Complete genome sequence of the model actinomycete

Nature

417, 141-147

DOI: 10.1038/417141a

Citation Report

#	Article	IF	CITATIONS
1	Assembling the glycopeptide antibiotic scaffold: The biosynthesis of from Streptomyces toyocaensis NRRL15009. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8962-8967.	3.3	174
2	Molecular Evolution of Aromatic Polyketides and Comparative Sequence Analysis of Polyketide Ketosynthase and 16S Ribosomal DNA Genes from Various Streptomyces Species. Applied and Environmental Microbiology, 2002, 68, 4472-4479.	1.4	126
3	Identification and Localization of the Gene Cluster Encoding Biosynthesis of the Antitumor Macrolactam Leinamycin in Streptomyces atroolivaceus S-140. Journal of Bacteriology, 2002, 184, 7013-7024.	1.0	86
4	The Streptomyces Genome Contains Multiple Pseudo- attB Sites for the φC31-Encoded Site-Specific Recombination System. Journal of Bacteriology, 2002, 184, 5746-5752.	1.0	126
5	Mutants of Streptomyces clavuligerus with Disruptions in Different Genes for Clavulanic Acid Biosynthesis Produce Large Amounts of Holomycin: Possible Cross-Regulation of Two Unrelated Secondary Metabolic Pathways. Journal of Bacteriology, 2002, 184, 6559-6565.	1.0	54
6	Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology (United) Tj ETQq1 1	0,78431	4 rgBT /Overk
7	Azole antifungals are potent inhibitors of cytochrome P450 mono-oxygenases and bacterial growth in mycobacteria and streptomycetes. Microbiology (United Kingdom), 2002, 148, 2937-2949.	0.7	162
8	Streptomyces coelicolor A3(2): from genome sequence to function. Methods in Microbiology, 2002, 33, 321-336.	0.4	5
9	攳¼ç·šèŒ. Kagaku To Seibutsu, 2002, 40, 694-700.	0.0	0
10	生物活性物賳探索資æºã•ã•—ã┥ã®çœŸèŒé¡žã®å^©ç"¨. Kagaku To Seibutsu, 2002, 40, 757-764.	0.0	1
10	生物活性物賳探索資æ°ã°ã⊷ã∤ã®çœŸèŒé¡žã®å^©ç"¨. Kagaku To Seibutsu, 2002, 40, 757-764. Genome of antibiotic-producing Streptomycesrevealed. Genome Biology, 2002, 3, 1.	0.0 3.8	7
			7
11	Genome of antibiotic-producing Streptomycesrevealed. Genome Biology, 2002, 3, 1.	3.8	7
11	Genome of antibiotic-producing Streptomycesrevealed. Genome Biology, 2002, 3, 1. Streptomyces coelicolor genome. Genome Biology, 2002, 3, spotlight-20020509-01. Microbial technologies for the discovery of novel bioactive metabolites. Journal of Biotechnology,	3.8	7
11 12 13	Genome of antibiotic-producing Streptomycesrevealed. Genome Biology, 2002, 3, 1. Streptomyces coelicolor genome. Genome Biology, 2002, 3, spotlight-20020509-01. Microbial technologies for the discovery of novel bioactive metabolites. Journal of Biotechnology, 2002, 99, 187-198. Plant-like Biosynthetic Pathways in Bacteria:Â From Benzoic Acid to Chalcone1. Journal of Natural	3.8 13.9 1.9	7 0 125
11 12 13	Genome of antibiotic-producing Streptomycesrevealed. Genome Biology, 2002, 3, 1. Streptomyces coelicolor genome. Genome Biology, 2002, 3, spotlight-20020509-01. Microbial technologies for the discovery of novel bioactive metabolites. Journal of Biotechnology, 2002, 99, 187-198. Plant-like Biosynthetic Pathways in Bacteria:Â From Benzoic Acid to Chalcone1. Journal of Natural Products, 2002, 65, 1956-1962.	3.8 13.9 1.9	7 0 125 111
11 12 13 14	Genome of antibiotic-producing Streptomycesrevealed. Genome Biology, 2002, 3, 1. Streptomyces coelicolor genome. Genome Biology, 2002, 3, spotlight-20020509-01. Microbial technologies for the discovery of novel bioactive metabolites. Journal of Biotechnology, 2002, 99, 187-198. Plant-like Biosynthetic Pathways in Bacteria:Â From Benzoic Acid to Chalcone1. Journal of Natural Products, 2002, 65, 1956-1962. Asymmetric directional mutation pressures in bacteria. Genome Biology, 2002, 3, research0058.1. Principles of microbial alchemy: insights from the Streptomyces coelicolor genome sequence. Genome	3.8 13.9 1.9 1.5	7 0 125 111 147

#	Article	IF	CITATIONS
19	The evolution of developmental regulatory pathways. Current Opinion in Genetics and Development, 2002, 12, 695-700.	1.5	14
21	Once the circle has been broken: dynamics and evolution of Streptomyces chromosomes. Trends in Genetics, 2002, 18, 522-529.	2.9	123
22	Big Effects from Small Changes: Possible Ways to Explore Nature's Chemical Diversity. ChemBioChem, 2002, 3, 619.	1.3	968
23	Current Awareness on Comparative and Functional Genomics. Comparative and Functional Genomics, 2002, 3, 461-468.	2.0	O
25	Compounds isolated at the institute of microbiology in 1989–2001 and future trends. Folia Microbiologica, 2002, 47, 587-639.	1,1	3
26	Impact of the first Streptomyces genome sequence on the discovery and production of bioactive substances. Applied Microbiology and Biotechnology, 2002, 60, 377-380.	1.7	28
27	Streptomyces olivaceoviridis possesses a phosphotransferase system that mediates specific, phosphoenolpyruvate-dependent uptake of N-acetylglucosamine. Molecular Genetics and Genomics, 2002, 268, 344-351.	1.0	32
28	Structure, Biosynthetic Origin, and Engineered Biosynthesis of Calcium-Dependent Antibiotics from Streptomyces coelicolor. Chemistry and Biology, 2002, 9, 1175-1187.	6.2	256
29	The Albonoursin Gene Cluster of S. noursei. Chemistry and Biology, 2002, 9, 1355-1364.	6.2	133
30	Survival mechanisms for Streptomyces linear replicons after telomere damage. Molecular Microbiology, 2002, 45, 785-794.	1.2	21
31	The ParB protein of Streptomyces coelicolor A3(2) recognizes a cluster of parS sequences within the origin-proximal region of the linear chromosome. Molecular Microbiology, 2002, 45, 1365-1377.	1.2	89
32	Conjugative transposons: the tip of the iceberg. Molecular Microbiology, 2002, 46, 601-610.	1.2	382
33	Primary and secondary metabolism, and post-translational protein modifications, as portrayed by proteomic analysis of Streptomyces coelicolor. Molecular Microbiology, 2002, 46, 917-932.	1.2	125
34	A central regulator of morphological differentiation in the multicellular bacterium Streptomyces coelicolor. Molecular Microbiology, 2002, 46, 1223-1238.	1.2	68
35	Expression of aPhytophthora sojaenecrosis-inducing protein occurs during transition from biotrophy to necrotrophy. Plant Journal, 2002, 32, 361-373.	2.8	299
36	Cloning, expression and characterization of a gene encoding nitroalkane-oxidizing enzyme from Streptomyces ansochromogenes. FEBS Journal, 2002, 269, 6302-6307.	0.2	17
38	New Compounds By Combining "Modern―Genomics and "Old-Fashioned―Mutasynthesis. Chemistry an Biology, 2002, 9, 1163-1164.	d _{6.2}	24
39	Distribution and evolution of chitinase genes in Streptomyces species: involvement of gene-duplication and domain-deletion. Antonie Van Leeuwenhoek, 2003, 84, 7-15.	0.7	31

#	Article	IF	CITATIONS
40	The structure of ActVA-Orf6, a novel type of monooxygenase involved in actinorhodin biosynthesis. EMBO Journal, 2003, 22, 205-215.	3.5	150
41	A novel sensor of NADH/NAD+ redox poise in Streptomyces coelicolor A3(2). EMBO Journal, 2003, 22, 4856-4865.	3.5	214
42	Dietary Microbial Toxins and Type 1 Diabetes. Annals of the New York Academy of Sciences, 2003, 1005, 418-422.	1.8	48
43	Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14555-14561.	3.3	532
44	Spore-specific modification of DNA-dependent RNA polymerase α subunit in streptomycetes — a new model of transcription regulation. Folia Microbiologica, 2003, 48, 573-579.	1.1	1
45	Detection of Eubacterial 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductases from Natural Populations of Actinomycetes. Microbial Ecology, 2003, 46, 106-112.	1.4	19
46	Diversity of Actinoplanes and Related Genera Isolated from an Italian Soil. Microbial Ecology, 2003, 45, 362-372.	1.4	26
47	Diversifying microbial natural products for drug discovery. Applied Microbiology and Biotechnology, 2003, 62, 446-458.	1.7	165
48	Comparative genomics of yeast species: new insights into their biology. International Microbiology, 2003, 6, 183-190.	1.1	15
49	Streptomyces genes: from Waksman to Sanger. Journal of Industrial Microbiology and Biotechnology, 2003, 30, 468-471.	1.4	12
50	Dereplication of Streptomyces soil isolates and detection of specific biosynthetic genes using an automated ribotyping instrument. Journal of Industrial Microbiology and Biotechnology, 2003, 30, 472-479.	1.4	25
51	Heterologous production of flavanones in Escherichia coli : potential for combinatorial biosynthesis of flavonoids in bacteria. Journal of Industrial Microbiology and Biotechnology, 2003, 30, 456-461.	1.4	71
52	AfsR as an integrator of signals that are sensed by multiple serine/threonine kinases in Streptomyces coelicolor A3(2). Journal of Industrial Microbiology and Biotechnology, 2003, 30, 462-467.	1.4	79
53	Evidence from proteomics that some of the enzymes of actinorhodin biosynthesis have more than one form and may occupy distinctive cellular locations. Journal of Industrial Microbiology and Biotechnology, 2003, 30, 523-529.	1.4	14
54	Expression and characterization of the type III polyketide synthase 1,3,6,8-tetrahydroxynaphthalene synthase from Streptomyces coelicolor A3(2). Journal of Industrial Microbiology and Biotechnology, 2003, 30, 510-515.	1.4	56
55	Mining the microbial metabolome: a new frontier for natural product lead discovery. Drug Discovery Today, 2003, 8, 1078-1084.	3.2	52
56	Simple sequence repeats and compositional bias in the bipartite Ralstonia solanacearum GMI1000 genome. BMC Genomics, 2003, 4, 10.	1.2	23
57	New knowledge from old: in silico discovery of novel protein domains in Streptomyces coelicolor. BMC Microbiology, 2003, 3, 3.	1.3	98

#	ARTICLE	IF	Citations
58	Why are parasite contingency genes often associated with telomeres?. International Journal for Parasitology, 2003, 33, 29-45.	1.3	177
60	The Blasticidin S Biosynthesis Gene Cluster from Streptomyces griseochromogenes: Sequence Analysis, Organization, and Initial Characterization. ChemBioChem, 2003, 4, 821-828.	1.3	56
61	Chemistry and Biology of Roseophilin and the Prodigiosin Alkaloids: A Survey of the Last 2500 Years. Angewandte Chemie - International Edition, 2003, 42, 3582-3603.	7.2	768
62	Small GTPases and the evolution of the eukaryotic cell. BioEssays, 2003, 25, 1129-1138.	1.2	119
63	Chemical Signaling among Bacteria and Its Inhibition. Chemistry and Biology, 2003, 10, 1007-1021.	6.2	109
64	Structure and biosynthetic implication of (S)-NHAB, a novel shunt product, from a disruptant of the actVI-ORFA gene for actinorhodin biosynthesis in Streptomyces coelicolor A3(2). Tetrahedron, 2003, 59, 8793-8798.	1.0	15
65	Ammonium assimilation and nitrogen control inCorynebacterium glutamicumand its relatives: an example for new regulatory mechanisms in actinomycetes. FEMS Microbiology Reviews, 2003, 27, 617-628.	3.9	79
66	Cloning and characterization of a gene cluster for geldanamycin production inStreptomyces hygroscopicusNRRL 3602. FEMS Microbiology Letters, 2003, 218, 223-230.	0.7	144
67	Isolation of high molecular weight DNA from soil for cloning into BAC vectors. FEMS Microbiology Letters, 2003, 223, 15-20.	0.7	84
68	TheStreptomyces coelicolor ssgBgene is required for early stages of sporulation. FEMS Microbiology Letters, 2003, 225, 59-67.	0.7	69
69	CbiX-homologous protein (CbiXhp), a metal-binding protein, fromStreptomyces seoulensisis involved in expression of nickel-containing superoxide dismutase. FEMS Microbiology Letters, 2003, 228, 21-26.	0.7	13
70	Characterization of plasma membrane respiratory chain and ATPase in the actinomyceteNonomuraeasp. ATCC 39727. FEMS Microbiology Letters, 2003, 228, 233-239.	0.7	7
71	The Gene Cluster for the Biosynthesis of the Glycopeptide Antibiotic A40926 by Nonomuraea Species. Chemistry and Biology, 2003, 10, 541-549.	6.2	156
72	Essential role of DivIVA in polar growth and morphogenesis in Streptomyces coelicolor A3(2). Molecular Microbiology, 2003, 49, 1523-1536.	1.2	205
73	Negative feedback regulation of dnaK, clpB and lon expression by the DnaK chaperone machine in Streptomyces coelicolor, identified by transcriptome and in vivo DnaK-depletion analysis. Molecular Microbiology, 2003, 50, 153-166.	1.2	76
74	End-to-end fusion of linear deleted chromosomes initiates a cycle of genome instability in Streptomyces ambofaciens. Molecular Microbiology, 2003, 50, 411-425.	1.2	30
75	A rare leucine codon in adpA is implicated in the morphological defect of bldA mutants of Streptomyces coelicolor. Molecular Microbiology, 2003, 50, 475-486.	1,2	114
76	amfR, an essential gene for aerial mycelium formation, is a member of the AdpA regulon in the A-factor regulatory cascade in Streptomyces griseus. Molecular Microbiology, 2003, 50, 1173-1187.	1.2	49

#	ARTICLE	lF	Citations
77	Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. Molecular Microbiology, 2003, 50, 1591-1604.	1.2	290
78	The histidine-phosphocarrier protein of Streptomyces coelicolorfolds by a partially folded species at low pH. FEBS Journal, 2003, 270, 2254-2267.	0.2	15
79	Activated transglutaminase from Streptomyces mobaraensis is processed by a tripeptidyl aminopeptidase in the final step. FEBS Journal, 2003, 270, 4149-4155.	0.2	60
80	Specialized osmotic stress response systems involve multiple SigB-like sigma factors in Streptomyces coelicolor. Molecular Microbiology, 2003, 47, 699-714.	1.2	68
81	A missense mutation in ftsZ differentially affects vegetative and developmentally controlled cell division in Streptomyces coelicolor A3(2). Molecular Microbiology, 2003, 47, 645-656.	1.2	44
83	Linear plasmid SLP2 of Streptomyces lividans is a composite replicon. Molecular Microbiology, 2003, 47, 1563-1576.	1.2	63
84	A Streptomyces coelicolor functional orthologue of Escherichia coli RNase E shows shuffling of catalytic and PNPase-binding domains. Molecular Microbiology, 2003, 48, 349-360.	1.2	96
85	Signalling early developmental events in two highly diverged Streptomyces species. Molecular Microbiology, 2003, 48, 9-15.	1.2	135
86	The large linear plasmid pSLA2-L of Streptomyces rochei has an unusually condensed gene organization for secondary metabolism. Molecular Microbiology, 2003, 48, 1501-1510.	1.2	165
87	Proteomic studies of diauxic lag in the differentiating prokaryote Streptomyces coelicolor reveal a regulatory network of stress-induced proteins and central metabolic enzymes. Molecular Microbiology, 2003, 48, 1289-1303.	1.2	84
88	Prophages and bacterial genomics: what have we learned so far?. Molecular Microbiology, 2003, 49, 277-300.	1.2	813
89	Crystallization and preliminary X-ray studies on the putative dTDP sugar epimerase NovW from the novobiocin biosynthetic cluster of Streptomyces spheroides. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1507-1509.	2.5	3
90	NAD-dependent DNA ligases of Mycobacterium tuberculosis and Streptomyces coelicolor. Proteins: Structure, Function and Bioinformatics, 2003, 51, 321-326.	1.5	20
91	A novel aldo-keto reductase fromEscherichia colican increase resistance to methylglyoxal toxicity. FEMS Microbiology Letters, 2003, 218, 93-99.	0.7	52
92	Artificial chromosome libraries of Streptomyces coelicolor A3(2) and Planobispora rosea. FEMS Microbiology Letters, 2003, 218, 181-186.	0.7	19
93	Occurrence of a putative ancientâ€like isomerase involved in histidine and tryptophan biosynthesis. EMBO Reports, 2003, 4, 296-300.	2.0	85
94	The Streptomyces genomeâ€"be prepared!. Nature Biotechnology, 2003, 21, 505-506.	9.4	27
95	Engineering what comes naturally. Nature Biotechnology, 2003, 21, 506-508.	9.4	14

#	ARTICLE	IF	CITATIONS
96	A genomics-guided approach for discovering and expressing cryptic metabolic pathways. Nature Biotechnology, 2003, 21, 187-190.	9.4	292
97	Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nature Biotechnology, 2003, 21, 526-531.	9.4	1,108
98	Molecular evolution meets the genomics revolution. Nature Genetics, 2003, 33, 255-265.	9.4	120
99	Metabolic engineering for drug discovery and development. Nature Reviews Drug Discovery, 2003, 2, 1019-1025.	21.5	187
100	Use of acetone to attain highly active and soluble DNA packaging protein Gp16 of Phi29 for ATPase assay. Virology, 2003, 312, 449-457.	1.1	25
101	The putative transcriptional repressor McbR, member of the TetR-family, is involved in the regulation of the metabolic network directing the synthesis of sulfur containing amino acids in Corynebacterium glutamicum. Journal of Biotechnology, 2003, 103, 51-65.	1.9	85
102	Genome-wide analysis of the l-methionine biosynthetic pathway in Corynebacterium glutamicum by targeted gene deletion and homologous complementation. Journal of Biotechnology, 2003, 104, 213-228.	1.9	88
103	Ribosomal RNA and ribosomal proteins in corynebacteria. Journal of Biotechnology, 2003, 104, 41-53.	1.9	42
104	Evolutionary connections between bacterial and eukaryotic signaling systems: a genomic perspective. Current Opinion in Microbiology, 2003, 6, 490-497.	2.3	51
105	Growth polarity and cell division in Streptomyces. Current Opinion in Microbiology, 2003, 6, 564-571.	2.3	120
106	Atomic Structure of Mycobacterium tuberculosis CYP121 to 1.06 Ã Reveals Novel Features of Cytochrome P450. Journal of Biological Chemistry, 2003, 278, 5141-5147.	1.6	126
107	Adoption of the transiently non-culturable state $\hat{a}\in$ " a bacterial survival strategy?. Advances in Microbial Physiology, 2003, 47, 65-129.	1.0	89
108	Myxobacteria: proficient producers of novel natural products with various biological activitiesâ€"past and future biotechnological aspects with the focus on the genus Sorangium. Journal of Biotechnology, 2003, 106, 233-253.	1.9	281
109	Nematoda: Genes, Genomes and the Evolution of Parasitism. Advances in Parasitology, 2003, 54, 101-195.	1.4	83
110	Clavibacter michiganensis subsp. michiganensis: first steps in the understanding of virulence of a Gram-positive phytopathogenic bacterium. Journal of Biotechnology, 2003, 106, 179-191.	1.9	144
111	The Tat protein translocation pathway and its role in microbial physiology. Advances in Microbial Physiology, 2003, 47, 187-254.	1.0	227
112	Analysis of nucleotide distribution in the genome of Streptomyces coelicolor A3(2) using the Z curve method. FEBS Letters, 2003, 540, 188-194.	1.3	14
113	Sequencing and analysis of the genome of the Whipple's disease bacterium Tropheryma whipplei. Lancet, The, 2003, 361, 637-644.	6.3	232

#	Article	IF	Citations
114	Cytochrome P450 complement (CYPome) of the avermectin-producer Streptomyces avermitilis and comparison to that of Streptomyces coelicolor A3(2). Biochemical and Biophysical Research Communications, 2003, 307, 610-619.	1.0	86
115	Exploiting the genetic potential of polyketide producing streptomycetes. Journal of Biotechnology, 2003, 106, 221-232.	1.9	127
116	Building a BRIDGE for the integration of heterogeneous data from functional genomics into a platform for systems biology. Journal of Biotechnology, 2003, 106, 157-167.	1.9	22
117	Cloning of the conserved regulatory operon by its aerial mycelium-inducing activity in an amfR mutant of Streptomyces griseus. Gene, 2003, 306, 79-89.	1.0	25
118	Sequence analysis and biochemical characterization of the nostopeptolide A biosynthetic gene cluster from Nostoc sp. GSV224. Gene, 2003, 311, 171-180.	1.0	97
119	The genome stability in Corynebacterium species due to lack of the recombinational repair system. Gene, 2003, 317, 149-155.	1.0	66
120	Involvement of \ddot{l}_f H and related sigma factors in glucose-dependent initiation of morphological and physiological development of Streptomyces griseus. Gene, 2003, 320, 127-135.	1.0	14
121	Prophage Genomics. Microbiology and Molecular Biology Reviews, 2003, 67, 238-276.	2.9	594
122	Complete genome sequence of the marine planctomycetePirellulasp. strain 1. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8298-8303.	3.3	460
123	A paucity of bacterial root diseases: Streptomyces succeeds where others fail. Physiological and Molecular Plant Pathology, 2003, 62, 65-72.	1.3	58
124	Polarisation of prokaryotic chromosomes. Current Opinion in Microbiology, 2003, 6, 101-108.	2.3	67
125	Eyeing bacterial genomes. Current Opinion in Microbiology, 2003, 6, 109-113.	2.3	3
126	RNA polymerase holoenzyme: structure, function and biological implications. Current Opinion in Microbiology, 2003, 6, 93-100.	2.3	129
127	Transcription regulation and environmental adaptation in bacteria. Trends in Microbiology, 2003, 11 , $248-253$.	3.5	168
128	The devil is in the detail. Trends in Microbiology, 2003, 11, 256-258.	3.5	3
129	Isolation and Characterization of Streptomyces coelicolor RNA Polymerase, Its Sigma, and Antisigma Factors. Methods in Enzymology, 2003, 370, 73-82.	0.4	28
130	The biodiversity of microbial cytochromes P450. Advances in Microbial Physiology, 2003, 47, 131-186.	1.0	58
131	The sigma70 family of sigma factors. Genome Biology, 2003, 4, 203.	13.9	449

#	Article	IF	Citations
132	RNase ES of Streptomyces coelicolor A3(2) Can Complement therneandrng Mutations in Escherichia coli. Bioscience, Biotechnology and Biochemistry, 2003, 67, 1767-1771.	0.6	5
133	StreptomycesGenetics: A Genomic Perspective. Critical Reviews in Biotechnology, 2003, 23, 1-27.	5.1	62
134	The Enzymology of Combinatorial Biosynthesis. Critical Reviews in Biotechnology, 2003, 23, 95-147.	5.1	71
135	Diversity of the biosynthesis of the isoprene units. Natural Product Reports, 2003, 20, 171-183.	5.2	268
136	Chromosomal Arm Replacement in Streptomyces griseus. Journal of Bacteriology, 2003, 185, 1120-1124.	1.0	20
137	A Glutamate Mutase Is Involved in the Biosynthesis of the Lipopeptide Antibiotic Friulimicin in Actinoplanes friuliensis. Antimicrobial Agents and Chemotherapy, 2003, 47, 447-457.	1.4	38
138	Streptomyces coelicolor A3(2) plasmid SCP2*: deductions from the complete sequence. Microbiology (United Kingdom), 2003, 149, 505-513.	0.7	37
139	The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6133-6138.	3.3	224
140	Construction of Deoxyriboaldolase-Overexpressing Escherichia coli and Its Application to 2-Deoxyribose 5-Phosphate Synthesis from Glucose and Acetaldehyde for 2′-Deoxyribonucleoside Production. Applied and Environmental Microbiology, 2003, 69, 3791-3797.	1.4	38
141	Limited regions of homology between linear and circular plasmids encoding methylenomycin biosynthesis in two independently isolated streptomycetes. Microbiology (United Kingdom), 2003, 149, 1351-1356.	0.7	16
142	The pqrAB Operon Is Responsible for Paraquat Resistance in Streptomyces coelicolor. Journal of Bacteriology, 2003, 185, 6756-6763.	1.0	25
143	Accumulation of S -Adenosyl -l- Methionine Enhances Production of Actinorhodin but Inhibits Sporulation in Streptomyces lividans TK23. Journal of Bacteriology, 2003, 185, 592-600.	1.0	98
144	A New Family of Type III Polyketide Synthases in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2003, 278, 44780-44790.	1.6	101
145	Phase Variation in the Phage Growth Limitation System of Streptomyces coelicolor A3(2). Journal of Bacteriology, 2003, 185, 4558-4563.	1.0	27
146	ColonialDifferentiation in Streptomyces coelicolor Depends on Translation of a SpecificCodon within the adpA Gene. Journal of Bacteriology, 2003, 185, 7291-7296.	1.0	71
147	The 1.92-Ã Structure of Streptomyces coelicolor A3(2) CYP154C1. Journal of Biological Chemistry, 2003, 278, 12214-12221.	1.6	76
148	Enhanced Expression of S-Adenosylmethionine Synthetase Causes Overproduction of Actinorhodin in Streptomyces coelicolor A3(2). Journal of Bacteriology, 2003, 185, 601-609.	1.0	122
149	A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes and Development, 2003, 17, 1714-1726.	2.7	301

#	Article	IF	CITATIONS
150	Tethering Â70 to RNA polymerase reveals high in vivo activity of factors and Â70-dependent pausing at promoter-distal locations. Genes and Development, 2003, 17, 2839-2851.	2.7	63
151	Cloning, sequencing and heterologous expression of the medermycin biosynthetic gene cluster of Streptomyces sp. AM-7161: towards comparative analysis of the benzoisochromanequinone gene clusters. Microbiology (United Kingdom), 2003, 149, 1633-1645.	0.7	112
152	The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes and Development, 2003, 17, 1727-1740.	2.7	222
153	Resistance Genes of Aminocoumarin Producers: Two Type II Topoisomerase Genes Confer Resistance against Coumermycin A 1 and Clorobiocin. Antimicrobial Agents and Chemotherapy, 2003, 47, 869-877.	1.4	58
154	Genomic Analysis and Initial Characterization of the Chitinolytic System of Microbulbifer degradans Strain 2-40. Journal of Bacteriology, 2003, 185, 3352-3360.	1.0	66
155	Plant Lectin-Like Bacteriocin from a Rhizosphere-Colonizing Pseudomonas Isolate. Journal of Bacteriology, 2003, 185, 897-908.	1.0	96
156	In Vivo Analysis of HPr Reveals a Fructose-Specific Phosphotransferase System That Confers High-Affinity Uptake in Streptomyces coelicolor. Journal of Bacteriology, 2003, 185, 929-937.	1.0	42
157	Differentiation and Anaerobiosis in Standing Liquid Cultures of Streptomyces coelicolor. Journal of Bacteriology, 2003, 185, 1455-1458.	1.0	40
158	PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1541-1546.	3.3	1,340
159	Mutational and Functional Analysis of a Segment of the Sigma Family Bacteriophage T4 Late Promoter Recognition Protein gp55. Journal of Biological Chemistry, 2003, 278, 7073-7080.	1.6	16
160	Crystal Structure of Aclacinomycin Methylesterase with Bound Product Analogues. Journal of Biological Chemistry, 2003, 278, 39006-39013.	1.6	31
161	Enhancement and Selective Production of Phoslactomycin B, a Protein Phosphatase Ila Inhibitor, through Identification and Engineering of the Corresponding Biosynthetic Gene Cluster. Journal of Biological Chemistry, 2003, 278, 35552-35557.	1.6	63
162	Complete Genome Structure of Gloeobacter violaceus PCC 7421, a Cyanobacterium that Lacks Thylakoids. DNA Research, 2003, 10, 137-145.	1.5	269
163	Characterization of a Novel Intracellular Endopeptidase of the $\hat{l}\pm/\hat{l}^2$ Hydrolase Family from Streptomyces coelicolor A3(2). Journal of Bacteriology, 2003, 185, 496-503.	1.0	9
164	Sequence — Evolution — Function. , 2003, , .		124
165	Possibility of Bacterial Recruitment of Plant Genes Associated with the Biosynthesis of Secondary Metabolites. Plant Physiology, 2003, 132, 1153-1161.	2.3	41
166	Mycobacterium tuberculosis Pathogenesis and Molecular Determinants of Virulence. Clinical Microbiology Reviews, 2003, 16, 463-496.	5.7	925
167	Integration Site for Streptomyces Phage φBT1 and Development of Site-Specific Integrating Vectors. Journal of Bacteriology, 2003, 185, 5320-5323.	1.0	257

#	Article	IF	CITATIONS
168	Chromosomal Circularization in Streptomyces griseus by Nonhomologous Recombination of Deletion Ends. Bioscience, Biotechnology and Biochemistry, 2003, 67, 1101-1108.	0.6	12
169	Gene Cluster of Arthrobacter ilicis $\tilde{RA}\frac{1}{4}61a$ Involved in the Degradation of Quinaldine to Anthranilate. Journal of Biological Chemistry, 2003, 278, 27483-27494.	1.6	33
170	The Streptomyces coelicolor Polynucleotide PhosphorylaseHomologue, and Not the Putative Poly(A) Polymerase, CanPolyadenylateRNA. Journal of Bacteriology, 2003, 185, 7273-7278.	1.0	47
171	Prokaryotic Utilization of the Twin-Arginine Translocation Pathway: a Genomic Survey. Journal of Bacteriology, 2003, 185, 1478-1483.	1.0	236
172	(De)regulation of key enzyme steps in the shikimate pathway and phenylalanine-specific pathway of the actinomycete Amycolatopsis methanolica. Microbiology (United Kingdom), 2003, 149, 3321-3330.	0.7	24
173	Development of Antibiotic-Overproducing Strains by Site-Directed Mutagenesis of the rpsL Gene in Streptomyces lividans. Applied and Environmental Microbiology, 2003, 69, 4256-4259.	1.4	42
174	An aberrant protein synthesis activity is linked with antibiotic overproduction in rpsL mutants of Streptomyces coelicolor A3(2). Microbiology (United Kingdom), 2003, 149, 3299-3309.	0.7	49
175	Fungal Osmotolerance. Advances in Applied Microbiology, 2003, 53, 177-211.	1.3	11
176	Eukaryotic-type protein kinases in Streptomyces coelicolor: variations on a common theme. Microbiology (United Kingdom), 2003, 149, 1609-1621.	0.7	81
177	Control of growth, secondary metabolism and sporulation in Streptomyces venezuelae ISP5230 by jadW 1, a member of the afsA family of \hat{I}^3 -butyrolactone regulatory genes. Microbiology (United) Tj ETQq1 is	0.784 3)17 rgBT	/Overlock
178	Cloning and engineering of the cinnamycin biosynthetic gene cluster from Streptomyces cinnamoneus cinnamoneus DSM 40005. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4316-4321.	3.3	121
179	Expression and mechanistic analysis of a germacradienol synthase from Streptomyces coelicolor implicated in geosmin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1547-1551.	3.3	131
180	Prokaryotic Development: Emerging Insights. Journal of Bacteriology, 2003, 185, 1128-1146.	1.0	16
181	Efficient Allelic Exchange and Transposon Mutagenesis in Mycobacterium avium by Specialized	1.4	19
	Transduction. Applied and Environmental Microbiology, 2003, 69, 5039-5044.		
182	Recruitment of terminal protein to the ends of Streptomyces linear plasmids and chromosomes by a novel telomere-binding protein essential for linear DNA replication. Genes and Development, 2003, 17, 774-785.	2.7	88
182	Recruitment of terminal protein to the ends of Streptomyces linear plasmids and chromosomes by a novel telomere-binding protein essential for linear DNA replication. Genes and Development, 2003, 17,	2.7	88
	Recruitment of terminal protein to the ends of Streptomyces linear plasmids and chromosomes by a novel telomere-binding protein essential for linear DNA replication. Genes and Development, 2003, 17, 774-785.		

#	Article	IF	CITATIONS
186	Title is missing!. Genome Biology, 2003, 5, P1.	13.9	43
187	Identification of Streptomyces coelicolor Proteins That Are Differentially Expressed in the Presence of Plant Material. Applied and Environmental Microbiology, 2003, 69, 1884-1889.	1.4	35
188	Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA. Biochemical Journal, 2003, 372, 317-327.	1.7	43
189	Cytochromes P450: novel drug targets in the war against multidrug-resistant Mycobacterium tuberculosis. Biochemical Society Transactions, 2003, 31, 625-630.	1.6	32
190	Molecular Cloning of a D-Cycloserine Resistance Gene from D-Cycloserine-producing Streptomyces garyphalus. Journal of Antibiotics, 2003, 56, 762-767.	1.0	14
191	New Approaches for Anti-Infective Drug Discovery: Antibiotics, Vaccines and Beyond. Current Drug Targets Infectious Disorders, 2003, 3, 65-76.	2.1	6
193	Low-Molecular-Weight Pectate Lyase from Streptomyces thermocarboxydus. Journal of Applied Glycoscience (1999), 2004, 51, 1-7.	0.3	9
194	Novel Aspects of Signaling in Streptomyces Development. Advances in Applied Microbiology, 2004, 56, 65-88.	1.3	10
195	Streptomyces coelicolor A3(2) Lacks a Genomic Island Present in the Chromosome of Streptomyces lividans 66. Applied and Environmental Microbiology, 2004, 70, 7110-7118.	1.4	27
196	Microcin J25, from the Macrocyclic to the Lasso Structure: Implications for Biosynthetic, Evolutionary and Biotechnological Perspectives. Current Protein and Peptide Science, 2004, 5, 383-391.	0.7	83
197	Using the Genome to Understand Pathogenicity. , 2004, 266, 261-287.		12
198	Genome Update: AT content in sequenced prokaryotic genomes. Microbiology (United Kingdom), 2004, 150, 749-752.	0.7	16
199	Hyper-inducible expression system for streptomycetes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14031-14035.	3.3	109
200	Isolation of Flavohemoglobin from the ActinomyceteStreptomyces antibioticusGrown without External Nitric Oxide Stress. Bioscience, Biotechnology and Biochemistry, 2004, 68, 1106-1112.	0.6	9
201	Self-protection Mechanism in d-Cycloserine-producing Streptomyces lavendulae. Journal of Biological Chemistry, 2004, 279, 46143-46152.	1.6	48
202	Five Additional Genes Are Involved in Clavulanic Acid Biosynthesis in Streptomyces clavuligerus. Antimicrobial Agents and Chemotherapy, 2004, 48, 192-202.	1.4	48
203	Evolution of the PPM-family protein phosphatases in Streptomyces: duplication of catalytic domain and lateral recruitment of additional sensory domains. Microbiology (United Kingdom), 2004, 150, 4189-4197.	0.7	37
204	Antibiotic-Inducible Promoter Regulated by the Cell Envelope Stress-Sensing Two-Component System LiaRS of Bacillus subtilis. Antimicrobial Agents and Chemotherapy, 2004, 48, 2888-2896.	1.4	277

#	Article	IF	Citations
205	Expression, Secretion, and Glycosylation of the 45- and 47-kDa Glycoprotein of Mycobacterium tuberculosis in Streptomyces lividans. Applied and Environmental Microbiology, 2004, 70, 679-685.	1.4	55
206	ClgR, a Novel Regulator of clp and lon Expression in Streptomyces. Journal of Bacteriology, 2004, 186, 3238-3248.	1.0	64
207	Regulation of $large large la$	1.0	51
208	Comparative analysis of eukaryotic-type protein phosphatases in two streptomycete genomes. Microbiology (United Kingdom), 2004, 150, 2247-2256.	0.7	20
209	Novel Pathway of Salicylate Degradation by Streptomyces sp. Strain WA46. Applied and Environmental Microbiology, 2004, 70, 1297-1306.	1.4	85
210	Genetically Modified Bacterial Strains and Novel Bacterial Artificial Chromosome Shuttle Vectors for Constructing Environmental Libraries and Detecting Heterologous Natural Products in Multiple Expression Hosts. Applied and Environmental Microbiology, 2004, 70, 2452-2463.	1.4	210
211	Circularized Chromosome with a Large Palindromic Structure in Streptomyces griseus Mutants. Journal of Bacteriology, 2004, 186, 3313-3320.	1.0	8
212	Functional Characterization of a Catabolic Plasmid from Polychlorinated-Biphenyl-Degrading Rhodococcus sp. Strain RHA1. Journal of Bacteriology, 2004, 186, 7783-7795.	1.0	65
213	Identification and analysis of a siderophore biosynthetic gene cluster from Agrobacterium tumefaciens C58. Microbiology (United Kingdom), 2004, 150, 3857-3866.	0.7	64
214	Availability of specific reductases controls the temporal activity of the cytochrome P450 complement of Streptomyces coelicolor A3(2). Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 494-499.	3.3	31
215	Organization and Expression of the Polynucleotide Phosphorylase Gene (pnp) of Streptomyces: Processing of pnp Transcripts in Streptomyces antibioticus. Journal of Bacteriology, 2004, 186, 3160-3172.	1.0	19
216	In Silico and Transcriptional Analysis of Carbohydrate Uptake Systems of Streptomyces coelicolor A3(2). Journal of Bacteriology, 2004, 186, 1362-1373.	1.0	102
217	Comment on "The Origins of Genome Complexity". Science, 2004, 306, 978a-978a.	6.0	51
218	The importance of the Tat-dependent protein secretion pathway in Streptomyces as revealed by phenotypic changes in tat deletion mutants and genome analysis. Microbiology (United Kingdom), 2004, 150, 21-31.	0.7	64
219	Selection of Unusual Actinomycetal Primary \ddot{l}_f 70 Factors by Plant-Colonizing Frankia Strains. Applied and Environmental Microbiology, 2004, 70, 991-998.	1.4	2
220	Differential and Cross-Transcriptional Control of Duplicated Genes Encoding Alternative Sigma Factors in Streptomyces ambofaciens. Journal of Bacteriology, 2004, 186, 5355-5365.	1.0	13
221	The replication-related organization of bacterial genomes. Microbiology (United Kingdom), 2004, 150, 1609-1627.	0.7	235
222	Deletion of a Cyclic AMP Receptor Protein Homologue Diminishes Germination and Affects Morphological Development of Streptomyces coelicolor. Journal of Bacteriology, 2004, 186, 1893-1897.	1.0	62

#	Article	IF	CITATIONS
223	Evolutionary Process of Amino Acid Biosynthesis in Corynebacterium at the Whole Genome Level. Molecular Biology and Evolution, 2004, 21, 1683-1691.	3.5	26
224	A New Modular Polyketide Synthase in the Erythromycin Producer <i>Saccharopolyspora erythraea</i> I) Journal of Molecular Microbiology and Biotechnology, 2004, 8, 73-80.	1.0	13
225	Two Oligopeptide-Permease-Encoding Genes in the Clavulanic Acid Cluster of Streptomyces clavuligerus Are Essential for Production of the \hat{I}^2 -Lactamase Inhibitor. Journal of Bacteriology, 2004, 186, 3431-3438.	1.0	34
226	Novel Genes That Influence Development in Streptomyces coelicolor. Journal of Bacteriology, 2004, 186, 3570-3577.	1.0	34
227	Transposon Express, a software application to report the identity of insertions obtained by comprehensive transposon mutagenesis of sequenced genomes: analysis of the preference for in vitro Tn5 transposition into GC-rich DNA. Nucleic Acids Research, 2004, 32, e113-e113.	6.5	37
228	From The Cover: Reverse transcriptase activity innate to DNA polymerase I and DNA topoisomerase I proteins of Streptomyces telomere complex. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14361-14366.	3.3	36
229	Distribution and molecular analysis of mef(A)-containing elements in tetracycline-susceptible and resistant Streptococcus pyogenes clinical isolates with efflux-mediated erythromycin resistance. Journal of Antimicrobial Chemotherapy, 2004, 54, 991-998.	1.3	57
230	Substrate recognition by nonribosomal peptide synthetase multi-enzymes. Microbiology (United) Tj ETQq1 1 0.7	84314 rgl	3T JOverlock
231	Functional Angucycline-Like Antibiotic Gene Cluster in the Terminal Inverted Repeats of the Streptomyces ambofaciens Linear Chromosome. Antimicrobial Agents and Chemotherapy, 2004, 48, 575-588.	1.4	65
232	Ïf Factors and Global Gene Regulation in Mycobacterium tuberculosis. Journal of Bacteriology, 2004, 186, 895-902.	1.0	199
233	Molecular Characterization of an Intracellular \hat{l}^2 -N-Acetylglucosaminidase Involved in the Chitin Degradation System of Streptomyces thermoviolaceus OPC-520. Bioscience, Biotechnology and Biochemistry, 2004, 68, 1306-1314.	0.6	22
234	Systematic Insertional Mutagenesis of a Streptomycete Genome: A Link Between Osmoadaptation and Antibiotic Production. Genome Research, 2004, 14, 893-900.	2.4	77
235	Two Chimeric Chromosomes of Streptomyces coelicolor A3(2) Generated by Single Crossover of the Wild-Type Chromosome and Linear Plasmid SCP1. Journal of Bacteriology, 2004, 186, 6553-6559.	1.0	30
236	Identification of PimR as a Positive Regulator of Pimaricin Biosynthesis in Streptomyces natalensis. Journal of Bacteriology, 2004, 186, 2567-2575.	1.0	94
237	Membrane Topology of the H+-pyrophosphatase of Streptomyces coelicolor Determined by Cysteine-scanning Mutagenesis. Journal of Biological Chemistry, 2004, 279, 35106-35112.	1.6	49
238	Complexity of Gas Vesicle Biogenesis in Halobacterium sp. Strain NRC-1: Identification of Five New Proteins. Journal of Bacteriology, 2004, 186, 3182-3186.	1.0	72
239	A 38-Kilobase Pathogenicity Island Specific for Mycobacterium avium subsp. paratuberculosis Encodes Cell Surface Proteins Expressed in the Host. Infection and Immunity, 2004, 72, 1265-1274.	1.0	38
240	High-Throughput Computational and Experimental Techniques in Structural Genomics. Genome Research, 2004, 14, 2145-2154.	2.4	59

#	ARTICLE	IF	CITATIONS
241	Crystal Structure of a Bacterial Type III Polyketide Synthase and Enzymatic Control of Reactive Polyketide Intermediates. Journal of Biological Chemistry, 2004, 279, 45162-45174.	1.6	149
242	A Comparative Genome Analysis Identifies Distinct Sorting Pathways in Gram-Positive Bacteria. Infection and Immunity, 2004, 72, 2710-2722.	1.0	187
243	PI Factor, a Novel Type Quorum-sensing Inducer Elicits Pimaricin Production in Streptomyces natalensis. Journal of Biological Chemistry, 2004, 279, 41586-41593.	1.6	89
244	Phosphate Control of the Biosynthesis of Antibiotics and Other Secondary Metabolites Is Mediated by the PhoR-PhoP System: an Unfinished Story. Journal of Bacteriology, 2004, 186, 5197-5201.	1.0	197
245	Organization of the teicoplanin gene cluster in Actinoplanes teichomyceticus. Microbiology (United) Tj ETQq0 (0 o rgBT /C	verlock 10 Tf
246	The complete genomic sequence of Nocardia farcinica IFM 10152. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14925-14930.	3.3	266
247	Fungal Metabolic Model for Type I 3-Methylglutaconic Aciduria. Journal of Biological Chemistry, 2004, 279, 32385-32392.	1.6	10
248	Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14240-14245.	3.3	675
249	Heterologous production of the antifungal polyketide antibiotic soraphen A of Sorangium cellulosum So ce26 in Streptomyces lividans. Microbiology (United Kingdom), 2004, 150, 2761-2774.	0.7	59
250	The Genome Sequence of the Gram-Positive Sugarcane Pathogen Leifsonia xyli subsp. xyli. Molecular Plant-Microbe Interactions, 2004, 17, 827-836.	1.4	119
251	'Conserved hypothetical' proteins: prioritization of targets for experimental study. Nucleic Acids Research, 2004, 32, 5452-5463.	6.5	346
252	Extending the classification of bacterial transcription factors beyond the helix-turn-helix motif as an alternative approach to discover new cis/trans relationships. Nucleic Acids Research, 2004, 32, 3418-3426.	6.5	74
253	Manipulation and Analysis of Polyketide Synthases. Methods in Enzymology, 2004, 388, 269-293.	0.4	17
254	A Putative Polyketide Synthase/Peptide Synthetase from Magnaporthe grisea Signals Pathogen Attack to Resistant Rice[W]. Plant Cell, 2004, 16, 2499-2513.	3.1	334
255	Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces coelicolor A3(2). Microbiology (United Kingdom), 2004, 150, 2795-2806.	0.7	147
256	Interaction of Bacillus subtilis extracytoplasmic function (ECF) sigma factors with the N-terminal regions of their potential anti-sigma factors. Microbiology (United Kingdom), 2004, 150, 591-599.	0.7	86
257	Evolution of genomic islands by deletion and tandem accretion by site-specific recombination: ICESt1-related elements from Streptococcus thermophilus. Microbiology (United Kingdom), 2004, 150, 759-774.	0.7	75
258	A novel R-stereoselective amidase from Pseudomonas sp. MCl3434 acting on piperazine-2-tert-butylcarboxamide. FEBS Journal, 2004, 271, 1580-1590.	0.2	47

#	Article	IF	CITATIONS
259	The conformational stability of the Streptomyces coelicolor histidine-phosphocarrier protein. FEBS Journal, 2004, 271, 2165-2181.	0.2	16
260	The Nep1-like proteins-a growing family of microbial elicitors of plant necrosis. Molecular Plant Pathology, 2004, 5, 353-359.	2.0	153
261	Genome plasticity in Streptomyces: identification of $1\hat{a} \in fMb$ TIRs in the S. coelicolor A3(2) chromosome. Molecular Microbiology, 2004, 51, 1535-1550.	1.2	67
262	SCP1, a 356 023 bp linear plasmid adapted to the ecology and developmental biology of its host, Streptomyces coelicolor A3(2). Molecular Microbiology, 2004, 51, 1615-1628.	1.2	108
263	Characterization of an inducible vancomycin resistance system in Streptomyces coelicolor reveals a novel gene (vanK) required for drug resistance. Molecular Microbiology, 2004, 52, 1107-1121.	1.2	136
264	DNA-binding specificity of AdpA, a transcriptional activator in the A-factor regulatory cascade in Streptomyces griseus. Molecular Microbiology, 2004, 53, 555-572.	1.2	92
265	Transcription of the sporulation gene ssgA is activated by the IclR-type regulator SsgR in a whi-independent manner in Streptomyces coelicolor A3(2). Molecular Microbiology, 2004, 53, 985-1000.	1.2	65
266	Widespread distribution of a lexA-regulated DNA damage-inducible multiple gene cassette in the Proteobacteria phylum. Molecular Microbiology, 2004, 54, 212-222.	1.2	51
267	GlcP constitutes the major glucose uptake system of Streptomyces coelicolor A3(2). Molecular Microbiology, 2004, 55, 624-636.	1.2	70
268	A large, mobile pathogenicity island confers plant pathogenicity on Streptomyces species. Molecular Microbiology, 2004, 55, 1025-1033.	1.2	178
269	Growth phase-dependent expression of an endoglucanase encoding gene (eglS) in Streptomyces rochei A2. FEMS Microbiology Letters, 2004, 237, 267-272.	0.7	4
270	Genomic islands in pathogenic and environmental microorganisms. Nature Reviews Microbiology, 2004, 2, 414-424.	13.6	1,062
271	Small change: keeping pace with microevolution. Nature Reviews Microbiology, 2004, 2, 483-495.	13.6	185
272	The formation of the rodlet layer of streptomycetes is the result of the interplay between rodlins and chaplins. Molecular Microbiology, 2004, 53, 433-443.	1.2	132
273	Gene prediction using the Self-Organizing Map: automatic generation of multiple gene models. BMC Bioinformatics, 2004, 5, 23.	1.2	23
274	Bioinformatic identification of novel regulatory DNA sequence motifs in Streptomyces coelicolor. BMC Microbiology, 2004, 4, 14.	1.3	18
275	Branched-chain amino acid aminotransferase and methionine formation in Mycobacterium tuberculosis. BMC Microbiology, 2004, 4, 39.	1.3	31
276	Modulation of glycogen and trehalose levels in Micromonospora echinospora (ATCC 15837). Antonie Van Leeuwenhoek, 2004, 86, 225-233.	0.7	3

#	Article	IF	CITATIONS
277	Modulation of Serine/Threonine Protein Kinase Activity in Chloramphenicol-Resistant Mutants of Streptomyces avermitilis. Molecular Biology, 2004, 38, 329-337.	0.4	2
278	Three unlinked gene clusters are involved in clavam metabolite biosynthesis in Streptomyces clavuligerus. Canadian Journal of Microbiology, 2004, 50, 803-810.	0.8	29
279	Naturally mosaic operons for secondary metabolite biosynthesis: variability and putative horizontal transfer of discrete catalytic domains of the epothilone polyketide synthase locus. Molecular Genetics and Genomics, 2004, 270, 420-431.	1.0	33
280	Novel \hat{I}^2 -carotene ketolases from non-photosynthetic bacteria for canthaxanthin synthesis. Molecular Genetics and Genomics, 2004, 272, 530-537.	1.0	43
281	Bias explorer: measurements of compositional bias in EMBL and GenBank sequence files. Antonie Van Leeuwenhoek, 2004, 86, 313-315.	0.7	2
282	Genome-inspired search for new antibiotics. Isolation and structure determination of new 28-membered polyketide macrolactones, halstoctacosanolides A and B, from Streptomyces halstedii HC34. Tetrahedron, 2004, 60, 3999-4005.	1.0	17
283	A Novel Two-Component System amrB-amkB Involved in the Regulation of Central Carbohydrate Metabolism in Rifamycin SV-Producing Amycolatopsis mediterranei U32. Current Microbiology, 2004, 48, 14-19.	1.0	4
284	Mass spectrometry proteomic analysis of stress adaptation reveals both common and distinct response pathways in Propionibacterium freudenreichii. Archives of Microbiology, 2004, 181, 215-230.	1.0	100
285	Sporulation genes in members of the low G+C Gram-type-positive phylogenetic branch (Firmicutes). Archives of Microbiology, 2004, 182, 182-92.	1.0	139
286	Characterization of the polyketide spore pigment cluster whiESa in Streptomyces aureofaciens CCM3239. Archives of Microbiology, 2004, 182, 388-395.	1.0	16
287	The Origin of Eukaryotes Is Suggested as the Symbiosis of Pyrococcus into \hat{l}^3 -Proteobacteria by Phylogenetic Tree Based on Gene Content. Journal of Molecular Evolution, 2004, 59, 606-619.	0.8	39
288	Characterization of the ask?asd operon in aminoethoxyvinylglycine-producing Streptomyce s sp. NRRL 5331. Applied Microbiology and Biotechnology, 2004, 64, 228-236.	1.7	11
289	Biotechnology and molecular biology of the ?-glucosidase inhibitor acarbose. Applied Microbiology and Biotechnology, 2004, 63, 613-625.	1.7	174
290	In silico analysis of the ÃÂf54-dependent enhancer-binding proteins inPirellulaspecies strain 1. FEMS Microbiology Letters, 2004, 230, 215-225.	0.7	16
291	The Mycobacterium tuberculosis ino1 gene is essential for growth and virulence. Molecular Microbiology, 2004, 51, 1003-1014.	1.2	85
292	Harnessing the potential of chemical defenses from antimicrobial activities. BioEssays, 2004, 26, 808-813.	1.2	19
293	A Proposed Mechanism for the Reductive Ring Opening of the Cyclodiphosphate MEcPP, a Crucial Transformation in the New DXP/MEP Pathway to Isoprenoids Based on Modeling Studies and Feeding Experiments. ChemBioChem, 2004, 5, 311-323.	1.3	36
294	Identification of a Phosphopantetheinyl Transferase for Erythromycin Biosynthesis in Saccharopolyspora erythraea. ChemBioChem, 2004, 5, 116-125.	1.3	64

#	Article	IF	CITATIONS
295	Genetic Organization of the Biosynthetic Gene Cluster for the Antitumor Angucycline Oviedomycin in Streptomyces antibioticus ATCC 11891. ChemBioChem, 2004, 5, 1181-1187.	1.3	51
296	A Survey of Nucleotide Cyclases in Actinobacteria: Unique Domain Organization and Expansion of the Class III Cyclase Family inMycobacterium tuberculosis. Comparative and Functional Genomics, 2004, 5, 17-38.	2.0	48
297	Remarkably different structures and reaction mechanisms of ketoreductases for the opposite stereochemical control in the biosynthesis of BIQ antibiotics. Bioorganic and Medicinal Chemistry, 2004, 12, 5917-5927.	1.4	18
298	Starter Unit Choice Determines the Production of Two Tetraene Macrolides, Rimocidin and CE-108, in Streptomyces diastaticus var. 108. Chemistry and Biology, 2004, 11, 357-366.	6.2	64
299	Can whole genome analysis refine the taxonomy of the genusRhodococcus?. FEMS Microbiology Reviews, 2004, 28, 377-403.	3.9	95
300	Lipoproteins of Mycobacterium tuberculosis: an abundant and functionally diverse class of cell envelope components. FEMS Microbiology Reviews, 2004, 28, 645-659.	3.9	160
301	Reverse engineering of industrial pharmaceutical-producing actinomycete strains using DNA microarrays. Metabolic Engineering, 2004, 6, 186-196.	3.6	60
302	Metabolic flux analysis for calcium dependent antibiotic (CDA) production in Streptomyces coelicolor. Metabolic Engineering, 2004, 6, 313-325.	3.6	36
303	Engineered biosynthesis of polyketides in heterologous hosts. Chemical Engineering Science, 2004, 59, 4693-4701.	1.9	10
304	Production of 8′-Halogenated and 8′-Unsubstituted Novobiocin Derivatives in Genetically Engineered Streptomyces coelicolor Strains. Chemistry and Biology, 2004, 11, 1561-1572.	6.2	56
305	Approaches to identify, clone, and express symbiont bioactive metabolite genes. Natural Product Reports, 2004, 21, 122.	5.2	90
306	Analysis of a 108-kb Region of the Saccharopolyspora spinosa Genome Covering the Obscurin Polyketide Synthase Locus. DNA Sequence, 2004, 15, 123-134.	0.7	11
307	Fast automatic registration of images using the phase of a complex wavelet transform: application to proteome gels. Analyst, The, 2004, 129, 542.	1.7	24
308	Cloning and Characterization of a New Polyketide Synthase Gene Cluster inStreptomyces aureofaciensCCM 3239. DNA Sequence, 2004, 15, 188-195.	0.7	6
309	A Novel Zinc-containing α-Keto Ester Reductase from Actinomycete: An Approach Based on Protein Chemistry and Bioinformatics. Bioscience, Biotechnology and Biochemistry, 2004, 68, 2120-2127.	0.6	6
310	Genomics, Proteomics, and Clinical Bacteriology. , 2004, , .		4
311	Chemo- and Regioselective Peptide Cyclization Triggered by the N-Terminal Fatty Acid Chain Length: The Recombinant Cyclase of the Calcium-Dependent Antibiotic fromStreptomyces coelicolorâ€. Biochemistry, 2004, 43, 2915-2925.	1.2	53
312	Identification of a Cluster of Genes that Directs Desferrioxamine Biosynthesis in Streptomyces coelicolor M145. Journal of the American Chemical Society, 2004, 126, 16282-16283.	6.6	237

#	Article	IF	Citations
313	Nickel Superoxide Dismutase Structure and Mechanism. Biochemistry, 2004, 43, 8038-8047.	1.2	373
314	λ Red-Mediated Genetic Manipulation of Antibiotic-Producing Streptomyces. Advances in Applied Microbiology, 2004, 54, 107-128.	1.3	251
315	Comparison of the 1.85 A structure of CYP154A1 from Streptomyces coelicolor A3(2) with the closely related CYP154C1 and CYPs from antibiotic biosynthetic pathways. Protein Science, 2004, 13, 255-268.	3.1	50
316	Comparative Genomic Structure of Prokaryotes. Annual Review of Genetics, 2004, 38, 771-791.	3.2	293
317	Quantitative relationships for specific growth rates and macromolecular compositions of Mycobacterium tuberculosis, Streptomyces coelicolor A3(2) and Escherichia coli B/r: an integrative theoretical approach. Microbiology (United Kingdom), 2004, 150, 1413-1426.	0.7	111
318	Phosphorylation of AfsR by multiple serine/threonine kinases in Streptomyces coelicolor A3(2). Gene, 2004, 334, 53-61.	1.0	41
319	Genometric analyses of the organization of circular chromosomes: a universal pressure determines the direction of ribosomal RNA genes transcription relative to chromosome replication. Gene, 2004, 340, 45-52.	1.0	42
320	Src proteins/src genes: from sponges to mammals. Gene, 2004, 342, 251-261.	1.0	15
321	Cloning and characterization of aStreptomyces antibioticusATCC11891 cyclophilin related to Gram negative bacteria cyclophilins. FEBS Letters, 2004, 572, 19-26.	1.3	10
322	Message from a human gut symbiont: sensitivity is a prerequisite for sharing. Trends in Microbiology, 2004, 12, 21-28.	3. 5	87
323	All things great and small. Trends in Microbiology, 2004, 12, 7-8.	3.5	4
324	Characterization and chromosomal organization of the murD–murC–ftsQ region of Corynebacterium glutamicum ATCC 13869. Research in Microbiology, 2004, 155, 174-184.	1.0	10
325	Cloning, characterization and heterologous expression of the aspartokinase and aspartate semialdehyde dehydrogenase genes of cephamycin C-producer Streptomyces clavuligerus. Research in Microbiology, 2004, 155, 525-534.	1.0	12
326	Order and disorder in bacterial genomes. Current Opinion in Microbiology, 2004, 7, 519-527.	2.3	92
327	Structure of Thermus thermophilus 2-Keto-3-deoxygluconate Kinase: Evidence for Recognition of an Open Chain Substrate. Journal of Molecular Biology, 2004, 340, 477-489.	2.0	38
328	Genome analyses of Streptomyces peucetius ATCC 27952 for the identification and comparison of cytochrome P450 complement with other Streptomyces. Archives of Biochemistry and Biophysics, 2004, 425, 233-241.	1.4	51
329	Biophysical Analyses of Designed and Selected Mutants of Protocatechuate 3,4-Dioxygenase. Annual Review of Microbiology, 2004, 58, 555-585.	2.9	24
330	The putative elaiophylin biosynthetic gene cluster in Streptomyces sp. DSM4137 is adjacent to genes encoding adenosylcobalamin-dependent methylmalonyl CoA mutase and to genes for synthesis of cobalamin. Journal of Biotechnology, 2004, 113, 55-68.	1.9	44

