineering Chemistry Research, 2010, 49, 4190-4196.	3.7	42
245	Recent Research Progress in the Synthesis of Polyphosphazene Elastomers and Their Applications. Polymer-Plastics Technology and Engineering, 2010, 49, 1399-1405.	1.9	24
246	Research Progress on Flame-Retardant of Silicone Rubber. , 2010, , .		0
247	Precision Phosphonic Acid Functionalized Polyolefin Architectures. Macromolecules, 2010, 43, 3690-3698.	4.8	80
248	Solubilities of 3,9-Dimethyl-3,9-dioxide-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane in Selected Solvents. Journal of Chemical & Engineering Data, 2010, 55, 978-981.	1.9	3
249	Dioxaheteroatom Cyclics as Initiators for Radical Polymerization. Macromolecular Symposia, 2010, 297, 33-42.	0.7	1
250	A Hybrid Lithium Oxalateâ^'Phosphinate Salt. Inorganic Chemistry, 2010, 49, 10756-10758.	4.0	13
251	Solubilities of Phosphorus-Containing Compounds in Selected Solvents. Journal of Chemical & Engineering Data, 2010, 55, 4709-4720.	1.9	17
252	Thermal ageing studies on low infrared emissivity composite coatings. Journal of Alloys and Compounds, 2010, 496, 691-694.	5.5	18
253	The effect of different passive fire protection systems on the fire reaction properties of GFRP pultruded profiles for civil construction. Composites Part A: Applied Science and Manufacturing, 2010, 41, 441-452.	7.6	48
254	A Novel Process to Prepare Ammonium Polyphosphate with Crystalline Form II and its Comparison with Melamine Polyphosphate. Industrial & Engineering Chemistry Research, 2010, 49, 12148-12155.	3.7	85
255	New Diamine Phosphonate Monomers as Flame-Retardant Additives for Polymers. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 983-988.	1.6	6
256	Preparation and Thermal Properties of the UV-Cured Epoxy Acrylate/Microencapsulated Phase-Change Material. Industrial & Engineering Chemistry Research, 2011, 50, 785-790.	3.7	26
257	Improving the Flame Retardancy of Polybenzoxazines with a Reactive Phosphorus-Containing Compound. Journal of Macromolecular Science - Physics, 2011, 50, 2393-2404.	1.0	17

#	Article	IF	CITATIONS
258	Polybenzoxazines with Enhanced Flame Retardancy. , 2011, , 556-576.		11
259	Chemistry, Formulation, and Properties of Adhesives. , 2011, , 75-141.		15
260	Synthesis and fluorescence emission of neutral and anionic di- and tetra-carboranyl compounds. Dalton Transactions, 2011, 40, 7541.	3.3	64
261	Combustion and Thermal Degradation Mechanism of a Novel Intumescent Flame Retardant for Epoxy Acrylate Containing Phosphorus and Nitrogen. Industrial & Engineering Chemistry Research, 2011, 50, 1881-1892.	3.7	117
262	Flame Retardants Based on Tartaric Acid: A Renewable By-Product of the Wine Industry. ACS Symposium Series, 2011, , 133-152.	0.5	17
263	Highly Phosphonated Polypentafluorostyrene. Macromolecules, 2011, 44, 6416-6423.	4.8	64
264	Flame retardancy materials based on a novel fully end-capped hyperbranched polysiloxane and bismaleimide/diallylbisphenol A resin with simultaneously improved integrated performance. Journal of Materials Chemistry, 2011, 21, 6584.	6.7	119
266	Flame retardation of glass-fibre-reinforced polyamide 6 by a novel metal salt of alkylphosphinic acid. Polymer Degradation and Stability, 2011, 96, 1538-1545.	5.8	58
267	Inherent flame retardation of bio-based poly(lactic acid) by incorporating phosphorus linked pendent group into the backbone. Polymer Degradation and Stability, 2011, 96, 1669-1675.	5.8	47
268	Pyrolysis and fire behaviour of epoxy resin composites based on a phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS). Polymer Degradation and Stability, 2011, 96, 1821-1832.	5.8	175
269	Thermal degradation mechanisms of aluminium phosphinate, melamine polyphosphate and zinc borate in poly(methyl methacrylate). Polymer Degradation and Stability, 2011, 96, 1780-1787.	5.8	53
270	Novel flame retardancy effects of DOPO-POSS on epoxy resins. Polymer Degradation and Stability, 2011, 96, 2167-2173.	5.8	163
271	Fluorinated Polyhedral Oligosilsesquioxane Surfaces and Superhydrophobicity. Advances in Silicon Science, 2011, , 229-246.	0.6	1
272	Synthesis of polysiloxaneâ€ŧype multifunctional flame retardant and its application in epoxy systems. Journal of Applied Polymer Science, 2012, 124, 4915-4919.	2.6	9
273	Novel high performance functionalized ladderlike polyphenylsilsesquioxane/bismaleimide hybrids with very good flame retardancy, thermal, and dimensional stability. Journal of Materials Science, 2011, 46, 7649-7659.	3.7	11
274	Comparative study on flame retardancy and thermal degradation of phosphorus- and silicon-containing epoxy resin composites. Journal of Polymer Research, 2011, 18, 2061-2070.	2.4	24
275	Thermal analyses of organic powders made from precipitation polymerization of triallyl monomers. Journal of Thermal Analysis and Calorimetry, 2011, 105, 279-285.	3.6	4
276	Synthesis and characterizations of novel phosphorous–nitrogen containing poly(ether sulfone)s. Polymer Degradation and Stability, 2011, 96, 197-203.	5.8	22

#	Article	IF	CITATIONS
277	Relationship between structures of phosphorus compounds and flame retardancies of the mixtures with acrylonitrile–butadiene–styrene and ethylene–vinyl acetate copolymer. Polymers for Advanced Technologies, 2011, 22, 512-519.	3.2	40
278	Effect of boron containing materials on flammability and thermal degradation of polyamideâ€6 composites containing melamine cyanurate. Polymers for Advanced Technologies, 2011, 22, 560-566.	3.2	14
279	Synergistic effect of boron containing substances on flame retardancy and thermal stability of clay containing intumescent polypropylene nanoclay composites. Polymers for Advanced Technologies, 2011, 22, 1628-1632.	3.2	39
280	The synthesis and properties of a reactive flameâ€retardant unsaturated polyester resin from a phosphorusâ€containing diacid. Polymers for Advanced Technologies, 2011, 22, 1768-1777.	3.2	83
281	Preparation of gelâ€silica/ammonium polyphosphate coreâ€shell flame retardant and properties of polyurethane composites. Polymers for Advanced Technologies, 2011, 22, 1824-1831.	3.2	94
282	Microencapsulated ammonium polyphosphate with epoxy resin shell: preparation, characterization, and application in EP system. Polymers for Advanced Technologies, 2011, 22, 2403-2408.	3.2	47
283	Thermal and optical properties of some phosphorusâ€containing poly(1,3,4â€oxadiazoleâ€esterâ€imide)s. Polymers for Advanced Technologies, 2011, 22, 2458-2468.	3.2	19
284	Modified cyanate ester resins with lower dielectric loss, improved thermal stability, and flame retardancy. Polymers for Advanced Technologies, 2011, 22, 2617-2625.	3.2	13
285	Flame retardation of glassâ€fiberâ€reinforced polyamide 6 by combination of aluminum phenylphosphinate with melamine pyrophosphate. Polymers for Advanced Technologies, 2011, 22, 1166-1173.	3.2	27
286	Novel starâ€shaped and hyperbranched phosphorus ontaining flame retardants in epoxy resins. Polymers for Advanced Technologies, 2011, 22, 1182-1191.	3.2	109
287	Intumescent flame retardation of melamineâ€modified montmorillonite on polyamide 6: Enhancement of condense phase and flame retardance. Polymer Engineering and Science, 2011, 51, 377-385.	3.1	30
288	Fire retardant properties of intumescent polypropylene composites filled with calcium carbonate. Polymer Engineering and Science, 2011, 51, 875-883.	3.1	16
289	Magnesium hydroxide modified by 1â€nâ€ŧetradecylâ€3 arboxymethyl imidazolium chloride and its effects on the properties of LLDPE. Polymer Engineering and Science, 2011, 51, 1519-1524.	3.1	8
290	Synthesis of pyrene end apped A6 dendrimer and star polymer with phosphazene core via "click chemistry― Journal of Polymer Science Part A, 2011, 49, 3193-3206.	2.3	28
291	Synthesis and polymerizations of six aminophosphonate ontaining methacrylates. Journal of Polymer Science Part A, 2011, 49, 5042-5048.	2.3	10
292	Phosphorusâ€containing poly(esterâ€imide)–polydimethylsiloxane copolymers. Polymer International, 2011, 60, 312-321.	3.1	17
293	Selfâ€supporting Polymer from a POSS Derivative. Macromolecular Rapid Communications, 2011, 32, 927-932.	3.9	28
294	Vegetable oils as platform chemicals for polymer synthesis. European Journal of Lipid Science and Technology, 2011, 113, 46-58.	1.5	179

	CITATION RE	PORT	
#	Article	IF	Citations
295	Synthesis, characteristic of a novel flame retardant containing phosphorus and its application in poly(ethyleneâ€coâ€vinyl acetate). Fire and Materials, 2011, 35, 193-207.	2.0	5
296	Synthesis and characterization of thermoplastic composites filled with γâ€boehmite for fire resistance. Fire and Materials, 2011, 35, 491-504.	2.0	10
297	Thermal stability and flame retardancy of polyester, cotton, and relative blend textile fabrics subjected to sol–gel treatments. Journal of Applied Polymer Science, 2011, 119, 1961-1969.	2.6	118
298	High transmittance and environmentâ€friendly flameâ€resistant optical resins based on poly(methyl) Tj ETQq1 1 727-734.	0.784314 2.6	4 rgBT /Oved 17
299	Miscibility and thermal behavior of poly(vinyl chloride)/feather keratin blends. Journal of Applied Polymer Science, 2011, 121, 3252-3261.	2.6	14
300	Synthesis and properties of novel 4,4′â€biphenyleneâ€bridged flameâ€retardant cyanate ester resin. Journal of Applied Polymer Science, 2011, 122, 2609-2615.	2.6	19
301	Effect of a novel phosphorus ontaining compound on the flame retardancy and thermal degradation of intumescent flame retardant polypropylene. Journal of Applied Polymer Science, 2011, 122, 3430-3439.	2.6	16
302	Design of Dinuclear Copper Species with Carboranylcarboxylate Ligands: Study of Their Steric and Electronic Effects. Chemistry - A European Journal, 2011, 17, 13217-13229.	3.3	27
303	Plant oils: The perfect renewable resource for polymer science?!. European Polymer Journal, 2011, 47, 837-852.	5.4	532
304	Synthesis of novel epoxy-group modified phosphazene-containing nanotube and its reinforcing effect in epoxy resin. European Polymer Journal, 2011, 47, 903-910.	5.4	61
305	Synthesis and characterization of new semifluorinated linear and hyperbranched poly(arylene ether) Tj ETQq0 0 C) rgBT /Ov	verlock 10 Tf
306	Polymeric nanocomposite materials: Synthesis and thermal degradation of acrylonitrile–butadiene–styrene/tin sulfide (ABS/SnS). Inorganica Chimica Acta, 2011, 371, 1-5.	2.4	41
307	A renewable waste material for the synthesis of a novel non-halogenated flame retardant polymer. Journal of Cleaner Production, 2011, 19, 454-458.	9.3	73
308	Polymeric nanocomposite materials: Preparation and characterization of star-shaped PbS nanocrystals and their influence on the thermal stability of acrylonitrile–butadiene–styrene (ABS) copolymer. Polyhedron, 2011, 30, 1055-1060.	2.2	136
309	A novel efficient halogen-free flame retardant system for polycarbonate. Polymer Degradation and Stability, 2011, 96, 320-327.	5.8	93
310	4,4,5,5-Tetra(3,5-dibromophenyl)-2,2-diphenyl-1,3-dioxa-2-silole and related compounds as precursors to flame retardant oligomers. Polymer Degradation and Stability, 2011, 96, 350-354.	5.8	1
311	Flame retardancy and flame retarding mechanism of high performance hyperbranched polysiloxane modified bismaleimide/cyanate ester resin. Polymer Degradation and Stability, 2011, 96, 505-514.	5.8	51
312	Synthesis, application and flame retardancy mechanism of a novel flame retardant containing silicon and caged bicyclic phosphate for polyamide 6. Polymer Degradation and Stability, 2011, 96, 1508-1515.	5.8	86

		CITATION REPORT		
#	Article		IF	CITATIONS
313	An efficient HCCP-mediated direct amination of quinazolin-4(3H)-ones. Tetrahedron, 2011, 67	, 1665-1672.	1.9	16
314	Synthesis, Characterization, and Properties of New Phosphorus-Containing Epoxy Resins. Phos Sulfur and Silicon and the Related Elements, 2011, 186, 2189-2201.	sphorus,	1.6	1
315	Crystalline Transformation of Ammonium Polyphosphate from Intermediate APP-X to APP-II. Ad Materials Research, 2011, 233-235, 105-108.	lvanced	0.3	1
316	Synthesis of a New Silicon-Phosphorus Hybrid Flame Retardant from Waste Silicon Oil and its Application in Polypropylene System. Advanced Materials Research, 2012, 534, 304-308.		0.3	1
317	Materials that release toxic fumes during fire. , 2012, , 241-282.			5
318	Flame-Retardant, Thermal, Mechanical and Dielectric Properties of Structural Non-Halogenated Resin Composites. Polymer-Plastics Technology and Engineering, 2012, 51, 1198-1203.	Ероху	1.9	82
319	Synthesis and Properties of a Novel Flame-Retardant Epoxy Resin Containing Biphenylyl/Pheny Phosphonic Moieties. Polymer-Plastics Technology and Engineering, 2012, 51, 896-903.	I	1.9	16
320	Preparation and Properties of Novel Cyclophosphazenes Containing Cyanato Groups. Phospho Sulfur and Silicon and the Related Elements, 2012, 187, 1555-1567.	prus,	1.6	8
321	New routes to flame retard polyamide 6,6 for electrical applications. Journal of Fire Sciences, 2 535-551.	012, 30,	2.0	27
322	Poly(vinylphosphonate)s with Widely Tunable LCST: A Promising Alternative to Conventional Thermoresponsive Polymers. Macromolecules, 2012, 45, 9751-9758.		4.8	76
323	Thermal Degradation and Fire Behaviors of Glass Fiber Reinforced PA6 Flame Retarded by Com of Aluminum Hypophosphite with Melamine Derivatives. ACS Symposium Series, 2012, , 167-1	bination 182.	0.5	3
324	Comparison of the Impact of Phosphorus and Phosphorus/Nitrogen on the Flammability of Sty Oligomers. ACS Symposium Series, 2012, , 235-250.	renic	0.5	2
325	Novel Biomass-Based Non-Halogenated FR Styrenic Blends. ACS Symposium Series, 2012, , 15	1-165.	0.5	1
326	Solubilities of Hexaphenoxycyclotriphosphazene and Tri(2-cyanoethyl)phosphine in Selected S Measurement and Correlation. Journal of Solution Chemistry, 2012, 41, 2107-2122.	olvents:	1.2	11
327	Thermal properties of polymethylvinylborosiloxanes. Journal of Thermal Analysis and Calorimet 2012, 109, 1049-1058.	ry,	3.6	11
328	On the Flame Resistance Behavior of <scp>PP</scp> / <scp>PET</scp> Blends in the Presence of and a Halogenâ€ <scp>F</scp> ree Flame Retardant. Macromolecular Materials and Engineering 1074-1084.	of Nanoclay g, 2013, 298,	3.6	7
329	A new supramolecular film formed from a silsesquioxane derivative for application in proton exchange membranes. Journal of Materials Chemistry, 2012, 22, 731-734.		6.7	23
330	Preparation and properties of novel oligo(phenylene oxide)-branched cyclophosphazenes. Poly Chemistry, 2012, 3, 2815.	mer	3.9	10

ARTICLE IF CITATIONS # Synthesis, Crystal Structure, and Flame Retardance of 2-(3-Silatranyl-Propylamino)-4-(2,4-Dichlorophenyl)-5,5-Dimethyl-1,3,2-Dioxaphosphinane-2-Sulfide. 331 0 1.6 Phosphorus, Sulfur and Silicon and the Related Elements, 2012, 187, 944-951. A novel flame-retardant-free copolyester: cross-linking towards self extinguishing and non-dripping. 6.7 Journal of Materials Chemistry, 2012, 22, 19849. On the use of magnesium hydroxide towards halogen-free flame-retarded polyamide-6/polypropylene 333 5.8 72 blends. Polymer Degradation and Stability, 2012, 97, 1447-1457. Intumescence: An effect way to flame retardance and smoke suppression for polystryene. Polymer 334 5.8 151 Degradation and Stability, 2012, 97, 1423-1431. Synthesis, characterization and thermal degradation kinetics of aluminum diisobutylphosphinate. 335 2.7 8 Thermochimica Acta, 2012, 547, 70-75. Combinations of Elements: a New Paradigm for Fire Retardancy. Macromolecular Chemistry and Physics, 2012, 213, 1987-1995. 2.2 Effects of multi-walled carbon nanotubes on flame retardation and thermal stabilization 337 performance of phosphorus-containing flame retardants in polypropylene. International Nano 5.0 4 Letters, 2012, 2, 1. Processing and Performance Additives for Plastics., 2012, , 369-381. 338 Novel Spirocyclic Phosphazene-Based Epoxy Resin for Halogen-Free Fire Resistance: Synthesis, Curing 339 8.0 131 Behaviors, and Flammability Characteristics. ACS Applied Materials & amp; Interfaces, 2012, 4, 4047-4061. Developments in functional finishing of cotton fibres $\hat{a} \in \mathcal{C}$ wrinkle-resistant, flame-retardant and 340 antimicrobial treatments. Textile Progress, 2012, 44, 175-249. A new supramolecular POSS electroluminescent material. Journal of Materials Chemistry, 2012, 22, 341 31 6.7 9285. Thermal properties and combustion behaviors of flame retarded epoxy acrylate with a chitosan based flame retardant containing phosphorus and acrylate structure. Journal of Analytical and Applied Pyrolysis, 2012, 97, 109-115. 342 5.5 Investigation of thermal degradation characteristics of polyamide-6 containing melamine or melamine cyanurate via direct pyrolysis mass spectrometry. Journal of Analytical and Applied Pyrolysis, 2012, 98, 343 5.5 39 221-230. A novel polymeric intumescent flame retardant: Synthesis, thermal degradation mechanism and 344 5.8 59 application in ABS copolymer. Polymer Degradation and Stability, 2012, 97, 1772-1778. Thermal and fire resistance of fibrous materials made by PET containing flame retardant agents. 345 5.8 38 Polymer Degradation and Stability, 2012, 97, 2545-2551. Flame retardancy and thermal decomposition of flexible polyurethane foams: Structural influence of 346 5.8 organophosphorus compounds. Polymer Degradation and Stability, 2012, 97, 2428-2440. Synergistic effect of zinc hydroxystannate with intumescent flame-retardants on fire retardancy and 347 5.8 64 thermal behavior of polypropylene. Polymer Degradation and Stability, 2012, 97, 2128-2135. Novel Cyclolinear Cyclotriphosphazene-Linked Epoxy Resin for Halogen-Free Fire Resistance: Synthesis, 348 Characterization, and Flammability Characteristics. Industrial & amp; Engineering Chemistry Research, 2012, 51, 15064-15074.

		15	0
#	ARTICLE Flame retardancy, smoke suppression effect and mechanism of aryl phosphates in combination with	IF	CITATIONS
349	magnesium hydroxide in polyamide 6. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 916-923.	1.0	11
350	Preparation and thermal properties of novel organic/inorganic network hybrid materials containing silicon and phosphate. Journal of Polymer Research, 2012, 19, 1.	2.4	31
351	Synthesis, characterization and curing properties of a novel cyclolinear phosphazene-based epoxy resin for halogen-free flame retardancy and high performance. RSC Advances, 2012, 2, 5789.	3.6	79
352	Synthesis and polymerizations of phosphonatedâ€bis(methacrylamide)s for dental applications. Journal of Polymer Science Part A, 2012, 50, 801-810.	2.3	26
353	Thermal properties and flame retardancy of novel epoxy based on phosphorusâ€modified Schiffâ€base. Polymers for Advanced Technologies, 2012, 23, 114-121.	3.2	39
354	Synthesis of a novel flame retardant containing phosphorus and sulfur and its application in polycarbonate. Polymer Engineering and Science, 2012, 52, 2327-2335.	3.1	28
355	Phosphaâ€Michael addition to enoneâ€containing triglyceride derivatives as an efficient route to flame retardant renewable thermosets. Journal of Polymer Science Part A, 2012, 50, 3206-3213.	2.3	17
356	Photocrosslinking and related properties of intumescent flameâ€retardant LLDPE/EVA/IFR blends. Polymers for Advanced Technologies, 2012, 23, 858-865.	3.2	22
357	Synergistic effects between boron phosphate and microencapsulated ammonium polyphosphate in flameâ€retardant thermoplastic polyurethane composites. Polymers for Advanced Technologies, 2012, 23, 894-900.	3.2	63
358	Synthesis and characterization of P/Si flame retardant and its application in epoxy systems. Polymers for Advanced Technologies, 2012, 23, 1329-1334.	3.2	14
359	Effects of phosphate and polysiloxane on flame retardancy and impact toughening behavior of poly(2,6â€dimethylâ€1,4â€phenylene oxide). Polymer Engineering and Science, 2012, 52, 927-936.	3.1	5
360	Synthesis of new dibenzo[<i>c</i> . <i>e</i>][1,2]oxaphosphorine 2â€oxide containing diols based on diethanolamine. Heteroatom Chemistry, 2012, 23, 146-153.	0.7	22
361	Synergistic effect of phosphorusâ€containing nanosponges on intumescent flameâ€retardant polypropylene. Journal of Applied Polymer Science, 2012, 125, 1758-1765.	2.6	25
362	Investigation on effects of aluminum and magnesium hypophosphites on flame retardancy and thermal degradation of polyamide 6. Journal of Applied Polymer Science, 2012, 125, 1782-1789.	2.6	60
363	Synthesis and characterization of a hybrid material based on a trimethoxysilane functionalized benzoxazine. Journal of Applied Polymer Science, 2012, 126, 1369-1376.	2.6	25
364	Synthesis and Properties of Thiopheneâ€Fused Benzocarborane. Chemistry - A European Journal, 2012, 18, 11251-11257.	3.3	56
365	Surface modification of fire-retardant asphalt with silane coupling agent. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 310-315.	1.0	10
366	Synthesis and liquid crystalline behavior of phosphorus-containing aliphatic–aromatic copoly(ester-imide)s. Polymer Bulletin, 2012, 68, 1921-1934.	3.3	9

#	Article	IF	CITATIONS
367	Preparation and characterization of high performance Schiff-base liquid crystal diepoxide polymer. Materials Chemistry and Physics, 2012, 132, 950-956.	4.0	19
368	Novel styrene polymers functionalized with phosphorus–nitrogen containing molecules: Synthesis and properties. Materials Chemistry and Physics, 2012, 134, 163-169.	4.0	29
369	Enhancement of flame retardancy and mechanical properties of HDPE/EPM based radiation shielding composites by electron beam irradiation. Journal of Nuclear Materials, 2012, 429, 99-104.	2.7	10
370	Influences of molecular weight of epoxy binder on fire protection of waterborne intumescent fire resistive coating. Surface and Coatings Technology, 2012, 206, 2146-2151.	4.8	30
371	Effect of borates on thermal degradation and flame retardancy of epoxy resins using polyhedral oligomeric silsesquioxane as a curing agent. Thermochimica Acta, 2012, 535, 71-78.	2.7	63
372	Studies of polycyanurates based on phenoxy-substituted cyclic phosphazenes: Synthesis of the monomer and a preliminary study of its thermal properties inÂbinary blends. Polymer Degradation and Stability, 2012, 97, 679-689.	5.8	10
373	Effect of the interface structure on the morphology and the mechanical, thermal, and flammability properties of polypropylene/poly(phenylene ether)/magnesium hydroxide composites. Polymer Degradation and Stability, 2012, 97, 755-765.	5.8	25
374	Study of the synergistic effect of silicon and phosphorus on the blowing-out effect of epoxy resin composites. Polymer Degradation and Stability, 2012, 97, 1041-1048.	5.8	94
375	Triazene compounds as a novel and effective class of flame retardants for polypropylene. Polymer Degradation and Stability, 2012, 97, 948-954.	5.8	29
376	Synthesis and characterization of water borne intumescent fire retardant varnish based on phosphate resin acid cold cured amino resin. Progress in Organic Coatings, 2012, 74, 608-614.	3.9	27
377	Synthesis and performance of flame retardant additives based on cyclodiphosph(V)azane of sulfaguanidine,1,3-di-[N/-2-pyrimidinylsulfanilamide]-2, 2, 2, 4, 4, 4-hexachlorocyclodiphosph(V)azane and 1,3-di-[N/-2-pyrimidinylsulfanilamide]-2, 4-di[aminoacetic acid]-2, 4-dichlorocyclodiphosph(V)azane incorporated into polyurethane varnish. Progress in Organic Coatings, 2012, 74, 615-621.	3.9	19
378	Preparation and characterization of boron containing thiol–ene photocured hybrid coatings. Progress in Organic Coatings, 2012, 75, 28-32.	3.9	31
379	Synthesis and Characterization of New Fluorescent Styreneâ€Containing Carborane Derivatives: The Singular Quenching Role of a Phenyl Substituent. Chemistry - A European Journal, 2012, 18, 544-553.	3.3	88
380	A novel halogenâ€free and formaldehydeâ€free flame retardant for cotton fabrics. Fire and Materials, 2012, 36, 31-39.	2.0	59
381	Modification of cellulosic fabrics to impart flame retardancy properties. Journal of Applied Polymer Science, 2012, 123, 2147-2153.	2.6	2
382	Flameâ€retardant polycarbonate/acrylonitrileâ€butadieneâ€styrene based on red phosphorus encapsulated by polysiloxane: Flame retardance, thermal stability, and water resistance. Journal of Applied Polymer Science, 2012, 123, 2867-2874.	2.6	16
383	Synthesis, characterization, and properties of new siloxane grafted copolyimides. Journal of Applied Polymer Science, 2012, 123, 2959-2967.	2.6	8
384	Investigation of fire behavior of rigid polyurethane foams containing fly ash and intumescent flame retardant by using a cone calorimeter. Journal of Applied Polymer Science, 2012, 124, 3372-3382.	2.6	120

