The amount of carbon released from peat and forest fire

Nature 420, 61-65 DOI: 10.1038/nature01131

Citation Report

#	Article	IF	CITATIONS
1	Risk assessment and management of wildfires. , 0, , 398-444.		5
2	The wildfire factor. Nature, 2002, 420, 29-30.	13.7	109
3	What is a naked retina good for?. Nature, 2002, 420, 30-31.	13.7	5
4	A Balanced Synthesis of Peatland Research. Global Ecology and Biogeography, 2003, 12, 438-439.	2.7	0
5	Fire science for rainforests. Nature, 2003, 421, 913-919.	13.7	922
6	Indonesian smoke aerosols from peat fires and the contribution from volcanic sulfur emissions. Geophysical Research Letters, 2003, 30, .	1.5	33
7	Indonesian wildfires of 1997: Impact on tropospheric chemistry. Journal of Geophysical Research, 2003, 108, .	3.3	140
8	MODIS data used to study 2002 fires in Kalimantan, Indonesia. Eos, 2003, 84, 189-192.	0.1	8
9	Key Senators issue call for "meaningful―climate legislation. Eos, 2003, 84, 190-190.	0.1	0
10	Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels. Journal of Geophysical Research, 2003, 108, .	3.3	369
11	Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography, 2003, 18, n/a-n/a.	3.0	319
12	THEROLE OFCARBONCYCLEOBSERVATIONS ANDKNOWLEDGE INCARBONMANAGEMENT. Annual Review of Environment and Resources, 2003, 28, 521-558.	5.6	37
13	From space to species: ecological applications for remote sensing. Trends in Ecology and Evolution, 2003, 18, 299-305.	4.2	1,063
15	DYNAMICS OFLAND-USE ANDLAND-COVERCHANGE INTROPICALREGIONS. Annual Review of Environment and Resources, 2003, 28, 205-241.	5.6	1,992
16	The Contemporary Carbon Cycle. , 2003, , 473-513.		42
17	CLIMATECHANGE, CLIMATEMODES, ANDCLIMATEIMPACTS. Annual Review of Environment and Resources, 2003, 28, 1-28.	5.6	62
18	Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984-2000. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5852-5857.	3.3	450
19	Forest Cover of Insular Southeast Asia Mapped from Recent Satellite Images of Coarse Spatial Resolution. Ambio, 2003, 32, 469-475.	2.8	30

TATION REDO

#	Article	IF	CITATIONS
20	CO ₂ flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmospheric Chemistry and Physics, 2003, 3, 1919-1964.	1.9	528
21	The fossil fuel combustion and fire history in Osaka city by analyzing spheroidal carbonaceous particles (SCPs) and charcoal of the Osaka Castle moat sediments. Journal of the Geological Society of Japan, 2004, 110, 11-18.	0.2	5
22	Charcoal and organic geochemical properties as an evidence of Holocene fires in tropical peatland, Central Kalimantan, Indonesia. Tropics, 2004, 14, 55-63.	0.2	13
23	Combustion and thermal characteristics of peat fire in tropical peatland in Central Kalimantan, Indonesia. Tropics, 2004, 14, 1-19.	0.2	184
24	Ecological responses to El Niño–induced surface fires in central Brazilian Amazonia: management implications for flammable tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 367-380.	1.8	190
25	Continental-Scale Partitioning of Fire Emissions During the 1997 to 2001 El Nino/La Nina Period. Science, 2004, 303, 73-76.	6.0	549
26	Tropical forests and global warming: slowing it down or speeding it up?. Frontiers in Ecology and the Environment, 2004, 2, 73-80.	1.9	55
27	Carbon cycling and storage in world forests: biome patterns related to forest age. Global Change Biology, 2004, 10, 2052-2077.	4.2	756
28	Loss of Forest Cover in Kalimantan, Indonesia, Since the 1997-1998 El Niño. Conservation Biology, 2004, 18, 249-254.	2.4	120
29	Amazon drought and its implications for forest flammability and tree growth: a basin-wide analysis. Global Change Biology, 2004, 10, 704-717.	4.2	345
30	An Earth on fire. Nature, 2004, 428, 130-131.	13.7	0
31	Borneo is burning. Nature, 2004, 432, 144-146.	13.7	113
32	Financing sustainable development: Country Undertakings and Rights for Environmental Sustainability CURES. Ecological Economics, 2004, 51, 65-78.	2.9	9
33	A drought-based predictor of recent haze events in western Indonesia. Atmospheric Environment, 2004, 38, 1869-1878.	1.9	34
34	A Global Inventory of Burned Areas at 1 Km Resolution for the Year 2000 Derived from Spot Vegetation Data. Climatic Change, 2004, 67, 345-377.	1.7	60
35	Environmental change and peatland forest dynamics in the Lake Sentarum area, West Kalimantan, Indonesia. Journal of Quaternary Science, 2004, 19, 637-655.	1.1	103
36	A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog(Kalimantan, Indonesia): implications for past, present and future carbon dynamics. Journal of Quaternary Science, 2004, 19, 625-635.	1.1	266
37	Introduction: Late Quaternary ecosystem dynamics and carbon cycling in the tropics. Journal of Quaternary Science, 2004, 19, 623-624.	1.1	0

#	Article	IF	Citations
38	Coal fires in Indonesia. International Journal of Coal Geology, 2004, 59, 91-97.	1.9	58
39	Land Change Science. Remote Sensing and Digital Image Processing, 2004, , .	0.7	102
40	Sources or sinks? The responses of tropical forests to current and future climate and atmospheric composition. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 477-491.	1.8	206
41	Peat fires detected by the BIRD satellite. International Journal of Remote Sensing, 2004, 25, 3221-3230.	1.3	29
42	ENVISAT multisensor data for fire monitoring and impact assessment. International Journal of Remote Sensing, 2004, 25, 4411-4416.	1.3	24
43	Emerging infections in animals—potential new zoonoses?. Clinics in Laboratory Medicine, 2004, 24, 825-838.	0.7	13
44	The large-scale biosphere-atmosphere experiment in Amazonia: Analyzing regional land use change effects. Geophysical Monograph Series, 2004, , 321-334.	0.1	6
45	Improved estimates of net carbon emissions from land cover change in the tropics for the 1990s. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	1.9	309
46	Trends in atmospheric haze induced by peat fires in Sumatra Island, Indonesia and El Niño phenomenon from 1973 to 2003. Geophysical Research Letters, 2004, 31, .	1.5	35
47	Vegetation burning in the year 2000: Global burned area estimates from SPOT VEGETATION data. Journal of Geophysical Research, 2004, 109, .	3.3	181
48	Satellite estimation of photosynthetically active radiation in Southeast Asia: Impacts of smoke and cloud cover. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	20
49	Estimating the direct radiative forcing due to haze from the 1997 forest fires in Indonesia. Journal of Geophysical Research, 2004, 109, .	3.3	38
50	Global estimates of biomass burning emissions based on satellite imagery for the year 2000. Journal of Geophysical Research, 2004, 109, .	3.3	226
51	Historical burn area in western Canadian peatlands and its relationship to fire weather indices. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	1.9	135
52	CH4sources estimated from atmospheric observations of CH4and its13C/12C isotopic ratios: 1. Inverse modeling of source processes. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	1.9	139
53	El Niño-Southern Oscillation-induced variability in terrestrial carbon cycling. Journal of Geophysical Research, 2004, 109, .	3.3	42
54	Improving global estimates of atmospheric emissions from biomass burning. Journal of Geophysical Research, 2004, 109, .	3.3	87
55	Seasonal cycles of mixing ratio and13C in atmospheric methane at Suva, Fiji. Journal of Geophysical Research, 2004, 109, .	3.3	11

#	Article	IF	CITATIONS
56	Effects of land-use change on the carbon balance of terrestrial ecosystems. Geophysical Monograph Series, 2004, , 85-98.	0.1	92
57	Another reason for concern: regional and global impacts on ecosystems for different levels of climate change. Global Environmental Change, 2004, 14, 219-228.	3.6	171
58	Runaway Fires, Smokeâ€Haze Pollution, and Unnatural Disasters in Indonesia. Geographical Review, 2004, 94, 55-79.	0.9	57
59	Release and dispersion of vegetation and peat fire emissions in the atmosphere over Indonesia 1997/1998. Atmospheric Chemistry and Physics, 2004, 4, 2145-2160.	1.9	52
60	Evolution of the 2002/03 El Niño*. Bulletin of the American Meteorological Society, 2004, 85, 677-696.	1.7	311
61	Smouldering front shapes for steady propagation in a stratified medium. IMA Journal of Applied Mathematics, 2004, 69, 375-390.	0.8	1
62	Mechanisms of Malaysian Rainfall Anomalies. Journal of Climate, 2004, 17, 3616-3622.	1.2	69
63	Reverberations of Change: The Responses of the Earth System to Human Activities. Global Change - the IGBP Series, 2005, , 143-202.	2.1	0
64	A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmospheric Chemistry and Physics, 2005, 5, 799-825.	1.9	1,111
65	A review of biomass burning emissions part III: intensive optical properties of biomass burning particles. Atmospheric Chemistry and Physics, 2005, 5, 827-849.	1.9	484
66	Estimating CO2 fixation by the rate of accumulation of peat in South Sarobetsu. Proceedings of the Symposium on Global Environment, 2005, 13, 335-340.	0.0	0
67	Variability in Terrestrial Carbon Sinks over Two Decades. Part III: South America, Africa, and Asia. Earth Interactions, 2005, 9, 1-15.	0.7	2
68	Fire assisted pastoralism vs. sustainable forestry—the implications of missing markets for carbon in determining optimal land use in the wet–dry tropics of Australia. Journal of Environmental Management, 2005, 75, 1-9.	3.8	10
69	Remote detection and quantification of hot molecular combustion products—experimental instrumentation and determination of optimal infrared spectral micro-windows. Journal of Molecular Structure, 2005, 744-747, 235-242.	1.8	1
70	Seasonal patterns in biomass burning emissions from southern African vegetation fires for the year 2000. Global Change Biology, 2005, 11, 1680-1700.	4.2	42
71	The Stratigraphy and Fire History of the Kutai Peatlands, Kalimantan, Indonesia. Quaternary Research, 2005, 64, 407-417.	1.0	70
72	Evolution of ENSO-related rainfall anomalies in Southeast Asia region and its relationship with atmosphere–ocean variations in Indo-Pacific sector. Climate Dynamics, 2005, 25, 337-350.	1.7	171
73	Biomass of a man-made forest of timber tree species in the humid tropics of West Java, Indonesia. Journal of Forest Research, 2005, 10, 487-491.	0.7	4