#	Article	IF	CITATIONS
331	放線èŒã®ã,²ãfŽãfæ§‹é€ã•生物機èf½ã®å‱§~性. Nippon Nogeikagaku Kaishi, 2004, 78, 1067-10€	590.0	0
332	Rhodococcuså·¥æ¥ç"Ÿç"£èŒã®ãƒ‹ãƒ^リルå^†è§£é³ä¼åç¾ã®è§£æžã°å¿œç"··. Nippon Nogeikagaku Kaishi, 20	O ♠ .Ø8, 10	7 8 -1075.
333	攳¼ç·šèŒã,²ãfŽãfã®æ½œåœ¨èf½åŠ›:ãfãfªã,±ã,¿ã,∰f‰å•æ^éµç´ã,`å«ã,€ç‰©è³ªå•æ^ç³»ã®åﷺ§~性. Nip	oon.Ologeik	aggaku Kaish
334	「リボã,¾ãƒ¼ãƒå·¥å¦ã€ã«ã,ˆã,‹æ"¾ç·šèŒåˆ©ç"¨ã®æ–°å±•é–‹. Nippon Nogeikagaku Kaishi, 2004, 78, 10)8 0. 0085.	1
335	DNA Sequence Duplication in Rhodobacter sphaeroides 2.4.1: Evidence of an Ancient Partnership between Chromosomes I and II. Journal of Bacteriology, 2004, 186, 2019-2027.	1.0	19
336	Iron-regulatory proteins DmdR1 and DmdR2 of Streptomyces coelicolor form two different DNA-protein complexes with iron boxes. Biochemical Journal, 2004, 380, 497-503.	1.7	45
337	CE-108, a New Macrolide Tetraene Antibiotic. Journal of Antibiotics, 2004, 57, 197-204.	1.0	26
339	Partial Activation of a Silent Angucycline-type Gene Cluster from a Rubromycin .BETA. Producing Streptomyces sp. PGA64. Journal of Antibiotics, 2004, 57, 502-510.	1.0	45
340	Expression of Streptomyces coelicolor .ALPHAGalactosidase Gene in Escherichia coli and Characterization. Food Science and Technology Research, 2005, 11, 207-213.	0.3	7
341	Nitrate respiration in the actinomycete Streptomyces coelicolor. Biochemical Society Transactions, 2005, 33, 210-212.	1.6	26
342	Functional studies on a ketoreductase gene from Streptomyces sp. AM-7161 to control the stereochemistry in medermycin biosynthesis. Bioorganic and Medicinal Chemistry, 2005, 13, 6856-6863.	1.4	15
343	A selective review of bacterial forms of cytochrome P450 enzymes. Enzyme and Microbial Technology, 2005, 36, 377-384.	1.6	40
344	Prokaryotic K+channels: From crystal structures to diversity. FEMS Microbiology Reviews, 2005, 29, 961-985.	3.9	97
345	Improvement of nikkomycin production by enhanced copy of sanU and sanV in Streptomyces ansochromogenes and characterization of a novel glutamate mutase encoded by sanU and sanV. Metabolic Engineering, 2005, 7, 165-173.	3.6	28
346	Inherent size constraints on prokaryote gene networks due to ?accelerating? growth. Theory in Biosciences, 2005, 123, 381-411.	0.6	17
347	The transcriptional regulator pool of the marine bacteriumRhodopirellula balticaSH 1Tas revealed by whole genome comparisons. FEMS Microbiology Letters, 2005, 242, 137-145.	0.7	15
348	A calmodulin-like protein in the bacterial genusStreptomyces. FEMS Microbiology Letters, 2005, 244, 315-321.	0.7	17
349	Developing a genetic system for functional manipulations of FUM1, a polyketide synthase gene for the biosynthesis of fumonisins in Fusarium verticillioides. FEMS Microbiology Letters, 2005, 248, 257-264.	0.7	23

#	Article	IF	CITATIONS
350	Production of Branched-Chain Alkylprodiginines in S. coelicolor by Replacement of the 3-Ketoacyl ACP Synthase III Initiation Enzyme, RedP. Chemistry and Biology, 2005, 12, 191-200.	6.2	33
351	Biosynthesis of the Antitumor Agent Chartreusin Involves the Oxidative Rearrangement of an Anthracyclic Polyketide. Chemistry and Biology, 2005, 12, 579-588.	6.2	80
352	Fluorescence Resonance Energy Transfer as a Probe of Peptide Cyclization Catalyzed by Nonribosomal Thioesterase Domains. Chemistry and Biology, 2005, 12, 873-881.	6.2	17
353	The Saccharomyces cerevisiae ORF YNR064c protein has characteristics of an â€~orphaned' epoxide hydrolase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1748, 213-221.	1.1	13
355	Identification of SCP2165, a new SCP2-derived plasmid of Streptomyces coelicolor A3(2). Letters in Applied Microbiology, 2005, 41, 350-354.	1.0	1
356	A bacterial hormone (the SCB1) directly controls the expression of a pathway-specific regulatory gene in the cryptic type I polyketide biosynthetic gene cluster of Streptomyces coelicolor. Molecular Microbiology, 2005, 56, 465-479.	1.2	146
357	Binding of PhoP to promoters of phosphate-regulated genes in Streptomyces coelicolor: identification of PHO boxes. Molecular Microbiology, 2005, 56, 1373-1385.	1.2	135
358	A master regulator ÏfBgoverns osmotic and oxidative response as well as differentiation via a network of sigma factors inStreptomycesâ€∫coelicolor. Molecular Microbiology, 2005, 57, 1252-1264.	1.2	159
359	A novel DNA modification by sulphur. Molecular Microbiology, 2005, 57, 1428-1438.	1.2	114
360	Transcriptional activation of the pathway-specific regulator of the actinorhodin biosynthetic genes in Streptomyces coelicolor. Molecular Microbiology, 2005, 58, 131-150.	1.2	132
361	Cross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor. Molecular Microbiology, 2005, 58, 1276-1287.	1.2	182
362	SsgA-like proteins determine the fate of peptidoglycan during sporulation of Streptomyces coelicolor. Molecular Microbiology, 2005, 58, 929-944.	1.2	70
363	All fourMycobacterium tuberculosis glnA genes encode glutamine synthetase activities but only GlnA1 is abundantly expressed and essential for bacterial homeostasis. Molecular Microbiology, 2005, 58, 1157-1172.	1.2	96
364	Decoding chemical structures from genomes. Nature Chemical Biology, 2005, 1, 244-245.	3.9	5
365	Nitrite as an intrinsic signaling molecule. Nature Chemical Biology, 2005, 1, 245-246.	3.9	60
366	Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nature Chemical Biology, 2005, 1, 265-269.	3.9	331
367	Alternatives to binary fission in bacteria. Nature Reviews Microbiology, 2005, 3, 214-224.	13.6	175
368	Combinatorial biosynthesis of reduced polyketides. Nature Reviews Microbiology, 2005, 3, 925-936.	13.6	417

#	Article	IF	CITATIONS
369	Bioactive Microbial Metabolites. Journal of Antibiotics, 2005, 58, 1-26.	1.0	2,547
370	Spectinomycin Resistance in rpsE Mutants is Recessive in Streptomyces roseosporus. Journal of Antibiotics, 2005, 58, 284-288.	1.0	6
371	Functional analysis of two divalent metal-dependent regulatory genes dmdR1 and dmdR2 in Streptomyces coelicolor and proteome changes in deletion mutants. FEBS Journal, 2005, 272, 725-735.	2.2	27
372	The SCO2299 gene from Streptomyces coelicolor A3(2) encodes a bifunctional enzyme consisting of an RNaseâ€fH domain and an acid phosphatase domain. FEBS Journal, 2005, 272, 2828-2837.	2.2	22
373	Characterization of O-methyltransferase ScOMT1 cloned from Streptomyces coelicolor A3(2). Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2005, 1730, 85-95.	2.4	18
374	Brassica napus seed meal soil amendment modifies microbial community structure, nitric oxide production and incidence of Rhizoctonia root rot. Soil Biology and Biochemistry, 2005, 37, 1215-1227.	4.2	213
375	Characterization of the Micromonospora rosaria pMR2 plasmid and development of a high G+C codon optimized integrase for site-specific integration. Plasmid, 2005, 54, 249-258.	0.4	8
376	Enzymes in the biosynthesis of aromatic polyketide antibiotics. Current Opinion in Structural Biology, 2005, 15, 629-636.	2.6	38
377	Production of human metabolites of cyclosporin A, AM1, AM4N and AM9, by microbial conversion. Journal of Bioscience and Bioengineering, 2005, 99, 390-395.	1.1	15
378	Enantioselective Reduction of βâ€Keto Acids with Engineered Streptomyces coelicolor. Angewandte Chemie - International Edition, 2005, 44, 1121-1125.	7.2	8
379	The Impact of Bacterial Genomics on Natural Product Research. Angewandte Chemie - International Edition, 2005, 44, 6828-6846.	7.2	221
380	Enantioselective Reduction of βâ€Keto Acids with Engineered Streptomyces coelicolor. Angewandte Chemie, 2005, 117, 1145-1149.	1.6	1
382	Structure and Biosynthesis of Myxochromides S1-3 in Stigmatella aurantiaca: Evidence for an Iterative Bacterial Type I Polyketide Synthase and for Module Skipping in Nonribosomal Peptide Biosynthesis. ChemBioChem, 2005, 6, 375-385.	1.3	110
383	A Widely Distributed Bacterial Pathway for Siderophore Biosynthesis Independent of Nonribosomal Peptide Synthetases. ChemBioChem, 2005, 6, 601-611.	1.3	287
384	New PCR Primers for the Screening of NRPS and PKS-I Systems in Actinomycetes: Detection and Distribution of These Biosynthetic Gene Sequences in Major Taxonomic Groups. Microbial Ecology, 2005, 49, 10-24.	1.4	321
385	Purification, cloning, and properties of ?-galactosidase from Saccharopolyspora erythraea and its use as a reporter system. Applied Microbiology and Biotechnology, 2005, 67, 91-96.	1.7	10
386	Pathways of Pyrimidine Salvage in Streptomyces. Current Microbiology, 2005, 50, 8-10.	1.0	11
387	Structure and conformational stability of the enzyme I of Streptomyces coelicolor explored by FTIR and circular dichroism. Biophysical Chemistry, 2005, 115, 229-233.	1.5	15

#	Article	IF	CITATIONS
388	Selective isolation of members of the Streptomyces violaceoruber clade from soil. FEMS Microbiology Letters, 2005, 245, 321-327.	0.7	38
389	Marine actinomycete diversity and natural product discovery. Antonie Van Leeuwenhoek, 2005, 87, 43-48.	0.7	269
390	Exploiting marine actinomycete biosynthetic pathways for drug discovery. Antonie Van Leeuwenhoek, 2005, 87, 49-57.	0.7	38
391	Cloning and expression of the gene encoding Streptomyces coelicolor A3(2) α-galactosidase belonging to family 36. Biotechnology Letters, 2005, 27, 641-647.	1.1	14
392	Comparative analysis and insights into the evolution of gene clusters for glycopeptide antibiotic biosynthesis. Molecular Genetics and Genomics, 2005, 274, 40-50.	1.0	74
393	Characterization of the alternative sigma factor ÏfG inStreptomyces coelicolor A3(2). Folia Microbiologica, 2005, 50, 47-58.	1.1	5
394	The Use of PCR for Detecting Genes That Encode Type I Polyketide Synthases in Genomes of Actinomycetes. Russian Journal of Genetics, 2005, 41, 473-478.	0.2	1
395	Expression, purification and X-ray crystallographic analysis of thioredoxin fromStreptomyces coelicolor. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 164-168.	0.7	5
396	Crystallization and preliminary X-ray analysis of AzoR (azoreductase) from Escherichia coli. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 399-402.	0.7	10
397	A putative polyketide-synthesis protein XC5357 fromXanthomonas campestris: heterologous expression, crystallization and preliminary X-ray analysis. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 697-699.	0.7	2
398	Protein domain of unknown function DUF1023 is an $\hat{l}\pm/\hat{l}^2$ hydrolase. Proteins: Structure, Function and Bioinformatics, 2005, 59, 1-6.	1.5	4
399	Procaryotic and Eucaryotic Cells in Biotech Production. , 2005, , 9-33.		1
400	Genome sequencing of microbial species. , 2005, , .		0
401	Genome Trees from Conservation Profiles. PLoS Computational Biology, 2005, 1, e75.	1.5	24
402	Expression of Functional Streptomyces coelicolor H+-Pyrophosphatase and Characterization of Its Molecular Properties. Journal of Biochemistry, 2005, 138, 183-191.	0.9	13
403	Predicted highly expressed genes in the genomes of Streptomyces coelicolor and Streptomyces avermitilis and the implications for their metabolism. Microbiology (United Kingdom), 2005, 151, 2175-2187.	0.7	115
404	Expression of ccaR, Encoding the Positive Activator of Cephamycin C and Clavulanic Acid Production in Streptomyces clavuligerus, Is Dependent on bldG. Antimicrobial Agents and Chemotherapy, 2005, 49, 1529-1541.	1.4	52
405	Identification of a novel two-component system SenS/SenR modulating the production of the catalase-peroxidase CpeB and the haem-binding protein HbpS in Streptomyces reticuli. Microbiology (United Kingdom), 2005, 151, 3603-3614.	0.7	26

#	Article	IF	CITATIONS
406	Changes in the Extracellular Proteome Caused by the Absence of the bldA Gene Product, a Developmentally Significant tRNA, Reveal a New Target for the Pleiotropic Regulator AdpA in Streptomyces coelicolor. Journal of Bacteriology, 2005, 187, 2957-2966.	1.0	58
407	Natural and synthetic tetracycline-inducible promoters for use in the antibiotic-producing bacteria Streptomyces. Nucleic Acids Research, 2005, 33, e87-e87.	6.5	89
409	Effects of growth phase and the developmentally significant bldA-specified tRNA on the membrane-associated proteome of Streptomyces coelicolor. Microbiology (United Kingdom), 2005, 151, 2707-2720.	0.7	35
410	Binding of Two Flaviolin Substrate Molecules, Oxidative Coupling, and Crystal Structure of Streptomyces coelicolor A3(2) Cytochrome P450 158A2. Journal of Biological Chemistry, 2005, 280, 11599-11607.	1.6	142
411	Molecular Characterization of Resistance-Nodulation-Division Transporters from Solvent- and Drug-Resistant Bacteria in Petroleum-Contaminated Soil. Applied and Environmental Microbiology, 2005, 71, 580-586.	1.4	28
412	Identification of Aminotransferase Genes for Biosynthesis of Aminoglycoside Antibiotics from Soil DNA. Bioscience, Biotechnology and Biochemistry, 2005, 69, 1389-1393.	0.6	11
413	Gene Cluster Responsible for Validamycin Biosynthesis in Streptomyces hygroscopicus subsp. jinggangensis 5008. Applied and Environmental Microbiology, 2005, 71, 5066-5076.	1.4	70
414	Accelerating, hyperaccelerating, and decelerating networks. Physical Review E, 2005, 72, 016123.	0.8	36
415	A Novel Quinone-forming Monooxygenase Family Involved in Modification of Aromatic Polyketides. Journal of Biological Chemistry, 2005, 280, 14514-14523.	1.6	49
416	NovG, a DNA-binding protein acting as a positive regulator of novobiocin biosynthesis. Microbiology (United Kingdom), 2005, 151, 1949-1961.	0.7	33
417	Eukaryotic-like signaling and gene regulation in a prokaryote that undergoes multicellular development. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2681-2682.	3.3	20
418	Biocatalytic Conversion of Avermectin to 4"-Oxo-Avermectin: Heterologous Expression of the ema1 Cytochrome P450 Monooxygenase. Applied and Environmental Microbiology, 2005, 71, 6977-6985.	1.4	20
419	Cultivation System Using Glass Beads Immersed in Liquid Medium Facilitates Studies of Streptomyces Differentiation. Applied and Environmental Microbiology, 2005, 71, 2848-2852.	1.4	16
420	Determining the functionality of putative Tat-dependent signal peptides in Streptomyces coelicolor A3(2) by using two different reporter proteins. Microbiology (United Kingdom), 2005, 151, 2189-2198.	0.7	23
421	Biocatalytic Conversion of Avermectin to 4"-Oxo-Avermectin: Characterization of Biocatalytically Active Bacterial Strains and of Cytochrome P450 Monooxygenase Enzymes and Their Genes. Applied and Environmental Microbiology, 2005, 71, 6968-6976.	1.4	29
422	Heterologous Expression of Novobiocin and Clorobiocin Biosynthetic Gene Clusters. Applied and Environmental Microbiology, 2005, 71, 2452-2459.	1.4	87
423	Biochemical Activities of the absA Two-Component System of Streptomyces coelicolor. Journal of Bacteriology, 2005, 187, 687-696.	1.0	59
424	Catabolism of Benzoate and Phthalate in Rhodococcus sp. Strain RHA1: Redundancies and Convergence. Journal of Bacteriology, 2005, 187, 4050-4063.	1.0	140

#	ARTICLE	IF	Citations
425	Light-Induced Carotenogenesis in Streptomyces coelicolor A3(2): Identification of an Extracytoplasmic Function Sigma Factor That Directs Photodependent Transcription of the Carotenoid Biosynthesis Gene Cluster. Journal of Bacteriology, 2005, 187, 1825-1832.	1.0	116
426	Desferrioxamine E produced by Streptomyces griseus stimulates growth and development of Streptomyces tanashiensis. Microbiology (United Kingdom), 2005, 151, 2899-2905.	0.7	151
427	Evidence That the Streptomyces Developmental Protein WhiD, a Member of the WhiB Family, Binds a [4Fe-4S] Cluster. Journal of Biological Chemistry, 2005, 280, 8309-8315.	1.6	103
428	TheStreptomycesSubtilisin Inhibitor (SSI) Gene inStreptomyces coelicolorA3(2). Bioscience, Biotechnology and Biochemistry, 2005, 69, 1624-1629.	0.6	17
430	Gene Cloning and Molecular Characterization of an Extracellular Poly(l-Lactic Acid) Depolymerase from Amycolatopsis sp. Strain K104-1. Journal of Bacteriology, 2005, 187, 7333-7340.	1.0	22
431	Dual Transcriptional Control of amfTSBA, Which Regulates the Onset of Cellular Differentiation in Streptomyces griseus. Journal of Bacteriology, 2005, 187, 135-142.	1.0	26
432	An acyl-CoA dehydrogenase is involved in the formation of the Î"cis3 double bond in the acyl residue of the lipopeptide antibiotic friulimicin in Actinoplanes friuliensis. Microbiology (United Kingdom), 2005, 151, 1963-1974.	0.7	27
433	The Iron-Regulated iupABC Operon Is Required for Saprophytic Growth of the Intracellular Pathogen Rhodococcus equi at Low Iron Concentrations. Journal of Bacteriology, 2005, 187, 3438-3444.	1.0	19
434	Developmental-Stage-Specific Assembly of ParB Complexes in Streptomyces coelicolor Hyphae. Journal of Bacteriology, 2005, 187, 3572-3580.	1.0	49
435	Characterization of PmfR, the Transcriptional Activator of the pAO1-Borne purU-mabO-folD Operon of Arthrobacter nicotinovorans. Journal of Bacteriology, 2005, 187, 3062-3070.	1.0	19
436	Organization of the biosynthetic gene cluster for the macrolide concanamycin A in Streptomyces neyagawaensis ATCC 27449. Microbiology (United Kingdom), 2005, 151, 3161-3169.	0.7	79
437	Genome-scale analysis of Streptomyces coelicolor A3(2) metabolism. Genome Research, 2005, 15, 820-829.	2.4	215
438	Improving Drug Discovery From Microorganisms. , 2005, , 95-106.		18
439	Integrated Approaches for Discovering Novel Drugs From Microbial Natural Products. , 2005, , 33-55.		23
440	Molecular Characterization of Plasmid pBM300 from Bacillus megaterium QM B1551. Applied and Environmental Microbiology, 2005, 71, 3068-3076.	1.4	14
441	Tool-Box: Tailoring Enzymes for Bio-Combinatorial Lead Development and as Markers for Genome-Based Natural Product Lead Discovery. , 2005, , 233-259.		6
442	Prerequisites for Combinatorial Biosynthesis: Evolution of Hybrid NRPS/PKS Gene Clusters. , 2005, , 107-126.		6
443	Sources of Polyketides and Non-Ribosomal Peptides. , 2005, , 19-41.		8

#	Article	IF	CITATIONS
444	Nystatin Biosynthesis and Transport: nysH and nysG Genes Encoding a Putative ABC Transporter System in Streptomyces noursei ATCC 11455 Are Required for Efficient Conversion of 10-Deoxynystatin to Nystatin. Antimicrobial Agents and Chemotherapy, 2005, 49, 4576-4583.	1.4	21
445	Functional Cross-talk between Fatty Acid Synthesis and Nonribosomal Peptide Synthesis in Quinoxaline Antibiotic-producing Streptomycetes. Journal of Biological Chemistry, 2005, 280, 4339-4349.	1.6	34
446	Transcriptional Control by A-Factor of strR, the Pathway-Specific Transcriptional Activator for Streptomycin Biosynthesis in Streptomyces griseus. Journal of Bacteriology, 2005, 187, 5595-5604.	1.0	66
447	Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiology (United Kingdom), 2005, 151, 1507-1523.	0.7	317
448	The Role of the Novel Fem Protein VanK in Vancomycin Resistance in Streptomyces coelicolor. Journal of Biological Chemistry, 2005, 280, 13055-13061.	1.6	137
449	Conserved indels in protein sequences that are characteristic of the phylum Actinobacteria. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 2401-2412.	0.8	110
450	Ancestral antibiotic resistance in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12200-12205.	3.3	283
451	Isolation and Functional Analysis of Cytochrome P450 CYP153A Genes from Various Environments. Bioscience, Biotechnology and Biochemistry, 2005, 69, 2421-2430.	0.6	98
452	Novel Lectin-Like Bacteriocins of Biocontrol Strain Pseudomonas fluorescens Pf-5. Applied and Environmental Microbiology, 2005, 71, 5197-5207.	1.4	102
453	Regulation of secondary metabolism in streptomycetes. Current Opinion in Microbiology, 2005, 8, 208-215.	2.3	672
454	Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication. Current Opinion in Microbiology, 2005, 8, 282-293.	2.3	163
455	Microbial starch-binding domain. Current Opinion in Microbiology, 2005, 8, 260-267.	2.3	91
456	Sigma and RNA Polymerase: An On-Again, Off-Again Relationship?. Molecular Cell, 2005, 20, 335-345.	4.5	149
457	Functional analysis of sigH expression in Corynebacterium glutamicum. Biochemical and Biophysical Research Communications, 2005, 331, 1542-1547.	1.0	52
458	Regional organization of gene expression in Streptomyces coelicolor. Gene, 2005, 353, 53-66.	1.0	43
459	Gas vesicles in actinomycetes: old buoys in novel habitats?. Trends in Microbiology, 2005, 13, 350-354.	3.5	60
460	Nitric oxide synthase inhibitors and nitric oxide donors modulate the biosynthesis of thaxtomin A, a nitrated phytotoxin produced by Streptomyces spp Nitric Oxide - Biology and Chemistry, 2005, 12, 46-53.	1.2	37
461	Oxidative activities of heterologously expressed CYP107B1 and CYP105D1 in whole-cell biotransformation using Streptomyces lividans TK24. Journal of Bioscience and Bioengineering, 2005, 100, 567-572.	1.1	14

#	Article	IF	CITATIONS
462	MT FdR: a ferredoxin reductase from M. tuberculosis that couples to MT CYP51. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1707, 157-169.	0.5	18
463	Natural products to drugs: daptomycin and related lipopeptide antibiotics. Natural Product Reports, 2005, 22, 717.	5.2	371
464	Comparative Genomics in Prokaryotes. , 2005, , 585-675.		23
465	The Diversity and Importance of Microbial Cytochromes P450. , 2005, , 585-617.		20
467	Analysis of gene expression in operons of Streptomyces coelicolor. Genome Biology, 2006, 7, R46.	13.9	34
468	Unlocking Streptomyces spp. for Use as Sustainable Industrial Production Platforms by Morphological Engineering. Applied and Environmental Microbiology, 2006, 72, 5283-5288.	1.4	117
469	Intraspecific Variability of the Terminal Inverted Repeats of the Linear Chromosome of Streptomyces ambofaciens. Journal of Bacteriology, 2006, 188, 6599-6610.	1.0	32
470	Evolution of the Terminal Regions of the Streptomyces Linear Chromosome. Molecular Biology and Evolution, 2006, 23, 2361-2369.	3.5	96
471	Exploration of Genes That Encode a Carbocycle-Forming Enzyme Involved in Biosynthesis of Aminoglycoside Antibiotics from the Environmental DNA. Bioscience, Biotechnology and Biochemistry, 2006, 70, 1711-1716.	0.6	7
472	Metabolic profiling to reflect gene expression inStreptomyces tenjimariensis. Industrial Biotechnology, 2006, 2, 51-54.	0.5	2
473	ExploitingStreptomyces coelicolorA3(2) P450s as a model for application in drug discovery. Expert Opinion on Drug Metabolism and Toxicology, 2006, 2, 27-40.	1.5	41
474	Genome-wide prediction of G4 DNA as regulatory motifs: Role in Escherichia coli global regulation. Genome Research, 2006, 16, 644-655.	2.4	287
475	Genome-Wide Survey of Transcription Factors in Prokaryotes Reveals Many Bacteria-Specific Families Not Found in Archaea. DNA Research, 2006, 12, 269-280.	1.5	67
476	Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evolutionary Biology, 2006, 6, 95.	3.2	388
477	Evolution of Plant Pathogenicity in Streptomyces. Annual Review of Phytopathology, 2006, 44, 469-487.	3.5	260
478	Biophysical Characterization of the Enzyme I of the Streptomyces coelicolor Phosphoenolpyruvate:Sugar Phosphotransferase System. Biophysical Journal, 2006, 90, 4592-4604.	0.2	14
479	Post-genomics of the model haloarchaeon Halobacterium sp. NRC-1. Saline Systems, 2006, 2, 3.	2.0	54
480	Type III Polyketide Synthase β-Ketoacyl-ACP Starter Unit and Ethylmalonyl-CoA Extender Unit Selectivity Discovered byStreptomyces coelicolorGenome Mining. Journal of the American Chemical Society, 2006, 128, 14754-14755.	6.6	140

#	Article	IF	CITATIONS
481	The Family Streptomycetaceae, Part I: Taxonomy. , 2006, , 538-604.		72
482	How Phosphotransferase System-Related Protein Phosphorylation Regulates Carbohydrate Metabolism in Bacteria. Microbiology and Molecular Biology Reviews, 2006, 70, 939-1031.	2.9	1,184
483	Genome Mining inStreptomycescoelicolor:Â Molecular Cloning and Characterization of a New Sesquiterpene Synthase. Journal of the American Chemical Society, 2006, 128, 6022-6023.	6.6	134
484	Structural and Functional Studies on SCO1815:  A β-Ketoacyl-Acyl Carrier Protein Reductase from Streptomyces coelicolor A3(2). Biochemistry, 2006, 45, 14085-14093.	1.2	32
485	The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15582-15587.	3. 3	586
486	Ligand-Assisted Inhibition in Cytochrome P450 158A2 from Streptomyces coelicolor A3(2),. Biochemistry, 2006, 45, 7493-7500.	1.2	4
487	Evolution of New Function in the GTP Cyclohydrolase II Proteins ofStreptomyces coelicolorâ€. Biochemistry, 2006, 45, 12144-12155.	1.2	19
488	Pentapeptide Repeat Proteinsâ€. Biochemistry, 2006, 45, 1-10.	1.2	160
489	Spectroscopic Characterization of a High-Potential Lipo-Cupredoxin Found in Streptomyces coelicolor. Journal of the American Chemical Society, 2006, 128, 14579-14589.	6.6	15
490	Streptomyces coelicolor oxidase (SCO2837p): A new free radical metalloenzyme secreted by Streptomyces coelicolor A3(2). Archives of Biochemistry and Biophysics, 2006, 452, 108-118.	1.4	16
491	The cytochrome P450 gene family CYP157 does not contain EXXR in the K-helix reducing the absolute conserved P450 residues to a single cysteine. FEBS Letters, 2006, 580, 6338-6342.	1.3	41
492	ShyA, a membrane protein for proper septation of hyphae in Streptomyces. Biochemical and Biophysical Research Communications, 2006, 343, 369-377.	1.0	1
493	Î ³ -Butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Current Opinion in Microbiology, 2006, 9, 287-294.	2.3	311
494	The truth about antibiotics. International Journal of Medical Microbiology, 2006, 296, 163-170.	1.5	186
495	Characterization of a two-gene operon epeRA involved in multidrug resistance in Streptomyces clavuligerus. Research in Microbiology, 2006, 157, 559-568.	1.0	8
496	Structure and expression of the atp operon coding for F1F0-ATP synthase from the antibiotic-producing actinomycete Nonomuraea sp. ATCC 39727. Research in Microbiology, 2006, 157, 675-683.	1.0	8
497	Purification and characterization of the second Streptomyces phospholipase A2 refolded from an inclusion body. Protein Expression and Purification, 2006, 50, 82-88.	0.6	11
498	MtrAB–LpqB: a conserved three-component system in actinobacteria?. Trends in Microbiology, 2006, 14, 444-449.	3.5	57

#	Article	IF	Citations
499	The genome of the filamentous fungus Ashbya gossypii: annotation and evolutionary implications. , 0, , $197-232$.		2
500	Sequence Diversity of Type-Il Polyketide Synthase Genes in Streptomyces. Nihon Hosenkin Gakkai Shi = Actinomycetologica, 2006, 20, 42-48.	0.3	13
501	Advances in the Development of Genetic Tools for the Genus Rhodococcus. Nihon Hosenkin Gakkai Shi = Actinomycetologica, 2006, 20, 55-61.	0.3	8
502	CYP121, CYP51 and associated redox systems in Mycobacterium tuberculosis: towards deconvoluting enzymology of P450 systems in a human pathogen. Biochemical Society Transactions, 2006, 34, 1178-1182.	1.6	15
503	Understanding electron transport systems of Streptomyces cytochrome P450. Biochemical Society Transactions, 2006, 34, 1183-1185.	1.6	24
504	Biocatalytic conversion of avermectin into $4\hat{a}\in^3$ -oxo-avermectin: discovery, characterization, heterologous expression and specificity improvement of the cytochrome P450 enzyme. Biochemical Society Transactions, 2006, 34, 1236-1240.	1.6	14
505	放線èŒã,²ãfŽãfè§£æžã,²å¿œç"¨ã⊷ãŸæœ‰ç"¨ç‰©è³²ç"Ÿç"£ç³»ã®æ§‹ç⁻‰. Kagaku To Seibutsu, 2006, 44,	39.b -398.	0
506	Crystallization and preliminary X-ray analysis of the aromatic prenyltransferase CloQ from the clorobiocin biosynthetic cluster of Streptomyces roseochromogenes. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 1153-1155.	0.7	12
507	Mapping and comprehensive analysis of the extracellular and cell surface proteome of the human pathogenCorynebacterium diphtheriae. Proteomics, 2006, 6, 2465-2476.	1.3	46
508	Compensatory effect of the minorStreptomyces lividans type I signal peptidases on the SipY major signal peptidase deficiency as determined by extracellular proteome analysis. Proteomics, 2006, 6, 4137-4146.	1.3	21
509	A proteomic analysis of Streptomyces coelicolor programmed cell death. Proteomics, 2006, 6, 6008-6022.	1.3	52
510	Identification of erythrobactin, a hydroxamate-type siderophore produced by Saccharopolyspora erythraea. Letters in Applied Microbiology, 2006, 42, 375-380.	1.0	24
511	A putative proteinase gene is involved in regulation of landomycin E biosynthesis inStreptomyces globisporus1912. FEMS Microbiology Letters, 2006, 255, 280-285.	0.7	9
512	Identification of genes involved in siderophore transport inStreptomyces coelicolorA3(2). FEMS Microbiology Letters, 2006, 262, 57-64.	0.7	29
513	How high G+C Gram-positive bacteria and in particular bifidobacteria cope with heat stress: protein players and regulators. FEMS Microbiology Reviews, 2006, 30, 734-759.	3.9	48
514	The evolution of development in Streptomyces analysed by genome comparisons. FEMS Microbiology Reviews, 2006, 30, 651-672.	3.9	130
515	Crystal structure and enzymatic properties of a bacterial family 19 chitinase reveal differences from plant enzymes. FEBS Journal, 2006, 273, 4889-4900.	2.2	80
516	cvhA Gene of Streptomyces hygroscopicus 10-22 Encodes a Negative Regulator for Mycelia Development. Acta Biochimica Et Biophysica Sinica, 2006, 38, 271-280.	0.9	5

#	Article	IF	CITATIONS
517	Morphogenetic surfactants and their role in the formation of aerial hyphae in Streptomyces coelicolor. Molecular Microbiology, 2006, 59, 731-742.	1.2	103
518	Nur, a nickel-responsive regulator of the Fur family, regulates superoxide dismutases and nickel transport in Streptomyces coelicolor. Molecular Microbiology, 2006, 59, 1848-1858.	1.2	125
519	The RNA polymerase-binding protein RbpA confers basal levels of rifampicin resistance on Streptomyces coelicolor. Molecular Microbiology, 2006, 60, 687-696.	1.2	58
520	MreB of Streptomyces coelicolor is not essential for vegetative growth but is required for the integrity of aerial hyphae and spores. Molecular Microbiology, 2006, 60, 838-852.	1.2	98
521	Increased expression of ribosome recycling factor is responsible for the enhanced protein synthesis during the late growth phase in an antibiotic-overproducing Streptomyces coelicolor ribosomal rpsL mutant. Molecular Microbiology, 2006, 61, 883-897.	1.2	72
522	A glutamic acid 3-methyltransferase encoded by an accessory gene locus important for daptomycin biosynthesis in Streptomyces roseosporus. Molecular Microbiology, 2006, 61, 1294-1307.	1.2	63
523	The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Molecular Microbiology, 2006, 61, 1237-1251.	1.2	188
524	Proteins encoded by the conservon of Streptomyces coelicolor A3(2) comprise a membrane-associated heterocomplex that resembles eukaryotic G protein-coupled regulatory system. Molecular Microbiology, 2006, 62, 1534-1546.	1.2	36
525	Leaving on the lights: host-specific derepression of Mycobacterium tuberculosis gene expression by anti-sigma factor gene mutations. Molecular Microbiology, 2006, 62, 1217-1219.	1.2	5
526	Self-activation of Serine/Threonine Kinase AfsK on Autophosphorylation at Threonine-168. Journal of Antibiotics, 2006, 59, 117-123.	1.0	12
527	The use of genome scale metabolic flux variability analysis for process feed formulation based on an investigation of the effects of the zwf mutation on antibiotic production in Streptomyces coelicolor. Enzyme and Microbial Technology, 2006, 39, 1347-1353.	1.6	24
528	Whole genome analysis of non-optimal codon usage in secretory signal sequences of Streptomyces coelicolor. BioSystems, 2006, 85, 225-230.	0.9	16
529	Genomic Mining for Aspergillus Natural Products. Chemistry and Biology, 2006, 13, 31-37.	6.2	324
530	Functional Analysis of the Validamycin Biosynthetic Gene Cluster and Engineered Production of Validoxylamine A. Chemistry and Biology, 2006, 13, 387-397.	6.2	92
531	Production of Hygromycin A Analogs in Streptomyces hygroscopicus NRRL 2388 through Identification and Manipulation of the Biosynthetic Gene Cluster. Chemistry and Biology, 2006, 13, 753-764.	6.2	41
532	Metabolic Engineering of Pseudomonas putida for Methylmalonyl-CoA Biosynthesis to Enable Complex Heterologous Secondary Metabolite Formation. Chemistry and Biology, 2006, 13, 1253-1264.	6.2	66
533	Rational strain improvement for enhanced clavulanic acid production by genetic engineering of the glycolytic pathway in Streptomyces clavuligerus. Metabolic Engineering, 2006, 8, 240-252.	3.6	93
534	Streptomyces inside-out: a new perspective on the bacteria that provide us with antibiotics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 761-768.	1.8	217

#	Article	IF	CITATIONS
535	Solution structure of Asl1650, an acyl carrier protein from Anabaenasp. PCC 7120 with a variant phosphopantetheinylation-site sequence. Protein Science, 2006, 15, 1030-1041.	3.1	19
536	Predicted highly expressed genes in Nocardia farcinica and the implication for its primary metabolism and nocardial virulence. Antonie Van Leeuwenhoek, 2006, 89, 135-146.	0.7	33
537	Identification of genes necessary for jinggangmycin biosynthesis from Streptomyces hygroscopicus 10-22. Antonie Van Leeuwenhoek, 2006, 90, 29-39.	0.7	19
538	Signature proteins that are distinctive characteristics of Actinobacteria and their subgroups. Antonie Van Leeuwenhoek, 2006, 90, 69-91.	0.7	115
539	Genetic control for light-induced carotenoid production in non-phototrophic bacteria. Journal of Industrial Microbiology and Biotechnology, 2006, 33, 88-93.	1.4	43
540	Multiple pathways for acetate assimilation in Streptomyces cinnamonensis. Journal of Industrial Microbiology and Biotechnology, 2006, 33, 141-150.	1.4	19
541	A framework to analyze multiple time series data: A case study with Streptomyces coelicolor. Journal of Industrial Microbiology and Biotechnology, 2006, 33, 159-172.	1.4	36
542	Targeting polyketide synthase gene pool within actinomycetes: new degenerate primers. Journal of Industrial Microbiology and Biotechnology, 2006, 33, 423-430.	1.4	14
543	Analysis of myxobacterial secondary metabolism goes molecular. Journal of Industrial Microbiology and Biotechnology, 2006, 33, 577-588.	1.4	71
544	Are antibiotics naturally antibiotics?. Journal of Industrial Microbiology and Biotechnology, 2006, 33, 496-499.	1.4	224
545	Actinobacteria Cyclophilins: Phylogenetic Relationships and Description of New Class- and Order-Specific Paralogues. Journal of Molecular Evolution, 2006, 63, 719-732.	0.8	9
546	Functional expression system for cytochrome P450 genes using the reductase domain of self-sufficient P450RhF from Rhodococcus sp. NCIMB 9784. Applied Microbiology and Biotechnology, 2006, 71, 455-462.	1.7	79
547	Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol. Applied Microbiology and Biotechnology, 2006, 72, 745-755.	1.7	95
548	Catalytic Domain of AfsKav Modulates Both Secondary Metabolism and Morphologic Differentiation in Streptomyces avermitilis ATCC 31272. Current Microbiology, 2006, 53, 204-208.	1.0	15
549	Characterization of the ectoine biosynthesis genes of haloalkalotolerant obligate methanotroph "Methylomicrobium alcaliphilum 20Z― Archives of Microbiology, 2006, 184, 286-297.	1.0	97
550	Effect of SsrA (tmRNA) tagging system on translational regulation in Streptomyces. Archives of Microbiology, 2006, 184, 343-352.	1.0	14
551	Bacterial type III polyketide synthases: phylogenetic analysis and potential for the production of novel secondary metabolites by heterologous expression in pseudomonads. Archives of Microbiology, 2006, 185, 28-38.	1.0	102
552	Cascade of sigma factors in streptomycetes: identification of a new extracytoplasmic function sigma factor If that is under the control of the stress-response sigma factor If hin Streptomyces coelicolor A3(2). Archives of Microbiology, 2006, 186, 435-446.	1.0	16

#	ARTICLE	IF	CITATIONS
553	Investigation of the functional properties and regulation of three glutamine synthetase-like genes in Streptomyces coelicolor A3(2). Archives of Microbiology, 2006, 186, 447-458.	1.0	45
554	The historical delivery of antibiotics from microbial natural productsâ€"Can history repeat?. Biochemical Pharmacology, 2006, 71, 981-990.	2.0	169
555	Antibacterial drug discoveryâ€"Then, now and the genomics future. Biochemical Pharmacology, 2006, 71, 901-909.	2.0	84
556	Evolution of transcriptional regulatory networks in microbial genomes. Current Opinion in Structural Biology, 2006, 16, 420-429.	2.6	61
557	Deciphering the Biosynthesis Pathway of the Antitumor Thiocoraline from a Marine Actinomycete and Its Expression in Two Streptomyces Species. ChemBioChem, 2006, 7, 366-376.	1.3	159
558	The thioredoxin system fromStreptomyces coelicolor. Journal of Basic Microbiology, 2006, 46, 47-55.	1.8	12
559	Gas Vesicles of Archaea and Bacteria. Microbiology Monographs, 2006, , 115-140.	0.3	9
561	Expression of Cre recombinase during transient phage infection permits efficient marker removal in Streptomyces. Nucleic Acids Research, 2006, 34, e20-e20.	6.5	33
563	The Evolution of Two-Component Systems in Bacteria Reveals Different Strategies for Niche Adaptation. PLoS Computational Biology, 2006, 2, e143.	1.5	181
564	Making Ends Meet: Repairing Breaks in Bacterial DNA by Non-Homologous End-Joining. PLoS Genetics, 2006, 2, e8.	1.5	166
565	Partial characterization of a Saccharopolyspora isolated from a preserved lab dissection specimen. Transactions of the Kansas Academy of Science, 2006, 109, 199-206.	0.0	0
566	Amplification of the entire kanamycin biosynthetic gene cluster during empirical strain improvement of Streptomyces kanamyceticus. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9661-9666.	3.3	95
567	A New GntR Family Transcriptional Regulator in Streptomyces coelicolor Is Required for Morphogenesis and Antibiotic Production and Controls Transcription of an ABC Transporter in Response to Carbon Source. Journal of Bacteriology, 2006, 188, 7477-7487.	1.0	69
568	Biochemical and Structural Characterization of an Essential Acyl Coenzyme A Carboxylase from Mycobacterium tuberculosis. Journal of Bacteriology, 2006, 188, 477-486.	1.0	79
569	Regulation of LiaRS-Dependent Gene Expression in Bacillus subtilis: Identification of Inhibitor Proteins, Regulator Binding Sites, and Target Genes of a Conserved Cell Envelope Stress-Sensing Two-Component System. Journal of Bacteriology, 2006, 188, 5153-5166.	1.0	189
570	Multiple biosynthetic and uptake systems mediate siderophore-dependent iron acquisition in Streptomyces coelicolor A3(2) and Streptomyces ambofaciens ATCC 23877. Microbiology (United) Tj ETQq1 1 ().7 8 4314	rgBID#Overloo
571	DevA, a GntR-Like Transcriptional Regulator Required for Development in Streptomyces coelicolor. Journal of Bacteriology, 2006, 188, 5014-5023.	1.0	51
572	The Ïf E Cell Envelope Stress Response of Streptomyces coelicolor Is Influenced by a Novel Lipoprotein, CseA. Journal of Bacteriology, 2006, 188, 7222-7229.	1.0	57

#	Article	IF	CITATIONS
573	Replisome Localization in Vegetative and Aerial Hyphae of Streptomyces coelicolor. Journal of Bacteriology, 2006, 188, 7311-7316.	1.0	41
574	arsRBOCT Arsenic Resistance System Encoded by Linear Plasmid pHZ227 in Streptomyces sp. Strain FR-008. Applied and Environmental Microbiology, 2006, 72, 3738-3742.	1.4	66
575	RNA 3′-tail synthesis in Streptomyces: in vitro and in vivo activities of RNase PH, the SCO3896 gene product and polynucleotide phosphorylase. Microbiology (United Kingdom), 2006, 152, 627-636.	0.7	30
576	Critical Residues and Novel Effects of Overexpression of the Streptomyces coelicolor Developmental Protein BldB: Evidence for a Critical Interacting Partner. Journal of Bacteriology, 2006, 188, 8189-8195.	1.0	28
577	Similar compositional biases are caused by very different mutational effects. Genome Research, 2006, 16, 1537-1547.	2.4	87
578	Pectate lyase C from Bacillus subtilis: a novel endo-cleaving enzyme with activity on highly methylated pectin. Microbiology (United Kingdom), 2006, 152, 617-625.	0.7	51
579	Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Research, 2006, 17, 7-15.	2.4	352
580	Diversity of Telomere Palindromic Sequences and Replication Genes among Streptomyces Linear Plasmids. Applied and Environmental Microbiology, 2006, 72, 5728-5733.	1.4	32
581	In Vitro Deoxynucleotidylation of the Terminal Protein of Streptomyces Linear Chromosomes. Applied and Environmental Microbiology, 2006, 72, 7959-7961.	1.4	13
582	Cluster of DnaA Boxes Involved in Regulation of Streptomyces Chromosome Replication: from In Silico to In Vivo Studies. Journal of Bacteriology, 2006, 188, 6184-6194.	1.0	24
583	Identification of a Gene Negatively Affecting Antibiotic Production and Morphological Differentiation in Streptomyces coelicolor A3(2). Journal of Bacteriology, 2006, 188, 8368-8375.	1.0	41
584	The Ser/Thr Protein Kinase PknB Is Essential for Sustaining Mycobacterial Growth. Journal of Bacteriology, 2006, 188, 7778-7784.	1.0	162
585	Developmental Control of a parAB Promoter Leads to Formation of Sporulation-Associated ParB Complexes in Streptomyces coelicolor. Journal of Bacteriology, 2006, 188, 1710-1720.	1.0	52
586	Antibiotic-producing ability by representatives of a newly discovered lineage of actinomycetes. Microbiology (United Kingdom), 2006, 152, 675-683.	0.7	94
587	Soil To Genomics: TheStreptomycesChromosome. Annual Review of Genetics, 2006, 40, 1-23.	3.2	180
589	Identification and Characterization of Bacterial Cysteine Dioxygenases: a New Route of Cysteine Degradation for Eubacteria. Journal of Bacteriology, 2006, 188, 5561-5569.	1.0	92
590	Genetics of Streptomyces rimosus , the Oxytetracycline Producer. Microbiology and Molecular Biology Reviews, 2006, 70, 704-728.	2.9	103
591	Evolution of sensory complexity recorded in a myxobacterial genome. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15200-15205.	3.3	424

#	Article	IF	CITATIONS
592	Metagenomics., 2006,, 189-206.		0
593	Occurrence of Two 5-Aminolevulinate Biosynthetic Pathways in Streptomyces nodosus subsp. asukaensis Is Linked with the Production of Asukamycin. Journal of Bacteriology, 2006, 188, 5113-5123.	1.0	29
594	The unique DKxanthene secondary metabolite family from the myxobacterium Myxococcus xanthus is required for developmental sporulation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19128-19133.	3.3	96
595	A recA Null Mutation May Be Generated in Streptomyces coelicolor. Journal of Bacteriology, 2006, 188, 6771-6779.	1.0	19
596	The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17927-17932.	3.3	134
597	Cloning and Characterization of the Gene Encoding Endo- $\hat{1}^2$ -1,3-glucanase from Arthrobactersp. NHB-10. Bioscience, Biotechnology and Biochemistry, 2007, 71, 1568-1571.	0.6	11
598	ScbA from Streptomyces coelicolor A3(2) has homology to fatty acid synthases and is able to synthesize \hat{I}^3 -butyrolactones. Microbiology (United Kingdom), 2007, 153, 1394-1404.	0.7	61
599	Resistance to Glycopeptide Antibiotics in the Teicoplanin Producer Is Mediated by van Gene Homologue Expression Directing the Synthesis of a Modified Cell Wall Peptidoglycan. Antimicrobial Agents and Chemotherapy, 2007, 51, 1135-1141.	1.4	35
600	A Systematic and Comprehensive Combinatorial Approach to Simultaneously Improve the Activity, Reaction Specificity, and Thermal Stability of p-Hydroxybenzoate Hydroxylase. Journal of Biological Chemistry, 2007, 282, 19969-19978.	1.6	13
601	Derepression of Excision of Integrative and Potentially Conjugative Elements from Streptococcus thermophilus by DNA Damage Response: Implication of a cl-Related Repressor. Journal of Bacteriology, 2007, 189, 1478-1481.	1.0	29
602	The dasABC Gene Cluster, Adjacent to dasR, Encodes a Novel ABC Transporter for the Uptake of N,N′-Diacetylchitobiose in Streptomyces coelicolor A3(2). Applied and Environmental Microbiology, 2007, 73, 3000-3008.	1.4	60
603	Î ³ -Butyrolactone autoregulator-receptor system involved in lankacidin and lankamycin production and morphological differentiation in Streptomyces rochei. Microbiology (United Kingdom), 2007, 153, 1817-1827.	0.7	51
604	Streptomyces coelicolor Genes ftsL and divIC Play a Role in Cell Division but Are Dispensable for Colony Formation. Journal of Bacteriology, 2007, 189, 8982-8992.	1.0	20
605	Reconstruction of highly heterogeneous gene-content evolution across the three domains of life. Bioinformatics, 2007, 23, i230-i239.	1.8	26
606	The Helical Structure Propensity in the First Helix of the Histidine Phosphocarrier Protein of Streptomyces coelicolor. Protein and Peptide Letters, 2007, 14, 281-290.	0.4	7
607	Chapter 11 Genome Sequencing and Assembly. Perspectives in Bioanalysis, 2007, , 327-355.	0.3	2
608	Anthracycline Biosynthesis: Genes, Enzymes and Mechanisms. Topics in Current Chemistry, 2007, , 101-140.	4.0	21
609	Introduction of the Foreign Transposon Tn <i>4560</i> in <i>Streptomyces coelicolor</i> Leads to Genetic Instability near the Native Insertion Sequence IS <i1649< i=""> Journal of Bacteriology, 2007, 189, 9108-9116.</i1649<>	1.0	13

#	Article	IF	CITATIONS
610	Different Binding Modes of Two Flaviolin Substrate Molecules in Cytochrome P450 158A1 (CYP158A1) Compared to CYP158A2 [,] . Biochemistry, 2007, 46, 8725-8733.	1.2	46
611	CFGP: a web-based, comparative fungal genomics platform. Nucleic Acids Research, 2007, 36, D562-D571.	6.5	76
612	Streptomyces Linear Plasmids: Their Discovery, Functions, Interactions with Other Replicons, and Evolutionary Significance., 2007, , 1-31.		32
613	Osmotically Induced Synthesis of the Compatible Solute Hydroxyectoine Is Mediated by an Evolutionarily Conserved Ectoine Hydroxylase. Journal of Biological Chemistry, 2007, 282, 31147-31155.	1.6	134
614	Effect of protease mutations on the production of xylanases in Streptomyces lividans. Canadian Journal of Microbiology, 2007, 53, 695-701.	0.8	2
615	EFCBP1/NECAB1, a brain-specifically expressed gene with highest abundance in temporal lobe, encodes a protein containing EF-hand and antibiotic biosynthesis monooxygenase domains. DNA Sequence, 2007, 18, 73-79.	0.7	7
616	Inferring Protein Function from Genomic Context., 0,, 1179-1210.		1
617	An Unusual Response Regulator Influences Sporulation at Early and Late Stages in Streptomyces coelicolor. Journal of Bacteriology, 2007, 189, 2873-2885.	1.0	28
618	Altered Metabolic Flux due to Deletion of odhA causes I-Glutamate Overproduction in Corynebacterium glutamicum. Applied and Environmental Microbiology, 2007, 73, 1308-1319.	1.4	129
619	Roles of rapH and rapG in Positive Regulation of Rapamycin Biosynthesis in Streptomyces hygroscopicus. Journal of Bacteriology, 2007, 189, 4756-4763.	1.0	94
620	Phosphate control of phoA, phoC and phoD gene expression in Streptomyces coelicolor reveals significant differences in binding of PhoP to their promoter regions. Microbiology (United Kingdom), 2007, 153, 3527-3537.	0.7	97
621	Effects of deletions of mbtH-like genes on clorobiocin biosynthesis in Streptomyces coelicolor. Microbiology (United Kingdom), 2007, 153, 1413-1423.	0.7	81
622	Dual Role of OhrR as a Repressor and an Activator in Response to Organic Hydroperoxides in Streptomyces coelicolor. Journal of Bacteriology, 2007, 189, 6284-6292.	1.0	70
623	Characterization of Changes to the Cell Surface during the Life Cycle of Streptomyces coelicolor : Atomic Force Microscopy of Living Cells. Journal of Bacteriology, 2007, 189, 2219-2225.	1.0	35
624	Transcriptome dynamics-based operon prediction and verification in Streptomyces coelicolor. Nucleic Acids Research, 2007, 35, 7222-7236.	6.5	30
625	The Zinc-Responsive Regulator Zur Controls a Zinc Uptake System and Some Ribosomal Proteins in Streptomyces coelicolor A3(2). Journal of Bacteriology, 2007, 189, 4070-4077.	1.0	107
626	Conserved <i>cis</i> -Acting Elements Upstream of Genes Composing the Chitinolytic System of Streptomycetes Are DasR-Responsive Elements. Journal of Molecular Microbiology and Biotechnology, 2007, 12, 60-66.	1.0	74
627	Characterization of the Sporulation Control Protein SsgA by Use of an Efficient Method To Create and Screen Random Mutant Libraries in Streptomycetes. Applied and Environmental Microbiology, 2007, 73, 2085-2092.	1.4	7

#	Article	IF	CITATIONS
628	A Genomic View of Sugar Transport in Mycobacterium smegmatis and Mycobacterium tuberculosis. Journal of Bacteriology, 2007, 189, 5903-5915.	1.0	82
629	<i>Streptomyces coelicolor</i> Undergoes Spontaneous Chromosomal End Replacement. Journal of Bacteriology, 2007, 189, 9117-9121.	1.0	9
630	Role of an FtsK-Like Protein in Genetic Stability in Streptomyces coelicolor A3(2). Journal of Bacteriology, 2007, 189, 2310-2318.	1.0	40
631	Zinc-Responsive Regulation of Alternative Ribosomal Protein Genes in Streptomyces coelicolor Involves Zur and İf R. Journal of Bacteriology, 2007, 189, 4078-4086.	1.0	68
632	ã,ãfãfŠãf¼ã,¼ç"Ÿç"£ä¿f進物質ãëã⊷ã┥機èf½ã™ã,‹ã,ãfãfŠãf¼ã,¼é~»å®³ç‰©è³ªã,¢ãfã,µãfŸã,¸ãf	³. Kag aku	TccSeibutsu,
633	Compositional dynamics of guanine and cytosine content in prokaryotic genomes. Research in Microbiology, 2007, 158, 363-370.	1.0	31
634	Structure and evolution of gene regulatory networks in microbial genomes. Research in Microbiology, 2007, 158, 787-794.	1.0	47
635	Marine actinobacteria: new opportunities for natural product search and discovery. Trends in Microbiology, 2007, 15, 491-499.	3.5	349
636	Structure, function and drug targeting in Mycobacterium tuberculosis cytochrome P450 systems. Archives of Biochemistry and Biophysics, 2007, 464, 228-240.	1.4	66
637	An exodeoxyribonuclease from Streptomyces coelicolor: Expression, purification and biochemical characterization. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 630-637.	1.1	2
638	Streptomyces pneumonia in an immunocompetent patient: a case report and literature review. Diagnostic Microbiology and Infectious Disease, 2007, 59, 459-462.	0.8	16
639	Role of $\ddot{l}fH$ paralogs in intracellular melanin formation and spore development in Streptomyces griseus. Gene, 2007, 393, 43-52.	1.0	6
640	Homologs of eukaryotic Ras superfamily proteins in prokaryotes and their novel phylogenetic correlation with their eukaryotic analogs. Gene, 2007, 396, 116-124.	1.0	55
641	AfsR Recruits RNA Polymerase to the afsS Promoter: A Model for Transcriptional Activation by SARPs. Journal of Molecular Biology, 2007, 369, 322-333.	2.0	90
642	Distinctive Topologies of Partner-switching Signaling Networks Correlate with their Physiological Roles. Journal of Molecular Biology, 2007, 369, 1333-1352.	2.0	44
643	Improved reliability of Pseudomonas aeruginosa PCR detection by the use of the species-specific ecfX gene target. Journal of Microbiological Methods, 2007, 70, 20-29.	0.7	106
644	New strategies for combating multidrug-resistant bacteria. Trends in Molecular Medicine, 2007, 13, 260-267.	3 . 5	200
645	Engineering primary metabolic pathways of industrial micro-organisms. Journal of Biotechnology, 2007, 129, 6-29.	1.9	95

#	Article	IF	Citations
646	Small molecules: The lexicon of biodiversity. Journal of Biotechnology, 2007, 129, 3-5.	1.9	23
647	Antibiotics as signalling molecules. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1195-1200.	1.8	463
648	Caenorhabditis eleganshas two genes encoding functionald-aspartate oxidases. FEBS Journal, 2007, 274, 137-149.	2.2	25
649	The global role of ppGpp synthesis in morphological differentiation and antibiotic production in Streptomyces coelicolor A3(2). Genome Biology, 2007, 8, R161.	13.9	121
650	GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism. Genome Biology, 2007, 8, R89.	13.9	197
653	Streptomyces turgidiscabies Secretes a Novel Virulence Protein, Nec1, Which Facilitates Infection. Molecular Plant-Microbe Interactions, 2007, 20, 599-608.	1.4	56
654	Pseudomonas., 2007,,.		9
655	Sugar Transport Systems of <i> Bifidobacterium longum </i> NCC2705. Journal of Molecular Microbiology and Biotechnology, 2007, 12, 9-19.	1.0	89
656	Nitrogen Metabolism in <i>Streptomyces coelicolor</i> Regulation. Journal of Molecular Microbiology and Biotechnology, 2007, 12, 139-146.	1.0	86
657	Species-Specific Secondary Metabolite Production in Marine Actinomycetes of the Genus Salinispora. Applied and Environmental Microbiology, 2007, 73, 1146-1152.	1.4	281
658	Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10376-10381.	3.3	502
659	Molecular Basis for Chloronium-mediated Meroterpene Cyclization. Journal of Biological Chemistry, 2007, 282, 16362-16368.	1.6	157
660	Genomics of <i> Actinobacteria </i> : Tracing the Evolutionary History of an Ancient Phylum. Microbiology and Molecular Biology Reviews, 2007, 71, 495-548.	2.9	852
661	Mechanistic and Structural Basis of Stereospecific $\hat{Cl^2}$ -Hydroxylation in Calcium-Dependent Antibiotic, a Daptomycin-Type Lipopeptide. ACS Chemical Biology, 2007, 2, 187-196.	1.6	107
662	Pseudomonas fluorescens CHAO Produces Enantio-pyochelin, the Optical Antipode of the Pseudomonas aeruginosa Siderophore Pyochelin. Journal of Biological Chemistry, 2007, 282, 35546-35553.	1.6	100
663	Extracellular Carbohydrate Metabolites from Streptomyces coelicolor A3(2). Journal of Natural Products, 2007, 70, 768-771.	1.5	10
664	Actinorhodin Biosynthesis:  Structural Requirements for Post-PKS Tailoring Intermediates Revealed by Functional Analysis of ActVI-ORF1 Reductase. Biochemistry, 2007, 46, 8181-8188.	1.2	28
665	Complete gene expression profiling of Saccharopolyspora erythraea using GeneChip DNA microarrays. Microbial Cell Factories, 2007, 6, 37.	1.9	25

#	Article	IF	CITATIONS
667	Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Natural Product Reports, 2007, 24, 162-190.	5.2	513
668	Histidine Catabolism and Catabolite Regulation. , 2007, , 371-395.		13
669	Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Natural Product Reports, 2007, 24, 1073.	5.2	292
670	The World of "Omics― Genomics, Transcriptomics, Proteomics, and Metabolomics. , 0, , 147-168.		0
671	Isolation of hydroxycitric acid-producing Streptomyces sp. U121 and generation of improved mutants by genome shuffling. Nihon Hosenkin Gakkai Shi = Actinomycetologica, 2007, 21, 40-45.	0.3	2
672	The function of lexical motifs in the organization of the Actinomycetes 5S rRNAs. Brazilian Journal of Microbiology, 2007, 38, 573-579.	0.8	0
673	A Genomic Screening Approach to the Structure-Guided Identification of Drug Candidates from Natural Sources. ChemBioChem, 2007, 8, 757-766.	1.3	92
674	Substrate Profile Analysis and ACP-Mediated Acyl Transfer inStreptomyces coelicolor Type III Polyketide Synthases. ChemBioChem, 2007, 8, 863-868.	1.3	38
675	Artificial Reconstruction of Two Cryptic Angucycline Antibiotic Biosynthetic Pathways. ChemBioChem, 2007, 8, 1577-1584.	1.3	36
676	Stereochemical Integrity of Oxazolone Ring-Containing Jadomycins. ChemBioChem, 2007, 8, 1198-1203.	1.3	46
677	The two-component phoR-phoP system of Streptomyces natalensis: Inactivation or deletion of phoP reduces the negative phosphate regulation of pimaricin biosynthesis. Metabolic Engineering, 2007, 9, 217-227.	3.6	107
678	Novel family of cholesterol esterases produced by actinomycetes bacteria. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 112-120.	1.1	12
679	5S Clavam Biosynthetic Genes Are Located in Both the Clavam and Paralog Gene Clusters in Streptomyces clavuligerus. Chemistry and Biology, 2007, 14, 131-142.	6.2	32
680	Heavy Tools for Genome Mining. Chemistry and Biology, 2007, 14, 7-9.	6.2	25
681	A Designed RNA Shuts Down Transcription. Chemistry and Biology, 2007, 14, 9-11.	6.2	3
682	A Streamlined Metabolic Pathway for the Biosynthesis of Moenomycin A. Chemistry and Biology, 2007, 14, 257-267.	6.2	96
683	Hallmarks of mycolic acid biosynthesis: A comparative genomics study. Proteins: Structure, Function and Bioinformatics, 2007, 69, 358-368.	1.5	11
684	Genomeâ€wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in <i>Streptomyces coelicolor</i> M145 and in a Î" <i>phoP</i> mutant. Proteomics, 2007, 7, 2410-2429.	1.3	121