#	Article	IF	CITATIONS
385	Polycarbonate composites flameâ€retarded by polyphenylsilsesquioxane of ladder structure. Journal of Applied Polymer Science, 2012, 124, 4381-4388.	2.6	38
386	Synthesis and characterization of polybenzoxazine containing phosphorus. Chinese Journal of Polymer Science (English Edition), 2012, 30, 250-257.	3.8	15
387	Flame retardancy and thermal stability of polyhedral oligomeric silsesquioxane nanocomposites. Fire and Materials, 2013, 37, 1-16.	2.0	38
388	Novel intumescent flame retardants: synthesis and application in polycarbonate. Fire and Materials, 2013, 37, 530-546.	2.0	34
389	Synthesis of a phenylene phenyl phosphine oligomer and its flame retardancy for polycarbonate. Journal of Applied Polymer Science, 2013, 127, 2855-2866.	2.6	13
390	Synthesis and applications of oligoetherols with perhydroâ€1,3,5â€ŧriazine ring and boron. Journal of Applied Polymer Science, 2013, 127, 2057-2066.	2.6	12
391	Synergistic effect of organic silicon on the flame retardancy and thermal properties of polycarbonate/potassiumâ€4â€(phenylsulfonyl) benzenesulfonate systems. Journal of Applied Polymer Science, 2013, 127, 2095-2101.	2.6	5
392	Synthesis, thermal degradation, and flame retardancy of a novel charring agent aliphatic—aromatic polyamide for intumescent flame retardant polypropylene. Journal of Applied Polymer Science, 2013, 127, 1061-1068.	2.6	27
393	Flame retardation performances of novel aryl cyclic phosphorus flame retardants when applied to highly flammable polymers. Macromolecular Research, 2013, 21, 184-193.	2.4	9
394	Intrinsic 31P NMR Chemical Shifts and the Basicities of Phosphate Groups in a Short-Chain Imino Polyphosphate. Journal of Solution Chemistry, 2013, 42, 1063-1074.	1.2	9
395	Novel boron-containing triazole functional copolymers as anhydrous proton conductive membranes. Journal of Polymer Research, 2013, 20, 1.	2.4	5
396	Synergistic effects between silicon-containing flame retardant and potassium-4-(phenylsulfonyl)benzenesulfonate (KSS) on flame retardancy and thermal degradation of PC. Journal of Thermal Analysis and Calorimetry, 2013, 114, 19-25.	3.6	15
397	The synergistic effect of adjuvant on the intumescent flame-retardant ABS with a novel charring agent. Journal of Thermal Analysis and Calorimetry, 2013, 113, 753-761.	3.6	9
398	Flame retardant finishing of cotton fabric based on synergistic compounds containing boron and nitrogen. Carbohydrate Polymers, 2013, 98, 706-710.	10.2	156
399	Recent developments in flame retardant polymeric coatings. Progress in Organic Coatings, 2013, 76, 1642-1665.	3.9	294
400	Flame retardant treatments of insulating agro-materials from flax short fibres. Polymer Degradation and Stability, 2013, 98, 1043-1051.	5.8	42
401	Strengthened magnetic epoxy nanocomposites with protruding nanoparticles onÂthe graphene nanosheets. Polymer, 2013, 54, 3594-3604.	3.8	150
402	Flame retardant phosphorous-containing polymers obtained by chemically modifying poly(vinyl) Tj ETQq1 1 0.78	43 <u>1</u> 4 rgB1	/Qxerlock_10

#	Article	IF	CITATIONS
403	A novel inorganic–organic hybridized intumescent flame retardant and its super flame retarding cyanate ester resins. Journal of Materials Chemistry A, 2013, 1, 2169-2182.	10.3	95
404	Preparation, Flame Retardancy, and Thermal Degradation of Unsaturated Polyester Resin Modified with a Novel Phosphorus Containing Acrylate. Industrial & Engineering Chemistry Research, 2013, 52, 12855-12864.	3.7	69
405	Addition of flame retardants in epoxy mortars: Thermal and mechanical characterization. Construction and Building Materials, 2013, 42, 266-270.	7.2	19
406	Phosphorus-Containing Poly(ethylene terephthalate): Solid-State Polymerization and Its Sequential Distribution. Industrial & Engineering Chemistry Research, 2013, 52, 5326-5333.	3.7	23
407	Effects of gamma irradiation on photoluminescence and activation energy of epoxy resin. Superlattices and Microstructures, 2013, 55, 191-197.	3.1	14
408	Effect of boron carbide nanoparticles on the fire reaction and fire resistance of carbon fiber/epoxy composites. Polymer, 2013, 54, 5154-5165.	3.8	48
409	Carbon Nanotube Enhanced Aerospace Composite Materials. Solid Mechanics and Its Applications, 2013, , .	0.2	12
410	A Novel Hyperbranched Polysiloxane Containing Epoxy and Phosphaphenanthrene Groups and its Multi-Functional Modification of Cyanate Ester Resin. Soft Materials, 2013, 11, 346-352.	1.7	19
411	Halogenated hydroxy-aryloxy phosphazenes and epoxy oligomers based on them. Russian Journal of Applied Chemistry, 2013, 86, 1600-1604.	0.5	12
412	Stabilities of the Divalent Metal Ion Complexes of a Short-Chain Polyphosphate Anion and Its Imino Derivative. Journal of Solution Chemistry, 2013, 42, 2104-2118.	1.2	7
413	Plasma Induced Graft Polymerization of C6 Fluorocarbons on Cotton Fabrics for Sustainable Finishing Applications. Plasma Processes and Polymers, 2013, 10, 430-443.	3.0	16
414	An overview of the engineered graphene nanostructures and nanocomposites. RSC Advances, 2013, 3, 22790.	3.6	180
415	New Method To Predict the Thermal Degradation Behavior of Polybenzoxazines from Empirical Data Using Structure Property Relationships. Macromolecules, 2013, 46, 7605-7615.	4.8	44
416	Synthesis of polymers with phosphorus containing side chains via modular conjugation. Polymer Chemistry, 2013, 4, 2406.	3.9	8
417	Flammability properties of PI fabric coated with montmorillonite. Journal of Thermal Analysis and Calorimetry, 2013, 111, 27-33.	3.6	9
418	Production and characterization of nanocomposites based on poly(amide-imide) containing 4,4′-methylenebis(3-chloro-2,6-diethylaniline) using nano-TiO2 surface-coupled by 3-aminopropyltriethoxysilane. Progress in Organic Coatings, 2013, 76, 231-237.	3.9	29
419	A DFT study on the initial stage of thermal degradation of Poly(methyl methacrylate)/carbon nanotube system. Journal of Molecular Modeling, 2013, 19, 623-629.	1.8	2
420	Effects of common synergistic agents on intumescent flame retardant polypropylene with a novel charring agent. Journal of Thermal Analysis and Calorimetry, 2013, 111, 725-734.	3.6	47

#	Article	IF	CITATIONS
421	Effect of a novel flame retardant containing silicon and nitrogen on the thermal stability and flame retardancy of polycarbonate. Journal of Thermal Analysis and Calorimetry, 2013, 111, 1531-1537.	3.6	24
422	Flame-Retardant Electrical Conductive Nanopolymers Based on Bisphenol F Epoxy Resin Reinforced with Nano Polyanilines. ACS Applied Materials & Interfaces, 2013, 5, 898-910.	8.0	179
423	Synthesis of ωâ€phosphonated poly(ethylene oxide)s through the combination of kabachnik–fields reaction and "click―chemistry. Journal of Polymer Science Part A, 2013, 51, 415-423.	2.3	10
424	Design and evaluation of bio-based composites for printed circuit board application. Composites Part A: Applied Science and Manufacturing, 2013, 47, 22-30.	7.6	42
425	Thermal curing and degradation mechanism of polyhedral oligomeric octa(propargylaminophenyl)silsesquioxane. Polymer Degradation and Stability, 2013, 98, 281-287.	5.8	13
426	Phosphorus flame retardant polybenzoxazine foams based on renewable diphenolic acid. Polymer Degradation and Stability, 2013, 98, 2617-2626.	5.8	45
427	Flame retardancy and thermal degradation behaviors of polypropylene composites with novel intumescent flame retardant and manganese dioxide. Journal of Analytical and Applied Pyrolysis, 2013, 104, 59-67.	5.5	42
428	Cyclic polyphosphoesters synthesized by acyclic diene metathesis polymerization and ring closing metathesis. Reactive and Functional Polymers, 2013, 73, 1242-1248.	4.1	16
429	Synergism of polysiloxane and zinc borate flame retardant polycarbonate. Polymer Degradation and Stability, 2013, 98, 2795-2800.	5.8	41
430	A renewable approach to thermosetting resins. Reactive and Functional Polymers, 2013, 73, 381-395.	4.1	85
431	Determination and Correlation of Solubility of Tris(3-hydroxypropyl)phosphine Oxide in Selected Solvents. Journal of Chemical & Engineering Data, 2013, 58, 598-604.	1.9	12
432	Flame retardant high oleic sunflower oilâ€based thermosetting resins through aza―and phosphaâ€michael additions. Journal of Polymer Science Part A, 2013, 51, 1808-1815.	2.3	16
433	Preparation of Phosphonoterephthalic Acids via Palladium-Catalyzed Coupling of Aromatic Iodoesters. Synthetic Communications, 2013, 43, 1831-1836.	2.1	9
434	Synthesis of a phosphorus/silicon hybrid and its synergistic effect with melamine polyphosphates on flame retardant polypropylene system. Journal of Applied Polymer Science, 2013, 129, 316-323.	2.6	16
435	Polyaniline stabilized barium titanate nanoparticles reinforced epoxy nanocomposites with high dielectric permittivity and reduced flammability. Journal of Materials Chemistry C, 2013, 1, 2886.	5.5	102
436	Structure–property relationships of synthetic organophosphorus flame retardant oligomers by thermal analysis. Thermochimica Acta, 2013, 565, 17-26.	2.7	21
437	Thermal behavior and flammability of epoxy/glass fiber composites containing clay and decabromodiphenyl oxide. Journal of Thermal Analysis and Calorimetry, 2013, 112, 1157-1164.	3.6	28
438	Mechanical Dispersion Methods for Carbon Nanotubes in Aerospace Composite Matrix Systems. Solid Mechanics and Its Applications, 2013, , 99-154.	0.2	3

#	Article	IF	CITATIONS
439	Benzoxazine-containing branched polysiloxanes: Highly efficient reactive-type flame retardants and property enhancement agents for polymers. Polymer, 2013, 54, 2945-2951.	3.8	70
440	Synthesis of organophosphorus modified nanoparticles and their reinforcements on the fire safety and mechanical properties of polyurea. Materials Chemistry and Physics, 2013, 139, 443-449.	4.0	21
441	Recent developments in the fire retardancy of polymeric materials. Progress in Polymer Science, 2013, 38, 1357-1387.	24.7	517
442	Flame Retardancy and Thermal Properties of Novel UV-Curable Epoxy Acrylate Coatings Modified by a Silicon-Bearing Hyperbranched Polyphosphonate Acrylate. Industrial & Engineering Chemistry Research, 2013, 52, 5548-5555.	3.7	48
443	Enhancing the Anhydrous Proton Conductivity of Boronic and Phosphonic Acid Functional Copolymers by Grafting With Flexible Spacers. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 846-854.	3.7	5
444	Thermal degradation and flammability of novel organic/inorganic epoxy hybrids containing organophosphorus-modified oligosiloxane. Thermochimica Acta, 2013, 552, 87-97.	2.7	50
445	Thermorheological Properties and Thermal Stability of Polyethylene/Wood Composites. Journal of Macromolecular Science - Physics, 2013, 52, 1115-1127.	1.0	13
446	Synthesis of a Novel Phosphorus- and Nitrogen-Containing Acrylate and Its Performance as an Intumescent Flame Retardant for Epoxy Acrylate. Industrial & Engineering Chemistry Research, 2013, 52, 17442-17450.	3.7	41
447	Synthesis of a silicon-containing flame retardant and its synergistic effect with potassium-4-(phenylsulfonyl)benzenesulfonate (KSS) in polycarbonate (PC). Chinese Journal of Polymer Science (English Edition), 2013, 31, 1352-1358.	3.8	5
448	Flame Retardancy and Mechanism of Bismaleimide Resins Based on a Unique Inorganic–Organic Hybridized Intumescent Flame Retardant. Industrial & Engineering Chemistry Research, 2013, 52, 15075-15087.	3.7	42
449	Synergistic Effect between Aluminum Hypophosphite and Alkyl-Substituted Phosphinate in Flame-Retarded Polyamide 6. Industrial & Engineering Chemistry Research, 2013, 52, 17162-17170.	3.7	48
450	Solid–Liquid Phase Equilibrium of <i>N</i> , <i>N</i> ′-(Methylenedi-4,1-phenylene)bis(phosphoramidic) Tj E 10916-10923.	TQq1 1 0.7 3.7	784314 rgB 12
451	Aluminum Hypophosphite versus Alkyl-Substituted Phosphinate in Polyamide 6: Flame Retardance, Thermal Degradation, and Pyrolysis Behavior. Industrial & Engineering Chemistry Research, 2013, 52, 2875-2886.	3.7	104
452	Effect of DOPO units and of polydimethylsiloxane segments on the properties of epoxy resins. Journal of Materials Science, 2013, 48, 8520-8529.	3.7	26
453	Synergistic effects of expandable graphite and ammonium polyphosphate with a new carbon source derived from biomass in flame retardant ABS. Journal of Applied Polymer Science, 2013, 128, 2424-2432.	2.6	61
454	Flammability and Thermal Characterization of Aluminum Hydroxide Filled with LDPE. International Polymer Processing, 2013, 28, 393-397.	0.5	11
455	Flame retardant fiber-reinforced composites. , 2013, , 623-652.		3
456	Plastics additives and green chemistry. Pure and Applied Chemistry, 2013, 85, 1611-1624.	1.9	42

#	Article	IF	CITATIONS
457	Synthesis and Characterization of a Flame Retardant Dimethyl Methyl Phosphonate (DMMP) and its Application in FRP. Advanced Materials Research, 0, 804, 29-35.	0.3	2
458	Self-assembled clay films with a platelet–void multilayered nanostructure and flame-blocking properties. Scientific Reports, 2013, 3, 2621.	3.3	16
459	1,4-Bis{[hydroxy(phenyl)phosphoryl]methyl}piperazine-1,4-diium tetrachloridocadmate(II) dihydrate and the cobaltate(II) analogue. Acta Crystallographica Section C: Crystal Structure Communications, 2013, 69, 738-741.	0.4	1
460	Study on copolymers synthesized from 2,3-epoxypropyl-3-(2-furyl) acrylate – styrene and their glass fiber reinforced composites. Journal of Polymer Engineering, 2013, 33, 303-314.	1.4	1
461	Synthesis and Properties of a Novel Polymeric Phosphate Flame Retardant. Advanced Materials Research, 0, 750-752, 785-788.	0.3	1
462	Direct pyrolysis mass spectrometry analyses of polyamideâ€6 containing melamine and boron compounds. Polymer Composites, 2013, 34, 1389-1395.	4.6	0
463	Preparation and performance on polycarbonate of B/F/Si ontaining hybrid coatings. Journal of Vinyl and Additive Technology, 2013, 19, 39-46.	3.4	5
464	Synergistic effect of DOPO immobilized silica nanoparticles in the intumescent flame retarded polypropylene composites. Polymers for Advanced Technologies, 2013, 24, 732-739.	3.2	52
465	Novel Inorganic Protonâ€Conducting Graft Copolymers Based on 4â€Vinyl Benzene Boronic Acid and Vinyl Phosphonic Acid. Macromolecular Chemistry and Physics, 2013, 214, 486-491.	2.2	7
466	Plasma Deposition of an Organophosphorus Coating at Atmospheric Pressure. Plasma Processes and Polymers, 2013, 10, 556-563.	3.0	15
467	Preparation and phase behavior of blends of polysulfoneâ€based polymers with phosphorousâ€containing smecticâ€A liquid crystals. Polymer Engineering and Science, 2013, 53, 1209-1216.	3.1	5
468	The Modification of Polyurethane Foams Using New Boroorganic Polyols: Obtaining of Polyols with the Use of Hydroxypropyl Urea Derivatives. International Journal of Polymer Science, 2014, 2014, 1-9.	2.7	1
469	The Modification of Polyurethane Foams Using New Boroorganic Polyols (II) Polyurethane Foams from Boron-Modified Hydroxypropyl Urea Derivatives. Scientific World Journal, The, 2014, 2014, 1-9.	2.1	5
471	Use of a Cashew Nut Shell Liquid Resin as a Potential Replacement for Phenolic Resins in the Preparation of Panels – A Review. Molecular Crystals and Liquid Crystals, 2014, 604, 222-232.	0.9	18
472	Fire retardancy and durability of poly(<i>N</i> â€benzyloxycarbonylâ€3,4â€dihydroxyphenylalanine)â€montmorillonite composite film coated polyimide fabric. Journal of Applied Polymer Science, 2014, 131, .	2.6	7
473	Effect of Polyborosiloxane on the Flame Retardancy and Thermal Degradation of Intumescent Flame Retardant Polypropylene. Journal of Macromolecular Science - Physics, 2014, 53, 721-734.	1.0	28
474	A New Polymer Containing α-Aminophosphonate Unit Used as Reactive, Halogen-Free Flame Retardant for Epoxy Resins. Phosphorus, Sulfur and Silicon and the Related Elements, 2014, 189, 361-373.	1.6	13
475	Boron/Phosphorus-Containing Flame-Retardant Photocurable Coatings. RSC Smart Materials, 2014, , 150-187.	0.1	1

#	Article	IF	CITATIONS
476	Self-extinguishing Polymer Blends Containing Organoclays. , 2014, , 653-674.		0
477	Improving the Flame Retardancy of Plant Oil Based Polymers. , 2014, , 775-800.		0
478	Recycling of Postindustrial and Postconsumer Plastics Containing Flame Retardants. , 2014, , 869-889.		9
479	Effect of Epoxy-Functionalization on the Halogen-Free Flame-Retardant Properties of Acrylonitrile-Butadiene-Styrene Resin. Advanced Materials Research, 2014, 1053, 201-207.	0.3	1
480	Polyurethane foams with purine ring and boron. Journal of Cellular Plastics, 2014, 50, 337-359.	2.4	5
481	Functionalizing carbon nanotubes by grafting cyclotriphosphazene derivative to improve both mechanical strength and flame retardancy. Polymer Composites, 2014, 35, 2187-2193.	4.6	14
482	Syntheses and Characterization of Four Phosphaphenanthrene and Phosphazene-based Flame Retardants. Phosphorus, Sulfur and Silicon and the Related Elements, 2014, 189, 1811-1822.	1.6	22
483	Syntheses and flame retarding properties of DOPO polymers, melamine polymers, and DOPOâ€melamine copolymers. Polymers for Advanced Technologies, 2014, 25, 36-40.	3.2	26
484	Synthesis of biobased phosphate flame retardants. Pure and Applied Chemistry, 2014, 86, 1637-1650.	1.9	22
485	Reactive and Additive Phosphorus-based Flame Retardants of Reduced Environmental Impact. , 2014, , 181-220.		12
486	Effects of irradiation on the mechanical, electrical, and flammability properties of (lowâ€density) Tj ETQq0 0 0 rgB Vinyl and Additive Technology, 2014, 20, 91-98.	T /Overloo 3.4	ck 10 Tf 50 3 17
488	Synthesis of Flame-retardant Phosphaphenanthrene Derivatives with High Phosphorus Contents. Australian Journal of Chemistry, 2014, 67, 1688.	0.9	2
489	Contribution of nanoclays to the flame retardancy of polyethylene-based cable insulation materials with aluminum hydroxide and zinc borate. Journal of Fire Sciences, 2014, 32, 121-144.	2.0	21
490	Hydrothermal Synthesis and Characterization of Hexagonal Mg(OH) ₂ Flame Retardant with Bischofite and NH ₃ . Advanced Materials Research, 0, 936, 919-928.	0.3	0
491	Effects of the reaction degree of melamine-formaldehyde resin on the structures and properties of melamine-formaldehyde/polyvinyl alcohol composite fiber. Fibers and Polymers, 2014, 15, 1828-1834.	2.1	27
492	Preparation of Flame Retardant Modified with Titanate for Asphalt Binder. Advances in Materials Science and Engineering, 2014, 2014, 1-8.	1.8	7
493	Thermal stabilities and flame retardancies of phloroglucinolâ€based organo phosphates when applied to polycarbonate. Fire and Materials, 2014, 38, 36-45.	2.0	11
494	The flame retardant effect of aluminum phosphinate in combination with zinc borate, borophosphate, and nanoclay in polyamideâ€6. Fire and Materials, 2014, 38, 92-99.	2.0	62

#	Article	IF	CITATIONS
495	A Well-Defined Cyclotriphosphazene-Based Epoxy Monomer and Its Application as A Novel Epoxy Resin: Synthesis, Curing Behaviors, and Flame Retardancy. Phosphorus, Sulfur and Silicon and the Related Elements, 2014, 189, 541-550.	1.6	15
496	Applying the Principles of Green Chemistry to Polymer Production Technology. Macromolecular Reaction Engineering, 2014, 8, 7-28.	1.5	132
497	Thermal decomposition of polyhedral oligomeric octaphenyl, octa(nitrophenyl), and octa(aminophenyl) silsesquioxanes. Journal of Thermal Analysis and Calorimetry, 2014, 116, 349-357.	3.6	12
498	Effect of alumina nanoparticles on the thermal properties of carbon fibreâ€reinforced composites. Fire and Materials, 2014, 38, 339-355.	2.0	21
499	Synthesis of a novel dicyclic silicon-/phosphorus hybrid and its performance on flame retardancy of epoxy resin. Polymer Degradation and Stability, 2014, 99, 43-52.	5.8	71
500	The Modification of Polyurethane Foams Using New Boroorganic Polyols. II. Polyurethane Foams from Boron-Modified Hydroxypropyl Urea Derivatives. Polymer-Plastics Technology and Engineering, 2014, 53, 207-215.	1.9	4
501	A Novel Transparent Cross-Linked Poly(methyl methacrylate)-Based Copolymer with Enhanced Mechanical, Thermal, and Flame-Retardant Properties. Industrial & Engineering Chemistry Research, 2014, 53, 3880-3887.	3.7	18
502	Usability of three boron compounds for enhancement of flame retardancy in polyethylene-based cable insulation materials. Journal of Fire Sciences, 2014, 32, 99-120.	2.0	18
503	⁹ Be and ³¹ P NMR analyses on the influence of imino groups on Be ²⁺ complex stabilities of a series of <i>cycloâ€î¼</i> â€imido triphosphate anions. Magnetic Resonance in Chemistry, 2014, 52, 69-81.	1.9	6
504	Investigation on flame retardancy, combustion and pyrolysis behavior of flame retarded unsaturated polyester resin with a star-shaped phosphorus-containing compound. Journal of Analytical and Applied Pyrolysis, 2014, 105, 317-326.	5.5	71
505	Evidence of surface accumulation of fillers during the photo-oxidation of flame retardant ATH filled EVA used for cable applications. Polymer Degradation and Stability, 2014, 103, 63-68.	5.8	21
506	Investigation of enhancing effect of nano-montmorillonite on fire-retardant added low-density polyethylene–ethylene vinyl acetate hybrid system. Journal of Thermoplastic Composite Materials, 2014, 27, 1515-1529.	4.2	10
507	Synthesis and characterization of polyamine-based cyclophosphazene hybrid microspheres. Journal of Polymer Science Part A, 2014, 52, 527-536.	2.3	41
508	Fine dispersion of phosphazene-amines and silicate platelets in epoxy nanocomposites and the synergistic fire-retarding effect. Journal of Polymer Research, 2014, 21, 1.	2.4	7
509	On flame retardancy in polycaprolactam composites by aluminium diethylphosphinate and melamine polyphosphate in conjunction with organically modified montmorillonite nanoclay. Polymer Degradation and Stability, 2014, 105, 1-11.	5.8	42
510	Synergistic effect between a novel triazine charring agent and ammonium polyphosphate on flame retardancy and thermal behavior of polypropylene. Polymer Degradation and Stability, 2014, 105, 12-20.	5.8	90
511	Functionalization of graphene with grafted polyphosphamide for flame retardant epoxy composites: synthesis, flammability and mechanism. Polymer Chemistry, 2014, 5, 1145-1154.	3.9	190
512	Novel cyclotriphosphazene-based epoxy compound and its application in halogen-free epoxy thermosetting systems: Synthesis, curing behaviors, and flame retardancy. Polymer Degradation and Stability, 2014, 103, 96-112.	5.8	100

ARTICLE IF CITATIONS Curing behavior and thermal properties of TGDDM copolymerized with a new pyridine-containing 513 2.7 33 diamine and with DDM or DDS. Thermochimica Acta, 2014, 575, 21-28. Comparative study of boron compounds and aluminum trihydroxide as flame retardant additives in 514 3.2 epoxy resin. Polymers for Advanced Technologies, 2014, 25, 769-776. New Facile Process for Synthesis of Borosiloxane Resins. Journal of Inorganic and Organometallic 515 3.7 31 Polymers and Materials, 2014, 24, 1092-1095. Enhanced thermal properties and flame retardancy of unsaturated polyester-based hybrid materials 516 containing phosphorus and silicon. Polymers for Ádvanced Technologies, 2014, 25, 223-232. Single-stage synthesis of phosphazene-containing epoxy oligomers. Polymer Science - Series B, 2014, 56, 517 0.8 17 471-476. Preparation and characterization of flame retardant polyurethane foams containing phosphorus–nitrogen-functionalized lignin. RSC Advances, 2014, 4, 55271-55279. 3.6 The synthesis and characterization of a novel phosphorus–nitrogen containing flame retardant and 519 2.6 26 its application in epoxy resins. Journal of Applied Polymer Science, 2014, 131, . Poly(phosphonate)s via Olefin Metathesis: Adjusting Hydrophobicity and Morphology. 4.8 47 Macromolecules, 2014, 47, 4884-4893. Multifunctional Cyclotriphosphazene/Hexagonal Boron Nitride Hybrids and Their Flame Retarding 521 Bismaleimide Resins with High Thermal Conductivity and Thermal Stability. ACS Applied Materials & amp; 8.0 151 Interfaces, 2014, 6, 14931-14944. Phosphorus-containing thermotropic liquid crystalline polymers: a class of efficient polymeric flame retardants. Polymer Chemistry, 2014, 5, 3737 Synthesis of a novel curing agent containing organophosphorus and its application in flameâ€retarded 523 2.6 22 epoxy resins. Journal of Applied Polymer Science, 2014, 131, . Synergistic effects of kaolin clay on intumescent fire retardant coating composition for fire 524 5.8 79 protection of structural steel substrate. Polymer Degradation and Stability, 2014, 110, 91-103. 525 Boron containing UV-curable epoxy acrylate coatings. Progress in Organic Coatings, 2014, 77, 1911-1918. 3.9 23 Enhanced Thermal Stability and Flame Retardancy of a Novel Transparent Poly(Methyl) Tj ETQq1 1 0.784314 rgBT /Qverlock 10 Tf 50 Synthesis and fire properties of rigid polyurethane foams made from a polyol derived from melamine 527 5.8 85 and cardanol. Polymer Degradation and Stability, 2014, 110, 27-34. Polymers on Fire. , 2014, , 1-43. Organosilicon Compounds as Polymer Fire Retardants., 2014, , 389-418. 9 529 Correlations of limiting oxygen index with structural polyphosphoester features by QSPR approaches. Structural Chemistry, 2014, 25, 1847-1863.