#	Article	IF	CITATIONS
74	Tropical Deforestation and the Kyoto Protocol. Climatic Change, 2005, 71, 267-276.	1.7	282
76	Monitoring Vegetation Recovery after Fire through Multitemporal Analysis of Satellite Data in a Tropical Swamp Forest of Central Kalimantan. J Agricultural Meteorology, 2005, 60, 1009-1012.	0.8	1
77	Detecção de cicatrizes de áreas queimadas baseada no modelo linear de mistura espectral e imagens Ãndice de vegetação utilizando dados multitemporais do sensor MODIS/TERRA no estado do Mato Grosso, Amazônia brasileira. Acta Amazonica, 2005, 35, 445-456.	0.3	20
78	Planetary Machinery: The Dynamics of the Earth System Prior to Significant Human Influence. Global Change - the IGBP Series, 2005, , 11-80.	2.1	Ο
79	Plantation Agriculture in the Tropics. Outlook on Agriculture, 2005, 34, 11-21.	1.8	58
80	MICROMETEOROLOGICAL AND CANOPY CONTROLS OF FIRE SUSCEPTIBILITY IN A FORESTED AMAZON LANDSCAPE. , 2005, 15, 1664-1678.		188
82	Connection between fire and land cover change in Southeast Asia: a remote sensing case study in Riau, Sumatra. International Journal of Remote Sensing, 2005, 26, 1109-1126.	1.3	19
83	The fate of organic matter in a papyrus (Cyperus papyrusL.) dominated tropical wetland ecosystem in Nyanza Gulf (Lake Victoria, Kenya) inferred from 113C and 115N analysis. Isotopes in Environmental and Health Studies, 2005, 41, 379-390.	0.5	14
84	Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests. Forest Ecology and Management, 2005, 208, 189-209.	1.4	211
85	Geostatistical estimation of tropical peat-soil volume at Bacho, Thailand: impact of spatial support size and censored information. Geoderma, 2005, 125, 235-247.	2.3	6
86	Multiple constraints on regional CO2flux variations over land and oceans. Global Biogeochemical Cycles, 2005, 19, .	1.9	154
87	Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS). Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	1.9	261
88	Role of biomass burning and climate anomalies for land-atmosphere carbon fluxes based on inverse modeling of atmospheric CO2. Global Biogeochemical Cycles, 2005, 19, .	1.9	101
89	Terrestrial mechanisms of interannual CO2variability. Global Biogeochemical Cycles, 2005, 19, .	1.9	256
90	Fire emissions from C3and C4vegetation and their influence on interannual variability of atmospheric CO2and δ13CO2. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	1.9	108
91	Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870-2000. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	1.9	184
92	Inverse modeling of biomass burning emissions using Total Ozone Mapping Spectrometer aerosol index for 1997. Journal of Geophysical Research, 2005, 110, .	3.3	39
93	Global-scale drought caused atmospheric CO2 increase. Eos, 2005, 86, 178.	0.1	25

#	Article	IF	CITATIONS
94	Laboratory measurements of smoke optical properties from the burning of Indonesian peat and other types of biomass. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	33
95	Simultaneous mass balance inverse modeling of methane and carbon monoxide. Journal of Geophysical Research, 2005, 110, .	3.3	25
96	ENSO as an Integrating Concept in Earth Science. Science, 2006, 314, 1740-1745.	6.0	1,315
97	Chapter 7 Lowland tropical peatlands of Southeast Asia. Developments in Earth Surface Processes, 2006, 9, 145-172.	2.8	83
98	Extreme climatic events shape arid and semiarid ecosystems. Frontiers in Ecology and the Environment, 2006, 4, 87-95.	1.9	380
99	TransCom 3 inversion intercomparison: Impact of transport model errors on the interannual variability of regional CO2fluxes, 1988-2003. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	1.9	417
100	Ocean color variability in the Indonesian Seas during the SeaWiFS era. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	1.0	104
101	Carbon emissions from a temperate peat fire and its relevance to interannual variability of trace atmospheric greenhouse gases. Journal of Geophysical Research, 2006, 111, .	3.3	66
102	Southern Hemisphere carbon monoxide interannual variability observed by Terra/Measurement of Pollution in the Troposphere (MOPITT). Journal of Geophysical Research, 2006, 111, .	3.3	78
103	Keeping the forest for the climate's sake: avoiding deforestation in developing countries under the UNFCCC. Climate Policy, 2006, 6, 275-294.	2.6	27
104	Can biomass burning produce a globally significant carbon-isotope excursion in the sedimentary record?. Earth and Planetary Science Letters, 2006, 250, 501-510.	1.8	29
105	Interrelationships between Hydrology and Ecology in Fire Degraded Tropical Peat Swamp Forests. International Journal of Water Resources Development, 2006, 22, 157-174.	1.2	95
106	Soils as sources and sinks of greenhouse gases. Geological Society Special Publication, 2006, 266, 23-44.	0.8	8
107	Biomass Recovery of Naturally Regenerated Vegetation after the 1998 Forest Fire in East Kalimantan, Indonesia. Japan Agricultural Research Quarterly, 2006, 40, 277-282.	0.1	21
108	Linking Future Ecosystem Services and Future Human Well-being. Ecology and Society, 2006, 11, .	1.0	113
109	Vegetation and environmental change in the early-Middle holocene at a tropical peat swamp forest, Central Kalimantan, Indonesia. Tropics, 2006, 15, 65-73.	0.2	6
110	The impact of forest fires and resultant haze on terrestrial ecosystems and human health in central Kalimantan, Indonesia. Tropics, 2006, 15, 321-326.	0.2	0
111	Screening the ESA ATSR-2 World Fire Atlas (1997–2002). Atmospheric Chemistry and Physics, 2006, 6, 1409-1424.	1.9	41

#	Article	IF	CITATIONS
112	Interannual variability in global biomass burning emissions from 1997 to 2004. Atmospheric Chemistry and Physics, 2006, 6, 3423-3441.	1.9	1,573
113	Energy source or sink? The role of the uplands in meeting our energy targets. International Journal of Biodiversity Science and Management, 2006, 2, 196-199.	0.7	4
114	North Pacific warming and intense northwestern U.S. wildfires. Geophysical Research Letters, 2006, 33, .	1.5	8
115	Bat diversity in oligotrophic forests of southern Borneo. Oryx, 2006, 40, 447-455.	0.5	24
116	Remote sensing of fire regimes in semi-arid Nusa Tenggara Timur, eastern Indonesia: current patterns, future prospects. International Journal of Wildland Fire, 2006, 15, 307.	1.0	23
117	Impacts and Wildfires - An Analysis of the K-T Event. , 2006, , 221-243.		6
118	Livelihoods, fire and policy in eastern Indonesia. Singapore Journal of Tropical Geography, 2006, 27, 67-81.	0.6	22
119	Effects of agricultural land-use change and forest fire on N2O emission from tropical peatlands, Central Kalimantan, Indonesia. Soil Science and Plant Nutrition, 2006, 52, 662-674.	0.8	84
120	The role of carbon dioxide in climate forcing from 1979 to 2004: introduction of the Annual Greenhouse Gas Index. Tellus, Series B: Chemical and Physical Meteorology, 2006, 58, 614-619.	0.8	132
121	Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 2006, 440, 165-173.	13.7	5,114
122	Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature, 2006, 443, 439-443.	13.7	935
123	Effects of environmental variations on CO2 Efflux from a Tropical Peatland in eastern Sumatra. Wetlands, 2006, 26, 612-618.	0.7	30
124	The Enso-Fire Dynamic in Insular Southeast Asia. Climatic Change, 2006, 74, 435-455.	1.7	95
125	Community fire use, resource change, and livelihood impacts: The downward spiral in the wetlands of southern Sumatra. Mitigation and Adaptation Strategies for Global Change, 2006, 12, 75-100.	1.0	39
126	Fires in tropical forests – what is really the problem? lessons from Indonesia. Mitigation and Adaptation Strategies for Global Change, 2006, 12, 55-66.	1.0	105
127	Development of the Indonesian and Malaysian Fire Danger Rating Systems. Mitigation and Adaptation Strategies for Global Change, 2006, 12, 165-180.	1.0	115
128	History of equatorial vegetation fires and fire research in Southeast Asia before the 1997–98 episode: A reconstruction of creeping environmental changes. Mitigation and Adaptation Strategies for Global Change, 2006, 12, 13-32.	1.0	53
129	Indonesian peat and vegetation fire emissions: Study on factors influencing large-scale smoke haze pollution using a regional atmospheric chemistry model. Mitigation and Adaptation Strategies for Global Change, 2006, 12, 113-133.	1.0	82