#	Article	IF	CITATIONS
685	Regulation of methionine/cysteine biosynthesis in Corynebacterium glutamicum and related organisms. Molecular Biology, 2007, 41, 126-136.	0.4	6
686	Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nature Biotechnology, 2007, 25, 447-453.	9.4	348
687	Mining and engineering natural-product biosynthetic pathways. Nature Chemical Biology, 2007, 3, 379-386.	3.9	200
688	Therapeutic treasures from the deep. Nature Chemical Biology, 2007, 3, 457-458.	3.9	44
689	The antibiotic resistome: the nexus of chemical and genetic diversity. Nature Reviews Microbiology, 2007, 5, 175-186.	13.6	1,065
690	Escherichia coli with a linear genome. EMBO Reports, 2007, 8, 181-187.	2.0	64
691	GriC and GriD Constitute a Carboxylic Acid Reductase Involved in Grixazone Biosynthesis in Streptomyces griseus. Journal of Antibiotics, 2007, 60, 380-387.	1.0	24
692	New Aminocoumarin Antibiotics Derived from 4-Hydroxycinnamic Acid are Formed after Heterologous Expression of a Modified Clorobiocin Biosynthetic Gene Cluster. Journal of Antibiotics, 2007, 60, 504-510.	1.0	17
693	Antibiotic production from the ground up. Nature Biotechnology, 2007, 25, 428-429.	9.4	19
694	The obligate aerobic actinomycete <i>Streptomyces coelicolor</i> A3(2) survives extended periods of anaerobic stress. Environmental Microbiology, 2007, 9, 3143-3149.	1.8	45
695	Initiation of actinorhodin export in Streptomyces coelicolor. Molecular Microbiology, 2007, 63, 951-961.	1.2	116
696	Deciphering regulatory mechanisms for secondary metabolite production in the myxobacterium Sorangium cellulosum So ce56. Molecular Microbiology, 2007, 63, 1783-1796.	1.2	46
697	Alignment of multiple chromosomes along helical ParA scaffolding in sporulating Streptomyces hyphae. Molecular Microbiology, 2007, 65, 625-641.	1.2	69
698	Analysis of a genomic island housing genes for DNA Sâ€modification system in <i>Streptomyces lividans</i> 66 and its counterparts in other distantly related bacteria. Molecular Microbiology, 2007, 65, 1034-1048.	1.2	70
699	A linear plasmid truncation induces unidirectional flagellar phase change in H:z66 positive Salmonella Typhi. Molecular Microbiology, 2007, 66, 1207-1218.	1.2	21
700	Diversity and geographical distribution of members of the Streptomyces violaceusniger 16S rRNA gene clade detected by clade-specific PCR primers. FEMS Microbiology Ecology, 2007, 62, 54-63.	1.3	17
701	A genetic and bioinformatic analysis of Streptomyces coelicolorgenes containing TTA codons, possible targets for regulation by a developmentally significant tRNA. FEMS Microbiology Letters, 2007, 266, 20-28.	0.7	43
702	A two-dimensional electrophoresis and mass spectrometry protein analysis of the antibiotic producerNonomuraeasp. ATCC 39727 in different growth conditions. FEMS Microbiology Letters, 2007, 274, 35-41.	0.7	4

#	ARTICLE	IF	Citations
703	Transcriptional regulation of the desferrioxamine gene cluster of Streptomyces coelicoloris mediated by binding of DmdR1 to an iron box in the promoter of thedes Agene. FEBS Journal, 2007, 274, 1110-1122.	2.2	54
704	DNAâ€binding characteristics of the regulator SenR in response to phosphorylation by the sensor histidine autokinase SenS from <i>Streptomyces reticuli</i>). FEBS Journal, 2007, 274, 3900-3913.	2.2	14
705	Statistical Reconstruction of Transcription Factor Activity Using Michaelis-Menten Kinetics. Biometrics, 2007, 63, 816-823.	0.8	30
706	Comparative Analysis of Two-component Signal Transduction System in Two Streptomycete Genomes. Acta Biochimica Et Biophysica Sinica, 2007, 39, 317-325.	0.9	6
707	Comparative genomic hybridizations reveal absence of large Streptomyces coelicolor genomic islands in Streptomyces lividans. BMC Genomics, 2007, 8, 229.	1.2	46
708	New pleiotropic effects of eliminating a rare tRNA from Streptomyces coelicolor, revealed by combined proteomic and transcriptomic analysis of liquid cultures. BMC Genomics, 2007, 8, 261.	1.2	57
709	Architecture of Burkholderia cepacia complex Ïf70 gene family: evidence of alternative primary and clade-specific factors, and genomic instability. BMC Genomics, 2007, 8, 308.	1.2	15
710	A parallel genetic algorithm for single class pattern classification and its application for gene expression profiling in Streptomyces coelicolor. BMC Genomics, 2007, 8, 49.	1.2	13
711	pPSX: A novel vector for the cloning and heterologous expression of antitumor antibiotic gene clusters. Plasmid, 2007, 57, 306-313.	0.4	17
712	Monomeric red fluorescent protein as a reporter for macromolecular localization in Streptomyces coelicolor. Plasmid, 2007, 58, 167-173.	0.4	6
713	Genetic characterization of Mycobacterium tuberculosis clinical isolates with deletions in the plcA–plcB–plcC locus. Tuberculosis, 2007, 87, 21-29.	0.8	5
714	Systems biology of antibiotic production by microorganisms. Natural Product Reports, 2007, 24, 1262.	5.2	151
715	Effect of protein kinase inhibitors on protein phosphorylation and germination of aerial spores from Streptomyces coelicolor. Folia Microbiologica, 2007, 52, 215-22.	1.1	4
716	Complete genome sequence and analysis of the Streptomyces aureofaciens phage $\hat{l}/41/6$. Folia Microbiologica, 2007, 52, 347-358.	1.1	10
717	Hybridization analysis and mapping of the celesticetin gene cluster revealed genes shared with lincomycin biosynthesis. Folia Microbiologica, 2007, 52, 457-462.	1.1	13
718	Protein synthesis elongation factor Tu present in spores of Streptomyces coelicolor can be phosphorylatedin vitro by the spore protein kinase. Folia Microbiologica, 2007, 52, 471-478.	1.1	7
719	A cryptic type I polyketide synthase (cpk) gene cluster in Streptomyces coelicolor A3(2). Archives of Microbiology, 2007, 187, 87-99.	1.0	85
720	Effect of carbohydrates on the production of thaxtomin A by Streptomyces acidiscables. Archives of Microbiology, 2007, 188, 81-88.	1.0	38

#	Article	IF	CITATIONS
721	Identification and characterization of two Streptomyces davawensis riboflavin biosynthesis gene clusters. Archives of Microbiology, 2007, 188, 377-387.	1.0	34
722	Identification and characterization of sawC, a whiA-like gene, essential for sporulation in Streptomyces ansochromogenes. Archives of Microbiology, 2007, 188, 575-582.	1.0	6
723	pspA overexpression in Streptomyces lividans improves both Sec- and Tat-dependent protein secretion. Applied Microbiology and Biotechnology, 2007, 73, 1150-1157.	1.7	49
724	Strategies to unravel the function of orphan biosynthesis pathways: recent examples and future prospects. Applied Microbiology and Biotechnology, 2007, 75, 267-277.	1.7	129
725	Characterization of a novel two-component regulatory system involved in the regulation of both actinorhodin and a type I polyketide in Streptomyces coelicolor. Applied Microbiology and Biotechnology, 2007, 77, 625-635.	1.7	64
726	Characterization of Cold-Shock Protein A of Antarctic Streptomyces sp. AA8321. Protein Journal, 2007, 26, 51-59.	0.7	11
727	A cold-active esterase of Streptomyces coelicolor A3(2): from genome sequence to enzyme activity. Journal of Industrial Microbiology and Biotechnology, 2007, 34, 525-531.	1.4	20
728	Genomic analysis of polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Biodegradation, 2008, 19, 859-881.	1.5	113
729	Characteristics of the surface-located carbohydrate-binding protein CbpC from Streptomyces coelicolor A3(2). Archives of Microbiology, 2008, 190, 119-127.	1.0	10
730	novE and novG act as positive regulators of novobiocin biosynthesis. Archives of Microbiology, 2008, 190, 509-519.	1.0	18
731	Mining Xanthomonas and Streptomyces genomes for new pectinase-encoding sequences and their heterologous expression in Escherichia coli. Applied Microbiology and Biotechnology, 2008, 78, 973-981.	1.7	21
732	Taxonomic distribution of Streptomyces species capable of producing bioactive compounds among strains preserved at NITE/NBRC. Applied Microbiology and Biotechnology, 2008, 80, 287-295.	1.7	16
733	Finding new pathway-specific regulators by clustering method using threshold standard deviation based on DNA chip data of Streptomyces coelicolor. Applied Microbiology and Biotechnology, 2008, 80, 709-717.	1.7	11
734	Heterologous production of epothilones B and D in Streptomyces venezuelae. Applied Microbiology and Biotechnology, 2008, 81, 109-117.	1.7	35
735	Prospects of using marine actinobacteria as probiotics in aquaculture. Applied Microbiology and Biotechnology, 2008, 81, 419-429.	1.7	157
736	Characterization of Heterogeneous LSU rRNA Profiles in Streptomyces coelicolor Under Different Growth Stages and Conditions. Current Microbiology, 2008, 57, 537-541.	1.0	11
737	Expression profiling of Streptomyces peucetius metabolic genes using DNA microarray analysis. Biotechnology and Bioprocess Engineering, 2008, 13, 738-744.	1.4	6
738	The use of the rare UUA codon to define "Expression Space―for genes involved in secondary metabolism, development and environmental adaptation in Streptomyces. Journal of Microbiology, 2008, 46, 1-11.	1.3	123

#	ARTICLE	IF	CITATIONS
739	Comparative genomics of Streptomyces avermitilis, Streptomyces cattleya, Streptomyces maritimus and Kitasatospora aureofaciens using a Streptomyces coelicolor microarray system. Antonie Van Leeuwenhoek, 2008, 93, 1-25.	0.7	32
740	The implication of life style on codon usage patterns and predicted highly expressed genes for three Frankia genomes. Antonie Van Leeuwenhoek, 2008, 93, 335-346.	0.7	37
741	The genome of Streptomyces rimosus subsp. rimosus shows a novel structure compared to other Streptomyces using DNA/DNA microarray analysis. Antonie Van Leeuwenhoek, 2008, 94, 173-186.	0.7	7
742	Evolutionary flux of potentially bldA-dependent Streptomyces genes containing the rare leucine codon TTA. Antonie Van Leeuwenhoek, 2008, 94, 111-126.	0.7	41
743	Genetic and phenotypic evidence for Streptomyces griseus ecovars isolated from a beach and dune sand system. Antonie Van Leeuwenhoek, 2008, 94, 63-74.	0.7	41
744	Actinomycete integrative and conjugative elements. Antonie Van Leeuwenhoek, 2008, 94, 127-143.	0.7	53
745	Biosystematics of alkaliphilic streptomycetes isolated from seven locations across a beach and dune sand system. Antonie Van Leeuwenhoek, 2008, 94, 581-591.	0.7	41
746	Genomic variability among high pristinamycin-producing recombinants of Streptomyces pristinaespiralis revealed by amplified fragment length polymorphism. Biotechnology Letters, 2008, 30, 1423-1429.	1.1	11
747	Structural and functional analysis of the TetR-family transcriptional regulator SCO0332 from <i>Streptomyces coelicolor </i> . Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 198-205.	2.5	12
748	Crystallization and preliminary characterization of a novel haem-binding protein of <i>Streptomyces reticuli </i> . Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 386-390.	0.7	13
749	Structure of a 6-pyruvoyltetrahydropterin synthase homolog from <i>Streptomyces coelicolor</i> Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 875-879.	0.7	2
750	Heterologous Expression And Genetic Engineering of the Phenalinolactone Biosynthetic Gene Cluster by Using Red/ET Recombineering. ChemBioChem, 2008, 9, 447-454.	1.3	44
751	A Type I/Type III Polyketide Synthase Hybrid Biosynthetic Pathway for the Structurally Unique <i>ansa</i>	1.3	49
752	Matrix notation for efficient development of <i>firstâ€principles</i> models within PAT applications: Integrated modeling of antibiotic production with <i>Streptomyces coelicolor</i> and Bioengineering, 2008, 101, 153-171.	1.7	43
753	Cloning, purification and characterization of two lipases from Streptomyces coelicolor A3(2). Enzyme and Microbial Technology, 2008, 42, 381-388.	1.6	35
7 54	Traversing the coordination chemistry and chemical biology of hydroxamic acids. Coordination Chemistry Reviews, 2008, 252, 1387-1408.	9.5	235
755	Sequential Action of Two Flavoenzymes, PgaE and PgaM, in Angucycline Biosynthesis: Chemoenzymatic Synthesis of Gaudimycin C. Chemistry and Biology, 2008, 15, 157-166.	6.2	37
756	Functional Analysis of MycCl and MycG, Cytochrome P450 Enzymes Involved in Biosynthesis of Mycinamicin Macrolide Antibiotics. Chemistry and Biology, 2008, 15, 950-959.	6.2	82

#	Article	IF	Citations
757	In Vitro Reconstituted Biotransformation of 4-Fluorothreonine from Fluoride Ion: Application of the Fluorinase. Chemistry and Biology, 2008, 15, 1268-1276.	6.2	43
758	Selection of objective function in genome scale flux balance analysis for process feed development in antibiotic production. Metabolic Engineering, 2008, 10, 227-233.	3. 6	37
759	Actinoperylone, a novel perylenequinone-type shunt product, from a deletion mutant of the actVA-ORF5 and ORF6 genes for actinorhodin biosynthesis in Streptomyces coelicolor A3(2). Tetrahedron Letters, 2008, 49, 1208-1211.	0.7	11
760	A novel d-stereoselective amino acid amidase from Brevibacterium iodinum: Gene cloning, expression and characterization. Enzyme and Microbial Technology, 2008, 43, 276-283.	1.6	17
761	The oligoribonuclease gene inStreptomyces coelicoloris not transcriptionally or translationally coupled toadpA, a keybldAtarget. FEMS Microbiology Letters, 2008, 286, 60-65.	0.7	8
762	Localization of the ActIII actinorhodin polyketide ketoreductase to the cell wall. FEMS Microbiology Letters, 2008, 287, 15-21.	0.7	6
763	Sigma factors in <i>Pseudomonas aeruginosa</i> . FEMS Microbiology Reviews, 2008, 32, 38-55.	3.9	261
764	Ins and outs of glucose transport systems in eubacteria. FEMS Microbiology Reviews, 2008, 32, 891-907.	3.9	100
765	Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by <i>Streptomyces</i> . EMBO Reports, 2008, 9, 670-675.	2.0	358
766	Cloning of the Gene Cluster Responsible for the Biosynthesis of Brasilicardin A, a Unique Diterpenoid. Journal of Antibiotics, 2008, 61, 164-174.	1.0	53
767	Ca2+-dependent modulation of antibiotic resistance in Streptomyces lividans 66 and Streptomyces coelicolor A3(2). Microbiology, 2008, 77, 559-567.	0.5	8
768	The <i>Streptomyces coelicolor</i> ClnR regulon: identification of new GlnR targets and evidence for a central role of GlnR in nitrogen metabolism in actinomycetes. Molecular Microbiology, 2008, 67, 861-880.	1.2	177
769	Mycothiol regulates and is regulated by a thiolâ€specific antisigma factor RsrA and Ïf ^R in <i>Streptomyces coelicolor</i> Molecular Microbiology, 2008, 68, 861-870.	1.2	84
770	Regulation of mycothiol metabolism by I_f Rand the thiol redox sensor anti-sigma factor RsrA. Molecular Microbiology, 2008, 68, 805-809.	1.2	20
771	The genome of <i>Rhodobacter sphaeroides</i> strain 2.4.1 encodes functional cobinamide salvaging systems of archaeal and bacterial origins. Molecular Microbiology, 2008, 70, 824-836.	1.2	27
772	SIGffRid: A tool to search for sigma factor binding sites in bacterial genomes using comparative approach and biologically driven statistics. BMC Bioinformatics, 2008, 9, 73.	1.2	19
773	The linear chromosome of the plant-pathogenic mycoplasma 'Candidatus Phytoplasma mali'. BMC Genomics, 2008, 9, 306.	1.2	207
774	Genome-wide transcriptome analysis reveals that a pleiotropic antibiotic regulator, AfsS, modulates nutritional stress response in Streptomyces coelicolor A3(2). BMC Genomics, 2008, 9, 56.	1.2	48

#	Article	IF	Citations
775	Phylogenetic distribution and membrane topology of the LytR-CpsA-Psr protein family. BMC Genomics, 2008, 9, 617.	1.2	71
776	Natural products genomics. Microbial Biotechnology, 2008, 1, 275-282.	2.0	16
777	Actinomycete integrative and conjugative pMEA-like elements of Amycolatopsis and Saccharopolyspora decoded. Plasmid, 2008, 59, 202-216.	0.4	13
778	pPSY: A vector for the stable cloning and expression of streptomycete single gene phenotypes in Escherichia coli. Plasmid, 2008, 60, 53-58.	0.4	7
779	Biodiversity, chemical diversity and drug discovery. , 2008, 65, 141-174.		27
780	Defining the Epitope Region of a Peptide from the Streptomyces coelicolor Phosphoenolpyruvate:Sugar Phosphotransferase System Able to Bind to the Enzyme I. Biophysical Journal, 2008, 95, 1336-1348.	0.2	11
781	Risks from GMOs due to Horizontal Gene Transfer. Environmental Biosafety Research, 2008, 7, 123-149.	1.1	128
782	Subsurface Biomolecular Imaging of <i>Streptomyces </i> Coelicolor Using Secondary Ion Mass Spectrometry. Analytical Chemistry, 2008, 80, 1942-1951.	3.2	61
783	Metagenomics and Antibiotic Discovery from Uncultivated Bacteria. Microbiology Monographs, 2008, , 217-236.	0.3	1
784	The Origins of Multicellularity and the Early History of the Genetic Toolkit For Animal Development. Annual Review of Genetics, 2008, 42, 235-251.	3.2	268
786	Cyclic Lipopeptide Antibiotics. Studies in Natural Products Chemistry, 2008, , 693-751.	0.8	20
787	Genome Sequence of the Streptomycin-Producing Microorganism <i>Streptomyces griseus</i> IFO 13350. Journal of Bacteriology, 2008, 190, 4050-4060.	1.0	534
788	Genome Mining for Novel Natural Product Discovery. Journal of Medicinal Chemistry, 2008, 51, 2618-2628.	2.9	189
789	Chitinase inhibitor allosamidin promotes chitinase production of Streptomyces generally. International Journal of Biological Macromolecules, 2008, 43, 13-19.	3.6	13
790	A Nested Gene in Streptomyces Bacteria Encodes a Protein Involved in Quaternary Complex Formation. Journal of Molecular Biology, 2008, 375, 1212-1221.	2.0	8
791	Crystal Structures of the Streptomyces coelicolor TetR-Like Protein ActR Alone and in Complex with Actinorhodin or the Actinorhodin Biosynthetic Precursor (S)-DNPA. Journal of Molecular Biology, 2008, 376, 1377-1387.	2.0	59
792	The Organization of the Bacterial Genome. Annual Review of Genetics, 2008, 42, 211-233.	3.2	266
793	Redox control in actinobacteria. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 1201-1216.	1.1	113

#	Article	IF	CITATIONS
794	The molecular origins of multicellular transitions. Current Opinion in Genetics and Development, 2008, 18, 472-478.	1.5	68
795	Lower GC-content in editing exons: Implications for regulation by molecular characteristics maintained by selection. Gene, 2008, 421, 14-19.	1.0	2
796	Renaissance in antibacterial discovery from actinomycetes. Current Opinion in Pharmacology, 2008, 8, 557-563.	1.7	413
797	Molecular cloning and functional analysis of minD gene from streptomyces lavendulae ATCC25233. Journal of Bioscience and Bioengineering, 2008, 106, 303-305.	1.1	5
798	Mycelium Differentiation and Antibiotic Production in Submerged Cultures of <i>Streptomyces coelicolor </i> . Applied and Environmental Microbiology, 2008, 74, 3877-3886.	1.4	152
799	A transposon-based strategy to scale up myxothiazol production in myxobacterial cell factories. Journal of Biotechnology, 2008, 135, 255-261.	1.9	15
800	An Alternative Menaquinone Biosynthetic Pathway Operating in Microorganisms. Science, 2008, 321, 1670-1673.	6.0	233
801	The Bifunctional Flavokinase/Flavin Adenine Dinucleotide Synthetase from <i>Streptomyces davawensis</i> Produces Inactive Flavin Cofactors and Is Not Involved in Resistance to the Antibiotic Roseoflavin. Journal of Bacteriology, 2008, 190, 1546-1553.	1.0	50
802	Biochemistry and Molecular Genetics of the Biosynthesis of the Earthy Odorant Methylisoborneol in <i>Streptomyces coelicolor</i> . Journal of the American Chemical Society, 2008, 130, 8908-8909.	6.6	125
803	Diversity of Polyketide Synthases Found in the Aspergillus and Streptomyces Genomes. Molecular Pharmaceutics, 2008, 5, 226-233.	2.3	17
804	Nonribosomal Peptide Synthetases Involved in the Production of Medically Relevant Natural Products. Molecular Pharmaceutics, 2008, 5, 191-211.	2.3	266
805	Studies on A New Biosynthetic Pathway for Menaquinone. Journal of the American Chemical Society, 2008, 130, 5614-5615.	6.6	61
806	Bacterial Hosts for Natural Product Production. Molecular Pharmaceutics, 2008, 5, 212-225.	2.3	85
807	Surfactant Protein of the Streptomyces Subtilisin Inhibitor Family Inhibits Transglutaminase Activation in Streptomyces hygroscopicus. Journal of Agricultural and Food Chemistry, 2008, 56, 3403-3408.	2.4	16
808	Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology (United) Tj ETQq0	0 0.rgBT /	Overlock 10
809	ClustScan: an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures. Nucleic Acids Research, 2008, 36, 6882-6892.	6.5	181
810	Synthesis and Uptake of the Compatible Solutes Ectoine and 5-Hydroxyectoine by <i>Streptomyces coelicolor</i> A3(2) in Response to Salt and Heat Stresses. Applied and Environmental Microbiology, 2008, 74, 7286-7296.	1.4	189
811	Antibiotic Overproduction in Streptomyces coelicolor A3(2) Mediated by Phosphofructokinase Deletion*. Journal of Biological Chemistry, 2008, 283, 25186-25199.	1.6	131

#	Article	IF	CITATIONS
812	Target genes and structure of the direct repeats in the DNA-binding sequences of the response regulator PhoP in Streptomyces coelicolor. Nucleic Acids Research, 2008, 36, 1358-1368.	6.5	82
813	Phosphate-dependent regulation of the low- and high-affinity transport systems in the model actinomycete Streptomyces coelicolor. Microbiology (United Kingdom), 2008, 154, 2356-2370.	0.7	74
814	Regulation of Excision of Integrative and Potentially Conjugative Elements from & lt;i>Streptococcus thermophilus: Role of the & lt;i>arp1 Repressor. Journal of Molecular Microbiology and Biotechnology, 2008, 14, 16-21.	1.0	10
815	The Genomes of the Non-Clearing-Zone-Forming and Natural-Rubber- Degrading Species <i>Gordonia polyisoprenivorans</i> and <i>Gordonia westfalica</i> Harbor Genes Expressing Lcp Activity in <i>Streptomyces</i> Strains. Applied and Environmental Microbiology, 2008, 74, 2288-2297.	1.4	44
816	CabC, an EF-Hand Calcium-Binding Protein, Is Involved in Ca ²⁺ -Mediated Regulation of Spore Germination and Aerial Hypha Formation in <i>Streptomyces coelicolor</i> Journal of Bacteriology, 2008, 190, 4061-4068.	1.0	27
817	Characterization of Replication and Conjugation of <i>Streptomyces</i> Circular Plasmids pFP1 and pFP11 and Their Ability To Propagate in Linear Mode with Artificially Attached Telomeres. Applied and Environmental Microbiology, 2008, 74, 3368-3376.	1.4	17
818	Selective Removal of Aberrant Extender Units by a Type II Thioesterase for Efficient FR-008/Candicidin Biosynthesis in <i>Streptomyces</i> sp. Strain FR-008. Applied and Environmental Microbiology, 2008, 74, 7235-7242.	1.4	31
819	A trispecies <i>Aspergillus</i> microarray: Comparative transcriptomics of three <i>Aspergillus</i> species. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4387-4392.	3.3	152
820	A multilocus phylogeny of the Streptomyces griseus 16S rRNA gene clade: use of multilocus sequence analysis for streptomycete systematics. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 149-159.	0.8	226
821	Functional Characterization and Metal Ion Specificity of the Metal-Citrate Complex Transporter from <i>Streptomyces coelicolor</i> . Journal of Bacteriology, 2008, 190, 5616-5623.	1.0	26
822	A Possible Extended Family of Regulators of Sigma Factor Activity in <i>Streptomyces coelicolor</i> Journal of Bacteriology, 2008, 190, 7559-7566.	1.0	29
823	From the Characterization of the Four Serine/Threonine Protein Kinases (PknA/B/G/L) of Corynebacterium glutamicum toward the Role of PknA and PknB in Cell Division. Journal of Biological Chemistry, 2008, 283, 18099-18112.	1.6	86
824	Biosynthesis of the Sesquiterpene Antibiotic Albaflavenone in Streptomyces coelicolor A3(2). Journal of Biological Chemistry, 2008, 283, 8183-8189.	1.6	147
825	Characterization of an Inducible, Antibiotic-Resistant Aminoacyl-tRNA Synthetase Gene in <i>Streptomyces coelicolor</i>). Journal of Bacteriology, 2008, 190, 6253-6257.	1.0	13
826	Cloning and characterization of new glycopeptide gene clusters found in an environmental DNA megalibrary. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17273-17277.	3.3	121
827	Roles of SigB and SigF in the <i>Mycobacterium tuberculosis</i> Sigma Factor Network. Journal of Bacteriology, 2008, 190, 699-707.	1.0	87
828	Small non-coding RNAs in Streptomyces coelicolor. Nucleic Acids Research, 2008, 36, 7240-7251.	6.5	79
829	Secreted-Protein Response to If ^U Activity in <i>Streptomyces coelicolor</i> Journal of Bacteriology, 2008, 190, 894-904.	1.0	32

#	Article	IF	CITATIONS
830	Nutrient acquisition by mycobacteria. Microbiology (United Kingdom), 2008, 154, 679-692.	0.7	123
831	Biosynthesis and Recycling of Nicotinamide Cofactors in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2008, 283, 19329-19341.	1.6	152
832	A key developmental regulator controls the synthesis of the antibiotic erythromycin in <i>Saccharopolyspora erythraea</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11346-11351.	3.3	79
833	A Cellulose Synthase-Like Protein Involved in Hyphal Tip Growth and Morphological Differentiation in <i>Streptomyces</i> . Journal of Bacteriology, 2008, 190, 4971-4978.	1.0	104
834	DNA Polymerase I Is Not Required for Replication of Linear Chromosomes in Streptomyces. Journal of Bacteriology, 2008, 190, 755-758.	1.0	10
835	A New TetR Family Transcriptional Regulator Required for Morphogenesis in <i>Streptomyces coelicolor</i> . Journal of Bacteriology, 2008, 190, 61-67.	1.0	33
836	2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by <i>Streptomyces coelicolor</i> genome mining. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17510-17515.	3.3	134
837	Spontaneous Amplification of the Actinorhodin Gene Cluster in <i>Streptomyces coelicolor</i> Involving Native Insertion Sequence IS <i>466</i> Involving Native Insertion Sequence IS <i< td=""><td>1.0</td><td>7</td></i<>	1.0	7
838	Function and Redundancy of the Chaplin Cell Surface Proteins in Aerial Hypha Formation, Rodlet Assembly, and Viability in <i>Streptomyces coelicolor</i>). Journal of Bacteriology, 2008, 190, 5879-5889.	1.0	55
839	Role of Phosphopantetheinyl Transferase Genes in Antibiotic Production by Streptomyces coelicolor. Journal of Bacteriology, 2008, 190, 6903-6908.	1.0	23
840	Conditionally positive effect of the TetR-family transcriptional regulator AtrA on streptomycin production by Streptomyces griseus. Microbiology (United Kingdom), 2008, 154, 905-914.	0.7	45
841	The Genome Sequence of the Tomato-Pathogenic Actinomycete <i>Clavibacter michiganensis</i> subsp. <i>michiganensis</i> Subsp.Subsp. <i>michiganensis</i> Subsp. ubsp. <i>michiganensis</i> Subsp.Subsp. <i>michiganensis</i> Subsp.Subsp. <i>michiganensis</i> Subsp.Subsp. <i>michiganensis</i> Subsp.Subsp.Subsp.Subsp. <i>michiganensis</i> Subsp.S	1.0	153
842	Characterization of tRNA-dependent Peptide Bond Formation by MurM in the Synthesis of Streptococcus pneumoniae Peptidoglycan. Journal of Biological Chemistry, 2008, 283, 6402-6417.	1.6	70
843	<i>Streptomyces scabies</i> 87-22 Possesses a Functional Tomatinase. Journal of Bacteriology, 2008, 190, 7684-7692.	1.0	60
844	Unusual Properties of Catalase A (KatA) of <i>Pseudomonas aeruginosa</i> PA14 Are Associated with Its Biofilm Peroxide Resistance. Journal of Bacteriology, 2008, 190, 2663-2670.	1.0	45
845	The Gene Encoding RNase III in <i>Streptomyces coelicolor</i> Is Transcribed during Exponential Phase and Is Required for Antibiotic Production and for Proper Sporulation. Journal of Bacteriology, 2008, 190, 4079-4083.	1.0	30
846	Understanding Functional Divergence in Proteins by Studying Intragenomic Homologues. Biochemistry, 2008, 47, 2592-2600.	1.2	9
847	Regulation of the Synthesis of the Angucyclinone Antibiotic Alpomycin in <i>Streptomyces ambofaciens</i> by the Autoregulator Receptor AlpZ and Its Specific Ligand. Journal of Bacteriology, 2008, 190, 3293-3305.	1.0	38

#	Article	IF	CITATIONS
848	Identification of Streptomyces lividans proteins secreted by the twin-arginine translocation pathway following growth with different carbon sources. Canadian Journal of Microbiology, 2008, 54, 549-558.	0.8	4
849	Expression and Characterization of the Streptomyces coelicolor Serine/Threonine Protein Kinase PkaD. Bioscience, Biotechnology and Biochemistry, 2008, 72, 778-785.	0.6	6
850	Using the <i>TxtAB</i> Operon to Quantify Pathogenic <i>Streptomyces</i> in Potato Tubers and Soil. Phytopathology, 2008, 98, 405-412.	1.1	46
851	Uncovering Genes with Divergent mRNA-Protein Dynamics in Streptomyces coelicolor. PLoS ONE, 2008, 3, e2097.	1.1	96
852	Functions of Novel Glycosidases Isolated from Bifidobacteria. Journal of Applied Glycoscience (1999), 2008, 55, 101-109.	0.3	11
853	Isolation, Identification and Optimal Culture Conditions of <i>Streptomyces albidoflavus </i> C247 Producing Antifungal Agents against <i>Rhizoctonia solani </i> AG2-2. Mycobiology, 2009, 37, 114.	0.6	27
854	The Complete Genome of Teredinibacter turnerae T7901: An Intracellular Endosymbiont of Marine Wood-Boring Bivalves (Shipworms). PLoS ONE, 2009, 4, e6085.	1.1	93
855	Cell Wall Hydrolases Affect Germination, Vegetative Growth, and Sporulation in <i>Streptomyces coelicolor</i> . Journal of Bacteriology, 2009, 191, 6501-6512.	1.0	68
856	Crystal Structure of Albaflavenone Monooxygenase Containing a Moonlighting Terpene Synthase Active Site. Journal of Biological Chemistry, 2009, 284, 36711-36719.	1.6	73
857	SMC Protein-Dependent Chromosome Condensation during Aerial Hyphal Development in <i>Streptomyces</i> . Journal of Bacteriology, 2009, 191, 310-319.	1.0	39
858	Genome-Wide Search for Local DNA Segments with Anomalous GC-Content. Journal of Computational Biology, 2009, 16, 555-564.	0.8	1
859	Two Distinct Major Facilitator Superfamily Drug Efflux Pumps Mediate Chloramphenicol Resistance in <i>Streptomyces coelicolor</i> Antimicrobial Agents and Chemotherapy, 2009, 53, 4673-4677.	1.4	41
860	Mycobacterium tuberculosis modulates its cell surface via an oligopeptide permease (Opp) transport system. FASEB Journal, 2009, 23, 4091-4104.	0.2	49
861	A Eukaryote-like Cardiolipin Synthase Is Present in Streptomyces coelicolor and in Most Actinobacteria. Journal of Biological Chemistry, 2009, 284, 17383-17390.	1.6	45
862	Characterization of the Polyoxin Biosynthetic Gene Cluster from Streptomyces cacaoi and Engineered Production of Polyoxin H. Journal of Biological Chemistry, 2009, 284, 10627-10638.	1.6	75
863	A New Data Mining Approach for the Detection of Bacterial Promoters Combining Stochastic and Combinatorial Methods. Journal of Computational Biology, 2009, 16, 1211-1225.	0.8	8
864	Characterization of <i>rrdA </i> , a TetR Family Protein Gene Involved in the Regulation of Secondary Metabolism in <i>Streptomyces coelicolor </i> . Applied and Environmental Microbiology, 2009, 75, 2158-2165.	1.4	49
865	Mining the genome sequence for novel enzyme activity: characterisation of an unusual member of the hormone-sensitive lipase family of esterases from the genome of Streptomyces coelicolor A3 (2). Protein Engineering, Design and Selection, 2009, 22, 333-339.	1.0	14

#	Article	IF	CITATIONS
867	Chapter 7 Cloning and Analysis of Natural Product Pathways. Methods in Enzymology, 2009, 458, 159-180.	0.4	22
868	Hopanoids Are Not Essential for Growth of <i>Streptomyces scabies</i> 87-22. Journal of Bacteriology, 2009, 191, 5216-5223.	1.0	43
869	CebR as a Master Regulator for Cellulose/Cellooligosaccharide Catabolism Affects Morphological Development in <i>Streptomyces griseus</i>). Journal of Bacteriology, 2009, 191, 5930-5940.	1.0	34
870	Isolation and characterization of jadomycin L from Streptomyces venezuelae ISP5230 for solid tumor efficacy studies. Pure and Applied Chemistry, 2009, 81, 1041-1049.	0.9	17
871	Complete genome of the cellulolytic thermophile <i>Acidothermus cellulolyticus</i> 11B provides insights into its ecophysiological and evolutionary adaptations. Genome Research, 2009, 19, 1033-1043.	2.4	109
872	Phosphate and carbon source regulation of two PhoP-dependent glycerophosphodiester phosphodiesterase genes of Streptomyces coelicolor. Microbiology (United Kingdom), 2009, 155, 1800-1811.	0.7	41
873	<i>Streptomyces</i> Telomeres Contain a Promoter. Journal of Bacteriology, 2009, 191, 773-781.	1.0	12
874	Chapter 9 The Enzymology of Polyether Biosynthesis. Methods in Enzymology, 2009, 459, 187-214.	0.4	33
875	BldG and SCO3548 Interact Antagonistically To Control Key Developmental Processes in <i>Streptomyces coelicolor </i> Journal of Bacteriology, 2009, 191, 2541-2550.	1.0	17
876	Medium-Dependent Phenotypes of Streptomyces coelicolor with Mutations in ftsl or ftsW. Journal of Bacteriology, 2009, 191, 661-664.	1.0	20
877	Characterization of P450 FcpC, the Enzyme Responsible for Bioconversion of Diosgenone to Isonuatigenone in <i>Streptomyces virginiae</i> IBL-14. Applied and Environmental Microbiology, 2009, 75, 4202-4205.	1.4	17
878	A Novel Tryptophanyl-tRNA Synthetase Gene Confers High-Level Resistance to Indolmycin. Antimicrobial Agents and Chemotherapy, 2009, 53, 3972-3980.	1.4	26
879	Functional characterization of the first two actinomycete 4-amino-4-deoxychorismate lyase genes. Microbiology (United Kingdom), 2009, 155, 2450-2459.	0.7	16
880	Genetic Interactions of <i>smc</i> , <i>ftsK</i> , and <i>parB</i> Genes in <i>Streptomyces coelicolor</i> and Their Developmental Genome Segregation Phenotypes. Journal of Bacteriology, 2009, 191, 320-332.	1.0	43
881	Activation of Dormant Bacterial Genes by <i>Nonomuraea </i> Polymerase. Journal of Bacteriology, 2009, 191, 805-814.	1.0	47
882	Identification and Gene Disruption of Small Noncoding RNAs in <i>Streptomyces griseus</i> . Journal of Bacteriology, 2009, 191, 4896-4904.	1.0	23
883	One of the Two Genes Encoding Nucleoid-Associated HU Proteins in <i>Streptomyces coelicolor</i> Is Developmentally Regulated and Specifically Involved in Spore Maturation. Journal of Bacteriology, 2009, 191, 6489-6500.	1.0	64
884	Reciprocal Regulation between SigK and Differentiation Programs in <i>Streptomyces coelicolor</i> Journal of Bacteriology, 2009, 191, 6473-6481.	1.0	30

#	Article	IF	CITATIONS
885	Histidine kinase., 2009,, 420-474.		0
886	cmdABCDEF, a cluster of genes encoding membrane proteins for differentiation and antibiotic production in Streptomyces coelicolor A3(2). BMC Microbiology, 2009, 9, 157.	1.3	11
887	A molecular key for building hyphae aggregates: the role of the newly identified <i>Streptomyces</i> protein HyaS. Microbial Biotechnology, 2009, 2, 343-360.	2.0	20
888	Involvement of SigT and RstA in the differentiation of <i>Streptomyces coelicolor</i> . FEBS Letters, 2009, 583, 3145-3150.	1.3	28
889	Regioselective hydroxylation of isoflavones by Streptomyces avermitilis MA-4680. Journal of Bioscience and Bioengineering, 2009, 108, 41-46.	1.1	45
890	GMO and Protein Engineering. , 0, , 18-43.		1
891	Strategies for the Discovery of New Natural Products by Genome Mining. ChemBioChem, 2009, 10, 625-633.	1.3	277
892	Organisation of the Biosynthetic Gene Cluster and Tailoring Enzymes in the Biosynthesis of the Tetracyclic Quinone Glycoside Antibiotic Polyketomycin. ChemBioChem, 2009, 10, 1073-1083.	1.3	58
893	A gene located downstream of the clavulanic acid gene cluster in Streptomyces clavuligerus ATCC 27064 encodes a putative response regulator that affects clavulanic acid production. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 301-311.	1.4	17
894	Mass spectrometric screening of transcriptional regulators involved in antibiotic biosynthesis in Streptomyces coelicolor A3(2). Journal of Industrial Microbiology and Biotechnology, 2009, 36, 1073-1083.	1.4	53
895	Two-component signal transduction systems in Streptomyces and related organisms studied using DNA comparative microarray analysis. Antonie Van Leeuwenhoek, 2009, 95, 189-206.	0.7	4
896	Biochemical and hydrolytic properties of multiple thermostable $\hat{l}\pm$ -galactosidases from Streptomyces griseoloalbus: Obvious existence of a novel galactose-tolerant enzyme. Process Biochemistry, 2009, 44, 327-333.	1.8	17
897	Structural analysis reveals DNA binding properties of Rv2827c, a hypothetical protein from MycobacteriumÂtuberculosis. Journal of Structural and Functional Genomics, 2009, 10, 137-150.	1.2	13
898	Arousing sleeping genes: shifts in secondary metabolism of metal tolerant actinobacteria under conditions of heavy metal stress. BioMetals, 2009, 22, 225-234.	1.8	44
899	Enhanced validamycin production and gene expression at elevated temperature in Streptomyces hygroscopicus subsp. jingangensis 5008. Science Bulletin, 2009, 54, 1204-1209.	4.3	6
900	A Patchwork of Streptomyces Species Isolated from Potato Common Scab Lesions in North America. American Journal of Potato Research, 2009, 86, 247-264.	0.5	84
901	Lines of Evidence for Horizontal Gene Transfer of a Phenazine Producing Operon into Multiple Bacterial Species. Journal of Molecular Evolution, 2009, 68, 171-185.	0.8	37
902	A Sensitive Method to Monitor Bacillus subtilis and Streptomyces coelicor-related Bacteria in Maize Rhizobacterial Communities: The Use of Genome-Wide Microarrays. Microbial Ecology, 2009, 58, 108-115.	1.4	10

#	ARTICLE	IF	CITATIONS
903	afsQ1-Q2-sigQ is a pleiotropic but conditionally required signal transduction system for both secondary metabolism and morphological development in Streptomyces coelicolor. Applied Microbiology and Biotechnology, 2009, 81, 1149-1160.	1.7	75
904	NdgR, an IcIR-like regulator involved in amino-acid-dependent growth, quorum sensing, and antibiotic production in Streptomyces coelicolor. Applied Microbiology and Biotechnology, 2009, 82, 501-511.	1.7	57
905	Discovery of a pimaricin analog JBIR-13, from Streptomyces bicolor NBRC 12746 as predicted by sequence analysis of type I polyketide synthase gene. Applied Microbiology and Biotechnology, 2009, 83, 127-133.	1.7	15
906	fabC of Streptomyces lydicus involvement in the biosynthesis of streptolydigin. Applied Microbiology and Biotechnology, 2009, 83, 305-313.	1.7	7
907	Analysis of neutral lipid biosynthesis in Streptomyces avermitilis MA-4680 and characterization of an acyltransferase involved herein. Applied Microbiology and Biotechnology, 2009, 84, 143-155.	1.7	35
908	In vivo Tn5-based transposon mutagenesis of Streptomycetes. Applied Microbiology and Biotechnology, 2009, 83, 979-986.	1.7	26
909	Structure of the single-stranded DNA-binding protein from Streptomyces coelicolor. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 974-979.	2.5	5
910	Glycosylation of the phosphate binding protein, PstS, in <i>Streptomyces coelicolor</i> by a pathway that resembles protein Oâ€mannosylation in eukaryotes. Molecular Microbiology, 2009, 71, 421-433.	1.2	45
911	Extracellular signalling, translational control, two repressors and an activator all contribute to the regulation of methylenomycin production in <i>Streptomyces coelicolor</i> Microbiology, 2009, 71, 763-778.	1,2	64
912	Osmoregulation in <i>Streptomyces coelicolor</i> : modulation of SigB activity by OsaC. Molecular Microbiology, 2009, 71, 1250-1262.	1.2	33
913	Crossâ€ŧalk between two global regulators in <i>Streptomyces</i> : PhoP and AfsR interact in the control of <i>afsS</i> , <i>pstS</i> and <i>phoRP</i> transcription. Molecular Microbiology, 2009, 72, 53-68.	1.2	118
914	Organization of the genes encoding the biosynthesis of actagardine and engineering of a variant generation system. Molecular Microbiology, 2009, 72, 1126-1136.	1.2	62
915	Targeted Ïf factor turnover inserts negative control into a positive feedback loop. Molecular Microbiology, 2009, 73, 747-750.	1.2	6
916	Positive and negative feedback regulatory loops of thiolâ \in oxidative stress response mediated by an unstable isoform of $ f < \sup R < \sup f $ in actinomycetes. Molecular Microbiology, 2009, 73, 815-825.	1.2	42
917	The role of <i>absC,</i> a novel regulatory gene for secondary metabolism, in zincâ€dependent antibiotic production in <i>Streptomyces coelicolor</i> A3(2). Molecular Microbiology, 2009, 74, 1427-1444.	1.2	63
918	Chemical biology of natural indolocarbazole products: 30 years since the discovery of staurosporine. Journal of Antibiotics, 2009, 62, 17-26.	1.0	167
919	An alternative menaquinone biosynthetic pathway operating in microorganisms: an attractive target for drug discovery to pathogenic Helicobacter and Chlamydia strains. Journal of Antibiotics, 2009, 62, 347-352.	1.0	45
920	Activation of secondary metabolite–biosynthetic gene clusters by generating rsmG mutations in Streptomyces griseus. Journal of Antibiotics, 2009, 62, 669-673.	1.0	23

#	ARTICLE	IF	CITATIONS
921	Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12. Nature Biotechnology, 2009, 27, 462-464.	9.4	207
922	A cascade of new antibiotics. Nature Chemistry, 2009, 1, 110-112.	6.6	5
923	Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nature Reviews Microbiology, 2009, 7, 36-49.	13.6	597
924	Molecular characterization and antifungal activity of a family 46 chitosanase from <i>Amycolatopsis</i> Sp. CsO-2. FEMS Microbiology Letters, 2009, 293, 79-84.	0.7	48
925	Cross-talk between an orphan response regulator and a noncognate histidine kinase in <i>Streptomyces coelicolor</i> . FEMS Microbiology Letters, 2009, 294, 150-156.	0.7	38
926	Transcriptomics analyses reveal global roles of the regulator Avel inStreptomyces avermitilis. FEMS Microbiology Letters, 2009, 298, 199-207.	0.7	24
927	Characterization of the methyl-specific restriction system of <i>Streptomyces coelicolor </i> A3(2) and of the role played by laterally acquired nucleases. FEMS Microbiology Letters, 2009, 301, 35-43.	0.7	23
928	Two overlapping antiparallel genes encoding the iron regulator DmdR1 and the Adm proteins control sidephore and antibiotic biosynthesis in ⟨i⟩Streptomycesâ€fcoelicolor⟨li⟩ A3(2). FEBS Journal, 2009, 276, 4814-4827.	2.2	46
929	In vitro antimicrobial activity of Streptomyces spp. ERI-3 isolated from Western Ghats rock soil (India). Journal De Mycologie Medicale, 2009, 19, 22-28.	0.7	64
930	Hemolytic activity of Streptomyces VITSDK1 spp. isolated from marine sediments in Southern India. Journal De Mycologie Medicale, 2009, 19, 77-86.	0.7	26
931	Phosphomannose isomerase and phosphomannomutase gene disruptions in Streptomyces nodosus: Impact on amphotericin biosynthesis and implications for glycosylation engineering. Metabolic Engineering, 2009, 11, 40-47.	3.6	31
932	The gac-gene cluster for the production of acarbose from Streptomyces glaucescens GLA.O—Identification, isolation and characterization. Journal of Biotechnology, 2009, 140, 114-123.	1.9	47
933	Non-modular polyketide synthases in myxobacteria. Phytochemistry, 2009, 70, 1850-1857.	1.4	15
934	Biosynthesis of Actinorhodin and Related Antibiotics: Discovery of Alternative Routes for Quinone Formation Encoded in the act Gene Cluster. Chemistry and Biology, 2009, 16, 226-236.	6.2	88
935	Plasticity of transcriptional machinery in bacteria is increased by the repertoire of regulatory families. Computational Biology and Chemistry, 2009, 33, 261-268.	1.1	12
936	Engineered production of iso-migrastatin in heterologous Streptomyces hosts. Bioorganic and Medicinal Chemistry, 2009, 17, 2147-2153.	1.4	50
937	A brief tour of myxobacterial secondary metabolism. Bioorganic and Medicinal Chemistry, 2009, 17, 2121-2136.	1.4	113
938	Impact of Natural Products on Developing New Anti-Cancer Agents. Chemical Reviews, 2009, 109, 3012-3043.	23.0	1,086

#	Article	IF	CITATIONS
939	Aminoacetone as the Penultimate Precursor to the Antitumor Agent Azinomycin A. Organic Letters, 2009, 11, 4006-4009.	2.4	15
940	Advances in the Understanding and Use of the Genomic Base of Microbial Secondary Metabolite Biosynthesis for the Discovery of New Natural Products. Journal of Natural Products, 2009, 72, 566-572.	1.5	22
941	Chapter 5 Applying the Genetics of Secondary Metabolism in Model Actinomycetes to the Discovery of New Antibiotics. Methods in Enzymology, 2009, 458, 117-141.	0.4	70
942	The SGNH-hydrolase of Streptomyces coelicolor has (aryl)esterase and a true lipase activity. Biochimie, 2009, 91, 390-400.	1.3	39
943	A novel tyrosine-phosphorylated protein inhibiting the growth of Streptomyces cells. Biochemical and Biophysical Research Communications, 2009, 385, 534-538.	1.0	6
944	GlnR positively regulates nasA transcription in Streptomyces coelicolor. Biochemical and Biophysical Research Communications, 2009, 386, 77-81.	1.0	49
945	Crystal structure of MqnD (TTHA1568), a menaquinone biosynthetic enzyme from Thermus thermophilus HB8. Journal of Structural Biology, 2009, 168, 575-581.	1.3	13
946	The Structure of the Small Laccase from Streptomyces coelicolor Reveals a Link between Laccases and Nitrite Reductases. Journal of Molecular Biology, 2009, 385, 1165-1178.	2.0	132
947	The Oligomeric Assembly of the Novel Haem-Degrading Protein HbpS Is Essential for Interaction with Its Cognate Two-Component Sensor Kinase. Journal of Molecular Biology, 2009, 386, 1108-1122.	2.0	22
948	Cell division is dispensable but not irrelevant in Streptomyces. Current Opinion in Microbiology, 2009, 12, 689-698.	2.3	53
949	Efficient pyramidal arrangement of an ordered cosmid library: Rapid screening of genes of the tacrolimus-producer Streptomyces sp. ATCC 55098. Journal of Microbiological Methods, 2009, 78, 150-154.	0.7	7
950	Secretory production of recombinant proteins by <i>Streptomyces</i> . Future Microbiology, 2009, 4, 181-188.	1.0	65
951	Chapter 15 Heterologous Production of Polyketides in Bacteria. Methods in Enzymology, 2009, 459, 339-365.	0.4	21
952	Mining cyanobacterial genomes for genes encoding complex biosynthetic pathways. Natural Product Reports, 2009, 26, 1447.	5.2	60
953	Degradation of Chitosans with Chitinase G from Streptomyces coelicolor A3(2): Production of Chito-oligosaccharides and Insight into Subsite Specificities. Biomacromolecules, 2009, 10, 892-899.	2.6	48
954	New natural product biosynthetic chemistry discovered by genome mining. Natural Product Reports, 2009, 26, 977.	5.2	133
955	Triggering cryptic natural product biosynthesis in microorganisms. Organic and Biomolecular Chemistry, 2009, 7, 1753.	1.5	500
956	Regulation of Alkyl-dihydrothiazole-carboxylates (ATCs) by Iron and the Pyochelin Gene Cluster in Pseudomonas aeruginosa. ACS Chemical Biology, 2009, 4, 617-623.	1.6	28

#	Article	IF	CITATIONS
957	Actinomycetes for Marine Drug Discovery Isolated from Mangrove Soils and Plants in China. Marine Drugs, 2009, 7, 24-44.	2.2	303
958	Genomic basis for natural product biosynthetic diversity in the actinomycetes. Natural Product Reports, 2009, 26, 1362.	5.2	645
959	Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biology, 2009, 10, R51.	13.9	370
960	Development and application of versatile high density microarrays for genome-wide analysis of Streptomyces coelicolor: characterization of the HspR regulon. Genome Biology, 2009, 10, R5.	13.9	36
961	Biosynthetic Origins of the Ionophore Antibiotic Indanomycin. Organic Letters, 2009, 11, 297-300.	2.4	15
963	Directed Evolution of the Actinomycete Cytochrome P450 MoxA (CYP105) for Enhanced Activity. Bioscience, Biotechnology and Biochemistry, 2009, 73, 1922-1927.	0.6	24
964	Chemical Interactions between Organisms in Microbial Communities. Contributions To Microbiology, 2009, 16 , 1 - 17 .	2.1	36
965	Myxobacteria – Unique Microbial Secondary Metabolite Factories. , 2010, , 189-222.		2
966	The Sequence of a 1.8-Mb Bacterial Linear Plasmid Reveals a Rich Evolutionary Reservoir of Secondary Metabolic Pathways. Genome Biology and Evolution, 2010, 2, 212-224.	1.1	193
967	Antibiotics Use in Food-Producing Animals. , 2010, , 39-42.		1
968	Diversity of genes encoding nonribosomal peptide synthetases in the Streptomyces sioyaensis genome. Russian Journal of Genetics, 2010, 46, 794-800.	0.2	0
969	Production of microbial secondary metabolites: Regulation by the carbon source. Critical Reviews in Microbiology, 2010, 36, 146-167.	2.7	241
970	Genetic engineering of macrolide biosynthesis: past advances, current state, and future prospects. Applied Microbiology and Biotechnology, 2010, 85, 1227-1239.	1.7	68
971	Regulation of genes in Streptomyces bacteria required for catabolism of lignin-derived aromatic compounds. Applied Microbiology and Biotechnology, 2010, 86, 921-929.	1.7	60
972	Loss of phosphomannomutase activity enhances actinorhodin production in Streptomyces coelicolor. Applied Microbiology and Biotechnology, 2010, 86, 1485-1492.	1.7	9
973	Use of an inducible promoter for antibiotic production in a heterologous host. Applied Microbiology and Biotechnology, 2010, 87, 261-269.	1.7	34
974	I-Scel endonuclease: a new tool for DNA repair studies and genetic manipulations in streptomycetes. Applied Microbiology and Biotechnology, 2010, 87, 1525-1532.	1.7	40
975	Linking species concepts to natural product discovery in the post-genomic era. Journal of Industrial Microbiology and Biotechnology, 2010, 37, 219-224.	1.4	42

#	Article	IF	CITATIONS
976	Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters. Journal of Industrial Microbiology and Biotechnology, 2010, 37, 759-772.	1.4	185
977	Do we need new antibiotics? The search for new targets and new compounds. Journal of Industrial Microbiology and Biotechnology, 2010, 37, 1241-1248.	1.4	54
978	What does it take to be a plant pathogen: genomic insights from Streptomyces species. Antonie Van Leeuwenhoek, 2010, 98, 179-194.	0.7	92
979	The complex whiJ locus mediates environmentally sensitive repression of development of Streptomyces coelicolor A3(2). Antonie Van Leeuwenhoek, 2010, 98, 225-236.	0.7	28
980	Multilocus sequence analysis of Streptomyces griseus isolates delineating intraspecific diversity in terms of both taxonomy and biosynthetic potential. Antonie Van Leeuwenhoek, 2010, 98, 237-248.	0.7	20
981	A guide to successful bioprospecting: informed by actinobacterial systematics. Antonie Van Leeuwenhoek, 2010, 98, 119-142.	0.7	286
982	Comparative study of the life cycle dependent post-translation modifications of protein synthesis elongation factor Tu present in the membrane proteome of streptomycetes and mycobacteria. Folia Microbiologica, 2010, 55, 203-210.	1.1	4
983	Structural basis for prokaryotic calciummediated regulation by a Streptomyces coelicolor calcium binding protein. Protein and Cell, 2010, 1, 771-779.	4.8	8
984	Characterization of the tunicamycin gene cluster unveiling unique steps involved in its biosynthesis. Protein and Cell, 2010, 1, 1093-1105.	4.8	59
985	SigN is responsible for differentiation and stress responses based on comparative proteomic analyses of Streptomyces coelicolor wild-type and sigN deletion strains. Microbiological Research, 2010, 165, 221-231.	2.5	14
986	Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation. Trends in Genetics, 2010, 26, 449-457.	2.9	268
987	Mayday - integrative analytics for expression data. BMC Bioinformatics, 2010, 11, 121.	1.2	102
988	Metabolic modeling and analysis of the metabolic switch in Streptomyces coelicolor. BMC Genomics, 2010, 11, 202.	1.2	84
989	Genome-wide inference of regulatory networks in Streptomyces coelicolor. BMC Genomics, 2010, 11, 578.	1.2	38
990	Gene duplications in prokaryotes can be associated with environmental adaptation. BMC Genomics, 2010, 11, 588.	1.2	102
991	In silico analysis highlights the frequency and diversity of type 1 lantibiotic gene clusters in genome sequenced bacteria. BMC Genomics, 2010, 11, 679.	1.2	74
992	Metabolic and evolutionary insights into the closely-related species Streptomyces coelicolor and Streptomyces lividans deduced from high-resolution comparative genomic hybridization. BMC Genomics, 2010, 11, 682.	1.2	36
993	Relationship between operon preference and functional properties of persistent genes in bacterial genomes. BMC Genomics, 2010, 11, 71.	1.2	24

#	Article	IF	CITATIONS
994	Chromosomal instability in Streptomyces avermitilis: major deletion in the central region and stable circularized chromosome. BMC Microbiology, 2010, 10, 198.	1.3	15
995	Two heterologously expressed Planobispora rosea proteins cooperatively induce Streptomyces lividans thiostrepton uptake and storage from the extracellular medium. Microbial Cell Factories, 2010, 9, 44.	1.9	19
996	Transcriptional Repression: Conserved and Evolved Features. Current Biology, 2010, 20, R764-R771.	1.8	61
997	Episodic sitewise positive selection on the signal recognition particle protein Ffh in Actinobacteria. FEBS Letters, 2010, 584, 3975-3978.	1.3	0
999	Heterologous expression of the biosynthetic gene clusters of coumermycin A ₁ , clorobiocin and caprazamycins in genetically modified <i>Streptomyces coelicolor</i> strains. Biopolymers, 2010, 93, 823-832.	1.2	39
1000	Industrial systems biology. Biotechnology and Bioengineering, 2010, 105, 439-460.	1.7	130
1001	Cineole biodegradation: Molecular cloning, expression and characterisation of (1R)-6β-hydroxycineole dehydrogenase from Citrobacter braakii. Bioorganic Chemistry, 2010, 38, 81-86.	2.0	10
1002	Metabolic flux analysis and pharmaceutical production. Metabolic Engineering, 2010, 12, 81-95.	3.6	101
1003	On prokaryotic intelligence: Strategies for sensing the environment. BioSystems, 2010, 99, 94-103.	0.9	56
1004	Characterization of CYP166B1 and its electron transfer system in Streptomyces peucetius var. caesius ATCC 27952. Enzyme and Microbial Technology, 2010, 46, 372-377.	1.6	4
1005	Expansion of ribosomally produced natural products: a nitrile hydratase- and Nif11-related precursor family. BMC Biology, 2010, 8, 70.	1.7	134
1006	Differential proteomic analysis reveals novel links between primary metabolism and antibiotic production in <i>Amycolatopsis balhimycina</i>). Proteomics, 2010, 10, 1336-1358.	1.3	28
1007	Proteome analysis of fungal and bacterial involvement in leaf litter decomposition. Proteomics, 2010, 10, 1819-1830.	1.3	83
1008	Analysis of the phosphoproteome of the multicellular bacterium ⟨i⟩Streptomyces coelicolor⟨/i⟩ A3(2) by protein/peptide fractionation, phosphopeptide enrichment and highâ€accuracy mass spectrometry. Proteomics, 2010, 10, 2486-2497.	1.3	68
1009	Genome mining in <i>Amycolatopsis balhimycina</i> for ferredoxins capable of supporting cytochrome P450 enzymes involved in glycopeptide antibiotic biosynthesis. FEMS Microbiology Letters, 2010, 306, 45-53.	0.7	4
1010	Deletion of the elongation factor 4 gene (lepA) in Streptomyces coelicolor enhances the production of the calcium-dependent antibiotic. FEMS Microbiology Letters, 2010, 311, 147-151.	0.7	11
1011	Correlations between the role, sequence conservation, genomic location and severity of phenotype in myxobacterial developmental genes. FEMS Microbiology Letters, 2010, 312, 40-45.	0.7	5
1012	The complex extracellular biology of <i>Streptomyces </i> . FEMS Microbiology Reviews, 2010, 34, 171-198.	3.9	415