#	Article	IF	CITATIONS
531	Synthesis and characterization of a novel epoxy resin based on cyclotriphosphazene and its thermal degradation and flammability performance. Polymer Degradation and Stability, 2014, 109, 240-248.	5.8	97
532	Phosphorus based indole and imidazole functionalized hyperbranched polyester as antimicrobial surface coating materials. Progress in Organic Coatings, 2014, 77, 1901-1910.	3.9	16
533	Inherently Flame-Retardant Flexible Polyurethane Foam with Low Content of Phosphorus-Containing Cross-Linking Agent. Industrial & Engineering Chemistry Research, 2014, 53, 1160-1171.	3.7	123
534	Improving thermal and flame-retardant properties of epoxy resins by a novel reactive phosphorous-containing curing agent. Polymer Engineering and Science, 2014, 54, 1192-1200.	3.1	51
535	Multifunctional deoxybenzoin-based epoxies: Synthesis, mechanical properties, and thermal evaluation. Polymer, 2014, 55, 4441-4446.	3.8	23
536	Synergistic effect of methyl phenyl silicone resin and DOPO on the flame retardancy of epoxy resins. Journal of Thermal Analysis and Calorimetry, 2014, 118, 369-375.	3.6	26
537	Producing Polymer Foams. , 2014, , 345-382.		7
538	Fire Retardancy of Elastomers and Elastomer Nanocomposites. , 2014, , 597-651.		5
539	Cyclotriphosphazene fibre reinforced poly(benzoxazine-co-ε-caprolactam) nanocomposites for flame retardant applications. Chinese Journal of Polymer Science (English Edition), 2014, 32, 1086-1098.	3.8	10
540	Special Spherical Shell-shaped Foam deriving from Guanidine Phosphate – Pentaerythritol system and its Intumescent Fire Retardant effects on Polypropylene. Polymer Degradation and Stability, 2014, 110, 252-259.	5.8	11
541	Unprecedented Control of Selectivity in Nickelâ€Catalyzed Hydrophosphorylation of Alkynes: Efficient Route to Mono―and Bisphosphonates. Advanced Synthesis and Catalysis, 2014, 356, 771-780.	4.3	50
542	The flame-retardancy and anti-dripping properties of novel poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 268-277.	Tf 50 307 5.8	Td (terepha 40
543	The influence of the phosphorus-based flame retardant on the flame retardancy of the epoxy resins. Polymer Degradation and Stability, 2014, 109, 209-217.	5.8	139
544	Study of the synergistic effect of polyhedral oligomeric octadiphenylsulfonylsilsesquioxane and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide on flame-retarded epoxy resins. Polymer Degradation and Stability, 2014, 109, 233-239.	5.8	42
545	Polyethers with phosphate pendant groups by monomer activated anionic ring opening polymerization: Syntheses, characterization and their lithium-ion conductivities. Polymer, 2014, 55, 83-94.	3.8	15
546	Organic/inorganic flame retardants containing phosphorus, nitrogen and silicon: Preparation and their performance on the flame retardancy of epoxy resins as a novel intumescent flame retardant system. Materials Chemistry and Physics, 2014, 143, 1243-1252.	4.0	168
547	Synergistic effect of expandable graphite, diethyl ethylphosphonate and organically-modified layered double hydroxide on flame retardancy and fire behavior of polyisocyanurate-polyurethane foam nanocomposite. Polymer Degradation and Stability, 2014, 101, 92-101.	5.8	64
548	Variation and distribution of metals and metalloids in soil/ash mixtures from Agbogbloshie e-waste recycling site in Accra, Ghana. Science of the Total Environment, 2014, 470-471, 707-716.	8.0	55

#	Article	IF	CITATIONS
549	Synthesis of hexakis(hydroxyaryloxy)cyclotriphosphazene based on bisphenol A. Mendeleev Communications, 2014, 24, 154-155.	1.6	4
550	Bridged phosphorylated diamines: Synthesis, thermal stability and flame retarding properties in epoxy resins. Polymer Degradation and Stability, 2014, 106, 122-128.	5.8	42
551	Synthesis of new flame-retardants by radical chain transfer copolymerization of glycidyl methacrylate and dimethoxy-phosphorylmethyl methacrylate. European Polymer Journal, 2014, 57, 109-120.	5.4	21
552	Two novel phosphorus–nitrogen-containing halogen-free flame retardants of high performance for epoxy resin. Polymer Degradation and Stability, 2014, 108, 68-75.	5.8	110
554	The effects of APP, APP/MMT nanocomposites on the thermal degradation of ABS resin. Journal of Applied Polymer Science, 2014, 131, .	2.6	4
555	Modified polyaniline and its effects on the microstructure and antistatic properties of PP/PANIâ€APP/CPP composites. Journal of Applied Polymer Science, 2014, 131, .	2.6	1
556	Synthesis of a novel phosphonate flame retardant and its application in epoxy resins. Journal of Applied Polymer Science, 2015, 132, .	2.6	10
557	Flame retardancy and crack resistance of transparent intumescent fireâ€resistive coatings. Journal of Applied Polymer Science, 2015, 132, .	2.6	14
558	The flameâ€retardant properties and mechanisms of poly(ethylene terephthalate)/hexakis (paraâ€allyloxyphenoxy) cyclotriphosphazene systems. Journal of Applied Polymer Science, 2015, 132, .	2.6	16
560	Hexa-Para-Aminophenoxycyclo-Triphosphazene as a Curing Agent/Modifier for Epoxy Resins. International Polymer Science and Technology, 2015, 42, 31-34.	0.1	4
561	Evaluating the Effectiveness of Complex Fire-Retardants on the Fire Properties of Ultra-low Density Fiberboard (ULDF). BioResources, 2015, 11, .	1.0	4
562	Curing behaviour and thermal properties of epoxy resin cured by aromatic diamine with carborane. High Performance Polymers, 2015, 27, 497-509.	1.8	22
563	Effect of phosphorous-containing modified poly(vinyl alcohol) on the mechanical and flame retardant properties of polypropylene. EXPRESS Polymer Letters, 2015, 9, 330-343.	2.1	11
564	Synthesis of a cross-linked triazine phosphine polymer and its effect on fire retardancy, thermal degradation and moisture resistance of epoxy resins. Polymer Degradation and Stability, 2015, 119, 14-22.	5.8	38
565	Flame Retardant Finishing for Textiles. Engineering Materials, 2015, , 209-246.	0.6	18
566	Highly effective flame retarded epoxy resin cured by DOPO-based co-curing agent. Polymer Degradation and Stability, 2015, 122, 44-51.	5.8	124
567	Synthesis and characterization of a phosphorus-containing flame retardant with double bonds and its application in bismaleimide resins. RSC Advances, 2015, 5, 101480-101486.	3.6	20
568	Novel halogen-free flame retardants based on adamantane for polycarbonate. RSC Advances, 2015, 5, 67054-67065.	3.6	27

ARTICLE IF CITATIONS An overview of some recent advances in DOPO-derivatives: Chemistry and flame retardant 5.8 285 569 applications. Polymer Degradation and Stability, 2015, 113, 119-134. Poly(vinylphosphonate)s as Macromolecular Flame Retardants for Polycarbonate. Industrial & amp; 570 19 Engineering Chemistry Research, 2015, 54, 1703-1712. 572 Flame Retardants. Engineering Materials, 2015, , . 0.6 31 Water-soluble polyelectrolyte complexes that extinguish fire on cotton fabric when deposited as 5.8 pH-cured nanocoating. Polymer Degradation and Stability, 2015, 114, 60-64. Flame retardancy and mechanical properties of ferrum ammonium phosphateâ€"halloysite/epoxy 574 2.6 7 polymer nanocomposites. Journal of Applied Polymer Science, 2015, 132, . Effect of incorporation of POSS compounds and phosphorous hardeners on thermal and fire resistance of nanofilled aeronautic resins. RSC Advances, 2015, 5, 10974-10986. 3.6 576 Flame retardant finishes for textiles., 2015, , 429-461. 13 Correlations of the Antioxidant Properties of Softwood Kraft Lignin Fractions with the Thermal 6.7 141 Stability of Its Blends with Polyethylene. ACS Sustainable Chemistry and Engineering, 2015, 3, 349-356. Synthesis and performance of a novel nitrogenâ€containing cyclic phosphate for intumescent flame 578 2.6 18 rétardant and its application in epoxy resin. Journal of Applied Polymer Science, 2015, 132, . Recent advances for microencapsulation of flame retardant. Polymer Degradation and Stability, 2015, 579 5.8 113, 96-109. Influence of iron oxide green on smoke suppression properties and combustion behavior of intumescent flame retardant epoxy composites. Journal of Thermal Analysis and Calorimetry, 2015, 119, 580 3.6 32 625-633. Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin 371 nanocomposites. Journal of Materials Chemistry A, 2015, 3, 8034-8044. Improved mechanical property, thermal performance, flame retardancy and fire behavior of 582 lignin-based rigid polyurethane foam nanocomposite. Journal of Thermal Analysis and Calorimetry, 3.6 48 2015, 120, 1311-1325. A review of the fire behaviour of pultruded GFRP structural profiles for civil engineering applications. Composite Structures, 2015, 127, 267-287. 5.8 Flame retardant polymer composites. Fibers and Polymers, 2015, 16, 705-717. 584 2.1 164 Synthesis of dialkyl 2-(Methacryloyloxyethyl) phosphonates, their characterization and polymerization. Polymer Science - Series B, 2015, 57, 408-416. Influence of zinc borate on the flame retardancy and thermal stability of intumescent flame retardant 586 5.566 polypropylene composites. Journal of Analytical and Applied Pyrolysis, 2015, 115, 224-232. Synthesis of charring agent and its derivatives of dipentaerythritol polycyclicphosphonates flame rétardants. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of 1.1 Engineers, Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2015, 38, 93-100.

ARTICLE IF CITATIONS # Synthesis, characterization, and optoelectronic study of three biaryl-fused closo-o-carboranes and 588 1.8 18 their nido-[C2B9]â[~] species. Journal of Organometallic Chemistry, 2015, 798, 165-170. Solubility of Phloroglucinol Tris(cyclic 2,2-dimethyl-1,3-propanediol phosphate) in Different Solvents. Journal of Solution Chemistry, 2015, 44, 1310-1319. 589 1.2 Poly(hexamethylene succinate) copolyesters containing phosphorus pendent group: Retarded 590 3.8 21 crystallization and solid-state microstructure. Polymer, 2015, 71, 31-42. Novel Multifunctional Organic–Inorganic Hybrid Curing Agent with High Flame-Retardant Efficiency 213 for Epoxy Resin. ACS Applied Materials & amp; Interfaces, 2015, 7, 17919-17928. Modification of poly(styrene-block-butadiene-block-styrene) [SBS] with phosphorus containing fire 592 5.4 18 retardants. Europeán Polymer Journal, 2015, 70, 136-146. Thermal, mechanical and structural investigation of copolyimide–silica hybrids containing phosphine oxide. Progress in Organic Coatings, 2015, 86, 108-116. Intumescence: Tradition versus novelty. A comprehensive review. Progress in Polymer Science, 2015, 51, 594 24.7 410 28-73. High-Temperature Auto-Cross-Linking Cyclotriphosphaznene: Synthesis and Application in Flame Retardance and Antidripping Poly(ethyléne terephthalate). Indústrial & amp; Engineering Chemistry 3.7 Research, 2015, 54, 3788-3799 Functionalization of cellulose fibres with DOPO-polysilsesquioxane flame retardant nanocoating. 596 4.9 112 Cellulose, 2015, 22, 1893-1910. Synthesis and crystallization behavior of novel poly(butylene succinate) copolyesters containing 3.6 phosphorus pendent groups. Journal of Thermal Analysis and Calorimetry, 2015, 120, 1799-1810. Poly(phosphoester)s: A New Platform for Degradable Polymers. Angewandte Chemie - International 598 188 13.8 Edition, 2015, 54, 6098-6108. Flame retardancy, thermal and mechanical properties of sulfonate-containing polyhedral oligomeric 599 5.8 39 silsesquioxane (Ś-POSS)/polycarbonate composites. Polymer Degradation and Stability, 2015, 116, 81-87. Synthesis and characterisation of the flame retardant properties and corrosion resistance of Schiff's 600 0.9 20 base compounds incorporated into organic coating. Pigment and Resin Technology, 2015, 44, 101-108. Flame retardancies of novel organo-phosphorus flame retardants based on DOPO derivatives when 2.4 19 applied to ABS. Macromolecular Research, 2015, 23, 442-448. Intumescent Flame-Retardant and Self-Healing Superhydrophobic Coatings on Cotton Fabric. ACS 602 14.6 465 Nano, 2015, 9, 4070-4076. Aluminum hypophosphite microencapsulated to improve its safety and application to flame retardant polyamide 6. Journal of Hazardous Materials, 2015, 294, 186-194. Flame resistance and aging mechanism of flame retardant polycarbonate sheet containing linear 604 5.8 19 phenolic resin charring agent. Polymer Degradation and Stability, 2015, 122, 139-145. Synthesis and characterization of aluminum poly-hexamethylenephosphinate and its flame-retardant 5.8 application in epoxy resin. Polymer Degradation and Stability, 2015, 122, 8-17.

#	Article	IF	CITATIONS
606	Synthesis and characterization of novel post-chain extension flame retardant waterborne polyurethane. RSC Advances, 2015, 5, 97710-97719.	3.6	24
607	Rheokinetics of the curing of epoxy oligomer ED-20 modified with epoxy phosphazenes. Polymer Science - Series B, 2015, 57, 402-407.	0.8	8
608	Studying the effect of organo-modified nanoclay loading on the thermal stability, flame retardant, anti-corrosive and mechanical properties of polyurethane nanocomposite for surface coating. Progress in Organic Coatings, 2015, 89, 212-219.	3.9	54
609	Solubility of cyclohexyl-phosphoramidic acid diphenyl ester in selected solvents. Journal of Molecular Liquids, 2015, 211, 527-533.	4.9	5
610	Organic Nano-Montmorillonite for Simultaneously Improving the Flame Retardancy, Thermal Stability, and Mechanical Properties of Intumescent Flame-Retardant Silicone Rubber Composites. Journal of Macromolecular Science - Physics, 2015, 54, 1282-1296.	1.0	14
611	Design of polymers with an intrinsic disordered framework for Li-ion conducting solid polymer electrolytes. Polymer, 2015, 75, 10-16.	3.8	8
612	Effects of a novel phosphorus–nitrogen flame retardant on rosin-based rigid polyurethane foams. Polymer Degradation and Stability, 2015, 120, 427-434.	5.8	98
613	Synthesis of DOPO-based spiroorthocarbonate and its application in epoxy resin. Designed Monomers and Polymers, 2015, 18, 690-697.	1.6	9
614	Synthesis of biobased phosphorus-containing flame retardants for epoxy thermosets comparison of additive and reactive approaches. Polymer Degradation and Stability, 2015, 120, 300-312.	5.8	45
615	The synthesis and characterization of the hydrazone ligand and its metal complexes and their performance in epoxy formulation surface coatings. Progress in Organic Coatings, 2015, 89, 106-113.	3.9	11
616	Novel synthesis of magnesium hydroxide nanoparticles modified with organic phosphate and their effect on the flammability of acrylonitrile-butadiene styrene nanocomposites. Materials Chemistry and Physics, 2015, 168, 147-158.	4.0	35
617	Simultaneously enhancing the flame retardancy and toughness of epoxy by lamellar dodecyl-ammonium dihydrogen phosphate. RSC Advances, 2015, 5, 100049-100053.	3.6	8
618	Flame retardancy and hydrolysis resistance of waterborne polyurethane bearing organophosphate moieties lateral chain. Progress in Organic Coatings, 2015, 89, 170-180.	3.9	46
619	Investigation on phosphorus halogenâ€free flameâ€retardancy systems in short glass fiberâ€reinforced PC/ABS composites under rapid thermal cycle molding process condition. Polymer Composites, 2015, 36, 1653-1663.	4.6	9
620	Flameâ€retardant materials based on phosphorusâ€containing polyhedral oligomeric silsesquioxane and bismaleimide/diallylbisphenol a with improved thermal resistance and dielectric properties. Journal of Applied Polymer Science, 2015, 132, .	2.6	10
621	Effect of charring agent THEIC on flame retardant properties of polypropylene. Journal of Applied Polymer Science, 2015, 132, .	2.6	13
622	Thermal performances and fire behaviors of rosin-based rigid polyurethane foam nanocomposites. Journal of Thermal Analysis and Calorimetry, 2015, 119, 411-424.	3.6	21
623	Flammability properties of paper coated with poly (methylenephosphine), an organophosphorus polymer. Fire and Materials, 2015, 39, 647-657.	2.0	25

#	ARTICLE	IF	CITATIONS
624	Poly(phosphonate)-mediated Horner–Wadsworth–Emmons reactions. Polymer Chemistry, 2015, 6, 1192-1202.	3.9	14
625	Preparation and flame retardancy of 3-(hydroxyphenylphosphinyl)-propanoic acid esters of cellulose and their fibers. Cellulose, 2015, 22, 229-244.	4.9	17
626	Free-standing, polysilsesquioxane-based inorganic/organic hybrid membranes for gas separations. Journal of Membrane Science, 2015, 475, 384-394.	8.2	37
627	Synthesis and performance of new modified reactive flame-retardant alkyd resin based on tetrabromophthalic anhydride as varnish for surface coatings. Journal of Coatings Technology Research, 2015, 12, 97-105.	2.5	10
628	Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nature Nanotechnology, 2015, 10, 277-283.	31.5	1,103
629	Synthesis of a phosphorus and sulfurâ€containing aromatic diamine curing agent and its application in flame retarded epoxy resins. Fire and Materials, 2015, 39, 518-532.	2.0	18
630	The damping and flameâ€retardant properties of poly(vinyl chloride)/chlorinated butyl rubber multilayered composites. Journal of Applied Polymer Science, 2015, 132, .	2.6	14
631	Cyclodextrin microencapsulated ammonium polyphosphate: Preparation and its performance on the thermal, flame retardancy and mechanical properties of ethylene vinyl acetate copolymer. Composites Part B: Engineering, 2015, 69, 22-30.	12.0	87
632	Influence of ferrite yellow on combustion and smoke suppression properties in intumescent flame-retardant epoxy composites. High Performance Polymers, 2015, 27, 412-425.	1.8	17
633	Fire Performance of Ultra-Low Density Fiberboard (ULDF) with Complex Fire-Retardants. BioResources, 2016, 11, .	1.0	1
634	Intrinsic Flame-Retardant and Thermally Stable Epoxy Endowed by a Highly Efficient, Multifunctional Curing Agent. Materials, 2016, 9, 1008.	2.9	15
635	Developing (Quantitative Structure Property Relationships) QSPR Techniques to Predict the Char Formation of Polybenzoxazines. Polymers, 2016, 8, 166.	4.5	5
636	A Urethane Block Copolymer as Binder for Fire-Resist Palm-Based Fibreboard. Polymers and Polymer Composites, 2016, 24, 681-686.	1.9	2
637	Phosphorus ontaining Gradient (Block) Copolymers via RAFT Polymerization and Postpolymerization Modification. Macromolecular Chemistry and Physics, 2016, 217, 2310-2320.	2.2	14
638	Examining the thermal behaviour of novel aromatic polybenzoxazine blends containing an organophosphorous compound and polyhedral oligomeric silsesquioxane reagents. Polymer International, 2016, 65, 1015-1023.	3.1	3
639	Influence of fire retardants on the reactionâ€ŧoâ€fire properties of coextruded wood–polypropylene composites. Fire and Materials, 2016, 40, 535-543.	2.0	19
640	Flameâ€Retarded Epoxy Resins with a Curing Agent of DOPOâ€Triazine Based Anhydride. Macromolecular Materials and Engineering, 2016, 301, 982-991.	3.6	60
641	Study of flameâ€resistant acrylic fibers reinforced by poly(vinyl alcohol). Journal of Applied Polymer Science, 2016, 133, .	2.6	4
#	Article	IF	CITATIONS
---	---	---	--
642	Synergistic Effect of Polyhedral Oligomeric Silsesquioxane and Multiwalled Carbon Nanotubes on the Flame Retardancy and the Mechanical and Thermal Properties of Epoxy Resin. Journal of Macromolecular Science - Physics, 2016, 55, 1146-1158.	1.0	4
643	Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance. Scientific Reports, 2016, 6, 38194.	3.3	47
644	Large-scale calculations of gas phase thermochemistry: Enthalpy of formation, standard entropy, and heat capacity. Journal of Chemical Physics, 2016, 145, .	3.0	60
645	Effect of alkyl groups in organic part of polyoxo-metalates based ionic liquids on properties of flame retardant polypropylene. Thermochimica Acta, 2016, 631, 51-58.	2.7	19
646	Correlation between water uptake and loss of the insulating properties of PE/ATH composites used in cables applications. Polymer Degradation and Stability, 2016, 127, 79-87.	5.8	11
647	Eco-friendly functionalized superhydrophobic recycled paper with enhanced flame-retardancy. Journal of Colloid and Interface Science, 2016, 477, 74-82.	9.4	46
648	Incorporation of azide groups into bio-polyols. Journal of Cleaner Production, 2016, 138, 77-82.	9.3	11
649	Polybenzoxazine foams: Modeling mechanical properties. Journal of Cellular Plastics, 2016, 52, 657-669.	2.4	0
650	Synergistic effect of expandable graphite and intumescent flame retardants on the flame retardancy	3.7	100
651	Epoxy composites of reduced flammability. Composites Part B: Engineering, 2016, 95, 1-8.	12.0	33
651 652	Epoxy composites of reduced flammability. Composites Part B: Engineering, 2016, 95, 1-8. Recent Developments in Different Types of Flame Retardants and Effect on Fire Retardancy of Epoxy Composite. Polymer-Plastics Technology and Engineering, 2016, 55, 1512-1535.	12.0 1.9	33 61
651 652 653	Epoxy composites of reduced flammability. Composites Part B: Engineering, 2016, 95, 1-8. Recent Developments in Different Types of Flame Retardants and Effect on Fire Retardancy of Epoxy Composite. Polymer-Plastics Technology and Engineering, 2016, 55, 1512-1535. Investigation of morphology, mechanical, thermal and flame retardant properties of an EVA/EPDM blend by combination of organoclay with Na ⁺ -tripolyphosphate. RSC Advances, 2016, 6, 36467-36474.	12.0 1.9 3.6	33 61 16
651652653654	 Epoxy composites of reduced flammability. Composites Part B: Engineering, 2016, 95, 1-8. Recent Developments in Different Types of Flame Retardants and Effect on Fire Retardancy of Epoxy Composite. Polymer-Plastics Technology and Engineering, 2016, 55, 1512-1535. Investigation of morphology, mechanical, thermal and flame retardant properties of an EVA/EPDM blend by combination of organoclay with Na⁺-tripolyphosphate. RSC Advances, 2016, 6, 36467-36474. Efficient Flame Retardant Thin Films Synthesized by Atmospheric Pressure PECVD through the High Co-deposition Rate of Hexamethyldisiloxane and Triethylphosphate on Polycarbonate and Polyamide-6 Substrates. ACS Applied Materials & amp; Interfaces, 2016, 8, 12422-12433. 	12.0 1.9 3.6 8.0	 33 61 16 42
 651 652 653 654 655 	Epoxy composites of reduced flammability. Composites Part B: Engineering, 2016, 95, 1-8. Recent Developments in Different Types of Flame Retardants and Effect on Fire Retardancy of Epoxy Composite. Polymer-Plastics Technology and Engineering, 2016, 55, 1512-1535. Investigation of morphology, mechanical, thermal and flame retardant properties of an EVA/EPDM blend by combination of organoclay with Na ⁺ -tripolyphosphate. RSC Advances, 2016, 6, 36467-36474. Efficient Flame Retardant Thin Films Synthesized by Atmospheric Pressure PECVD through the High Co-deposition Rate of Hexamethyldisiloxane and Triethylphosphate on Polycarbonate and Polyamide-6 Substrates. ACS Applied Materials & amp; Interfaces, 2016, 8, 12422-12433. Synthesis of DV-GO and its effect on the fire safety and thermal stability of bismaleimide. Polymer Degradation and Stability, 2016, 128, 209-216.	12.0 1.9 3.6 8.0 5.8	 33 61 16 42 15
 651 652 653 654 655 656 	 Epoxy composites of reduced flammability. Composites Part B: Engineering, 2016, 95, 1-8. Recent Developments in Different Types of Flame Retardants and Effect on Fire Retardancy of Epoxy Composite. Polymer-Plastics Technology and Engineering, 2016, 55, 1512-1535. Investigation of morphology, mechanical, thermal and flame retardant properties of an EVA/EPDM blend by combination of organoclay with Na⁺-tripolyphosphate. RSC Advances, 2016, 6, 36467-36474. Efficient Flame Retardant Thin Films Synthesized by Atmospheric Pressure PECVD through the High Co-deposition Rate of Hexamethyldisiloxane and Triethylphosphate on Polycarbonate and Polyamide-6 Substrates. ACS Applied Materials & amp; Interfaces, 2016, 8, 12422-12433. Synthesis of DV-GO and its effect on the fire safety and thermal stability of bismaleimide. Polymer Degradation and Stability, 2016, 128, 209-216. Synthesis of a novel bridged-cyclotriphosphazene flame retardant and its application in epoxy resin. Polymer Degradation and Stability, 2016, 133, 162-173. 	12.0 1.9 3.6 8.0 5.8	 33 61 16 42 15 71
 651 652 653 654 655 656 657 	Epoxy composites of reduced flammability. Composites Part B: Engineering, 2016, 95, 1-8. Recent Developments in Different Types of Flame Retardants and Effect on Fire Retardancy of Epoxy Composite. Polymer-Plastics Technology and Engineering, 2016, 55, 1512-1535. Investigation of morphology, mechanical, thermal and flame retardant properties of an EVA/EPDM blend by combination of organoclay with Na ⁺⁺ -tripolyphosphate. RSC Advances, 2016, 6, 36467-36474. Efficient Flame Retardant Thin Films Synthesized by Atmospheric Pressure PECVD through the High Co-deposition Rate of Hexamethyldisiloxane and Triethylphosphate on Polycarbonate and Polyamide-6 Substrates. ACS Applied Materials & amp; Interfaces, 2016, 8, 12422-12433. Synthesis of DV-GO and its effect on the fire safety and thermal stability of bismaleimide. Polymer Degradation and Stability, 2016, 128, 209-216. Synthesis of a novel bridged-cyclotriphosphazene flame retardant and its application in epoxy resin. Polymer Degradation and Stability, 2016, 133, 162-173. The novel silicon-containing epoxy/PEPA phosphate flame retardant for transparent intumescent fire resistant coating. Applied Surface Science, 2016, 385, 453-463.	12.0 1.9 3.6 8.0 5.8 5.8	 33 61 16 42 15 71 66
 651 652 653 655 656 657 658 	Epoxy composites of reduced flammability. Composites Part B: Engineering, 2016, 95, 1-8. Recent Developments in Different Types of Flame Retardants and Effect on Fire Retardancy of Epoxy Composite. Polymer-Plastics Technology and Engineering, 2016, 55, 1512-1535. Investigation of morphology, mechanical, thermal and flame retardant properties of an EVA/EPDM blend by combination of organoclay with Na ⁺ - tripolyphosphate. RSC Advances, 2016, 6, 36467-36474. Efficient Flame Retardant Thin Films Synthesized by Atmospheric Pressure PECVD through the High Co-deposition Rate of Hexamethyldisiloxane and Triethylphosphate on Polycarbonate and Polyamide-6 Substrates. ACS Applied Materials & amp; Interfaces, 2016, 8, 12422-12433. Synthesis of DV-GO and its effect on the fire safety and thermal stability of bismaleimide. Polymer Degradation and Stability, 2016, 128, 209-216. Synthesis of a novel bridged-cyclotriphosphazene flame retardant and its application in epoxy resin. Polymer Degradation and Stability, 2016, 133, 162-173. The novel silicon-containing epoxy/PEPA phosphate flame retardant for transparent intumescent fire resistant coating. Applied Surface Science, 2016, 385, 453-463. Preparation and characterization of rigid polyurethane foams with carbamide and borate groups. Polymer International, 2016, 65, 1430-1440.	12.0 1.9 3.6 8.0 5.8 5.8 6.1 3.1	 33 61 16 42 15 71 66 10