#	Article	IF	CITATIONS
130	Vulnerability of land systems to fire: Interactions among humans, climate, the atmosphere, and ecosystems. Mitigation and Adaptation Strategies for Global Change, 2006, 12, 33-53.	1.0	154
131	Climate anomalies, Indonesian vegetation fires and terrestrial carbon emissions. Mitigation and Adaptation Strategies for Global Change, 2006, 12, 101-112.	1.0	63
132	Local to global perspectives on forest and land fires in Southeast Asia. Mitigation and Adaptation Strategies for Global Change, 2006, 12, 3-11.	1.0	44
133	Increase in carbon emissions from forest fires after intensive reforestation and forest management programs. Science of the Total Environment, 2006, 372, 225-235.	3.9	14
134	Tropical Peatland water management modelling of the Air Hitam Laut catchment in Indonesia. International Journal of River Basin Management, 2006, 4, 233-244.	1.5	28
135	Tropical forests and the changing earth system. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 195-210.	1.8	262
136	Transboundary Perspectives on Managing Indonesia's Fires. Journal of Environment and Development, 2006, 15, 202-223.	1.6	30
138	Variability of fireâ€induced changes in MODIS surface reflectance by landâ€cover type in Borneo. International Journal of Remote Sensing, 2007, 28, 4967-4984.	1.3	14
139	Carbon and Climate System Coupling on Timescales from the Precambrian to the Anthropocene. Annual Review of Environment and Resources, 2007, 32, 31-66.	5.6	104
140	ALOS PALSAR radar observation of tropical peat swamp forest as a monitoring tool for environmental protection and restoration. , 2007, , .		5
141	Multiâ€ŧemporal assessment of selective logging in the Brazilian Amazon using Landsat data. International Journal of Remote Sensing, 2007, 28, 63-82.	1.3	33
142	ENVIRONMENT: The Burning Issue. Science, 2007, 316, 376-376.	6.0	66
143	Long-time risk of groundwater/drinking water pollution with sulphuric compounds beneath burned peatlands in Indonesia. Water Science and Technology, 2007, 56, 253-258.	1.2	2
144	Subsurface coal fires in the Raniganj coalbelt: investigating their causes and assessing human impacts. Journal of Resources Energy and Development, 2007, 4, 71-87.	0.2	3
145	Burnt area estimation for the year 2005 in Borneo using multi-resolution satellite imagery. International Journal of Wildland Fire, 2007, 16, 45.	1.0	34
146	The Tropical Forest and Fire Emissions Experiment: overview and airborne fire emission factor measurements. Atmospheric Chemistry and Physics, 2007, 7, 5175-5196.	1.9	212
147	The Tension between Fire Risk and Carbon Storage: Evaluating U.S. Carbon and Fire Management Strategies through Ecosystem Models. Earth Interactions, 2007, 11, 1-33.	0.7	13
148	Biogeochemistry of the Dumai River estuary, Sumatra, Indonesia, a tropical blackâ€water river. Limnology and Oceanography, 2007, 52, 2410-2417.	1.6	59

#	Article	IF	CITATIONS
149	Elemental carbon record of paleofire history on the Chinese Loess Plateau during the last 420Âka and its response to environmental and climate changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252, 617-625.	1.0	47
150	Anomalous celestial polarization caused by forest fire smoke: why do some insects become visually disoriented under smoky skies?. Applied Optics, 2007, 46, 2717.	2.1	30
151	Uncontrolled coal fires and their environmental impacts: Investigating two arid mining regions in north-central China. Applied Geography, 2007, 27, 42-62.	1.7	194
152	How strongly can forest management influence soil carbon sequestration?. Geoderma, 2007, 137, 253-268.	2.3	1,076
153	Detection of burned peat swamp forest in a heterogeneous tropical landscape: A case study of the Klias Peninsula, Sabah, Malaysia. Landscape and Urban Planning, 2007, 82, 103-116.	3.4	80
154	Balancing the Global Carbon Budget. Annual Review of Earth and Planetary Sciences, 2007, 35, 313-347.	4.6	821
155	Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environmental Research Letters, 2007, 2, 045023.	2.2	1,003
156	No Forest Left Behind. PLoS Biology, 2007, 5, e216.	2.6	55
158	Characterization and Source Apportionment of Particulate Matter ≤.5 μm in Sumatra, Indonesia, during a Recent Peat Fire Episode. Environmental Science & Technology, 2007, 41, 3488-3494.	4.6	109
159	Carbon in Terrestrial Systems. Journal of Sustainable Forestry, 2007, 25, 17-41.	0.6	7
160	Future precipitation changes and their implications for tropical peatlands. Geophysical Research Letters, 2007, 34, .	1.5	65
161	Impact of terrestrial biosphere carbon exchanges on the anomalous CO2increase in 2002-2003. Geophysical Research Letters, 2007, 34, .	1.5	31
162	The tropical forest and fire emissions experiment: Trace gases emitted by smoldering logs and dung from deforestation and pasture fires in Brazil. Journal of Geophysical Research, 2007, 112, .	3.3	61
163	Peatlands and the carbon cycle: From local processes to global implications. Eos, 2007, 88, 295-295.	0.1	6
164	Global modeling analysis of tropospheric ozone and its radiative forcing from biomass burning emissions in the twentieth century. Journal of Geophysical Research, 2007, 112, .	3.3	16
165	Pyrogenic carbon emission from a large wildfire in Oregon, United States. Journal of Geophysical Research, 2007, 112, .	3.3	148
166	Impacts of haze in 2002 on social activity and human health in Palangka Raya. Tropics, 2007, 16, 275-282.	0.2	4
167	History of the Development of Tropical Peatland in Central Kalimantan, Indonesia. Tropics, 2007, 16, 291-301.	0.2	17

#	Article	IF	CITATIONS
168	Mobility of black carbon in drained peatland soils. Biogeosciences, 2007, 4, 425-432.	1.3	59
169	Satellite radar observation of tropical peat swamp forest as a tool for hydrological modelling and environmental protection. Aquatic Conservation: Marine and Freshwater Ecosystems, 2007, 17, 265-275.	0.9	29
170	Earth observations for estimating greenhouse gas emissions from deforestation in developing countries. Environmental Science and Policy, 2007, 10, 385-394.	2.4	281
171	Carbon dioxide balance of a tropical peat swamp forest in Kalimantan, Indonesia. Global Change Biology, 2007, 13, 412-425.	4.2	195
172	Land cover change 2002–2005 in Borneo and the role of fire derived from MODIS imagery. Global Change Biology, 2007, 13, 2329-2340.	4.2	256
173	A land-cover map for South and Southeast Asia derived from SPOT-VEGETATION data. Journal of Biogeography, 2007, 34, 625-637.	1.4	97
174	Mortality and Growth of Trees in Peat-swamp and Heath Forests in Central Kalimantan After Severe Drought. Plant Ecology, 2007, 188, 165-177.	0.7	95
175	Rural Livelihoods and Burning Practices in Savanna Landscapes of Nusa Tenggara Timur, Eastern Indonesia. Human Ecology, 2007, 35, 345-359.	0.7	26
176	Understanding public complacency about climate change: adults' mental models of climate change violate conservation of matter. Climatic Change, 2007, 80, 213-238.	1.7	327
177	Self-Organised Criticality and the Response of Wildland Fires to Climate Change. Climatic Change, 2007, 82, 131-161.	1.7	35
178	Sectoral approaches to improve regional carbon budgets. Climatic Change, 2008, 88, 209-249.	1.7	19
179	â€`Opening up' policy to reflexive appraisal: a role for Q Methodology? A case study of fire management in Cape York, Australia. Policy Sciences, 2008, 41, 263-292.	1.5	72
180	Improvement of early growth of two tropical peat-swamp forest tree species Ploiarium alternifolium and Calophyllum hosei by two arbuscular mycorrhizal fungi under greenhouse conditions. New Forests, 2008, 36, 1-12.	0.7	21
181	Papyrus wetlands, nutrients balance, fisheries collapse, food security, and Lake Victoria level decline in 2000–2006. Wetlands Ecology and Management, 2008, 16, 89-96.	0.7	46
182	Local causes, regional co-operation and global financing for environmental problems: the case of Southeast Asian Haze pollution. International Environmental Agreements: Politics, Law and Economics, 2008, 8, 1-16.	1.5	32
183	Links between global CO2 variability and climate anomalies of biomes. Science in China Series D: Earth Sciences, 2008, 51, 740-747.	0.9	13
184	Impact of aerosols from the Asian Continent on the adjoining oceanic environments. Journal of Earth System Science, 2008, 117, 83-102.	0.6	4
185	Tree diversity, composition, forest structure and aboveground biomass dynamics after single and repeated fire in a Bornean rain forest. Oecologia, 2008, 158, 579-588.	0.9	63