#	Article	IF	CITATIONS
1013	Regulation of morphological differentiation in <i>S. coelicolor</i> by RNase III (AbsB) cleavage of mRNA encoding the AdpA transcription factor. Molecular Microbiology, 2010, 75, 781-791.	1.2	46
1014	Division and cell envelope regulation by Ser/Thr phosphorylation: <i>Mycobacterium</i> shows the way. Molecular Microbiology, 2010, 75, 1064-1077.	1.2	186
1015	Investigating lipoprotein biogenesis and function in the model Gramâ€positive bacterium <i>Streptomyces coelicolor</i>). Molecular Microbiology, 2010, 77, 943-957.	1.2	56
1016	Genes essential for morphological development and antibiotic production in <i>Streptomyces coelicolor</i> are targets of BldD during vegetative growth. Molecular Microbiology, 2010, 78, 361-379.	1.2	193
1017	Induction of antimicrobial activities in heterologous streptomycetes using alleles of the Streptomyces coelicolor gene absA1. Journal of Antibiotics, 2010, 63, 177-182.	1.0	53
1018	Organization of the biosynthetic genes encoding deoxyactagardine B (DAB), a new lantibiotic produced by Actinoplanes liguriae NCIMB41362. Journal of Antibiotics, 2010, 63, 351-358.	1.0	42
1019	Rare earth elements activate the secondary metabolite–biosynthetic gene clusters in Streptomyces coelicolor A3(2). Journal of Antibiotics, 2010, 63, 477-481.	1.0	96
1020	Carbon source regulation of antibiotic production. Journal of Antibiotics, 2010, 63, 442-459.	1.0	210
1021	The energetics of genome complexity. Nature, 2010, 467, 929-934.	13.7	964
1022	A decade of chemical biology. Nature Chemical Biology, 2010, 6, 847-854.	3.9	36
1023	Genome-based phylogenetic analysis of Streptomyces and its relatives. Molecular Phylogenetics and Evolution, 2010, 54, 763-772.	1.2	40
1024	Coevolution of antibiotic production and counterâ€resistance in soil bacteria. Environmental Microbiology, 2010, 12, 783-796.	1.8	81
1025	The Genome of a Pathogenic Rhodococcus: Cooptive Virulence Underpinned by Key Gene Acquisitions. PLoS Genetics, 2010, 6, e1001145.	1.5	143
1026	Genome Sequence of Kitasatospora setae NBRC 14216T: An Evolutionary Snapshot of the Family Streptomycetaceae. DNA Research, 2010, 17, 393-406.	1.5	62
1027	Linear Plasmid SLP2 Is Maintained by Partitioning, Intrahyphal Spread, and Conjugal Transfer in <i>Streptomyces</i> . Journal of Bacteriology, 2010, 192, 307-315.	1.0	16
1028	The N-terminal domain of the enzyme I is a monomeric well-folded protein with a low conformational stability and residual structure in the unfolded state. Protein Engineering, Design and Selection, 2010, 23, 729-742.	1.0	7
1029	Promotion of markerless deletion of the actinorhodin biosynthetic gene cluster in & amp;lt;italic>Streptomyces coelicolor ^{<xref rid="AN1" xml:base="fn">†</xref>} . Acta	0.9	17
1030	Biochimica Et Biophysica Sinica, 2010, 42, 717-721. Metabolomic Characterization of the Salt Stress Response in <i>Streptomyces coelicolor</i> Applied and Environmental Microbiology, 2010, 76, 2574-2581.	1.4	84

#	Article	IF	CITATIONS
1031	The Streptomyces coelicolor genome encodes a type I ribosome-inactivating protein. Microbiology (United Kingdom), 2010, 156, 3021-3030.	0.7	14
1032	Regulation of a Novel Gene Cluster Involved in Secondary Metabolite Production in <i>Streptomyces coelicolor</i> . Journal of Bacteriology, 2010, 192, 4973-4982.	1.0	37
1033	Conserved Symbiotic Plasmid DNA Sequences in the Multireplicon Pangenomic Structure of <i>Rhizobium etli</i> . Applied and Environmental Microbiology, 2010, 76, 1604-1614.	1.4	86
1034	The tra locus of streptomycete plasmid plJ101 mediates efficient transfer of a circular but not a linear version of the same replicon. Microbiology (United Kingdom), 2010, 156, 2723-2733.	0.7	8
1035	<i>Streptomyces coelicolor</i> A3(2) Produces a New Yellow Pigment Associated with the Polyketide Synthase Cpk. Journal of Molecular Microbiology and Biotechnology, 2010, 19, 147-151.	1.0	28
1036	Enhancement of the Diversity of Polyoxins by a Thymine-7-Hydroxylase Homolog outside the Polyoxin Biosynthesis Gene Cluster. Applied and Environmental Microbiology, 2010, 76, 7343-7347.	1.4	15
1037	<i>Streptomyces coelicolor</i> A3(2) CYP102 Protein, a Novel Fatty Acid Hydroxylase Encoded as a Heme Domain without an N-Terminal Redox Partner. Applied and Environmental Microbiology, 2010, 76, 1975-1980.	1.4	26
1038	Regulation of an Auxiliary, Antibiotic-Resistant Tryptophanyl-tRNA Synthetase Gene via Ribosome-Mediated Transcriptional Attenuation. Journal of Bacteriology, 2010, 192, 3565-3573.	1.0	7
1039	The Zinc-Responsive Regulator Zur Controls Expression of the Coelibactin Gene Cluster in <i>Streptomyces coelicolor </i>). Journal of Bacteriology, 2010, 192, 608-611.	1.0	65
1040	"Pseudo―γ-Butyrolactone Receptors Respond to Antibiotic Signals to Coordinate Antibiotic Biosynthesis. Journal of Biological Chemistry, 2010, 285, 27440-27448.	1.6	142
1041	Multicopy <i>proC </i> in <i>Streptomyces coelicolor </i> A3(2) Elicits a Transient Production of Prodiginines, while <i>proC</i> Deletion Does Not Yield a Proline Auxotroph. Journal of Molecular Microbiology and Biotechnology, 2010, 19, 152-158.	1.0	4
1042	Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in Streptomyces coelicolor A3(2). Microbiology (United Kingdom), 2010, 156, 2343-2353.	0.7	143
1043	Putative TetR Family Transcriptional Regulator SCO1712 Encodes an Antibiotic Downregulator in <i>Streptomyces coelicolor</i>). Applied and Environmental Microbiology, 2010, 76, 3039-3043.	1.4	24
1044	Gene Cluster Involved in the Biosynthesis of Griseobactin, a Catechol-Peptide Siderophore of <i>Streptomyces</i> sp. ATCC 700974. Journal of Bacteriology, 2010, 192, 426-435.	1.0	77
1045	Genome Sequence of the Fleming Strain of <i>Micrococcus luteus</i> , a Simple Free-Living Actinobacterium. Journal of Bacteriology, 2010, 192, 841-860.	1.0	68
1046	Identification and Biochemical Characterization of a Thermostable Malate Dehydrogenase from the Mesophile <i>Streptomyces coelicolor</i> A3(2). Bioscience, Biotechnology and Biochemistry, 2010, 74, 2194-2201.	0.6	28
1047	RNA degradation and the regulation of antibiotic synthesis in <i>Streptomyces</i> Future Microbiology, 2010, 5, 419-429.	1.0	10
1048	Catalytic promiscuity in the biosynthesis of cyclic peptide secondary metabolites in planktonic marine cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10430-10435.	3.3	256

#	Article	IF	CITATIONS
1049	The Actinomycin Biosynthetic Gene Cluster of <i>Streptomyces chrysomallus </i> : a Genetic Hall of Mirrors for Synthesis of a Molecule with Mirror Symmetry. Journal of Bacteriology, 2010, 192, 2583-2595.	1.0	82
1050	Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of posttranslationally modified peptides. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16297-16302.	3.3	123
1051	Genomic Insights into Bifidobacteria. Microbiology and Molecular Biology Reviews, 2010, 74, 378-416.	2.9	237
1052	The G243D mutation (afsB mutation) in the principal sigma factor İf HrdB alters intracellular ppGpp level and antibiotic production in Streptomyces coelicolor A3(2). Microbiology (United Kingdom), 2010, 156, 2384-2392.	0.7	9
1053	The Anti-Anti-Sigma Factor BldG Is Involved in Activation of the Stress Response Sigma Factor İf ^H in <i>Streptomyces coelicolor</i> A3(2). Journal of Bacteriology, 2010, 192, 5674-5681.	1.0	23
1055	Biochemical Characterization of a Novel Indole Prenyltransferase from <i>Streptomyces</i> sp. SN-593. Journal of Bacteriology, 2010, 192, 2839-2851.	1.0	64
1057	mGenomeSubtractor: a web-based tool for parallel in silico subtractive hybridization analysis of multiple bacterial genomes. Nucleic Acids Research, 2010, 38, W194-W200.	6.5	74
1058	Rapid Functional Screening of <i>Streptomyces coelicolor</i> Regulators by Use of a pH Indicator and Application to the MarR-Like Regulator AbsC. Applied and Environmental Microbiology, 2010, 76, 3645-3656.	1.4	10
1059	Complete genome sequence of the rifamycin SV-producing Amycolatopsis mediterranei U32 revealed its genetic characteristics in phylogeny and metabolism. Cell Research, 2010, 20, 1096-1108.	5.7	108
1060	An integrative approach for high-throughput screening and characterization of transcriptional regulators in Streptomyces coelicolor. Pure and Applied Chemistry, 2010, 82, 57-67.	0.9	1
1061	Cleavage of Phosphorothioated DNA and Methylated DNA by the Type IV Restriction Endonuclease ScoMcrA. PLoS Genetics, 2010, 6, e1001253.	1.5	60
1062	Microbial Type III Polyketide Synthases. , 2010, , 147-170.		7
1063	Towards Intended Normal Use (PartÂl). , 2010, , 193-208.		3
1064	The obligate aerobe Streptomyces coelicolor A3(2) synthesizes three active respiratory nitrate reductases. Microbiology (United Kingdom), 2010, 156, 3166-3179.	0.7	50
1065	Exploiting Genomics for New Natural Product Discovery in Prokaryotes. , 2010, , 429-453.		2
1066	Chitosanase from <i>Streptomyces coelicolor </i> A3(2): biochemical properties and role in protection against antibacterial effect of chitosan. Biochemistry and Cell Biology, 2010, 88, 907-916.	0.9	21
1067	Structure and function of enzymes acting on chitin and chitosan. Biotechnology and Genetic Engineering Reviews, 2010, 27, 331-366.	2.4	135
1068	Moenomycin family antibiotics: chemical synthesis, biosynthesis, and biological activity. Natural Product Reports, 2010, 27, 1594.	5. 2	152

#	Article	IF	Citations
1069	Genome Mining in <i>Streptomyces avermitilis</i> : Cloning and Characterization of SAV_76, the Synthase for a New Sesquiterpene, Avermitilol. Journal of the American Chemical Society, 2010, 132, 8850-8851.	6.6	91
1070	Structure, Mechanism, and Substrate Profile for Sco3058: The Closest Bacterial Homologue to Human Renal Dipeptidase,. Biochemistry, 2010, 49, 611-622.	1.2	15
1071	Comprehensive Investigation of Marine <i>Actinobacteria</i> Associated with the Sponge <i>Halichondria panicea</i> Applied and Environmental Microbiology, 2010, 76, 3702-3714.	1.4	105
1072	Cyclization of a Cellular Dipentaenone by <i>Streptomyces coelicolor</i> Cytochrome P450 154A1 without Oxidation/Reduction. Journal of the American Chemical Society, 2010, 132, 15173-15175.	6.6	36
1073	Natural Products Version 2.0: Connecting Genes to Molecules. Journal of the American Chemical Society, 2010, 132, 2469-2493.	6.6	407
1074	Robust reporter system based on chalcone synthase rppA gene from Saccharopolyspora erythraea. Journal of Microbiological Methods, 2010, 83, 111-119.	0.7	16
1075	A novel coiled-coil repeat variant in a class of bacterial cytoskeletal proteins. Journal of Structural Biology, 2010, 170, 202-215.	1.3	30
1076	Isolation of the lysolipin gene cluster of Streptomyces tendae Tü 4042. Gene, 2010, 461, 5-14.	1.0	42
1077	Catabolism of Aromatic Compounds and Steroids by Rhodococcus. Microbiology Monographs, 2010, , 133-169.	0.3	28
1078	Plant community effects on the diversity and pathogen suppressive activity of soil streptomycetes. Applied Soil Ecology, 2010, 46, 35-42.	2.1	62
1079	Genomics and Pathophysiology: Dandruff as a Paradigm. , 2010, , 253-269.		4
1080	Combinatorial and Synthetic Biosynthesis in Actinomycetes. Progress in the Chemistry of Organic Natural Products, 2010, 93, 211-237.	0.8	4
1081	Production of a New Thiopeptide Antibiotic, TP-1161, by a Marine <i>Nocardiopsis</i> Species. Applied and Environmental Microbiology, 2010, 76, 4969-4976.	1.4	149
1082	Genome-Based Characterization of Two Prenylation Steps in the Assembly of the Stephacidin and Notoamide Anticancer Agents in a Marine-Derived <i>Aspergillus</i> sp Journal of the American Chemical Society, 2010, 132, 12733-12740.	6.6	104
1083	The Third International Conference on the Development of Biomedical Engineering in Vietnam. IFMBE Proceedings, 2010, 27, 19-22.	0.2	3
1084	Malassezia and the Skin., 2010, , .		44
1085	Secondary transport of metal–citrate complexes: the CitMHS family. Critical Reviews in Biochemistry and Molecular Biology, 2010, 45, 453-462.	2.3	17
1086	Elucidation of the Functional Metal Binding Profile of a Cd ^{II} /Pb ^{II} Sensor CmtR ^{Sc} from <i>Streptomyces coelicolor</i> . Biochemistry, 2010, 49, 6617-6626.	1.2	17

#	Article	IF	Citations
1087	<i>Streptomyces scabies</i> 87-22 Contains a Coronafacic Acid-Like Biosynthetic Cluster That Contributes to Plant–Microbe Interactions. Molecular Plant-Microbe Interactions, 2010, 23, 161-175.	1.4	101
1088	Cloning and heterologous expression of the spectinabilin biosynthetic gene cluster from Streptomyces spectabilis. Molecular BioSystems, 2010, 6, 336-338.	2.9	28
1089	Copper mining in Streptomyces: enzymes, natural products and development. Natural Product Reports, 2010, 27, 742.	5.2	39
1090	Genome-minimized <i>Streptomyces</i> host for the heterologous expression of secondary metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2646-2651.	3.3	455
1091	Rapid and Specific Method for Evaluating <i>Streptomyces</i> Competitive Dynamics in Complex Soil Communities. Applied and Environmental Microbiology, 2010, 76, 2009-2012.	1.4	10
1092	Degradation of Chitosans with a Family 46 Chitosanase from <i>Streptomyces coelicolor</i> A3(2). Biomacromolecules, 2010, 11, 2487-2497.	2.6	63
1093	A New Group of Aromatic Prenyltransferases in Fungi, Catalyzing a 2,7-Dihydroxynaphthalene 3-Dimethylallyl-transferase Reaction. Journal of Biological Chemistry, 2010, 285, 16487-16494.	1.6	26
1094	Genome Sequence of the Milbemycin-Producing Bacterium <i>Streptomycesbingchenggensis</i> /i>. Journal of Bacteriology, 2010, 192, 4526-4527.	1.0	88
1095	Analysis of Streptomyces coelicolor Phosphopantetheinyl Transferase, AcpS, Reveals the Basis for Relaxed Substrate Specificity. Biochemistry, 2011, 50, 5704-5717.	1.2	18
1096	ECF sigma factor-associated regulatory networks in Streptomyces colicolor A3(2). , 2011, , .		0
1097	Draft Genome of Streptomyces zinciresistens K42, a Novel Metal-Resistant Species Isolated from Copper-Zinc Mine Tailings. Journal of Bacteriology, 2011, 193, 6408-6409.	1.0	11
1098	Synthetic Biology in Streptomyces Bacteria. Methods in Enzymology, 2011, 497, 485-502.	0.4	50
1099	A sea of biosynthesis: marine natural products meet the molecular age. Natural Product Reports, 2011, 28, 411-428.	5.2	112
1100	Channeling of electrons within SLAC, the small laccase from Streptomyces coelicolor. Faraday Discussions, 2011, 148, 161-171.	1.6	11
1101	Aromatic chemicals production using phenylalnine ammonia lyase expressing Streptomyces lividans. , 2011, , .		0
1102	The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Natural Product Reports, 2011, 28, 1311.	5.2	390
1103	Methods and options for the heterologous production of complex natural products. Natural Product Reports, 2011, 28, 125-151.	5.2	138
1104	A mass spectrometry–guided genome mining approach for natural product peptidogenomics. Nature Chemical Biology, 2011, 7, 794-802.	3.9	329

#	Article	IF	CITATIONS
1105	Morphogenetic Signaling Molecules of the Streptomycetes. Chemical Reviews, 2011, 111, 174-187.	23.0	91
1106	Identification of the genecluster involved in muraymycin biosynthesis from Streptomyces sp. NRRL 30471. Molecular BioSystems, 2011, 7, 920-927.	2.9	49
1107	Chaxamycins A–D, Bioactive Ansamycins from a Hyper-arid Desert <i>Streptomyces</i> sp Journal of Natural Products, 2011, 74, 1491-1499.	1.5	116
1108	Discovery and Characterization of Heme Enzymes from Unsequenced Bacteria: Application to Microbial Lignin Degradation. Journal of the American Chemical Society, 2011, 133, 18006-18009.	6.6	100
1109	Pleiotropic effect of a null mutation in the cvn1 conservon of Streptomyces coelicolor A3(2). Gene, 2011, 477, 12-18.	1.0	15
1110	iTRAQ-based quantitative proteomic analysis of Thermobifida fusca reveals metabolic pathways of cellulose utilization. Journal of Proteomics, 2011, 74, 2112-2122.	1.2	30
1111	Establishment of a real-time PCR method for quantification of geosmin-producing Streptomyces spp. in recirculating aquaculture systems. Water Research, 2011, 45, 6753-6762.	5. 3	49
1112	Adenosine deaminase from Streptomyces coelicolor: Recombinant expression, purification and characterization. Protein Expression and Purification, 2011, 78, 167-173.	0.6	8
1113	Current approaches to exploit actinomycetes as a source of novel natural products. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 375-389.	1.4	172
1114	MS/MS fragmentation-guided search of TMG-chitooligomycins and their structure–activity relationship in specific l²-N-acetylglucosaminidase inhibition. Organic and Biomolecular Chemistry, 2011, 9, 2943.	1.5	18
1115	Widespread Occurrence of Secondary Lipid Biosynthesis Potential in Microbial Lineages. PLoS ONE, 2011, 6, e20146.	1.1	74
1116	Unexplored Gene Resources from Filamentous Fungi. Journal of the Brewing Society of Japan, 2011, 106, 446-456.	0.1	0
1117	Bacterial Eukaryotic Type Serine-Threonine Protein Kinases: From Structural Biology to Targeted Anti-Infective Drug Design. Current Topics in Medicinal Chemistry, 2011, 11, 1352-1369.	1.0	29
1118	The -omics Era- Toward a Systems-Level Understanding of Streptomyces. Current Genomics, 2011, 12, 404-416.	0.7	24
1119	Microbial and Plant Cell Synthesis of Secondary Metabolites and Strain Improvement., 2011,, 101-135.		1
1120	Sesquiterpenes from the Secondary Metabolites of Streptomyces sp. (YIM 56130). Chemical and Pharmaceutical Bulletin, 2011, 59, 1430-1433.	0.6	17
1121	tRNA accumulation and suppression of the <i>bldA</i> phenotype during development in <i>Streptomyces coelicolor</i> . Molecular Microbiology, 2011, 79, 1602-1614.	1.2	16
1122	Cross-interaction of anti- if H factor RshA with BldG, an anti-sigma factor antagonist in Streptomyces griseus. FEMS Microbiology Letters, 2011, 314, 158-163.	0.7	9

#	Article	IF	CITATIONS
1123	Chromosome diversity and similarity within the Actinomycetales. FEMS Microbiology Letters, 2011, 319, 1-10.	0.7	45
1124	High expression levels of chitinase genes in <i>Streptomyces coelicolor</i> A3(2) grown in soil. FEMS Microbiology Ecology, 2011, 77, 623-635.	1.3	30
1125	Furaquinocins I and J: novel polyketide isoprenoid hybrid compounds from Streptomyces reveromyceticus SN-593. Journal of Antibiotics, 2011, 64, 509-513.	1.0	27
1126	Investigation of the biosynthesis of the pipecolate moiety of neuroprotective polyketide meridamycin. Journal of Antibiotics, 2011, 64, 533-538.	1.0	9
1127	Paenimacrolidin, a novel macrolide antibiotic from <i>Paenibacillus</i> sp. F6â€B70 active against methicillinâ€resistant <i>Staphylococcus aureus</i> Microbial Biotechnology, 2011, 4, 491-502.	2.0	34
1128	<i>Myxococcus xanthus</i> induces actinorhodin overproduction and aerial mycelium formation by <i>Streptomyces coelicolor</i> . Microbial Biotechnology, 2011, 4, 175-183.	2.0	86
1129	Engineering <i>Streptomyces coelicolor</i> for heterologous expression of secondary metabolite gene clusters. Microbial Biotechnology, 2011, 4, 207-215.	2.0	439
1130	Deletion of the signalling molecule synthase ScbA has pleiotropic effects on secondary metabolite biosynthesis, morphological differentiation and primary metabolism in <i>Streptomyces coelicolor</i> A3(2). Microbial Biotechnology, 2011, 4, 239-251.	2.0	29
1131	Forkheadâ€associated proteins genetically linked to the serine/threonine kinase PknB regulate carbon flux towards antibiotic biosynthesis in <i>Streptomyces coelicolor</i> . Microbial Biotechnology, 2011, 4, 263-274.	2.0	11
1132	Disruption of the siderophoreâ€binding <i>desE</i> receptor gene in <i>Streptomyces coelicolor</i> A3(2) results in impaired growth in spite of multiple iron–siderophore transport systems. Microbial Biotechnology, 2011, 4, 275-285.	2.0	36
1133	Detection, selective isolation and characterisation of Dactylosporangium strains from diverse environmental samples. Systematic and Applied Microbiology, 2011, 34, 606-616.	1.2	13
1134	Isolation, structure determination and antibacterial activities of succinamide conjugate diacid from Acinetobacter sp. BJ-L. Microbiological Research, 2011, 166, 155-160.	2.5	5
1135	Intragenomic enzyme complements. Journal of Molecular Catalysis B: Enzymatic, 2011, 68, 22-29.	1.8	3
1136	Streptomyces turgidiscabies Car8 contains a modular pathogenicity island that shares virulence genes with other actinobacterial plant pathogens. Plasmid, 2011, 65, 118-124.	0.4	34
1137	Development of a gene cloning system in a fast-growing and moderately thermophilic Streptomyces species and heterologous expression of Streptomyces antibiotic biosynthetic gene clusters. BMC Microbiology, 2011, 11, 243.	1.3	19
1138	Prioritizing orphan proteins for further study using phylogenomics and gene expression profiles in Streptomyces coelicolor. BMC Research Notes, 2011, 4, 325.	0.6	2
1139	Synthesis and structure of a lead(II)–citrate: {Na(H2O)3}[Pb5(C6H5O7)3(C6H6O7)(H2O)3]·9.5H2O. Inorganica Chimica Acta, 2011, 378, 186-193.	1.2	9
1140	Bio-mining the microbial treasures of the ocean: New natural products. Biotechnology Advances, 2011, 29, 468-482.	6.0	270

#	Article	IF	CITATIONS
1141	Synthesis and evaluation of inhibitors of bacterial drug efflux pumps of the major facilitator superfamily. Bioorganic and Medicinal Chemistry, 2011, 19, 7679-7689.	1.4	25
1142	On the origin of antibiotics and mycotoxins. Toxin Reviews, 2011, 30, 6-30.	1.5	5
1143	Mycolic Acid-Containing Bacteria Induce Natural-Product Biosynthesis in <i>Streptomyces</i> Species. Applied and Environmental Microbiology, 2011, 77, 400-406.	1.4	220
1144	Combinatorial biosynthesis in plants: A (p)review on its potential and future exploitation. Natural Product Reports, 2011, 28, 1897.	5.2	64
1145	Convergent strategies in biosynthesis. Natural Product Reports, 2011, 28, 1054.	5.2	37
1146	The tmRNAâ€tagging mechanism and the control of gene expression: a review. Wiley Interdisciplinary Reviews RNA, 2011, 2, 233-246.	3.2	24
1147	Inactivation of the extracytoplasmic function sigma factor Sig6 stimulates avermectin production in Streptomyces avermitilis. Biotechnology Letters, 2011, 33, 1955-1961.	1.1	29
1148	Crystal structure of a putative transcriptional regulator SCO0520 from Streptomyces coelicolor A3(2) reveals an unusual dimer among TetR family proteins. Journal of Structural and Functional Genomics, 2011, 12, 149-157.	1.2	6
1149	Expression and identification of a thermostable malate dehydrogenase from multicellular prokaryote Streptomyces avermitilis MA-4680. Molecular Biology Reports, 2011, 38, 1629-1636.	1.0	15
1150	Summing up particular features of protein secretion in Streptomyces lividans. World Journal of Microbiology and Biotechnology, 2011, 27, 2231-2237.	1.7	7
1151	Strain improvement in actinomycetes in the postgenomic era. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 657-666.	1.4	89
1152	Cinnamic acid production using Streptomyces lividans expressing phenylalanine ammonia lyase. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 643-648.	1.4	45
1153	Analysis of developmental gene conservation in the Actinomycetales using DNA/DNA microarray comparisons. Antonie Van Leeuwenhoek, 2011, 99, 159-177.	0.7	2
1154	Genus-specific primers targeting the 16S rRNA gene for PCR detection of members of the genus Verrucosispora. Antonie Van Leeuwenhoek, 2011, 100, 117-128.	0.7	6
1155	tdd8: a TerD domain-encoding gene involved in Streptomyces coelicolor differentiation. Antonie Van Leeuwenhoek, 2011, 100, 385-398.	0.7	16
1156	ATP Modulates the Growth of Specific Microbial Strains. Current Microbiology, 2011, 62, 84-89.	1.0	6
1157	Streptomyces autolyticus JX-47 Large-Insert Bacterial Artificial Chromosome Library Construction and Identification of Clones Covering Geldanamycin Biosynthesis Gene Cluster. Current Microbiology, 2011, 63, 68-74.	1.0	9
1158	A large inversion in the linear chromosome of Streptomyces griseus caused by replicative transposition of a new Tn3 family transposon. Archives of Microbiology, 2011, 193, 299-306.	1.0	5

#	Article	IF	Citations
1159	Characterization of the autophosphorylating kinase, PkaF, in Streptomyces coelicolor A3(2) M130. Archives of Microbiology, 2011, 193, 845-856.	1.0	5
1160	Genomics of iron acquisition in the plant pathogen Erwinia amylovora: insights in the biosynthetic pathway of the siderophore desferrioxamine E. Archives of Microbiology, 2011, 193, 693-699.	1.0	53
1161	Interaction of SCO2127 with BldKB and its possible connection to carbon catabolite regulation of morphological differentiation in Streptomyces coelicolor. Applied Microbiology and Biotechnology, 2011, 89, 799-806.	1.7	12
1162	The construction of a library of synthetic promoters revealed some specific features of strong Streptomyces promoters. Applied Microbiology and Biotechnology, 2011, 90, 615-623.	1.7	62
1163	Functional analysis of SGR4635-induced enhancement of pigmented antibiotic production in Streptomyces lividans. Journal of Microbiology, 2011, 49, 828-833.	1.3	8
1164	Energetics and genetics across the prokaryote-eukaryote divide. Biology Direct, 2011, 6, 35.	1.9	114
1165	Genome-wide transcriptomic analysis of the response to nitrogen limitation in Streptomyces coelicolor A3(2). BMC Research Notes, 2011, 4, 78.	0.6	35
1166	Crystallization and diffraction analysis of thioredoxin reductase from Streptomyces coelicolor. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 917-921.	0.7	1
1167	nocoRNAc: Characterization of non-coding RNAs in prokaryotes. BMC Bioinformatics, 2011, 12, 40.	1.2	39
1168	Genome-wide dynamics of a bacterial response to antibiotics that target the cell envelope. BMC Genomics, 2011, 12, 226.	1.2	68
1169	Genomic fluidity: an integrative view of gene diversity within microbial populations. BMC Genomics, 2011, 12, 32.	1.2	92
1170	Crystal structures of a family 8 polysaccharide lyase reveal open and highly occluded substrateâ€binding cleft conformations. Proteins: Structure, Function and Bioinformatics, 2011, 79, 965-974.	1.5	22
1171	Structural evidence that puromycin hydrolase is a new type of aminopeptidase with a prolyl oligopeptidase family fold. Proteins: Structure, Function and Bioinformatics, 2011, 79, 2999-3005.	1.5	8
1172	Cleavage of cellulose by a CBM33 protein. Protein Science, 2011, 20, 1479-1483.	3.1	317
1173	Metabolomic analysis of a synthetic metabolic switch in <i>Streptomyces coelicolor</i> A3(2). Proteomics, 2011, 11, 4622-4631.	1.3	20
1175	Comparative metabolic capabilities for <i>Micrococcus luteus</i> NCTC 2665, the "Fleming―strain, and actinobacteria. Biotechnology and Bioengineering, 2011, 108, 2770-2775.	1.7	6
1176	Epoxyquinone Formation Catalyzed by a Twoâ€Component Flavinâ€Dependent Monooxygenase Involved in Biosynthesis of the Antibiotic Actinorhodin. ChemBioChem, 2011, 12, 2767-2773.	1.3	17
1177	How to discover new antibiotics: harvesting the parvome. Current Opinion in Chemical Biology, 2011, 15, 5-10.	2.8	79

#	ARTICLE	IF	CITATIONS
1178	Natural products from synthetic biology. Current Opinion in Chemical Biology, 2011, 15, 505-515.	2.8	71
1179	Microbial metabolites: 45 years of wandering, wondering and discovering. Tetrahedron, 2011, 67, 6420-6459.	1.0	52
1180	Biosynthesis of the apoptolidins in Nocardiopsis sp. FU 40. Tetrahedron, 2011, 67, 6568-6575.	1.0	29
1181	The use of Streptomyces for immunization against mycobacterial infections. Hum Vaccin, 2011, 7, 934-940.	2.4	2
1182	Deep sequencing-based identification of small non-coding RNAs inStreptomyces coelicolor. RNA Biology, 2011, 8, 468-477.	1.5	100
1183	Characterization and Manipulation of the Pathway-Specific Late Regulator AlpW Reveals <i>Streptomyces ambofaciens</i> as a New Producer of Kinamycins. Journal of Bacteriology, 2011, 193, 1142-1153.	1.0	96
1184	Characterization of the multiple CRISPR loci on Streptomyces linear plasmid pSHK1. Acta Biochimica Et Biophysica Sinica, 2011, 43, 630-639.	0.9	22
1185	Activation of Dormant Secondary Metabolism Neotrehalosadiamine Synthesis by an RNA Polymerase Mutation inBacillus subtilis. Bioscience, Biotechnology and Biochemistry, 2011, 75, 618-623.	0.6	9
1186	pSLA2-M of <i>Streptomyces rochei </i> Is a Composite Linear Plasmid Characterized by Self-Defense Genes and Homology with pSLA2-L. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1147-1153.	0.6	11
1187	Complete Genome Sequence of Streptomyces cattleya NRRL 8057, a Producer of Antibiotics and Fluorometabolites. Journal of Bacteriology, 2011, 193, 5055-5056.	1.0	58
1188	The RNA Polymerase Omega Factor RpoZ Is Regulated by PhoP and Has an Important Role in Antibiotic Biosynthesis and Morphological Differentiation in Streptomyces coelicolor. Applied and Environmental Microbiology, 2011, 77, 7586-7594.	1.4	38
1189	The Level of AdpA Directly Affects Expression of Developmental Genes in Streptomyces coelicolor. Journal of Bacteriology, 2011, 193, 6358-6365.	1.0	45
1190	Complex Transcriptional Control of the Antibiotic Regulator <i>afsS</i> in Streptomyces: PhoP and AfsR Are Overlapping, Competitive Activators. Journal of Bacteriology, 2011, 193, 2242-2251.	1.0	31
1191	Self-Resistance and Cell Wall Composition in the Glycopeptide Producer Amycolatopsis balhimycina. Antimicrobial Agents and Chemotherapy, 2011, 55, 4283-4289.	1.4	40
1192	The plant pathogen Streptomyces scabies 87-22 has a functional pyochelin biosynthetic pathway that is regulated by TetR- and AfsR-family proteins. Microbiology (United Kingdom), 2011, 157, 2681-2693.	0.7	47
1193	An Orphan Histidine Kinase, OhkA, Regulates Both Secondary Metabolism and Morphological Differentiation in Streptomyces coelicolor. Journal of Bacteriology, 2011, 193, 3020-3032.	1.0	36
1194	Genome Sequence of Streptomyces sp. Strain Tü6071. Journal of Bacteriology, 2011, 193, 4278-4279.	1.0	8
1195	Properties of CsnR, the Transcriptional Repressor of the Chitosanase Gene, <i>csnA</i> , of Streptomyces lividans. Journal of Bacteriology, 2011, 193, 2441-2450.	1.0	21

#	Article	IF	CITATIONS
1196	Streptomyces tacrolimicus sp. nov., a low producer of the immunosuppressant tacrolimus (FK506). International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 1084-1088.	0.8	19
1197	Identification and characterization of the Streptomyces globisporus 1912 regulatory gene IndYR that affects sporulation and antibiotic production. Microbiology (United Kingdom), 2011, 157, 1240-1249.	0.7	25
1198	Activation of the SoxR Regulon in Streptomyces coelicolor by the Extracellular Form of the Pigmented Antibiotic Actinorhodin. Journal of Bacteriology, 2011, 193, 75-81.	1.0	62
1199	The actinobacteria-specific gene wblA controls major developmental transitions in Streptomyces coelicolor A3(2). Microbiology (United Kingdom), 2011, 157, 1312-1328.	0.7	82
1200	Discovery of Antibacterials and Other Bioactive Compounds from Microorganisms — Evaluating Methodologies for Discovery and Generation of Non-Ribosomal Peptide Antibiotics. Current Drug Targets, 2011, 12, 1547-1559.	1.0	11
1201	A system for the targeted amplification of bacterial gene clusters multiplies antibiotic yield in <i>Streptomyces coelicolor</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16020-16025.	3.3	66
1202	Acyl depsipeptide (ADEP) resistance in Streptomyces. Microbiology (United Kingdom), 2011, 157, 2226-2234.	0.7	37
1203	Cryptic Aspergillus nidulans Antimicrobials. Applied and Environmental Microbiology, 2011, 77, 3669-3675.	1.4	29
1204	The Chitinolytic Activities of Streptomyces sp. TH-11. International Journal of Molecular Sciences, 2011, 12, 56-65.	1.8	30
1205	Metagenomic Analysis of Taxa Associated with Lutzomyia longipalpis, Vector of Visceral Leishmaniasis, Using an Unbiased High-Throughput Approach. PLoS Neglected Tropical Diseases, 2011, 5, e1304.	1.3	55
1206	Genome-Based Studies of Marine Microorganisms to Maximize the Diversity of Natural Products Discovery for Medical Treatments. Evidence-based Complementary and Alternative Medicine, 2011, 2011, 1-11.	0.5	28
1207	Artificial Chromosomes to Explore and to Exploit Biosynthetic Capabilities of Actinomycetes. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-10.	3.0	23
1208	Phylogenomic and Domain Analysis of Iterative Polyketide Synthases in Aspergillus Species. Evolutionary Bioinformatics, 2012, 8, EBO.S9796.	0.6	11
1209	Annotation of the Modular Polyketide Synthase and Nonribosomal Peptide Synthetase Gene Clusters in the Genome of Streptomyces tsukubaensis NRRL18488. Applied and Environmental Microbiology, 2012, 78, 8183-8190.	1.4	19
1210	Draft Genome Sequence of the Human Pathogen Streptomyces somaliensis, a Significant Cause of Actinomycetoma. Journal of Bacteriology, 2012, 194, 3544-3545.	1.0	33
1211	Characterization of Recombinant UDP- and ADP-Glucose Pyrophosphorylases and Glycogen Synthase To Elucidate Glucose-1-Phosphate Partitioning into Oligo- and Polysaccharides in Streptomyces coelicolor. Journal of Bacteriology, 2012, 194, 1485-1493.	1.0	33
1212	Identification and Characterization of a Xyloglucan-Specific Family 74 Glycosyl Hydrolase from Streptomyces coelicolor A3(2). Applied and Environmental Microbiology, 2012, 78, 607-611.	1.4	29
1213	Identification and Biochemical Characterization of Sco3487 from Streptomyces coelicolor A3(2), an Exo- and Endo-Type Â-Agarase-Producing Neoagarobiose. Journal of Bacteriology, 2012, 194, 142-149.	1.0	67

#	Article	IF	CITATIONS
1214	Characterization of Streptomyces padanus JAU4234, a Producer of Actinomycin X ₂ , Fungichromin, and a New Polyene Macrolide Antibiotic. Applied and Environmental Microbiology, 2012, 78, 589-592.	1.4	54
1215	Reassembly of Functionally Intact Environmental DNA-Derived Biosynthetic Gene Clusters. Methods in Enzymology, 2012, 517, 225-239.	0.4	33
1216	Crp Is a Global Regulator of Antibiotic Production in <i>Streptomyces</i> . MBio, 2012, 3, .	1.8	90
1217	Bio-Geo Interactions in Metal-Contaminated Soils. Soil Biology, 2012, , .	0.6	11
1218	Actinomycetes for antimicrobial discovery isolated from mangrove soils in Malaysia. , 2012, , .		0
1219	Old Meets New: Using Interspecies Interactions to Detect Secondary Metabolite Production in Actinomycetes. Methods in Enzymology, 2012, 517, 89-109.	0.4	41
1220	Draft Genome Sequence of the Marine Streptomyces sp. Strain AA1529, Isolated from the Yellow Sea. Journal of Bacteriology, 2012, 194, 5474-5475.	1.0	12
1221	Genome Sequence of the Bacterium Streptomyces davawensis JCM 4913 and Heterologous Production of the Unique Antibiotic Roseoflavin. Journal of Bacteriology, 2012, 194, 6818-6827.	1.0	42
1222	Dynamic Localization of Tat Protein Transport Machinery Components in Streptomyces coelicolor. Journal of Bacteriology, 2012, 194, 6272-6281.	1.0	19
1223	Genome Sequence of Streptomyces sp. Strain TOR3209, a Rhizosphere Microecology Regulator Isolated from Tomato Rhizosphere. Journal of Bacteriology, 2012, 194, 1627-1627.	1.0	13
1224	RNA-Seq and RNA Immunoprecipitation Analyses of the Transcriptome of Streptomyces coelicolor Identify Substrates for RNase III. Journal of Bacteriology, 2012, 194, 2228-2237.	1.0	36
1225	Extracting regulator activity profiles by integration of de novo motifs and expression data: characterizing key regulators of nutrient depletion responses in Streptomyces coelicolor. Nucleic Acids Research, 2012, 40, 5227-5239.	6.5	24
1226	Genome Sequence of Streptomyces auratus Strain AGR0001, a Phoslactomycin-Producing Actinomycete. Journal of Bacteriology, 2012, 194, 5472-5473.	1.0	11
1227	Genome Sequence of a New Streptomyces coelicolor Generalized Transducing Bacteriophage, ϕCAM. Journal of Virology, 2012, 86, 13860-13860.	1.5	5
1228	Cyclic Di-GMP Phosphodiesterases RmdA and RmdB Are Involved in Regulating Colony Morphology and Development in Streptomyces coelicolor. Journal of Bacteriology, 2012, 194, 4642-4651.	1.0	39
1229	Of Reductionism and The Pendulum Swing: Connecting Toxicology and Human Health. Dose-Response, 2012, 10, dose-response.1.	0.7	4
1230	Complete Genome Sequence of <i>Bradyrhizobium</i> sp. S23321: Insights into Symbiosis Evolution in Soil Oligotrophs. Microbes and Environments, 2012, 27, 306-315.	0.7	76
1231	Iron acquisition in the marine actinomycete genus <i>Salinispora</i> is controlled by the desferrioxamine family of siderophores. FEMS Microbiology Letters, 2012, 335, 95-103.	0.7	36

#	Article	IF	CITATIONS
1232	Interspecies modulation of bacterial development through iron competition and siderophore piracy. Molecular Microbiology, 2012, 86, 628-644.	1.2	148
1233	Structure and biosynthesis of the unusual polyketide alkaloid coelimycin P1, a metabolic product of the cpk gene cluster of Streptomyces coelicolor M145. Chemical Science, 2012, 3, 2716.	3.7	152
1234	NdgR, a Common Transcriptional Activator for Methionine and Leucine Biosynthesis in Streptomyces coelicolor. Journal of Bacteriology, 2012, 194, 6837-6846.	1.0	13
1235	Lethal effect of Streptomyces citreofluorescens against larvae of malaria, filaria and dengue vectors. Asian Pacific Journal of Tropical Medicine, 2012, 5, 594-597.	0.4	7
1236	Persister Eradication: Lessons from the World of Natural Products. Methods in Enzymology, 2012, 517, 387-406.	0.4	26
1237	Streptomyces coelicolor as an Expression Host for Heterologous Gene Clusters. Methods in Enzymology, 2012, 517, 279-300.	0.4	43
1238	Genome mining reveals the evolutionary origin and biosynthetic potential of basidiomycete polyketide synthases. Fungal Genetics and Biology, 2012, 49, 996-1003.	0.9	71
1239	Investigating conservation of the albaflavenone biosynthetic pathway and CYP170 bifunctionality in streptomycetes. FEBS Journal, 2012, 279, 1640-1649.	2.2	41
1240	A novel anticancer and antifungus phenazine derivative from a marine actinomycete BM-17. Microbiological Research, 2012, 167, 616-622.	2.5	111
1241	An ABC transporter complex containing S-adenosylmethionine (SAM)-induced ATP-binding protein is involved in antibiotics production and SAM signaling in Streptomyces coelicolor M145. Biotechnology Letters, 2012, 34, 1907-1914.	1.1	7
1242	Chemical Perturbation of Secondary Metabolism Demonstrates Important Links to Primary Metabolism. Chemistry and Biology, 2012, 19, 1020-1027.	6.2	149
1243	Synthetic Biotechnology to Study and Engineer Ribosomal Bottromycin Biosynthesis. Chemistry and Biology, 2012, 19, 1278-1287.	6.2	118
1244	Recombinant protein production and streptomycetes. Journal of Biotechnology, 2012, 158, 159-167.	1.9	93
1245	Purification and characterization of a novel antifungal endo-type chitosanase from Anabaena fertilissima. Annals of Microbiology, 2012, 62, 1089-1098.	1.1	36
1246	Construction of over-expression shuttle vectors in Streptomyces. Annals of Microbiology, 2012, 62, 1541-1546.	1.1	7
1247	Effects of two putative LacI-family transcriptional regulators, SCO4158 and SCO7554, on antibiotic pigment production of Streptomyces coelicolor and Streptomyces lividans. Journal of the Korean Society for Applied Biological Chemistry, 2012, 55, 737-741.	0.9	4
1248	Actinomycetes from Western Ghats of Tamil Nadu with its antimicrobial properties. Asian Pacific Journal of Tropical Biomedicine, 2012, 2, S830-S837.	0.5	11
1249	Antibiotics produced by Streptomyces. Brazilian Journal of Infectious Diseases, 2012, 16, 466-471.	0.3	501

#	Article	IF	CITATIONS
1250	Deletion of TerD-domain-encoding genes: effect on <i>Streptomyces coelicolor</i> development. Canadian Journal of Microbiology, 2012, 58, 1221-1229.	0.8	3
1251	Draft Genome Sequence of Streptomyces acidiscabies 84-104, an Emergent Plant Pathogen. Journal of Bacteriology, 2012, 194, 1847-1847.	1.0	19
1252	Metabolic Switches and Adaptations Deduced from the Proteomes of Streptomyces coelicolor Wild Type and phoP Mutant Grown in Batch Culture. Molecular and Cellular Proteomics, 2012, 11, M111.013797.	2.5	54
1253	Proteomic Analysis of the Streptomyces griseus Ribosomal Fraction. Bioscience, Biotechnology and Biochemistry, 2012, 76, 2267-2274.	0.6	2
1254	Microbial metabolic exchangeâ€"the chemotype-to-phenotype link. Nature Chemical Biology, 2012, 8, 26-35.	3.9	199
1255	Waking up Streptomyces Secondary Metabolism by Constitutive Expression of Activators or Genetic Disruption of Repressors. Methods in Enzymology, 2012, 517, 343-366.	0.4	33
1256	Identification and biochemical characterization of a 5-dimethylallyl tryptophan synthase in Streptomyces coelicolor A3(2). Process Biochemistry, 2012, 47, 1419-1422.	1.8	9
1257	Structural Analysis of Cytochrome P450 105N1 Involved in the Biosynthesis of the Zincophore, Coelibactin. International Journal of Molecular Sciences, 2012, 13, 8500-8513.	1.8	34
1258	A new approach to isolating siderophore-producing actinobacteria. Letters in Applied Microbiology, 2012, 55, 68-72.	1.0	20
1259	Imaging secondary metabolism of Streptomyces sp. Mg1 during cellular lysis and colony degradation of competing Bacillus subtilis. Antonie Van Leeuwenhoek, 2012, 102, 435-445.	0.7	50
1260	Actinomycetes genome engineering approaches. Antonie Van Leeuwenhoek, 2012, 102, 503-516.	0.7	26
1261	The role of Ile87 of CYP158A2 in oxidative coupling reaction. Archives of Biochemistry and Biophysics, 2012, 518, 127-132.	1.4	13
1262	Modeling of the major gas vesicle protein, GvpA: From protein sequence to vesicle wall structure. Journal of Structural Biology, 2012, 179, 18-28.	1.3	25
1263	A versatile PCR-based tandem epitope tagging system for Streptomyces coelicolor genome. Biochemical and Biophysical Research Communications, 2012, 424, 22-27.	1.0	4
1264	Identification of the actinorhodin monomer and its related compound from a deletion mutant of the actVA-ORF4 gene of Streptomyces coelicolor A3(2). Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5041-5045.	1.0	39
1265	Novel teichulosonic acid from cell wall of Streptomyces coelicolor M145. Carbohydrate Research, 2012, 359, 70-75.	1.1	17
1266	Regulation of an alternative sigma factor İfl by a partner switching mechanism with an anti-sigma factor Prsl and an anti-anti-sigma factor Arsl in Streptomyces coelicolor A3(2). Gene, 2012, 492, 71-80.	1.0	17
1267	Cloning and characterization of a novel cellobiase gene, cba3, encoding the first known β-glucosidase of glycoside hydrolase family 1 of Cellulomonas biazotea. Gene, 2012, 493, 52-61.	1.0	7

#	Article	IF	CITATIONS
1268	Genome Shuffling of <i>Streptomyces gilvosporeus</i> for Improving Natamycin Production. Journal of Agricultural and Food Chemistry, 2012, 60, 6026-6036.	2.4	30
1269	<i>Mycobacterium smegmatis</i> genomic characteristics associated with its saprophyte lifestyle. Journal of Cellular Biochemistry, 2012, 113, 3051-3055.	1.2	3
1270	The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110. BMC Genomics, 2012, 13, 112.	1.2	69
1271	Comparative analysis of mycobacterium and related actinomycetes yields insight into the evolution of mycobacterium tuberculosis pathogenesis. BMC Genomics, 2012, 13, 120.	1.2	80
1272	Gene fragmentation in bacterial draft genomes: extent, consequences and mitigation. BMC Genomics, 2012, 13, 14.	1.2	69
1273	Complete genome sequence of Saccharothrix espanaensis DSM 44229T and comparison to the other completely sequenced Pseudonocardiaceae. BMC Genomics, 2012, 13, 465.	1.2	32
1274	PKMiner: a database for exploring type II polyketide synthases. BMC Microbiology, 2012, 12, 169.	1.3	55
1275	Characterization of replication and conjugation of plasmid pWTY27 from a widely distributed Streptomyces species. BMC Microbiology, 2012, 12, 253.	1.3	12
1276	Myxobacteria: natural pharmaceutical factories. Microbial Cell Factories, 2012, 11, 52.	1.9	32
1277	Predictors of remission in depression to individual and combined treatments (PReDICT): study protocol for a randomized controlled trial. Trials, 2012, 13, 106.	0.7	108
1278	Optimized submerged batch fermentation strategy for systems scale studies of metabolic switching in Streptomyces coelicolor A3(2). BMC Systems Biology, 2012, 6, 59.	3.0	33
1279	Characterisation of a natural variant of the \hat{I}^3 -butyrolactone signalling receptor. BMC Research Notes, 2012, 5, 379.	0.6	10
1281	Streptomyces coelicolor sRNA scr5239 inhibits agarase expression by direct base pairing to the dagA coding region. Microbiology (United Kingdom), 2012, 158, 424-435.	0.7	26
1282	Cascades and Networks of Regulatory Genes That Control Antibiotic Biosynthesis. Sub-Cellular Biochemistry, 2012, 64, 115-138.	1.0	37
1283	Conjugative DNA transfer in <i>Streptomyces</i> by TraB: is one protein enough?. FEMS Microbiology Letters, 2012, 337, 81-88.	0.7	20
1284	Phylum XXVI. Actinobacteria phyl. nov, 2012, , 33-2028.		58
1285	Identification of glucose kinaseâ€dependent and â€independent pathways for carbon control of primary metabolism, development and antibiotic production in <i><scp>S</scp>treptomyces coelicolor</i> by quantitative proteomics. Molecular Microbiology, 2012, 86, 1490-1507.	1.2	49
1286	Development of the ability to produce secondary metabolites in Streptomyces through the acquisition of erythromycin resistance. Journal of Antibiotics, 2012, 65, 323-326.	1.0	21

#	Article	IF	CITATIONS
1287	Menaquinone Biosyntheses in Microorganisms. Methods in Enzymology, 2012, 515, 107-122.	0.4	35
1288	Crystal structure of cytochrome P450 CYP105N1 from Streptomyces coelicolor, an oxidase in the coelibactin siderophore biosynthetic pathway. Archives of Biochemistry and Biophysics, 2012, 528, 111-117.	1.4	21
1289	Identification and characterization of WhiB-like family proteins of the Bifidobacterium genus. Anaerobe, 2012, 18, 421-429.	1.0	21
1290	Metabolically versatile large-genome prokaryotes. Current Opinion in Biotechnology, 2012, 23, 467-473.	3.3	48
1291	Genome-based bioprospecting of microbes for new therapeutics. Current Opinion in Biotechnology, 2012, 23, 941-947.	3.3	48
1292	GC content dependency of open reading frame prediction via stop codon frequencies. Gene, 2012, 511, 441-446.	1.0	10
1293	Terminal reduction reactions of nitrate and sulfate assimilation in Streptomyces coelicolor A3(2): identification of genes encoding nitrite and sulfite reductases. Research in Microbiology, 2012, 163, 340-348.	1.0	43
1294	Informatic strategies for the discovery of polyketides and nonribosomal peptides. MedChemComm, 2012, 3, 932-937.	3.5	8
1295	Identification and characterization of a novel \hat{l}^2 -galactosidase from Victivallis vadensis ATCC BAA-548, an anaerobic fecal bacterium. Journal of Microbiology, 2012, 50, 1034-1040.	1.3	12
1296	Prajinamide, a new modified peptide from a soil-derived Streptomyces. Journal of Antibiotics, 2012, 65, 157-159.	1.0	9
1297	Employing a polyketide synthase module and thioesterase in the semipreparative biocatalysis of diverse triketide pyrones. MedChemComm, 2012, 3, 956.	3 . 5	19
1298	Exploitation of Microbial Diversity for Novel Products. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2012, 82, 301.	0.4	1
1299	Use and Discovery of Chemical Elicitors That Stimulate Biosynthetic Gene Clusters in Streptomyces Bacteria. Methods in Enzymology, 2012, 517, 367-385.	0.4	60
1300	Protein–Carbon Nanotube Sensors. Methods in Enzymology, 2012, 509, 165-194.	0.4	15
1301	Pleiomorphism in Mycobacterium. Advances in Applied Microbiology, 2012, 80, 81-112.	1.3	4
1302	Multiple-platform data integration method with application to combined analysis of microarray and proteomic data. BMC Bioinformatics, 2012, 13, 320.	1.2	14
1303	Analysis of two distinct mycelial populations in liquid-grown Streptomyces cultures using a flow cytometry-based proteomics approach. Applied Microbiology and Biotechnology, 2012, 96, 1301-1312.	1.7	42
1304	Transcriptional and preliminary functional analysis of the six genes located in divergence of phoR/phoP in Streptomyces lividans. Applied Microbiology and Biotechnology, 2012, 95, 1553-1566.	1.7	27

#	Article	IF	Citations
1306	LAL Regulators SCO0877 and SCO7173 as Pleiotropic Modulators of Phosphate Starvation Response and Actinorhodin Biosynthesis in Streptomyces coelicolor. PLoS ONE, 2012, 7, e31475.	1.1	33
1307	Comparing the Similarity of Different Groups of Bacteria to the Human Proteome. PLoS ONE, 2012, 7, e34007.	1.1	6
1308	A Novel Two-Component System Involved in Secretion Stress Response in Streptomyces lividans. PLoS ONE, 2012, 7, e48987.	1.1	22
1309	Activation of the Dormant Secondary Metabolite Production by Introducing Gentamicin-Resistance in a Marine-Derived Penicillium purpurogenum G59. Marine Drugs, 2012, 10, 559-582.	2.2	69
1310	Intracellular Metabolite Pool Changes in Response to Nutrient Depletion Induced Metabolic Switching in Streptomyces coelicolor. Metabolites, 2012, 2, 178-194.	1.3	39
1311	Genome-wide survey of polyketide synthase and nonribosomal peptide synthetase gene clusters in Streptomyces turgidiscabies NBRC 16081. Journal of General and Applied Microbiology, 2012, 58, 363-372.	0.4	10
1312	Analysis of the Ketosynthase Genes in Streptomyces and Its Implications for Preventing Reinvestigation of Polyketides with Bioactivities. Journal of Agricultural Science, 2012, 4, .	0.1	0
1313	Bugs, drugs and chemical genomics. Nature Chemical Biology, 2012, 8, 46-56.	3.9	130
1314	Introducing the Parvome: Bioactive Compounds in the Microbial World. ACS Chemical Biology, 2012, 7, 252-259.	1.6	125
1315	Separating the wheat from the chaff: a prioritisation pipeline for the analysis of metabolomics datasets. Metabolomics, 2012, 8, 29-36.	1.4	50
1316	Diversity of P450 enzymes in the biosynthesis of natural products. Natural Product Reports, 2012, 29, 1251.	5.2	247
1317	The microbial cell factory. Organic and Biomolecular Chemistry, 2012, 10, 1949.	1.5	32
1318	Extracytoplasmic function $\ddot{l}f$ factors of the widely distributed group ECF41 contain a fused regulatory domain. MicrobiologyOpen, 2012, 1, 194-213.	1.2	40
1319	Exploration and Mining of the Bacterial Terpenome. Accounts of Chemical Research, 2012, 45, 463-472.	7.6	150
1320	Genomeâ€scale metabolic representation of <i>Amycolatopsis balhimycina</i> . Biotechnology and Bioengineering, 2012, 109, 1798-1807.	1.7	19
1321	Characterization of New Class III Lantibioticsâ€"Erythreapeptin, Avermipeptin and Griseopeptin from ⟨i⟩Saccharopolyspora erythraea, Streptomyces avermitilis⟨/i⟩ and ⟨i⟩Streptomyces griseus⟨/i⟩ Demonstrates Stepwise Nâ€Terminal Leader Processing. ChemBioChem, 2012, 13, 1174-1183.	1.3	78
1322	Biologically active secondary metabolites from Actinomycetes. Open Life Sciences, 2012, 7, 373-390.	0.6	79
1323	Rare actinomycetes: a potential storehouse for novel antibiotics. Critical Reviews in Biotechnology, 2012, 32, 108-132.	5.1	223

#	Article	IF	CITATIONS
1324	Heavy Metal-Resistant Streptomycetes in Soil. Soil Biology, 2012, , 163-182.	0.6	12
1326	Ribosome-inactivating proteins with an emphasis on bacterial RIPs and their potential medical applications. Future Microbiology, 2012, 7, 705-717.	1.0	24
1327	Phylogenetic Framework and Molecular Signatures for the Main Clades of the Phylum Actinobacteria. Microbiology and Molecular Biology Reviews, 2012, 76, 66-112.	2.9	244
1328	Function of Cytochrome P450 Enzymes MycCl and MycG in Micromonospora griseorubida, a Producer of the Macrolide Antibiotic Mycinamicin. Antimicrobial Agents and Chemotherapy, 2012, 56, 3648-3656.	1.4	17
1329	Structural and functional dissection of aminocoumarin antibiotic biosynthesis: a review. Journal of Structural and Functional Genomics, 2012, 13, 125-133.	1.2	4
1330	Tryptophan catabolism via kynurenine production in Streptomyces coelicolor: identification of three genes coding for the enzymes of tryptophan to anthranilate pathway. Applied Microbiology and Biotechnology, 2012, 94, 719-728.	1.7	15
1331	Agar degradation by microorganisms and agar-degrading enzymes. Applied Microbiology and Biotechnology, 2012, 94, 917-930.	1.7	216
1332	Differential proteomic analysis of an engineered Streptomyces coelicolor strain reveals metabolic pathways supporting growth on n-hexadecane. Applied Microbiology and Biotechnology, 2012, 94, 1289-1301.	1.7	33
1333	<i>Streptomyces</i> temperate bacteriophage integration systems for stable genetic engineering of actinomycetes (and other organisms). Journal of Industrial Microbiology and Biotechnology, 2012, 39, 661-672.	1.4	70
1334	Importance and regulation of inositol biosynthesis during growth and differentiation of <i>Streptomyces</i> . Molecular Microbiology, 2012, 83, 1178-1194.	1.2	33
1335	Signals and regulators that govern <i>Streptomyces</i> development. FEMS Microbiology Reviews, 2012, 36, 206-231.	3.9	249
1336	Elucidation of Piericidin A1 Biosynthetic Locus Revealed a Thioesterase-Dependent Mechanism of α-Pyridone Ring Formation. Chemistry and Biology, 2012, 19, 243-253.	6.2	38
1337	Metabolomics methods for the synthetic biology of secondary metabolism. FEBS Letters, 2012, 586, 2177-2183.	1.3	63
1338	Isolation of genes coding for chitin-degrading enzymes in the novel chitinolytic bacterium, Chitiniphilus shinanonensis, and characterization of a gene coding for a family 19 chitinase. Journal of Bioscience and Bioengineering, 2012, 113, 293-299.	1.1	24
1339	Antisense inhibition of gene expression and growth in gram-negative bacteria by cell-penetrating peptide conjugates of peptide nucleic acids targeted to rpoD gene. Biomaterials, 2012, 33, 659-667.	5.7	106
1340	Evaluation of $\langle i \rangle$ Streptomycesâ $\in f$ coelicolor $\langle i \rangle$ â $\in f$ A3(2) as a heterologous expression host for the cyanobacterial protein kinaseâ $\in f$ C activator lyngbyatoxinâ $\in f$ A. FEBS Journal, 2012, 279, 1243-1251.	2.2	29
1341	Unsuspected control of siderophore production by <i>N</i> â€acetylglucosamine in streptomycetes. Environmental Microbiology Reports, 2012, 4, 512-521.	1.0	57
1342	Genomic sequence-based discovery of novel angucyclinone antibiotics from marine Streptomyces sp. W007. FEMS Microbiology Letters, 2012, 332, 105-112.	0.7	25