#	Article	IF	CITATIONS
660	Fire-Resistant Epoxy Resins Containing Organophosphorus Compounds. , 2016, , 257-279.		0
661	Synergistic effect of carbon nanotubes on the flame retardancy of poly(methyl methacrylate)/zinc oxalate nanocomposites. Macromolecular Research, 2016, 24, 777-781.	2.4	13
662	Flame Retardancy of Polymers: The Role of Specific Reactions in the Condensed Phase. Macromolecular Materials and Engineering, 2016, 301, 9-35.	3.6	174
663	Study of PET fibres modified with phosphorus–silicon retardants. Journal of Thermal Analysis and Calorimetry, 2016, 125, 1327-1334.	3.6	14
664	Surface modification of magnesium hydroxide sulfate hydrate whiskers using a silane coupling agent by dry process. Applied Surface Science, 2016, 390, 25-30.	6.1	43
665	Flame retardancy, Thermal and mechanical properties of Kenaf fiber reinforced Unsaturated polyester/Phenolic composite. Fibers and Polymers, 2016, 17, 902-909.	2.1	29
666	Physical properties of clay aerogel composites: An overview. Composites Part B: Engineering, 2016, 102, 29-37.	12.0	37
667	Durable flame retardant finish for silk fabric using boron hybrid silica sol. Applied Surface Science, 2016, 387, 446-453.	6.1	69
668	Flame Retardancy. Engineering Materials and Processes, 2016, , 185-206.	0.4	0
670	A novel flame retardant UVâ€curable vinyl ester resin monomer based on industrial dipentene: Preparation, characterization, and properties. Journal of Applied Polymer Science, 2016, 133, .	2.6	13
671	Facile Synthesis of a Highly Efficient, Halogen-Free, and Intumescent Flame Retardant for Epoxy Resins: Thermal Properties, Combustion Behaviors, and Flame-Retardant Mechanisms. Industrial & Engineering Chemistry Research, 2016, 55, 10868-10879.	3.7	86
672	Hyperbranched phosphorus/nitrogen-containing polymer in combination with ammonium polyphosphate as a novel flame retardant system for polypropylene. Polymer Degradation and Stability, 2016, 134, 179-185.	5.8	65
673	Epoxy oligomers modified with epoxyphosphazenes. Polymer Science - Series B, 2016, 58, 549-555.	0.8	10
674	Synthesis of a Novel P/N/S-Containing Flame Retardant and Its Application in Epoxy Resin: Thermal Property, Flame Retardance, and Pyrolysis Behavior. Industrial & Engineering Chemistry Research, 2016, 55, 11520-11527.	3.7	192
675	Improving thermal and flameâ€retardant properties of epoxy resins by a new imine linkage phosphorousâ€containing curing agent. Polymer Engineering and Science, 2016, 56, 441-447.	3.1	23
676	Synthesis of a novel phosphorus-containing epoxy curing agent and the thermal, mechanical and flame-retardant properties of the cured products. Polymer Degradation and Stability, 2016, 130, 143-154.	5.8	51
677	Synthesis of flame-retarding oligo(carbonate-ether) diols via double metal cyanide complex-catalyzed copolymerization of PO and CO ₂ using bisphenol A as a chain transfer agent. RSC Advances, 2016, 6, 48405-48410.	3.6	24
678	An Intumescent-Like Flame-Retardant Effect of Hollow Carbon Precursor on Acrylonitrile–Butadiene–Styrene/Oligomeric Aryl Phosphate/Novolac Epoxy Composites. Polymer-Plastics Technology and Engineering, 2016, 55, 1441-1449.	1.9	3

#	Article	IF	CITATIONS
679	Thermal degradation and combustion behavior of novel intumescent flame retardant polypropylene with N-alkoxy hindered amine. Journal of Analytical and Applied Pyrolysis, 2016, 120, 361-370.	5.5	36
680	Impact of halogen-free flame retardant with varied phosphorus chemical surrounding on the properties of diglycidyl ether of bisphenol-A type epoxy resin: synthesis, fire behaviour, flame-retardant mechanism and mechanical properties. RSC Advances, 2016, 6, 59226-59236.	3.6	89
681	Novel DOPO-based epoxy curing agents. Journal of Thermal Analysis and Calorimetry, 2016, 126, 1339-1348.	3.6	34
682	Carving a 1D Co ^{II} -carboranylcarboxylate system by using organic solvents to create stable trinuclear molecular analogues: complete structural and magnetic studies. Dalton Transactions, 2016, 45, 10916-10927.	3.3	7
683	Plasma Induced Graft Polymerization of Cationic and Fluorocarbon Monomers into Cotton: Enhanced Dyeability and Photostability. Industrial & Engineering Chemistry Research, 2016, 55, 8501-8508.	3.7	11
684	Study on thermal degradation and combustion behavior of flame retardant unsaturated polyester resin modified with a reactive phosphorus containing monomer. RSC Advances, 2016, 6, 49633-49642.	3.6	44
685	Loading an organophosphorous flame retardant into halloysite nanotubes for modifying UV-curable epoxy resin. RSC Advances, 2016, 6, 57122-57130.	3.6	38
686	A facile and novel modification method of β-cyclodextrin and its application in intumescent flame-retarding polypropylene with melamine phosphate and expandable graphite. Journal of Polymer Research, 2016, 23, 1.	2.4	19
687	Waterborne polyurethane conjugated with novel diol chain-extender bearing cyclic phosphoramidate lateral group: synthesis, flammability and thermal degradation mechanism. RSC Advances, 2016, 6, 56610-56622.	3.6	20
688	Flame retarding performance of elastomeric nanocomposites: A review. Polymer Degradation and Stability, 2016, 130, 194-244.	5.8	50
689	Synthesis of α-hydroxyphosphonate cyclotriphosphazene under solvent-free conditions with a basic catalyst. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1194-1198.	1.6	1
690	Synthesis of a novel crossâ€linked organophosphorusâ€nitrogen containing polymer and its application in flame retardant epoxy resins. Fire and Materials, 2016, 40, 848-860.	2.0	19
691	Synthesis of a novel phosphorus-containing curing agent and its effects on the flame retardancy, thermal degradation and moisture resistance of epoxy resins. Polymers for Advanced Technologies, 2016, 27, 860-871.	3.2	33
692	Polymer Nanocomposites. Engineering Materials and Processes, 2016, , .	0.4	11
693	Graphene-based flame retardants: a review. Journal of Materials Science, 2016, 51, 8271-8295.	3.7	169
694	Layerâ€byâ€layer assembly of halogenâ€free polymeric materials on nylon/cotton blend for flame retardant applications. Fire and Materials, 2016, 40, 206-218.	2.0	17
695	Inherent flame retardation of semi-aromatic polyesters via binding small-molecule free radicals and charring. Polymer Chemistry, 2016, 7, 1584-1592.	3.9	43
696	The Effect of Fire Retardants on the Fire Resistance of Unsaturated Polyester Resin Coating. Key Engineering Materials, 0, 674, 277-282.	0.4	3

#	Article	IF	CITATIONS
697	Effect of a novel polysiloxane-containing nitrogen on the thermal stability and flame retardancy of epoxy resins. Journal of Thermal Analysis and Calorimetry, 2016, 124, 791-798.	3.6	14
698	Preparation, flame retardancy and thermal degradation behaviors of polyacrylonitrile fibers modified with diethylenetriamine and zinc ions. Journal of Thermal Analysis and Calorimetry, 2016, 124, 719-728.	3.6	44
699	Flexible polyurethane foam nanocomposites with modified layered double hydroxides. Applied Clay Science, 2016, 123, 109-120.	5.2	50
700	Effects of carbon fibers on the flammability and smoke emission characteristics of halogen-free thermoplastic polyurethane/ammonium polyphosphate. Journal of Materials Science, 2016, 51, 3762-3771.	3.7	34
701	Condensation Reactions of Chlorophosphanes with Chalcogenides. Inorganic Chemistry, 2016, 55, 1854-1860.	4.0	12
702	Syntheses of flame-retardant cellulose esters and their fibers. Fibers and Polymers, 2016, 17, 1-8.	2.1	12
703	Green Biocomposites from Nanoengineered Hybrid Natural Fiber and Biopolymer. ACS Sustainable Chemistry and Engineering, 2016, 4, 1785-1793.	6.7	38
704	Environmentally friendly fire-resistant epoxy resins based on a new oligophosphonate with high flame retardant efficiency. RSC Advances, 2016, 6, 22764-22776.	3.6	38
705	Inherently flame-retardant flexible bio-based polyurethane sealant with phosphorus and nitrogen-containing polyurethane prepolymer. Journal of Materials Science, 2016, 51, 5008-5018.	3.7	57
706	Preparation, fire behavior and thermal stability of a novel flame retardant polypropylene system. Journal of Thermal Analysis and Calorimetry, 2016, 125, 321-329.	3.6	24
707	Fabrication of superhydrophobic cotton textiles with flame retardancy. Cellulose, 2016, 23, 1471-1480.	4.9	61
708	Multi-functional branched polysiloxanes polymers for high refractive index and flame retardant LED encapsulants. RSC Advances, 2016, 6, 4377-4381.	3.6	11
709	Preparation of boric acid supported natural rubber as a reactive flame retardant and its properties. Polymer Degradation and Stability, 2016, 128, 217-227.	5.8	28
710	High-efficiency flame retardency of epoxy resin composites with perfect T8 caged phosphorus containing polyhedral oligomeric silsesquioxanes (P-POSSs). Composites Science and Technology, 2016, 127, 8-19.	7.8	94
711	Reactive flame retardancy of cyanate ester/epoxy resin blends and their carbon fibre reinforced composites. Polymer Degradation and Stability, 2016, 128, 29-38.	5.8	39
712	Fourier transform infrared spectroscopy-thermogravimetry analysis of the thermal decomposition mechanism of an effective flame retardant, hydroquinone bis(di-2-methylphenyl phosphate). Polymer Bulletin, 2016, 73, 927-939.	3.3	5
713	Scalable Preparation of Multifunctional Fire-Retardant Ultralight Graphene Foams. ACS Nano, 2016, 10, 1325-1332.	14.6	126
714	Synthesis of a novel flame retardant based on cyclotriphosphazene and DOPO groups and its application in epoxy resins. Polymer Degradation and Stability, 2016, 123, 105-114.	5.8	223

#	Article	IF	CITATIONS
715	Synergistic effects between silicon-containing flame retardant and DOPO on flame retardancy of epoxy resins. Journal of Thermal Analysis and Calorimetry, 2016, 123, 1343-1350.	3.6	46
716	Flame retardancy and thermal degradation mechanism of a novel post-chain extension flame retardant waterborne polyurethane. Polymer Degradation and Stability, 2016, 123, 36-46.	5.8	46
717	Flame-retardant fibrous materials in an aircraft. Journal of Industrial Textiles, 2016, 45, 1128-1169.	2.4	18
718	An intumescent flame retardant containing caged bicyclic phosphate and oligomer: Synthesis, thermal properties and application in intumescent fire resistant coating. Progress in Organic Coatings, 2016, 90, 83-90.	3.9	21
719	Synergism and antagonism of phosphorus-containing epoxy resin combined with different metal hydroxides. Journal of Fire Sciences, 2016, 34, 3-12.	2.0	9
720	Flame retardancy and conductive properties of polyester fabrics coated with polyaniline. Textile Reseach Journal, 2016, 86, 1171-1179.	2.2	24
721	Reactive Modification of Thermoplastic and Thermoset Polymers using Flame Retardants: An Overview. Polymer-Plastics Technology and Engineering, 2016, 55, 71-91.	1.9	32
722	Synthesis and characterization of a novel polyhedral oligomeric silsesquioxanes containing phosphorus and boron. Inorganic and Nano-Metal Chemistry, 2017, 47, 99-104.	1.6	3
723	Synthesis of a boron/nitrogen-containing compound based on triazine and boronic acid and its flame retardant effect on epoxy resin. High Performance Polymers, 2017, 29, 513-523.	1.8	38
724	New insight into the preparation of flame-retardant thermoplastic polyether ester utilizing <i>β</i> -cyclodextrin as a charring agent. High Performance Polymers, 2017, 29, 422-430.	1.8	12
725	Synthesis of B/P/N Containing Flameâ€Retardant Additives and UV Curable Hybrid Coating Applications. Advances in Polymer Technology, 2017, 36, 517-524.	1.7	5
726	Thermal stability and flammability of ethylene vinyl acetate copolymers in presence of nanoclay and a halogenâ€free flame retardant. Journal of Vinyl and Additive Technology, 2017, 23, E92.	3.4	4
727	A novel intumescent flame retardant with nanocellulose as charring agent and its flame retardancy in polyurethane foam. Polymer Composites, 2017, 38, 2762-2770.	4.6	19
728	Regulating Effects of Nitrogenous Bases on the Char Structure and Flame Retardancy of Polypropylene/Intumescent Flame Retardant Composites. ACS Sustainable Chemistry and Engineering, 2017, 5, 2375-2383.	6.7	65
729	Synergistic effect on flame retardancy and thermal behavior of polycarbonate filled with αâ€≢irconium phosphate@gelâ€silica. Journal of Applied Polymer Science, 2017, 134, .	2.6	12
730	Cone calorimeter analysis of flame retardant poly (methyl methacrylate)-silica nanocomposites. Journal of Thermal Analysis and Calorimetry, 2017, 128, 1443-1451.	3.6	48
731	UV Grafting of a DOPO-Based Phosphoramidate Monomer onto Polyamide 66 Fabrics for Flame Retardant Treatment. Industrial & Engineering Chemistry Research, 2017, 56, 1376-1384.	3.7	27
732	Thermal performance, mechanical property and fire behavior of epoxy thermoset based on reactive phosphorus-containing epoxy monomer. Journal of Thermal Analysis and Calorimetry, 2017, 127, 1419-1430.	3.6	16

#	Article	IF	CITATIONS
733	Influence of exfoliated graphene nanoplatelets on flame retardancy of kenaf flour polypropylene hybrid nanocomposites. Journal of Analytical and Applied Pyrolysis, 2017, 123, 65-72.	5.5	102
734	Synthesis of oligomeric epoxycyclotriphosphazenes and their properties as reactive flame-retardants for epoxy resins. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 544-554.	1.6	22
735	Thermal and combustion behavior of phosphorus–nitrogen and phosphorus–silicon retarded epoxy. Iranian Polymer Journal (English Edition), 2017, 26, 21-30.	2.4	16
736	Mechanical, Thermal, and Flame-Retardant Behaviors of Thermoplastic Polyether–Ester Elastomer Composites with Polyphenylene Oxide and Aluminum Hypophosphite. Polymer-Plastics Technology and Engineering, 2017, 56, 1096-1107.	1.9	3
737	Preparation of poly(methyl methacrylate)/silicon particle composites and the study of the properties improvement. Journal of Polymer Research, 2017, 24, 1.	2.4	7
738	Effect of surface chemical modification for aluminum hypophosphite with hexaâ€(4â€eldehydeâ€phenoxy)â€cyclotriphosphazene on the fire retardancy, water resistance, and thermal properties for polyamide 6. Polymers for Advanced Technologies, 2017, 28, 1382-1395.	3.2	18
739	Flame retardancy and thermal properties of octavinylsilsesquioxane/polycarbonate composites. Journal of Thermal Analysis and Calorimetry, 2017, 128, 1125-1132.	3.6	8
740	Highly Flame Retardant Expanded Polystyrene Foams from Phosphorus–Nitrogen–Silicon Synergistic Adhesives. Industrial & Engineering Chemistry Research, 2017, 56, 4649-4658.	3.7	87
741	Economical and environment-friendly synthesis of a novel hyperbranched poly(aminomethylphosphine) Tj ETQqC temperature and toughness of epoxy resins. Chemical Engineering Journal, 2017, 322, 618-631.	0 0 rgBT 12.7	Overlock 10 169
742	A broad scope of aliphatic polyesters prepared by elimination of small molecules from sustainable 1,3-dioxolan-4-ones. Polymer Chemistry, 2017, 8, 2990-2996.	3.9	54
743	Effect of inorganic fillers and ammonium polyphosphate on the flammability, thermal stability, and mechanical properties of abaca-fabric/vinyl ester composites. Fibers and Polymers, 2017, 18, 555-562.	2.1	16
744	In situ preparation of reduced graphene oxide/DOPO-based phosphonamidate hybrids towards high-performance epoxy nanocomposites. Composites Part B: Engineering, 2017, 123, 154-164.	12.0	142
745	Zinc hydroxystannate microencapsulated to improve its safety and application to flame-retardant, smoke-suppressed polyvinyl chloride composites. Journal of Alloys and Compounds, 2017, 712, 768-780.	5.5	18
746	Thermal behaviour and flame retardancy of polyurethane high-solid coatings modified with hexakis(2,3-epoxypropyl)cyclotriphosphazene. Progress in Organic Coatings, 2017, 108, 51-58.	3.9	23
747	Vinylphosphonic acid/methacrylamide system as a durable intumescent flame retardant for cotton fabric. Cellulose, 2017, 24, 3095-3108.	4.9	43
748	Novel phosphorus containing flame retarded RTV silicone rubbers. Wuhan University Journal of Natural Sciences, 2017, 22, 185-190.	0.4	1
749	Soluble, Allyl-Functionalized Deoxybenzoin Polymers. Macromolecules, 2017, 50, 3772-3778.	4.8	27
750	The flame retardancy and thermal stability properties of flame-retarded epoxy resins based on α-hydroxyphosphonate cyclotriphosphazene. Journal of Thermal Analysis and Calorimetry, 2017, 129, 1667-1678.	3.6	15

#	Article	IF	CITATIONS
751	Synthesis of tris(2â€hydroxyethyl) isocyanurate homopolymer and its application in intumescent flame retarded polypropylene. Journal of Applied Polymer Science, 2017, 134, .	2.6	9
752	Synergistic effect of combined dimethyl methylphosphonate with aluminum hydroxide or ammonium polyphosphate retardant systems on the flame retardancy and thermal properties of unsaturated polyester resin. International Journal of Polymer Analysis and Characterization, 2017, 22, 509-518.	1.9	26
753	Date palm fibre filled recycled ternary polymer blend composites with enhanced flame retardancy. Polymer Testing, 2017, 61, 341-348.	4.8	41
754	Simultaneous improvement in the flame resistance and thermal conductivity of epoxy/Al ₂ O ₃ composites by incorporating polymeric flame retardant-functionalized graphene. Journal of Materials Chemistry A, 2017, 5, 13544-13556.	10.3	148
755	Preparation and investigation of flameâ€retardant epoxy resin modified with a novel halogenâ€free flame retardant containing phosphaphenanthrene, triazineâ€trione, and organoboron units. Journal of Applied Polymer Science, 2017, 134, 45291.	2.6	27
756	Toughening, synergistic fire retardation and water resistance of polydimethylsiloxane grafted graphene oxide to epoxy nanocomposites with trace phosphorus. Composites Part A: Applied Science and Manufacturing, 2017, 100, 275-284.	7.6	49
757	Study on synthesis of novel phosphorus-containing flame retardant epoxy curing agents from renewable resources and the comprehensive properties of their combined cured products. Progress in Organic Coatings, 2017, 110, 195-203.	3.9	40
758	Effect of nitrogen and oxygen doped carbon nanotubes on flammability of epoxy nanocomposites. Carbon, 2017, 121, 193-200.	10.3	36
759	Carboranycarboxylate Complexes as Efficient Catalysts in Epoxidation Reactions. European Journal of Inorganic Chemistry, 2017, 2017, 4425-4429.	2.0	6
760	Main-chain poly(phosphoester)s: History, syntheses, degradation, bio-and flame-retardant applications. Progress in Polymer Science, 2017, 73, 61-122.	24.7	156
761	Unique synergism in flame retardancy in ABS based composites through blending PVDF and halloysite nanotubes. Materials Research Express, 2017, 4, 065301.	1.6	5
762	Novel graphite-like carbon nitride/organic aluminum diethylhypophosphites nanohybrid: Preparation and enhancement on thermal stability and flame retardancy of polystyrene. Composites Part A: Applied Science and Manufacturing, 2017, 99, 149-156.	7.6	42
763	The flame retardancy and rheological properties of PA6/MCA modified by DOPO-based chain extender. RSC Advances, 2017, 7, 19593-19603.	3.6	32
764	Functional organoclay with high thermal stability and its synergistic effect on intumescent flame retardant polypropylene. Applied Clay Science, 2017, 143, 192-198.	5.2	30
765	Flame-retardant, non-irritating and self-healing multilayer films with double-network structure. Composites Science and Technology, 2017, 145, 15-23.	7.8	29
766	A facile oneâ€step synthesis of flameâ€retardant coatings on cotton fabric via ultrasound irradiation. Journal of Applied Polymer Science, 2017, 134, 45114.	2.6	32
767	Graphitic carbon nitride/phosphorus-rich aluminum phosphinates hybrids as smoke suppressants and flame retardants for polystyrene. Journal of Hazardous Materials, 2017, 332, 87-96.	12.4	179
768	New nitrogenâ€rich heterocycles for organoâ€modified bentonites as flame retardant fillers in epoxy resin nanocomposites. Polymer Engineering and Science, 2017, 57, 621-630.	3.1	31

#	Article	IF	CITATIONS
769	The effect of defect-rich molybdenum disulfide nanosheets with phosphorus, nitrogen and silicon elements on mechanical, thermal, and fire behaviors of unsaturated polyester composites. Chemical Engineering Journal, 2017, 313, 238-249.	12.7	82
770	Intrinsically flame retarded foams based on melamine â^ formaldehyde condensates: thermal and mechanical properties. Polymer International, 2017, 66, 779-786.	3.1	21
771	Layer by layer deposition of polyethylenimine and bio-based polyphosphate on ammonium polyphosphate: A novel hybrid for simultaneously improving the flame retardancy and toughness of polylactic acid. Polymer, 2017, 108, 361-371.	3.8	63
772	Modern advances in bismaleimide resin technology: A 21st century perspective on the chemistry of addition polyimides. Progress in Polymer Science, 2017, 69, 1-21.	24.7	203
774	Improving thermal and flame retardant properties of epoxy resin by functionalized graphene containing phosphorous, nitrogen and silicon elements. Composites Part A: Applied Science and Manufacturing, 2017, 103, 74-83.	7.6	158
775	Novel sulfonate-containing halogen-free flame-retardants: effect of ternary and quaternary sulfonates centered on adamantane on the properties of polycarbonate composites. RSC Advances, 2017, 7, 39270-39278.	3.6	31
776	Pyrolysis and flame retardant behavior of a novel compound with multiple phosphaphenanthrene groups in epoxy thermosets. Journal of Analytical and Applied Pyrolysis, 2017, 127, 23-30.	5.5	30
777	Functionalized allylamine polyphosphate as a novel multifunctional highly efficient fire retardant for polypropylene. Polymer Chemistry, 2017, 8, 6309-6318.	3.9	30
778	Nonhalogen flame retarded poly(butylene terephthalate) composite using aluminum phosphinate and phosphorusâ€containing deoxybenzoin polymer. Journal of Applied Polymer Science, 2017, 134, 455370.	2.6	7
779	Robust and fire retardant borate-crosslinked poly (vinyl alcohol)/montmorillonite aerogel via melt-crosslink. Polymer, 2017, 131, 111-119.	3.8	55
780	Inherently flame retardant polypropylene copolymer. Polymer, 2017, 126, 109-115.	3.8	9
781	Phosphorusâ€containing thermoplastic poly(ether ester) elastomers showing intrinsic flame retardancy. Journal of Applied Polymer Science, 2017, 134, 45478.	2.6	5
782	Layer-by-Layer Assembly of Hypophosphorous Acid-Modified Chitosan Based Coating for Flame-Retardant Polyester–Cotton Blends. Industrial & Engineering Chemistry Research, 2017, 56, 9429-9436.	3.7	66
783	Preparation of alginate flame retardant containing P and Si and its flame retardancy in epoxy resin. Journal of Applied Polymer Science, 2017, 134, 45552.	2.6	16
784	Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) of Wood polymer nanocomposites. MATEC Web of Conferences, 2017, 87, 03013.	0.2	14
785	Flame-retardant polyvinyl alcohol membrane with high transparency based onÂa reactive phosphorus-containing compound. Royal Society Open Science, 2017, 4, 170512.	2.4	31
786	A novel Schiff-base polyphosphate ester: Highly-efficient flame retardant for polyurethane elastomer. Polymer Degradation and Stability, 2017, 144, 70-82.	5.8	94
787	Preparation of a flame retardant phosphorus-containing polyacrylate/î±-zirconium phosphate nanocomposite through in situ emulsion polymerization. RSC Advances, 2017, 7, 49290-49298.	3.6	22