		JN REPORT	
#	ARTICLE Level and source of predictability of seasonal rainfall anomalies in Malaysia using canonical	IF 1.5	Citations
180	correlation analysis. International Journal of Climatology, 2008, 28, 1255-1267. Effects of meteorology, astronomical variables, location and human disturbance on the singing apes:	0.8	30
188	<i>Hylobates albibarbis</i> . American Journal of Primatology, 2008, 70, 386-392. Tropospheric emission spectrometer (TES) and atmospheric chemistry experiment (ACE) measurements of tropospheric chemistry in tropical southeast Asia during a moderate El Niño in 2006. Journal of	1.1	22
189	Quantitative Spectroscopy and Radiative Transfer, 2008, 109, 1931-1942. Land Clearing and the Biofuel Carbon Debt. Science, 2008, 319, 1235-1238.	6.0	3,066
190	Response of the terrestrial carbon cycle to the El Niño-Southern Oscillation. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 537.	0.8	49
191	The burning issue. Nature Geoscience, 2008, 1, 643-644.	5.4	3
192	Cool spray. Nature Geoscience, 2008, 1, 644-644.	5.4	0
194	Longâ€ŧerm impact of a standâ€replacing fire on ecosystem CO ₂ exchange of a ponderosa pi forest. Global Change Biology, 2008, 14, 1801-1820.	ne 4.2	128
195	Assessing urinary levoglucosan and methoxyphenols as biomarkers for use in woodsmoke exposure studies. Science of the Total Environment, 2008, 402, 139-146.	3.9	24
196	Emergence and behaviors of acid-tolerant Janthinobacterium sp. that evolves N2O from deforested tropical peatland. Soil Biology and Biochemistry, 2008, 40, 116-125.	4.2	35
197	Greenhouse gas fluxes from natural ecosystems. Australian Journal of Botany, 2008, 56, 369.	0.3	271
198	CARBON DIOXIDE AND METHANE FLUXES IN DRAINED TROPICAL PEAT BEFORE AND AFTER HYDROLOGICA RESTORATION. Ecology, 2008, 89, 3503-3514.	AL 1.5	163
199	Clobal temperature stabilization via controlled albedo enhancement of low-level maritime clouds. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 3969-3987.	1.6	163
200	Climate and human influences on globalÂbiomass burning over the past twoÂmillennia. Nature Geoscience, 2008, 1, 697-702.	5.4	686
201	Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environmental Research Letters, 2008, 3, 034001.	2.2	333
202	Modeling terrestrial ¹³ C cycling: Climate, land use and fire. Global Biogeochemical Cycles, 2008, 22, .	1.9	30
203	Inundation of freshwater peatlands by sea level rise: Uncertainty and potential carbon cycle feedbacks. Journal of Geophysical Research, 2008, 113, .	3.3	33
204	Global wildland fire emissions from 1960 to 2000. Global Biogeochemical Cycles, 2008, 22, .	1.9	382

#	Article	IF	CITATIONS
205	Interannual variations in continentalâ€scale net carbon exchange and sensitivity to observing networks estimated from atmospheric CO ₂ inversions for the period 1980 to 2005. Global Biogeochemical Cycles, 2008, 22, .	1.9	96
206	Climate controls on the variability of fires in the tropics and subtropics. Global Biogeochemical Cycles, 2008, 22, .	1.9	238
207	A quantitative link between CO ₂ emissions from tropical vegetation fires and the daily tropospheric excess (DTE) of CO ₂ seen by NOAAâ€10 (1987–1991). Journal of Geophysical Research, 2008, 113, .	3.3	14
208	Observational evidence for the radiative impact of Indonesian smoke in modulating the sea surface temperature of the equatorial Indian Ocean. Journal of Geophysical Research, 2008, 113, .	3.3	23
209	Terrestrial Vegetation in the Coupled Human-Earth System: Contributions of Remote Sensing. Annual Review of Environment and Resources, 2008, 33, 369-390.	5.6	90
210	Biofuels, Solar and Wind as Renewable Energy Systems. , 2008, , .		50
211	Multiple site tower flux and remote sensing comparisons of tropical forest dynamics in Monsoon Asia. Agricultural and Forest Meteorology, 2008, 148, 748-760.	1.9	88
212	Natural and anthropogenic forest fires recorded in the Holocene pollen record from a Jinchuan peat bog, northeastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 261, 47-57.	1.0	80
213	Black carbon in Paleocene–Eocene boundary sediments: A test of biomass combustion as the PETM trigger. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 267, 147-152.	1.0	35
214	Determination of the amount of carbon stored in Indonesian peatlands. Geoderma, 2008, 147, 151-158.	2.3	202
215	Peat–water interrelationships in a tropical peatland ecosystem in Southeast Asia. Catena, 2008, 73, 212-224.	2.2	241
216	The severity of smouldering peat fires and damage to the forest soil. Catena, 2008, 74, 304-309.	2.2	262
217	Relationship between MODIS fire hot spot count and burned area in a degraded tropical peat swamp forest in Central Kalimantan, Indonesia. Journal of Geophysical Research, 2008, 113, .	3.3	75
218	Predictability of carbon emissions from biomass burning in Indonesia from 1997 to 2006. Journal of Geophysical Research, 2008, 113, .	3.3	77
219	Fire-mediated dieback and compositional cascade in an Amazonian forest. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1787-1794.	1.8	255
220	Chapter 5 Effects of Wildland Fire on Regional and Global Carbon Stocks in a Changing Environment. Developments in Environmental Science, 2008, , 109-138.	0.5	8
221	Interactions of ozone with organic surface films in the presence of simulated sunlight: impact on wettability of aerosols. Physical Chemistry Chemical Physics, 2008, 10, 2964.	1.3	52
222	Climate regulation of fire emissions and deforestation in equatorial Asia. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20350-20355.	3.3	336

ARTICLE IF CITATIONS # Emissions in the Platinum Age: the implications of rapid development for climate-change mitigation. 223 1.0 49 Oxford Review of Economic Policy, 2008, 24, 377-401. Monitoring, Observations, and Remote Sensing – Global Dimensions. , 2008, , 2425-2446. 224 225 Can the Earth Deliver the Biomass-for-Fuel we Demand?., 2008, , 19-55. 2 The effect of climate anomalies and human ignition factor on wildfires in Russian boreal forests. 1.8 Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 2329-2337. Reducing Greenhouse Gas Emissions from Deforestation and Forest Degradation: Global Land-Use 227 6.0 377 Implications. Science, 2008, 320, 1454-1455. Global fire activity patterns (1996–2006) and climatic influence: an analysis using the World Fire 229 Atlas. Atmospheric Chemistry and Physics, 2008, 8, 1911-1924. 230 Monitoring Tropical Peat Swamp Deforestation and Hydrological Dynamics by ASAR and PALSAR., 0,,. 4 Climate accession deals: new strategies for taming growth of greenhouse gases in developing countries., 0,, 618-648. Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian 232 peatlands. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3.3 174 21213-21218. The future of forests and orangutans (<i>Pongo abelii</i>) in Sumatra: predicting impacts of oil palm plantations, road construction, and mechanisms for reducing carbon emissions from deforestation. 2.2 Énvironmental Research Letters, 2009, 4, 034013. The contribution of CHRIS/PROBA data for tropical peat swamp landscape discrimination purposes., 234 2 2009,,. Sustainable atmospheric management. Advances in Public Interest Accounting, 2009, , 193-224. Vegetation fire emissions and their impact on air pollution and climate. Atmospheric Environment, 236 1.9 325 2009, 43, 107-116. A new look at atmospheric carbon dioxide. Atmospheric Environment, 2009, 43, 2084-2086. 1.9 139 Restoration Ecology of Lowland Tropical Peatlands in Southeast Asia: Current Knowledge and Future 239 227 1.6 Research Directions. Ecosystems, 2009, 12, 888-905. Estimation of biomass distribution in Peninsular Malaysia and in the islands of Sumatra, Java and 240 Borneo based on multi-resolution remote sensing land cover analysis. Mitigation and Adaptation Strategies for Global Change, 2009, 14, 357-373 Biological carbon sequestration must and can be a win-win approach. Climatic Change, 2009, 97, 241 1.7 54 459-463. On physical and mathematical modeling of the initiation and propagation of peat fires. Journal of Engineering Physics and Thermophysics, 2009, 82, 1235-1243.

#	Article	IF	CITATIONS
243	Structural and Functional Changes with Depth in Microbial Communities in a Tropical Malaysian Peat Swamp Forest. Microbial Ecology, 2009, 57, 402-412.	1.4	97
244	Impacts of climate change on fire activity and fire management in the circumboreal forest. Global Change Biology, 2009, 15, 549-560.	4.2	559
245	Systematic assessment of terrestrial biogeochemistry in coupled climate–carbon models. Global Change Biology, 2009, 15, 2462-2484.	4.2	324
246	Amazonian peatlands: an ignored C sink and potential source. Global Change Biology, 2009, 15, 2311-2320.	4.2	132
247	Greenhouse gas fluxes from tropical peatlands in southâ€east Asia. Global Change Biology, 2010, 16, 1715-1732.	4.2	361
248	The potential ecological costs and cobenefits of REDD: a critical review and case study from the Amazon region. Global Change Biology, 2009, 15, 2803-2824.	4.2	157
249	Evaluating whether protected areas reduce tropical deforestation in Sumatra. Journal of Biogeography, 2009, 36, 2165-2175.	1.4	229
250	Human amplification of drought-induced biomass burning in Indonesia sinceÂ1960. Nature Geoscience, 2009, 2, 185-188.	5.4	322
251	CO2 emissions from forest loss. Nature Geoscience, 2009, 2, 737-738.	5.4	1,095
252	Carbon emissions from smouldering peat in shallow and strong fronts. Proceedings of the Combustion Institute, 2009, 32, 2489-2496.	2.4	86
253	â€~Tipping points' for the Amazon forest. Current Opinion in Environmental Sustainability, 2009, 1, 28-36.	3.1	208
254	Amazonian floodplains harbour minerotrophic and ombrotrophic peatlands. Catena, 2009, 79, 140-145.	2.2	79
255	Peat fires and air quality: Volatile organic compounds and particulates. Chemosphere, 2009, 76, 419-423.	4.2	37
256	Implications of changing climate for global wildland fire. International Journal of Wildland Fire, 2009, 18, 483.	1.0	1,061
257	A Burning Story: The Role of Fire in the History of Life. BioScience, 2009, 59, 593-601.	2.2	749
258	Analysis of tropical tropospheric ozone, carbon monoxide, and water vapor during the 2006 El Niño using TES observations and the GEOSâ€Chem model. Journal of Geophysical Research, 2009, 114, .	3.3	92
259	REDD in the red: palm oil could undermine carbon payment schemes. Conservation Letters, 2009, 2, 67-73.	2.8	201
260	Fire in the Earth System. Science, 2009, 324, 481-484.	6.0	2,330