#	Article	IF	Citations
1343	Sequential deletion of all the polyketide synthase and nonribosomal peptide synthetase biosynthetic gene clusters and a 900-kb subtelomeric sequence of the linear chromosome of Streptomyces coelicolor. FEMS Microbiology Letters, 2012, 333, 169-179.	0.7	50
1344	Ribosomal and protein coding gene based multigene phylogeny on the family Streptomycetaceae. Systematic and Applied Microbiology, 2012, 35, 1-6.	1.2	20
1345	Metabolic versatility of Gram-positive microbial isolates from contaminated river sediments. Journal of Hazardous Materials, 2012, 215-216, 243-251.	6.5	34
1346	Novel chemobiosynthetic approach for exclusive production of FK506. Metabolic Engineering, 2012, 14, 39-46.	3.6	35
1347	Methods and applications for assembling large DNA constructs. Metabolic Engineering, 2012, 14, 196-204.	3.6	48
1348	Multiâ€tier regulation of the streptomycete morphogenetic peptide SapB. Molecular Microbiology, 2012, 84, 501-515.	1.2	11
1349	Differential regulation of antibiotic biosynthesis by DraRâ€K, a novel twoâ€component system in <i>Streptomyces coelicolor</i> . Molecular Microbiology, 2012, 85, 535-556.	1.2	64
1350	Microdiversity and evidence for high dispersal rates in the marine actinomycete <i>Salinispora pacifica</i> '. Environmental Microbiology, 2012, 14, 480-493.	1.8	40
1351	Genome plasticity and systems evolution in Streptomyces. BMC Bioinformatics, 2012, 13, S8.	1.2	61
1352	Discovery of the Rhizopodin Biosynthetic Gene Cluster in <i>Stigmatella aurantiaca</i> Sg a15 by Genome Mining. ChemBioChem, 2012, 13, 416-426.	1.3	38
1353	Expression of a polycistronic messenger RNA involved in antibiotic production in an rnc mutant of Streptomyces coelicolor. Archives of Microbiology, 2012, 194, 147-155.	1.0	2
1354	A novel function of Streptomyces integration host factor (sIHF) in the control of antibiotic production and sporulation in Streptomyces coelicolor. Antonie Van Leeuwenhoek, 2012, 101, 479-492.	0.7	23
1355	Prokaryotic systematics in the genomics era. Antonie Van Leeuwenhoek, 2012, 101, 21-34.	0.7	41
1356	The Biodegradation of Latex Rubber: A Minireview. Journal of Polymers and the Environment, 2013, 21, 874-880.	2.4	29
1359	Enzymatic Production of Ferulic Acid from Defatted Rice Bran by Using a Combination of Bacterial Enzymes. Applied Biochemistry and Biotechnology, 2013, 171, 1085-1093.	1.4	35
1360	Identification and functional analysis of cytochrome P450 complement in Streptomyces virginiaelBL14. BMC Genomics, 2013, 14, 130.	1.2	14
1361	Saccharopolyspora erythraea'sgenome is organised in high-order transcriptional regions mediated by targeted degradation at the metabolic switch. BMC Genomics, 2013, 14, 15.	1.2	33
1362	Streptomyces spp. as efficient expression system for a d,d-peptidase/d,d-carboxypeptidase involved in glycopeptide antibiotic resistance. BMC Biotechnology, 2013, 13, 24.	1.7	22

#	ARTICLE	IF	CITATIONS
1363	Mammalian cell entry genes in Streptomyces may provide clues to the evolution of bacterial virulence. Scientific Reports, 2013, 3, 1109.	1.6	27
1364	Purification, Characterization of GH11 Endo- \hat{l}^2 -1,4-xylanase from Thermotolerant Streptomyces sp. SWU10 and Overexpression in Pichia pastoris KM71H. Molecular Biotechnology, 2013, 54, 37-46.	1.3	18
1365	Molecular Cloning, Expression of minD Gene from Lactobacillus acidophilus VTCC-B-871 and Analyses to Identify Lactobacillus rhamnosus PN04 from Vietnam Hottuynia cordata Thunb Indian Journal of Microbiology, 2013, 53, 385-390.	1.5	15
1367	A new GntR family regulator Ste1 in Streptomyces sp. 139. Applied Microbiology and Biotechnology, 2013, 97, 8673-8682.	1.7	6
1368	Deletion of an architectural unit, leucyl aminopeptidase (SCO2179), in Streptomyces coelicolor increases actinorhodin production and sporulation. Applied Microbiology and Biotechnology, 2013, 97, 6823-6833.	1.7	18
1369	Strict control of auricin production in Streptomyces aureofaciens CCM 3239 involves a feedback mechanism. Applied Microbiology and Biotechnology, 2013, 97, 2413-2421.	1.7	16
1370	New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Applied Microbiology and Biotechnology, 2013, 97, 87-98.	1.7	259
1371	In vivo random mutagenesis of streptomycetes using mariner-based transposon Himar1. Applied Microbiology and Biotechnology, 2013, 97, 351-359.	1.7	27
1372	Identification of a gene responsible for amido black decolorization isolated from Amycolatopsis orientalis. World Journal of Microbiology and Biotechnology, 2013, 29, 625-633.	1.7	6
1373	Assembly and features of secondary metabolite biosynthetic gene clusters in Streptomyces ansochromogenes. Science China Life Sciences, 2013, 56, 609-618.	2.3	11
1374	Drug Discovery and Development via Synthetic Biology. , 2013, , 183-206.		9
1375	Extending the limits of Bacillus for novel biotechnological applications. Biotechnology Advances, 2013, 31, 1543-1561.	6.0	212
1376	TMG-chitotriomycin as a probe for the prediction of substrate specificity of \hat{l}^2 -N-acetylhexosaminidases. Carbohydrate Research, 2013, 375, 29-34.	1.1	9
1377	Identification of novel phospholipase A2 group IX members in metazoans. Biochimie, 2013, 95, 1534-1543.	1.3	8
1378	Deamination of 6-Aminodeoxyfutalosine in Menaquinone Biosynthesis by Distantly Related Enzymes. Biochemistry, 2013, 52, 6525-6536.	1,2	12
1379	Metabolic Profiling Directly from the Petri Dish Using Nanospray Desorption Electrospray Ionization Imaging Mass Spectrometry. Analytical Chemistry, 2013, 85, 10385-10391.	3.2	101
1380	ADP-ribosylation of guanosine by SCO5461 protein secreted from Streptomyces coelicolor. Toxicon, 2013, 63, 55-63.	0.8	18
1381	Activation and Products of the Cryptic Secondary Metabolite Biosynthetic Gene Clusters by Rifampin Resistance (<i>rpoB</i>) Mutations in Actinomycetes. Journal of Bacteriology, 2013, 195, 2959-2970.	1.0	90

#	Article	IF	CITATIONS
1382	Molecular Regulation of Antibiotic Biosynthesis in Streptomyces. Microbiology and Molecular Biology Reviews, 2013, 77, 112-143.	2.9	611
1383	Discovery, Biosynthesis, and Rational Engineering of Novel Enterocin and Wailupemycin Polyketide Analogues. Methods in Molecular Biology, 2013, 1055, 171-189.	0.4	7
1384	Culturable rare Actinomycetes: diversity, isolation and marine natural product discovery. Applied Microbiology and Biotechnology, 2013, 97, 9291-9321.	1.7	159
1385	Use of Strep-tag II for rapid detection and purification of Mycobacterium tuberculosis recombinant antigens secreted by Streptomyces lividans. Journal of Microbiological Methods, 2013, 94, 192-198.	0.7	16
1386	Antibacterial activity of silver nanoparticles against methicillin-resistant Staphylococcus aureus synthesized using model Streptomyces sp. pigment by photo-irradiation method. Journal of Pharmacy Research, 2013, 6, 255-260.	0.4	66
1387	Complete genome sequence of Streptomyces fulvissimus. Journal of Biotechnology, 2013, 168, 117-118.	1.9	30
1388	An alternative sigma factor governs the principal sigma factor in <i><scp>S</scp>treptomyces griseus</i> . Molecular Microbiology, 2013, 87, 1223-1236.	1.2	22
1389	Psychrotolerant antifungal Streptomyces isolated from Tawang, India and the shift in chitinase gene family. Extremophiles, 2013, 17, 1045-1059.	0.9	12
1390	Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes. BMC Genomics, 2013, 14, 611.	1.2	175
1391	Comparative analysis of non-coding RNAs in the antibiotic-producing Streptomyces bacteria. BMC Genomics, 2013, 14, 558.	1.2	67
1392	Two-component systems in Streptomyces: key regulators of antibiotic complex pathways. Microbial Cell Factories, 2013, 12, 127.	1.9	93
1393	Comparative genomics of transport proteins in developmental bacteria: Myxococcus xanthus and Streptomyces coelicolor. BMC Microbiology, 2013, 13, 279.	1.3	21
1394	Antibacterial Activity of and Resistance to Small Molecule Inhibitors of the ClpP Peptidase. ACS Chemical Biology, 2013, 8, 2669-2677.	1.6	58
1395	Elimination of Butylcycloheptylprodigiosin as a Known Natural Product Inspired by an Evolutionary Hypothesis for Cyclic Prodigiosin Biosynthesis. Journal of Natural Products, 2013, 76, 1937-1945.	1.5	15
1396	The variable hydroxamic acid siderophore metabolome of the marine actinomycete Salinispora tropica CNB-440. Metallomics, 2013, 5, 1519.	1.0	43
1397	A Comparative Metabolomics Analysis of (i) Saccharopolyspora spinosa (li) WT, WH124, and LU104 Revealed Metabolic Mechanisms Correlated with Increases in Spinosad Yield. Bioscience, Biotechnology and Biochemistry, 2013, 77, 1661-1668.	0.6	10
1398	Transcriptional control of the <scp><i>F</i></scp> ₀ <scp>F</scp> ₁ â€ <scp>ATP</scp> synthase operon of <i><scp>C</scp>orynebacterium glutamicum</i> : <scp>SigmaH</scp> factor binds to its promoter and regulates its expression at different <scp>pH</scp> values. Microbial Biotechnology, 2013, 6, 178-188.	2.0	10
1399	The Genome Sequence of Streptomyces lividans 66 Reveals a Novel tRNA-Dependent Peptide Biosynthetic System within a Metal-Related Genomic Island. Genome Biology and Evolution, 2013, 5, 1165-1175.	1.1	99

#	Article	IF	CITATIONS
1400	Comparative study of <scp>SoxR</scp> activation by redoxâ€active compounds. Molecular Microbiology, 2013, 90, 983-996.	1.2	55
1401	Characterization and analysis of an industrial strain of <i>Streptomyces bingchenggensis</i> by genome sequencing and gene microarray. Genome, 2013, 56, 677-689.	0.9	17
1402	Community of Environmental Streptomyces Related to Geosmin Development in Chinese Liquors. Journal of Agricultural and Food Chemistry, 2013, 61, 1343-1348.	2.4	35
1403	A novel taxonomic marker that discriminates between morphologically complex actinomycetes. Open Biology, 2013, 3, 130073.	1.5	66
1404	Heavy metal resistant strains are widespread along Streptomyces phylogeny. Molecular Phylogenetics and Evolution, 2013, 66, 1083-1088.	1.2	45
1405	The ROK Family Regulator Rok7B7 Pleiotropically Affects Xylose Utilization, Carbon Catabolite Repression, and Antibiotic Production in Streptomyces coelicolor. Journal of Bacteriology, 2013, 195, 1236-1248.	1.0	53
1406	Quorum sensing inhibitors: An overview. Biotechnology Advances, 2013, 31, 224-245.	6.0	792
1407	A Synthetic, Speciesâ€Specific Activator of Secondary Metabolism and Sporulation in <i>Streptomyces coelicolor</i> i>. ChemBioChem, 2013, 14, 83-91.	1.3	27
1408	A Cryptic Polyene Biosynthetic Gene Cluster in Streptomyces calvus Is Expressed upon Complementation with a Functional bldA Gene. Chemistry and Biology, 2013, 20, 1214-1224.	6.2	53
1409	Design-based re-engineering of biosynthetic gene clusters: plug-and-play in practice. Current Opinion in Biotechnology, 2013, 24, 1144-1150.	3.3	32
1410	^{ĵ3} Actinorhodin a natural and attorney source for synthetic dye to detect acid production of fungi. Saudi Journal of Biological Sciences, 2013, 20, 163-168.	1.8	32
1411	pH-dependent structural change of the extracellular sensor domain of the DraK histidine kinase from Streptomyces coelicolor. Biochemical and Biophysical Research Communications, 2013, 431, 554-559.	1.0	12
1412	Characterization of nitrate and nitrite utilization system in Rhodococcus jostiiÂRHA1. Journal of Bioscience and Bioengineering, 2013, 115, 600-606.	1.1	7
1413	The TetR Family of Regulators. Microbiology and Molecular Biology Reviews, 2013, 77, 440-475.	2.9	472
1414	Functional analysis of the gene SCO1782 encoding Streptomyces hemolysin (S-hemolysin) in Streptomyces coelicolor M145. Toxicon, 2013, 71, 159-165.	0.8	10
1415	Structural and genomic DNA analysis of a putative transcription factor SCO5550 from Streptomyces coelicolor A3(2): Regulating the expression of gene sco5551 as a transcriptional activator with a novel dimer shape. Biochemical and Biophysical Research Communications, 2013, 435, 28-33.	1.0	3
1416	SCO4008, a Putative TetR Transcriptional Repressor from Streptomyces coelicolor A3(2), Regulates Transcription of sco4007 by Multidrug Recognition. Journal of Molecular Biology, 2013, 425, 3289-3300.	2.0	14
1417	Recombinant production and characterization of an N-acyl-d-amino acid amidohydrolase from Streptomyces sp. 64E6. World Journal of Microbiology and Biotechnology, 2013, 29, 899-906.	1.7	8

#	Article	IF	CITATIONS
1418	Identification of twoâ€component system <scp><scp>AfsQ1/Q2</scp></scp> regulon and its crossâ€regulation with <scp><scp>ClnR</scp></scp> in <i><scp>S</scp>treptomyces coelicolor</i> Molecular Microbiology, 2013, 87, 30-48.	1,2	94
1420	Resin Acid Conversion with CYP105A1: An Enzyme with Potential for the Production of Pharmaceutically Relevant Diterpenoids. ChemBioChem, 2013, 14, 467-473.	1.3	27
1421	Proteomic survey of the Streptomyces coelicolor nucleoid. Journal of Proteomics, 2013, 83, 37-46.	1.2	18
1422	Systematic and biotechnological aspects of halophilic and halotolerant actinomycetes. Extremophiles, 2013, 17, 1-13.	0.9	94
1423	The complex architecture of mycobacterial promoters. Tuberculosis, 2013, 93, 60-74.	0.8	64
1424	Platforms for antibiotic discovery. Nature Reviews Drug Discovery, 2013, 12, 371-387.	21.5	1,135
1425	Engineered <i>Streptomyces avermitilis</i> Host for Heterologous Expression of Biosynthetic Gene Cluster for Secondary Metabolites. ACS Synthetic Biology, 2013, 2, 384-396.	1.9	197
1426	Specialized microbial metabolites: functions and origins. Journal of Antibiotics, 2013, 66, 361-364.	1.0	130
1427	Integrated Metabolomics Approach Facilitates Discovery of an Unpredicted Natural Product Suite from <i>Streptomyces coelicolor</i> M145. ACS Chemical Biology, 2013, 8, 2009-2016.	1.6	62
1428	Surugamides Aâ€"E, Cyclic Octapeptides with Four <scp>d</scp> -Amino Acid Residues, from a Marine Streptomyces sp.: LCâ€"MS-Aided Inspection of Partial Hydrolysates for the Distinction of <scp>d</scp> -and <scp>l</scp> -Amino Acid Residues in the Sequence. Journal of Organic Chemistry, 2013, 78, 6746-6750.	1.7	69
1429	<i>In Vitro</i> Reconstitution of the Radical <i>S</i> Adenosylmethionine Enzyme MqnC Involved in the Biosynthesis of Futalosine-Derived Menaquinone. Biochemistry, 2013, 52, 4592-4594.	1.2	37
1430	Clavulanic acid production by Streptomyces clavuligerus: biogenesis, regulation and strain improvement. Journal of Antibiotics, 2013, 66, 411-420.	1.0	53
1431	Isolation of new polyketide metabolites, linearolides A and B, from Streptomyces sp. RK95-74. Journal of Antibiotics, 2013, 66, 333-337.	1.0	4
1432	Biosynthetic Conclusions from the Functional Dissection of Oxygenases for Biosynthesis of Actinorhodin and Related Streptomyces Antibiotics. Chemistry and Biology, 2013, 20, 510-520.	6.2	45
1433	Metagenomic Approaches for Exploiting Uncultivated Bacteria as a Resource for Novel Biosynthetic Enzymology. Chemistry and Biology, 2013, 20, 636-647.	6.2	127
1434	Towards a new science of secondary metabolism. Journal of Antibiotics, 2013, 66, 387-400.	1.0	112
1435	Dual Positive Feedback Regulation of Protein Degradation of an Extra-cytoplasmic Function \ddot{I}_f Factor for Cell Differentiation in Streptomyces coelicolor. Journal of Biological Chemistry, 2013, 288, 31217-31228.	1.6	19
1436	Interspecies Interactions Stimulate Diversification of the Streptomyces coelicolor Secreted Metabolome. MBio, 2013, 4, .	1.8	307

#	Article	IF	CITATIONS
1437	Imaging Mass Spectrometry Reveals Highly Specific Interactions between Actinomycetes To Activate Specialized Metabolic Gene Clusters. MBio, 2013, 4, e00612-13.	1.8	13
1439	Revealing Nature's Synthetic Potential Through the Study of Ribosomal Natural Product Biosynthesis. ACS Chemical Biology, 2013, 8, 473-487.	1.6	33
1440	Mycobacterium tuberculosis RNA Polymerase-binding Protein A (RbpA) and Its Interactions with Sigma Factors. Journal of Biological Chemistry, 2013, 288, 14438-14450.	1.6	44
1441	New method for isolating antibiotic-producing fungi. Journal of Antibiotics, 2013, 66, 17-21.	1.0	13
1442	Cytochrome P450 107U1 is required for sporulation and antibiotic production in Streptomyces coelicolor. Archives of Biochemistry and Biophysics, 2013, 530, 101-107.	1.4	10
1443	Expression of the endogenous and heterologous clavulanic acid cluster in Streptomyces flavogriseus: why a silent cluster is sleeping. Applied Microbiology and Biotechnology, 2013, 97, 9451-9463.	1.7	16
1444	De Novo Assembly of the Streptomyces sp. Strain Mg1 Genome Using PacBio Single-Molecule Sequencing. Genome Announcements, 2013, 1, .	0.8	27
1445	Identification and Biotechnological Application of Novel Regulatory Genes Involved in <i>Streptomyces </i> Polyketide Overproduction through Reverse Engineering Strategy. BioMed Research International, 2013, 2013, 1-10.	0.9	15
1446	Streptomyces coelicolor Polynucleotide Phosphorylase Can Polymerize Nucleoside Diphosphates under Phosphorolysis Conditions, with Implications for the Degradation of Structured RNAs. Journal of Bacteriology, 2013, 195, 5151-5159.	1.0	4
1447	Topoisomerase I (TopA) Is Recruited to ParB Complexes and Is Required for Proper Chromosome Organization during Streptomyces coelicolor Sporulation. Journal of Bacteriology, 2013, 195, 4445-4455.	1.0	39
1448	Draft Genome Sequence of Streptomyces albulus Strain CCRC 11814, an $\hat{l}\mu$ -Poly- $<$ scp> $ < $ scp>-Lysine-Producing Actinomycete. Genome Announcements, 2013, 1, .	0.8	10
1449	Positive Feedback Regulation of <i>stgR</i> Expression for Secondary Metabolism in Streptomyces coelicolor. Journal of Bacteriology, 2013, 195, 2072-2078.	1.0	35
1450	Novel Tryptophan Metabolism by a Potential Gene Cluster That Is Widely Distributed among Actinomycetes. Journal of Biological Chemistry, 2013, 288, 9946-9956.	1.6	32
1451	rRNA (<i>rrn</i>) Operon-Engineered Bacillus subtilis as a Feasible Test Organism for Antibiotic Discovery. Antimicrobial Agents and Chemotherapy, 2013, 57, 1948-1951.	1.4	3
1452	A novel nucleoid-associated protein specific to the actinobacteria. Nucleic Acids Research, 2013, 41, 4171-4184.	6.5	41
1453	SdrA, a New DeoR Family Regulator Involved in Streptomyces avermitilis Morphological Development and Antibiotic Production. Applied and Environmental Microbiology, 2013, 79, 7916-7921.	1.4	13
1454	Structure–function relationships of two paralogous single-stranded DNA-binding proteins from Streptomyces coelicolor: implication of SsbB in chromosome segregation during sporulation. Nucleic Acids Research, 2013, 41, 3659-3672.	6.5	17
1455	Establishment of an <i>In Vitro</i> <scp>d</scp> -Cycloserine-Synthesizing System by Using <i>O</i> -Ureido- <scp>l</scp> -Serine Synthase and <scp>d</scp> -Cycloserine Synthetase Found in the Biosynthetic Pathway. Antimicrobial Agents and Chemotherapy, 2013, 57, 2603-2612.	1.4	13

#	Article	IF	CITATIONS
1456	A putative transglycosylase encoded by SCO4132 influences morphological differentiation and actinorhodin production in Streptomyces coelicolor. Acta Biochimica Et Biophysica Sinica, 2013, 45, 296-302.	0.9	2
1457	Microbial Gutta-Percha Degradation Shares Common Steps with Rubber Degradation by Nocardia nova SH22a. Applied and Environmental Microbiology, 2013, 79, 1140-1149.	1.4	15
1458	An Insight into the "-Omics―Based Engineering of Streptomycetes for Secondary Metabolite Overproduction. BioMed Research International, 2013, 2013, 1-15.	0.9	79
1459	Repression of Antibiotic Downregulator WblA by AdpA in Streptomyces coelicolor. Applied and Environmental Microbiology, 2013, 79, 4159-4163.	1.4	23
1460	A <i>Streptomyces-</i> specific member of the metallophosphatase superfamily contributes to spore dormancy and interaction with <i>Aspergillus proliferans</i> FEMS Microbiology Letters, 2013, 342, 89-97.	0.7	2
1461	Proteome turnover in bacteria: current status for C orynebacterium glutamicum and related bacteria. Microbial Biotechnology, 2013, 6, 708-719.	2.0	20
1462	Chromosomal circularization of the model <i>Streptomyces</i> species, <i>Streptomyces coelicolor</i> A3(2). FEMS Microbiology Letters, 2013, 347, n/a-n/a.	0.7	4
1463	The transcriptional regulator <scp>TamR</scp> from <i><scp>S</scp>treptomyces coelicolor</i> controls a key step in central metabolism during oxidative stress. Molecular Microbiology, 2013, 87, 1151-1166.	1.2	26
1464	A respiratory nitrate reductase active exclusively in resting spores of the obligate aerobe <i><scp>S</scp>treptomyces coelicolor</i> â€ <scp>A</scp> 3(2). Molecular Microbiology, 2013, 89, 1259-1273.	1.2	16
1465	Characterization of SAV7471, a TetR-Family Transcriptional Regulator Involved in the Regulation of Coenzyme A Metabolism in Streptomyces avermitilis. Journal of Bacteriology, 2013, 195, 4365-4372.	1.0	34
1466	An Engineered Strong Promoter for Streptomycetes. Applied and Environmental Microbiology, 2013, 79, 4484-4492.	1.4	195
1469	Recent Advances in the Discovery and Development of Marine Microbial Natural Products. Marine Drugs, 2013, 11, 700-717.	2.2	132
1470	Activation of cryptic metabolite production through gene disruption: Dimethyl furan-2,4-dicarboxylate produced by Streptomyces sahachiroi. Beilstein Journal of Organic Chemistry, 2013, 9, 1768-1773.	1.3	3
1471	Antibiotics as Microbial Secondary Metabolites: Production and Application. Jurnal Teknologi (Sciences and Engineering), 2013, 59, .	0.3	7
1472	ANTI-OXIDANT AND ENZYME-INHIBITORY POTENTIAL OF MARINE <i>STREPTOMYCES</i> . American Journal of Biochemistry and Biotechnology, 2013, 9, 282-290.	0.1	14
1473	The Janthinobacterium sp. HH01 Genome Encodes a Homologue of the V. cholerae CqsA and L. pneumophila LqsA Autoinducer Synthases. PLoS ONE, 2013, 8, e55045.	1.1	52
1474	The Evolution of an Osmotically Inducible dps in the Genus Streptomyces. PLoS ONE, 2013, 8, e60772.	1.1	6
1475	No Ancient DNA Damage in Actinobacteria from the Neanderthal Bone. PLoS ONE, 2013, 8, e62799.	1.1	17

#	Article	IF	CITATIONS
1476	Carbon-Flux Distribution within Streptomyces coelicolor Metabolism: A Comparison between the Actinorhodin-Producing Strain M145 and Its Non-Producing Derivative M1146. PLoS ONE, 2013, 8, e84151.	1.1	33
1477	Biotechnology of polyketides: new breath of life for the novel antibiotic genetic pathways discovery through metagenomics. Brazilian Journal of Microbiology, 2013, 44, 1007-1034.	0.8	67
1478	Novel Biological Activities of Allosamidins. Molecules, 2013, 18, 6952-6968.	1.7	16
1479	Air, Water and Soil: Resources for Drug Discovery. , 2013, , .		O
1480	Complex Intra-Operonic Dynamics Mediated by a Small RNA in Streptomyces coelicolor. PLoS ONE, 2014, 9, e85856.	1.1	25
1481	Transcriptomic Analysis of Liquid Non-Sporulating Streptomyces coelicolor Cultures Demonstrates the Existence of a Complex Differentiation Comparable to That Occurring in Solid Sporulating Cultures. PLoS ONE, 2014, 9, e86296.	1.1	56
1482	The First Complete Genome Sequence of the Class Fimbriimonadia in the Phylum Armatimonadetes. PLoS ONE, 2014, 9, e100794.	1.1	16
1483	Analysis of Genome Sequences from Plant Pathogenic Rhodococcus Reveals Genetic Novelties in Virulence Loci. PLoS ONE, 2014, 9, e101996.	1.1	54
1484	Function and Evolution of Two Forms of SecDF Homologs in Streptomyces coelicolor. PLoS ONE, 2014, 9, e105237.	1.1	17
1485	RNA-Seq Analysis Reveals a Six-Gene SoxR Regulon in Streptomyces coelicolor. PLoS ONE, 2014, 9, e106181.	1.1	22
1486	Genome Features of the Endophytic Actinobacterium Micromonospora lupini Strain Lupac 08: On the Process of Adaptation to an Endophytic Life Style?. PLoS ONE, 2014, 9, e108522.	1.1	74
1487	Regulation of the AbrA1/A2 Two-Component System in Streptomyces coelicolor and the Potential of Its Deletion Strain as a Heterologous Host for Antibiotic Production. PLoS ONE, 2014, 9, e109844.	1.1	26
1488	Diversity and Antimicrobial Activities of Actinobacteria Isolated from Tropical Mangrove Sediments in Malaysia. Scientific World Journal, The, 2014, 2014, 1-14.	0.8	92
1489	Old and New Glycopeptide Antibiotics: Action and Resistance. Antibiotics, 2014, 3, 572-594.	1.5	116
1490	Quorum Quenching Mediated Approaches for Control of Membrane Biofouling. International Journal of Biological Sciences, 2014, 10, 550-565.	2.6	147
1491	Selective Isolation of Actinobacteria. , 2014, , 13-27.		13
1492	Strategies for Accessing Microbial Secondary Metabolites from Silent Biosynthetic Pathways. , 0, , 78-95.		1
1493	New Antibacterial Drugs in Development That Act on Novel Targets. , 2014, , 329-354.		0

#	Article	IF	CITATIONS
1494	Heterologous Production of Polyketides in <i> Streptomyces coelicolor </i> and <i> Escherichia coli </i> , 0, , 380-390.		0
1495	Small non-coding RNAs in streptomycetes. RNA Biology, 2014, 11, 464-469.	1.5	14
1496	Tools for metabolic engineering in <i>Streptomyces</i> . Bioengineered, 2014, 5, 293-299.	1.4	14
1497	Chemical-biogeographic survey of secondary metabolism in soil. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3757-3762.	3.3	125
1499	Novel and tightly regulated resorcinol and cumate-inducible expression systems for Streptomyces and other actinobacteria. Applied Microbiology and Biotechnology, 2014, 98, 8641-8655.	1.7	61
1500	Identification of 9Â-Hydroxy-17-Oxo-1,2,3,4,10,19-Hexanorandrostan-5-Oic Acid in Steroid Degradation by Comamonas testosteroni TA441 and Its Conversion to the Corresponding 6-En-5-Oyl Coenzyme A (CoA) Involving Open Reading Frame 28 (ORF28)- and ORF30-Encoded Acyl-CoA Dehydrogenases. Journal of Bacteriology, 2014, 196, 3598-3608.	1.0	24
1502	High-throughput platform for the discovery of elicitors of silent bacterial gene clusters. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7266-7271.	3.3	221
1503	Peptidoglycan Cross-Linking in Glycopeptide-Resistant Actinomycetales. Antimicrobial Agents and Chemotherapy, 2014, 58, 1749-1756.	1.4	22
1504	Sympatric inhibition and niche differentiation suggest alternative coevolutionary trajectories among <i>Streptomycetes</i> . ISME Journal, 2014, 8, 249-256.	4.4	100
1505	Controlling translation elongation efficiency: tRNA regulation of ribosome flux on the mRNA. Biochemical Society Transactions, 2014, 42, 160-165.	1.6	14
1506	New Lipase for Biodiesel Production: Partial Purification and Characterization of LipSB 25-4., 2014, 2014, 1-7.		30
1507	The <i>mthA</i> Mutation Conferring Low-Level Resistance to Streptomycin Enhances Antibiotic Production in Bacillus subtilis by Increasing the <i>S</i> -Adenosylmethionine Pool Size. Journal of Bacteriology, 2014, 196, 1514-1524.	1.0	14
1508	Draft Genome Sequence of a Novel Streptomyces griseorubens Strain, JSD-1, Active in Carbon and Nitrogen Recycling. Genome Announcements, 2014, 2, .	0.8	9
1509	Structureâ€guided analysis of catalytic specificity of the abundantly secreted chitosanase SACTE_5457 from <i>Streptomyces</i> sp. SirexAA . Proteins: Structure, Function and Bioinformatics, 2014, 82, 1245-1257.	1.5	33
1510	Mangromicins A and B: structure and antitrypanosomal activity of two new cyclopentadecane compounds from Lechevalieria aerocolonigenes K10-0216. Journal of Antibiotics, 2014, 67, 253-260.	1.0	42
1511	Regulation of the biosynthesis of thiopeptide antibiotic cyclothiazomycin by the transcriptional regulator SHJG8833 in Streptomyces hygroscopicus 5008. Microbiology (United Kingdom), 2014, 160, 1379-1392.	0.7	25
1512	Enhanced polyaromatic hydrocarbon degradation by adapted cultures of actinomycete strains. Journal of Basic Microbiology, 2014, 54, 1288-1294.	1.8	29
1513	Natural low-molecular mass organic compounds with oxidase activity as organocatalysts. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17152-17157.	3.3	20

#	Article	IF	Citations
1514	Molecular cloning, purification, and biochemical characterization of recombinant isocitrate dehydrogenase from <i>Streptomyces coelicolor</i> M-145. Bioscience, Biotechnology and Biochemistry, 2014, 78, 1490-1494.	0.6	2
1515	Complete genome sequence of producer of the glycopeptide antibiotic Aculeximycin Kutzneria albida DSM 43870T, a representative of minor genus of Pseudonocardiaceae. BMC Genomics, 2014, 15, 885.	1.2	26
1516	Intraspecies comparison of Streptomyces pratensis genomes reveals high levels of recombination and gene conservation between strains of disparate geographic origin. BMC Genomics, 2014, 15, 970.	1.2	46
1517	Identification and characterization of the nitrate assimilation genes in the isolate of Streptomyces griseorubens JSD-1. Microbial Cell Factories, 2014, 13, 174.	1.9	11
1518	Endophytic Actinobacteria: Diversity and Ecology. , 2014, , 27-59.		30
1519	Streptomyces. , 2014, , 560-566.		2
1520	A highly processive topoisomerase I: studies at the single-molecule level. Nucleic Acids Research, 2014, 42, 7935-7946.	6.5	31
1521	Production of Bioactive Compounds by Actinomycetes and Their Antioxidant Properties. Biotechnology Research International, 2014, 2014, 1-8.	1.4	77
1522	Oxygen-Dependent Control of Respiratory Nitrate Reduction in Mycelium of Streptomyces coelicolor A3(2). Journal of Bacteriology, 2014, 196, 4152-4162.	1.0	31
1523	Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiological Research, 2014, 169, 262-278.	2.5	321
1524	Protein secretion biotechnology in Gram-positive bacteria with special emphasis on Streptomyces lividans. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1750-1761.	1.9	73
1525	The ÏfF-specific anti-sigma factor RsfA is one of the protein kinases that phosphorylates the pleiotropic anti-anti-sigma factor BldG in Streptomyces coelicolor A3(2). Gene, 2014, 538, 280-287.	1.0	9
1526	Proteasome involvement in a complex cascade mediating SigT degradation during differentiation of <i>Streptomyces coelicolor</i> . FEBS Letters, 2014, 588, 608-613.	1.3	9
1527	Daptomycin antibiotic production processes in fed-batch fermentation by Streptomyces roseosporus NRRL11379 with precursor effect and medium optimization. Bioprocess and Biosystems Engineering, 2014, 37, 415-423.	1.7	38
1528	Genome mining of the <i>Streptomyces avermitilis</i> genome and development of genome-minimized hosts for heterologous expression of biosynthetic gene clusters. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 233-250.	1.4	143
1529	MbtH homology codes to identify gifted microbes for genome mining. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 357-369.	1.4	23
1530	Triggers and cues that activate antibiotic production by actinomycetes. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 371-386.	1.4	162
1531	Strategies for mining fungal natural products. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 301-313.	1.4	168

#	Article	IF	CITATIONS
1532	Lessons learned from the transformation of natural product discovery to a genome-driven endeavor. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 315-331.	1.4	20
1533	Actinomycetes biosynthetic potential: how to bridge in silico and in vivo?. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 387-402.	1.4	63
1534	Activating the expression of bacterial cryptic genes by <i>rpoB</i> mutations in RNA polymerase or by rare earth elements. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 403-414.	1.4	75
1535	Microbial genome mining for accelerated natural products discovery: is a renaissance in the making?. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 175-184.	1.4	226
1536	Activating secondary metabolism with stress and chemicals. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 415-424.	1.4	92
1537	Exploitation of the <i>Streptomyces coelicolor</i> A3(2) genome sequence for discovery of new natural products and biosynthetic pathways. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 219-232.	1.4	100
1538	D-Amino acid oxidase of Streptomyces coelicolor and the effect of D-amino acids on the bacterium. Annals of Microbiology, 2014, 64, 1167-1177.	1.1	14
1539	Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnology Advances, 2014, 32, 255-268.	6.0	199
1540	Something old, something new: revisiting natural products in antibiotic drug discovery. Canadian Journal of Microbiology, 2014, 60, 147-154.	0.8	207
1541	Unusual site-specific DNA integration into the highly active pseudo-attB of the Streptomyces albus J1074 genome. Applied Microbiology and Biotechnology, 2014, 98, 5095-5104.	1.7	42
1542	Gene networks regulating secondary metabolism in actinomycetes: Pleiotropic regulators. Cytology and Genetics, 2014, 48, 55-67.	0.2	2
1543	Widespread predatory abilities in the genus Streptomyces. Archives of Microbiology, 2014, 196, 235-248.	1.0	41
1544	Expression and Characterization of Recombinant GH11 Xylanase from Thermotolerant Streptomyces sp. SWU10. Applied Biochemistry and Biotechnology, 2014, 172, 436-446.	1.4	15
1545	Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiology Reviews, 2014, 38, 720-760.	3.9	294
1546	Crystal Structure and Characterization of the Glycoside Hydrolase Family 62 α-l-Arabinofuranosidase from Streptomyces coelicolor. Journal of Biological Chemistry, 2014, 289, 7962-7972.	1.6	42
1547	Reconstruction of a highâ€quality metabolic model enables the identification of gene overexpression targets for enhanced antibiotic production in <i>Streptomyces coelicolor</i> A3(2). Biotechnology Journal, 2014, 9, 1185-1194.	1.8	58
1548	Intriguing properties of the angucycline antibiotic auricin and complex regulation of its biosynthesis. Applied Microbiology and Biotechnology, 2014, 98, 45-60.	1.7	21
1549	Natural Product Proteomining, a Quantitative Proteomics Platform, Allows Rapid Discovery of Biosynthetic Gene Clusters for Different Classes of Natural Products. Chemistry and Biology, 2014, 21, 707-718.	6.2	51

#	Article	IF	CITATIONS
1550	Global biogeography of <i>Streptomyces </i> antibiotic inhibition, resistance, and resource use. FEMS Microbiology Ecology, 2014, 88, 386-397.	1.3	47
1551	Genome rearrangements of Streptomyces albus J1074 lead to the carotenoid gene cluster activation. Applied Microbiology and Biotechnology, 2014, 98, 795-806.	1.7	30
1552	Developmental biology of <i>Streptomyces </i> from the perspective of 100 actinobacterial genome sequences. FEMS Microbiology Reviews, 2014, 38, 345-379.	3.9	120
1553	Challenges and triumphs to genomics-based natural product discovery. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 203-209.	1.4	67
1554	DNA assembly techniques for next-generation combinatorial biosynthesis of natural products. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 469-477.	1.4	51
1555	Prospecting genomes for lasso peptides. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 333-344.	1.4	74
1556	Tetramic Acid Analogues Produced by Coculture of <i>Saccharopolyspora erythraea </i> With <i>Fusarium pallidoroseum</i> Journal of Natural Products, 2014, 77, 173-177.	1.5	52
1557	A talented genus. Nature, 2014, 506, 38-39.	13.7	19
1558	An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature, 2014, 506, 58-62.	13.7	530
1559	Evolutionary concepts in natural products discovery: what actinomycetes have taught us. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 211-217.	1.4	16
1560	Genome mining of <i>Streptomyces ambofaciens</i> . Journal of Industrial Microbiology and Biotechnology, 2014, 41, 251-263.	1.4	85
1561	Heterologous expression of natural product biosynthetic gene clusters in <i>Streptomyces coelicolor</i> : from genome mining to manipulation of biosynthetic pathways. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 425-431.	1.4	122
1562	Influence of transition metals on Streptomyces coelicolor and S. sioyaensis and generation of chromate-reducing mutants. Folia Microbiologica, 2014, 59, 147-153.	1.1	5
1563	Inducamides A–C, Chlorinated Alkaloids from an RNA Polymerase Mutant Strain of <i>Streptomyces</i> sp Organic Letters, 2014, 16, 5656-5659.	2.4	42
1564	Nitrite formation from organic nitrogen by <i>Streptomyces antibioticus</i> supporting bacterial cell growth and possible involvement of nitric oxide as an intermediate. Bioscience, Biotechnology and Biochemistry, 2014, 78, 1592-1602.	0.6	5
1565	Streptomyces hokutonensis sp. nov., a novel actinomycete isolated from the strawberry root rhizosphere. Journal of Antibiotics, 2014, 67, 465-470.	1.0	17
1566	A comparison of key aspects of gene regulation inStreptomyces coelicolorandEscherichia coliusing nucleotideâ€resolution transcription maps produced in parallel by global and differentialRNAsequencing. Molecular Microbiology, 2014, 94, 963-987.	1.2	48
1567	A genome-wide transcriptomic analysis reveals diverse roles of the two-component system DraR-K in the physiological and morphological differentiation of Streptomyces coelicolor. Applied Microbiology and Biotechnology, 2014, 98, 9351-9363.	1.7	15

#	Article	IF	Citations
1568	Effect of Temperature on the Intrinsic Flexibility of DNA and Its Interaction with Architectural Proteins. Biochemistry, 2014, 53, 6430-6438.	1.2	69
1569	Structural and genomic DNA analysis of the putative TetR transcriptional repressor SCO7518 from <i>Streptomyces coelicolor</i> A3(2). FEBS Letters, 2014, 588, 4311-4318.	1.3	7
1570	CYP105-diverse structures, functions and roles in an intriguing family of enzymes in <i>Streptomyces</i> . Journal of Applied Microbiology, 2014, 117, 1549-1563.	1.4	37
1571	Nucleophilic 1,4-Additions for Natural Product Discovery. ACS Chemical Biology, 2014, 9, 2014-2022.	1.6	58
1572	Role of the Twin Arginine Protein Transport Pathway in the Assembly of the Streptomyces coelicolor Cytochrome bc1 Complex. Journal of Bacteriology, 2014, 196, 50-59.	1.0	13
1573	Epigenetic manipulation of a filamentous fungus by the proteasome-inhibitor bortezomib induces the production of an additional secondary metabolite. RSC Advances, 2014, 4, 18329-18335.	1.7	25
1574	Unsaturated Macrocyclic Dihydroxamic Acid Siderophores Produced by <i>Shewanella putrefaciens</i> Using Precursor-Directed Biosynthesis. ACS Chemical Biology, 2014, 9, 945-956.	1.6	33
1575	Mining the Metabiome: Identifying Novel Natural Products from Microbial Communities. Chemistry and Biology, 2014, 21, 1211-1223.	6.2	166
1576	Antibiotic Resistance Mechanisms Inform Discovery: Identification and Characterization of a Novel Amycolatopsis Strain Producing Ristocetin. Antimicrobial Agents and Chemotherapy, 2014, 58, 5687-5695.	1.4	43
1577	Elucidation of Final Steps of the Marineosins Biosynthetic Pathway through Identification and Characterization of the Corresponding Gene Cluster. Journal of the American Chemical Society, 2014, 136, 4565-4574.	6.6	49
1578	Structure and Activity of the $\langle i \rangle$ Streptomyces coelicolor $\langle i \rangle$ A3(2) \hat{i}^2 - $\langle i \rangle$ N $\langle i \rangle$ -Acetylhexosaminidase Provides Further Insight into GH20 Family Catalysis and Inhibition. Biochemistry, 2014, 53, 1789-1800.	1.2	23
1579	Phylogeny of the class Actinobacteria revisited in the light of complete genomes. The orders †Frankiales' and Micrococcales should be split into coherent entities: proposal of Frankiales ord. nov., Geodermatophilales ord. nov., Acidothermales ord. nov. and Nakamurellales ord. nov International lournal of Systematic and Evolutionary Microbiology, 2014, 64, 3821-3832.	0.8	148
1580	Recently published <scp><i>S</i></scp> <i>treptomyces</i> <ip>genome sequences. Microbial Biotechnology, 2014, 7, 373-380.</ip>	2.0	55
1581	eSNaPD: A Versatile, Web-Based Bioinformatics Platform for Surveying and Mining Natural Product Biosynthetic Diversity from Metagenomes. Chemistry and Biology, 2014, 21, 1023-1033.	6.2	84
1582	Eliciting antibiotics active against the ESKAPE pathogens in a collection of actinomycetes isolated from mountain soils. Microbiology (United Kingdom), 2014, 160, 1714-1725.	0.7	87
1583	Production of Specialized Metabolites by Streptomyces coelicolor A3(2). Advances in Applied Microbiology, 2014, 89, 217-266.	1.3	52
1584	Overproduction of Ristomycin A by Activation of a Silent Gene Cluster in Amycolatopsis japonicum MG417-CF17. Antimicrobial Agents and Chemotherapy, 2014, 58, 6185-6196.	1.4	71
1585	Inference of sigma factor controlled networks by using numerical modeling applied to microarray time series data of the germinating prokaryote. Nucleic Acids Research, 2014, 42, 748-763.	6.5	19

#	Article	IF	CITATIONS
1586	A novel Streptomyces spp. integration vector derived from the S. venezuelae phage, SV1. BMC Biotechnology, 2014, 14, 51.	1.7	31
1587	Evolution of Aging and Death: What Insights Bacteria Can Provide. Quarterly Review of Biology, 2014, 89, 209-233.	0.0	15
1588	Analysis of novel kitasatosporae reveals significant evolutionary changes in conserved developmental genes between Kitasatospora and Streptomyces. Antonie Van Leeuwenhoek, 2014, 106, 365-380.	0.7	34
1589	A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nature Chemical Biology, 2014, 10, 963-968.	3.9	416
1590	Allantoin catabolism influences the production of antibiotics in Streptomyces coelicolor. Applied Microbiology and Biotechnology, 2014, 98, 351-360.	1.7	12
1591	Iterative marker excision system. Applied Microbiology and Biotechnology, 2014, 98, 4557-4570.	1.7	49
1592	An extracytoplasmic function sigma factor, $leq f$ differentially regulates avermectin and oligomycin biosynthesis in Streptomyces avermitilis. Applied Microbiology and Biotechnology, 2014, 98, 7097-7112.	1.7	42
1593	6S RNA modulates growth and antibiotic production in Streptomyces coelicolor. Applied Microbiology and Biotechnology, 2014, 98, 7185-7197.	1.7	22
1594	Streptomyces leeuwenhoekii sp. nov., the producer of chaxalactins and chaxamycins, forms a distinct branch in Streptomyces gene trees. Antonie Van Leeuwenhoek, 2014, 105, 849-861.	0.7	62
1595	The re-emerging role of microbial natural products in antibiotic discovery. Antonie Van Leeuwenhoek, 2014, 106, 173-188.	0.7	88
1596	Perspective: Synthetic biology revives antibiotics. Nature, 2014, 509, S13-S13.	13.7	22
1597	Genomic analysis of <i>Chthonomonas calidirosea</i> , the first sequenced isolate of the phylum <i>Armatimonadetes</i> . ISME Journal, 2014, 8, 1522-1533.	4.4	39
1598	Bioenergetic Constraints on the Evolution of Complex Life. Cold Spring Harbor Perspectives in Biology, 2014, 6, a015982-a015982.	2.3	108
1599	Alkyldihydropyrones, new polyketides synthesized by a type III polyketide synthase from Streptomyces reveromyceticus. Journal of Antibiotics, 2014, 67, 819-823.	1.0	7
1600	Metagenomic small molecule discovery methods. Current Opinion in Microbiology, 2014, 19, 70-75.	2.3	76
1601	Complete genome sequence and comparative genomic analyses of the vancomycin-producing Amycolatopsis orientalis. BMC Genomics, 2014, 15, 363.	1.2	68
1602	Insights into naturally minimised Streptomyces albus J1074 genome. BMC Genomics, 2014, 15, 97.	1.2	137
1603	Biology, Genetic Aspects, and Oxidative Stress Response of Streptomyces and Strategies for Bioremediation of Toxic Metals., 2014,, 287-299.		1

#	Article	IF	CITATIONS
1604	Diversity and evolution of secondary metabolism in the marine actinomycete genus <i>Salinispora</i> Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1130-9.	3.3	241
1605	Future potential for anti-infectives from bacteria – How to exploit biodiversity and genomic potential. International Journal of Medical Microbiology, 2014, 304, 3-13.	1.5	82
1606	Radical <i>S</i> -Adenosylmethionine Enzymes. Chemical Reviews, 2014, 114, 4229-4317.	23.0	651
1607	Cultivable actinomycetes from rhizosphere of birch (<i>Betula pendula</i>) growing on a coal mine dump in Silets, Ukraine. Journal of Basic Microbiology, 2014, 54, 851-857.	1.8	9
1608	Low Molecular Weight Protein Tyrosine Phosphatases Control Antibiotic Production in Streptomyces coelicolor A3(2). Enzyme Engineering, 2014, 03, .	0.3	0
1609	Secondary Metabolism in Myxobacteria. , 0, , 259-282.		7
1610	Multicellular Development in <i>Streptomyces</i> ., 0, , 419-438.		30
1611	Antibiotics and Bacterial Resistance in the 21st Century. Perspectives in Medicinal Chemistry, 2014, 6, PMC.S14459.	4.6	1,268
1612	High quality draft genome sequence of Streptomyces sp. strain AW19M42 isolated from a sea squirt in Northern Norway. Standards in Genomic Sciences, 2014, 9, 676-686.	1.5	5
1613	Statement on the update of the list of QPSâ€recommended biological agents intentionally added to food or feed as notified to EFSA. 2: Suitability of taxonomic units notified to EFSA until March 2015. EFSA Journal, 2015, 13, 4138.	0.9	39
1616	Bioactive compounds from actinomycetes and their antiviral properties: Present trends and future prospectives., 2015,, 479-486.		0
1617	Animal fecal actinomycetes: A new source for the discovery of drug leads. , 2015, , 53-82.		0
1618	Genome-wide identification and characterization of reference genes with different transcript abundances for Streptomyces coelicolor. Scientific Reports, 2015, 5, 15840.	1.6	27
1619	A preliminary study of the mechanism of nitrate-stimulated remarkable increase of rifamycin production in Amycolatopsis mediterranei U32 by RNA-seq. Microbial Cell Factories, 2015, 14, 75.	1.9	20
1620	Genome-wide identification and evaluation of constitutive promoters in streptomycetes. Microbial Cell Factories, 2015, 14, 172.	1.9	57
1621	Identification of novel tylosin analogues generated by a wblA disruption mutant of Streptomyces ansochromogenes. Microbial Cell Factories, 2015, 14, 173.	1.9	25
1622	Metabolomics investigation of recombinant mTNFα production in Streptomyces lividans. Microbial Cell Factories, 2015, 14, 157.	1.9	18
1623	Siteâ€specific recombination for cloning of large DNA fragments in vitro. Engineering in Life Sciences, 2015, 15, 655-659.	2.0	8

#	Article	IF	CITATIONS
1624	Genome-based analysis of non-ribosomal peptide synthetase and type-I polyketide synthase gene clusters in all type strains of the genus Herbidospora. BMC Research Notes, 2015, 8, 548.	0.6	8
1625	Crosstalk of Nataxazole Pathway with Chorismateâ€Derived Ionophore Biosynthesis Pathways in <i>Streptomyces</i> sp. Tü 6176. ChemBioChem, 2015, 16, 1925-1932.	1.3	17
1626	ãfē,¹ãf^ã,²ãfŽãfæ™,代ã«å⁵ãťãŸå¾®ç"Ÿç‰©ç"±æ¥å₺©ç"¶ç‰©åŒ»è—¬å"ã₽探索ç"ç©¶. Kagaku To Seibut	ts a, @015,	5%, 17-26.
1627	Tryptophan <i>C5â€</i> , <i>C6â€</i> and <i>C7</i> â€Prenylating Enzymes Displaying a Preference for Câ€6 of the Indole Ring in the Presence of Unnatural Dimethylallyl Diphosphate Analogues. Advanced Synthesis and Catalysis, 2015, 357, 975-986.	he 2.1	18
1628	The Use of Streptomyces coelicolor in the Removal of Heavy Metals. Advanced Techniques in Biology $\&$ Medicine, 2015, 04, .	0.1	1
1629	Applications of Natural Products from Soil Microbes. , 2015, , 51-77.		1
1630	Gas Vesicle Nanoparticles for Antigen Display. Vaccines, 2015, 3, 686-702.	2.1	43
1631	Systems Biology Approaches to Understand Natural Products Biosynthesis. Frontiers in Bioengineering and Biotechnology, 2015, 3, 199.	2.0	6
1632	The Application of an On-Line Optical Sensor to Measure Biomass of a Filamentous Bioprocess. Fermentation, 2015, 1, 79-85.	1.4	3
1633	The Sound of Silence: Activating Silent Biosynthetic Gene Clusters in Marine Microorganisms. Marine Drugs, 2015, 13, 4754-4783.	2.2	130
1634	The two kinases, AbrC1 and AbrC2, of the atypical two-component system AbrC are needed to regulate antibiotic production and differentiation in Streptomyces coelicolor. Frontiers in Microbiology, 2015, 6, 450.	1.5	31
1635	Is the lower atmosphere a readily accessible reservoir of culturable, antimicrobial compound-producing Actinomycetales?. Frontiers in Microbiology, 2015, 6, 802.	1.5	12
1636	Filamentous fungi from extreme environments as a promising source of novel bioactive secondary metabolites. Frontiers in Microbiology, 2015, 6, 903.	1.5	72
1637	Expanding our Understanding of Sequence-Function Relationships of Type II Polyketide Biosynthetic Gene Clusters: Bioinformatics-Guided Identification of Frankiamicin A from Frankia sp. EAN1pec. PLoS ONE, 2015, 10, e0121505.	1.1	25
1638	Discovery of Novel ncRNA Sequences in Multiple Genome Alignments on the Basis of Conserved and Stable Secondary Structures. PLoS ONE, 2015, 10, e0130200.	1.1	26
1639	Designing and Implementing an Assay for the Detection of Rare and Divergent NRPS and PKS Clones in European, Antarctic and Cuban Soils. PLoS ONE, 2015, 10, e0138327.	1.1	36
1640	DNA Data Visualization (DDV): Software for Generating Web-Based Interfaces Supporting Navigation and Analysis of DNA Sequence Data of Entire Genomes. PLoS ONE, 2015, 10, e0143615.	1.1	10
1641	Antibacterial Discovery and Development: From Gene to Product and Back. BioMed Research International, 2015, 2015, 1-16.	0.9	30

#	Article	IF	CITATIONS
1643	Magnetoelectric domain control in multiferroic TbMnO ₃ . Science, 2015, 348, 1112-1115.	6.0	107
1644	Targeting DnaN for tuberculosis therapy using novel griselimycins. Science, 2015, 348, 1106-1112.	6.0	262
1645	Global biogeographic sampling of bacterial secondary metabolism. ELife, 2015, 4, e05048.	2.8	117
1646	Genetic and Proteomic Analyses of Pupylation in Streptomyces coelicolor. Journal of Bacteriology, 2015, 197, 2747-2753.	1.0	31
1647	Natural products in soil microbe interactions and evolution. Natural Product Reports, 2015, 32, 956-970.	5.2	172
1648	Divalent Transitionâ€Metalâ€Ion Stress Induces Prodigiosin Biosynthesis in <i>Streptomyces coelicolor</i> M145: Formation of Coeligiosins. Chemistry - A European Journal, 2015, 21, 6027-6032.	1.7	26
1649	Strategies and approaches in plasmidome studiesââ,¬â€uncovering plasmid diversity disregarding of linear elements?. Frontiers in Microbiology, 2015, 6, 463.	1.5	42
1650	Adaptations of Prokaryotes to Their Biotopes and to Physicochemical Conditions in Natural or Anthropized Environments., 2015, , 293-351.		5
1651	NsrR from Streptomyces coelicolor Is a Nitric Oxide-sensing [4Fe-4S] Cluster Protein with a Specialized Regulatory Function. Journal of Biological Chemistry, 2015, 290, 12689-12704.	1.6	77
1652	A Streptomyces coelicolor host for the heterologous expression of Type III polyketide synthase genes. Microbial Cell Factories, 2015, 14, 145.	1.9	34
1653	A reinvigorated era of bacterial secondary metabolite discovery. Current Opinion in Chemical Biology, 2015, 24, 104-111.	2.8	10
1654	Evolution and diversification of the basal transcription machinery. Trends in Biochemical Sciences, 2015, 40, 127-129.	3.7	22
1655	Expression and characterization of a novel endo-1,4- \hat{l}^2 -xylanase produced by Streptomyces griseorubens JSD-1 isolated from compost-treated soil. Annals of Microbiology, 2015, 65, 1771-1779.	1.1	2
1656	The <i>tapâ€tpg</i> gene pair on the linear plasmid functions to maintain a linear topology of the chromosome in <scp><i>S</i></scp> <i>treptomyces rochei</i> . Molecular Microbiology, 2015, 95, 846-858.	1.2	13
1657	Two nucleoside receptors from Streptomyces coelicolor: Expression of the genes and characterization of the recombinant proteins. Protein Expression and Purification, 2015, 109, 40-46.	0.6	0
1658	Effects of simulated microgravity and spaceflight on morphological differentiation and secondary metabolism of Streptomyces coelicolor A3(2). Applied Microbiology and Biotechnology, 2015, 99, 4409-4422.	1.7	32
1659	Metabolomics in the natural products field $\hat{a}\in$ a gateway to novel antibiotics. Drug Discovery Today: Technologies, 2015, 13, 11-17.	4.0	73
1660	Identification of novel endophenaside antibiotics produced by Kitasatospora sp. MBT66. Journal of Antibiotics, 2015, 68, 445-452.	1.0	23

#	Article	IF	CITATIONS
1661	Analysis of a draft genome sequence of Kitasatospora cheerisanensis KCTC 2395 producing bafilomycin antibiotics. Journal of Microbiology, 2015, 53, 84-89.	1.3	8
1662	Expression and characterization of Streptomyces coelicolor serine/threonine protein kinase PkaE. Bioscience, Biotechnology and Biochemistry, 2015, 79, 855-862.	0.6	3
1663	Bioprocess intensification of antibiotic production by Streptomyces coelicolor A3(2) in micro-porous culture. Materials Science and Engineering C, 2015, 49, 799-806.	3.8	16
1664	The phage growth limitation system in Streptomyces coelicolor A(3)2 is a toxin/antitoxin system, comprising enzymes with DNA methyltransferase, protein kinase and ATPase activity. Virology, 2015, 477, 100-109.	1.1	47
1665	Complete genome sequence of Streptomyces lividans TK24. Journal of Biotechnology, 2015, 199, 21-22.	1.9	96
1666	Lignocellulose degradation by the isolate of Streptomyces griseorubens JSD-1. Functional and Integrative Genomics, 2015, 15, 163-173.	1.4	16
1668	Structure and biosynthetic implication of 5R-(N-acetyl-L-cysteinyl)-14S-hydroxy-dihydrokalafungin from a mutant of the actVA-ORF4 gene for actinorhodin biosynthesis in Streptomyces coelicolor A3(2). Journal of Antibiotics, 2015, 68, 481-483.	1.0	6
1669	An overview on transcriptional regulators in Streptomyces. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 1017-1039.	0.9	115
1670	Genome mining of rare actinomycetes and cryptic pathway awakening. Process Biochemistry, 2015, 50, 1184-1193.	1.8	37
1671	Developing Streptomyces venezuelae as a cell factory for the production of small molecules used in drug discovery. Archives of Pharmacal Research, 2015, 38, 1606-1616.	2.7	29
1672	Collision-Induced Dissociation Mass Spectrometry: A Powerful Tool for Natural Product Structure Elucidation. Analytical Chemistry, 2015, 87, 10668-10678.	3.2	83
1673	Expanding the chemical space for natural products by Aspergillus-Streptomyces co-cultivation and biotransformation. Scientific Reports, 2015, 5, 10868.	1.6	74
1674	Elicitation of secondary metabolism in actinomycetes. Biotechnology Advances, 2015, 33, 798-811.	6.0	199
1675	Mapping Microbial Response Metabolomes for Induced Natural Product Discovery. ACS Chemical Biology, 2015, 10, 1998-2006.	1.6	79
1676	Evolutionary dynamics of rhomboid proteases in Streptomycetes. BMC Research Notes, 2015, 8, 234.	0.6	0
1677	Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie Van Leeuwenhoek, 2015, 108, 267-289.	0.7	237
1678	Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nature Reviews Microbiology, 2015, 13, 509-523.	13.6	762
1679	Complete genome sequence of Streptomyces cyaneogriseus ssp. noncyanogenus, the thermotolerant producer of commercial antibiotics nemadectin. Journal of Biotechnology, 2015, 204, 1-2.	1.9	8