#	Article	IF	CITATIONS
788	Epoxy resin flame-retarded via a novel melamine-organophosphinic acid salt: Thermal stability, flame retardance and pyrolysis behavior. Journal of Analytical and Applied Pyrolysis, 2017, 128, 54-63.	5.5	116
789	Halogen-Free Multicomponent Flame Retardant Thermoplastic Styrene–Ethylene–Butylene–Styrene Elastomers Based on Ammonium Polyphosphate–Expandable Graphite Synergy. Industrial & Engineering Chemistry Research, 2017, 56, 8251-8263.	3.7	49
790	Design and Synthesis of Efficient Phosphorus Flame Retardant for Polycarbonate. Industrial & Engineering Chemistry Research, 2017, 56, 8789-8796.	3.7	27
791	Facile synthesis of microfibrillated cellulose/organosilicon/polydopamine composite sponges with flame retardant properties. Cellulose, 2017, 24, 3815-3823.	4.9	55
792	Novel fire-retardant coatings. , 2017, , 53-91.		8
793	Silicon-based mesoporous materials and organic–inorganic hybrid materials. , 2017, , 239-269.		1
794	Fire-retardant carbon-fiber-reinforced thermoset composites. , 2017, , 271-293.		12
795	Development of flame retardant high loft polyester nonwovens. Journal of the Textile Institute, 2017, 108, 1357-1364.	1.9	5
796	Phosphorus-containing polymers from THPS. IV: Synthesis and properties of phosphorus-containing polybenzoxazines as a green route for recycling toxic phosphine (PH3) tail gas. Journal of Hazardous Materials, 2017, 322, 540-550.	12.4	27
797	An overview on PET waste recycling for application in packaging. International Journal of Plastics Technology, 2017, 21, 1-24.	3.1	82
798	Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: An overview of fire retardance. Progress in Polymer Science, 2017, 67, 77-125.	24.7	334
799	Significance of Carbon Nanotube in Flame-Retardant Polymer/CNT Composite: A Review. Polymer-Plastics Technology and Engineering, 2017, 56, 470-487.	1.9	34
800	Improving the flame retardance and melt dripping of poly(lactic acid) with a novel polymeric flame retardant of high thermal stability. Fire and Materials, 2017, 41, 362-374.	2.0	12
801	Thermal stability and fire behavior of aluminum diethylphosphinate-epoxy resin nanocomposites. Journal of Materials Science: Materials in Electronics, 2017, 28, 18-27.	2.2	21
802	Property of intrinsic flame retardant epoxy resin cured by functional magnesium organic composite salt and diethylenetriamine. Fire and Materials, 2017, 41, 180-192.	2.0	12
803	Highly dispersed melamine cyanurate flame-retardant epoxy resin composites. Polymer International, 2017, 66, 85-91.	3.1	45
804	Flame-retardant EPDM compounds containing phenanthrene to enhance radiation resistance. Radiation Physics and Chemistry, 2017, 130, 400-405.	2.8	12
805	Morphology control of zinc hydroxystannate microcapsules by sol–gel method and their enhanced flame retardancy properties for polyvinyl chloride composites. Journal of Sol-Gel Science and Technology, 2017, 81, 442-451.	2.4	14

#	Article	IF	Citations
806	Synergistic UV-curable flame-retardant finish of cotton using comonomers of vinylphosphonic acid and acrylamide. Fibers and Polymers, 2017, 18, 2328-2333.	2.1	21
807	Unsaturated polyester/expanded polystyrene composite : thermal characteristics and flame retardancy effects. IOP Conference Series: Materials Science and Engineering, 2017, 223, 012035.	0.6	2
808	Starch composites and their reduction of air permeation for self-extinguishable paper. Macromolecular Research, 2017, 25, 1085-1090.	2.4	3
809	Nanocoating of starch and clay that reduces the flammability of polyurethane foam. Green Materials, 2017, 5, 182-186.	2.1	8
810	Preparation and Characterization of Efficient Flame-Retardant and Thermostability Two-Component Aqueous Varnish Coatings. Polymer Science - Series B, 2017, 59, 697-707.	0.8	2
812	Nanoparticles Decorated on Resin Particles and Their Flame Retardancy Behavior for Polymer Composites. Journal of Nanomaterials, 2017, 2017, 1-8.	2.7	6
813	Development of high performance thermal protective clothing. , 2017, , 27-55.		0
814	Flame Retardancy of Composites and Nanocomposites Based on PU Polymers. , 2017, , 499-524.		5
816	Preparation of Poly(phosphoric acid piperazine) and Its Application as an Effective Flame Retardant for Epoxy Resin. Chinese Journal of Polymer Science (English Edition), 2018, 36, 655-664.	3.8	41
817	Innovative precursor for manufacturing of superior enhancer of intumescence for paint: Thermal insulative coating for steel structures. Progress in Organic Coatings, 2018, 118, 129-140.	3.9	4
818	The flame retardancy of epoxy resin including the modified graphene oxide and ammonium polyphosphate. Combustion Science and Technology, 2018, 190, 1126-1140.	2.3	17
819	Preparation and characterization of TiO2-coated hollow glass microsphere and its flame-retardant property in thermoplastic polyurethane. Journal of Thermal Analysis and Calorimetry, 2018, 131, 2729-2740.	3.6	12
820	Persistently flame-retardant flexible polyurethane foams by a novel phosphorus-containing polyol. Chemical Engineering Journal, 2018, 343, 198-206.	12.7	143
821	A review of flammability of natural fibre reinforced polymeric composites. Composites Science and Technology, 2018, 162, 64-78.	7.8	133
822	Synthesis, structural, vibrational, electronic, thermal and Fukui analysis of diethyl (hydroxy(4-methoxyphenyl) methyl) phosphonate. Journal of Molecular Structure, 2018, 1166, 218-227.	3.6	10
823	Characterization of tea polyphenols as potential environment-friendly fire retardants. IOP Conference Series: Earth and Environmental Science, 2018, 121, 022016.	0.3	3
824	Influence of incorporation methods of ATH on microstructure, elastomeric properties, flammability, and thermal decomposition of dynamically vulcanized NR/PP blends. Journal of Applied Polymer Science, 2018, 135, 46231.	2.6	12
825	Ultra-low phosphorus loading to achieve the superior flame retardancy of epoxy resin. Polymer Degradation and Stability, 2018, 149, 119-128.	5.8	90

#	Article	IF	CITATIONS
826	A pre-constructed graphene–ammonium polyphosphate aerogel (GAPPA) for efficiently enhancing the mechanical and fire-safety performances of polymers. Journal of Materials Chemistry A, 2018, 6, 4449-4457.	10.3	31
827	Preparation of phosphorusâ€containing phenolic resin and its application in epoxy resin as a curing agent and flame retardant. Polymers for Advanced Technologies, 2018, 29, 1294-1302.	3.2	38
828	Synthesis of the poly(phosphoricâ€boric acid) piperazine and its application as an effective flame retardant for epoxy resins. Polymer Engineering and Science, 2018, 58, 1858-1867.	3.1	13
829	A combination of POSS and polyphosphazene for reducing fire hazards of epoxy resin. Polymers for Advanced Technologies, 2018, 29, 1242-1254.	3.2	53
830	Surface modification of magnesium hydroxide particles using silane coupling agent by dry process. Surface and Interface Analysis, 2018, 50, 277-283.	1.8	11
831	Superior flame retardancy and smoke suppression of epoxy-based composites with phosphorus/nitrogen co-doped graphene. Journal of Hazardous Materials, 2018, 346, 140-151.	12.4	173
832	The effect of aluminum phosphinate on char formation of phosphorus-containing deoxybenzoin polymer. High Performance Polymers, 2018, 30, 1019-1026.	1.8	1
833	Molekulare Brandbekäpfung – wie moderne Phosphorchemie zur Lösung der Flammschutzaufgabe beitragen kann. Angewandte Chemie, 2018, 130, 10608-10626.	2.0	22
834	Molecular Firefighting—How Modern Phosphorus Chemistry Can Help Solve the Challenge of Flame Retardancy. Angewandte Chemie - International Edition, 2018, 57, 10450-10467.	13.8	500
835	Preparation of fluoroalkyl end-capped vinyltrimethoxysilane oligomeric silica/boric acid/poly(N-methyl benzamide)-b-poly(propylene oxide) block copolymer nanocomposites – no weight loss behavior of the block copolymer in the nanocomposites even after calcination at 800 °C. Journal of Sol-Gel Science and Technology, 2018, 85, 318-329.	2.4	2
836	Enhanced thermal conductivity and flame retardancy of polyamide 6/flame retardant composites with hexagonal boron nitride. Journal of Polymer Engineering, 2018, 38, 767-774.	1.4	17
837	Effects of flame retardants on thermal decomposition of SARA fractions separated from asphalt binder. Construction and Building Materials, 2018, 173, 209-219.	7.2	32
838	Synergistic effects of synthetic phosphonium sulfonates with expandable graphite on flame retardancy for EVA rubber blends. Polymer Degradation and Stability, 2018, 153, 155-164.	5.8	13
839	Effect of additive phosphorus-nitrogen containing flame retardant on char formation and flame retardancy of epoxy resin. Materials Chemistry and Physics, 2018, 214, 154-164.	4.0	96
840	B ₂ O ₃ /SiO ₂ /Phenolic Resin Hybrid Materials Produced by Simultaneous Twin Polymerization of Spiromonomers. Macromolecular Chemistry and Physics, 2018, 219, 1700487.	2.2	5
841	Novel strategies for the synthesis of hydroxylated and carboxylated polystyrenes. Journal of Polymer Research, 2018, 25, 1.	2.4	16
842	High definition polyphosphoesters: between nucleic acids and plastics. Polymer Chemistry, 2018, 9, 2210-2226.	3.9	37
843	Preparation and characterization of polyamide 6 fibre based on a phosphorus-containing flame retardant. RSC Advances, 2018, 8, 9261-9271.	3.6	56

#	Article	IF	CITATIONS
844	High flame retardancy of amorphous sodium silicate on poly(ethylene-co-vinyl acetate) (EVA). Polymer Bulletin, 2018, 75, 4967-4976.	3.3	9
845	Fire Alarm Wallpaper Based on Fire-Resistant Hydroxyapatite Nanowire Inorganic Paper and Graphene Oxide Thermosensitive Sensor. ACS Nano, 2018, 12, 3159-3171.	14.6	155
846	Synthesis of a novel polysiloxane containing phosphorus, and boron and its effect on flame retardancy, mechanical, and thermal properties of epoxy resin. Polymer Composites, 2018, 39, 807-814.	4.6	24
847	Synergistic effects of pentaerythritol with aluminum hypophosphite in flame retardant ethyleneâ€vinyl acetate composites. Polymer Composites, 2018, 39, 2299-2306.	4.6	12
848	Study on flame retardancy of TGDDM epoxy resin blended with inherent flame-retardant epoxy ether. High Performance Polymers, 2018, 30, 318-327.	1.8	12
849	Study on in-situ polymerization of PANI/APP and its application in HDPE. Polymer Bulletin, 2018, 75, 345-370.	3.3	1
850	Degradable thermosets based on labile bonds or linkages: A review. Progress in Polymer Science, 2018, 76, 65-110.	24.7	257
851	Functionalized graphene with DOPO based organic/inorganic flame retardants: Preparation and its reinforcements on the flame retardancy of polyurea composites. Polymer Composites, 2018, 39, 4637-4645.	4.6	6
852	Synthesis and characterization of thermally stable and flame retardant hexakis(4-aminophenoxy)cyclotriphosphazene-based polyimide matrices. International Journal of Polymer Analysis and Characterization, 2018, 23, 29-37.	1.9	19
853	A novel phosphorus-containing polysiloxane for fabricating high performance electronic material with excellent dielectric and thermal properties. Journal of Materials Science: Materials in Electronics, 2018, 29, 195-204.	2.2	15
854	Modification of tung oil–based polyurethane foam by anhydrides and inorganic content through esterification process. Journal of Applied Polymer Science, 2018, 135, 45786.	2.6	9
855	Improving the Flame Retardancy and Smoke Suppression Properties of Polyurethane Foams with SiO ₂ Microcapsule and its Flame-Retardant Mechanism. Polymer-Plastics Technology and Engineering, 2018, 57, 1139-1149.	1.9	13
856	Synthesis of microencapsulated zinc stannate and its application in flameâ€retardant poly(vinyl) Tj ETQq0 0 0 rg	BT/Overlo 2.0	ck 10 Tf 50 2
857	Tuning the properties for the self-extinguishing epoxy-amine composites containing copper-coordinated curing agent: Flame tests and physical–mechanical measurements. Reactive and Functional Polymers, 2018, 129, 95-102.	4.1	9
858	Synthesis and characterization of phosphorus-containing, silicone rubber based flame retardant coatings. Reactive and Functional Polymers, 2018, 123, 1-9.	4.1	33
859	A novel boron–nitrogen intumescent flame retardant coating on cotton with improved washing durability. Cellulose, 2018, 25, 843-857.	4.9	64
860	Metalâ€coordinated epoxy polymers with suppressed combustibility. Preparation technology, thermal degradation, and combustibility test of new epoxyâ€amine polymers containing the curing agent with chelated copper(<scp>II</scp>) carbonate. Fire and Materials, 2018, 42, 266-277.	2.0	9
861	Durable flame retardant and antibacterial finishing on cotton fabrics with cyclotriphosphazene/polydopamine/silver nanoparticles hybrid coatings. Applied Surface Science, 2018, 435, 1337-1343.	6.1	92

#	Article	IF	CITATIONS
862	Effect of trisilanolphenyl‫scp>POSS«/scp> on rheological, mechanical, and flameâ€retardant properties of poly(ethylene terephthalate)/cyclotriphosphazene systems. Journal of Applied Polymer Science, 2018, 135, 45912.	2.6	9
863	Synthesis of a novel azaphosphorine flame retardant and its application in epoxy resins. Journal of Applied Polymer Science, 2018, 135, 45721.	2.6	10
864	Synthesis of phosphorus―and phenylâ€based ROMP polymers and investigation of their effects on the thermomechanical and flammability properties of a polypropylene–IFR system. Journal of Applied Polymer Science, 2018, 135, 45998.	2.6	12
865	Study of thermal and flame behavior of phosphorus-based silica for epoxy composites. Journal of Sol-Gel Science and Technology, 2018, 85, 269-279.	2.4	9
866	Thermal degradation and combustion behavior of intumescent flameâ€retardant polypropylene with novel phosphorusâ€based flame retardants. Journal of Applied Polymer Science, 2018, 135, 45962.	2.6	33
867	Grafting of phosphorus flame retardants on flax fabrics: Comparison between two routes. Polymer Degradation and Stability, 2018, 147, 25-34.	5.8	36
868	Flexible transparent flameâ€retardant membrane based on a novel UVâ€curable phosphorusâ€containing acrylate. Fire and Materials, 2018, 42, 99-108.	2.0	11
869	Mechanical Assessment of Fire-off on CO/PET Fabrics. IOP Conference Series: Materials Science and Engineering, 2018, 460, 012052.	0.6	0
870	The decline of combustibility of heat-insulating composite plates from plant wastes. MATEC Web of Conferences, 2018, 251, 01019.	0.2	2
871	â€~Phoenix polymers': fire induced nanohardness in fibril-forming aromatic cyanate esters. RSC Advances, 2018, 8, 36264-36271.	3.6	1
872	A novel branched phosphorus-containing flame retardant: synthesis and its application. IOP Conference Series: Earth and Environmental Science, 2018, 128, 012102.	0.3	0
873	Plasticizers Derived from Biomass Resources: A Short Review. Polymers, 2018, 10, 1303.	4.5	114
874	Decomposition and Ageing of Hybrid Materials with POSS. Springer Series on Polymer and Composite Materials, 2018, , 415-462.	0.7	4
875	Synthesis and characterization of thermally stable and flame retardant poly (benzoxazine-co-urethane) matrices. Journal of Macromolecular Science - Pure and Applied Chemistry, 2018, 55, 668-675.	2.2	2
876	Non-flammable thiazole-functional monobenzoxazines: Synthesis, polymerization, thermal and thermomechanical properties, and flammability studies. Polymer, 2018, 157, 38-49.	3.8	47
877	The Role of Graphene in Flame Retardancy of Polymeric Materials: Recent Advances. Current Graphene Science, 2018, 2, 27-34.	0.5	6
878	Revalorization of Grape Seed Oil for Innovative Non-Food Applications. , 2018, , .		1
879	FTIR and GCMS analysis of epoxy resin decomposition products feeding the flame during UL 94 standard flammability test. Application to the understanding of the blowing-out effect in epoxy/polyhedral silsesquioxane formulations. Journal of Analytical and Applied Pyrolysis, 2018, 135, 271-280.	5.5	32

#	Article	IF	CITATIONS
880	Keratinous Fiber Based Intumescent Flame Retardant with Controllable Functional Compound Loading. ACS Sustainable Chemistry and Engineering, 2018, 6, 13177-13184.	6.7	25
881	Thermal decomposition of phosphonate-containing methacrylate-based copolymers. Polymer Degradation and Stability, 2018, 152, 235-243.	5.8	10
882	Synthesis and characterization of a novel organic-inorganic hybrid char-forming agent and its flame-retardant application in polypropylene composites. Journal of Analytical and Applied Pyrolysis, 2018, 134, 231-242.	5.5	124
883	Synthesis of an acrylate constructed by phosphaphenanthrene and triazine-trione and its application in intrinsic flame retardant vinyl ester resin. Polymer Degradation and Stability, 2018, 154, 285-294.	5.8	47
884	Synthesis and Application of Phosphorus-containing Flame Retardant Plasticizer for Polyvinyl Chloride. Fibers and Polymers, 2018, 19, 1057-1063.	2.1	24
885	Comparative Study on Flame Retardancy, Thermal, and Mechanical Properties of Glass Fiber Reinforced Polyester Composites with Ammonium Polyphosphate, Expandable Graphite, and Aluminum Tri-hydroxide. Arabian Journal for Science and Engineering, 2018, 43, 6211-6218.	3.0	10
886	Preparation and characterization of boron-containing polyurethane foams with carbazole. Polymer Testing, 2018, 70, 403-412.	4.8	14
888	A new direction in design of bioâ€based flame retardants for poly(lactic acid). Fire and Materials, 2018, 42, 914-924.	2.0	45
889	Enhanced Flame Retardancy, Thermal and Mechanical Properties of Hybrid Magnesium Hydroxide/Montmorillonite Reinforced Polyamide 6/Polypropylene Nanocomposites. Fibers and Polymers, 2018, 19, 914-926.	2.1	20
890	Polyacrylonitrile fibers. , 2018, , 545-593.		12
891	Comprehensive study on flame retardant polyesters from phosphorus additives. Polymer Degradation and Stability, 2018, 155, 22-34.	5.8	64
892	Rapid screening test for flame retardation of wood, and its applicability to thermoplastic polymer systems. Journal of Applied Polymer Science, 2018, 135, 46602.	2.6	1
893	Synthesis of a novel mono-component intumescent flame retardant and its high efficiency for flame retardant polyethylene. Journal of Analytical and Applied Pyrolysis, 2018, 134, 632-640.	5.5	46
894	Self-crosslinkable and modifiable polysiloxanes possessing Meldrum's acid groups. Polymer Chemistry, 2018, 9, 4781-4788.	3.9	13
895	Synthesis of Polyphosphazenes by a Fast Perfluoroaryl Azide-Mediated Staudinger Reaction. Macromolecules, 2018, 51, 4532-4540.	4.8	22
896	Application of self-templated PHMA sub-microtubes in enhancing flame-retardance and anti-dripping of PET. Polymer Degradation and Stability, 2018, 154, 239-247.	5.8	15
897	A novel organic-inorganic hybrid SiO2@DPP for the fire retardance of polycarbonate. Polymer Degradation and Stability, 2018, 154, 177-185.	5.8	51
898	Synthesis and studies on phosphazene core-based POSS-reinforced polyimide nanocomposites. Polymer Bulletin, 2019, 76, 387-407.	3.3	29

#	Article	IF	CITATIONS
899	Influence of surface flame-retardant layer containing ammonium polyphosphate and expandable graphite on the performance of jute/polypropylene composites. Journal of Thermal Analysis and Calorimetry, 2019, 135, 2367-2375.	3.6	25
900	Improving flame retardancy and mechanical properties of halogen-free unsaturated polyester resin with diethylene glycol as comonomer. Journal of Thermal Analysis and Calorimetry, 2019, 135, 2171-2181.	3.6	5
901	Intumescent flame retardant coating for polyamide 6,6 (PA 6,6) fabrics containing carbon nanotubes: Synergistic effect of filler on thermal stability and flame retardancy. Textile Reseach Journal, 2019, 89, 2031-2040.	2.2	12
902	Transition metal-free phosphonocarboxylation of alkenes with carbon dioxide via visible-light photoredox catalysis. Nature Communications, 2019, 10, 3592.	12.8	136
903	Functionalized Cellulose Nanocrystals: A Potential Fire Retardant for Polymer Composites. Polymers, 2019, 11, 1361.	4.5	17
904	Thermal and Rheological Properties of Unsaturated Polyester Resins-Based Composites. , 2019, , 367-406.		7
905	Flammability and Thermal Stability of Unsaturated Polyester Resin-Based Blends and Composites. , 2019, , 435-469.		8
906	Chain Extension and Synergistic Flame-Retardant Effect of Aromatic Schiff Base Diepoxide on Polyamide 6/Aluminum Diethylphosphinate Composites. Materials, 2019, 12, 2217.	2.9	22
907	Metalâ€organic framework MILâ€53 (Fe)@C/graphite carbon nitride hybrids with enhanced thermal stability, flame retardancy, and smoke suppression for unsaturated polyester resin. Polymers for Advanced Technologies, 2019, 30, 2458-2467.	3.2	36
908	Curing of Epoxy Resin DER-331 by Hexakis(4-acetamidophenoxy)cyclotriphosphazene and Properties of the Prepared Composition. Polymers, 2019, 11, 1191.	4.5	16
909	Design and Application of Highly Efficient Flame Retardants for Polycarbonate Combining the Advantages of Cyclotriphosphazene and Silicone Oil. Polymers, 2019, 11, 1155.	4.5	22
910	The effect of intumescent mat on post-fire performance of carbon fibre reinforced composites. Journal of Fire Sciences, 2019, 37, 257-272.	2.0	9
911	Surface-coating engineering for flame retardant flexible polyurethane foams: A critical review. Composites Part B: Engineering, 2019, 176, 107185.	12.0	163
912	Synthesis of a DOPO-triazine additive and its flame-retardant effect in rigid polyurethane foam. E-Polymers, 2019, 19, 235-243.	3.0	13
913	Phosphine Oxide Containing Poly(pyridinium salt)s as Fire Retardant Materials. Polymers, 2019, 11, 1141.	4.5	9
914	Impacts of multi-element flame retardants on flame retardancy, thermal stability, and pyrolysis behavior of epoxy resin. Polymer Degradation and Stability, 2019, 167, 217-227.	5.8	31
915	Improving the Flame Retardance of Polyisocyanurate Foams by Dibenzo[d,f][1,3,2]dioxaphosphepine 6-Oxide-Containing Additives. Polymers, 2019, 11, 1242.	4.5	8
916	Synthesis and characterization of nanocrystalline polyhedral oligo silsesquioxanes (POSS) with cross-linkable functionalities. Polyhedron, 2019, 171, 299-304.	2.2	3

#	Article	IF	CITATIONS
917	Sustainable approach towards enhancing thermal stability of bio-based polybenzoxazines. Polymer, 2019, 184, 121905.	3.8	30
921	Synthesis of acrylated cardanol diphenyl phosphate for UV curable flame-retardant coating application. European Polymer Journal, 2019, 121, 109320.	5.4	32
922	Flame Retardancy of Thermoplastic Polyurethane Using Phosphorus-containing Flame Retardants. IOP Conference Series: Materials Science and Engineering, 2019, 585, 012038.	0.6	5
923	Aromatic vs. Aliphatic Hyperbranched Polyphosphoesters as Flame Retardants in Epoxy Resins. Molecules, 2019, 24, 3901.	3.8	22
924	Novel Nitrogen–Phosphorus Flame Retardant Based on Phosphonamidate: Thermal Stability and Flame Retardancy. ACS Omega, 2019, 4, 17791-17797.	3.5	35
925	Attapulgite modified cotton fabric and its flame retardancy. Cellulose, 2019, 26, 9311-9322.	4.9	17
926	Effect of methyl methacrylate on the properties of transparent flame retardant unsaturated phosphate ester copolymer. Polymer Engineering and Science, 2019, 59, 2103-2109.	3.1	3
927	Review on soft polyurethane flame retardant. Construction and Building Materials, 2019, 227, 116673.	7.2	62
928	Interpenetrating Polymer Networks of Porous Organic Polymers and Polyurethanes for Flame Resistance and High Mechanical Properties. ACS Applied Polymer Materials, 2019, 1, 2692-2702.	4.4	18
929	Synthesis of a novel silicon-containing epoxy resin and its effect on flame retardancy, thermal, and mechanical properties of thermosetting resins. Materials Today Communications, 2019, 19, 186-195.	1.9	27
930	Flame-retarding nanoparticles as the compatibilizers for immiscible polymer blends: simultaneously enhanced mechanical performance and flame retardancy. Journal of Materials Chemistry A, 2019, 7, 4903-4912.	10.3	61
931	Preparation and flame retardancy of epoxy resin phosphoric acid modified poly-acrylate resin. Pigment and Resin Technology, 2019, 48, 197-201.	0.9	1
932	Effect of phosphorus flame retardants on the flammability of sugar-based bioepoxy resin. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 309-312.	1.6	11
933	Enhanced thermal stability and mechanical property of EVA nanocomposites upon addition of organo-intercalated LDH nanoparticles. Polymer, 2019, 177, 274-281.	3.8	34
934	A Review of a Class of Emerging Contaminants: The Classification, Distribution, Intensity of Consumption, Synthesis Routes, Environmental Effects and Expectation of Pollution Abatement to Organophosphate Flame Retardants (OPFRs). International Journal of Molecular Sciences, 2019, 20, 2874	4.1	139
935	A DOPO based reactive flame retardant constructed by multiple heteroaromatic groups and its application on epoxy resin: curing behavior, thermal degradation and flame retardancy. Polymer Degradation and Stability, 2019, 167, 10-20.	5.8	87
936	Design of solid foams for flame retardant based on bionanocomposites systems. Applied Clay Science, 2019, 180, 105173.	5.2	5
937	Preparation, characterization and flame retardancy of phosphorus-containing poly-styrene-acrylate emulsion. Designed Monomers and Polymers, 2019, 22, 114-121.	1.6	7