ARTICLE IF CITATIONS # Peat and Peatlands., 2009,, 541-548. 16 261 Measurement of soil carbon oxidation state and oxidative ratio by ¹³C nuclear magnetic 3.3 resonance. Journal of Geophysical Research, 2009, 114, . Spatiotemporal fire occurrence in Borneo over a period of 10 years. Global Change Biology, 2009, 15, 263 4.2 190 48-62 Fire in the tropics. , 2009, , 1-23. 264 Fire, land use, land cover dynamics, and climate change in the Brazilian Amazon., 2009, , 389-426. 265 14 Tropical peatland fires in Southeast Asia., 2009, , 263-287. 266 Fire and fire ecology: Concepts and principles. , 2009, , 25-62. 267 30 Fire and land use effects on biodiversity in the southern Sumatran wetlands., 2009, , 355-385. 268 Overview: Global fire regime conditions, threats, and opportunities for fire management in the 269 30 tropics., 2009, , 65-83. Burn-scar patterns and their effect on regional burnt-area mapping in insular South-East Asia. 270 1.0 International Journal of Wildland Fire, 2009, 18, 837. Forest Fire in the Fossil Record., 2009, , 1-37. 271 11 Twentieth Century Sources of Methane in the Atmosphere. Energy and Environment, 2010, 21, 251-266. Determination of soil carbon stocks and changes., 2010, , 49-75. 273 10 Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmospheric Chemistry and Physics, 2010, 10, 7017-7039. 274 1.9 2,020 Estimates of biomass burning emissions in tropical Asia based on satellite-derived data. Atmospheric 275 1.9 117 Chemistry and Physics, 2010, 10, 2335-2351. What can be learned about carbon cycle climate feedbacks from the CO<sub&gt;2&lt;/sub&gt; airborne fraction?. Atmospheric Chemistry and Physics, 1.9 2010, 10, 7739-7751 Do biomass burning aerosols intensify drought in equatorial Asia during El Niño?. Atmospheric 277 1.9 87 Chemistry and Physics, 2010, 10, 3515-3528. 278 Fire in the Earth System., 2010,, 21-48.

		CITATION REP	ORT	
#	Article		IF	CITATIONS
279	Status of Peatland Degradation and Development in Sumatra and Kalimantan. Ambio, 2010, 39,	394-401.	2.8	70
280	Loss of biodiversity and ecosystem functioning in Indo-Malayan peat swamp forests. Biodiversity Conservation, 2010, 19, 393-409.	v and	1.2	244
281	Biomass burning, humans and climate change in Southeast Asia. Biodiversity and Conservation, 19, 1025-1042.	2010,	1.2	74
282	European CO2 fluxes from atmospheric inversions using regional and global transport models. Climatic Change, 2010, 103, 93-115.		1.7	31
283	Planning hydrological restoration of peatlands in Indonesia to mitigate carbon dioxide emissions Mitigation and Adaptation Strategies for Global Change, 2010, 15, 223-239.	i.	1.0	84
284	Aerosol transport model evaluation of an extreme smoke episode in Southeast Asia. Atmospher Environment, 2010, 44, 1422-1427.	c	1.9	74
285	Assessing the Impact of Policy-Oriented Research: The Case of CIFOR's Influence on the Indo and Paper Sector. World Development, 2010, 38, 1506-1518.	onesian Pulp	2.6	7
287	Degradation and development of peatlands in Peninsular Malaysia and in the islands of Sumatra Borneo since 1990. Land Degradation and Development, 2010, 21, 285-296.	and	1.8	110
288	Upgrading and dewatering of raw tropical peat by hydrothermal treatment. Fuel, 2010, 89, 635-	641.	3.4	125
289	Peat or no peat: Why do the Rajang and Mahakam Deltas differ?. International Journal of Coal G 2010, 83, 162-172.	eology,	1.9	39
290	Interactions of the carbon cycle, human activity, and the climate system: a research portfolio. Current Opinion in Environmental Sustainability, 2010, 2, 301-311.		3.1	62
291	Biodiversity Conservation in the REDD. Carbon Balance and Management, 2010, 5, 7.		1.4	66
292	Differences between trends in atmospheric CO ₂ and the reported trends anthropogenic CO ₂ emissions. Tellus, Series B: Chemical and Physical Meteorology, 2022, 62, 316.		0.8	22
293	How well do we know the flux of CO ₂ from land-use change?. Tellus, Ser Chemical and Physical Meteorology, 2022, 62, 337.	ies B:	0.8	175
294	Nitrogen deposition in tropical forests from savanna and deforestation fires. Global Change Biol 2010, 16, 2024-2038.	ogy,	4.2	84
295	Can bottom-up ocean CO2 fluxes be reconciled with atmospheric 13C observations?. Tellus, Ser Chemical and Physical Meteorology, 2010, 62, 369-388.	ies B:	0.8	25
296	References used in the text. , 0, , 212-222.			0
297	Impact of meteorological anomalies in the 2003 summer on Gross Primary Productivity in East A Biogeosciences, 2010, 7, 641-655.	sia.	1.3	59

#	Article	IF	CITATIONS
298	The African contribution to the global climate-carbon cycle feedback of the 21st century. Biogeosciences, 2010, 7, 513-519.	1.3	8
299	Fire dynamics during the 20th century simulated by the Community Land Model. Biogeosciences, 2010, 7, 1877-1902.	1.3	194
300	Current and future CO ₂ emissions from drained peatlands in Southeast Asia. Biogeosciences, 2010, 7, 1505-1514.	1.3	548
301	Biofuels and the need for additional carbon. Environmental Research Letters, 2010, 5, 024007.	2.2	160
302	A new emission inventory for nonagricultural open fires in Asia from 2000 to 2009. Environmental Research Letters, 2010, 5, 014014.	2.2	25
303	Forest fire hazard rating assessment in peat swamp forest using Landsat thematic mapper image. Journal of Applied Remote Sensing, 2010, 4, 043531.	0.6	21
304	Carbonaceous aerosols over Siberia and Indonesia with GOSAT/CAI. Proceedings of SPIE, 2010, , .	0.8	2
305	Discrimination of peatlands in tropical swamp forests using dual-polarimetric SAR and Landsat ETM data. International Journal of Image and Data Fusion, 2010, 1, 257-270.	0.8	12
306	Spectral Variability and Discrimination Assessment in a Tropical Peat Swamp Landscape Using CHRIS/PROBA Data. GIScience and Remote Sensing, 2010, 47, 541-565.	2.4	8
307	Driving forces of global wildfires over the past millennium and the forthcoming century. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19167-19170.	3.3	579
308	Detection of fire impact and vegetation recovery over tropical peat swamp forest by satellite data and ground-based NDVI instrument. International Journal of Remote Sensing, 2010, 31, 5297-5314.	1.3	20
309	Of forests and time in the culture of possession. International Forestry Review, 2010, 12, 407-417.	0.3	0
310	Changing Climates, Earth Systems and Society. , 2010, , .		9
311	Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, 2010, 10, 11707-11735.	1.9	2,326
312	Wildfire potential evaluation during a drought event with a regional climate model and NDVI. Ecological Informatics, 2010, 5, 418-428.	2.3	18
313	Influence of the 2006 Indonesian biomass burning aerosols on tropical dynamics studied with the GEOSâ€5 AGCM. Journal of Geophysical Research, 2010, 115, .	3.3	42
314	Trends in global wildfire potential in a changing climate. Forest Ecology and Management, 2010, 259, 685-697.	1.4	554
315	Atmospheric susceptibility to wildfire occurrence during the Last Glacial Maximum and mid-Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 295, 76-88.	1.0	6

IF ARTICLE CITATIONS # Chemical and carbon isotopic characteristics of ash and smoke derived from burning of C3 and C4 316 0.9 74 grasses. Organic Geochemistry, 2010, 41, 263-269. Managing water in agriculture for food production and other ecosystem services. Agricultural Water Management, 2010, 97, 512-519. An attempt to quantify the impact of changes in wetland extent on methane emissions on the seasonal 318 1.9 177 and interannual time scales. Global Biogeochemical Cycles, 2010, 24, . Statistical Downscaling Forecasts for Winter Monsoon Precipitation in Malaysia Using Multimodel Output Variables. Journal of Climate, 2010, 23, 17-27.

CITATION REPORT

Atmospheric impact of bioenergy based on perennial crop (reed canary grass, <i>Phalaris) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 582 Td

321	Opportunities for reducing greenhouse gas emissions in tropical peatlands. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19655-19660.	3.3	223
322	Behavioural Ecology of Gibbons (Hylobates albibarbis) in a Degraded Peat-Swamp Forest. , 2010, , 121-156.		66
323	Carbon Sequestration in Forest Ecosystems. , 2010, , .		86
324	Experimental drying intensifies burning and carbon losses in a northern peatland. Nature Communications, 2011, 2, 514.	5.8	169
325	Peatlands in the Earth's 21st century climate system. Environmental Reviews, 2011, 19, 371-396.	2.1	323
326	Habitats at Risk: A Step Forward, a Step Back. Science, 2011, 331, 1137-1137.	6.0	4
327	Biodiversity and the Loss of Biodiversity Affecting Human Health. , 2011, , 353-362.		0
328	Thermal Analysis and Decomposition Kinetics of Chinese Forest Peat under Nitrogen and Air Atmospheres. Energy & Fuels, 2011, 25, 797-803.	2.5	58
329	Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	1.9	123
330	Modeling fire and the terrestrial carbon balance. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	1.9	152
331	Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia. Journal of Geophysical Research, 2011, 116, .	3.3	100
332	High diversity of tropical peatland ecosystem types in the Pastaza-Marañón basin, Peruvian Amazonia. Journal of Geophysical Research, 2011, 116, .	3.3	67
333	Assessing existing peatland models for their applicability for modelling greenhouse gas emissions from tropical peat soils. Current Opinion in Environmental Sustainability, 2011, 3, 339-349.	3.1	33