#	ARTICLE	IF	CITATIONS
1680	In Salmonella enterica, the Gcn5-Related Acetyltransferase MddA (Formerly YncA) Acetylates Methionine Sulfoximine and Methionine Sulfone, Blocking Their Toxic Effects. Journal of Bacteriology, 2015, 197, 314-325.	1.0	23
1682	Expression and Characterization of a Recombinant Laccase with Alkalistable and Thermostable Properties from Streptomyces griseorubens JSD-1. Applied Biochemistry and Biotechnology, 2015, 176, 547-562.	1.4	16
1683	Functional characterization of CYP107W1 from Streptomyces avermitilis and biosynthesis of macrolide oligomycin A. Archives of Biochemistry and Biophysics, 2015, 575, 1-7.	1.4	23
1684	Genome Mining of <i>Streptomyces</i> sp. $T\tilde{A}^{1/4}$ 6176: Characterization of the Nataxazole Biosynthesis Pathway. ChemBioChem, 2015, 16, 1461-1473.	1.3	53
1685	Genome-scale analysis reveals a role for NdgR in the thiol oxidative stress response in Streptomyces coelicolor. BMC Genomics, 2015, 16, 116.	1,2	19
1686	Genome mining reveals unlocked bioactive potential of marine Gram-negative bacteria. BMC Genomics, 2015, 16, 158.	1.2	96
1687	Microbial Cytochromes P450. , 2015, , 261-407.		17
1688	Structuring Microbial Metabolic Responses to Multiplexed Stimuli via Self-Organizing Metabolomics Maps. Chemistry and Biology, 2015, 22, 661-670.	6.2	40
1689	Tailoring Specialized Metabolite Production in Streptomyces. Advances in Applied Microbiology, 2015, 91, 237-255.	1.3	13
1690	Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Transactions, 2015, 44, 6320-6339.	1.6	332
1691	The internal gene duplication and interrupted coding sequences in the MmpL genes of Mycobacterium tuberculosis: Towards understanding the multidrug transport in an evolutionary perspective. International Journal of Medical Microbiology, 2015, 305, 413-423.	1.5	33
1692	Lincomycin at Subinhibitory Concentrations Potentiates Secondary Metabolite Production by Streptomyces spp. Applied and Environmental Microbiology, 2015, 81, 3869-3879.	1.4	58
1693	CRISPR-Cas9 Based Engineering of Actinomycetal Genomes. ACS Synthetic Biology, 2015, 4, 1020-1029.	1.9	365
1694	Self-resistance mechanisms of actinomycetes producing lipid II-targeting antibiotics. International Journal of Medical Microbiology, 2015, 305, 190-195.	1.5	40
1695	Molecular Networking and Pattern-Based Genome Mining Improves Discovery of Biosynthetic Gene Clusters and their Products from Salinispora Species. Chemistry and Biology, 2015, 22, 460-471.	6.2	150
1696	Functional gene-based discovery of phenazines from the actinobacteria associated with marine sponges in the South China Sea. Applied Microbiology and Biotechnology, 2015, 99, 5939-5950.	1.7	25
1697	Tryptophan promotes morphological and physiological differentiation in Streptomyces coelicolor. Applied Microbiology and Biotechnology, 2015, 99, 10177-10189.	1.7	37
1698	Utilization of NGS and Proteomic-Based Approaches to Gain Insights on Cellular Responses to Singlet Oxygen and Improve Energy Yields for Bacterial Stress Adaptation. , 2015, , 79-99.		0

#	Article	IF	Citations
1699	Activation of Antibiotic Production in Bacillus spp. by Cumulative Drug Resistance Mutations. Antimicrobial Agents and Chemotherapy, 2015, 59, 7799-7804.	1.4	19
1700	Transcriptional analysis of the cell division-related ssg genes in Streptomyces coelicolor reveals direct control of ssgR by AtrA. Antonie Van Leeuwenhoek, 2015, 108, 201-213.	0.7	14
1701	Antimicrobial and Biocatalytic Potential of Haloalkaliphilic Actinobacteria. Sustainable Development and Biodiversity, 2015, , 29-55.	1.4	11
1702	Identification of genetic variations associated with epsilon-poly-lysine biosynthesis in Streptomyces albulus ZPM by genome sequencing. Scientific Reports, 2015, 5, 9201.	1.6	28
1703	Metabolomics-Driven Discovery of a Prenylated Isatin Antibiotic Produced by <i>Streptomyces</i> Species MBT28. Journal of Natural Products, 2015, 78, 2355-2363.	1.5	60
1704	An automated Genomes-to-Natural Products platform (GNP) for the discovery of modular natural products. Nature Communications, 2015, 6, 8421.	5.8	123
1705	The Streptomyces leeuwenhoekii genome: de novo sequencing and assembly in single contigs of the chromosome, circular plasmid pSLE1 and linear plasmid pSLE2. BMC Genomics, 2015, 16, 485.	1.2	61
1706	Evolution and Diversity of the Ras Superfamily of Small GTPases in Prokaryotes. Genome Biology and Evolution, 2015, 7, 57-70.	1.1	51
1707	13-Deoxytetrodecamycin, a new tetronate ring-containing antibiotic that is active against multidrug-resistant Staphylococcus aureus. Journal of Antibiotics, 2015, 68, 698-702.	1.0	7
1708	Computational approaches to natural product discovery. Nature Chemical Biology, 2015, 11, 639-648.	3.9	373
1709	Application of 3D NMR for Structure Determination of Peptide Natural Products. Journal of Organic Chemistry, 2015, 80, 8713-8719.	1.7	19
1710	The PhoP transcription factor negatively regulates avermectin biosynthesis in Streptomyces avermitilis. Applied Microbiology and Biotechnology, 2015, 99, 10547-10557.	1.7	34
1711	Biosynthesis of the Novel Macrolide Antibiotic Anthracimycin. ACS Chemical Biology, 2015, 10, 2468-2479.	1.6	38
1712	Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products in <i>Streptomyces</i> Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12181-12186.	3.3	155
1713	Draft genome sequence of i>Streptomyces i>sp. TP-A0882 reveals putative butyrolactol biosynthetic pathway. FEMS Microbiology Letters, 2015, 362, fnv155.	0.7	6
1714	Genome Miningâ€Directed Activation of a Silent Angucycline Biosynthetic Gene Cluster in <i>Streptomyces chattanoogensis</i>). ChemBioChem, 2015, 16, 496-502.	1.3	46
1715	Purification and characterization of organic solvent-tolerant lipase from Streptomyces sp. OC119-7 for biodiesel production. Biocatalysis and Agricultural Biotechnology, 2015, 4, 103-108.	1.5	21
1716	Arcyriaflavin E, a new cytotoxic indolocarbazole alkaloid isolated by combined-culture of mycolic acid-containing bacteria and Streptomyces cinnamoneus NBRC 13823. Journal of Antibiotics, 2015, 68, 342-344.	1.0	52

#	Article	IF	CITATIONS
1717	Chitin-degrading enzymes from an actinomycete ectosymbiont of Acromyrmex subterraneus brunneus (Hymenoptera: Formicidae). Annals of Microbiology, 2015, 65, 565-574.	1.1	0
1718	Production of Antibacterial Compounds from Actinomycetes. , 0, , .		15
1719	PATtyFams: Protein Families for the Microbial Genomes in the PATRIC Database. Frontiers in Microbiology, 2016, 7, 118.	1.5	153
1720	The Rare Codon AGA is involved in Regulation of Pyoluteorin Biosynthesis in Pseudomonas protegens Pf-5. Frontiers in Microbiology, 2016, 7, 497.	1.5	13
1721	New Dimensions of Research on Actinomycetes: Quest for Next Generation Antibiotics. Frontiers in Microbiology, 2016, 7, 1295.	1.5	40
1722	Multiple and Variable NHEJ-Like Genes Are Involved in Resistance to DNA Damage in Streptomyces ambofaciens. Frontiers in Microbiology, 2016, 7, 1901.	1.5	15
1723	Antibacterial Compounds-Macrolactin Alters the Soil Bacterial Community and Abundance of the Gene Encoding PKS. Frontiers in Microbiology, 2016, 7, 1904.	1.5	28
1724	Genome Analysis of Two Pseudonocardia Phylotypes Associated with Acromyrmex Leafcutter Ants Reveals Their Biosynthetic Potential. Frontiers in Microbiology, 2016, 7, 2073.	1.5	41
1725	Crystal Structure of Cytochrome P450 (CYP105P2) from Streptomyces peucetius and Its Conformational Changes in Response to Substrate Binding. International Journal of Molecular Sciences, 2016, 17, 813.	1.8	10
1726	Next Generation Sequencing of Actinobacteria for the Discovery of Novel Natural Products. Marine Drugs, 2016, 14, 78.	2.2	118
1727	A New Dioic Acid from a wbl Gene Mutant of Deepsea-Derived Streptomyces somaliensis SCSIO ZH66. Marine Drugs, 2016, 14, 184.	2.2	4
1728	Cloning and Heterologous Expression of the Grecocycline Biosynthetic Gene Cluster. PLoS ONE, 2016, 11, e0158682.	1.1	61
1729	Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters. Microbiology (United Kingdom), 2016, 162, 2075-2086.	0.7	61
1730	Challenges in the Heterologous Production of Antibiotics in <i>Streptomyces</i> . Archiv Der Pharmazie, 2016, 349, 594-601.	2.1	28
1731	Enhanced production of phenazineâ€like metabolite produced by <i>Streptomyces aurantiogriseus</i> VSMGT1014 against rice pathogen, <i>Rhizoctonia solani</i> Journal of Basic Microbiology, 2016, 56, 153-161.	1.8	13
1732	Carbon Catabolite Regulation of Secondary Metabolite Formation and Morphological Differentiation in Streptomyces coelicolor. Applied Biochemistry and Biotechnology, 2016, 180, 1152-1166.	1.4	15
1733	Effect of PCL/PEGâ€Based Membranes on Actinorhodin Production in <i>Streptomyces coelicolor</i> Cultivations. Macromolecular Bioscience, 2016, 16, 686-693.	2.1	17
1734	The small 6C RNA of <i>Corynebacterium glutamicum</i> is involved in the SOS response. RNA Biology, 2016, 13, 848-860.	1.5	5

#	Article	IF	CITATIONS
1735	Oxygen and Nitrate Respiration in Streptomyces coelicolor A3(2). Advances in Microbial Physiology, 2016, 68, 1-40.	1.0	24
1736	Beyond the Cell: Using Multiscalar Topics to Bring Interdisciplinarity into Undergraduate Cellular Biology Courses. CBE Life Sciences Education, 2016, 15, es1.	1.1	9
1737	Coordinate Regulation of Antimycin and Candicidin Biosynthesis. MSphere, 2016, 1, .	1.3	46
1738	Nitrogen oxide cycle regulates nitric oxide levels and bacterial cell signaling. Scientific Reports, 2016, 6, 22038.	1.6	37
1739	The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2). Nature Communications, 2016, 7, 11605.	5.8	201
1740	Transcriptional regulation of a horizontally transferred gene from bacterium to chordate. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161712.	1.2	20
1741	Metabolomics-guided analysis of isocoumarin production by Streptomyces species MBT76 and biotransformation of flavonoids and phenylpropanoids. Metabolomics, 2016, 12, 90.	1.4	48
1742	NAD+-specific glutamate dehydrogenase (EC.1.4.1.2) in Streptomyces coelicolor; in vivo characterization and the implication for nutrient-dependent secondary metabolism. Applied Microbiology and Biotechnology, 2016, 100, 5527-5536.	1.7	9
1743	Bacterial predation: 75 years and counting!. Environmental Microbiology, 2016, 18, 766-779.	1.8	190
1744	Diversity of Culturable Thermophilic Actinobacteria in Hot Springs in Tengchong, China and Studies of their Biosynthetic Gene Profiles. Microbial Ecology, 2016, 72, 150-162.	1.4	55
1745	The Chemical Ecology of Predatory Soil Bacteria. ACS Chemical Biology, 2016, 11, 1502-1510.	1.6	51
1746	Different Approaches for Searching New Microbial Compounds with Anti-infective Activity. , 2016, , 395-431.		1
1747	An Efficient Method To Generate Gene Deletion Mutants of the Rapamycin-Producing Bacterium Streptomyces iranensis HM 35. Applied and Environmental Microbiology, 2016, 82, 3481-3492.	1.4	13
1748	A Structurally Novel Chitinase from the Chitin-Degrading Hyperthermophilic Archaeon Thermococcus chitonophagus. Applied and Environmental Microbiology, 2016, 82, 3554-3562.	1.4	15
1749	Effects of trace metal ions on secondary metabolism and the morphological development of streptomycetes. Metallomics, 2016, 8, 469-480.	1.0	45
1750	Genetics and Genomics of the Genus Amycolatopsis. Indian Journal of Microbiology, 2016, 56, 233-246.	1.5	28
1751	Complete Genome Sequence of Streptomyces venezuelae ATCC 15439, Producer of the Methymycin/Pikromycin Family of Macrolide Antibiotics, Using PacBio Technology. Genome Announcements, 2016, 4, .	0.8	9
1752	Characterization of PAS domains in Frankia and selected Actinobacteria and their possible interaction with other co-domains for environmental adaptation. Symbiosis, 2016, 70, 69-78.	1.2	4

#	Article	IF	CITATIONS
1753	Molecular characterization of SCO0765 as a cellotriose releasing endo- $\hat{1}^2$ -1,4-cellulase from Streptomyces coelicolor A(3). Journal of Microbiology, 2016, 54, 626-631.	1.3	4
1754	Deletion of the hypothetical protein SCO2127 of Streptomyces coelicolor allowed identification of a new regulator of actinorhodin production. Applied Microbiology and Biotechnology, 2016, 100, 9229-9237.	1.7	6
1755	Improvement of FK506 production by synthetic biology approaches. Biotechnology Letters, 2016, 38, 2015-2021.	1.1	9
1756	Complete genome sequencing and comparative analyses of broad-spectrum antimicrobial-producing Micromonospora sp. HK10. Gene, 2016, 594, 97-107.	1.0	10
1757	Plant growth promotion by streptomycetes: ecophysiology, mechanisms and applications. Chemical and Biological Technologies in Agriculture, 2016, 3, .	1.9	105
1758	Protein expression analysis of a high-demeclocycline producing strain of Streptomyces aureofaciens and the roles of CtcH and CtcJ in demeclocycline biosynthesis. Bioresources and Bioprocessing, 2016, 3, .	2.0	4
1760	Streptomyces Bacteria: Specialized Metabolism, Inter-species Interations and Non-coding RNAs. , 2016, , 83-101.		0
1761	Natural Products and the Gene Cluster Revolution. Trends in Microbiology, 2016, 24, 968-977.	3.5	121
1763	Non-coding RNAs and Inter-kingdom Communication. , 2016, , .		5
1764	Genomic data mining reveals a rich repertoire of transport proteins in Streptomyces. BMC Genomics, 2016, 17, 510.	1.2	18
1765	The Coordinated Positive Regulation of Topoisomerase Genes Maintains Topological Homeostasis in Streptomyces coelicolor. Journal of Bacteriology, 2016, 198, 3016-3028.	1.0	32
1766	Fiveâ€Membered Cyclitol Phosphate Formation by a <i>myo</i> à€Inositol Phosphate Synthase Orthologue in the Biosynthesis of the Carbocyclic Nucleoside Antibiotic Aristeromycin. ChemBioChem, 2016, 17, 2143-2148.	1.3	13
1767	Isolation and characterization of Antarctic psychrotroph <i>Streptomyces</i> sp. strain INACH3013. Antarctic Science, 2016, 28, 433-442.	0.5	17
1771	Winding paths to simplicity: genome evolution in facultative insect symbionts. FEMS Microbiology Reviews, 2016, 40, 855-874.	3.9	103
1772	Cosmid based mutagenesis causes genetic instability in Streptomyces coelicolor, as shown by targeting of the lipoprotein signal peptidase gene. Scientific Reports, 2016, 6, 29495.	1.6	4
1773	Promiscuous Pathogenicity Islands and Phylogeny of Pathogenic Streptomyces spp Molecular Plant-Microbe Interactions, 2016, 29, 640-650.	1.4	48
1774	Phylogenomic Analysis of Natural Products Biosynthetic Gene Clusters Allows Discovery of Arseno-Organic Metabolites in Model Streptomycetes. Genome Biology and Evolution, 2016, 8, 1906-1916.	1.1	111
1775	Insight into a novel \hat{l}^2 -1,4-glucosidase from Streptomyces griseorubens JSD-1. Applied Biochemistry and Microbiology, 2016, 52, 371-377.	0.3	1

#	Article	IF	CITATIONS
1776	Functional Genome Mining for Metabolites Encoded by Large Gene Clusters through Heterologous Expression of a Whole-Genome Bacterial Artificial Chromosome Library in Streptomyces spp. Applied and Environmental Microbiology, 2016, 82, 5795-5805.	1.4	65
1777	Native and engineered promoters in natural product discovery. Natural Product Reports, 2016, 33, 1006-1019.	5.2	97
1778	Mitochondria, the Cell Cycle, and the Origin of Sex via a Syncytial Eukaryote Common Ancestor. Genome Biology and Evolution, 2016, 8, 1950-1970.	1.1	65
1779	Intertwining nutrientâ€sensory networks and the control of antibiotic production in <i>Streptomyces</i>). Molecular Microbiology, 2016, 102, 183-195.	1.2	87
1780	Goodbye to brute force in antibiotic discovery?. Nature Microbiology, 2016, 1, 15020.	5.9	55
1781	A competitive trade-off limits the selective advantage of increased antibiotic production. Nature Microbiology, $2016, 1, 16175$.	5.9	23
1782	Biosynthetic Pathway Connects Cryptic Ribosomally Synthesized Posttranslationally Modified Peptide Genes with Pyrroloquinoline Alkaloids. Cell Chemical Biology, 2016, 23, 1504-1514.	2.5	49
1783	Iteratively improving natamycin production in Streptomyces gilvosporeus by a large operon-reporter based strategy. Metabolic Engineering, 2016, 38, 418-426.	3.6	30
1784	Cloning and characterization of the first actinomycete βâ€propeller phytase from <i>Streptomyces</i> sp. US42. Journal of Basic Microbiology, 2016, 56, 1080-1089.	1.8	5
1785	Plant Growth Promoting Actinobacteria., 2016,,.		15
1786	Use of Genomic Approaches in Understanding the Role of Actinomycetes as PGP in Grain Legumes. , 2016, , 249-262.		3
1787	Recent Advancement in the Development of Biopesticides by Actinomycetes for the Control of Insect Pests., 2016,, 47-62.		2
1788	Actinomycetes Bio-inoculants: A Modern Prospectus for Plant Disease Management., 2016,, 63-81.		12
1789	Old dogs and new tricks in antimicrobial discovery. Current Opinion in Microbiology, 2016, 33, 25-34.	2.3	14
1790	The evolution of genome mining in microbes – a review. Natural Product Reports, 2016, 33, 988-1005.	5.2	538
1791	Overexpression of a pathway specific negative regulator enhances production of daunorubicin in bldA deficient Streptomyces peucetius ATCC 27952. Microbiological Research, 2016, 192, 96-102.	2.5	18
1792	Molecular Characterization of Xylobiose- and Xylopentaose-Producing \hat{l}^2 -1,4-Endoxylanase SCO5931 from Streptomyces coelicolor A3(2). Applied Biochemistry and Biotechnology, 2016, 180, 349-360.	1.4	10
1793	Genome mining reveals the biosynthetic potential of the marine-derived strain Streptomyces marokkonensis M10. Synthetic and Systems Biotechnology, 2016, 1, 56-65.	1.8	18

#	Article	IF	CITATIONS
1794	Inactivation of SACE_3446, a TetR family transcriptional regulator, stimulates erythromycin production in Saccharopolyspora erythraea. Synthetic and Systems Biotechnology, 2016, 1, 39-46.	1.8	21
1795	Relationship between digital information and thermodynamic stability in bacterial genomes. Eurasip Journal on Bioinformatics and Systems Biology, 2016, 2016, 4.	1.4	14
1796	An Integrated Metabolomic and Genomic Mining Workflow To Uncover the Biosynthetic Potential of Bacteria. MSystems, 2016, 1, .	1.7	55
1797	Thiol Probes To Detect Electrophilic Natural Products Based on Their Mechanism of Action. ACS Chemical Biology, 2016, 11, 2328-2336.	1.6	53
1798	Substrate Inhibition of VanA by <scp>d</scp> -Alanine Reduces Vancomycin Resistance in a VanX-Dependent Manner. Antimicrobial Agents and Chemotherapy, 2016, 60, 4930-4939.	1.4	10
1799	Characterization of a novel highly thermostable esterase from the Gramâ€positive soil bacterium ⟨i⟩Streptomyces lividans⟨ i⟩ TK64. Biotechnology and Applied Biochemistry, 2016, 63, 334-343.	1.4	20
1800	Combining chitinase C and N-acetylhexosaminidase from Streptomyces coelicolor A3(2) provides an efficient way to synthesize N-acetylglucosamine from crystalline chitin. Journal of Biotechnology, 2016, 220, 25-32.	1.9	59
1801	Molecular characterization of <i> Streptomyces coelicolor </i> A(3) SCO6548 as a cellulose 1,4-β-cellobiosidase. FEMS Microbiology Letters, 2016, 363, fnv245.	0.7	23
1802	JadX is a Disparate Natural Product Binding Protein. Journal of the American Chemical Society, 2016, 138, 2200-2208.	6.6	10
1803	Iminimycin A, the new iminium metabolite produced by Streptomyces griseus OS-3601. Journal of Antibiotics, 2016, 69, 611-615.	1.0	17
1804	Bacterial terpene cyclases. Natural Product Reports, 2016, 33, 87-110.	5.2	289
1805	Improved antibiotic production and silent gene activation in Streptomyces diastatochromogenes by ribosome engineering. Journal of Antibiotics, 2016, 69, 406-410.	1.0	23
1806	Two transcription factors, CabA and CabR, are independently involved in multilevel regulation of the biosynthetic gene cluster encoding the novel aminocoumarin, cacibiocin. Applied Microbiology and Biotechnology, 2016, 100, 3147-3164.	1.7	4
1807	Metabologenomics: Correlation of Microbial Gene Clusters with Metabolites Drives Discovery of a Nonribosomal Peptide with an Unusual Amino Acid Monomer. ACS Central Science, 2016, 2, 99-108.	5.3	99
1808	Antifungal performance of extracellular chitinases and culture supernatants of Streptomyces galilaeus CFFSUR-B12 against Mycosphaerella fijiensis Morelet. World Journal of Microbiology and Biotechnology, 2016, 32, 44.	1.7	25
1809	The secondary metabolite bioinformatics portal: Computational tools to facilitate synthetic biology of secondary metabolite production. Synthetic and Systems Biotechnology, 2016, 1, 69-79.	1.8	153
1810	Genome Content and Phylogenomics Reveal both Ancestral and Lateral Evolutionary Pathways in Plant-Pathogenic Streptomyces Species. Applied and Environmental Microbiology, 2016, 82, 2146-2155.	1.4	44
1811	Methylbenzene-Containing Polyketides from a <i>Streptomyces</i> that Spontaneously Acquired Rifampicin Resistance: Structural Elucidation and Biosynthesis. Journal of Natural Products, 2016, 79, 857-864.	1.5	13

#	Article	IF	CITATIONS
1812	Chemically Induced Cryptic Sesquiterpenoids and Expression of Sesquiterpene Cyclases in <i>Botrytis cinerea</i> Revealed New Sporogenic (+)-4- <i>Epi</i> eremophil-9-en-11-ols. ACS Chemical Biology, 2016, 11, 1391-1400.	1.6	20
1813	The regulatory mechanism underlying light-inducible production of carotenoids in nonphototrophic bacteria. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1264-1273.	0.6	35
1814	Enhanced salinomycin production by adjusting the supply of polyketide extender units in Streptomyces albus. Metabolic Engineering, 2016, 35, 129-137.	3.6	72
1815	Mixing Up the Pieces of the Desferrioxamine B Jigsaw Defines the Biosynthetic Sequence Catalyzed by DesD. ACS Chemical Biology, 2016, 11, 1452-1462.	1.6	28
1816	Discovery of pentangular polyphenols hexaricins A–C from marine Streptosporangium sp. CGMCC 4.7309 by genome mining. Applied Microbiology and Biotechnology, 2016, 100, 4189-4199.	1.7	27
1817	Leucanicidin and Endophenasides Result from Methyl-Rhamnosylation by the Same Tailoring Enzymes in <i>Kitasatospora</i> sp. MBT66. ACS Chemical Biology, 2016, 11, 478-490.	1.6	25
1818	Coevolution of the Organization and Structure of Prokaryotic Genomes. Cold Spring Harbor Perspectives in Biology, 2016, 8, a018168.	2.3	55
1819	Bioterrorism and the Role of the Clinical Microbiology Laboratory. Clinical Microbiology Reviews, 2016, 29, 175-189.	5.7	49
1820	Natural product discovery: past, present, and future. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 155-176.	1.4	738
1821	Genome-Guided Discovery of Natural Products and Biosynthetic Pathways from Australia's Untapped Microbial Megadiversity. Australian Journal of Chemistry, 2016, 69, 129.	0.5	5
1822	Culture-independent discovery of natural products from soil metagenomes. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 129-141.	1.4	109
1823	David and Goliath: chemical perturbation of eukaryotes by bacteria. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 233-248.	1.4	5
1824	Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiology and Molecular Biology Reviews, 2016, 80, 1-43.	2.9	1,395
1825	Metabolic profiling as a tool for prioritizing antimicrobial compounds. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 299-312.	1.4	34
1826	Prospecting for new bacterial metabolites: a glossary of approaches for inducing, activating and upregulating the biosynthesis of bacterial cryptic or silent natural products. Natural Product Reports, 2016, 33, 54-72.	5.2	109
1827	Exploiting the genome sequence of Streptomyces nodosus for enhanced antibiotic production. Applied Microbiology and Biotechnology, 2016, 100, 1285-1295.	1.7	20
1828	Identification and activation of novel biosynthetic gene clusters by genome mining in the kirromycin producer <i>Streptomyces collinus</i> TÂ $\frac{1}{4}$ 365. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 277-291.	1.4	37
1829	Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects. Journal of Antibiotics, 2017, 70, 25-40.	1.0	97

#	Article	IF	CITATIONS
1830	Amhezole, A Novel Fungal Secondary Metabolite from <i>Aspergillus terreus </i> for Treatment of Microbial Mouth Infection. Phytotherapy Research, 2017, 31, 395-402.	2.8	13
1831	Large-Scale Transposition Mutagenesis of Streptomyces coelicolor Identifies Hundreds of Genes Influencing Antibiotic Biosynthesis. Applied and Environmental Microbiology, 2017, 83, .	1.4	52
1832	Synthetic biology era: Improving antibiotic's world. Biochemical Pharmacology, 2017, 134, 99-113.	2.0	21
1833	A comparative genomic analysis of putative pathogenicity genes in the host-specific sibling species Colletotrichum graminicola and Colletotrichum sublineola. BMC Genomics, 2017, 18, 67.	1.2	53
1834	Establishing a high yielding <i>streptomyces</i> êbased cellâ€free protein synthesis system. Biotechnology and Bioengineering, 2017, 114, 1343-1353.	1.7	106
1835	Molecular beacons to identify gifted microbes for genome mining. Journal of Antibiotics, 2017, 70, 639-646.	1.0	24
1836	Discovery of C-Glycosylpyranonaphthoquinones in Streptomyces sp. MBT76 by a Combined NMR-Based Metabolomics and Bioinformatics Workflow. Journal of Natural Products, 2017, 80, 269-277.	1.5	36
1837	Plasmids impact on rhizobia-legumes symbiosis in diverse environments. Symbiosis, 2017, 73, 75-91.	1.2	26
1838	Biosynthetic studies on terpenoids produced by Streptomyces. Journal of Antibiotics, 2017, 70, 811-818.	1.0	39
1839	YcaO-Dependent Posttranslational Amide Activation: Biosynthesis, Structure, and Function. Chemical Reviews, 2017, 117, 5389-5456.	23.0	166
1840	Using natural products for drug discovery: the impact of the genomics era. Expert Opinion on Drug Discovery, 2017, 12, 475-487.	2.5	74
1841	New natural products identified by combined genomics-metabolomics profiling of marine Streptomyces sp. MP131-18. Scientific Reports, 2017, 7, 42382.	1.6	86
1842	Recent advances in genetic modification systems for Actinobacteria. Applied Microbiology and Biotechnology, 2017, 101, 2217-2226.	1.7	12
1843	Microbial energy and matter transformation in agricultural soils. Soil Biology and Biochemistry, 2017, 111, 176-192.	4.2	61
1844	Toward the Dark Matter of Natural Products. Chemical Record, 2017, 17, 1124-1134.	2.9	6
1845	Flocculation mechanism of the actinomycete Streptomyces sp. hsn06 on Chlorella vulgaris. Bioresource Technology, 2017, 239, 137-143.	4.8	44
1846	A Novel Two-Component System, GluR-GluK, Involved in Glutamate Sensing and Uptake in Streptomyces coelicolor. Journal of Bacteriology, 2017, 199, .	1.0	19
1847	Aromatic Polyketide GTRIâ€02 is a Previously Unidentified Product of the <i>act</i> Gene Cluster in <i>Streptomyces coelicolor</i> A3(2). ChemBioChem, 2017, 18, 1428-1434.	1.3	22

#	Article	IF	CITATIONS
1848	Heterologous Production and Yield Improvement of Epothilones in Burkholderiales Strain DSM 7029. ACS Chemical Biology, 2017, 12, 1805-1812.	1.6	48
1849	Fast and reliable strain characterization of <i>Streptomyces lividans</i> through microâ€scale cultivation. Biotechnology and Bioengineering, 2017, 114, 2011-2022.	1.7	37
1850	Enhancement of antibiotic productions by engineered nitrate utilization in actinomycetes. Applied Microbiology and Biotechnology, 2017, 101, 5341-5352.	1.7	33
1851	Bifunctionality of ActIV as a Cyclaseâ€Thioesterase Revealed by in Vitro Reconstitution of Actinorhodin Biosynthesis in <i>Streptomyces coelicolor</i> i> A3(2). ChemBioChem, 2017, 18, 316-323.	1.3	30
1852	Knowns and unknowns of membrane lipid synthesis in streptomycetes. Biochimie, 2017, 141, 21-29.	1.3	13
1853	Cytochrome P450 enzyme RosC catalyzes a multistep oxidation reaction to form the non-active compound 20-carboxyrosamicin. FEMS Microbiology Letters, 2017, 364, .	0.7	8
1854	Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiology Reviews, 2017, 41, 392-416.	3.9	337
1855	Evidence for the formation of ScbR/ScbR2 heterodimers and identification of one of the regulatory targets in Streptomyces coelicolor. Applied Microbiology and Biotechnology, 2017, 101, 5333-5340.	1.7	4
1856	Antimicrobial investigation of selected soil actinomycetes isolated from unexplored regions of Kashmir Himalayas, India. Microbial Pathogenesis, 2017, 110, 93-99.	1.3	31
1857	Discovery of a Cryptic Antifungal Compound from <i>Streptomyces albus</i> J1074 Using High-Throughput Elicitor Screens. Journal of the American Chemical Society, 2017, 139, 9203-9212.	6.6	121
1858	Complete Draft Genome Sequence of the Actinobacterium Nocardiopsis sinuspersici UTMC102 (DSM) Tj ETQq0	0 0 rgBT /0	Overlock 10 ⁻
1859	Cryptic Pathways and Implications for Novel Drug Discovery. , 2017, , 189-203.		3
1860	Industrial Culture Collections: Gateways from Microbial Diversity to Applications. , 2017, , 237-255.		0
1861	Quantitative Proteomics Analysis Confirmed Oxidative Metabolism Predominates in <i>Streptomyces coelicolor</i> versus Glycolytic Metabolism in <i>Streptomyces lividans</i> . Journal of Proteome Research, 2017, 16, 2597-2613.	1.8	44
1862	Characterization of an Lrp/AsnC family regulator SCO3361, controlling actinorhodin production and morphological development in Streptomyces coelicolor. Applied Microbiology and Biotechnology, 2017, 101, 5773-5783.	1.7	21
1863	Plasma modified PLA electrospun membranes for actinorhodin production intensification in Streptomyces coelicolor immobilized-cell cultivations. Colloids and Surfaces B: Biointerfaces, 2017, 157, 233-241.	2.5	49
1864	Isolation and characterization of bioactive metabolites producing marine Streptomyces parvulus strain sankarensis-A10. Journal of Genetic Engineering and Biotechnology, 2017, 15, 87-94.	1.5	29
1865	Actinomycete Metabolome Induction/Suppression with <i>N</i> -Acetylglucosamine. Journal of Natural Products, 2017, 80, 828-836.	1.5	32

#	Article	IF	CITATIONS
1866	Strong antibiotic production is correlated with highly active oxidative metabolism in Streptomyces coelicolor M145. Scientific Reports, 2017, 7, 200.	1.6	56
1867	Endophytic actinobacteria: Diversity, secondary metabolism and mechanisms to unsilence biosynthetic gene clusters. Critical Reviews in Microbiology, 2017, 43, 546-566.	2.7	87
1868	Metabolic perturbation to enhance polyketide and nonribosomal peptide antibiotic production using triclosan and ribosome-targeting drugs. Applied Microbiology and Biotechnology, 2017, 101, 4417-4431.	1.7	25
1869	New strategies and approaches for engineering biosynthetic gene clusters of microbial natural products. Biotechnology Advances, 2017, 35, 936-949.	6.0	41
1870	Rational synthetic pathway refactoring of natural products biosynthesis in actinobacteria. Metabolic Engineering, 2017, 39, 228-236.	3.6	56
1871	Genome Integration and Excision by a New Streptomyces Bacteriophage, i-Joe. Applied and Environmental Microbiology, 2017, 83, .	1.4	26
1872	Identification of a Novel Lincomycin Resistance Mutation Associated with Activation of Antibiotic Production in Streptomyces coelicolor A3(2). Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	7
1873	XdhR negatively regulates actinorhodin biosynthesis in Streptomyces coelicolor M145. FEMS Microbiology Letters, 2017, 364, .	0.7	12
1874	Exploiting the Sensitivity of Nutrient Transporter Deletion Strains in Discovery of Natural Product Antimetabolites. ACS Infectious Diseases, 2017, 3, 955-965.	1.8	12
1875	Classification and Taxonomy of Actinobacteria. , 2017, , 51-77.		7
1876	The Genetic System of Actinobacteria. , 2017, , 79-121.		0
1877	Activation and mechanism of a cryptic oviedomycin gene cluster via the disruption of a global regulatory gene, adpA, in Streptomyces ansochromogenes. Journal of Biological Chemistry, 2017, 292, 19708-19720.	1.6	62
1878	Expression Platforms for Functional Metagenomics: Emerging Technology Options Beyond Escherichia coli., 2017,, 13-44.		3
1879	Engineering of E. coli for Heterologous Expression of Secondary Metabolite Biosynthesis Pathways Recovered from Metagenomics Libraries. , 2017, , 45-63.		1
1880	Pencitrin and pencitrinol, two new citrinin derivatives from an endophytic fungus Penicillium citrinum salicorn 46. Phytochemistry Letters, 2017, 22, 229-234.	0.6	18
1881	Genomic Enzymology: Web Tools for Leveraging Protein Family Sequence–Function Space and Genome Context to Discover Novel Functions. Biochemistry, 2017, 56, 4293-4308.	1.2	179
1882	Eukaryotic origins and the Proterozoic Earth system: A link between global scale glaciations and eukaryogenesis?. Earth-Science Reviews, 2017, 174, 22-38.	4.0	5
1883	Identification of butenolide regulatory system controlling secondary metabolism in Streptomyces albus J1074. Scientific Reports, 2017, 7, 9784.	1.6	34

#	Article	IF	CITATIONS
1884	Comparative Genomic and Regulatory Analyses of Natamycin Production of Streptomyces lydicus AO2. Scientific Reports, 2017, 7, 9114.	1.6	20
1885	Improved PKS Gene Expression With Strong Endogenous Promoter Resulted in Geldanamycin Yield Increase. Biotechnology Journal, 2017, 12, 1700321.	1.8	14
1886	Activation of cryptic phthoxazolin A production in Streptomyces avermitilis by the disruption of autoregulator-receptor homologue AvaR3. Journal of Bioscience and Bioengineering, 2017, 124, 611-617.	1.1	8
1887	Infection therapy: the problem of drug resistance – and possible solutions. Microbial Biotechnology, 2017, 10, 1041-1046.	2.0	18
1888	Complete Genome Sequencing of <i>Streptomyces</i> sp. Strain MOE7, Which Produces an Extracellular Polysaccharide with Antioxidant and Antitumor Activities. Genome Announcements, 2017, 5, .	0.8	1
1889	Genomic insights into specialized metabolism in the marine actinomycete <i>Salinispora</i> Environmental Microbiology, 2017, 19, 3660-3673.	1.8	69
1890	Secondary Metabolite Production from Industrially Relevant Bacteria is Enhanced by Organic Nanofibers. Biotechnology Journal, 2017, 12, 1700313.	1.8	4
1891	Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function. Natural Product Reports, 2017, 34, 1141-1172.	5.2	147
1892	Quantification of Agrobacterium tumefaciens C58 attachment to Arabidopsis thaliana roots. FEMS Microbiology Letters, 2017, 364, .	0.7	4
1893	Biosynthesis and molecular regulation of secondary metabolites in microorganisms. Science China Life Sciences, 2017, 60, 935-938.	2.3	25
1894	Comparative transcriptomics as a guide to natural product discovery and biosynthetic gene cluster functionality. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E11121-E11130.	3.3	94
1895	Recent development of computational resources for new antibiotics discovery. Current Opinion in Microbiology, 2017, 39, 113-120.	2.3	34
1896	Antibiotics Producing Soil Microorganisms. Soil Biology, 2017, , 1-18.	0.6	20
1897	Structural and Biophysical Characterization of the Mycobacterium tuberculosis Protein Rv0577, a Protein Associated with Neutral Red Staining of Virulent Tuberculosis Strains and Homologue of the Streptomyces coelicolor Protein KbpA. Biochemistry, 2017, 56, 4015-4027.	1.2	4
1898	New approaches to antimicrobial discovery. Biochemical Pharmacology, 2017, 134, 87-98.	2.0	88
1899	Alpha-ketoglutarate protects Streptomyces coelicolor from visible light-induced phototoxicity. Biochemistry and Biophysics Reports, 2017, 9, 22-28.	0.7	3
1900	Aerobic Gram-Positive Bacilli., 2017, , 1537-1552.e2.		4
1901	A role of nitrite reductase (NirBD) for NO homeostatic regulation in <i>Streptomyces coelicolor</i> A3(2). FEMS Microbiology Letters, 2017, 364, fnw241.	0.7	12

#	Article	IF	CITATIONS
1902	Gifted microbes for genome mining and natural product discovery. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 573-588.	1.4	200
1903	Implication of RuvABC and RecG in homologous recombination in Streptomyces ambofaciens. Research in Microbiology, 2017, 168, 26-35.	1.0	7
1904	Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiology Reviews, 2017, 41, 19-33.	3.9	160
1905	Comparative mass spectrometry-based metabolomics strategies for the investigation of microbial secondary metabolites. Natural Product Reports, 2017, 34, 6-24.	5. 2	122
1906	BeReTa: a systematic method for identifying target transcriptional regulators to enhance microbial production of chemicals. Bioinformatics, 2017, 33, 87-94.	1.8	10
1907	Comprehensive analysis of the cellulolytic system reveals its potential for deconstruction of lignocellulosic biomass in a novel Streptomyces sp Applied Microbiology and Biotechnology, 2017, 101, 301-319.	1.7	18
1908	High production of a class III lantipeptide AmfS in <i>Streptomyces griseus</i> Biotechnology and Biochemistry, 2017, 81, 153-164.	0.6	7
1909	The isolation and improvement of industrially important microorganisms. , 2017, , 75-211.		3
1910	Natural products discovery from micro-organisms in the post-genome eraâ€. Bioscience, Biotechnology and Biochemistry, 2017, 81, 13-22.	0.6	13
1911	Molecular characterization of a Rhodococcus jostii RHA1 \hat{I}^3 -butyrolactone(-like) signalling molecule and its main biosynthesis gene gblA. Scientific Reports, 2017, 7, 17743.	1.6	10
1912	Metabolic Flux Analysis using 13C Isotopes: III. Significance for Systems Biology and Metabolic Engineering. Applied Biochemistry and Microbiology, 2017, 53, 827-841.	0.3	0
1913	Sixty Challenges – A 2030 Perspective on Natural Products and Medicines Security. Natural Product Communications, 2017, 12, 1934578X1701200.	0.2	5
1914	Genome-based exploration of the specialized metabolic capacities of the genus Rhodococcus. BMC Genomics, 2017, 18, 593.	1.2	58
1915	C-terminal lysine repeats in Streptomyces topoisomerase I stabilize the enzyme–DNA complex and confer high enzyme processivity. Nucleic Acids Research, 2017, 45, 11908-11924.	6.5	30
1916	Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials. Marine Drugs, 2017, 15, 272.	2.2	92
1917	Genome-Wide Analysis Reveals the Secondary Metabolome in Streptomyces kanasensis ZX01. Genes, 2017, 8, 346.	1.0	1
1918	Simultaneous Activation of Iron- and Thiol-Based Sensor-Regulator Systems by Redox-Active Compounds. Frontiers in Microbiology, 2017, 8, 139.	1.5	8
1919	Identification by Genome Mining of a Type I Polyketide Gene Cluster from Streptomyces argillaceus Involved in the Biosynthesis of Pyridine and Piperidine Alkaloids Argimycins P. Frontiers in Microbiology, 2017, 8, 194.	1.5	34

#	Article	IF	Citations
1920	Wide Distribution of Foxicin Biosynthetic Gene Clusters in Streptomyces Strains – An Unusual Secondary Metabolite with Various Properties. Frontiers in Microbiology, 2017, 8, 221.	1.5	6
1921	Insights of Phage-Host Interaction in Hypersaline Ecosystem through Metagenomics Analyses. Frontiers in Microbiology, 2017, 8, 352.	1.5	28
1922	Assessment of the Potential Role of Streptomyces in Cave Moonmilk Formation. Frontiers in Microbiology, 2017, 8, 1181.	1.5	63
1923	Deletion of MtrA Inhibits Cellular Development of Streptomyces coelicolor and Alters Expression of Developmental Regulatory Genes. Frontiers in Microbiology, 2017, 8, 2013.	1.5	43
1924	Focused Review: Cytotoxic and Antioxidant Potentials of Mangrove-Derived Streptomyces. Frontiers in Microbiology, 2017, 8, 2065.	1.5	76
1925	A Waking Review: Old and Novel Insights into the Spore Germination in Streptomyces. Frontiers in Microbiology, 2017, 8, 2205.	1.5	51
1926	The Orphan Response Regulator Aor1 Is a New Relevant Piece in the Complex Puzzle of Streptomyces coelicolor Antibiotic Regulatory Network. Frontiers in Microbiology, 2017, 8, 2444.	1.5	26
1927	Secondary Metabolites Produced during the Germination of Streptomyces coelicolor. Frontiers in Microbiology, 2017, 8, 2495.	1.5	81
1928	Metabolic network model guided engineering ethylmalonyl-CoA pathway to improve ascomycin production in Streptomyces hygroscopicus var. ascomyceticus. Microbial Cell Factories, 2017, 16, 169.	1.9	25
1929	Modeling the architecture of the regulatory system controlling methylenomycin production in Streptomyces coelicolor. Journal of Biological Engineering, 2017, 11, 30.	2.0	7
1930	Regulation of antimicrobial activity and xenocoumacins biosynthesis by pH in Xenorhabdus nematophila. Microbial Cell Factories, 2017, 16, 203.	1.9	18
1931	Actinomycetes: A Source of Industrially Important Enzymes. Journal of Proteomics and Bioinformatics, 2017, 10, .	0.4	42
1932	Future directions for the discovery of antibiotics from actinomycete bacteria. Emerging Topics in Life Sciences, 2017, 1, 1-12.	1.1	20
1933	Old and new glycopeptide antibiotics: From product to gene and back in the post-genomic era. Biotechnology Advances, 2018, 36, 534-554.	6.0	45
1934	Dehydropropylpantothenamide isolated by a co-culture of Nocardia tenerifensis IFM 10554T in the presence of animal cells. Journal of Natural Medicines, 2018, 72, 280-289.	1.1	13
1935	Genome engineering for microbial natural product discovery. Current Opinion in Microbiology, 2018, 45, 53-60.	2.3	36
1936	Discovery of the Tyrobetaine Natural Products and Their Biosynthetic Gene Cluster <i>via</i> Metabologenomics. ACS Chemical Biology, 2018, 13, 1029-1037.	1.6	38
1937	Streptosporangium minutum sp. nov., isolated from garden soil exposed to microwave radiation. Journal of Antibiotics, 2018, 71, 564-574.	1.0	6

#	Article	IF	CITATIONS
1938	Manipulation of metabolic pathways controlled by signaling molecules, inducers of antibiotic production, for genome mining in Streptomyces spp Antonie Van Leeuwenhoek, 2018, 111, 743-751.	0.7	30
1939	Regulation of $\ddot{l}f$ factors by conserved partner switches controlled by divergent signalling systems. Environmental Microbiology Reports, 2018, 10, 127-139.	1.0	10
1940	A strain of <i>Streptomyces </i> sp. isolated from rhizospheric soil of <i>Crataegus oxycantha </i> producing nalidixic acid, a synthetic antibiotic. Journal of Applied Microbiology, 2018, 124, 1393-1400.	1.4	9
1941	Streptomyces spp. in the biocatalysis toolbox. Applied Microbiology and Biotechnology, 2018, 102, 3513-3536.	1.7	39
1942	Novel sequencing technologies to support industrial biotechnology. FEMS Microbiology Letters, 2018, 365, .	0.7	15
1943	Structural and biochemical characterization of the type-II LOG protein from Streptomyces coelicolor A3. Biochemical and Biophysical Research Communications, 2018, 499, 577-583.	1.0	2
1944	Analysis of metabolic networks of <i>Streptomyces leeuwenhoekii</i> C34 by means of a genome scale model: Prediction of modifications that enhance the production of specialized metabolites. Biotechnology and Bioengineering, 2018, 115, 1815-1828.	1.7	10
1945	Omics and multi-omics approaches to study the biosynthesis of secondary metabolites in microorganisms. Current Opinion in Microbiology, 2018, 45, 109-116.	2.3	101
1946	Expression and characterization of the processive exoâ€Î²â€1,4â€cellobiohydrolase SCO6546 from <i>Streptomyces coelicolor</i> A(3). Journal of Basic Microbiology, 2018, 58, 310-321.	1.8	7
1947	Analysis of basidiomycete pigments in situ by Raman spectroscopy. Journal of Biophotonics, 2018, 11, e201700369.	1.1	8
1948	A possible mechanism for lincomycin induction of secondary metabolism in Streptomyces coelicolor A3(2). Antonie Van Leeuwenhoek, 2018, 111, 705-716.	0.7	13
1949	Identification of a biosynthetic gene cluster for the polyene macrolactam sceliphrolactam in a Streptomyces strain isolated from mangrove sediment. Scientific Reports, 2018, 8, 1594.	1.6	46
1950	Identification of the streptothricin and tunicamycin biosynthetic gene clusters by genome mining in Streptomyces sp. strain fd1-xmd. Applied Microbiology and Biotechnology, 2018, 102, 2621-2633.	1.7	16
1951	Identification and characterization of GH62 bacterial $\hat{l}\pm$ -l-arabinofuranosidase from thermotolerant Streptomyces sp. SWU10 that preferentially degrades branched l-arabinofuranoses in wheat arabinoxylan. Enzyme and Microbial Technology, 2018, 112, 22-28.	1.6	10
1952	Expanding Primary Metabolism Helps Generate the Metabolic Robustness To Facilitate Antibiotic Biosynthesis in <i>Streptomyces</i>). MBio, 2018, 9, .	1.8	32
1953	A peculiar IclR family transcription factor regulates para-hydroxybenzoate catabolism in Streptomyces coelicolor. Nucleic Acids Research, 2018, 46, 1501-1512.	6.5	9
1954	PhyloChromoMap, a Tool for Mapping Phylogenomic History along Chromosomes, Reveals the Dynamic Nature of Karyotype Evolution in Plasmodium falciparum. Genome Biology and Evolution, 2018, 10, 553-561.	1,1	8
1955	Novel actinomycin group compound from newly isolated Streptomyces sp. RAB12: isolation, characterization, and evaluation of antimicrobial potential. Applied Microbiology and Biotechnology, 2018, 102, 1241-1250.	1.7	19

#	Article	IF	Citations
1956	A set of synthetic versatile genetic control elements for the efficient expression of genes in Actinobacteria. Scientific Reports, 2018, 8, 491.	1.6	50
1957	Discovery of a new diol-containing polyketide by heterologous expression of a silent biosynthetic gene cluster from <i>Streptomyces lavendulae</i> FRI-5. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 77-87.	1.4	19
1958	Cracking the regulatory code of biosynthetic gene clusters as a strategy for natural product discovery. Biochemical Pharmacology, 2018, 153, 24-34.	2.0	64
1959	Genetic background affects pathogenicity island function and pathogen emergence in <i>Streptomyces</i> . Molecular Plant Pathology, 2018, 19, 1733-1741.	2.0	18
1960	A comparative study on the binary and ternary mixture toxicity of antibiotics towards three bacteria based on QSAR investigation. Environmental Research, 2018, 162, 127-134.	3.7	28
1961	Streptomyces sp. RP1A-12 mediated control of peanut stem rot caused by Sclerotium rolfsii. Journal of Integrative Agriculture, 2018, 17, 892-900.	1.7	20
1962	Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Natural Product Reports, 2018, 35, 575-604.	5.2	203
1963	Diversity of nonribosomal peptide synthetase and polyketide synthase gene clusters among taxonomically close Streptomyces strains. Scientific Reports, 2018, 8, 6888.	1.6	41
1964	Mechanisms of oxidative stress caused by CuO nanoparticles to membranes of the bacterium Streptomyces coelicolor M145. Ecotoxicology and Environmental Safety, 2018, 158, 123-130.	2.9	33
1965	Mining for Microbial Gems: Integrating Proteomics in the Postgenomic Natural Product Discovery Pipeline. Proteomics, 2018, 18, e1700332.	1.3	33
1966	Genome plasticity is governed by double strand break DNA repair in Streptomyces. Scientific Reports, 2018, 8, 5272.	1.6	68
1967	Heterologous Expression Guides Identification of the Biosynthetic Gene Cluster of Chuangxinmycin, an Indole Alkaloid Antibiotic. Journal of Natural Products, 2018, 81, 1060-1064.	1.5	24
1968	Direct Pathway Cloning (DiPaC) to unlock natural product biosynthetic potential. Metabolic Engineering, 2018, 47, 334-345.	3.6	73
1969	Draft Genome Sequence of Streptomyces sp. Strain DH-12, a Soilborne Isolate from the Thar Desert with Broad-Spectrum Antibacterial Activity. Genome Announcements, 2018, 6, .	0.8	5
1970	Strategies to diversify natural products for drug discovery. Medicinal Research Reviews, 2018, 38, 1255-1294.	5.0	187
1971	SParticle, an algorithm for the analysis of filamentous microorganisms in submerged cultures. Antonie Van Leeuwenhoek, 2018, 111, 171-182.	0.7	18
1972	New Kid on the Block: LmbU Expands the Repertoire of Specialized Metabolic Regulators in Streptomyces. Journal of Bacteriology, 2018, 200, .	1.0	6
1973	Toward Systems Metabolic Engineering of Streptomycetes for Secondary Metabolites Production. Biotechnology Journal, 2018, 13, 1700465.	1.8	32

#	Article	IF	CITATIONS
1974	How prokaryotes â€~encode' their environment: Systemic tools for organizing the information flow. BioSystems, 2018, 164, 26-38.	0.9	15
1975	Increased heterologous production of the antitumoral polyketide mithramycin A by engineered Streptomyces lividans TK24 strains. Applied Microbiology and Biotechnology, 2018, 102, 857-869.	1.7	63
1976	Unusual features of the large linear plasmid pSA3239 from Streptomyces aureofaciens CCM 3239. Gene, 2018, 642, 313-323.	1.0	9
1977	Diversity and antimicrobial activities of Streptomyces isolates from Fetzara Lake, north eastern Algeria. Annales De Biologie Clinique, 2018, 76, 81-95.	0.2	9
1978	Heterologous Expression of a Putative ClpC Chaperone Gene Leads to Induction of a Host Metabolite. Journal of the Brazilian Chemical Society, 2019, 30, 499-508.	0.6	2
1979	Cytochrome <i>bcc-aa3</i> Oxidase Supercomplexes in the Aerobic Respiratory Chain of <i>Streptomyces coelicolor</i> A3(2). Journal of Molecular Microbiology and Biotechnology, 2018, 28, 255-268.	1.0	7
1980	Discovery of novel bioactive natural products driven by genome mining. Drug Discoveries and Therapeutics, 2018, 12, 318-328.	0.6	19
1981	Differential Gene Expression in the Model Actinomycete Streptomyces coelicolor A3(2) Supports Nitrogen Mining Dependent on the Plant Carbon to Nitrogen Ratio. Agriculture (Switzerland), 2018, 8, 192.	1.4	1
1982	GENETIC IMPROVEMENT OF ANTIDIABETIC ALPHA-GLUCOSIDASE INHIBITOR PRODUCING STREPTOMYCES SP. International Journal of Pharmacy and Pharmaceutical Sciences, 2018, 10, 77.	0.3	2
1983	Streptomyces Secondary Metabolites. , 0, , .		31
1984	Impacts of horizontal gene transfer on the compact genome of the clavulanic acid-producing Streptomyces strain F613-1. 3 Biotech, 2018, 8, 472.	1.1	3
1985	Novel enzymology in futalosine-dependent menaquinone biosynthesis. Current Opinion in Chemical Biology, 2018, 47, 134-141.	2.8	31
1986	Veterinary Type Cultures and Their Preservation: Status and Challenges. Soil Biology, 2018, , 239-260.	0.6	0
1987	Characterization of Sigma Factor Genes in Streptomyces lividans TK24 Using a Genomic Library-Based Approach for Multiple Gene Deletions. Frontiers in Microbiology, 2018, 9, 3033.	1.5	23
1988	Phylogeny and Biodiversity of Prokaryotes. , 2018, , 23-55.		0
1989	Rubik's Cube of Siderophore Assembly Established from Mixed-Substrate Precursor-Directed Biosynthesis. ACS Omega, 2018, 3, 18160-18169.	1.6	5
1990	Complete Genome Sequence of <i>Streptomyces</i> sp. Strain SHP22-7, a New Species Isolated from Mangrove of Enggano Island, Indonesia. Microbiology Resource Announcements, 2018, 7, .	0.3	7
1991	Genome Mining of Streptomyces sp. YIM 130001 Isolated From Lichen Affords New Thiopeptide Antibiotic. Frontiers in Microbiology, 2018, 9, 3139.	1.5	26

#	Article	IF	CITATIONS
1992	The metabolic switch can be activated in a recombinant strain of Streptomyces lividans by a low oxygen transfer rate in shake flasks. Microbial Cell Factories, 2018, 17, 189.	1.9	12
1993	Exploration of the Biosynthetic Potential of the <i>Populus</i> /i> Microbiome. MSystems, 2018, 3, .	1.7	34
1994	Phosphoproteomics in Microbiology: Protocols for Studying Streptomyces coelicolor Differentiation. Methods in Molecular Biology, 2018, 1841, 249-260.	0.4	0
1995	Genome mining for the search and discovery of bioactive compounds: The Streptomyces paradigm. FEMS Microbiology Letters, 2018, 365, .	0.7	38
1996	Complete genome sequence of soil actinobacteria <i>Streptomyces cavourensis</i> TJ430. Journal of Basic Microbiology, 2018, 58, 1083-1090.	1.8	3
1997	Conjugational delivery of chromosomal integrative constructs for gene expression in the carbendazim-degrading Rhodococcus erythropolis D-1. Annals of Microbiology, 2018, 68, 773-780.	1.1	1
1998	Comparative Genomics among Closely Related Streptomyces Strains Revealed Specialized Metabolite Biosynthetic Gene Cluster Diversity. Antibiotics, 2018, 7, 86.	1.5	53
1999	Nitrosopyridine Probe To Detect Polyketide Natural Products with Conjugated Alkenes: Discovery of Novodaryamide and Nocarditriene. ACS Chemical Biology, 2018, 13, 3097-3106.	1.6	20
2001	Genome guided investigation of antibiotics producing actinomycetales strain isolated from a Macau mangrove ecosystem. Scientific Reports, 2018, 8, 14271.	1.6	16
2002	Microbial production of small medicinal molecules and biologics: From nature to synthetic pathways. Biotechnology Advances, 2018, 36, 2219-2231.	6.0	24
2003	Microbial Resource Conservation. Soil Biology, 2018, , .	0.6	6
2004	Visual and Microscopic Evaluation of Streptomyces Developmental Mutants. Journal of Visualized Experiments, 2018, , .	0.2	1
2005	Streptomyces as a Prominent Resource of Future Anti-MRSA Drugs. Frontiers in Microbiology, 2018, 9, 2221.	1.5	89
2006	Development of a strictly regulated xylose-induced expression system in Streptomyces. Microbial Cell Factories, 2018, 17, 151.	1.9	18
2007	RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor. PLoS Computational Biology, 2018, 14, e1006541.	1.5	228
2008	Bacterial diversity in rhizosphere of Paspalum scrobiculatum L. (kodo millet) is revealed with shotgun metagenome sequencing and data analysis. Data in Brief, 2018, 20, 1653-1657.	0.5	7
2009	Generation of a cluster-free Streptomyces albus chassis strains for improved heterologous expression of secondary metabolite clusters. Metabolic Engineering, 2018, 49, 316-324.	3.6	140
2011	Secondary metabolites overproduction through transcriptional gene cluster refactoring. Metabolic Engineering, 2018, 49, 299-315.	3.6	63

#	Article	IF	CITATIONS
2012	Activation of microbial secondary metabolic pathways: Avenues and challenges. Synthetic and Systems Biotechnology, 2018, 3, 163-178.	1.8	157
2013	The actinobacterial WhiBâ€like (Wbl) family of transcription factors. Molecular Microbiology, 2018, 110, 663-676.	1.2	59
2014	Cytotoxic antibiotic angucyclines and actinomycins from the Streptomyces sp. XZHG99T. Journal of Antibiotics, 2018, 71, 1018-1024.	1.0	20
2015	Streptomyces species: Ideal chassis for natural product discovery and overproduction. Metabolic Engineering, 2018, 50, 74-84.	3.6	102
2016	Direct Pathway Cloning Combined with Sequence- and Ligation-Independent Cloning for Fast Biosynthetic Gene Cluster Refactoring and Heterologous Expression. ACS Synthetic Biology, 2018, 7, 1702-1708.	1.9	53
2017	Pirin: A novel redox-sensitive modulator of primary and secondary metabolism in Streptomyces. Metabolic Engineering, 2018, 48, 254-268.	3.6	29
2018	Complete Genome Sequence of Streptomyces sp. Strain BSE7F, a Bali Mangrove Sediment Actinobacterium with Antimicrobial Activities. Genome Announcements, 2018, 6, .	0.8	4
2019	SCO5351 is a pleiotropic factor that impacts secondary metabolism and morphological development in Streptomyces coelicolor. FEMS Microbiology Letters, 2018, 365, .	0.7	12
2020	Identification of a diphtheria toxinâ€like gene family beyond the <i>Corynebacterium</i> genus. FEBS Letters, 2018, 592, 2693-2705.	1.3	15
2021	Modelling the metabolism of protein secretion through the Tat route in Streptomyces lividans. BMC Microbiology, 2018, 18, 59.	1.3	11
2022	Discovery of an Antibacterial Isoindolinone-Containing Tetracyclic Polyketide by Cryptic Gene Activation and Characterization of Its Biosynthetic Gene Cluster. ACS Chemical Biology, 2018, 13, 2615-2622.	1.6	13
2023	Boosting Secondary Metabolite Production and Discovery through the Engineering of Novel Microbial Biosensors. BioMed Research International, 2018, 2018, 1-11.	0.9	9
2024	Molecular Docking Studies in Multitarget Antitubercular Drug Discovery. Methods in Pharmacology and Toxicology, 2018, , 107-154.	0.1	2
2025	Computational Methodologies in the Exploration of Marine Natural Product Leads. Marine Drugs, 2018, 16, 236.	2.2	70
2026	Extending the "One Strain Many Compounds―(OSMAC) Principle to Marine Microorganisms. Marine Drugs, 2018, 16, 244.	2.2	200
2027	Amsacrine Derivatives Selectively Inhibit Mycobacterial Topoisomerase I (TopA), Impair M. smegmatis Growth and Disturb Chromosome Replication. Frontiers in Microbiology, 2018, 9, 1592.	1.5	24
2028	Development and validation of an updated computational model of Streptomyces coelicolor primary and secondary metabolism. BMC Genomics, 2018, 19, 519.	1.2	20
2029	ArgR of Streptomyces coelicolor Is a Pleiotropic Transcriptional Regulator: Effect on the Transcriptome, Antibiotic Production, and Differentiation in Liquid Cultures. Frontiers in Microbiology, 2018, 9, 361.	1.5	24