#	Article	IF	CITATIONS
938	Functionalization of MXene Nanosheets for Polystyrene towards High Thermal Stability and Flame Retardant Properties. Polymers, 2019, 11, 976.	4.5	93
939	Novel Approach toward the Synthesis of a Phosphorus-Functionalized Polymer-Based Graphene Composite as an Efficient Flame Retardant. ACS Sustainable Chemistry and Engineering, 2019, 7, 11745-11753.	6.7	78
940	Synergistic Effects of Flame Retardants on the Flammability and Foamability of PS Foams Prepared by Supercritical Carbon Dioxide Foaming. ACS Omega, 2019, 4, 9306-9315.	3.5	25
941	Phosphorus–nitrogenâ€type fireâ€retardant vinyl ester resin with good comprehensive properties. Journal of Applied Polymer Science, 2019, 136, 47997.	2.6	15
942	Structural and thermal degradation behaviour of reclaimed clay nano-reinforced low-density polyethylene nanocomposites. Journal of Polymer Research, 2019, 26, 1.	2.4	20
943	Study on Properties of a Novel Flame Retardant Epoxy Curing Agent. Materials Science Forum, 2019, 953, 179-184.	0.3	Ο
944	Influence of monomer reactivity on radiation grafting of phosphorus flame retardants on flax fabrics. Polymer Degradation and Stability, 2019, 166, 86-98.	5.8	13
945	Synthesis of a hyperbranched phosphorus-containing polyurethane as char forming agent combined with ammonium polyphosphate for reducing fire hazard of polypropylene. Polymer Degradation and Stability, 2019, 165, 207-219.	5.8	41
946	Synthesis of Resorcinol-Based Phosphazene-Containing Epoxy Oligomers. Polymers, 2019, 11, 614.	4.5	15
947	Fireâ€Safe Polyesters Enabled by Endâ€Group Capturing Chemistry. Angewandte Chemie - International Edition, 2019, 58, 9188-9193.	13.8	72
948	Construction of novel siliconâ€phosphorus linear polymers with DDSQ and DOPO derivatives for effective flame retardancy of PC/ABS. Fire and Materials, 2019, 43, 685-693.	2.0	9
949	Superelastic, Anticorrosive, and Flame-Resistant Nitrogen-Containing Resorcinol Formaldehyde/Graphene Oxide Composite Aerogels. ACS Sustainable Chemistry and Engineering, 2019, 7, 10873-10879.	6.7	20
950	Cardanol and Eugenol Based Flame Retardant Epoxy Monomers for Thermostable Networks. Molecules, 2019, 24, 1818.	3.8	71
951	Effects of an Organic-Inorganic Hybrid Containing Allyl Benzoxazine and POSS on Thermal Properties and Flame Retardancy of Epoxy Resin. Polymers, 2019, 11, 770.	4.5	20
952	Fireâ€Safe Polyesters Enabled by Endâ€Group Capturing Chemistry. Angewandte Chemie, 2019, 131, 9286-9291.	2.0	2
953	Hybrid organic-inorganic hydrophobic and intumescent flame-retardant coating for cotton fabrics. Composites Communications, 2019, 14, 15-20.	6.3	33
954	Flame retardant properties of oil palm trunk particleboard with addition of epoxy resin as a binder and aluminium hydroxide and magnesium hydroxide as additives. Bulletin of Materials Science, 2019, 42, 1.	1.7	7
956	Synthesis, characterization and applications of low temperature melting glasses belonging to P2O5CaO Na2O system. Ceramics International, 2019, 45, 12234-12242	4.8	13

щ	Apticie	IE	CITATIONS
#	Systematically Controlled Decomposition Mechanism in Phosphorus Flame Retardants by Precise	IF	CHATIONS
957	Molecular Architecture: P–O vs P–N. ACS Applied Polymer Materials, 2019, 1, 1118-1128.	4.4	61
958	Synthetic routes to flame retardant isocyanurate of rigid polyurethane foams. IOP Conference Series: Materials Science and Engineering, 2019, 479, 012105.	0.6	2
959	Facile flame retardant finishing of cotton fabric with hydrated sodium metaborate. Cellulose, 2019, 26, 4629-4640.	4.9	38
960	Gradient-Structured Nonflammable Flexible Polymer Membranes. ACS Applied Materials & Interfaces, 2019, 11, 11876-11883.	8.0	6
961	Synthesis and characterization of inherently flame retardant polyamide 6 based on a phosphine oxide derivative. Polymer Degradation and Stability, 2019, 163, 151-160.	5.8	49
962	Enhancement of physico-chemical and anti-corrosive properties of tung oil based polyurethane coating via modification using anhydrides and inorganic acid. Surfaces and Interfaces, 2019, 15, 180-190.	3.0	6
963	Multifunctional Gelcoats for Fiber Reinforced Composites. Coatings, 2019, 9, 173.	2.6	23
964	A Novel POSS-Based Copolymer Functionalized Graphene: An Effective Flame Retardant for Reducing the Flammability of Epoxy Resin. Polymers, 2019, 11, 241.	4.5	23
965	Flame retardant and its influence on the performance of asphalt – A review. Construction and Building Materials, 2019, 212, 841-861.	7.2	58
966	Development of Oneâ€Step Waterâ€Repellent and Flameâ€Retardant Finishes for Cotton. ChemistrySelect, 2019, 4, 3811-3816.	1.5	45
967	Interface decoration of exfoliated MXene ultra-thin nanosheets for fire and smoke suppressions of thermoplastic polyurethane elastomer. Journal of Hazardous Materials, 2019, 374, 110-119.	12.4	301
968	Recent Advances in Bio-Based Flame Retardant Additives for Synthetic Polymeric Materials. Polymers, 2019, 11, 224.	4.5	117
969	Thermal characterization of ammonium starch phosphate carbamates for potential applications as bio-based flame-retardants. Carbohydrate Polymers, 2019, 211, 69-74.	10.2	48
970	Preparation and characterization of a novel transparent flame retardant unsaturated phosphate ester polymer. Polymer Engineering and Science, 2019, 59, E425.	3.1	3
971	Effect of Graphene on Flame Retardancy of Graphite Doped Intumescent Flame Retardant (IFR) Coatings: Synergy or Antagonism. Coatings, 2019, 9, 94.	2.6	16
972	Effects of a semiâ€bioâ€based triazine derivative on intumescent flameâ€retardant polypropylene. Polymers for Advanced Technologies, 2019, 30, 1259-1268.	3.2	21
973	Flame retardant eugenol-based thiol-ene polymer networks with high mechanical strength and transparency. Chemical Engineering Journal, 2019, 368, 359-368.	12.7	90
974	Cage–ladderâ€structure, phosphorusâ€containing polyhedral oligomeric silsesquinoxanes as promising reactiveâ€type flame retardants for epoxy resin. Journal of Applied Polymer Science, 2019, 136, 47607.	2.6	27

ARTICLE IF CITATIONS Factors Influencing the Fire-Resistance of Epoxy Compositions Modified with Epoxy-Containing 976 0.5 8 Phosphazenes. Inorganic Materials: Applied Research, 2019, 10, 1429-1435. Synthesis of Bisphenol A Based Phosphazene-Containing Epoxy Resin with Reduced Viscosity. Polymers, 4.5 <u>2019, 11, 191</u>4. New fire-resistant epoxy thermosets: nonisothermal kinetic study and flammability behavior. Journal 978 7 1.4 of Polymer Engineering, 2019, 40, 21-29. One-Step Synthesis of Highly Efficient Oligo(phenylphosphonic Dihydroxypropyl Silicone Oil) Flame 979 4.5 Retardant for Polycarbonate. Polymers, 2019, 11, 1977. High residue bio-based structuralâ€"functional integration epoxy and intrinsic flame retardant 980 3.6 20 mechanism study. RSC Advances, 2019, 9, 41603-41615. The effects of huntite–hydromagnesite inclusion in acrylate-based polymer paste coating process on some textile functional performance properties of cotton fabric. Cellulose, 2019, 26, 1367-1381. A novel hot aerosol extinguishing agent with high efficiency for Class B fires. Fire and Materials, 982 2.0 13 2019, 43, 84-91. Postâ€polymerization functionalization to a novel phosphorusâ€and nitrogenâ€containing polyether coating for flame retardant treatment of PET fabric. Journal of Applied Polymer Science, 2019, 136, 983 2.6 20 47299 The evaluation of the interfacial and flame retardant properties of glass fiber/unsaturated polyester 984 12.0 22 composites with ammonium dihydrogen phosphate. Composites Part B: Engineering, 2019, 167, 221-230. Effects of a Phosphorus Flame Retardant System on the Mechanical and Fire Behavior of 4.5 Microcellular ABS. Polymers, 2019, 11, 30. Synergistic improvement of flame retardant properties of expandable graphite and multi-walled 986 10.3 69 carbon nanotube reinforced intumescent polyketone nanocomposites. Carbon, 2019, 143, 650-659. Effect of inorganic additive flame retardant on fire hazard of polyurethane exterior insulation 3.6 26 material. Journal of Thermal Analysis and Calorimetry, 2019, 135, 2857-2868. Optically transparent and flame-retarded polycarbonate nanocomposite based on diphenylphosphine oxide-containing polyhedral oligomeric silsesquioxanes. Composites Part A: Applied Science and Manufacturing, 2019, 117, 92-102. 988 7.6 47 Review of the flame retardancy on highway tunnel asphalt pavement. Construction and Building Materials, 2019, 195, 468-482. 7.2 A flame retarded chitosan binder for insulating miscanthus/recycled textile fibers reinforced 990 2.6 23 biocomposites. Journal of Applied Polymer Science, 2019, 136, 47306. Bioinspired Color Changing Molecular Sensor toward Early Fire Detection Based on Transformation 991 14.9 86 of Phthalonitrile to Phthalocyanine. Advanced Functional Materials, 2019, 29, 1806586. Effect of oxidized wood flour as functional filler on the mechanical, thermal and flame-retardant 992 5.254 properties of polylactide biocomposites. Industrial Crops and Products, 2019, 130, 301-309. Cardanol derived P and Si based precursors to develop flame retardant PU coating. Progress in 29 Organic Coatings, 2019, 129, 59-68.

#	Article	IF	CITATIONS
994	Synergetic enhancement of mechanical and fire-resistance performance of waterborne polyurethane by introducing two kinds of phosphorus–nitrogen flame retardant. Journal of Colloid and Interface Science, 2019, 537, 197-205.	9.4	61
995	Molded environmentâ€friendly flameâ€retardant foaming material with high strength based on corn starch modified by crosslinking and grafting. Journal of Applied Polymer Science, 2019, 136, 47193.	2.6	8
996	Cyclotriphosphazene nanofiber-reinforced polybenzoxazine/epoxy nanocomposites for low dielectric and flame-retardant applications. Polymer Bulletin, 2019, 76, 3785-3801.	3.3	14
997	UV-curable flame-retardant coatings based on phosphorous and silicon containing oligomers. Journal of Coatings Technology Research, 2019, 16, 733-743.	2.5	13
998	Efficient polymeric phosphorus flame retardant: flame retardancy, thermal property, and physical property on polylactide. Polymer Bulletin, 2019, 76, 3463-3479.	3.3	11
999	Characterization of pyrolysis and combustion of rigid poly(vinyl chloride) using two-dimensional modeling. International Journal of Heat and Mass Transfer, 2019, 132, 347-361.	4.8	38
1000	Phosphorus-Based α-Amino Acid Mimetic for Enhanced Flame-Retardant Properties in an Epoxy Resin. Australian Journal of Chemistry, 2019, 72, 226-232.	0.9	3
1001	Ammonium zeolite and ammonium phosphate applied as fire retardants for microcrystalline cellulose filled thermoplastic composites. Fire Safety Journal, 2019, 107, 202-209.	3.1	28
1002	Facile fabrication of biobased P N C-containing nano-layered hybrid: Preparation, growth mechanism and its efficient fire retardancy in epoxy. Polymer Degradation and Stability, 2019, 159, 153-162.	5.8	91
1003	Studying the effect of particle size on the antibacterial activity of some N-nicotinyl phosphoric triamides. Particulate Science and Technology, 2019, 37, 427-433.	2.1	3
1004	Reactive cyclic phosphonamide flame retardant for epoxy resins. Journal of Applied Polymer Science, 2020, 137, 47411.	2.6	17
1005	Novel phosphonate-based phosphorus–nitrogen flame retardants and their use as synergists when applied with OP1240 in glass fiber-reinforced poly(butylene terephthalate). Polymer Bulletin, 2020, 77, 1503-1518.	3.3	3
1006	Recent developments in P(O/S)–N containing flame retardants. Journal of Applied Polymer Science, 2020, 137, 47910.	2.6	64
1007	Flame retardant effect of aluminum hypophosphite in heteroatom-containing polymers. Polymer Bulletin, 2020, 77, 291-306.	3.3	19
1008	Synthesis and properties of flame-retardant reactive hot melt polyurethane adhesive. Journal of Adhesion Science and Technology, 2020, 34, 178-191.	2.6	13
1009	Effects of phosphorus-containing aromatic polyamide and organo-modified hydroxyapatite nanoparticles on the thermal, combustion and mechanical properties of polyvinyl chloride. Polymer Bulletin, 2020, 77, 4259-4287.	3.3	7
1010	Production and characterization of the halogen-free and nanostructured flame retardant reinforced composite coatings. Journal of the Australian Ceramic Society, 2020, 56, 683-695.	1.9	2
1011	Latest trends for structural steel protection by using intumescent fire protective coatings: a review. Surface Engineering, 2020, 36, 334-363.	2.2	36

#	Article	IF	CITATIONS
1012	Synthesis and characterization of a novel highly phosphonated waterâ€insoluble polymer. Journal of Applied Polymer Science, 2020, 137, 48235.	2.6	5
1013	New phosphorus- and nitrogen-containing poly(methyl methacrylate)-based copolymer. Journal of Thermal Analysis and Calorimetry, 2020, 139, 333-342.	3.6	4
1014	Practical Synthesis of Phosphinic Amides/Phosphoramidates through Catalytic Oxidative Coupling of Amines and P(O)â^'H Compounds. Chemistry - A European Journal, 2020, 26, 881-887.	3.3	32
1015	Facile Preparation of Halogen-Free Poly(ether imide) Containing Phosphonium and Sulfonate Groups. ACS Applied Polymer Materials, 2020, 2, 66-73.	4.4	4
1016	<i>In situ</i> polymerization of flame retardant modification polyamide 6,6 with 2 arboxy ethyl (phenyl) phosphinic acid. Journal of Applied Polymer Science, 2020, 137, 48687.	2.6	9
1017	Flameâ€retardant poly (ethylene terephthalate) enabled by a novel melamine polyphosphate nanowire. Polymers for Advanced Technologies, 2020, 31, 795-806.	3.2	13
1018	Novel Eco-Friendly Flame Retardants Based on Nitrogen–Silicone Schiff Base and Application in Cellulose. ACS Sustainable Chemistry and Engineering, 2020, 8, 290-301.	6.7	83
1019	Synthesis of a novel liquid phosphorus-containing flame retardant for flexible polyurethane foam: Combustion behaviors and thermal properties. Polymer Degradation and Stability, 2020, 171, 109029.	5.8	74
1020	The effect of ammonium polyphosphate on the mechanism of phosphorous-containing hydrotalcite synergism of flame retardation of polypropylene. Applied Clay Science, 2020, 185, 105348.	5.2	26
1021	Comparative analysis of pyrolysis and combustion of bisphenol A polycarbonate and poly(ether ether) Tj ETQq1 1 structure of the intumescent char. Combustion and Flame, 2020, 212, 469-485.	0.784314 5.2	rgBT /Overl 21
1022	Design of h-BN@boronate polymer core-shell nanoplates to simultaneously enhance the flame retardancy and mechanical properties of epoxy resin through the interficial regulation. Composites Part A: Applied Science and Manufacturing, 2020, 130, 105751.	7.6	43
1023	Cardanol and Eugenol Sourced Sustainable Non-halogen Flame Retardants for Enhanced Stability of Renewable Polybenzoxazines. Frontiers in Chemistry, 2020, 8, 711.	3.6	27
1024	One-Pot, Solvent- and Catalyst-Free Synthesis of Polyphosphoramide as an Eco-Benign and Effective Flame Retardant for Poly(lactic acid). ACS Sustainable Chemistry and Engineering, 2020, 8, 16612-16623.	6.7	72
1025	Polyphosphazenes-based flame retardants: A review. Composites Part B: Engineering, 2020, 202, 108397.	12.0	143
1026	Nacre-Mimetic Green Flame Retardant: Ultra-High Nanofiller Content, Thin Nanocomposite as an Effective Flame Retardant. Polymers, 2020, 12, 2351.	4.5	10
1027	Fabrication and curing properties of o-cresol formaldehyde epoxy resin with reversible cross-links by dynamic boronic ester bonds. Polymer, 2020, 211, 123116.	3.8	50
1028	Improving flame retardancy of in-situ silica-epoxy nanocomposites cured with aliphatic hardener: Combined effect of DOPO-based flame-retardant and melamine. Composites Part C: Open Access, 2020, 2, 100022.	3.2	21
1029	Enhancement of the intumescent flame retardant efficiency in polypropylene by synergistic charring effect of a hypophosphite/cyclotetrasiloxane bi-group compound. Polymer Degradation and Stability, 2020, 181, 109281.	5.8	30

	Сітаті	on Report	
#	Article	IF	CITATIONS
1030	Synergistic Effects of Black Phosphorus/Boron Nitride Nanosheets on Enhancing the Flame-Retardant Properties of Waterborne Polyurethane and Its Flame-Retardant Mechanism. Polymers, 2020, 12, 1487.	4.5	50
1031	Synthesis of novel bisphosphorylimides based on Staudinger reaction. Arkivoc, 2020, 2020, 139-154.	0.5	2
1032	Advanced flame-retardant agents for protective textiles and clothing. , 2020, , 397-414.		3
1033	Synthesis of a New Flame Retardant Curing Agent with Phosphorus and Their Application to Epoxy Resins. Journal of Physics: Conference Series, 2020, 1626, 012177.	0.4	2
1034	Tailoring thermal and flame retardant properties via synergistic effect in polyvinyl alcohol nanocomposites based on polyphosphonate and/or SiO2 nanoparticles. Composites Part C: Open Access, 2020, 3, 100063.	3.2	7
1036	Phosphorus-Containing Silsesquioxane Derivatives as Additive or Reactive Components of Epoxy Resins. Materials, 2020, 13, 5373.	2.9	6
1037	New copper(II)â€coordinated epoxyâ€amine polymers with flameâ€selfâ€extinguishment properties: Elaboration, combustibility testing, and flame propagation rate measuring. Fire and Materials, 2020, 44, 825-834.	2.0	3
1038	Flame-retardancy, thermal and coating properties of P-containing poly-acrylate resin cured with MF resin. Pigment and Resin Technology, 2020, 49, 41-45.	0.9	3
1039	Flame retardant, antistatic cotton fabrics crafted by layer-by-layer assembly. Cellulose, 2020, 27, 8457-8469.	4.9	25
1040	An inherently flame-retardant polyamide 6 containing a phosphorus group prepared by transesterification polymerization. Polymer, 2020, 207, 122890.	3.8	28
1041	An Extremely Efficient Silylated Benzensulfonate Flame Retardant for Polycarbonate. Materials, 2020, 13, 3550.	2.9	9
1042	Anti-flammability, mechanical and thermal properties of bio-based rigid polyurethane foams with the addition of flame retardants. RSC Advances, 2020, 10, 32156-32161.	3.6	21
1043	A novel ceramifiable epoxy composite with enhanced fire resistance and flame retardance. Journal of Thermal Analysis and Calorimetry, 2022, 147, 181-193.	3.6	5
1044	Cardanol with a Covalently Attached Organophosphate Moiety as a Halogen-Free, Intrinsically Flame-Retardant PVC Bio-Plasticizer. Fibers and Polymers, 2020, 21, 1649-1656.	2.1	7
1045	Highly Flame-Retardant Liquid Crystalline Polymers. Polymers and Polymeric Composites, 2020, , 549-575.	0.6	0
1046	Green and Facile Fabrication of α-Zirconium Phosphate-Based Core–Multishell Nanoparticles for Enhancing Fire Retardant Performance of Poly(vinyl alcohol). ACS Applied Nano Materials, 2020, 3, 8708-8718.	5.0	21
1047	Highly Efficient, Environmentally Friendly Lignin-Based Flame Retardant Used in Epoxy Resin. ACS Omega, 2020, 5, 32084-32093.	3.5	38
1048	The Curing Rheokinetics of Epoxyphosphazene Binders. Materials, 2020, 13, 5685.	2.9	5

#	Article	IF	CITATIONS
1049	Degradation mechanism and flame retardancy of aluminum phosphonate in glass fiber-reinforced poly(butylene terephthalate). Polymer Bulletin, 2021, 78, 6761-6776.	3.3	5
1050	A molding-sintering method inspired by powder metallurgy for thermosetting resins with narrow processing window: A case study on bio-based adenine containing phthalonitrile. Chemical Engineering Journal, 2020, 398, 125442.	12.7	21
1051	Synthesis of a Novel Phosphorus-Containing Curing Agent and Its Effects on the Flame Retardancy, and Thermal Stability of Epoxy Resins. Russian Journal of Applied Chemistry, 2020, 93, 611-623.	0.5	2
1052	Graphene Oxide and Vermiculite Clay Combinations to Produce Enhanced Flame Retardant Polypropylene Composite with Low Magnesium Hydroxide Loading. Journal of Vinyl and Additive Technology, 2020, 26, 586-600.	3.4	13
1053	Flame retardant polymeric materials for additive manufacturing. Materials Today: Proceedings, 2020, 33, 5720-5724.	1.8	17
1054	Novel eco-friendly maleopimaric acid based polysiloxane flame retardant and application in rigid polyurethane foam. Composites Science and Technology, 2020, 198, 108272.	7.8	47
1055	Influence of Sepiolite and Lignin as Potential Synergists on Flame Retardant Systems in Polylactide (PLA) and Polyurethane Elastomer (PUE). Materials, 2020, 13, 2450.	2.9	25
1056	Intrinsic flame retardant phosphonate-based vitrimers as a recyclable alternative for commodity polymers in composite materials. Polymer Chemistry, 2020, 11, 4933-4941.	3.9	34
1057	Development of sustainable flame-retardant materials. Green Materials, 2020, 8, 101-122.	2.1	7
1058	Advances in Functional Finishing of Textiles. Textile Science and Clothing Technology, 2020, , .	0.5	5
1059	A phytic acid-based chelating coordination embedding structure of phosphorus–boron–nitride synergistic flame retardant to enhance durability and flame retardancy of cotton. Cellulose, 2020, 27, 4817-4829.	4.9	38
1060	Flame Retardation of Natural Rubber: Strategy and Recent Progress. Polymers, 2020, 12, 429.	4.5	35
1061	High temperature extensional rheology of commercially available polycarbonate mixed with flame retardant salts. Korea Australia Rheology Journal, 2020, 32, 47-59.	1.7	3
1062	Green Highly Clay-Filled Polyethylene Composites as Coating Materials for Cable Industry—A New Application Route of Non-Organophilised Natural Montmorillonites in Polymeric Materials. Polymers, 2020, 12, 1399.	4.5	1
1063	Morphology and Properties of Flame-Retardant Superhydrophobic Polymer Coatings Deposited on Cotton Fabrics from Supercritical CO ₂ . ACS Applied Polymer Materials, 2020, 2, 2919-2926.	4.4	10
1064	A novel organicâ€inorganic flame retardant of ammonium polyphosphate chemically coated by Schiff baseâ€containing branched polysiloxane for polyamide 6. Polymers for Advanced Technologies, 2020, 31, 2763-2774.	3.2	18
1065	Characterizing the thermal degradation mechanism of two bisphosphoramidates by TGA, DSC, mass spectrometry and first-principle theoretical protocols. Journal of Molecular Structure, 2020, 1221, 128781.	3.6	3
1066	Designing superhydrophobic and flame retardant photo-cured hybrid coatings. Progress in Organic Coatings, 2020, 148, 105850.	3.9	9