#	Article	IF	CITATIONS
334	Simulating fire regimes in the Amazon in response to climate change and deforestation. , 2011, 21, 1573-1590.		114
335	Temporal variability of forest fires in eastern Amazonia. , 2011, 21, 2397-2412.		81
336	Historical spatiotemporal analysis of land-use/land-cover changes and carbon budget in a temperate peatland (Turkey) using remotely sensed data. Applied Geography, 2011, 31, 1166-1172.	1.7	20
337	Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon. Forest Ecology and Management, 2011, 261, 68-77.	1.4	96
338	Post-fire soil respiration in relation to burnt wood management in a Mediterranean mountain ecosystem. Forest Ecology and Management, 2011, 261, 1436-1447.	1.4	56
339	Implications of fires on carbon budgets in Andean cloud montane forest: The importance of peat soils and tree resprouting. Forest Ecology and Management, 2011, 261, 1987-1997.	1.4	56
340	Post-fire salvage logging reduces carbon sequestration in Mediterranean coniferous forest. Forest Ecology and Management, 2011, 262, 2287-2296.	1.4	47
341	Evidence for wildfire in the Meishan section and implications for Permian–Triassic events. Geochimica Et Cosmochimica Acta, 2011, 75, 1992-2006.	1.6	90
342	Constraints on carbon accumulation rate and net primary production in the Lopingian (Late Permian) tropical peatland in SW China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 300, 152-157.	1.0	20
343	Fluvial organic carbon losses from a Bornean blackwater river. Biogeosciences, 2011, 8, 901-909.	1.3	86
344	Climatic trends. , 0, , 1-2.		0
345	Carbon cycle trends and vulnerabilities. , 0, , 75-98.		0
347	Peat Bog Wildfire Smoke Exposure in Rural North Carolina Is Associated with Cardiopulmonary Emergency Department Visits Assessed through Syndromic Surveillance. Environmental Health Perspectives, 2011, 119, 1415-1420.	2.8	260
348	Suscetibilidade do ambiente a ocorrências de queimadas sob condições climáticas atuais e de futuro aquecimento global. Revista Brasileira De Meteorologia, 2011, 26, 401-418.	0.2	10
349	Estimating carbon emissions from forest fires during 1980 to 1999 in Daxingan Mountain, China. African Journal of Biotechnology, 2011, 10, 8046-8053.	0.3	15
350	ICESat/GLAS Data as a Measurement Tool for Peatland Topography and Peat Swamp Forest Biomass in Kalimantan, Indonesia. Remote Sensing, 2011, 3, 1957-1982.	1.8	41
351	Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics, 2011, 11, 4039-4072.	1.9	1,527
352	Oxygen isotopic signature of CO ₂ from combustion processes. Atmospheric Chemistry and Physics, 2011, 11, 1473-1490.	1.9	30

#	Article	IF	CITATIONS
353	Nitrous oxide emission derived from soil organic matter decomposition from tropical agricultural peat soil in central Kalimantan, Indonesia. Soil Science and Plant Nutrition, 2011, 57, 436-451.	0.8	43
354	Organic Soils of canada: Part 1. Wetland Organic soils. Canadian Journal of Soil Science, 2011, 91, 807-822.	0.5	47
355	The human dimension of fire regimes on Earth. Journal of Biogeography, 2011, 38, 2223-2236.	1.4	845
356	Global and regional importance of the tropical peatland carbon pool. Global Change Biology, 2011, 17, 798-818.	4.2	1,022
357	Deforestation rates in insular Southeast Asia between 2000 and 2010. Clobal Change Biology, 2011, 17, 2261-2270.	4.2	485
358	Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 2011, 4, 293-297.	5.4	1,950
359	Investigation of the 2010 July–August fires impact on carbon monoxide atmospheric pollution in Moscow and its outskirts, estimating of emissions. Izvestiya - Atmospheric and Oceanic Physics, 2011, 47, 682-698.	0.2	33
360	Human Pyrogeography: A New Synergy of Fire, Climate and People is Reshaping Ecosystems across the Globe. Geography Compass, 2011, 5, 329-350.	1.5	28
361	Global and regional analysis of climate and human drivers of wildfire. Science of the Total Environment, 2011, 409, 3472-3481.	3.9	211
362	The 2009 Smouldering Peat Fire in Las Tablas de Daimiel National Park (Spain). Fire Technology, 2011, 47, 519-538.	1.5	37
363	Modelling Soil Moisture Deficit and Moisture Content of Ground Vegetation: Progress Towards Development of a Fire Weather Index System Appropriate to the UK. Fire Technology, 2011, 47, 539-548.	1.5	2
364	Greenhouse gas induced changes in the fire risk in Brazil in ECHAM5/MPI-OM coupled climate model. Climatic Change, 2011, 106, 285-302.	1.7	15
365	Influence of peatland and land cover distribution on fire regimes in insular Southeast Asia. Regional Environmental Change, 2011, 11, 191-201.	1.4	38
366	Human–environment interactions in mountain rainforests: archaeobotanical evidence from central Sulawesi, Indonesia. Vegetation History and Archaeobotany, 2011, 20, 165-179.	1.0	15
367	Deforestation Projections for Carbon-Rich Peat Swamp Forests of Central Kalimantan, Indonesia. Environmental Management, 2011, 48, 436-447.	1.2	84
368	Reconnecting to the Biosphere. Ambio, 2011, 40, 719-38.	2.8	420
369	Sequestration through forestry and agriculture. Wiley Interdisciplinary Reviews: Climate Change, 2011, 2, 238-254.	3.6	12
370	Analyzing abrupt and nonlinear climate changes and their impacts. Wiley Interdisciplinary Reviews: Climate Change, 2011, 2, 663-686.	3.6	36

#	Article	IF	CITATIONS
371	Monitoring the effect of restoration measures in Indonesian peatlands by radar satellite imagery. Journal of Environmental Management, 2011, 92, 630-638.	3.8	41
372	Relationships between net primary productivity and stand age for several forest types and their influence on China's carbon balance. Journal of Environmental Management, 2011, 92, 1651-1662.	3.8	101
373	Prospects of dedicated biodiesel engine vehicles in Malaysia and Indonesia. Renewable and Sustainable Energy Reviews, 2011, 15, 220-235.	8.2	174
374	Hot spots of confusion: contested policies and competing carbon claims in the peatlands of Central Kalimantan, Indonesia. International Forestry Review, 2011, 13, 431-441.	0.3	45
375	Managing Aquatic Ecosystems. , 2011, , 35-59.		2
376	Detecting recent disturbance on Montane blanket bogs in the Wicklow Mountains, Ireland using the MODIS enhanced vegetation index. International Journal of Remote Sensing, 2011, 32, 2377-2393.	1.3	12
377	Evidence for Oceanic Control of Interannual Carbon Cycle Feedbacks. Numerische Mathematik, 2011, 311, 485-516.	0.7	1
378	Smoldering Combustion Phenomena and Coal Fires. , 2011, , 307-315.		9
379	Effect of repeated fires on land-cover change on peatland in southern Central Kalimantan, Indonesia, from 1973 to 2005. International Journal of Wildland Fire, 2011, 20, 578.	1.0	144
380	Approaches to classifying and restoring degraded tropical forests for the anticipated REDD+ climate change mitigation mechanism. IForest, 2011, 4, 1-6.	0.5	42
381	Climate Savvy. , 2011, , .		21
382	Simultaneous detection of burned areas of multiple fires in the tropics using multisensor remote-sensing data. International Journal of Remote Sensing, 2012, 33, 4312-4333.	1.3	19
383	Airborne LiDAR measurements to estimate tropical peat swamp forest Above Ground Biomass. , 2012, , .		1
384	Methane. A review. Journal of Integrative Environmental Sciences, 2012, 9, 5-30.	1.0	40
385	The effect of ENSO-induced rainfall and circulation changes on the direct and indirect radiative forcing from Indonesian biomass-burning aerosols. Atmospheric Chemistry and Physics, 2012, 12, 11395-11416.	1.9	8
386	Tropical biomass burning smoke plume size, shape, reflectance, and age based on 2001–2009 MISR imagery of Borneo. Atmospheric Chemistry and Physics, 2012, 12, 3437-3454.	1.9	12
387	Determinants and predictability of global wildfire emissions. Atmospheric Chemistry and Physics, 2012, 12, 6845-6861.	1.9	42
388	Carbon emissions from land use and land-cover change. Biogeosciences, 2012, 9, 5125-5142.	1.3	839