#	ARTICLE	IF	Citations
2030	Atmospheric Precipitations, Hailstone and Rainwater, as a Novel Source of Streptomyces Producing Bioactive Natural Products. Frontiers in Microbiology, 2018, 9, 773.	1.5	21
2031	Editorial: The Search for Biological Active Agent(s) From Actinobacteria. Frontiers in Microbiology, 2018, 9, 824.	1.5	43
2032	Genome Mining of the Marine Actinomycete Streptomyces sp. DUT11 and Discovery of Tunicamycins as Anti-complement Agents. Frontiers in Microbiology, 2018, 9, 1318.	1.5	31
2033	Diversification of Secondary Metabolite Biosynthetic Gene Clusters Coincides with Lineage Divergence in Streptomyces. Antibiotics, 2018, 7, 12.	1.5	46
2034	The Cellular Mechanisms that Ensure an Efficient Secretion in Streptomyces. Antibiotics, 2018, 7, 33.	1.5	6
2035	Unraveling Nutritional Regulation of Tacrolimus Biosynthesis in Streptomyces tsukubaensis through omic Approaches. Antibiotics, 2018, 7, 39.	1.5	18
2036	Concepts and Methods to Access Novel Antibiotics from Actinomycetes. Antibiotics, 2018, 7, 44.	1.5	119
2037	Actinomycetes, an Inexhaustible Source of Naturally Occurring Antibiotics. Antibiotics, 2018, 7, 45.	1.5	93
2038	Combined Drug Resistance Mutations Substantially Enhance Enzyme Production in Paenibacillus agaridevorans. Journal of Bacteriology, 2018, 200, .	1.0	13
2039	The evolution of three siderophore biosynthetic clusters in environmental and host-associating strains of Pantoea. Molecular Genetics and Genomics, 2018, 293, 1453-1467.	1.0	17
2040	Comprehensive subcellular topologies of polypeptides in Streptomyces. Microbial Cell Factories, 2018, 17, 43.	1.9	19
2041	Microencapsulation extends mycelial viability of Streptomyces lividans 66 and increases enzyme production. BMC Biotechnology, 2018, 18, 13.	1.7	3
2042	A highly efficient targeted recombination system for engineering linear chromosomes of industrial bacteria <i>Streptomyces</i> . Journal of General and Applied Microbiology, 2018, 64, 167-173.	0.4	1
2043	Sporulation-specific cell division defects in ylmE mutants of Streptomyces coelicolor are rescued by additional deletion of ylmD. Scientific Reports, 2018, 8, 7328.	1.6	5
2044	G4PromFinder: an algorithm for predicting transcription promoters in GC-rich bacterial genomes based on AT-rich elements and G-quadruplex motifs. BMC Bioinformatics, 2018, 19, 36.	1.2	30
2045	Quorum Sensing and its Biotechnological Applications. , 2018, , .		6
2046	Complete Genome of <i>Micromonospora</i> sp. Strain B006 Reveals Biosynthetic Potential of a Lake Michigan Actinomycete. Journal of Natural Products, 2018, 81, 2057-2068.	1.5	15
2047	Cellulose production and the evolution of the sessile lifestyle in ascidians. Sessile Organisms, 2018, 35, 21-29.	0.3	5

#	Article	IF	CITATIONS
2048	Significance and Application of Quorum Sensing in Food Microbiology. , 2018, , 193-219.		1
2049	Comparative genomics reveals phylogenetic distribution patterns of secondary metabolites in Amycolatopsis species. BMC Genomics, 2018, 19, 426.	1.2	111
2050	Fluorinated Analogues of Desferrioxamine B from Precursor-Directed Biosynthesis Provide New Insight into the Capacity of DesBCD. ACS Chemical Biology, 2018, 13, 2456-2471.	1.6	11
2051	Identification of Natural Product Biosynthetic Gene Clusters from Bacterial Genomic Data. Methods in Pharmacology and Toxicology, 2018, , 1.	0.1	3
2052	Identification and biochemical characterization of a novel cold-adapted 1,3-α-3,6-anhydro-l-galactosidase, Ahg786, from Gayadomonas joobiniege G7. Applied Microbiology and Biotechnology, 2018, 102, 8855-8866.	1.7	16
2053	Mirilactams C–E, Novel Polycyclic Macrolactams Isolated from Combined-Culture of <i>Actinosynnema mirum</i> NBRC 14064 and Mycolic Acid-Containing Bacterium. Chemical and Pharmaceutical Bulletin, 2018, 66, 660-667.	0.6	19
2054	Recent advances in activating silent biosynthetic gene clusters in bacteria. Current Opinion in Microbiology, 2018, 45, 156-163.	2.3	89
2055	Spreading the news about the novel conjugation mechanism in <i>Streptomyces</i> bacteria. Environmental Microbiology Reports, 2018, 10, 503-510.	1.0	14
2056	Biological control of potato common scab by Bacillus amyloliquefaciens BaO1. PLoS ONE, 2018, 13, e0196520.	1.1	48
2057	Recent Trends in Biosorption of Heavy Metals by Actinobacteria. , 2018, , 257-275.		12
2058	Antimicrobial Compounds From Actinobacteria. , 2018, , 277-295.		5
2059	Future Prospects of Actinobacteria in Health and Industry. , 2018, , 305-324.		6
2060	Genomics of Actinobacteria With a Focus on Natural Product Biosynthetic Genes., 2018,, 325-335.		0
2061	Digitization of Traditional Knowledge. , 2018, , 555-606.		0
2062	The ADEP Biosynthetic Gene Cluster in Streptomyces hawaiiensis NRRL 15010 Reveals an Accessory <i>clpP</i> Gene as a Novel Antibiotic Resistance Factor. Applied and Environmental Microbiology, 2019, 85, .	1.4	25
2063	Horizontal Gene Transfer and Genome Evolution in the Phylum Actinobacteria. , 2019, , 155-174.		9
2064	The genome sequence of Streptomyces rochei 7434AN4, which carries a linear chromosome and three characteristic linear plasmids. Scientific Reports, 2019, 9, 10973.	1.6	32
2065	Mechanism of CuO nano-particles on stimulating production of actinorhodin in Streptomyces coelicolor by transcriptional analysis. Scientific Reports, 2019, 9, 11253.	1.6	11

#	Article	IF	CITATIONS
2066	Soil–Microbes–Plants: Interactions and Ecological Diversity. , 2019, , 145-176.		5
2067	Sarpeptins A and B, Lipopeptides Produced by <i>Streptomyces</i> sp. KO-7888 Overexpressing a Specific SARP Regulator. Journal of Natural Products, 2019, 82, 2144-2151.	1.5	10
2068	LeuRS can leucylate type I and type II tRNALeus in Streptomyces coelicolor. Nucleic Acids Research, 2019, 47, 6369-6385.	6.5	1
2069	Markerâ€Free System Using Ribosomal Promoters Enhanced Xylose/Glucose Isomerase Production in <i>Streptomyces rubiginosus</i> . Biotechnology Journal, 2019, 14, e1900114.	1.8	5
2070	New Cyclodepsipeptide Derivatives Revealed by Genome Mining and Molecular Networking. ChemistrySelect, 2019, 4, 7785-7790.	0.7	18
2071	Bacterial MbtH-like Proteins Stimulate Nonribosomal Peptide Synthetase-Derived Secondary Metabolism in Filamentous Fungi. ACS Synthetic Biology, 2019, 8, 1776-1787.	1.9	16
2072	A GntR-Like Transcription Factor HypR Regulates Expression of Genes Associated With L-Hydroxyproline Utilization in Streptomyces coelicolor A3(2). Frontiers in Microbiology, 2019, 10, 1451.	1.5	7
2073	ScCobB2-mediated Lysine Desuccinylation Regulates Protein Biosynthesis and Carbon Metabolism in Streptomyces coelicolor*[S]. Molecular and Cellular Proteomics, 2019, 18, 2003-2017.	2.5	16
2074	Comparative Genomics of Marine Sponge-Derived Streptomyces spp. Isolates SM17 and SM18 With Their Closest Terrestrial Relatives Provides Novel Insights Into Environmental Niche Adaptations and Secondary Metabolite Biosynthesis Potential. Frontiers in Microbiology, 2019, 10, 1713.	1.5	25
2075	Transcriptional Response of Streptomyces coelicolor to Rapid Chromosome Relaxation or Long-Term Supercoiling Imbalance. Frontiers in Microbiology, 2019, 10, 1605.	1.5	17
2076	The structural basis of N-acyl-α-amino-β-lactone formation catalyzed by a nonribosomal peptide synthetase. Nature Communications, 2019, 10, 3432.	5.8	50
2077	Actinomycetes: The Antibiotics Producers. Antibiotics, 2019, 8, 105.	1.5	43
2078	Comparative genomics of Mycobacterium mucogenicum and Mycobacterium neoaurum clade members emphasizing tRNA and non-coding RNA. BMC Evolutionary Biology, 2019, 19, 124.	3.2	10
2079	Overexpression of the diguanylate cyclase CdgD blocks developmental transitions and antibiotic biosynthesis in Streptomyces coelicolor. Science China Life Sciences, 2019, 62, 1492-1505.	2.3	8
2080	Multi-level regulation of coelimycin synthesis in Streptomyces coelicolor A3(2). Applied Microbiology and Biotechnology, 2019, 103, 6423-6434.	1.7	47
2081	AN IMPLICATION OF ACTINOMYCETES ON HUMAN WELL-BEING: A REVIEW. International Journal of Pharmacy and Pharmaceutical Sciences, 0, , 11-18.	0.3	1
2082	Regulation of Geldanamycin Biosynthesis by Cluster-Situated Transcription Factors and the Master Regulator PhoP. Antibiotics, 2019, 8, 87.	1.5	16
2083	Extreme Environment <i>Streptomyces</i> : Potential Sources for New Antibacterial and Anticancer Drug Leads?. International Journal of Microbiology, 2019, 2019, 1-20.	0.9	88

#	Article	IF	CITATIONS
2084	The Transcription Unit Architecture of Streptomyces lividans TK24. Frontiers in Microbiology, 2019, 10, 2074.	1.5	25
2085	Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20366-20375.	3.3	119
2086	Regulatory and evolutionary roles of pseudo \hat{I}^{3} -butyrolactone receptors in antibiotic biosynthesis and resistance. Applied Microbiology and Biotechnology, 2019, 103, 9373-9378.	1.7	19
2087	Comparative Genomics and Metabolomics Analyses of Clavulanic Acid-Producing Streptomyces Species Provides Insight Into Specialized Metabolism. Frontiers in Microbiology, 2019, 10, 2550.	1.5	20
2089	Massive Gene Flux Drives Genome Diversity between Sympatric <i>Streptomyces</i> Conspecifics. MBio, 2019, 10, .	1.8	41
2090	Preliminary Characterization of a Ni2+-Activated and Mycothiol-Dependent Glyoxalase I Enzyme from Streptomyces coelicolor. Inorganics, 2019, 7, 99.	1.2	5
2091	Comparative Genomic Insights into Secondary Metabolism Biosynthetic Gene Cluster Distributions of Marine Streptomyces. Marine Drugs, 2019, 17, 498.	2.2	31
2092	Heterologous production of small molecules in the optimized <i>Streptomyces </i> hosts. Natural Product Reports, 2019, 36, 1281-1294.	5.2	65
2093	Study on a two-component signal transduction system RimA1A2 that negatively regulates oxytetracycline biosynthesis in Streptomyces rimosus M4018. Bioresources and Bioprocessing, 2019, 6, .	2.0	1
2094	In silico genomic mining reveals unexplored bioactive potential of rare actinobacteria isolated from Egyptian soil. Bulletin of the National Research Centre, 2019, 43, .	0.7	12
2095	The Application of Ribosome Engineering to Natural Product Discovery and Yield Improvement in Streptomyces. Antibiotics, 2019, 8, 133.	1.5	34
2096	Metagenome Driven Discovery of Nonribosomal Peptides. ACS Chemical Biology, 2019, 14, 2115-2126.	1.6	9
2097	Refining and expanding nonribosomal peptide synthetase function and mechanism. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 493-513.	1.4	36
2098	The Quest for Novel Antimicrobial Compounds: Emerging Trends in Research, Development, and Technologies. Antibiotics, 2019, 8, 8.	1.5	67
2099	Green synthesis of nanoparticles: A greener approach for a cleaner future. , 2019, , 1-26.		77
2100	Chitinolytic actinobacteria isolated from an Algerian semi-arid soil: development of an antifungal chitinase-dependent assay and GH18 chitinase gene identification. Annals of Microbiology, 2019, 69, 395-405.	1.1	14
2101	Toward a global picture of bacterial secondary metabolism. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 301-311.	1.4	41
2102	Enhancement of neomycin production by engineering the entire biosynthetic gene cluster and feeding key precursors in Streptomyces fradiae CGMCC 4.576. Applied Microbiology and Biotechnology, 2019, 103, 2263-2275.	1.7	21

#	Article	IF	Citations
2103	Omics Technologies to Understand Activation of a Biosynthetic Gene Cluster in <i>Micromonospora</i> sp. WMMB235: Deciphering Keyicin Biosynthesis. ACS Chemical Biology, 2019, 14, 1260-1270.	1.6	8
2104	Microbial community drivers of PK/NRP gene diversity in selected global soils. Microbiome, 2019, 7, 78.	4.9	30
2105	When We Stop Thinking about Microbes as Cells. Journal of Molecular Biology, 2019, 431, 2487-2492.	2.0	9
2106	Initial Metabolic Step of a Novel Ethanolamine Utilization Pathway and Its Regulation in <i>Streptomyces coelicolor</i> M145. MBio, 2019, 10, .	1.8	13
2107	Cell Walls and Membranes of Actinobacteria. Sub-Cellular Biochemistry, 2019, 92, 417-469.	1.0	39
2108	Endophytes as a Source of High-Value, Bioactive Metabolites. Reference Series in Phytochemistry, 2019, , 427-458.	0.2	2
2109	Mechanisms of $\ddot{l}f$ 54-Dependent Transcription Initiation and Regulation. Journal of Molecular Biology, 2019, 431, 3960-3974.	2.0	70
2110	Phylogenomic analyses and distribution of terpene synthases among Streptomyces. Beilstein Journal of Organic Chemistry, 2019, 15, 1181-1193.	1.3	28
2111	Biochemical study of sortase E2 fromStreptomycesÂmobaraensisand determination of transglutaminase crossâ€linking sites. FEBS Letters, 2019, 593, 1944-1956.	1.3	2
2112	BiosyntheticSPAdes: reconstructing biosynthetic gene clusters from assembly graphs. Genome Research, 2019, 29, 1352-1362.	2.4	55
2113	Highlights of Streptomyces genetics. Heredity, 2019, 123, 23-32.	1.2	30
2114	Production of 5-aminolevulinic Acid by Recombinant Streptomyces coelicolor Expressing hemA from Rhodobacter sphaeroides. Biotechnology and Bioprocess Engineering, 2019, 24, 488-499.	1.4	8
2115	Identification of LcpRBA3(2), a novel regulator of lcp expression in Streptomyces coelicolor A3(2). Applied Microbiology and Biotechnology, 2019, 103, 5715-5726.	1.7	8
2116	Genome Sequence of Streptomyces cavourensis 1AS2a, a Rhizobacterium Isolated from the Brazilian Cerrado Biome. Microbiology Resource Announcements, 2019, 8, .	0.3	4
2117	Antarctic Streptomyces fildesensis So13.3 strain as a promising source for antimicrobials discovery. Scientific Reports, 2019, 9, 7488.	1.6	27
2118	rPredictorDB: a predictive database of individual secondary structures of RNAs and their formatted plots. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	1.4	9
2119	Genome and metabolome mining of marine obligate <i>Salinispora</i> strains to discover new natural products. Turkish Journal of Biology, 2019, 43, 28-36.	2.1	3
2120	Leveraging synthetic biology for producing bioactive polyketides and non-ribosomal peptides in bacterial heterologous hosts. MedChemComm, 2019, 10, 668-681.	3.5	13

#	Article	IF	CITATIONS
2121	Evolution of Antibiotic Synthesis Gene Clusters in the Streptomyces globisporus TFH56, Isolated from Tomato Flower. G3: Genes, Genomes, Genetics, 2019, 9, 1807-1813.	0.8	6
2122	Diazaquinomycin Biosynthetic Gene Clusters from Marine and Freshwater Actinomycetes. Journal of Natural Products, 2019, 82, 937-946.	1.5	18
2123	Bioactivity-HiTES Unveils Cryptic Antibiotics Encoded in Actinomycete Bacteria. ACS Chemical Biology, 2019, 14, 767-774.	1.6	53
2124	Systematic Identification of Pathogenic <i>Streptomyces</i> sp. AMCC400023 That Causes Common Scab and Genomic Analysis of Its Pathogenicity Island. Phytopathology, 2019, 109, 1115-1128.	1.1	11
2125	Recent advances in natural products exploitation in Streptomyces via synthetic biology. Engineering in Life Sciences, 2019, 19, 452-462.	2.0	18
2126	Refactoring the Cryptic Streptophenazine Biosynthetic Gene Cluster Unites Phenazine, Polyketide, and Nonribosomal Peptide Biochemistry. Cell Chemical Biology, 2019, 26, 724-736.e7.	2.5	48
2127	Evidence of differential microbiomes in healing versus nonâ€healing diabetic foot ulcers prior to and following foot salvage therapy. Journal of Orthopaedic Research, 2019, 37, 1596-1603.	1,2	28
2128	Uncovering the unexplored diversity of thioamidated ribosomal peptides in Actinobacteria using the RiPPER genome mining tool. Nucleic Acids Research, 2019, 47, 4624-4637.	6.5	98
2129	Activity of Spore-Specific Respiratory Nitrate Reductase 1 of <i>Streptomyces coelicolor</i> A3(2) Requires a Functional Cytochrome <i>bcc-aa</i> ₃ Oxidase Supercomplex. Journal of Bacteriology, 2019, 201, .	1.0	9
2130	Genomics of Rhodococcus. Microbiology Monographs, 2019, , 23-60.	0.3	8
2131	Genome-wide analysis of the role of the antibiotic biosynthesis regulator AbsA2 in Streptomyces coelicolor A3(2). PLoS ONE, 2019, 14, e0200673.	1,1	24
2132	Discovery of a Phenylamine-Incorporated Angucyclinone from Marine <i>Streptomyces</i> sp. PKU-MA00218 and Generation of Derivatives with Phenylamine Analogues. Organic Letters, 2019, 21, 2813-2817.	2.4	11
2133	Harnessing microbiota interactions to produce bioactive metabolites: communication signals and receptor proteins. Current Opinion in Pharmacology, 2019, 48, 8-16.	1.7	11
2134	Condensing Enzymes from <i>Pseudoalteromonadaceae</i> for Prodiginine Synthesis. Advanced Synthesis and Catalysis, 2019, 361, 2659-2667.	2.1	12
2135	Bioactivities and genome insights of a thermotolerant antibioticsâ€producing Streptomyces sp. TM32 reveal its potentials for novel drug discovery. MicrobiologyOpen, 2019, 8, e842.	1.2	14
2136	Within-Species Genomic Variation and Variable Patterns of Recombination in the Tetracycline Producer Streptomyces rimosus. Frontiers in Microbiology, 2019, 10, 552.	1.5	25
2137	Al2O3 nanoparticles promote secretion of antibiotics in Streptomyces coelicolor by regulating gene expression through the nano effect. Chemosphere, 2019, 226, 687-695.	4.2	14
2138	Whole-Genome Comparisons Among the Genus Shewanella Reveal the Enrichment of Genes Encoding Ankyrin-Repeats Containing Proteins in Sponge-Associated Bacteria. Frontiers in Microbiology, 2019, 10, 5.	1.5	14

#	Article	IF	CITATIONS
2139	Discovery of novel glycerolated quinazolinones from <i>Streptomyces</i> sp. MBT27. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 483-492.	1.4	22
2140	Analogues of desferrioxamine B (DFOB) with new properties and new functions generated using precursor-directed biosynthesis. BioMetals, 2019, 32, 395-408.	1.8	8
2141	Genome Mining of <i>Streptomyces atratus</i> SCSIO ZH16: Discovery of Atratumycin and Identification of Its Biosynthetic Gene Cluster. Organic Letters, 2019, 21, 1453-1457.	2.4	75
2142	Genome-guided and mass spectrometry investigation of natural products produced by a potential new actinobacterial strain isolated from a mangrove ecosystem in Futian, Shenzhen, China. Scientific Reports, 2019, 9, 823.	1.6	8
2143	Genome-Wide Mutagenesis Links Multiple Metabolic Pathways with Actinorhodin Production in Streptomyces coelicolor. Applied and Environmental Microbiology, 2019, 85, .	1.4	22
2144	NATURAL ANTIMICROBIALS IN THE PIPELINE AND POSSIBLE SYNERGISM WITH ANTIBIOTICS TO OVERCOME MICROBIAL RESISTANCE. Asian Journal of Pharmaceutical and Clinical Research, 2019, , 15-21.	0.3	1
2145	Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol. Bacilli in Climate Resilient Agriculture and Bioprospecting, $2019, \ldots$	0.6	18
2146	Rhizosphere Metagenomics of Paspalum scrobiculatum L. (Kodo Millet) Reveals Rhizobiome Multifunctionalities. Microorganisms, 2019, 7, 608.	1.6	20
2147	Essentiality of the Maltase AmlE in Maltose Utilization and Its Transcriptional Regulation by the Repressor AmlR in the Acarbose-Producing Bacterium Actinoplanes sp. SE50/110. Frontiers in Microbiology, 2019, 10, 2448.	1.5	4
2149	Complete genome sequences of Streptomyces spp. isolated from disease-suppressive soils. BMC Genomics, 2019, 20, 994.	1.2	16
2150	RNAdetect: efficient computational detection of novel non-coding RNAs. Bioinformatics, 2019, 35, 1133-1141.	1.8	7
2151	Atolypenes, Tricyclic Bacterial Sesterterpenes Discovered Using a Multiplexed <i>In Vitro</i> Cas9-TAR Gene Cluster Refactoring Approach. ACS Synthetic Biology, 2019, 8, 109-118.	1.9	38
2152	Characterization of two steroid hydroxylases from different <i>Streptomyces</i> spp. and their ligandâ€bound and â€unbound crystal structures. FEBS Journal, 2019, 286, 1683-1699.	2.2	10
2153	Complete genome sequence unveiled cellulose degradation enzymes and secondary metabolic potentials in <i>Streptomyces</i> sp. CC0208. Journal of Basic Microbiology, 2019, 59, 267-276.	1.8	9
2154	Characterisation of Streptomyces violascens OC125-8 lipase for oily wastewater treatment. 3 Biotech, 2019, 9, 5.	1.1	24
2155	Activation of silent biosynthetic gene clusters using transcription factor decoys. Nature Chemical Biology, 2019, 15, 111-114.	3.9	77
2156	Expression and regulatory networks of <i>Mycobacterium tuberculosis</i> PE/PPE family antigens. Journal of Cellular Physiology, 2019, 234, 7742-7751.	2.0	17
2157	Natural product drug discovery in the genomic era: realities, conjectures, misconceptions, and opportunities. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 281-299.	1.4	111

#	Article	IF	CITATIONS
2158	Heterologous expression-facilitated natural products' discovery in actinomycetes. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 415-431.	1.4	36
2159	Screening, isolation and evaluation of a nematicidal compound from actinomycetes against the pine wood nematode, <i>Bursaphelenchus xylophilus</i>). Pest Management Science, 2019, 75, 1585-1593.	1.7	47
2160	Safety evaluation of \hat{l}^2 -agarase preparations from Streptomyces coelicolor A3(2). Regulatory Toxicology and Pharmacology, 2019, 101, 142-155.	1.3	3
2161	New voyages to explore the natural product galaxy. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 273-279.	1.4	21
2162	Heteroexpression of Mycobacterium leprae hypothetical protein ML0190 provides protection against DNA-alkylating agent methyl methanesulfonate. Biochemical and Biophysical Research Communications, 2019, 509, 779-783.	1.0	1
2163	A genetics-free method for high-throughput discovery of cryptic microbial metabolites. Nature Chemical Biology, 2019, 15, 161-168.	3.9	114
2164	Streptomyces coelicolor. Trends in Microbiology, 2019, 27, 468-469.	3 . 5	19
2165	Regulation of the phosphate metabolism in Streptomyces genus: impact on the secondary metabolites. Applied Microbiology and Biotechnology, 2019, 103, 1643-1658.	1.7	27
2166	Disruption of Protease Genes in Microbes for Production of Heterologous Proteins., 2019,, 35-75.		4
2167	Profile of Secondary Metabolite Gene Cluster in Microbe. , 2019, , 113-132.		0
2168	DNA mapping and kinetic modeling of the HrdB regulon in <i>Streptomyces coelicolor</i> Acids Research, 2019, 47, 621-633.	6.5	35
2169	Streptomycetes: Surrogate hosts for the genetic manipulation of biosynthetic gene clusters and production of natural products. Biotechnology Advances, 2019, 37, 1-20.	6.0	72
2170	Endophytes as a Source of High-Value, Bioactive Metabolites. Reference Series in Phytochemistry, 2019, , 1-32.	0.2	0
2171	Novel Two-Component System MacRS Is a Pleiotropic Regulator That Controls Multiple Morphogenic Membrane Protein Genes in <i>Streptomyces coelicolor</i> . Applied and Environmental Microbiology, 2019, 85, .	1.4	24
2172	Predicting Strain Engineering Strategies Using iKS1317: A Genomeâ€Scale Metabolic Model of <i>Streptomyces coelicolor ⟨i⟩. Biotechnology Journal, 2019, 14, e1800180.</i>	1.8	21
2173	Secretome Dynamics in a Gram-Positive Bacterial Model. Molecular and Cellular Proteomics, 2019, 18, 423-436.	2.5	12
2174	Screening of rare actinomycetes isolated from natural wetland ecosystem (Fetzara Lake,) Tj ETQq0 0 0 rgBT /Ove University - Science, 2019, 31, 706-712.	erlock 10 Ti 1.6	rf 50 107 Td (39
2175	Carbamothioic S-acid derivative and kigamicins, the activated production of silent metabolites in <i>Amycolatopsis alba</i> DSM 442621" <i>abm9</i> elicited by <i>N</i> -acetyl-D-glucosamine. Natural Product Research, 2020, 34, 3514-3521.	1.0	3

#	ARTICLE	IF	CITATIONS
2176	Bacterial Type II Polyketide Synthases. , 2020, , 198-249.		2
2177	Genome Mining Approaches to Bacterial Natural Product Discovery. , 2020, , 19-33.		5
2178	Mycobacterium smegmatis alters the production of secondary metabolites by marine-derived Aspergillus niger. Journal of Natural Medicines, 2020, 74, 76-82.	1.1	14
2179	Biosynthesis of Enediyne Natural Products. , 2020, , 365-414.		14
2180	Characterization of Radical SAM Adenosylhopane Synthase, HpnH, which Catalyzes the 5 ′ â€Deoxyadenosyl Radical Addition to Diploptene in the Biosynthesis of C 35 Bacteriohopanepolyols. Angewandte Chemie - International Edition, 2020, 59, 237-241.	7.2	23
2181	Whole-cell biocatalysis using cytochrome P450 monooxygenases for biotransformation of sustainable bioresources (fatty acids, fatty alkanes, and aromatic amino acids). Biotechnology Advances, 2020, 40, 107504.	6.0	50
2182	A putative mechanism underlying secondary metabolite overproduction by Streptomyces strains with a 23S rRNA mutation conferring erythromycin resistance. Applied Microbiology and Biotechnology, 2020, 104, 2193-2203.	1.7	10
2183	Isolation and screening of Streptomyces sp. Al-Dhabi-49 from the environment of Saudi Arabia with concomitant production of lipase and protease in submerged fermentation. Saudi Journal of Biological Sciences, 2020, 27, 474-479.	1.8	42
2184	Characterization of Radical SAM Adenosylhopane Synthase, HpnH, which Catalyzes the 5 ′ â€Deoxyadenosyl Radical Addition to Diploptene in the Biosynthesis of C 35 Bacteriohopanepolyols. Angewandte Chemie, 2020, 132, 243-247.	1.6	2
2185	Discovery of the Streptoketides by Direct Cloning and Rapid Heterologous Expression of a Cryptic PKS II Gene Cluster from <i>Streptomyces</i> sp. Tý 6314. Journal of Organic Chemistry, 2020, 85, 664-673.	1.7	24
2186	Activation of paulomycin production by exogenous \hat{I}^3 -butyrolactone signaling molecules in Streptomyces albidoflavus J1074. Applied Microbiology and Biotechnology, 2020, 104, 1695-1705.	1.7	12
2187	The phosphoenolpyruvate-pyruvate-oxaloacetate node genes and enzymes in Streptomyces coelicolor M-145. International Microbiology, 2020, 23, 429-439.	1.1	20
2188	Complete genome sequence and comparative analysis of Streptomyces seoulensis, a pioneer strain of nickel superoxide dismutase. Genes and Genomics, 2020, 42, 273-281.	0.5	4
2189	Exploration and genome mining of natural products from marine Streptomyces. Applied Microbiology and Biotechnology, 2020, 104, 67-76.	1.7	54
2190	A computational framework to explore large-scale biosynthetic diversity. Nature Chemical Biology, 2020, 16, 60-68.	3.9	569
2191	Genome Sequence and Characterization of Five Bacteriophages Infecting Streptomyces coelicolor and Streptomyces venezuelae: Alderaan, Coruscant, Dagobah, Endor1 and Endor2. Viruses, 2020, 12, 1065.	1.5	17
2192	Complementary Tendencies in the Use of Regulatory Elements (Transcription Factors, Sigma Factors,) Tj ETQq0 0)	iverlock 10 Tr
2193	The antibiotic crisis: How bacterial predators can help. Computational and Structural Biotechnology Journal, 2020, 18, 2547-2555.	1.9	45

#	ARTICLE	IF	CITATIONS
2194	Genome Mining of the Genus Streptacidiphilus for Biosynthetic and Biodegradation Potential. Genes, 2020, 11, 1166.	1.0	14
2195	A novel XRE family regulator that controls antibiotic production and development in Streptomyces coelicolor. Applied Microbiology and Biotechnology, 2020, 104, 10075-10089.	1.7	16
2196	Discovery of Three 22-Membered Macrolides by Deciphering the Streamlined Genome of Mangrove-Derived Streptomyces sp. HM190. Frontiers in Microbiology, 2020, 11, 1464.	1.5	6
2197	Bacterial Volatile Compounds: Functions in Communication, Cooperation, and Competition. Annual Review of Microbiology, 2020, 74, 409-430.	2.9	58
2198	Complete genome sequence of sixteen plant growth promoting Streptomyces strains. Scientific Reports, 2020, 10, 10294.	1.6	33
2199	The Inhibition of Antibiotic Production in Streptomyces coelicolor Over-Expressing the TetR Regulator SCO3201 IS Correlated With Changes in the Lipidome of the Strain. Frontiers in Microbiology, 2020, 11, 1399.	1.5	9
2200	Multi-Omics Analysis of the Effect of cAMP on Actinorhodin Production in Streptomyces coelicolor. Frontiers in Bioengineering and Biotechnology, 2020, 8, 595552.	2.0	6
2201	Microbial Diversity and Phage–Host Interactions in the Georgian Coastal Area of the Black Sea Revealed by Whole Genome Metagenomic Sequencing. Marine Drugs, 2020, 18, 558.	2.2	7
2202	Anticancer Drug Discovery from Microbial Sources: The Unique Mangrove Streptomycetes. Molecules, 2020, 25, 5365.	1.7	47
2203	Awakening the Secondary Metabolite Pathways of Promicromonospora kermanensis Using Physicochemical and Biological Elicitors. Applied Biochemistry and Biotechnology, 2020, 192, 1224-1237.	1.4	11
2204	Sulfane sulfurâ€activated actinorhodin production and sporulation is maintained by a natural gene circuit in <i>Streptomyces coelicolor</i> i>. Microbial Biotechnology, 2020, 13, 1917-1932.	2.0	21
2205	An Update on Molecular Tools for Genetic Engineering of Actinomycetes—The Source of Important Antibiotics and Other Valuable Compounds. Antibiotics, 2020, 9, 494.	1.5	20
2206	The CURE for the Typical Bioinformatics Classroom. Frontiers in Microbiology, 2020, 11, 1728.	1.5	4
2207	Systems biology, synthetic biology, and metabolic engineering. , 2020, , 1-31.		2
2208	Chitin degradation potential and whole-genome sequence of Streptomyces diastaticus strain CS1801. AMB Express, 2020, 10, 29.	1.4	14
2209	HPLC fractionation: A comparative analysis of anti-fungal compounds from different Streptomyces isolates inhibiting Colletotrichum acutatum. Biocatalysis and Agricultural Biotechnology, 2020, 27, 101688.	1.5	4
2210	System-level understanding of gene expression and regulation for engineering secondary metabolite production in <i>Streptomyces</i> . Journal of Industrial Microbiology and Biotechnology, 2020, 47, 739-752.	1.4	10
2211	Impact on Multiple Antibiotic Pathways Reveals MtrA as a Master Regulator of Antibiotic Production in Streptomyces spp. and Potentially in Other Actinobacteria. Applied and Environmental Microbiology, 2020, 86, .	1.4	17

#	Article	IF	Citations
2212	Lincomycin-Induced Secondary Metabolism in Streptomyces lividans 66 with a Mutation in the Gene Encoding the RNA Polymerase Beta Subunit. Current Microbiology, 2020, 77, 2933-2939.	1.0	4
2213	Antarctic desert soil bacteria exhibit high novel natural product potential, evaluated through longâ€read genome sequencing and comparative genomics. Environmental Microbiology, 2021, 23, 3646-3664.	1.8	18
2214	Identification of Chitinolytic Enzymes in Chitinolyticbacter meiyuanensis and Mechanism of Efficiently Hydrolyzing Chitin to N-Acetyl Glucosamine. Frontiers in Microbiology, 2020, 11, 572053.	1.5	11
2215	Cryptic or Silent? The Known Unknowns, Unknown Knowns, and Unknown Unknowns of Secondary Metabolism. MBio, 2020, 11 , .	1.8	42
2216	Streptomyces alkaliterrae sp. nov., isolated from an alkaline soil, and emended descriptions of Streptomyces alkaliphilus, Streptomyces calidiresistens and Streptomyces durbertensis. Systematic and Applied Microbiology, 2020, 43, 126153.	1.2	17
2218	The Stress-Responsive Alternative Sigma Factor SigB of Bacillus subtilis and Its Relatives: An Old Friend With New Functions. Frontiers in Microbiology, 2020, 11, 1761.	1.5	41
2219	Chemical entrapment and killing of insects by bacteria. Nature Communications, 2020, 11, 4608.	5.8	18
2220	Strategies for Discovering New Antibiotics from Bacteria in the Post-Genomic Era. Current Microbiology, 2020, 77, 3213-3223.	1.0	7
2221	A MarR-family transcriptional factor MapR positively regulates actinorhodin production in <i>Streptomyces coelicolor</i> . FEMS Microbiology Letters, 2020, 367, .	0.7	4
2222	Multifunctional Amyloids in the Biology of Gram-Positive Bacteria. Microorganisms, 2020, 8, 2020.	1.6	11
2223	Screening Anti-MRSA Activities of Indigenous Microbes and Prediction of The Biosynthetic Gene Clusters. Journal of Physics: Conference Series, 2020, 1665, 012001.	0.3	1
2224	Genes of Aminoglycoside Phosphotransferases in Soil Bacteria of the Streptomyces Genus. Biology Bulletin Reviews, 2020, 10, 507-519.	0.3	0
2225	Genome Mining and Metabolomics Uncover a Rare d-Capreomycidine Containing Natural Product and Its Biosynthetic Gene Cluster. ACS Chemical Biology, 2020, 15, 3013-3020.	1.6	9
2226	AfsK-Mediated Site-Specific Phosphorylation Regulates DnaA Initiator Protein Activity in Streptomyces coelicolor. Journal of Bacteriology, 2020, 202, .	1.0	11
2227	Methanogens and Methanotrophs Show Nutrient-Dependent Community Assemblage Patterns Across Tropical Peatlands of the Pastaza-Marañón Basin, Peruvian Amazonia. Frontiers in Microbiology, 2020, 11, 746.	1.5	29
2228	Ecology and genomics of Actinobacteria: new concepts for natural product discovery. Nature Reviews Microbiology, 2020, 18, 546-558.	13.6	188
2229	New strategies and targets for antibacterial discovery. , 2020, , 249-272.		2
2230	Identification of the Biosynthetic Gene Cluster of Thermoactinoamides and Discovery of New Congeners by Integrated Genome Mining and MS-Based Molecular Networking. Frontiers in Chemistry, 2020, 8, 397.	1.8	11

#	Article	IF	CITATIONS
2231	The roseoflavin producer <i>Streptomyces davaonensis</i> has a high catalytic capacity and specific genetic adaptations with regard to the biosynthesis of riboflavin. Environmental Microbiology, 2020, 22, 3248-3265.	1.8	3
2232	Activation and Characterization of Bohemamine Biosynthetic Gene Cluster from <i>Streptomyces</i> sp. CB02009. Organic Letters, 2020, 22, 4614-4619.	2.4	14
2233	Streptomyces sp SM01 isolated from Indian soil produces a novel antibiotic picolinamycin effective against multi drug resistant bacterial strains. Scientific Reports, 2020, 10, 10092.	1.6	32
2234	Mini review: Genome mining approaches for the identification of secondary metabolite biosynthetic gene clusters in Streptomyces. Computational and Structural Biotechnology Journal, 2020, 18, 1548-1556.	1.9	106
2235	<i>Streptomyces</i> Endophytes Promote Host Health and Enhance Growth across Plant Species. Applied and Environmental Microbiology, 2020, 86, .	1.4	44
2236	Comparative Genomics Determines Strain-Dependent Secondary Metabolite Production in Streptomyces venezuelae Strains. Biomolecules, 2020, 10, 864.	1.8	9
2237	Synergistic toxic effects of ball-milled biochar and copper oxide nanoparticles on Streptomyces coelicolor M145. Science of the Total Environment, 2020, 720, 137582.	3.9	16
2238	Antimicrobial biosynthetic potential and diversity of culturable soil actinobacteria from forest ecosystems of Northeast India. Scientific Reports, 2020, 10, 4104.	1.6	42
2239	sRNA scr5239 Involved in Feedback Loop Regulation of Streptomyces coelicolor Central Metabolism. Frontiers in Microbiology, 2020, 10, 3121.	1.5	7
2240	A Streptomyces sp. NEAU-HV9: Isolation, Identification, and Potential as a Biocontrol Agent against Ralstonia solanacearum of Tomato Plants. Microorganisms, 2020, 8, 351.	1.6	38
2241	Genome mining strategies for ribosomally synthesised and post-translationally modified peptides. Computational and Structural Biotechnology Journal, 2020, 18, 1838-1851.	1.9	61
2242	Microbial Diversity, Interventions and Scope. , 2020, , .		4
2243	CRISPR–Cas9, CRISPRi and CRISPR-BEST-mediated genetic manipulation in streptomycetes. Nature Protocols, 2020, 15, 2470-2502.	5.5	50
2244	Pleiotropic anti-anti-sigma factor BldG is phosphorylated by several anti-sigma factor kinases in the process of activating multiple sigma factors in Streptomyces coelicolor A3(2). Gene, 2020, 755, 144883.	1.0	3
2245	Comparative genomics of multidrug-resistant Enterococcus spp. isolated from wastewater treatment plants. BMC Microbiology, 2020, 20, 20.	1.3	31
2246	Thirty complete Streptomyces genome sequences for mining novel secondary metabolite biosynthetic gene clusters. Scientific Data, 2020, 7, 55.	2.4	67
2247	Genome rearrangements and megaplasmid loss in the filamentous bacterium Kitasatospora viridifaciens are associated with protoplast formation and regeneration. Antonie Van Leeuwenhoek, 2020, 113, 825-837.	0.7	3
2248	Fungal Polyketides with Three Distinctive Ring Skeletons from the Fungus <i>Penicillium canescens</i> Uncovered by OSMAC and Molecular Networking Strategies. Journal of Organic Chemistry, 2020, 85, 4973-4980.	1.7	23

#	Article	IF	CITATIONS
2249	The Balance Metabolism Safety Net: Integration of Stress Signals by Interacting Transcriptional Factors in Streptomyces and Related Actinobacteria. Frontiers in Microbiology, 2019, 10, 3120.	1.5	34
2250	The ROK like protein of Myxococcus xanthus DK1622 acts as a pleiotropic transcriptional regulator for secondary metabolism. Journal of Biotechnology, 2020, 311, 25-34.	1.9	2
2251	Antibiotic production in <i>Streptomyces</i> is organized by a division of labor through terminal genomic differentiation. Science Advances, 2020, 6, eaay5781.	4.7	60
2252	Secondary nucleotide messenger c-di-GMP exerts a global control on natural product biosynthesis in streptomycetes. Nucleic Acids Research, 2020, 48, 1583-1598.	6.5	24
2253	Isolation, Genomic and Metabolomic Characterization of Streptomyces tendae VITAKN with Quorum Sensing Inhibitory Activity from Southern India. Microorganisms, 2020, 8, 121.	1.6	17
2254	A Co-Culturing Approach Enables Discovery and Biosynthesis of a Bioactive Indole Alkaloid Metabolite. Molecules, 2020, 25, 256.	1.7	31
2255	Engineering of Streptomyces lividans for heterologous expression of secondary metabolite gene clusters. Microbial Cell Factories, 2020, 19, 5.	1.9	68
2256	Soil quality shapes the composition of microbial community stress response and core cell metabolism functional genes. Applied Soil Ecology, 2020, 148, 103483.	2.1	11
2257	Genome-based analysis for the bioactive potential of Streptomyces yeochonensis CN732, an acidophilic filamentous soil actinobacterium. BMC Genomics, 2020, 21, 118.	1.2	18
2258	Microbial Natural Products in Drug Discovery. Processes, 2020, 8, 470.	1.3	93
2259	Deacetylation enhances ParB–DNA interactions affecting chromosome segregation in Streptomyces coelicolor. Nucleic Acids Research, 2020, 48, 4902-4914.	6.5	8
2260	Applying microbial ecology to antimicrobial discovery. Current Opinion in Microbiology, 2020, 57, 7-12.	2.3	4
2261	Genome mining as a biotechnological tool for the discovery of novel marine natural products. Critical Reviews in Biotechnology, 2020, 40, 571-589.	5.1	26
2262	Complete genome sequence of high-yield strain S. lincolnensis B48 and identification of crucial mutations contributing to lincomycin overproduction. Synthetic and Systems Biotechnology, 2020, 5, 37-48.	1.8	18
2263	Possible drugs for the treatment of bacterial infections in the future: anti-virulence drugs. Journal of Antibiotics, 2021, 74, 24-41.	1.0	28
2264	Production of antibiotic carbomycin from Streptomyces graminofaciens with high lipid content mutation. Archives of Microbiology, 2021, 203, 901-911.	1.0	3
2265	Antimicrobial peptides from Actinobacteria: Current status and future prospects., 2021,, 205-231.		4
2266	Bacterial terpenome. Natural Product Reports, 2021, 38, 905-980.	5.2	74

#	Article	IF	CITATIONS
2267	A Novel Isolate (S15) of Streptomyces griseobrunneus Produces 1-Dodecanol. Current Microbiology, 2021, 78, 144-149.	1.0	5
2268	The toxicity effects of nano/microplastics on an antibiotic producing strain - Streptomyces coelicolor M145. Science of the Total Environment, 2021, 764, 142804.	3.9	29
2269	Application of plant–microbe systems in bioremediation of metalloid-contaminated soils. , 2021, , 227-240.		0
2272	Rediscovering and repurposing natural microbial macromolecules through computational approaches., 2021,, 373-400.		2
2273	Elicitation of Antimicrobial Active Compounds by Streptomyces-Fungus Co-Cultures. Microorganisms, 2021, 9, 178.	1.6	10
2274	Molecular Mechanisms of Phosphate Sensing, Transport and Signalling in Streptomyces and Related Actinobacteria. International Journal of Molecular Sciences, 2021, 22, 1129.	1.8	47
2275	Uncharted territories in the discovery of antifungal and antivirulence natural products from bacteria. Computational and Structural Biotechnology Journal, 2021, 19, 1244-1252.	1.9	8
2276	Desert Environments Facilitate Unique Evolution of Biosynthetic Potential in Streptomyces. Molecules, 2021, 26, 588.	1.7	10
2277	Mycoremediation of heavy metals: processes, mechanisms, and affecting factors. Environmental Science and Pollution Research, 2021, 28, 10375-10412.	2.7	62
2278	LytR-CpsA-Psr Glycopolymer Transferases: Essential Bricks in Gram-Positive Bacterial Cell Wall Assembly. International Journal of Molecular Sciences, 2021, 22, 908.	1.8	16
2279	Draft Genome Sequence of Terrestrial Streptomyces sp. Strain VITNK9, Isolated from Vellore, Tamil Nadu, India, Exhibiting Antagonistic Activity against Fish Pathogens. Microbiology Resource Announcements, 2021, 10, .	0.3	2
2280	Impact of Phosphate Availability on Membrane Lipid Content of the Model Strains, Streptomyces lividans and Streptomyces coelicolor. Frontiers in Microbiology, 2021, 12, 623919.	1.5	9
2281	Molecular basis for control of antibiotic production by a bacterial hormone. Nature, 2021, 590, 463-467.	13.7	15
2282	Assessment of Biogeochemical–Mineralogical Characteristic and Weathering Indices of Soils Developed on Basaltic Parent Material and Toposequence Under Subhumid Ecosystem. Geomicrobiology Journal, 2021, 38, 451-465.	1.0	5
2283	Genome Sequence of Streptomyces sp. Strain HB-N217, Isolated from the Marine Sponge Forcepia sp Microbiology Resource Announcements, 2021, 10, .	0.3	1
2284	Cas12a-assisted precise targeted cloning using in vivo Cre-lox recombination. Nature Communications, 2021, 12, 1171.	5.8	43
2286	Automatic reconstruction of metabolic pathways from identified biosynthetic gene clusters. BMC Bioinformatics, 2021, 22, 81.	1.2	9
2287	Streptomyces sp. M54: an actinobacteria associated with a neotropical social wasp with high potential for antibiotic production. Antonie Van Leeuwenhoek, 2021, 114, 379-398.	0.7	9

#	Article	IF	CITATIONS
2288	Selective Isolation of Multidrug-Resistant Pedobacter spp., Producers of Novel Antibacterial Peptides. Frontiers in Microbiology, 2021, 12, 642829.	1.5	10
2290	Eliciting the silent lucensomycin biosynthetic pathway in Streptomyces cyanogenus S136 via manipulation of the global regulatory gene adpA. Scientific Reports, 2021, 11, 3507.	1.6	14
2291	Identification of the kinanthraquinone biosynthetic gene cluster by expression of an atypical response regulator. Bioscience, Biotechnology and Biochemistry, 2021, 85, 714-721.	0.6	5
2292	Comparative Metabologenomics Analysis of Polar Actinomycetes. Marine Drugs, 2021, 19, 103.	2.2	22
2293	Carbon catabolite regulation of secondary metabolite formation, an old but not wellâ€established regulatory system. Microbial Biotechnology, 2022, 15, 1058-1072.	2.0	16
2294	Efflux Transporters' Engineering and Their Application in Microbial Production of Heterologous Metabolites. ACS Synthetic Biology, 2021, 10, 646-669.	1.9	14
2295	The Richness and Diversity of Catalases in Bacteria. Frontiers in Microbiology, 2021, 12, 645477.	1.5	38
2296	A Major Facilitator Superfamily (MFS) Efflux Pump, SCO4121, from Streptomyces coelicolor with Roles in Multidrug Resistance and Oxidative Stress Tolerance and Its Regulation by a MarR Regulator. Applied and Environmental Microbiology, 2021, 87, .	1.4	19
2297	Overexpression of mfpA Gene Increases Ciprofloxacin Resistance in Mycobacterium smegmatis. International Journal of Microbiology, 2021, 2021, 1-7.	0.9	2
2298	Natural Products, the Fourth Industrial Revolution, and the Quintuple Helix. Natural Product Communications, 2021, 16, 1934578X2110030.	0.2	1
2299	CRISPR-Cas strategies for natural product discovery and engineering in actinomycetes. Process Biochemistry, 2021, 102, 261-268.	1.8	7
2300	The Phosin PptA Plays a Negative Role in the Regulation of Antibiotic Production in Streptomyces lividans. Antibiotics, 2021, 10, 325.	1.5	8
2301	Genome-guided investigation of secondary metabolites produced by a potential new strain Streptomyces BA2 isolated from an endemic plant rhizosphere in Turkey. Archives of Microbiology, 2021, 203, 2431-2438.	1.0	12
2302	Candicidin Isomer Production Is Essential for Biocontrol of Cucumber Rhizoctonia Rot by Streptomyces albidoflavus W68. Applied and Environmental Microbiology, 2021, 87, .	1.4	6
2303	Identification and Predictions Regarding the Biosynthesis Pathway of Polyene Macrolides Produced by Streptomyces roseoflavus Men-myco-93-63. Applied and Environmental Microbiology, 2021, 87, .	1.4	6
2304	Differential regulation of undecylprodigiosin biosynthesis in the yeast-scavenging <i>Streptomyces</i> strain MBK6. FEMS Microbiology Letters, 2021, 368, .	0.7	3
2305	Production of Heterodimeric Diketopiperazines Employing a <i>Mycobacterium</i> Biocatalysis System. Journal of Organic Chemistry, 2021, 86, 11189-11197.	1.7	9
2306	Lacl-Family Transcriptional Regulator DagR Acts as a Repressor of the Agarolytic Pathway Genes in Streptomyces coelicolor A3(2). Frontiers in Microbiology, 2021, 12, 658657.	1.5	8

#	Article	IF	CITATIONS
2307	Incipient genome erosion and metabolic streamlining for antibiotic production in a defensive symbiont. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
2308	Coelimycin Synthesis Activatory Proteins Are Key Regulators of Specialized Metabolism and Precursor Flux in Streptomyces coelicolor A3(2). Frontiers in Microbiology, 2021, 12, 616050.	1.5	8
2309	Extensive Reannotation of the Genome of the Model Streptomycete Streptomyces lividans TK24 Based on Transcriptome and Proteome Information. Frontiers in Microbiology, 2021, 12, 604034.	1.5	5
2310	Biological Control of Pythium aphanidermatum, the Causal Agent of Tomato Root Rot by Two Streptomyces Root Symbionts. Agronomy, 2021, 11, 846.	1.3	32
2311	Reconstruction of a Genome-Scale Metabolic Model of Streptomyces albus J1074: Improved Engineering Strategies in Natural Product Synthesis. Metabolites, 2021, 11, 304.	1.3	12
2312	Rational engineering of specialized metabolites in bacteria and fungi. ChemistrySelect, 2021, 6, 9-26.	0.7	1
2313	Poly- and Monoamine Metabolism in <i>Streptomyces coelicolor</i> : The New Role of Glutamine Synthetase-Like Enzymes in the Survival under Environmental Stress. Microbial Physiology, 2021, 31, 233-247.	1.1	12
2314	Functional trait relationships demonstrate life strategies in terrestrial prokaryotes. FEMS Microbiology Ecology, 2021, 97, .	1.3	12
2315	An Analysis of Biosynthesis Gene Clusters and Bioactivity of Marine Bacterial Symbionts. Current Microbiology, 2021, 78, 2522-2533.	1.0	5
2316	Actinobacteria in natural products research: Progress and prospects. Microbiological Research, 2021, 246, 126708.	2.5	97
2318	Combining transposon mutagenesis and reporter genes to identify novel regulators of the topA promoter in Streptomyces. Microbial Cell Factories, 2021, 20, 99.	1.9	5
2319	NADP ⁺ -Dependent Dehydrogenase SCO3486 and Cycloisomerase SCO3480: Key Enzymes for 3,6-Anhydro-L-Galactose Catabolism in <i>Streptomyces coelicolor</i> A3(2). Journal of Microbiology and Biotechnology, 2021, 31, 756-763.	0.9	3
2320	The ARC2 response in Streptomcyes coelicolor requires the global regulatory genes afsR and afsS. Microbiology (United Kingdom), 2021, 167, .	0.7	4
2321	Activation and discovery of tsukubarubicin from Streptomyces tsukubaensis through overexpressing SARPs. Applied Microbiology and Biotechnology, 2021, 105, 4731-4741.	1.7	7
2322	Mining genomes to illuminate the specialized chemistry of life. Nature Reviews Genetics, 2021, 22, 553-571.	7.7	111
2323	Investigating the Role of Root Exudates in Recruiting Streptomyces Bacteria to the Arabidopsis thaliana Microbiome. Frontiers in Molecular Biosciences, 2021, 8, 686110.	1.6	18
2324	Piperacillin triggers virulence factor biosynthesis via the oxidative stress response in <i>Burkholderia thailandensis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	10
2325	Secondary Metabolite Production Potential of Mangrove-Derived Streptomyces olivaceus. Marine Drugs, 2021, 19, 332.	2.2	2

#	Article	IF	CITATIONS
2327	Genome mining Streptomyces sp. KCTC 0041BP as a producer of dihydrochalcomycin. Applied Microbiology and Biotechnology, 2021, 105, 5023-5037.	1.7	4
2328	Streptomyces: host for refactoring of diverse bioactive secondary metabolites. 3 Biotech, 2021, 11, 340.	1.1	10
2329	Marine Actinomycetes, New Sources of Biotechnological Products. Marine Drugs, 2021, 19, 365.	2.2	57
2330	Genome analysis of Streptomyces sp. UH6 revealed the presence of potential chitinolytic machinery crucial for chitosan production. Environmental Microbiology Reports, 2021, , .	1.0	6
2331	Effects of Lactobacillus reuteri and Streptomyces coelicolor on Growth Performance of Broiler Chickens. Microorganisms, 2021, 9, 1341.	1.6	12
2332	Co-occurrence of enzyme domains guides the discovery of an oxazolone synthetase. Nature Chemical Biology, 2021, 17, 794-799.	3.9	13
2333	Natural Products from Nocardia and Their Role in Pathogenicity. Microbial Physiology, 2021, 31, 217-232.	1.1	14
2334	Expression and characterization of a thermotolerant and pH-stable hyaluronate lyase from Thermasporomyces composti DSM22891. Protein Expression and Purification, 2021, 182, 105840.	0.6	5
2335	Whole-genome sequencing of two Streptomyces strains isolated from the sand dunes of Sahara. BMC Genomics, 2021, 22, 578.	1.2	6
2336	Identification of the cognate response regulator of the orphan histidine kinase OhkA involved in both secondary metabolism and morphological differentiation in Streptomyces coelicolor. Applied Microbiology and Biotechnology, 2021, 105, 5905-5914.	1.7	7
2337	Synthetic biology-inspired strategies and tools for engineering of microbial natural product biosynthetic pathways. Biotechnology Advances, 2021, 49, 107759.	6.0	29
2338	Identification of a New Antimicrobial, Desertomycin H, Utilizing a Modified Crowded Plate Technique. Marine Drugs, 2021, 19, 424.	2.2	3
2339	Biosynthetic Potential of Streptomyces Rationalizes Genome-Based Bioprospecting. Antibiotics, 2021, 10, 873.	1.5	4
2340	Renewed interests in the discovery of bioactive actinomycete metabolites driven by emerging technologies. Journal of Applied Microbiology, 2022, 132, 59-77.	1.4	17
2341	High-Throughput Transcriptional Characterization of Regulatory Sequences from Bacterial Biosynthetic Gene Clusters. ACS Synthetic Biology, 2021, 10, 1859-1873.	1.9	6
2342	Cross-Recognition of Promoters by the Nine SigB Homologues Present in Streptomyces coelicolor A3(2). International Journal of Molecular Sciences, 2021, 22, 7849.	1.8	4
2343	The Design-Build-Test-Learn cycle for metabolic engineering of Streptomycetes. Essays in Biochemistry, 2021, 65, 261-275.	2.1	17
2344	Genome mining for drug discovery: progress at the front end. Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	1.4	30

#	Article	IF	CITATIONS
2345	Structures of full-length VanR from <i>Streptomyces coelicolor</i> in both the inactive and activated states. Acta Crystallographica Section D: Structural Biology, 2021, 77, 1027-1039.	1.1	10
2346	A Genome-Wide Analysis of Antibiotic Producing Genes in Streptomyces globisporus SP6C4. Plant Pathology Journal, 2021, 37, 389-395.	0.7	10
2347	The Response Regulator MacR and its Potential in Improvement of Antibiotic Production in Streptomyces coelicolor. Current Microbiology, 2021, 78, 3696-3707.	1.0	6
2348	Streptomyces griseocarneus R132 expresses antimicrobial genes and produces metabolites that modulate Galleria mellonella immune system. 3 Biotech, 2021, 11, 396.	1.1	1
2350	In situ cadmium removal from paddy soils by a reusable remediation device and its health risk assessment in rice. Environmental Technology and Innovation, 2021, 23, 101713.	3.0	6
2351	Anticancer Activity Assay of Nano-Fractional Compounds that Purified from Soil Actinomycetes. Archives of Ecotoxicology, 2021, 3, 32-38.	0.1	0
2352	Application of Streptomyces Antimicrobial Compounds for the Control of Phytopathogens. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	39
2353	Competition-based screening helps to secure the evolutionary stability of a defensive microbiome. BMC Biology, 2021, 19, 205.	1.7	10
2354	SCO6992, A Protein with \hat{l}^2 -Glucuronidase Activity, Complements a Mutation at the absR Locus and Promotes Antibiotic Biosynthesis in Streptomyces coelicolor. Journal of Microbiology and Biotechnology, 2021, 31, 1591-1600.	0.9	2
2357	Pleiotropic effects of ActVI-ORFA as an unusual regulatory factor identified in the biosynthetic pathway of actinorhodin in Streptomyces coelicolor. Microbiological Research, 2021, 250, 126792.	2.5	0
2358	Global Insights Into Lysine Acylomes Reveal Crosstalk Between Lysine Acetylation and Succinylation in Streptomyces coelicolor Metabolic Pathways. Molecular and Cellular Proteomics, 2021, 20, 100148.	2.5	12
2359	The linear plasmid pSA3239 is essential for the replication of the Streptomyces lavendulae subsp. lavendulae CCM 3239 chromosome. Research in Microbiology, 2021, 172, 103870.	1.0	1
2360	Dynamics of the compartmentalized Streptomyces chromosome during metabolic differentiation. Nature Communications, 2021, 12, 5221.	5.8	30
2361	Spatial rearrangement of the Streptomyces venezuelae linear chromosome during sporogenic development. Nature Communications, 2021, 12, 5222.	5.8	23
2362	Lytic polysaccharide monooxygenases (LPMOs) producing microbes: A novel approach for rapid recycling of agricultural wastes. Science of the Total Environment, 2022, 806, 150451.	3.9	16
2363	ADP-ribosylation systems in bacteria and viruses. Computational and Structural Biotechnology Journal, 2021, 19, 2366-2383.	1.9	33
2364	Systems and synthetic biology to elucidate secondary metabolite biosynthetic gene clusters encoded in <i>Streptomyces</i> genomes. Natural Product Reports, 2021, 38, 1330-1361.	5.2	35
2365	Engineering and Overproduction of Polyketide Natural Products. , 0, , 1803-1832.		1

#	Article	IF	CITATIONS
2366	The Family Streptomycetaceae, Part II: Molecular Biology., 2006,, 605-622.		13
2367	The Role of Sigma Factors in Regulating Bacterial Stress Responses and Pathogenesis., 2006,, 438-501.		3
2368	Gene Annotation Methods. , 2009, , 121-136.		2
2369	Prospects For The Study Of A Ubiquitous Actinomycete, Frankia, And Its Host Plants., 2007, , 289-303.		2
2370	A Technical Platform for Generating Reproducible Expression Data from Streptomyces coelicolor Batch Cultivations. Advances in Experimental Medicine and Biology, 2011, 696, 3-15.	0.8	8
2371	Comparative Genomics of Four Pseudomonas Species. , 2004, , 139-164.		11
2372	Secondary Metabolite Production in Streptomyces. , 2013, , 1903-1913.		2
2373	New Methods to Access Microbial Diversity for Small Molecule Discovery. , 2005, , 275-293.		15
2374	Genomics and Post-genomics Approaches for Elucidating Molecular Mechanisms of Plant Growth-Promoting Bacilli. Bacilli in Climate Resilient Agriculture and Bioprospecting, 2019, , 161-200.	0.6	6
2375	Nanoparticles for New Pharmaceuticals: Metabolites from Actinobacteria. Environmental Chemistry for A Sustainable World, 2020, , 195-213.	0.3	1
2376	The Family Streptomycetaceae. , 2014, , 889-1010.		19
2377	Subtelomere Plasticity in the Bacterium Streptomyces. , 2014, , 243-258.		9
2378	Gas Vesicle Genes in Halophilic Archaea and Bacteria. , 2004, , 229-241.		6
2380	Novel Insights on the Symbiotic Interactions of Marine Sponge-Associated Microorganisms: Marine Microbial Biotechnology Perspective. , 2016, , 69-95.		3
2381	Microorganisms and Biotic Interactions. , 2015, , 395-444.		30
2382	Streptomyces for Sustainability. , 2016, , 251-276.		7
2383	Endophytes: A Hidden Treasure of Novel Antimicrobial Metabolites., 2019,, 165-192.		5
2384	Microbes in Pharmaceutical Industry. , 2020, , 259-299.		11