CITATION	DEDODT
CHAHON	REPORT

#	Article	IF	CITATIONS
1067	Flame retardancy and thermal properties of poly(butylene succinate)/ <scp>nanoâ€boehmite</scp> composites prepared via <scp>in situ</scp> polymerization. Polymer Engineering and Science, 2020, 60, 2262-2271.	3.1	12
1068	Poly(ester imide)s possessing low coefficients of thermal expansion and low water absorption (IV): Effects of esterâ€iinked tetracarboxylic dianhydrides with longitudinally extended structures. Polymers for Advanced Technologies, 2020, 31, 389-406.	3.2	14
1069	Synthesis and application of additives based on trifluoroethoxy-cyclo-phosphazene into polymer nanofibers. Tetrahedron, 2020, 76, 130999.	1.9	2
1070	Addition of anti-flaming agents in castor oil based rigid polyurethane foams: studies on mechanical and flammable behaviour. Materials Research Express, 2020, 7, 015333.	1.6	19
1071	Cyclophosphazene microgels with adjustable number of crosslinks and deformability by precipitation polycondensation of mono- and bifunctional amines with hexachlorocyclotriphosphazene. Polymer, 2020, 192, 122314.	3.8	10
1072	Thermal Stability and Flame Retardancy of a Cured Trifunctional Epoxy Resin with the Synergistic Effects of Silicon/Titanium. ACS Omega, 2020, 5, 4200-4212.	3.5	18
1073	A facile and efficient flame-retardant and smoke-suppressant resin coating for expanded polystyrene foams. Composites Part B: Engineering, 2020, 185, 107797.	12.0	70
1074	Enhancement of Flame Retardancy of Colorless and Transparent Semi-Alicyclic Polyimide Film from Hydrogenated-BPDA and 4,4′-oxydianiline via the Incorporation of Phosphazene Oligomer. Polymers, 2020, 12, 90.	4.5	9
1075	Fire hazards management for polymeric materials via synergy effects of pyrolysates-fixation and aromatized-charring. Journal of Hazardous Materials, 2020, 389, 122040.	12.4	29
1076	Sol-gel coatings from DOPO-alkoxysilanes: Efficacy in fire protection of polyamide 66 textiles. European Polymer Journal, 2020, 125, 109483.	5.4	40
1077	Development of a pyrolysis model for an intumescent flame retardant system: Poly(lactic acid) blended with melamine and ammonium polyphosphate. Composites Part B: Engineering, 2020, 194, 108055.	12.0	41
1078	Poly(ester imide)s Possessing Low Coefficients of Thermal Expansion and Low Water Absorption (V). Effects of Ester-linked Diamines with Different Lengths and Substituents. Polymers, 2020, 12, 859.	4.5	18
1079	Preparation of a novel phosphorus–nitrogen flame retardant and its effects on the flame retardancy and physical properties of polyketone. Journal of Applied Polymer Science, 2020, 137, 49199.	2.6	6
1080	Intercalation of a novel containing nitrogen and sulfur anion into hydrotalcite and its highly efficient flame retardant performance for polypropylene. Applied Clay Science, 2020, 191, 105600.	5.2	33
1081	Green Approach for the Development of Novel Flame Retardant Waterborne Polyurethanes: Synthesis and its Characterizations. Materials Today: Proceedings, 2020, 23, 389-399.	1.8	8
1082	Fabrication, flame retardancy and physical properties of phosphorus containing porous organic polymers/epoxy resin composites. Polymer Degradation and Stability, 2020, 176, 109159.	5.8	18
1083	Effect of flaky graphite with different particle sizes on flame resistance of intumescent flame retardant coating. Results in Materials, 2020, 5, 100061.	1.8	7
1084	Sustainable cardanol-based multifunctional carboxyl curing agents for epoxy coatings: Si–S synergism. Journal of Coatings Technology Research, 2020, 17, 1217-1230.	2.5	4

#	Article	IF	Citations
1085	Application of Chitosan and DOPO derivatives in fire protection of polyamide 66 textiles: Towards a combined gas phase and condensed phase activity. Polymer Degradation and Stability, 2020, 176, 109158.	5.8	33
1086	Flame-retardant system for rigid polyurethane foams based on diethyl bis(2-hydroxyethyl)aminomethylphosphonate and in-situ exfoliated clay. Polymer Degradation and Stability, 2020, 177, 109178.	5.8	30
1087	Phosphorus/phosphorus-nitrogen flame retardants applied to polyurethane/rice husk eco-composites: thermal behavior, flame retardancy, and physico-mechanical properties. Polymer Bulletin, 2021, 78, 2727-2743.	3.3	7
1088	Advancements in traditional and nanosized flame retardants for polymers—A review. Journal of Applied Polymer Science, 2021, 138, 50050.	2.6	51
1089	Valorization of fly ash as a harmless flame retardant via carbonation treatment for enhanced fire-proofing performance and mechanical properties of silicone composites. Journal of Hazardous Materials, 2021, 404, 124202.	12.4	22
1090	Alginate/Polymer-Based Materials for Fire Retardancy: Synthesis, Structure, Properties, and Applications. Polymer Reviews, 2021, 61, 357-414.	10.9	38
1091	Electrochemically prepared black phosphorene micro-powder as flame retardant for epoxy resin. Composite Interfaces, 2021, 28, 693-705.	2.3	11
1092	Influence of halloysite nanotubes onto the fire properties of polymer based composites: A review. Polymer Degradation and Stability, 2021, 183, 109407.	5.8	34
1093	Impact of melamine and its derivatives on the properties of poly(vinyl acetate)-based composite wood adhesive. European Journal of Wood and Wood Products, 2021, 79, 177-188.	2.9	7
1094	Flame-responsive aryl ether nitrile structure towards multiple fire hazards suppression of thermoplastic polyester. Journal of Hazardous Materials, 2021, 403, 123714.	12.4	38
1095	Facile preparation and flame retardancy mechanism of cyclophosphazene derivatives for highly <scp>flameâ€retardant</scp> silicone rubber composites. Journal of Applied Polymer Science, 2021, 138, 50297.	2.6	13
1096	Research progress on modification of phenolic resin. Materials Today Communications, 2021, 26, 101879.	1.9	36
1097	A novel phosphorous-containing polymeric compatibilizer: Effective reinforcement and flame retardancy in glass fiber reinforced polyamide 6 composites. Composites Part B: Engineering, 2021, 205, 108536.	12.0	53
1098	Glycerol-based additives of poly(3-hydroxybutyrate) films. Polymer Testing, 2021, 93, 107005.	4.8	27
1099	Review of the past and recent developments in functionalization of graphene derivatives for reinforcement of polypropylene nanocomposites. Polymer Composites, 2021, 42, 1075-1108.	4.6	15
1100	Effect of Layered Double Hydroxide on Rheological and Flame-Retardant Properties of Styrene-Butadiene-Styrene–Modified Asphalt. Journal of Materials in Civil Engineering, 2021, 33, .	2.9	13
1101	Influences of film forming materials on the performance of graphene fire resistive coating. Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29, 126-136.	2.1	0
1102	Synthesis of a green reactive flameâ€retardant polyether polyol and its application. Journal of Applied Polymer Science, 2021, 138, 50154.	2.6	8

#	Article	IF	CITATIONS
1103	The synergetic effect of antimony (Sb2O3) and melamine cyanurate (MCA) on the flame-retardant behavior of silicon rubber. Polymer Bulletin, 2021, 78, 185-202.	3.3	8
1104	Thermally exfoliated ï€â€"ï€ stacked blistered graphene oxide as efficient flame retardant soft nano-bundles for vinyl ester resin composites. Materials Advances, 2021, 2, 497-510.	5.4	5
1105	Experimental study on the synergistic flame retardant effect of bio-based magnesium phytate and rice husk ash on epoxy resins. Journal of Thermal Analysis and Calorimetry, 2021, 146, 153-164.	3.6	16
1107	Effect of Styrene on the Properties of Transparent Flame Retardant Unsaturated Phosphate Copolymer. Journal of Materials Science and Chemical Engineering, 2021, 09, 11-23.	0.4	0
1108	Comparison of Flame-retardancy Property and Mechanism between a Phosphate Ester and a Phosphoramine Flame-retardants. Journal Wuhan University of Technology, Materials Science Edition, 2021, 36, 148-156.	1.0	11
1109	Natural Polymeric Materials: A Solution to Plastic Pollution from the Agro-Food Sector. Polymers, 2021, 13, 158.	4.5	69
1111	Synthesis of anticorrosive and flame-retardant coating based on turmeric (Curcuma longa) and magnesium hydroxide. International Research Journal on Advanced Science Hub, 2021, 3, 35-45.	2.9	1
1112	Obtaining symmetric and asymmetric bisphosphoramidates and bisphosphoramidothioates by a single step multicomponent reaction. Phosphorus, Sulfur and Silicon and the Related Elements, 2021, 196, 634-642.	1.6	1
1113	High thermal stability and low flammability for Ethyleneâ€Vinyl acetate Monomer/Ethyleneâ€Propyleneâ€Diene Monomer by incorporating macromolecular charring agent. Polymers for Advanced Technologies, 2021, 32, 2444-2451.	3.2	4
1114	Recent developments in fire retardant glass fibre reinforced epoxy composite and geopolymer as a potential fire-retardant material: A review. Construction and Building Materials, 2021, 277, 122246.	7.2	30
1115	Controllable microemulsion method for the synthesis of Mg(OH) ₂ /PS core–shell structures. Micro and Nano Letters, 2021, 16, 413-418.	1.3	4
1116	Synergistic Effects of Ladder and Cage Structured Phosphorus-Containing POSS with Tetrabutyl Titanate on Flame Retardancy of Vinyl Epoxy Resins. Polymers, 2021, 13, 1363.	4.5	14
1117	Mechanically Sustainable Starch-Based Flame-Retardant Coatings on Polyurethane Foams. Polymers, 2021, 13, 1286.	4.5	13
1118	Flame Retardant Properties of a Guanidine Phosphate–Zinc Borate Composite Flame Retardant on Wood. ACS Omega, 2021, 6, 11015-11024.	3.5	21
1119	High strength, low flammability, and smoke suppression for epoxy thermoset enabled by a low-loading phosphorus-nitrogen-silicon compound. Composites Part B: Engineering, 2021, 211, 108640.	12.0	80
1120	Güç Tutuşurluk Apresinin Denim Kumaş Performans Özelliklerine Etkisinin Araştırılması. Northwes Medical Journal, 0, , 43-53.	stern 0.2	1
1121	Hardly Flammable Polyurethane Foams with 1,3-Pyrimidine Ring and Boron Atoms. Polymers, 2021, 13, 1603.	4.5	0
1122	Preparation of Flame-Retardant Polyurethane and Its Applications in the Leather Industry. Polymers, 2021, 13, 1730.	4.5	26

	CITATION R	EPORT	
#	Article	IF	CITATIONS
1123	Synthesis of a Flame Retardant for Epoxy Resins: Thermal Stability, Flame Retardancy, and Flame-Retardant Modes. International Polymer Processing, 2021, 36, 172-184.	0.5	1
1124	Kalsiyum floroborat sentezi, kinetik ve alev geciktirici özelliklerinin belirlenmesi. Journal of Boron, O, , .	0.0	0
1125	Muz Kabuğu Ekstraktının Pamuk ve Pamuk-Poliester Karışımlı Kumaşlarda Güç Tutuşurluğ İncelenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 2021, 24, 66	a Etkisinin 5-83.	1
1126	Triphenylphosphineâ€containing microcapsules fabricated from Pickering emulsions as a thermal latent curing accelerator for an epoxy/anhydride system. Polymer International, 2021, 70, 1680-1691.	3.1	6
1127	Synthesis of a bioâ€based piperazine phytate flame retardant for epoxy resin with improved flame retardancy and smoke suppression. Polymers for Advanced Technologies, 2021, 32, 4282-4295.	3.2	31
1128	Phytic acid: A bio-based flame retardant for cotton and wool fabrics. Industrial Crops and Products, 2021, 164, 113349.	5.2	129
1129	High-temperature shape memory photopolymer with intrinsic flame retardancy and record-high recovery stress. Applied Materials Today, 2021, 23, 101056.	4.3	18
1130	Eco-friendly and intrinsic nanogels for durable flame retardant and antibacterial properties. Chemical Engineering Journal, 2021, 415, 129008.	12.7	26
1131	Environmentally Friendly, High-Performance Fire Retardant Made from Cellulose and Graphite. Polymers, 2021, 13, 2400.	4.5	7
1132	Phosphorus Ester Containing Mesoporous Silica as Novel Highâ€Effective Flame Retardant in Polyurethane and Polyester Coatings. ChemistrySelect, 2021, 6, 6541-6547.	1.5	8
1133	A superhydrophobic and flame-retardant cotton fabric fabricated by an eco-friendly assembling method. Textile Reseach Journal, 2022, 92, 2873-2885.	2.2	5
1134	Clays as Inhibitors of Polyurethane Foams' Flammability. Materials, 2021, 14, 4826.	2.9	15
1135	Catalyst-free β-hydroxy phosphate ester exchange for robust fire-proof vitrimers. Chemical Engineering Journal, 2021, 417, 129132.	12.7	73
1136	Recent progress in bioâ€based eugenol resins: From synthetic strategies to structural properties and coating applications. Journal of Applied Polymer Science, 2022, 139, 51532.	2.6	15
1137	Synergy between piperazine pyrophosphate and aluminum diethylphosphinate in flame retarded acrylonitrile-butadiene-styrene copolymer. Polymer Degradation and Stability, 2021, 190, 109639.	5.8	20
1138	Eugenol, a Promising Building Block for Biobased Polymers with Cutting-Edge Properties. Biomacromolecules, 2021, 22, 3625-3648.	5.4	39
1139	Elastin-Derived Peptides in the Central Nervous System: Friend or Foe. Cellular and Molecular Neurobiology, 2022, 42, 2473-2487.	3.3	18
1140	A Review on Synthesis, Structural, Flame Retardancy and Dielectric Properties of Hexasubstituted Cyclotriphosphazene. Polymers, 2021, 13, 2916.	4.5	15

#	Article	IF	CITATIONS
1141	Bio-based materials for fire-retardant application in construction products: a review. Journal of Thermal Analysis and Calorimetry, 2022, 147, 6563-6582.	3.6	11
1142	Effect of functional groups of magnolol-based cyclic phosphonate on structure and properties of flame retardant epoxy resin. Polymer Degradation and Stability, 2021, 190, 109630.	5.8	31
1143	Synthesis of phosphate and silane-based conjugated polymers derived from bis-azomethine: Photophysical and thermal characterization. Reactive and Functional Polymers, 2021, 166, 104978.	4.1	4
1144	A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. International Journal of Biological Macromolecules, 2021, 186, 1003-1166.	7.5	30
1145	Transparent, flameâ€retarded, selfâ€healable, mechanically strong polyurethane elastomers: Enabled by the synthesis of phosphorus/nitrogenâ€containing oxime chainâ€extender. Journal of Applied Polymer Science, 2022, 139, 51598.	2.6	10
1146	High-Temperature-Performance Cyanate Ester Composites with Carboranes. Macromolecules, 2021, 54, 9155-9164.	4.8	17
1147	Flame-retarded polyurethane foam conferred by a bio-based nitrogen‑phosphorus-containing flame retardant. Reactive and Functional Polymers, 2021, 168, 105057.	4.1	31
1148	Introductory Chapter: Flame Retardant and Thermally Insulating Polymers. , 0, , .		3
1149	Flame retardant effect of boron compounds in polymeric materials. Composites Part B: Engineering, 2021, 222, 109088.	12.0	100
1150	Towards the Development of Green Flame Retardancy by Polybenzoxazines. Progress in Polymer Science, 2021, 121, 101435.	24.7	62
1151	Light stabilizer and diazo passivation of black phosphorus nanosheets: Covalent functionalization endows air stability and flame retadancy enhancements. Chemical Engineering Journal, 2021, 425, 131532.	12.7	22
1152	Recent advances in graphene sheets as new generation of flame retardant materials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 274, 115460.	3.5	80
1153	Constructing segregated polystyrene composites for excellent fire resistance and electromagnetic wave shielding. Journal of Colloid and Interface Science, 2022, 606, 1193-1204.	9.4	35
1154	Insight on how biopolymers recovered from aerobic granular wastewater sludge can reduce the flammability of synthetic polymers. Science of the Total Environment, 2022, 805, 150434.	8.0	9
1155	Polymer-graphene composites as flame and fire retardant materials. , 2022, , 743-776.		0
1156	Nitrogen-based green flame retardants for bio-polyurethanes. , 2021, , 469-497.		4
1158	Straw/Nano-Additive Hybrids as Functional Fillers for Natural Rubber Biocomposites. Materials, 2021, 14, 321.	2.9	12
1159	Isothermal Kinetics of Epoxyphosphazene Cure. Polymers, 2021, 13, 297.	4.5	3

	Сітатіс	CITATION REPORT	
# 1160	ARTICLE Novel 3D-networked melamine–naphthalene–polyamic acid nanofillers doped in vinyl ester resin for higher flame retardancy. Materials Advances, 2021, 2, 4339-4351.	IF 5.4	Citations
1161	Decarboxylative C(sp ³)–N Cross-Coupling of Diacyl Peroxides with Nitrogen Nucleophiles. Organic Letters, 2021, 23, 1000-1004.	4.6	20
1162	Synthesis and Application of Arylaminophosphazene as a Flame Retardant and Catalyst for the Polymerization of Benzoxazines. Polymers, 2021, 13, 263.	4.5	8
1163	Multifunctional Polymer Composites: Self-Healing, Shape Memory, 3D Printing, and Flame Retardancy. , 2021, , .		0
1166	Fire-Retardant Mechanisms in Polymer Nano-Composite Materials. , 2007, , 87-108.		7
1167	Carborane Polymers. , 2014, , 1-5.		1
1168	Flame Retardants: Additives in Plastic Technology. , 2017, , 1-27.		3
1169	A novel high-molecular-weight flame retardant for cotton fabrics. Cellulose, 2020, 27, 3501-3515.	4.9	33
1170	Flame retardancy of a novel high transparent poly(methyl methacrylate) modified with phosphorus-containing compound. Reactive and Functional Polymers, 2020, 153, 104631.	4.1	16
1171	Phosphorus-containing polymers synthesised <i>via</i> nitroxide-mediated polymerisation and their grafting on chitosan by <i>grafting to</i> and <i>grafting from</i> approaches. Polymer Chemistry, 2020, 11, 4133-4142.	3.9	17
1172	Flame Retardant and Water Repellent Finishing on Cotton Fabrics through a Continuous Layer by Layer Self-Assembly Technology. Hans Journal of Chemical Engineering and Technology, 2016, 06, 17-24.	0.0	1
1173	Polyetherimide powders as material alternatives for selective laser-sintering components for aerospace applications. Journal of Materials Research, 2020, 35, 3222-3234.	2.6	6
1174	DFT study on thermochemistry of the combustion of self-extinguishing epoxy-amine composites modified by copper(II) sulfate. Voprosy Khimii I Khimicheskoi Tekhnologii, 2018, , 42-48.	0.4	2
1175	Effect of Cyclotriphosphazene-Based Curing Agents on the Flame Resistance of Epoxy Resins. Polymers, 2021, 13, 8.	4.5	10
1176	Polymer/Layered Compound Nanocomposites: a Way to Improve Fire Safety of Polymeric Materials. Fire Safety Science, 2014, 11, 66-82.	0.3	6
1177	Flame retardant polyurethanes based on novel phosphonamidate additives. Fire Safety Science, 2014, 11, 821-831.	0.3	9
1178	Optimization and Characterization of Nano Aluminum Trihydrate-Based Flame-Retardant Materials in the Rotating Packed Bed Reactor. Materials Sciences and Applications, 2018, 09, 1036-1056.	0.4	3
1179	Performance of a Novel Sulfonate Flame Retardant Based on Adamantane for Polycarbonate. Porrime, 2013, 37, 437-441.	0.2	8

#	ARTICLE	IF	CITATIONS
1180	RETARDANT FOR CELLULOSIC FABRICS. Cellulose Chemistry and Technology, 2021, 55, 893-900.	1.2 2.2	8
1182	From herbicide to flame retardant: The lamellar-like phosphorus-bridged amitrole toward high fire safety epoxy resin with light smoke and low toxicity. Chemosphere, 2022, 291, 132704.	8.2	21
1183	Synthesis of a Cyclophosphazene Derivative Containing Multiple Cyano Groups for Electron-Beam Irradiated Flame-Retardant Materials. Polymers, 2021, 13, 3460.	4.5	2
1184	Novel Polyimide-block-poly(dimethyl siloxane) copolymers: Effect of time on the synthesis and thermal properties. High Performance Polymers, 0, , 095400832110404.	1.8	1
1185	The effect of boric acid on flame retardancy of intumescent flame retardant polypropylene composites including nanoclay. Journal of Thermoplastic Composite Materials, 2023, 36, 1187-1214.	4.2	15
1186	Supercritical fluid flame-retardant processing of polyethylene terephthalate (PET) fiber treated with 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO): Changes in physical properties and flame-retardant performance. Journal of CO2 Utilization, 2021, 54, 101761.	6.8	6
1188	Radical Addition Reaction of Phosphorous based Flame Retardant with End Groups of PET (1) - Reaction of Bisphenol A bis(diphenyl phosphate) Textile Coloration and Finishing, 2012, 24, 33-38.	0.0	4
1189	Radical Addition Reaction of Phosphorous based Flame Retardant with End Groups of PET (2) - Reaction of Resorcinol bis(diphenyl phosphate) Textile Coloration and Finishing, 2012, 24, 39-44.	0.0	1
1190	Using of Some Inorganic Additives as Flame Retardants for Some Polymers; a Comparison Study. Journal of Al-Nahrain University-Science, 2013, 16, 8-17.	0.1	Ο
1191	ABS Based Nanocomposites. , 2014, , 177-203.		1
1192	Flame Retardant Polyurethanes and their Applications for the Improvement in Properties of Conventional Castor Oil Based Polyurethane. Material Science Research India, 2014, 11, 159-167.	0.7	1
1193	Thermal Properties. Engineering Materials and Processes, 2016, , 161-184.	0.4	0
1194	Polymeric Matrix Materials. , 2016, , 111-152.		Ο
1195	Improvement of Flame Retardancy of Polycarbonate with Ionic Liquid Addition. Textile Science and Engineering, 2016, 53, 442-448.	0.4	1
1196	FLAME RETARDANT IMPREGNATION OF PET NONWOVEN WITH THERMAL INSULATION PROPERTIES MADE FROM RECYCLED MATERIALS. Inżynieria Ekologiczna, 2017, 18, 14-22.	0.2	Ο
1198	Synthesis and crystal structure of bis(1 <i>H</i> -benzo[<i>d</i>][1,2,3]triazole-l̂° <i>N</i> ²){2,2′-[<i>N</i> -(phenylphosphorylmet (1/1). Acta Crystallographica Section E: Crystallographic Communications, 2017, 73, 1704-1707.	hyk l ê ?s i>O	
1200	Highly Flame-Retardant Liquid Crystalline Polymers. , 2019, , 1-27.		0

#	Article	IF	CITATIONS
1201	Factors influencing the fire-resistance of epoxy compositions modified with epoxy-containing phosphazenes. Voprosy Materialovedeniya, 2019, , 159-168.	0.1	0
1202	Desarrollo de compuestos XLPE con retardantes de llama de baja toxicidad para aislamiento de cables. Tecno Lógicas, 2019, 22, 73-90.	0.3	0
1203	Improved thermally stable oligoetherols from 6-aminouracil, ethylene carbonate and boric acid. Open Chemistry, 2019, 17, 1080-1086.	1.9	1
1204	Role of Flame-Retardants as EDCs in Metabolic Disorders. Emerging Contaminants and Associated Treatment Technologies, 2021, , 221-238.	0.7	0
1205	Fabrication of starch-based multi-source integrated halogen-free flame retardant in improving the fire safety of polypropylene. Journal of Polymer Research, 2021, 28, 1.	2.4	7
1206	Advanced Physical Applications of Modified Cotton. Textile Science and Clothing Technology, 2020, , 433-472.	0.5	2
1207	Fireproof Capability of Rigid Polyurethane Foam Based Composite Materials. , 2020, , 113-147.		0
1208	Insights into Phosphorus-Containing Flame Retardants and Their Textile Applications. Textile Science and Clothing Technology, 2020, , 231-255.	0.5	1
1209	Fabrication of an novel <scp>NiCo</scp> â€based bimetallic hydroxide encapsulated with polyphosphazene with simultaneously improved the flame retardancy and smoke suppression for polypropylene. Journal of Applied Polymer Science, 2022, 139, .	2.6	2
1210	Highly efficient intumescent flame retardant coating for ABS : Preparation and application. Journal of Applied Polymer Science, 0, , 51860.	2.6	9
1211	Non-combustible, optically transparent polycarbonate compositions. Plasticheskie Massy: Sintez Svojstva Pererabotka Primenenie, 2020, , 28-30.	0.3	0
1212	Synthesis, mechanical, and flammability properties of metal hydroxide reinforced polymer composites: A review. Polymer Engineering and Science, 2022, 62, 44-65.	3.1	20
1213	Synthesis of Zinc Fluoroborate by Wet Method and Its Application as a Flame Retardant for Cotton Fabrics. Journal of Engineering Research, 0, , .	0.7	0
1214	Advanced Flameâ€Retardant Methods for Polymeric Materials. Advanced Materials, 2022, 34, e2107905.	21.0	209
1215	Synthesis of fluorinated phosphorus-containing copolymers and their immobilization and properties on stainless steel. RSC Advances, 2021, 11, 38189-38201.	3.6	4
1216	N-type polymer semiconductors incorporating para, meta, and ortho-carborane in the conjugated backbone. Polymer, 2022, 240, 124481.	3.8	6
1217	Preparation of EVA/Intumescent/Nano-Clay Composite with Flame Retardant Properties and Cross Laminated Timber (CLT) Application Technology. Journal of the Korean Wood Science and Technology, 2018, 46, 73-84.	3.0	11
1218	Evaluation of Mechanical Performance and Flame Retardant Characteristics of Biomass-based EVA Composites using Intumescent Flame Retardant Technology. Journal of the Korean Wood Science and Technology, 2018, 46, 189-201.	3.0	3

#	ARTICLE	IF	CITATIONS
1219	Organophosphorus and Related Group 15 Polymers. , 2021, , .		1
1220	Burning Velocity Inhibition Effect Assessment with Mildly Flammable Refrigerant and Inert Gases on Difluoromethane. SSRN Electronic Journal, 0, , .	0.4	Ο
1221	The effects of aluminum and silicon phosphates on thermal stability and flammability of polystyrene. Journal of Chemical Sciences, 2022, 134, 1.	1.5	1
1222	A Furan-based Phosphaphenanthrene-containing Derivative as a Highly Efficient Flame-retardant Agent for Epoxy Thermosets without Deteriorating Thermomechanical Performances. Chinese Journal of Polymer Science (English Edition), 2022, 40, 233-240.	3.8	16
1223	Tailoring nano-fibrillated polystyrene composite with enhanced fire retarding properties for foam applications. Materials and Design, 2022, 214, 110419.	7.0	13
1224	Effect of sulfide group on the network structure and thermal behavior of sulfur-containing polybenzoxazines: Examining by using Py-GC–MS and TGA-FTIR. Polymer Degradation and Stability, 2022, 196, 109829.	5.8	4
1225	Dispersion of flameâ€retardant powdered phosphorylated kraft pulp fibers in polyester resin and their effect on the flammability of glassâ€reinforced composites. Journal of Applied Polymer Science, 2022, 139, .	2.6	2
1226	Preparation and Purification of a Flame-Retardant Polyphenylphosphonate Containing 4,4'-Dihydroxybenzophenone. Chemistry and Chemical Technology, 2022, 16, 95-102.	1.1	0
1227	A Novel Phosphorus-Containing Pyrazolyl Derivative as a Flame-Retardant Curing Agent for Epoxy Resins with Excellent Flame Retardance, High Transparency and Enhanced Toughness. SSRN Electronic Journal, 0, , .	0.4	0
1228	Evaluation of gas phase: Mechanisms and analyses. , 2022, , 117-159.		0
1229	Synthesis of aluminum alkylphosphinates under atmospheric pressure. Journal of Chemical Research, 2022, 46, 174751982110732.	1.3	0
1230	Synthesis of PMMA Fibers Incorporated with Mg-Al-LDH with Enhanced Flame Retardant Property via Electrospinning Technology. Fibers and Polymers, 2022, 23, 377-385.	2.1	3
1231	Green P–N coating by mechanochemistry: efficient flame retardant for cotton fabric. Cellulose, 2022, 29, 2711-2729.	4.9	25
1232	Synthesis and characterization of polybenzoxazine/silicaâ€based hybrid nanostructures for flame retardancy applications. Polymer Engineering and Science, 2022, 62, 1386-1398.	3.1	7
1233	Construction of hetero-structured nanohybrid relying on reactive phosphazene towards flame retardation and mechanical enhancement of epoxy resins. European Polymer Journal, 2022, 167, 111075.	5.4	23
1234	Poly(ester imide)s with low coefficients of thermal expansion (<scp>CTEs</scp>) and low water absorption (<scp>VI</scp>): an attempt to reduce the modulus while maintaining low <scp>CTEs</scp> and other desired properties. Polymer International, 2022, 71, 1164-1175.	3.1	3
1235	On the Fundamental Polymer Chemistry of Inverse Vulcanization for Statistical and Segmented Copolymers from Elemental Sulfur. Chemistry - A European Journal, 2022, 28, .	3.3	8
1236	An investigation of polyphosphinoboranes as flame-retardant materials. Polymer, 2022, 247, 124795.	3.8	10