#	Article	IF	CITATIONS
389	The tropical peat swamps of Southeast Asia:. , 2012, , 406-433.		2
391	A case study of <scp>REDD</scp> + challenges in the postâ€2012 climate regime: The scenarios approach. Natural Resources Forum, 2012, 36, 192-201.	1.8	3
392	Paleoâ€fires and Atmospheric Oxygen Levels in the Latest Permian: Evidence from Maceral Compositions of Coals in Eastern Yunnan, Southern China. Acta Geologica Sinica, 2012, 86, 949-962.	0.8	28
393	Effects of disturbances on the carbon balance of tropical peat swamp forests. Global Change Biology, 2012, 18, 3410-3422.	4.2	147
395	Peatland degradation and conversion sequences and interrelations in Sumatra. Regional Environmental Change, 2012, 12, 729-737.	1.4	60
396	How Could Carbon Credits for Reducing Deforestation Compete with Returns from Palm Oil: A Proposal for a More Flexible REDD Valuation Tool. Journal of Sustainable Forestry, 2012, 31, 11-28.	0.6	7
397	Two decades of destruction in Southeast Asia's peat swamp forests. Frontiers in Ecology and the Environment, 2012, 10, 124-128.	1.9	234
398	Monitoring Fire and Selective Logging Activities in Tropical Peat Swamp Forests. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5, 1811-1820.	2.3	40
399	Impact of a CO ₂ -Enriched Gas on the Decarbonation of CaCO ₃ and the Oxidation of Carbon in the Smoldering Process of Oil Shale Semicoke. Energy & Fuels, 2012, 26, 391-399.	2.5	9
400	Integrating the complexity of global change pressures on land and water. Global Food Security, 2012, 1, 88-93.	4.0	10
401	Monitoring forest changes in Borneo on a yearly basis by an object-based change detection algorithm using SPOT-VEGETATION time series. International Journal of Remote Sensing, 2012, 33, 4673-4699.	1.3	24
402	Above ground biomass estimation across forest types at different degradation levels in Central Kalimantan using LiDAR data. International Journal of Applied Earth Observation and Geoinformation, 2012, 18, 37-48.	1.4	86
403	Comparison of methods for measuring and assessing carbon stocks and carbon stock changes in terrestrial carbon pools. How do the accuracy and precision of current methods compare? A systematic review protocol. Environmental Evidence, 2012, 1, 6.	1.1	68
404	Carbon chemistry and mineralization of peat soils from the Australian Alps. European Journal of Soil Science, 2012, 63, 129-140.	1.8	20
405	A positive carbon feedback to ENSO and volcanic aerosols in the tropical terrestrial biosphere. Global Biogeochemical Cycles, 2012, 26, .	1.9	16
406	Clobal burned area and biomass burning emissions from small fires. Journal of Geophysical Research, 2012, 117, .	3.3	578
407	Mapping tropical forests and rubber plantations in complex landscapes by integrating PALSAR and MODIS imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 74, 20-33.	4.9	107
408	The critical importance of considering fire in REDD+ programs. Biological Conservation, 2012, 154, 1-8.	1.9	95

#	Article	IF	CITATIONS
409	A modular framework for management of complexity in international forest-carbon policy. Nature Climate Change, 2012, 2, 155-160.	8.1	14
410	Grassland Soil Organic Carbon Stocks: Status, Opportunities, Vulnerability. , 2012, , 275-302.		14
411	Accounting More Precisely for Peat and Other Soil Carbon Resources. , 2012, , 127-157.		18
412	Do Anthropogenic Dark Earths Occur in the Interior of Borneo? Some Initial Observations from East Kalimantan. Forests, 2012, 3, 207-229.	0.9	17
413	Nitrous oxide fluxes from tropical peat with different disturbance history and management. Biogeosciences, 2012, 9, 1337-1350.	1.3	50
414	The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN. Biogeosciences, 2012, 9, 509-525.	1.3	131
415	Effect of groundwater level on soil respiration in tropical peat swamp forests. J Agricultural Meteorology, 2012, 68, 121-134.	0.8	54
416	The Science and Application of Satellite Based Fire Radiative Energy. , 2012, , .		0
417	6 CAN INDONESIA LEAD ON CLIMATE CHANGE?. , 2012, , 93-116.		4
418	The Earth system feedbacks that matter for contemporary climate. , 0, , 102-128.		3
419	The role of the land biosphere in climate change mitigation. , 0, , 202-244.		1
420	Asia's Wicked Environmental Problems. SSRN Electronic Journal, 0, , .	0.4	7
421	A Very Real and Practical Contribution? - Lessons from the Kalimantan Forests and Climate Partnership. SSRN Electronic Journal, 2012, , .	0.4	6
422	A cost-efficient method to assess carbon stocks in tropical peat soil. Biogeosciences, 2012, 9, 4477-4485.	1.3	62
423	Subsidence and carbon loss in drained tropical peatlands. Biogeosciences, 2012, 9, 1053-1071.	1.3	409
424	Fire, drought and El Niño relationships on Borneo (Southeast Asia) in the pre-MODIS era (1980–2000). Biogeosciences, 2012, 9, 317-340.	1.3	131
425	Large and Intact Forests: Drivers and Inhibitors of Deforestation and Forest Degradation. , 2012, , 285-304.		1
426	Baseline Map of Carbon Emissions from Deforestation in Tropical Regions. Science, 2012, 336, 1573-1576.	6.0	575

#	Article	IF	CITATIONS
427	Peatlands of the Madre de Dios River of Peru: Distribution, Geomorphology, and Habitat Diversity. Wetlands, 2012, 32, 359-368.	0.7	52
428	Fire Reinforces Structure of Pondcypress (Taxodium distichum var. imbricarium) Domes in a Wetland Landscape. Wetlands, 2012, 32, 439-448.	0.7	23
429	More than carbon stocks: A case study of ecosystem-based benefits of REDD+ in Indonesia. Chinese Geographical Science, 2012, 22, 390-401.	1.2	6
430	Reducing emissions from deforestation and forest degradation (REDD+): game changer or just another quick fix?. Annals of the New York Academy of Sciences, 2012, 1249, 137-150.	1.8	58
431	The large <scp>A</scp> mazonian peatland carbon sink in the subsiding <scp>P</scp> astazaâ€ <scp>M</scp> arañón foreland basin, <scp>P</scp> eru. Global Change Biology, 2012, 18, 164-178.	4.2	102
432	Kinetic investigation on the smouldering combustion of boreal peat. Fuel, 2012, 93, 479-485.	3.4	34
433	PEATLAND CONVERSION AND DEGRADATION PROCESSES IN INSULAR SOUTHEAST ASIA: A CASE STUDY IN JAMBI, INDONESIA. Land Degradation and Development, 2013, 24, 334-341.	1.8	48
434	CLASSIFICATION OF PEATLAND DISTURBANCE. Land Degradation and Development, 2013, 24, 548-555.	1.8	14
435	Tropical Peat Accumulation in Central Amazonia. Wetlands, 2013, 33, 495-503.	0.7	25
436	Using Conceptual Models to Understand Ecosystem Function and Impacts of Human Activities in Tropical Peat-swamp Forests. Wetlands, 2013, 33, 257-267.	0.7	19
437	Managing and Mining Sensor Data. , 2013, , .		123
438	Assessment of biomass open burning emissions in Indonesia and potential climate forcing impact. Atmospheric Environment, 2013, 78, 250-258.	1.9	81
439	Thermal Infrared Remote Sensing. Remote Sensing and Digital Image Processing, 2013, , .	0.7	85
440	Impact of deforestation on solid and dissolved organic matter characteristics of tropical peat forests: implications for carbon release. Biogeochemistry, 2013, 114, 183-199.	1.7	53
441	Climate extremes and the carbon cycle. Nature, 2013, 500, 287-295.	13.7	1,357
442	Ecosystem Services and Carbon Sequestration in the Biosphere. , 2013, , .		27
443	Navjot's nightmare revisited: logging, agriculture, and biodiversity in Southeast Asia. Trends in Ecology and Evolution, 2013, 28, 531-540.	4.2	402
444	Issues Related to Incorporating Northern Peatlands into Global Climate Models. Geophysical Monograph Series, 0, , 19-35.	0.1	30

#	Article	IF	CITATIONS
445	First measurements of aerosol optical depth and Angstrom exponent number from AERONET's Kuching site. Atmospheric Environment, 2013, 78, 231-241.	1.9	25
446	Detection and attribution of large spatiotemporal extreme events in Earth observation data. Ecological Informatics, 2013, 15, 66-73.	2.3	101
447	Characteristics of fire-generated gas emission observed during a large peatland fire in 2009 at Kalimantan, Indonesia. Atmospheric Environment, 2013, 74, 177-181.	1.9	21
448	Carbon emissions from forest conversion by Kalimantan oil palm plantations. Nature Climate Change, 2013, 3, 283-287.	8.1	346
449	Post-fire vegetation response as a proxy to quantify the magnitude of burn severity in tropical peatland. International Journal of Remote Sensing, 2013, 34, 412-433.	1.3	23
450	Pyrogeography and the Global Quest for Sustainable Fire Management. Annual Review of Environment and Resources, 2013, 38, 57-80.	5.6	95
451	Study of the competing chemical reactions in the initiation and spread of smouldering combustion in peat. Proceedings of the Combustion Institute, 2013, 34, 2547-2553.	2.4	90
452	The Politics and Governance of Non-Traditional Security ¹ . International Studies Quarterly, 2013, 57, 462-473.	0.8	56
453	Peat consumption and carbon loss due to smouldering wildfire in a temperate peatland. Forest Ecology and Management, 2013, 308, 169-177.	1.4	104
454	Fire in the Air: Biomass Burning Impacts in a Changing Climate. Critical Reviews in Environmental Science and Technology, 2013, 43, 40-83.	6.6	125
455	Multi-Temporal Airborne LiDAR-Survey and Field Measurements of Tropical Peat Swamp Forest to Monitor Changes. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6, 1524-1530.	2.3	25
456	Air emissions from organic soil burning on the coastal plain of North Carolina. Atmospheric Environment, 2013, 64, 192-199.	1.9	33
457	Responses of Crop Plants to Ammonium and Nitrate N. Advances in Agronomy, 2013, 118, 205-397.	2.4	148
458	Chemical speciation of trace metals emitted from Indonesian peat fires for health risk assessment. Atmospheric Research, 2013, 122, 571-578.	1.8	98
459	Future U.S. wildfire potential trends projected using a dynamically downscaled climate change scenario. Forest Ecology and Management, 2013, 294, 120-135.	1.4	160
460	A framework for identifying carbon hotspots and forest management drivers. Journal of Environmental Management, 2013, 114, 293-302.	3.8	37
461	Peatland ferruginization during late Quaternary in the Uberaba Plateau (South-Eastern Brazil). Journal of South American Earth Sciences, 2013, 43, 25-32.	0.6	1
462	Gross and aboveground net primary production at Canadian forest carbon flux sites. Agricultural and Forest Meteorology, 2013, 174-175, 54-64.	1.9	36