#	Article	IF	CITATIONS
2385	Engineering Heterologous Hosts for the Enhanced Production of Non-ribosomal Peptides. Biotechnology and Bioprocess Engineering, 2020, 25, 795-809.	1.4	5
2386	Aerobic Gram-positive bacilli. , 2010, , 1660-1675.		3
2387	Enzyme-Constrained Models and Omics Analysis of Streptomyces coelicolor Reveal Metabolic Changes that Enhance Heterologous Production. IScience, 2020, 23, 101525.	1.9	30
2388	Discovery of "heat shock metabolites―produced by thermotolerant actinomycetes in high-temperature culture. Journal of Antibiotics, 2020, 73, 203-210.	1.0	14
2389	Genome-scale determination of $5\hat{A}$ and $3\hat{A}$ boundaries of RNA transcripts in Streptomyces genomes. Scientific Data, 2020, 7, 436.	2.4	6
2390	Expression of genes of the Pho regulon is altered in Streptomyces coelicolor. Scientific Reports, 2020, 10, 8492.	1.6	27
2391	Microorganisms: Their Role in the Discovery and Development of Medicines. RSC Biomolecular Sciences, 2009, , 215-241.	0.4	4
2393	WblA, a global regulator of antibiotic biosynthesis in Streptomyces. Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	1.4	17
2394	Differential transcription of expanded gene families in central carbon metabolism of Streptomyces coelicolor A3(2). Access Microbiology, 2020, 2, acmi000122.	0.2	4
2395	Streptomyces qinglanensis sp. nov., isolated from mangrove sediment. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 596-600.	0.8	40
2396	Streptomyces herbaceus sp. nov., Streptomyces incanus sp. nov. and Streptomyces pratens sp. nov., isolated from the soil of a hay meadow. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 1908-1913.	0.8	11
2397	Streptomyces amphotericinicus sp. nov., an amphotericin-producing actinomycete isolated from the head of an ant (Camponotus japonicus Mayr). International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 4967-4973.	0.8	16
2398	Streptomyces harenosi sp. nov., a home for a gifted strain isolated from Indonesian sand dune soil. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 4874-4882.	0.8	11
2399	Streptomyces from traditional medicine: sources of new innovations in antibiotic discovery. Journal of Medical Microbiology, 2020, 69, 1040-1048.	0.7	98
2400	Subtelomeres are fast-evolving regions of the Streptomyces linear chromosome. Microbial Genomics, 2019, 7, .	1.0	9
2401	Phosphate and oxygen limitation induce respiratory nitrate reductase 3 synthesis in stationary-phase mycelium of Streptomyces coelicolor A3(2). Microbiology (United Kingdom), 2016, 162, 1689-1697.	0.7	7
2402	Phylogenetic analyses of antibiotic-producing Streptomyces sp. isolates obtained from the stingless-bee Tetragonisca angustula (Apidae: Meliponini). Microbiology (United Kingdom), 2019, 165, 292-301.	0.7	21
2403	Sensing and responding to diverse extracellular signals: an updated analysis of the sensor kinases and response regulators of Streptomyces species. Microbiology (United Kingdom), 2019, 165, 929-952.	0.7	21

#	Article	IF	CITATIONS
2404	Hypoxia-induced synthesis of respiratory nitrate reductase 2 of Streptomyces coelicolor A3(2) depends on the histidine kinase OsdK in mycelium but not in spores. Microbiology (United Kingdom), 2019, 165, 905-916.	0.7	7
2405	Streptomycete origin of chromosomal replication with two putative unwinding elements. Microbiology (United Kingdom), 2019, 165, 1365-1375.	0.7	5
2406	Advances in actinomycete research: an ActinoBase review of 2019. Microbiology (United Kingdom), 2020, 166, 683-694.	0.7	20
2407	A multidrug efflux system is involved in colony growth in Streptomyces lividans. Microbiology (United Kingdom), 2007, 153, 924-934.	0.7	12
2419	Mycobacterial Evolution: Insights from Genomics and Population Genetics., 0,, 301-325.		2
2420	Evolution of Pathogens in Soil. , 0, , 131-146.		2
2421	Sorangium cellulosum., 0,, 329-348.		2
2422	Transcriptional Regulatory Mechanisms during Myxococcus xanthus Development., 0,, 149-168.		6
2424	Evolution and Population Genetics of Bacterial Plasmids. , 0, , 507-528.		18
2425	Second Chromosomes and Megaplasmids in Bacteria. , 0, , 529-542.		14
2426	Resuscitation of "Uncultured―Microorganisms. , 0, , 100-108.		2
2427	The Paradigm Shift in Microbial Prospecting. , 0, , 241-249.		4
2428	Phylogeny and Functionality: Taxonomy as a Roadmap to Genes. , 0, , 288-313.		17
2429	Antimicrobials., 0, , 336-355.		41
2430	Draft Genome Sequence of <i>Streptomyces</i> sp. M1013, a Close Relative of Streptomyces ambofaciens and Streptomyces coelicolor. Genome Announcements, 2017, 5, .	0.8	3
2431	Diversity, Bioactivity and Drug Development of Cultivable Actinobacteria in Six Species of Bird Feces. American Journal of BioScience, 2014, 2, 13.	0.3	6
2432	Expansion of RiPP biosynthetic space through integration of pan-genomics and machine learning uncovers a novel class of lanthipeptides. PLoS Biology, 2020, 18, e3001026.	2.6	75
2433	NullSeq: A Tool for Generating Random Coding Sequences with Desired Amino Acid and GC Contents. PLoS Computational Biology, 2016, 12, e1005184.	1.5	11

#	Article	IF	CITATIONS
2434	Oxidative stress antagonizes fluoroquinolone drug sensitivity via the SoxR-SUF Fe-S cluster homeostatic axis. PLoS Genetics, 2020, 16, e1009198.	1.5	10
2435	Valinomycin Biosynthetic Gene Cluster in Streptomyces: Conservation, Ecology and Evolution. PLoS ONE, 2009, 4, e7194.	1.1	43
2436	A Framework for Classification of Prokaryotic Protein Kinases. PLoS ONE, 2010, 5, e10608.	1.1	20
2437	Novel Two-Component Systems Implied in Antibiotic Production in Streptomyces coelicolor. PLoS ONE, 2011, 6, e19980.	1.1	62
2438	Biological Consequences of Ancient Gene Acquisition and Duplication in the Large Genome of Candidatus Solibacter usitatus Ellin6076. PLoS ONE, 2011, 6, e24882.	1.1	60
2439	A Novel Two-Component System Involved in the Transition to Secondary Metabolism in Streptomyces coelicolor. PLoS ONE, 2012, 7, e31760.	1.1	29
2440	Isolation and Characterization of EstC, a New Cold-Active Esterase from Streptomyces coelicolor A3(2). PLoS ONE, 2012, 7, e32041.	1.1	42
2441	Exploiting Adaptive Laboratory Evolution of Streptomyces clavuligerus for Antibiotic Discovery and Overproduction. PLoS ONE, 2012, 7, e33727.	1.1	72
2442	The Natural Product Domain Seeker NaPDoS: A Phylogeny Based Bioinformatic Tool to Classify Secondary Metabolite Gene Diversity. PLoS ONE, 2012, 7, e34064.	1.1	422
2443	Genome Context as a Predictive Tool for Identifying Regulatory Targets of the TetR Family Transcriptional Regulators. PLoS ONE, 2012, 7, e50562.	1.1	58
2444	MultiMetEval: Comparative and Multi-Objective Analysis of Genome-Scale Metabolic Models. PLoS ONE, 2012, 7, e51511.	1.1	31
2445	An Efficient Procedure for Marker-Free Mutagenesis of S. coelicolor by Site-Specific Recombination for Secondary Metabolite Overproduction. PLoS ONE, 2013, 8, e55906.	1.1	11
2446	Transcriptomic Analysis of Streptomyces coelicolor Differentiation in Solid Sporulating Cultures: First Compartmentalized and Second Multinucleated Mycelia Have Different and Distinctive Transcriptomes. PLoS ONE, 2013, 8, e60665.	1.1	42
2447	Chiral Hydroxylation at the Mononuclear Nonheme Fe(II) Center of 4-(S) Hydroxymandelate Synthase – A Structure-Activity Relationship Analysis. PLoS ONE, 2013, 8, e68932.	1.1	11
2448	Phage P1-Derived Artificial Chromosomes Facilitate Heterologous Expression of the FK506 Gene Cluster. PLoS ONE, 2013, 8, e69319.	1.1	80
2449	A Single Sfp-Type Phosphopantetheinyl Transferase Plays a Major Role in the Biosynthesis of PKS and NRPS Derived Metabolites in Streptomyces ambofaciens ATCC23877. PLoS ONE, 2014, 9, e87607.	1,1	32
2450	Application of Two Newly Identified and Characterized Feruloyl Esterases from Streptomyces sp. in the Enzymatic Production of Ferulic Acid from Agricultural Biomass. PLoS ONE, 2014, 9, e104584.	1.1	26
2451	Mechanism of the pH-Induced Conformational Change in the Sensor Domain of the DraK Histidine Kinase via the E83, E105, and E107 Residues. PLoS ONE, 2014, 9, e107168.	1.1	21

#	Article	IF	CITATIONS
2452	Genome-Wide Analysis of In Vivo Binding of the Master Regulator DasR in Streptomyces coelicolor Identifies Novel Non-Canonical Targets. PLoS ONE, 2015, 10, e0122479.	1.1	51
2453	Comparative Sigma Factor-mRNA Levels in Mycobacterium marinum under Stress Conditions and during Host Infection. PLoS ONE, 2015, 10, e0139823.	1.1	20
2454	Deciphering the Transcriptional Response Mediated by the Redox-Sensing System HbpS-SenS-SenR from Streptomycetes. PLoS ONE, 2016, 11, e0159873.	1.1	7
2455	Production of poly- \hat{l}^2 -1,6-N-acetylglucosamine by MatAB is required for hyphal aggregation and hydrophilic surface adhesion by Streptomyces. Microbial Cell, 2018, 5, 269-279.	1.4	23
2456	In vitro Antimicrobial Assay of Actinomycetes in Rice AgainstXanthomonas oryzae pv. oryzicola and as Potential Plant Growth Promoter. Brazilian Archives of Biology and Technology, 2015, 58, 821-832.	0.5	23
2457	Type II thioesterase ScoT is required for coelimycin production by the modular polyketide synthase Cpk of Streptomyces coelicolor A3(2) Acta Biochimica Polonica, 2014, 61, .	0.3	9
2458	Antimicrobial and Anticancer Activities of Actinomycetes Isolated from Egyptian Soils. International Journal of Current Microbiology and Applied Sciences, 2020, 9, 1689-1700.	0.0	9
2459	Isolation, Identification and Molecular Characterization of Rare Actinomycetes from Mangrove Ecosystem of Nizampatnam. Malaysian Journal of Microbiology, 2012, , .	0.1	13
2460	DNA Sequencing: Strategies for Soil Microbiology. Soil Science Society of America Journal, 2007, 71, 592-600.	1.2	28
2461	Application of Genetic Engineering Approaches to Improve Bacterial Metabolite Production. Current Protein and Peptide Science, 2020, 21, 488-496.	0.7	1
2462	Ethanol Production in Actinomycetes after Expression of Synthetic adhB and pdc. Open Biotechnology Journal, 2012, 6, 13-16.	0.6	5
2463	Marine Streptomyces Sp. VITMK1 Derived Pyrrolo [1, 2-A] Pyrazine-1, 4-Dione, Hexahydro-3-(2-Methylpropyl) and Its Free Radical Scavenging Activity. The Open Bioactive Compounds Journal, 2017, 5, 23-30.	0.8	15
2464	Immune Response to Streptomyces lividans in Mice: A Potential Vaccine Vehicle Against TB. The Open Vaccine Journal, 2009, 2, 85-91.	0.6	2
2465	Functional role of bacteriophage transfer RNAs: codon usage analysis of genomic sequences stored in the GENBANK/EMBL/DDBJ databases. Data Science Journal, 2002, 1, 216-228.	0.6	2
2466	Yıldız Gölü Sedimentinden İzole Edilen Aktinobakterilerin Antimikrobiyal ve Enzim Üretim Kapasitelerinin Araştırılması. Karadeniz Fen Bilimleri Dergisi, 2019, 9, 144-151.	0.1	1
2467	Biosynthetic Studies on Model Antibiotics towards Elucidation and Utilization of Actinomycete Secondary Metabolism. Nihon Hosenkin Gakkai Shi = Actinomycetologica, 2003, 17, 71-75.	0.3	2
2468	Development of novel expression systems for actinomycetes. Nihon Hosenkin Gakkai Shi = Actinomycetologica, 2007, 21, 70-75.	0.3	4
2469	Antibiotic production, linear plasmids and linear chromosomes in Streptomyces. Nihon Hosenkin Gakkai Shi = Actinomycetologica, 2008, 22, 20-29.	0.3	8

#	Article	IF	CITATIONS
2470	Productivity of Bioactive Compounds in Streptomyces Species Isolated from Nagasaki Marine Environments Nihon Hosenkin Gakkai Shi = Actinomycetologica, 2009, 23, 16-20.	0.3	3
2471	Dereplication of Streptomyces Strains by Automated Southern Hybridization with a Polyketide Synthase Gene Probe. Nihon Hosenkin Gakkai Shi = Actinomycetologica, 2010, 24, 66-69.	0.3	3
2472	New Test System for Serine/Threonine Protein Kinase Inhibitors Screening: E. coli APHVIII/ Pk25 design. Acta Naturae, 2010, 2, 110-121.	1.7	5
2473	Buffet hypothesis for microbial nutrition at the rhizosphere. Frontiers in Plant Science, 2013, 4, 188.	1.7	28
2474	Potential of Bioremediation and PGP Traits in Streptomyces as Strategies for Bio-Reclamation of Salt-Affected Soils for Agriculture. Pathogens, 2020, 9, 117.	1.2	24
2475	Bioprospecting of Microbes for Valuable Compounds to Mankind. Bulletin of the Geological Society of Malaysia, 2020, 3, .	0.5	9
2476	Identification and Phylogeny of Streptomyces Based on Gene Sequences. Research Journal of Microbiology, 2017, 13, 13-20.	0.2	4
2477	Unraveling the Optimal Culture Condition for the Antifungal Activity and IAA Production of Phylloplane Serratia plymuthica. Plant Pathology Journal, 2019, 18, 31-38.	0.7	8
2478	A Novel Transglutaminase Substrate from Streptomyces mobaraensis Inhibiting Papain-Like Cysteine Proteases. Journal of Microbiology and Biotechnology, 2011, 21, 617-626.	0.9	17
2479	Heterologous Expression of a Putative K+/H+ Antiporter of S. coelicolor A3(2) Enhances K+, Acidic-pH Shock Tolerances, and Geldanamycin Secretion. Journal of Microbiology and Biotechnology, 2013, 23, 149-155.	0.9	2
2480	A WblA-Binding Protein, SpiA, Involved in Streptomyces Oxidative Stress Response. Journal of Microbiology and Biotechnology, 2013, 23, 1365-1371.	0.9	5
2481	<i>Streptomyces</i> Cytochrome P450 Enzymes and Their Roles in the Biosynthesis of Macrolide Therapeutic Agents. Biomolecules and Therapeutics, 2019, 27, 127-133.	1.1	16
2482	Biological activity of fungal secondary metabolites. International Journal of Chemical and Applied Biological Sciences, 2014, 1, 14.	0.2	6
2483	Anti-cancer Effect of Luminacin, a Marine Microbial Extract, in Head and Neck Squamous Cell Carcinoma Progression via Autophagic Cell Death. Cancer Research and Treatment, 2016, 48, 738-752.	1.3	21
2484	Megafiller: A Retrofitted Protein Function Predictor for Filling Gaps in Metabolic Networks. Journal of Proteomics and Bioinformatics, 0, s9, .	0.4	5
2485	Diversity and Bioactivity of Cultivable Animal Fecal Actinobacteria. Advances in Microbiology, 2013, 03, 1-13.	0.3	11
2486	Biological Control of & mp; lt; i& mp; gt; Erwinia carotovora & mp; lt; /i & mp; gt; ssp. & mp; lt; i& amp; gt; carotovora & amp; lt; /i & amp; gt; by & amp; lt; i& amp; gt; Streptomyces & amp; lt; /i & amp; gt; Species. Advances in Microbiology, 2016, 06, 104-114.	0.3	15
2487	Evolution from Primitive Life to Homo sapiens Based on Visible Genome Structures: The Amino Acid World. Natural Science, 2009, 01, 107-119.	0.2	9

#	ARTICLE	IF	CITATIONS
2488	Why antibiotics: A comparative evaluation of different hypotheses for the natural role of antibiotics and an evolutionary synthesis. Natural Science, 2013, 05, 26-40.	0.2	10
2489	Cloning and Sequence Analysis of the Cellulase Genes Isolated from Two Cellulolytic Streptomycetes and Their Heterologous Expression in <i>Streptomyces lividans </i> . International Journal of the Society of Materials Engineering for Resources, 2014, 20, 213-218.	0.1	5
2490	Molecular characterization and functional annotation of a hypothetical protein (SCO0618) of Streptomyces coelicolor A3(2). Genomics and Informatics, 2020, 18, e28.	0.4	14
2491	Isolation and screening of a-glucosidase enzyme inhibitor producing marine actinobacteria. African Journal of Microbiology Research, 2011, 5, .	0.4	9
2492	Genome wide survey and molecular modeling of hypothetical proteins containing 2Fe-2S and FMN binding domains suggests Rieske Dioxygenase Activity highlighting their potential roles in bio-remediation. Bioinformation, 2014, 10, 68-75.	0.2	2
2493	Analysis of multi-domain hypothetical proteins containing iron-sulphur clusters and fad ligands reveal rieske dioxygenase activity suggesting their plausible roles in bioremediation. Bioinformation, 2012, 8, 1154-1161.	0.2	2
2494	Antimicrobial and Anticancer Activities of Ethyl Acetate Extract of Co-culture of Streptomyces sp. ANAM-5 and AIAH-10 Isolated From Mangrove Forest of Sundarbans, Bangladesh. Journal of Applied Pharmaceutical Science, 0, , 051-055.	0.7	9
2495	Silencing cryptic specialized metabolism in Streptomyces by the nucleoid-associated protein Lsr2. ELife, 2019, 8, .	2.8	48
2496	ÂGenomic data mining of the marine actinobacteria <i>Streptomyces</i> sp. H-KF8 unveils insights into multi-stress related genes and metabolic pathways involved in antimicrobial synthesis. Peerl, 2017, 5, e2912.	0.9	32
2497	Genomic characterization of a new endophytic <i>Streptomyces kebangsaanensis</i> biosynthetic pathway gene clusters for novel phenazine antibiotic production. PeerJ, 2017, 5, e3738.	0.9	28
2498	Estimation of antimicrobial activities and fatty acid composition of actinobacteria isolated from water surface of underground lakes from Badzheyskaya and Okhotnichya caves in Siberia. PeerJ, 2018, 6, e5832.	0.9	9
2499	Analysis of the complete genome sequence of a marine-derived strain <i>Streptomyces</i> Sp. S063 CGMCC 14582 reveals its biosynthetic potential to produce novel anti-complement agents and peptides. Peerl, 2019, 7, e6122.	0.9	3
2500	Effects of Cell-free Culture Fluids for the Expression of Putative Acyltransferase in Corynebacterium glutamicum. Korean Journal of Microbiology, 2012, 48, 207-211.	0.2	1
2501	Diversification of Ferredoxins across Living Organisms. Current Issues in Molecular Biology, 2021, 43, 1374-1390.	1.0	9
2503	Isolation and identification of marine microbial products. Journal of Genetic Engineering and Biotechnology, 2021, 19, 162.	1.5	8
2504	Adaptation to Endophytic Lifestyle Through Genome Reduction by Kitasatospora sp. SUK42. Frontiers in Bioengineering and Biotechnology, 2021, 9, 740722.	2.0	4
2505	Evaluating the Distribution of Bacterial Natural Product Biosynthetic Genes across Lake Huron Sediment. ACS Chemical Biology, 2021, 16, 2623-2631.	1.6	4
2506	Production and evaluation of two antibiotics of Streptomyces coelicolor A3(2), prodigiosin and actinorhodin under solid state fermentation, using micro-porous culture. Chemical Engineering and Processing: Process Intensification, 2022, 170, 108685.	1.8	1

#	Article	IF	CITATIONS
2507	A comparative study at bioprocess and metabolite levels of superhost strain $\langle i \rangle$ Streptomyces coelicolor $\langle i \rangle$ M1152 and its derivative M1581 heterologously expressing chloramphenicol biosynthetic gene cluster. Biotechnology and Bioengineering, 2022, 119, 145-161.	1.7	3
2508	Total Synthesis of 6-Deoxydihydrokalafungin, a Key Biosynthetic Precursor of Actinorhodin, and Its Epimer. Molecules, 2021, 26, 6397.	1.7	3
2510	The cvn8 Conservon System Is a Global Regulator of Specialized Metabolism in Streptomyces coelicolor during Interspecies Interactions. MSystems, 2021, 6, e0028121.	1.7	1
2511	Biochemical Genetics., 2001, , 1473-1527.		O
2512	未å^†é›¢å¾®ç"Ÿç‰©ã®äºŒæ¬¡ä»£è¬ç"£ç‰©ç"Ÿå•̂æ^éºä¼åã®å^©ç"¨. Kagaku To Seibutsu, 2002, 40, 600-	60050	0
2513	Sensing and Responding to Cell Envelope Stress in Streptomyces coelicolor Nihon Hosenkin Gakkai Shi = Actinomycetologica, 2002, 16, 41-47.	0.3	0
2514	Characterization of the dnaK Locus in Streptomyces griseus Nihon Hosenkin Gakkai Shi = Actinomycetologica, 2002, 16, 37-40.	0.3	0
2515	Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 0, , .	13.7	0
2519	Redox (Oxygen)-Dependent Gene Regulation in Facultative Anaerobes. , 2004, , 77-96.		0
2520	Combinatorial Biosynthesis of Anticancer Natural Products. , 2005, , .		1
2521	The Formation of Tetracycline in Date Medium by Mutants of Streptomyces aureofaciens Induced by Nitrosogiuanidine The Egyptian Journal of Hospital Medicine, 2006, 22, 174-187.	0.0	1
2523	Cloning and Sequencing of ABC Transporter ATP-Binding Protein Encoding Gene from Streptomyces minoensis. Biotechnology, 2008, 7, 182-187.	0.5	O
2524	Sequence Analysis and Potential Action of Eukaryotic Type Protein Kinase from Streptomyces coelicolor A3(2). Genomics and Informatics, 2008, 6, 44-49.	0.4	0
2526	Non-specific serine/threonine protein kinase. , 2009, , 1-123.		0
2527	Chapter 10. Natural Product Combinatorial Biosynthesis: Promises and Realities. RSC Biomolecular Sciences, 2009, , 299-317.	0.4	0
2530	In Silico Experiments in Scientific Papers on Molecular Biology. Science and Technology Studies, 2011, 24, 23-42.	0.6	4
2531	Cell Division Gene from Bacteria in Minicell Production for Therapy. , 0, , .		0
2532	Natural Products in the 21st Century. , 2012, , 821-847.		1

#	Article	IF	Citations
2533	Genome analyses of Nocardia farcinica for the identification and comparison of cytochrome P450 complement with related actinomycetes. African Journal of Biotechnology, 2012, 11 , .	0.3	0
2534	"Isolation and Biochemical Characterization of Antibiotic Producing Microorganism from Waste Soil Samples of Certain Industrial areas of India― IOSR Journal of Pharmacy and Biological Sciences, 0, 5, 80-89.	0.1	5
2535	Griselysin. , 2013, , 572-574.		0
2536	Genome Design of Actinomycetes for Secondary Metabolism. , 2014, , 63-72.		0
2538	Overview of Transcription., 0,, 275-281.		0
2539	The Fundamental Contribution of Genome Hypervariability to the Success of a Eukaryotic Pathogen, Trypanosoma brucei., 0,, 286-302.		0
2540	Structure and Evolution of Genomes. , 0, , 411-433.		0
2541	Diverse Cell-Cell Signaling Molecules Control Formation of Aerial Hyphae and Secondary Metabolism in Streptomycetes., 0,, 91-104.		0
2545	Streptomyces fuscichromogenes sp. nov., an actinomycete from soil. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 77-81.	0.8	5
2548	Similarity and dissimilarity of primary structures of some Streptomyces spp. genomes and the Streptomyces globisporus 1912-2 chromosomal DNA Biopolymers and Cell, 2017, 33, 206-213.	0.1	1
2553	Regulation of Streptomyces Chitinases by Two-Component Signal Transduction Systems and their Post Translational Modifications: A Review. Journal of Pure and Applied Microbiology, 2018, 12, 1417-1433.	0.3	2
2554	High-Throughput Screening of Biodiversity for Antibiotic Discovery. Acta Naturae, 2018, 10, 23-29.	1.7	4
2555	Organization of CRT-Clusters of Strains from the Streptomyces albus Clade. MikrobiolohichnyÄ-Zhurnal, 2018, 80, 28-40.	0.2	1
2556	Microbial Synthesis of Secondary Metabolites and Strain Improvement. , 2018, , 75-90.		0
2559	Actinomycetes as Continued Source of New Antibacterial Leads. , 2019, , 327-349.		1
2560	Microbial Type III Polyketide Synthases. , 2019, , .		0
2561	Microbial Bio-production of Proteins and Valuable Metabolites. , 2019, , 381-418.		1
2562	An operon encoding enzymes for synthesis of a putative extracellular carbohydrate attenuates acquired vancomycin resistance in Streptomyces coelicolor. Microbiology (United Kingdom), 2019, 165, 208-223.	0.7	1

#	Article	IF	CITATIONS
2564	Understanding the adaptive response of Streptomyces coelicolor to the glycopeptide antibiotic teicoplanin. Access Microbiology, 2019, 1 , .	0.2	0
2567	Controle biol \tilde{A}^3 gico de Meloidogyne incognitapor isolados de actinomicetos. Colloquium Agrariae, 2019, 15, 29-36.	0.1	0
2570	Artabel Gölleri (Gümüşhane) sedimentlerinden izole edilen aktinobakterilerin antimikrobiyal madde ve endüstriyel önemi olan enzimleri üretme kapasitelerinin belirlenmesi. Journal of Anatolian Environmental and Animal Sciences, 2019, 4, 166-173.	0.2	0
2571	Reconciling DNA replication and transcription in a hyphal organism: visualizing transcription complexes in live Streptomyces coelicolor. Microbiology (United Kingdom), 2019, 165, 1086-1094.	0.7	3
2573	Draft Genome Sequence of Freshwater-Derived <i>Streptomyces</i> sp. Strain BPSDS2, Isolated from Damte Stream, Northeast India. Microbiology Resource Announcements, 2019, 8, .	0.3	0
2577	Genome sequence and annotation of Streptomyces tendae UTMC 3329, acid and alkaline tolerant actinobacterium. Iranian Journal of Microbiology, 2020, 12, 343-352.	0.8	2
2579	Activation and Identification of a Griseusin Cluster in Streptomyces sp. CA-256286 by Employing Transcriptional Regulators and Multi-Omics Methods. Molecules, 2021, 26, 6580.	1.7	9
2580	A Multidisciplinary Approach to Unraveling the Natural Product Biosynthetic Potential of a Streptomyces Strain Collection Isolated from Leaf-Cutting Ants. Microorganisms, 2021, 9, 2225.	1.6	7
2581	Use of elicitors to enhance or activate the antibiotic production in <i>streptomyces</i> . Critical Reviews in Biotechnology, 2022, 42, 1260-1283.	5.1	17
2582	Complete Genome Analysis of Undecylprodigiosin Pigment Biosynthesizing Marine Streptomyces Species Displaying Potential Bioactive Applications. Microorganisms, 2021, 9, 2249.	1.6	5
2584	GntR-like SCO3932 Protein Provides a Link between Actinomycete Integrative and Conjugative Elements and Secondary Metabolism. International Journal of Molecular Sciences, 2021, 22, 11867.	1.8	4
2585	Fraction Libraries and Genetics as Tools for Natural Product Research: Focus on Decalin-Containing Compounds., 2020,, 375-409.		0
2587	The Location of Substitutions and Bacterial Genome Arrangements. Genome Biology and Evolution, 2021, 13, .	1.1	2
2588	Study of the Component Structure of the Metabolites of Bacteria Nocardiopsis umidischolae in the Search for Eco-Friendly Plant Protection Agents. Russian Journal of General Chemistry, 2020, 90, 2531-2541.	0.3	1
2589	Gas Vesicles of Archaea and Bacteria. Microbiology Monographs, 2020, , 71-106.	0.3	0
2590	Engineering Natural Product Biosynthetic Pathways to Produce Commodity and Specialty Chemicals. , 2020, , 352-376.		0
2591	Microbial Co-Cultures as Source of Novel Drugs for Infections. , 2020, , 142-160.		0
2592	Engineering Escherichia coli for Bacterial Natural Product Production. , 2020, , 136-148.		0

#	Article	IF	CITATIONS
2593	Activation of Silent Natural Product Biosynthetic Gene Clusters Using Synthetic Biology Tools. , 2020, , 113-135.		2
2594	Microbial Musings – March 2020. Microbiology (United Kingdom), 2020, 166, 227-229.	0.7	1
2595	A two-component system gene SACE_0101 regulates copper homeostasis in Saccharopolyspora erythraea. Bioresources and Bioprocessing, 2020, 7, .	2.0	4
2596	Re-classification of Streptomyces venezuelae strains and mining secondary metabolite biosynthetic gene clusters. IScience, 2021, 24, 103410.	1.9	2
2597	Antimicrobial activity of ethyl acetate extracts of Streptomyces sp. CRB46 and the prediction of their bioactive compounds chemical structure. Biodiversitas, 2020, 21, .	0.2	8
2598	Microbial Genomes., 2006,, 1-19.		0
2599	Protein-histidine kinase., 2007,, 432-474.		0
2600	Protein kinase (various)., 2007,, 662-687.		0
2604	Sequencing of the Pseudomonas aeruginosa and Burkholderia cepacia genomes and their applications in relation to cystic fibrosis. Journal of the Royal Society of Medicine, 2003, 96 Suppl 43, 57-65.	1.1	1
2605	New Test System for Serine/Threonine Protein Kinase Inhibitors Screening: E. coli APHVIII/Pk25 design. Acta Naturae, 2010, 2, 110-21.	1.7	1
2606	The fused TrpEG from Streptomyces venezuelae is an anthranilate synthase, not a 2-amino-2-deoxyisochorismate [corrected] (ADIC) synthase. Ethnicity and Disease, 2008, 18, S2-9-13.	1.0	3
2607	High-Throughput Screening of Biodiversity for Antibiotic Discovery. Acta Naturae, 2018, 10, 23-29.	1.7	0
2608	Broad-spectrum antimicrobial activity of wetland-derived sp. ActiF450. EXCLI Journal, 2020, 19, 360-371.	0.5	2
2609	In silico genome mining of potential novel biosynthetic gene clusters for drug discovery from Burkholderia bacteria. Computers in Biology and Medicine, 2022, 140, 105046.	3.9	6
2610	Biology, genetic aspects and oxidative stress response of actinobacteria and strategies for bioremediation of toxic metals., 2022,, 181-192.		2
2611	Bilateral symmetry of linear streptomycete chromosomes. Microbial Genomics, 2021, 7, .	1.0	8
2612	Genomic Organization of Streptomyces flavotricini NGL1 and Streptomyces erythrochromogenes HMS4 Reveals Differential Plant Beneficial Attributes and Laccase Production Capabilities. Molecular Biotechnology, 2022, 64, 447-462.	1.3	2
2613	Atlantic Forest's and Caatinga's semiarid soils and their potential as a source for halothermotolerant actinomycetes and proteolytic enzymes. Environmental Technology (United) Tj ETQq1 1 0.7	84 1.1 4 rgB	T Ø verlock

#	Article	IF	CITATIONS
2615	Global Chromosome Topology and the Two-Component Systems in Concerted Manner Regulate Transcription in <i>Streptomyces</i>). MSystems, 2021, 6, e0114221.	1.7	3
2616	Differences at Species Level and in Repertoires of Secondary Metabolite Biosynthetic Gene Clusters among Streptomyces coelicolor A3(2) and Type Strains of S. coelicolor and Its Taxonomic Neighbors. Applied Microbiology, 2021, 1, 573-585.	0.7	5
2617	Genome mining methods to discover bioactive natural products. Natural Product Reports, 2021, 38, 2100-2129.	5.2	61
2618	Siderophores and iron transport. , 2021, , .		3
2619	Adaptive laboratory evolution triggers pathogen-dependent broad-spectrum antimicrobial potency in Streptomyces. Journal of Genetic Engineering and Biotechnology, 2022, 20, 1.	1.5	18
2620	Isolation of Actinobacteria from Mangrove Plants. Springer Protocols, 2022, , 75-81.	0.1	2
2622	Actinomycetes: Microbiology to Systems Biology. , 2022, , 1-35.		2
2623	Biosynthesis of Tasikamides <i>via</i> Pathway Coupling and Diazonium-Mediated Hydrazone Formation. Journal of the American Chemical Society, 2022, 144, 1622-1633.	6.6	31
2624	Biosynthesis of Antibacterial Iron-Chelating Tropolones in Aspergillus nidulans as Response to Glycopeptide-Producing Streptomycetes. Frontiers in Fungal Biology, 2022, 2, .	0.9	8
2625	Biotechnological potential of Kocuria rhizophila PT10 isolated from roots of Panicum turgidum. International Journal of Environmental Science and Technology, 2022, 19, 10105-10118.	1.8	2
2627	Genome-scale analysis of genetic regulatory elements in Streptomyces avermitilis MA-4680 using transcript boundary information. BMC Genomics, 2022, 23, 68.	1.2	2
2628	Anthracyclines: biosynthesis, engineering and clinical applications. Natural Product Reports, 2022, 39, 814-841.	5.2	45
2629	Recent developments in genome design and assembly tools. , 2022, , 45-65.		2
2631	Cyclohumulanoid Sesquiterpenes Induced by the Noncompetitive Coculture of Phellinus orientoasiaticus and Xylodon flaviporus. Journal of Natural Products, 2022, , .	1.5	7
2632	From solo to duet, intersections of natural product assembly with self-resistance. Natural Product Reports, 2022, 39, 919-925.	5.2	7
2633	Mobilization of cryptic antibiotic biosynthesis loci from human-pathogenic Nocardia. Methods in Enzymology, 2022, 664, 173-197.	0.4	0
2634	Beyond Soil-Dwelling Actinobacteria: Fantastic Antibiotics and Where to Find Them. Antibiotics, 2022, 11, 195.	1.5	5
2635	Recent trends in genomic approaches for microbial bioprospecting. , 2022, , 13-26.		O

#	Article	IF	CITATIONS
2636	Some thoughts on the potential of global harmonization of antimicrobials regulation with a focus on chemical foodsafety. , 2022, , 175-185.		0
2637	Unique Physiological and Genetic Features of Ofloxacin-Resistant Streptomyces Mutants. Applied and Environmental Microbiology, 2022, 88, aem0232721.	1.4	2
2638	The ubiquitous catechol moiety elicits siderophore and angucycline production in Streptomyces. Communications Chemistry, 2022, 5, .	2.0	9
2639	Co-elicitation of lignocelluloytic enzymatic activities and metabolites production in an Aspergillus-Streptomyces co-culture during lignocellulose fractionation. Current Research in Microbial Sciences, 2022, 3, 100108.	1.4	9
2642	Screening of Novel Metabolites from Actinobacteria. Rhizosphere Biology, 2021, , 159-179.	0.4	0
2644	Synthetic biology in healthcare: technologies and applications. , 2022, , 41-53.		0
2645	Guidelines for metabolomics-guided transposon mutagenesis for microbial natural product discovery. Methods in Enzymology, 2022, 665, 305-323.	0.4	2
2646	How Streptomyces thrive: Advancing our understanding of classical development and uncovering new behaviors. Advances in Microbial Physiology, 2022, 80, 203-236.	1.0	5
2647	Amycolachromones A–F, Isolated from a Streptomycin-Resistant Strain of the Deep-Sea Marine Actinomycete Amycolatopsis sp. WP1. Marine Drugs, 2022, 20, 162.	2.2	3
2648	Discovery of actinomycin L, a new member of the actinomycin family of antibiotics. Scientific Reports, 2022, 12, 2813.	1.6	15
2649	Nutrient-depended metabolic switching during batch cultivation of Streptomyces coelicolor explored with absolute quantitative mass spectrometry-based metabolite profiling. 3 Biotech, 2022, 12, 80.	1.1	0
2650	Curation, inference, and assessment of a globally reconstructed gene regulatory network for Streptomyces coelicolor. Scientific Reports, 2022, 12, 2840.	1.6	5
2651	Effect of toyF on wuyiencin and toyocamycin production by Streptomyces albulus CK-15. World Journal of Microbiology and Biotechnology, 2022, 38, 65.	1.7	3
2652	Whole genome sequencing of the halophilic Halomonas qaidamensis XH36, a novel species strain with high ectoine production. Antonie Van Leeuwenhoek, 2022, 115, 545-559.	0.7	2
2653	Role for a Lytic Polysaccharide Monooxygenase in Cell Wall Remodeling in Streptomyces coelicolor. MBio, 2022, 13, e0045622.	1.8	16
2654	A DasA family sugar binding protein Ste2 links nutrient and oxidative stress to exopolysaccharides production in Streptomyces sp. 139. BMC Microbiology, 2022, 22, 69.	1.3	0
2655	A Proteomic Analysis Indicates That Oxidative Stress Is the Common Feature Triggering Antibiotic Production in Streptomyces coelicolor and in the pptA Mutant of Streptomyces lividans. Frontiers in Microbiology, 2021, 12, 813993.	1.5	9
2656	Iron-Induced Respiration Promotes Antibiotic Resistance in Actinomycete Bacteria. MBio, 2022, 13, e0042522.	1.8	3

#	Article	IF	CITATIONS
2657	Mutation of MtrA at the Predicted Phosphorylation Site Abrogates Its Role as a Global Regulator in Streptomyces venezuelae. Microbiology Spectrum, 2022, 10, e0213121.	1.2	2
2658	The regulatory gene <scp><i>wblA</i></scp> is a target of the orphan response regulator <scp>OrrA</scp> in <i>Streptomyces coelicolor</i> in Environmental Microbiology, 2022, 24, 3081-3096.	1.8	4
2659	Genome Sequence of <i>Streptomyces</i> sp. Strain GQFP Isolated from Soil Near the Roots of Pharmaceutical Plant Elaeagnus pungens. Microbiology Resource Announcements, 2022, , e0000222.	0.3	0
2660	Characterization of stereospecific enoyl reductase ActVI-ORF2 for pyran ring formation in the actinorhodin biosynthesis of Streptomyces coelicolor A3(2). Bioorganic and Medicinal Chemistry Letters, 2022, 66, 128727.	1.0	3
2661	Transcriptome-guided identification of a four-component system, SbrH1-R, that modulates milbemycin biosynthesis by influencing gene cluster expression, precursor supply, and antibiotic efflux. Synthetic and Systems Biotechnology, 2022, 7, 705-717.	1.8	4
2662	Streptomyces as Microbial Chassis for Heterologous Protein Expression. Frontiers in Bioengineering and Biotechnology, 2021, 9, 804295.	2.0	12
2664	Actinobacteria From Desert: Diversity and Biotechnological Applications. Frontiers in Microbiology, 2021, 12, 765531.	1.5	26
2665	Genome Characteristics Reveal the Biocontrol Potential of Actinobacteria Isolated From Sugarcane Rhizosphere. Frontiers in Microbiology, 2021, 12, 797889.	1.5	16
2668	Metabolic Engineering of Actinomycetes for Natural Product Discovery. , 2022, , 267-307.		1
2670	Exploration of Secondary Metabolite Production Potential in Actinobacteria Isolated From Kandelia candel Mangrove Plant. Frontiers in Marine Science, 2022, 9, .	1.2	1
2671	SspH, a Novel HATPase Family Regulator, Controls Antibiotic Biosynthesis in Streptomyces. Antibiotics, 2022, 11, 538.	1.5	5
2672	Improved Productivity of Streptomyces mobaraensis Transglutaminase by Regulating Zymogen Activation. Frontiers in Bioengineering and Biotechnology, 2022, 10, 878795.	2.0	1
2673	Epigenetic Modification: A Key Tool for Secondary Metabolite Production in Microorganisms. Frontiers in Microbiology, 2022, 13, 784109.	1.5	7
2757	Completed Genomes: Bacteria and Archaea. , 0, , 596-636.		0
2758	Precision Probiotics in Agroecosystems: Multiple Strategies of Native Soil Microbiotas for Conquering the Competitor Ralstonia solanacearum. MSystems, 2022, 7, e0115921.	1.7	4
2761	An approach to pathway reconstruction using whole genome metabolic models and sensitive sequence searching. Journal of Integrative Bioinformatics, 2009, 6, 107.	1.0	1
2762	Evolutionary Genome Mining for the Discovery and Engineering of Natural Product Biosynthesis. Methods in Molecular Biology, 2022, 2489, 129-155.	0.4	1
2763	Comparative Transcriptome-Based Mining of Genes Involved in the Export of Polyether Antibiotics for Titer Improvement. Antibiotics, 2022, 11, 600.	1.5	3

#	Article	IF	CITATIONS
2764	Mutational meltdown of putative microbial altruists in Streptomyces coelicolor colonies. Nature Communications, 2022, 13, 2266.	5.8	10
2765	Insights into <i>Streptomyces coelicolor</i> A3(2) growth and pigment formation with highâ€throughput online monitoring. Engineering in Life Sciences, 2023, 23, .	2.0	8
2766	Ms1 RNA Interacts With the RNA Polymerase Core in Streptomyces coelicolor and Was Identified in Majority of Actinobacteria Using a Linguistic Gene Synteny Search. Frontiers in Microbiology, 2022, 13, .	1.5	2
2767	Contrasting Health Effects of Bacteroidetes and Firmicutes Lies in Their Genomes: Analysis of P450s, Ferredoxins, and Secondary Metabolite Clusters. International Journal of Molecular Sciences, 2022, 23, 5057.	1.8	17
2768	Isolation of Antimicrobial Producing Actinomycetes from Indigenous Microhabitats Pakistan Biomedical Journal, 0, , 244-251.	0.0	0
2769	System-Wide Analysis of the GATC-Binding Nucleoid-Associated Protein Gbn and Its Impact on <i>Streptomyces </i> Development. MSystems, 2022, 7, e0006122.	1.7	4
2770	Antimicrobial Mechanism and Secondary Metabolite Profiles of Biocontrol Agent Streptomyces lydicus M01 Based on Ultra-High-Performance Liquid Chromatography Connected to a Quadrupole Time-of-Flight Mass Spectrometer Analysis and Genome Sequencing. Frontiers in Microbiology, 2022, 13, .	1.5	2
2771	MacRS controls morphological differentiation and natamycin biosynthesis in Streptomyces gilvosporeus F607. Microbiological Research, 2022, 262, 127077.	2.5	7
2774	On the Selective Isolation of Actinobacteria from Different Mexican Ecosystems. , 0, , .		0
2775	RIViT-seq enables systematic identification of regulons of transcriptional machineries. Nature Communications, 2022, 13, .	5.8	2
2776	Comparative genomic analysis of Streptomyces rapamycinicus NRRL 5491 and its mutant overproducing rapamycin. Scientific Reports, 2022, 12, .	1.6	2
2777	Biological Dark Matter Exploration using Data Mining for the Discovery of Antimicrobial Natural Products. Planta Medica, 2022, 88, 702-720.	0.7	1
2778	Disentangling the genetic basis of rhizosphere microbiome assembly in tomato. Nature Communications, 2022, 13, .	5.8	53
2779	An acyl-adenylate mimic reveals the structural basis for substrate recognition by the iterative siderophore synthetase DesD. Journal of Biological Chemistry, 2022, , 102166.	1.6	5
2780	A new bacterial tRNA enhances antibiotic production in <i>Streptomyces</i> by circumventing inefficient wobble base-pairing. Nucleic Acids Research, 2022, 50, 7084-7096.	6.5	6
2782	3-Amino-4-hydroxybenzoic acid production from glucose and/or xylose via recombinant <i>Streptomyces lividans</i> . Journal of General and Applied Microbiology, 2022, , .	0.4	0
2783	Draft Genome Sequence of <i>Streptomyces</i> sp. Strain PSAA01, Isolated from the Soil of Eastern Himalayan Foothills. Microbiology Resource Announcements, 0, , .	0.3	1
2784	Proteomining-Based Elucidation of Natural Product Biosynthetic Pathways in Streptomyces. Frontiers in Microbiology, 0, 13 , .	1.5	1

#	Article	IF	CITATIONS
2785	ActinoBase: tools and protocols for researchers working on Streptomyces and other filamentous actinobacteria. Microbial Genomics, 2022, 8, .	1.0	2
2786	Effects of carbon ion beam-induced mutagenesis for the screening of RED production-deficient mutants of Streptomyces coelicolor JCM4020. PLoS ONE, 2022, 17, e0270379.	1.1	6
2787	Optimizing the bacterial community structure and function in rhizosphere soil of sesame continuous cropping by the appropriate nitrate ammonium ratio. Rhizosphere, 2022, 23, 100550.	1.4	11
2789	Differential response of bacterial diversity and community composition to different tree ages of pomelo under red and paddy soils. Frontiers in Microbiology, 0, 13, .	1.5	4
2790	iChip-Inspired Isolation, Bioactivities and Dereplication of Actinomycetota from Portuguese Beach Sediments. Microorganisms, 2022, 10, 1471.	1.6	7
2791	AURTHO: Autoregulation of transcription factors as facilitator of cis-acting element discovery. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2022, 1865, 194847.	0.9	3
2792	Polyamine and Ethanolamine Metabolism in Bacteria as an Important Component of Nitrogen Assimilation for Survival and Pathogenicity. Medical Sciences (Basel, Switzerland), 2022, 10, 40.	1.3	16
2794	Unraveling the enzymatic and antibacterial potential of rare halophilic actinomycetes from Algerian hypersaline wetland ecosystems. Journal of Basic Microbiology, 2022, 62, 1202-1215.	1.8	1
2795	Divergent Evolution of Lanthipeptide Stereochemistry. ACS Chemical Biology, 2022, 17, 2551-2558.	1.6	8
2796	Actinobiota of <i>Rhaponticum carthamoides</i> (Willd.) Iljin roots as potential source of microbiological preparations for cropping. Agricultural Science Euro-North-East, 2022, 23, 515-526.	0.2	1
2797	Momomycin, an Antiproliferative Cryptic Metabolite from the Oxytetracycline Producer <i>Streptomyces rimosus</i> . Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
2798	Nonenzymatic Reactions in Natural Product Formation. Chemical Reviews, 2022, 122, 14815-14841.	23.0	12
2799	Momomycin, an Antiproliferative Cryptic Metabolite from the Oxytetracycline Producer <i>Streptomyces rimosus</i> . Angewandte Chemie, 0, , .	1.6	0
2800	Actinobacteria bioaugmentation and substrate evaluation for biobeds useful for the treatment of atrazine residues in agricultural fields. Journal of Environmental Management, 2022, 320, 115870.	3.8	2
2801	Potential of Streptomyces and Its Secondary Metabolites for Biocontrol of Fungal Plant Pathogens. Fungal Biology, 2022, , 3-22.	0.3	1
2802	An extended catalogue of ncRNAs in Streptomyces coelicolor reporting abundant tmRNA, RNase-P RNA and RNA fragments derived from pre-ribosomal RNA leader sequences. Archives of Microbiology, 2022, 204, .	1.0	0
2803	Screening Antifungal and Exceptional Colonization Strains from Nationwide Actinobacteria Library. Nong'yag Gwahag Hoeji, 2022, 26, 226-238.	0.1	0
2804	Whole lifecycle observation of singleâ€spore germinated <i>Streptomyces</i> using a nanogapâ€stabilized microfluidic chip. , 2022, 1, 341-349.		1

#	Article	IF	CITATIONS
2805	Exploration of mangrove-associated actinobacteria from South Andaman Islands, India. Systems Microbiology and Biomanufacturing, 2023, 3, 702-718.	1.5	1
2806	A stable vector for efficient production of heterologous proteins and secondary metabolites in streptomycetes. Applied Microbiology and Biotechnology, 2022, 106, 7285-7299.	1.7	2
2807	Phosphoproteome Dynamics of Streptomyces rimosus during Submerged Growth and Antibiotic Production. MSystems, 0, , .	1.7	2
2808	Chemoenzymatic Synthesis of Select Intermediates and Natural Products of the Desferrioxamine E Siderophore Pathway. Molecules, 2022, 27, 6144.	1.7	2
2809	Unravelling the DNA sequences carried by Streptomyces coelicolor membrane vesicles. Scientific Reports, 2022, 12, .	1.6	6
2810	Tunable population dynamics in a synthetic filamentous coculture. MicrobiologyOpen, 2022, 11, .	1.2	4
2811	Genomicsâ€Guided Efficient Identification of 2,5â€Diketopiperazine Derivatives from Actinobacteria. ChemBioChem, 2023, 24, .	1.3	6
2812	Metallophores: How do human pathogens withdraw metal ions from the colonized host. , 2023, , 553-574.		2
2813	Dihydromaniwamycin E, a Heat-Shock Metabolite from Thermotolerant <i>Streptomyces</i> sp. JA74, Exhibiting Antiviral Activity against Influenza and SARS-CoV-2 Viruses. Journal of Natural Products, 2022, 85, 2583-2591.	1.5	1
2814	EPIGENETIC MODIFIERS AND MINERALS AS TOOLS TO DIVERSIFY SECONDARY METABOLITE PRODUCTION IN FUNGI. , 2022, 51, 127-136.		0
2815	In Silico Analysis of Biochemical Pathways in Bacterial Enzyme Synthesis. Environmental and Microbial Biotechnology, 2022, , 405-433.	0.4	0
2816	<i>Streptomyces</i> cell-free systems for natural product discovery and engineering. Natural Product Reports, 2023, 40, 228-236.	5.2	14
2817	Furaquinocins K and L: Novel Naphthoquinone-Based Meroterpenoids from Streptomyces sp. Je 1-369. Antibiotics, 2022, 11, 1587.	1.5	4
2818	Integrated genomics and proteomics analysis of Paenibacillus peoriae IBSD35 and insights into its antimicrobial characteristics. Scientific Reports, 2022, 12, .	1.6	3
2819	mRNA levels of tricarboxylic acid cycle genes in Streptomyces coelicolor M145 cultured on glucose. Molecular Biology Reports, 0, , .	1.0	0
2823	Structural diversity, biosynthesis, and biological functions of lipopeptides from <i>Streptomyces</i> Natural Product Reports, 2023, 40, 557-594.	5.2	15
2824	Comparative Proteomic Analysis of Transcriptional and Regulatory Proteins Abundances in S. lividans and S. coelicolor Suggests a Link between Various Stresses and Antibiotic Production. International Journal of Molecular Sciences, 2022, 23, 14792.	1.8	4
2825	Ribosomal RNA operons define a central functional compartment in the <i>Streptomyces</i> chromosome. Nucleic Acids Research, 2022, 50, 11654-11669.	6.5	3

#	Article	IF	CITATIONS
2826	Mining Small Molecules from Teredinibacter turnerae Strains Isolated from Philippine Teredinidae. Metabolites, 2022, 12, 1152.	1.3	0
2827	NPOmix: A machine learning classifier to connect mass spectrometry fragmentation data to biosynthetic gene clusters. , 2022, 1 , .		7
2828	Antibiotic discovery in the artificial intelligence era. Annals of the New York Academy of Sciences, 2023, 1519, 74-93.	1.8	13
2829	Actinorhodin Biosynthesis Terminates with an Unprecedented Biaryl Coupling Reaction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
2830	Plastid Transformation: New Challenges in the Circular Economy Era. International Journal of Molecular Sciences, 2022, 23, 15254.	1.8	3
2831	Two-Component Systems of Streptomyces coelicolor: An Intricate Network to Be Unraveled. International Journal of Molecular Sciences, 2022, 23, 15085.	1.8	6
2832	Antarctic fungi with antibiotic potential isolated from Fort William Point, Antarctica. Scientific Reports, 2022, 12, .	1.6	2
2833	Navigating and expanding the roadmap of natural product genome mining tools. Beilstein Journal of Organic Chemistry, 0, 18, 1656-1671.	1.3	6
2834	CaExTun: Mitigating Cas9-Related Toxicity in <i>Streptomyces</i> Tuning with Randomized Constitutive Promoters. ACS Synthetic Biology, 2023, 12, 61-70.	1.9	2
2835	Actinorhodin Biosynthesis Terminates with an Unprecedented Biaryl Coupling Reaction. Angewandte Chemie, 0, , .	1.6	0
2836	Fighting antibiotic resistance—strategies and (pre)clinical developments to find new antibacterials. EMBO Reports, 2023, 24, .	2.0	51
2838	An overview on the two-component systems of Streptomyces coelicolor. World Journal of Microbiology and Biotechnology, 2023, 39, .	1.7	2
2839	Microbial Genomics: Innovative Targets and Mechanisms. Antibiotics, 2023, 12, 190.	1.5	1
2840	Three Actinobacterial Isolates from Western Ghats of Kerala, India: Genome Mining for Their Bioative Potential., 2023,, 395-407.		0
2841	Genomic and Metabolite Profiling Reveal a Novel <i>Streptomyces</i> Strain, QHH-9511, from the Qinghai-Tibet Plateau. Microbiology Spectrum, 2023, 11, .	1.2	4
2842	Identification and taxonomy of Streptomyces justiciae strain RA-WS2: a novel setomimycin producing actinobacterium. 3 Biotech, 2023, 13, .	1.1	1
2843	Topographically Distinguished Microbiome Taxonomy and Stress-Response Genes of Royal Belum Rainforest and Raja Muda Musa Peat Swamp Revealed through Metagenomic Inquisition. International Journal of Molecular Sciences, 2023, 24, 872.	1.8	0
2844	Interconnected Set of Enzymes Provide Lysine Biosynthetic Intermediates and Ornithine Derivatives as Key Precursors for the Biosynthesis of Bioactive Secondary Metabolites. Antibiotics, 2023, 12, 159.	1.5	0

#	Article	IF	Citations
2845	In Silico Prediction of Secondary Metabolites and Biosynthetic Gene Clusters Analysis of Streptomyces thinghirensis HM3 Isolated from Arid Soil. Fermentation, 2023, 9, 65.	1.4	3
2847	Sources of Antifungal Drugs. Journal of Fungi (Basel, Switzerland), 2023, 9, 171.	1.5	15
2848	The potential of facultative predatory Actinomycetota spp. and prospects in agricultural sustainability. Frontiers in Microbiology, 0, 13 , .	1.5	1
2849	Characterization of the Ensemble of Lignin-Remodeling DyP-Type Peroxidases from Streptomyces coelicolor A3(2). Energies, 2023, 16, 1557.	1.6	4
2850	Antibacterial Activity and Extraction of Bioactive Compound from Actinomycetes. Springer Protocols, 2023, , 195-198.	0.1	1
2852	Cost-effective hybrid long-short read assembly delineates alternative GC-rich Streptomyces hosts for natural product discovery. Synthetic and Systems Biotechnology, 2023, 8, 253-261.	1.8	0
2853	Classification and Secondary Metabolite-Biosynthetic Gene Clusters of Marine Streptomyces Strains Including a Lobophorin- and Divergolide-Producer. Hydrobiology, 2023, 2, 151-161.	0.9	3
2854	Metabolomics Reveals a "Trimeric―γâ€Actinorhodin from <i>Streptomyces coelicolor</i> M145. ChemBioChem, 2023, 24, .	1.3	0
2856	Small Spatial Scale Drivers of Secondary Metabolite Biosynthetic Diversity in Environmental Microbiomes. MSystems, 0, , .	1.7	1
2858	Antiproliferative activity of antimicrobial peptides and bioactive compounds from the mangrove Glutamicibacter mysorens. Frontiers in Microbiology, 0, 14, .	1.5	3
2860	Bioactive Metabolite Survey of Actinobacteria Showing Plant Growth Promoting Traits to Develop Novel Biofertilizers. Metabolites, 2023, 13, 374.	1.3	6
2861	Whole-genome sequencing-based characterization of Streptomyces sp. 6(4): focus on natural product. Access Microbiology, 2023, 5, .	0.2	0
2862	Dissection of 3D chromosome organization in <i>Streptomyces coelicolor</i> A3(2) leads to biosynthetic gene cluster overexpression. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	6
2864	Metabolic adjustments in response to ATP spilling by the small DX protein in a Streptomyces strain. Frontiers in Cell and Developmental Biology, 0, 11 , .	1.8	1
2865	Two new siderophores produced by Pseudomonas sp. NCIMB 10586: The anti-oomycete non-ribosomal peptide synthetase-dependent mupirochelin and the NRPS-independent triabactin. Frontiers in Microbiology, 0, 14, .	1.5	1
2866	Complete Genome Sequence of Streptomyces sp. HP-A2021, a Promising Bacterium for Natural Product Discovery. Biochemical Genetics, 0, , .	0.8	0
2867	Mining metagenomes reveals diverse antibiotic biosynthetic genes in uncultured microbial communities. Brazilian Journal of Microbiology, 0, , .	0.8	0
2868	Recent advances in the direct cloning of large natural product biosynthetic gene clusters. Engineering Microbiology, 2023, 3, 100085.	2.2	5

#	Article	IF	CITATIONS
2869	The evolution of morphological development is congruent with the species phylogeny in the genus Streptomyces. Frontiers in Microbiology, 0, 14 , .	1.5	0
2870	Genome-Guided Discovery of the Myxobacterial Thiolactone-Containing Sorangibactins. ACS Chemical Biology, 2023, 18, 924-932.	1.6	4
2872	Streptomyces RNases – Function and impact on antibiotic synthesis. Frontiers in Microbiology, 0, 14, .	1.5	1
2873	Direct Monitoring of Membrane Fatty Acid Changes and Effects on the Isoleucine/Valine Pathways in an <i>ndgR</i> Deletion Mutant of <i>Streptomyces coelicolor</i> Journal of Microbiology and Biotechnology, 2023, 33, 724-735.	0.9	0
2874	Exploring halophilic environments as a source of new antibiotics. Critical Reviews in Microbiology, 0, , 1-30.	2.7	2
2877	Mining Cyanobacterial Genomes for Drug-Like and Bioactive Natural Products. , 2012, , 159-197.		0
2878	Mining Microbial Genomes for Metabolic Products of Cryptic Pathways., 2012,, 140-158.		0
2888	Recent advances on Pestalotiopsis genus: chemistry, biological activities, structure–activity relationship, and biosynthesis. Archives of Pharmacal Research, 2023, 46, 449-499.	2.7	3
2896	Challenges in the development of novel antibiotics. , 2023, , 65-85.		0
2904	Bioprospecting of unexplored halophilic actinobacteria against human infectious pathogens. 3 Biotech, 2023, 13, .	1.1	1
2911	Soil Inhabitant Bacteria: Morphology, Life Cycle and Importance in Agriculture and Other Industries. , 2023, , 12-25.		0
2913	Chemistry and biology of specialized metabolites produced by <i>Actinomadura</i> . Natural Product Reports, 0, , .	5.2	0
2918	Synthesis of Biogenic Nanomaterials, Their Characterization, and Applications. Environmental Science and Engineering, 2024, , 45-75.	0.1	0
2931	Fungal Endophytes: An Accessible Natural Repository for Discovery of Bioactive Compounds. , 2024, , 85-108.		0
2935	Antimicrobials: An update on new strategies to diversify treatment for bacterial infections. Advances in Microbial Physiology, 2024, , .	1.0	0