#	Article	IF	Citations
1237	Strong and Flame-Resistant Thermoplastic Polymer Adhesives Based on Multiple Hydrogen Bonding Interactions. ACS Applied Polymer Materials, 2022, 4, 3520-3531.	4.4	7
1238	Facile fabrication of intrinsically fire-safety epoxy resin cured with phosphorus-containing transition metal complexes for flame retardation, smoke suppression, and latent curing behavior. Chemical Engineering Journal, 2022, 442, 136097.	12.7	32
1239	Research on Flame Retardant Plywood with Different Flame Retardants. Journal of the Korean Wood Science and Technology, 2021, 49, 667-678.	3.0	4
1240	Modification of Glass/Polyester Laminates with Flame Retardants. Materials, 2021, 14, 7901.	2.9	9
1241	INVESTIGATION OF THE EFFECT OF BORON NITRIDE AND COLEMANITE ON THE PROPERTIES OF POLYVINYL CHLORIDE. Konya Journal of Engineering Sciences, 0, 9, 224-232.	0.3	1
1242	Development and Evaluation of Fire Resistant Railway Signalling Cable. European Journal of Science and Technology, 0, , .	0.5	0
1243	Morphology of wood degradation and flame retardants wood coating technology: an overview. International Wood Products Journal, 2022, 13, 21-40.	1.1	10
1244	Mechanical, viscoelastic, and flammability properties of polymer composites reinforced with novel Sirisha bark filler. Journal of Industrial Textiles, 2022, 51, 5887S-5909S.	2.4	3
1245	Functionalized lignin nanoparticles for producing mechanically strong and tough flame-retardant polyurethane elastomers. International Journal of Biological Macromolecules, 2022, 209, 1339-1351.	7.5	20
1246	UV curable, flame retardant, and pressure-sensitive adhesives with two-way shape memory effect. Polymer, 2022, 249, 124835.	3.8	11
1247	Durable macromolecular firefighting for unsaturated polyester via integrating synergistic charring and hydrogen bond. Chemical Engineering Journal, 2022, 443, 136365.	12.7	27
1249	Review of the use of solid wood as an external cladding material in the built environment. Journal of Materials Science, 2022, 57, 9031-9076.	3.7	18
1250	Green flame-retardant flexible polyurethane foam based on polyphenol-iron-phytic acid network to improve the fire safety. Composites Part B: Engineering, 2022, 239, 109958.	12.0	55
1251	Flame retardancy and chemical degradation of epoxy containing phenylphosphonate group under mild conditions. Composites Part B: Engineering, 2022, 239, 109967.	12.0	21
1252	Flame retardancy of linear polyurethane with Dielsâ \in Alder adducts. Polymer Bulletin, 0, , .	3.3	2
1253	A Strategy to Achieve the Inherently Flame-retardant PA56 by Copolymerization with DDP. Journal of Polymers and the Environment, 2022, 30, 3802-3814.	5.0	6
1254	Polyimide Copolymers and Nanocomposites: A Review of the Synergistic Effects of the Constituents on the Fire-Retardancy Behavior. Energies, 2022, 15, 4014.	3.1	7
1255	Recent Developments in Green Flame Retardants Based on Carbon Nanotubes. ACS Symposium Series, 0, , 47-63.	0.5	2

#	Article	IF	CITATIONS
1256	Highly Flame-Retardant Polyurethane. ACS Symposium Series, 0, , 103-124.	0.5	0
1257	Cone Calorimetry in Fire-Resistant Materials. , 0, , .		0
1258	Preparations, characterizations, thermal and flame retardant properties of cotton fabrics finished by boron-silica sol-gel coatings. Polymer Degradation and Stability, 2022, 202, 110011.	5.8	11
1259	Multifunctional thermoset polymers with self-healing ability. , 2022, , 457-482.		0
1260	A review of the recent developments in flame-retardant nylon composites. Composites Part C: Open Access, 2022, 9, 100297.	3.2	6
1261	Introduction to flame retardants for polymeric materials. , 2022, , 1-27.		4
1262	Meyan Kökü Ekstraktının Pamuk ve Pamuk-Poliester Karışımlı Kumaşlarda Güç Tutuşurluğa İncelenmesi. Northwestern Medical Journal, 0, , 351-366.	i Etkisinin 0.2	0
1263	Flame-retardant synergistic effect of hydroquinone bis(diphenyl phosphate) and tris(2-hydroxyethyl) isocyanurate on epoxy resin. Polymer Bulletin, 0, , .	3.3	2
1264	Oneâ€step flame retardant/hydrophobic finishing on cotton fabric with <scp>ammonium salt of hexamethylenediamine ―N, N, N′, N′ ―tetra (methylphosphonic acid)</scp> doped silica sol. Journal of Applied Polymer Science, 2022, 139, .	2.6	2
1265	Flammability inhibition effect assessment with mildly flammable refrigerant and inert gases on difluoromethane. International Journal of Refrigeration, 2022, 144, 26-33.	3.4	5
1266	Application analysis of two flame retardant polymer materials. , 0, 13, 183-189.		0
1267	Ecoâ€friendly flame retardant epoxy nanocomposites based on polyphosphonate and halloysite nanotubes. Journal of Vinyl and Additive Technology, 2023, 29, 29-40.	3.4	7
1268	Multifunctional PA6 composites using waste glass fiber and green metal organic framework/graphene hybrids. Polymer Composites, 2022, 43, 5877-5893.	4.6	14
1269	Synergistic effect of DOPO and VMDMS for flame retardancy of alkyd resins. Progress in Organic Coatings, 2022, 172, 107086.	3.9	1
1270	Effects of Phosphorus and Boron Compounds on Thermal Stability and Flame Retardancy Properties of Epoxy Composites. Polymers, 2022, 14, 4005.	4.5	9
1271	Fire safety performance of 3D GFRP nanocomposite as a cladding material. Fire Safety Journal, 2022, 133, 103670.	3.1	2
1272	Fabrication of anti-dripping and flame-retardant polylactide modified with chitosan derivative/aluminum hypophosphite. Carbohydrate Polymers, 2022, 298, 120141.	10.2	33
1273	P–N-modified starch: A polymeric flame retardant for wood-based materials. , 2022, , 339-368.		0

# 1274	ARTICLE Advances in alginate-based flame-retardant polymeric materials. , 2022, , 299-327.	IF	CITATIONS 0
1275	Tributylphosphine-catalyzed aziridine-based cycloaddition polymerization toward thiacyclic polymers. Polymer Chemistry, 2022, 13, 4809-4816.	3.9	6
1276	Perspectives and challenges in using bio-based flame retardants. , 2022, , 451-466.		0
1277	Flame Retardant Strategies and the Physical Barrier Effect of Nanoparticles to Improve the Thermal Performance of a Polymer. Theoretical Foundations of Chemical Engineering, 2022, 56, 545-553.	0.7	2
1278	Zınc Borate-Containing GFRP Production and Examination of Mechanical and Chemical Properties. European Journal of Science and Technology, 0, , .	0.5	0
1279	A novel bioâ€based, flame retardant and latent imidazole compound—Its synthesis and uses as curing agent for epoxy resins. Journal of Applied Polymer Science, 2022, 139, .	2.6	6
1280	A silicone diphenylsulfonate for improving the flame retardancy of polycarbonate. Journal of Applied Polymer Science, 0, , .	2.6	0
1281	Recent Advances on Early-Stage Fire-Warning Systems: Mechanism, Performance, and Perspective. Nano-Micro Letters, 2022, 14, .	27.0	22
1282	Phosphazene-Containing Epoxy Resins Based on Bisphenol F with Enhanced Heat Resistance and Mechanical Properties: Synthesis and Properties. Polymers, 2022, 14, 4547.	4.5	2
1283	<scp>Multiâ€crosslinked</scp> , ecofriendly <scp>flameâ€retardant starchâ€based</scp> composite aerogels with high <scp>compressionâ€resistance</scp> . Polymer Engineering and Science, 2023, 63, 154-166.	3.1	3
1284	Synergistic Function between Phosphorus-Containing Flame Retardant and Multi-Walled Carbon Nanotubes towards Fire Safe Polystyrene Composites with Enhanced Electromagnetic Interference Shielding. International Journal of Molecular Sciences, 2022, 23, 13434.	4.1	7
1285	Synergistic effect of organically modified sepiolite clay in intumescent flame retardant polyolefin elastomer-based cable outer sheath compounds. Iranian Polymer Journal (English Edition), 2023, 32, 93-102.	2.4	3
1286	DOPO-BASED FLAME RETARDANT: PREPARATION AND ITS APPLICATION IN SILICONE RUBBER BLENDS. Rubber Chemistry and Technology, 2022, , .	1.2	0
1287	Tannic acid as cross-linker and flame retardant for preparation of flame-retardant polyurethane elastomers. Reactive and Functional Polymers, 2022, 181, 105454.	4.1	10
1288	Phosphorus grafted chitosan functionalized graphene oxide-based nanocomposite as a novel flame-retardant material for textile and wood. Reaction Chemistry and Engineering, 2023, 8, 804-814.	3.7	4
1289	Design, Synthesis and Actual Applications of the Polymers Containing Acidic P–OH Fragments: Part 1. Polyphosphodiesters. International Journal of Molecular Sciences, 2022, 23, 14857.	4.1	3
1290	Construction of Nanomaterials Based on Molybdenum Disulfide Decorated onto a Metal–Organic Framework (UiO-66) to Improve the Fire Retardancy of Epoxy. ACS Applied Nano Materials, 2022, 5, 17731-17740.	5.0	2
1291	Preparation and Characterisation of UV-Curable Flame Retardant Wood Coating Containing a Phosphorus Acrylate Monomer. Coatings, 2022, 12, 1850.	2.6	5

#	Article	IF	CITATIONS
1292	Emerging trends in flame retardancy of rigid polyurethane foam and its composites: A review. Journal of Cellular Plastics, 2023, 59, 65-122.	2.4	10
1293	A Review on Fire Research of Electric Power Grids of China: State-Of-The-Art and New Insights. Fire Technology, 0, , .	3.0	1
1294	Electrospun Nanofibers Based on Polymer Blends with Tunable High-Performance Properties for Innovative Fire-Resistant Materials. Polymers, 2022, 14, 5501.	4.5	0
1295	Closedâ€Loop Recyclable Highâ€Performance Polyimine Aerogels Derived from Bioâ€Based Resources. Advanced Materials, 2023, 35, .	21.0	15
1296	Flame retardancy, smoke suppression and enhancement properties of Enteromorpha based flame retardants on <scp>EPDM</scp> . Journal of Applied Polymer Science, 0, , .	2.6	1
1297	The Study of Enteromorpha-Based Reinforcing-Type Flame Retardant on Flame Retardancy and Smoke Suppression of EPDM. Polymers, 2023, 15, 55.	4.5	0
1298	N-Containing Hybrid Composites Coatings for Enhanced Fire-Retardant Properties of Cotton Fabric Using One-Pot Sol–Gel Process. Polymers, 2023, 15, 258.	4.5	2
1299	Study on the thermal behaviors of polyhedral oligomeric octaphenylsilsesquioxane (OPS). Journal of Thermal Analysis and Calorimetry, 2023, 148, 2345-2355.	3.6	5
1300	Flame-retardant finishing of cotton fabrics using DOPO functionalized alkoxy- and amido alkoxysilane. Cellulose, 2023, 30, 2627-2652.	4.9	16
1301	Design, Synthesis and Actual Applications of the Polymers Containing Acidic P–OH Fragments: Part 2—Sidechain Phosphorus-Containing Polyacids. International Journal of Molecular Sciences, 2023, 24, 1613.	4.1	3
1302	A flame retardant containing dicyandiamide and aluminum hypophosphite for polyethylene. Case Studies in Construction Materials, 2023, 18, e01797.	1.7	0
1303	Flame Retardants: Additives in Plastic Technology. , 2016, , 1-27.		0
1304	Flame-Retardant Foamed Material Based on Modified Corn Straw Using Two Nitrogenous Layers. Materials, 2023, 16, 952.	2.9	2
1305	Research and Application of Biomass-Based Wood Flame Retardants: A Review. Polymers, 2023, 15, 950.	4.5	4
1306	A review on the state of flame-retardant cotton fabric: Mechanisms and applications. Industrial Crops and Products, 2023, 194, 116264.	5.2	23
1307	Synthesis of a vanillin-derived bisDOPO co-curing agent rendering epoxy thermosets simultaneously improved flame retardancy, mechanical strength and transparency. Polymer Degradation and Stability, 2023, 211, 110333.	5.8	12
1308	In-situ constructing nano ternary Ni-P-Cu alloy shell on the micro-aluminum surface: Enhancing its ignition and combustion performances. Fuel, 2023, 342, 127874.	6.4	5
1309	Non-halogenated UV-curable flame retardants for wood coating applications: Review. Progress in Organic Coatings, 2023, 179, 107549.	3.9	7
#	Article	IF	CITATIONS
------	--	------	-----------
1310	Synergistic effects of zeolitic imidazolate frameworks (ZIFs) with different transition metals on intumescent flame-retarded polypropylene composites: A comparative study. Journal of Materials Science and Technology, 2023, 155, 102-110.	10.7	10
1311	Polyvinyl alcohol/montmorillonite/magnesium diboride fibers with superior flame retardancy, strength, and flexibility. Chemical Engineering Journal, 2023, 462, 142261.	12.7	7
1312	Cross Network Composite Aerogel Towards Robust and Fireâ€Resist Thermal Insulation Material. Advanced Engineering Materials, 2023, 25, .	3.5	1
1313	Study on flame retardancy and thermal stability of rigid polyurethane foams modified by amino trimethylphosphonate cobalt and expandable graphite. International Polymer Processing, 2023, .	0.5	0
1314	Flexible and Self-Powered Thermal Sensor Based on Graphene-Modified Intumescent Flame-Retardant Coating with Hybridized Nanogenerators. ACS Applied Nano Materials, 2023, 6, 2429-2437.	5.0	4
1315	An amino trimethylene phosphonic acidâ€based chelated boric acid complex that works as a synergistic flame retardant for enhancing the flame retardancy of cotton fabrics. Journal of the Chinese Chemical Society, 2023, 70, 159-170.	1.4	1
1316	A comparison of <i>para</i> , <i>meta</i> , and <i>ortho</i> -carborane centred non-fullerene acceptors for organic solar cells. Journal of Materials Chemistry C, 2023, 11, 3989-3996.	5.5	5
1317	Flame Retardant Compounds Used in Epoxy Resins: Review. Yüzüncü Yıl üniversitesi Fen Bilimleri Enstitüsü Dergisi, 0, , .	0.3	0
1318	Atom-economic synthesis of an oligomeric P/N-containing fire retardant towards fire-retarding and mechanically robust polylactide biocomposites. Journal of Materials Science and Technology, 2023, 160, 86-95.	10.7	26
1319	Hyperbranched Phosphorus-Containing Benzoxazine for Epoxy Modification: Flame Retardant and Toughening Agent. Industrial & Engineering Chemistry Research, 2023, 62, 7262-7274.	3.7	5
1320	One-spot synthesis of a benzene-rich triazine-based hyperbranched charring agent and its efficient intumescent flame retardant performance for thermoplastic polyester elastomer. Arabian Journal of Chemistry, 2023, 16, 104861.	4.9	3
1321	Towards the Application of Purely Inorganic Icosahedral Boron Clusters in Emerging Nanomedicine. Molecules, 2023, 28, 4449.	3.8	3
1322	Triple Silicon, Phosphorous, and Nitrogen-Grafted Lignin-Based Flame Retardant and Its Vulcanization Promotion for Styrene Butadiene Rubber. ACS Omega, 2023, 8, 21549-21558.	3.5	2
1323	Effect of Functionalized Polyethylene Wax on the Melt Processing and Properties of Highly Filled Magnesium Hydroxide/Linear Low-Density Polyethylene Composites. Polymers, 2023, 15, 2575.	4.5	3
1324	Ultraviolet (UV) curable hybrid material based on palm oil: plasticization effect and flame retardancy. Polymers and Polymer Composites, 2023, 31, .	1.9	0
1325	Synthesis of solid reactive <scp>organophosphorusâ€nitrogen</scp> flame retardant and its application in epoxy resin. Journal of Applied Polymer Science, 2023, 140, .	2.6	2
1326	Progress in the preparation of phosphorus-containing polymers via phosphorus trichloride-free routes. European Polymer Journal, 2023, 195, 112242.	5.4	2
1327	Influence of hollow glass microsphere on flame retardancy of ethylene-vinyl acetate/9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide composites. Ferroelectrics, 2023, 610, 171-185.	0.6	1

#	Article	IF	CITATIONS
1328	An environment-friendly, fire-resistant, thermal-insulating and mechanical-robust wood with anisotropic capacitive pressure-sensitive performance. Materials Today Communications, 2023, 36, 106571.	1.9	1
1329	An eco-friendly B/P/N flame retardant for its fabrication of high-effective and durable flame-retardant cotton fabric. Cellulose, 2023, 30, 6621-6638.	4.9	5
1330	Preparation and Characterization of Transparent Polycarbonate with High Flame Retardancy and Smoke Suppression. ACS Applied Polymer Materials, 2023, 5, 6463-6471.	4.4	2
1331	High flame retardancy enabled by dual clays-based multilayer nanocomposites. Progress in Organic Coatings, 2023, 183, 107784.	3.9	2
1332	The rise of phosphate ester exchange in developing dynamic covalent networks: Advances and challenges. European Polymer Journal, 2023, 196, 112286.	5.4	1
1333	An Integrated Multi-Functional Thermal Conductive and Flame Retardant Epoxy Composite with Functionalized Carbon Nitride Nanosheets. Polymers, 2023, 15, 3143.	4.5	1
1334	Facile Strategy to Design a Cellulose Nanocrystal-Based Nanocomposite Fire Retardant with Strong Smoke Suppression Efficiency. ACS Sustainable Chemistry and Engineering, 2023, 11, 12983-12991.	6.7	4
1335	A nitrogenâ€rich <scp>DOPO</scp> â€based phosphoramide for improving the fire resistance of polycarbonate with comparable mechanical property. Journal of Applied Polymer Science, 2023, 140, .	2.6	1
1336	Photoinduced synthesis of C2-linked phosphine oxides <i>via</i> radical difunctionalization of acetylene. Green Chemistry, 2023, 25, 7253-7258.	9.0	1
1337	Enhancement of fire resistance and mechanical performance of polypropylene composites containing cellulose fibres and extracellular biopolymers from wastewater sludge. Polymer Testing, 2023, , 108185.	4.8	0
1338	How to Address Flame-Retardant Technology on Cotton Fabrics by Using Functional Inorganic Sol–Gel Precursors and Nanofillers: Flammability Insights, Research Advances, and Sustainability Challenges. Inorganics, 2023, 11, 306.	2.7	1
1339	A versatile, highly effective intumescent flame-retardant synergist for polypropylene and polyamide 6 composites. Composites Communications, 2023, 42, 101699.	6.3	3
1340	Analysis of mechanical and flameâ€retardant properties of flexible polyurethane foams. Journal of Applied Polymer Science, 2023, 140, .	2.6	1
1341	Polyolefin nanocomposites with polyelectrolyte coated redispersible nanoparticles produced continuously and massively via reactive flash nanoprecipitation. Polymer, 2023, 283, 126285.	3.8	0
1342	Phosphorus-based flame retardant acrylic pressure sensitive adhesives with superior peel strength and transfer characteristics. Progress in Organic Coatings, 2023, 185, 107931.	3.9	1
1343	Highly transparent and fire-safe polypropylene carbonate composites via guanidine phosphate hydrogen bonding complexation. Polymer Degradation and Stability, 2023, 218, 110548.	5.8	2
1344	The effects of a phosphorus/nitrogen-containing diphenol on the flammability, thermal stability, and mechanical properties of rigid polyurethane foam. Colloid and Polymer Science, 0, , .	2.1	2
1345	Development and performance analysis of flame-retardant polylactic acid elastic bands for thermal protective clothing. Journal of the Textile Institute, 0, , 1-9.	1.9	0

#	Article	IF	CITATIONS
1346	Modified Gallic Acids as Both Reactive Flame Retardants and Cross‣inkers for the Fabrication of Flameâ€Retardant Polyurethane Elastomers. ChemistrySelect, 2023, 8, .	1.5	1
1347	Flame Retardancy of Textiles—New Strategies and Mechanisms. Advanced Structured Materials, 2023, , 279-317.	0.5	0
1348	Enhanced safety and strength of cotton fabrics through a novel â€~H-shaped' multiple flame retardant elements agent. International Journal of Biological Macromolecules, 2024, 256, 128457.	7.5	0
1349	Morphology-manipulated aluminum diethylphosphinate and flame-retardant properties in thermoplastic polyurethane. Journal of Polymer Research, 2023, 30, .	2.4	1
1350	Green Synthesis of Inorganic Fire Retardants. , 2023, , 218-294.		0
1351	Eco-friendly fire-retardant finishing of cotton fabric with mixture of ammonium sulfamate and sodium Stannate with and without zinc acetate as external reagent. Cellulose, 2023, 30, 11813-11828.	4.9	0
1353	Novel rich aromatic and phosphorus-containing compound cured epoxy resins toward outstanding comprehensive performances. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 683, 133008.	4.7	0
1354	Preparation and Application of Renewable Intrinsically Flame-retardant Epoxy Resins from Plant Oils. , 2023, , 109-134.		0
1356	Fire-safe polymer electrolyte strategies for lithium batteries. Energy Storage Materials, 2024, 66, 103174.	18.0	0
1357	Cyclotriphosphazene based materials: Structure, functionalization and applications. Progress in Materials Science, 2024, 142, 101232.	32.8	1
1358	Construction of polylactic acid-based flame retardant composites by zinc oxide and bamboo carbon. Carbon Letters, 2024, 34, 665-675.	5.9	0
1360	The Recent Advances of Polymer–POSS Nanocomposites With Low Dielectric Constant. Macromolecular Rapid Communications, 2024, 45, .	3.9	0
1362	Synthesis and Characterization of DOPO-Containing Poly(2,6-dimethyl-1,4-phenylene oxide)s by Oxidative Coupling Polymerization. Polymers, 2024, 16, 303.	4.5	0
1363	Advances in Novel Flame-Retardant Technologies for Fire-Safe Polymeric Materials. Molecules, 2024, 29, 573.	3.8	0
1364	Improvement in fire resistance of glulam beams containing modified laminae by thermal treatment, inorganic impregnation and compression in the fire-side tension zone. Construction and Building Materials, 2024, 416, 135138.	7.2	0
1365	A Systematic Investigation on the Effect of Carbon Nanotubes and Carbon Black on the Mechanical and Flame Retardancy Properties of Polyolefin Blends. Polymers, 2024, 16, 417.	4.5	0
1366	Flame retardant properties of polymer nanocomposites based on new layered structure nanoparticles. , 2024, , 117-158.		0
1367	Flame Retardant Additives Used for Polyurea-Based Elastomers—A Review. Fire, 2024, 7, 50.	2.8	0

CITATION REPORT

ARTICLE IF CITATIONS Post-modification of polyoxanorbornene via sequential "click―reactions for the preparation of flame 1368 5.4 0 retardant polymers. Európean Polymer Journal, 2024, 207, 112845. Flame-Retardant GF-PSB/DOPO-POSS Composite with Low Dk/Df and High Thermal Stability for High-Frequency Copper Clad Applications. Polymers, 2024, 16, 544. 4.5 Synergistic Modification of Polyformaldehyde by Biobased Calcium Magnesium Bi-Ionic Melamine 1370 4.5 0 Phytate with Intumescent Flame Retardant. Polymers, 2024, 16, 614. The Flame Retardant and Mechanical Properties of the Epoxy Modified by an Efficient DOPO-Based 1371 Flame Retardant. Polymers, 2024, 16, 63¹. Synthesis of Phosphorusâ€"Sulfur-Containing Polyols for Intrinsic Flame Retardant Flexible Polyurethane Foams with Enhanced Mechanical Properties. ACS Applied Polymer Materials, 2024, 6, 1372 4.4 0 2924-2932. Dynamically bonded cellulose nanocrystal hydrogels: Structure, rheology and fire prevention performance. Carbohydrate Polymers, 2024, 334, 122013. 10.2 Aerogelâ€Toâ€Solâ€Toâ€Aerogel (ASA) Process for Recycling, Repairing, Reprogramming of Highâ€Performance 1374 14.9 0 Organic Aerogels. Advanced Functional Materials, 0, , . Fire-Retarding Asphalt Pavement for Urban Road Tunnels: A State-of-the-Art Review and Beyond. Fire Technology, Ö, , . Preparation of multifunctional flame-retardant and superhydrophobic composite wood by iron ions 1376 7.2 0 doped phytic acid-based nanosheets. Construction and Building Materials, 2024, 422, 135854. Synthesis of novel nitrogenâ€phosphorus flame retardants and their flameproof to flammable 1377 polymers. , 2023, 61, 101-108.

CITATION REPORT