#	Article	IF	CITATIONS
463	Assessment of atmospheric impacts of biomass open burning in Kalimantan, Borneo during 2004. Atmospheric Environment, 2013, 78, 242-249.	1.9	19
464	Smoke aerosol transport patterns over the Maritime Continent. Atmospheric Research, 2013, 122, 469-485.	1.8	70
465	Application of TRIPLEX model for predicting Cunninghamia lanceolata and Pinus massoniana forest stand production in Hunan Province, southern China. Ecological Modelling, 2013, 250, 58-71.	1.2	9
466	Physical and optical characteristics of the October 2010 haze event over Singapore: A photometric and lidar analysis. Atmospheric Research, 2013, 122, 555-570.	1.8	55
467	Mega-fires, tipping points and ecosystem services: Managing forests and woodlands in an uncertain future. Forest Ecology and Management, 2013, 294, 250-261.	1.4	235
468	Organic soil combustion in cypress swamps: Moisture effects and landscape implications for carbon release. Forest Ecology and Management, 2013, 294, 178-187.	1.4	40
469	Thermal Remote Sensing of Active Vegetation Fires and Biomass Burning Events. Remote Sensing and Digital Image Processing, 2013, , 347-390.	0.7	25
470	Observing and understanding the Southeast Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program. Atmospheric Research, 2013, 122, 403-468.	1.8	269
471	Indonesian Coal Fires of East Kalimantan, Borneo. , 2013, , 179-189.		0
472	Holocene peatland carbon dynamics in Patagonia. Quaternary Science Reviews, 2013, 69, 125-141.	1.4	53
472 473	Holocene peatland carbon dynamics in Patagonia. Quaternary Science Reviews, 2013, 69, 125-141. The Value of Satellite-Based Active Fire Data for Monitoring, Reporting and Verification of REDD+ in the Lao PDR. Human Ecology, 2013, 41, 7-20.	1.4 0.7	53 32
	The Value of Satellite-Based Active Fire Data for Monitoring, Reporting and Verification of REDD+ in		
473	The Value of Satellite-Based Active Fire Data for Monitoring, Reporting and Verification of REDD+ in the Lao PDR. Human Ecology, 2013, 41, 7-20. The influence of meteorological factors and biomass burning on surface ozone concentrations at	0.7	32
473 474	The Value of Satellite-Based Active Fire Data for Monitoring, Reporting and Verification of REDD+ in the Lao PDR. Human Ecology, 2013, 41, 7-20. The influence of meteorological factors and biomass burning on surface ozone concentrations at Tanah Rata, Malaysia. Atmospheric Environment, 2013, 70, 435-446. Seed rain into a degraded tropical peatland in Central Kalimantan, Indonesia. Biological Conservation,	0.7	32 64
473 474 475	The Value of Satellite-Based Active Fire Data for Monitoring, Reporting and Verification of REDD+ in the Lao PDR. Human Ecology, 2013, 41, 7-20. The influence of meteorological factors and biomass burning on surface ozone concentrations at Tanah Rata, Malaysia. Atmospheric Environment, 2013, 70, 435-446. Seed rain into a degraded tropical peatland in Central Kalimantan, Indonesia. Biological Conservation, 2013, 167, 215-223. Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature,	0.7 1.9 1.9	32 64 25
473 474 475 476	The Value of Satellite-Based Active Fire Data for Monitoring, Reporting and Verification of REDD+ in the Lao PDR. Human Ecology, 2013, 41, 7-20. The influence of meteorological factors and biomass burning on surface ozone concentrations at Tanah Rata, Malaysia. Atmospheric Environment, 2013, 70, 435-446. Seed rain into a degraded tropical peatland in Central Kalimantan, Indonesia. Biological Conservation, 2013, 167, 215-223. Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature, 2013, 493, 660-663. Analysis of forest fires in Northeast China from 2003 to 2011. International Journal of Remote Sensing,	0.7 1.9 1.9 13.7	32 64 25 270
473 474 475 476 477	The Value of Satellite-Based Active Fire Data for Monitoring, Reporting and Verification of REDD+ in the Lao PDR. Human Ecology, 2013, 41, 7-20. The influence of meteorological factors and biomass burning on surface ozone concentrations at Tanah Rata, Malaysia. Atmospheric Environment, 2013, 70, 435-446. Seed rain into a degraded tropical peatland in Central Kalimantan, Indonesia. Biological Conservation, 2013, 167, 215-223. Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature, 2013, 493, 660-663. Analysis of forest fires in Northeast China from 2003 to 2011. International Journal of Remote Sensing, 2013, 34, 8235-8251. Persistent versus transient tree encroachment of temperate peat bogs: effects of climate warming and	0.7 1.9 1.9 13.7 1.3	32 64 25 270 17

#	Article	IF	CITATIONS
481	The effects of fire on wetland structure and functioning. African Journal of Aquatic Science, 2013, 38, 237-247.	0.5	41
482	Detection of vegetation fires and burnt areas by remote sensing in insular Southeast Asian conditions: current status of knowledge and future challenges. International Journal of Remote Sensing, 2013, 34, 4344-4366.	1.3	25
483	Variations in atmospheric CO ₂ growth rates coupled with tropical temperature. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13061-13066.	3.3	144
484	Refined carbon accounting for oil palm agriculture: disentangling potential contributions of indirect emissions and smallholder farmers. Carbon Management, 2013, 4, 347-349.	1.2	13
486	Evaluation of wildfire propagation susceptibility in grasslands using burned areas and multivariate logistic regression. International Journal of Remote Sensing, 2013, 34, 6679-6700.	1.3	19
487	Patterns of tree-cover loss along the Indonesia–Malaysia border on Borneo. International Journal of Remote Sensing, 2013, 34, 5748-5760.	1.3	11
488	CH ₄ and CO distributions over tropical fires during October 2006 as observed by the Aura TES satellite instrument and modeled by GEOS-Chem. Atmospheric Chemistry and Physics, 2013, 13, 3679-3692.	1.9	39
489	Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires. Atmospheric Chemistry and Physics, 2013, 13, 89-116.	1.9	266
490	Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation. Atmospheric Chemistry and Physics, 2013, 13, 5227-5241.	1.9	137
491	Biosphere model simulations of interannual variability in terrestrial ¹³ C/ ¹² C exchange. Global Biogeochemical Cycles, 2013, 27, 637-649.	1.9	46
492	Dust and Gas Emissions from Small-Scale Peat Combustion. Aerosol and Air Quality Research, 2013, 13, 1045-1059.	0.9	34
493	Detection of large above-ground biomass variability in lowland forest ecosystems by airborne LiDAR. Biogeosciences, 2013, 10, 3917-3930.	1.3	38
494	Analysis of a 39-year continuous atmospheric CO ₂ record from Baring Head, New Zealand. Biogeosciences, 2013, 10, 2683-2697.	1.3	24
495	A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0). Geoscientific Model Development, 2013, 6, 643-685.	1.3	133
496	Quantifying the role of fire in the Earth system – Part 1: Improved global fire modeling in the Community Earth System Model (CESM1). Biogeosciences, 2013, 10, 2293-2314.	1.3	137
497	The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM): a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs. Biogeosciences, 2013, 10, 4137-4177.	1.3	162
498	The Many Elements of Traditional Fire Knowledge: Synthesis, Classification, and Aids to Cross-cultural Problem Solving in Fire-dependent Systems Around the World. Ecology and Society, 2013, 18, .	1.0	110
499	Water-use dynamics of a peat swamp forest and a dune forest in Maputaland, South Africa. Hydrology and Earth System Sciences, 2013, 17, 2053-2067.	1.9	12

#	Article	IF	CITATIONS
500	Fires. , 2013, , 163-181.		1
501	Design and Interpretation of Intensity Analysis Illustrated by Land Change in Central Kalimantan, Indonesia. Land, 2013, 2, 351-369.	1.2	84
502	Smoldering Combustion and Ground Fires: Ecological Effects and Multi-Scale Significance. Fire Ecology, 2013, 9, 124-132.	1.1	88
503	Economic-Ecological Values of Non-Tidal Swamp Ecosystem: Case Study in Tapin District, Kalimantan, Indonesia. Modern Applied Science, 2013, 8, .	0.4	1
504	Balancing on a threshold of alternate development paths: regime shift, traps and transformations. , 0, , 68-93.		0
505	Biomass burning fuel consumption rates: a field measurement database. Biogeosciences, 2014, 11, 7305-7329.	1.3	119
506	Extreme events in gross primary production: a characterization across continents. Biogeosciences, 2014, 11, 2909-2924.	1.3	77
507	Terrestrial cycling of ¹³ CO ₂ by photosynthesis, respiration, and biomass burning in SiBCASA. Biogeosciences, 2014, 11, 6553-6571.	1.3	37
508	Soil organic matter of forests and climate and atmosphere changes. Revue Forestiere Francaise, 2014, , Fr.], ISSN 0035.	0.0	0
511	Vegetation Fires and Global Change. 2013. By Johann G. Goldammer and 58 contributing authors. Kessel Publishing House, Remagen-Oberwinter, Germany. 398 pages. Soft-cover. US\$48 (â,¬35). ISBN 978-3-941300-78-1. Fire Ecology, 2014, 10, 84-85.	1.1	1
512	Making a World of Difference in Fire and Climate Change. Fire Ecology, 2014, 10, 90-101.	1.1	6
514	Contrasting vulnerability of drained tropical and highâ€latitude peatlands to fluvial loss of stored carbon. Global Biogeochemical Cycles, 2014, 28, 1215-1234.	1.9	69
515	Increasing potential of biomass burning over Sumatra, Indonesia induced by anthropogenic tropical warming. Environmental Research Letters, 2014, 9, 104010.	2.2	20
517	Mapping wetlands in Indonesia using Landsat and PALSAR data-sets and derived topographical indices. Geo-Spatial Information Science, 2014, 17, 60-71.	2.4	40
518	A methanotrophic community in a tropical peatland is unaffected by drainage and forest fires in a tropical peat soil. Soil Science and Plant Nutrition, 2014, 60, 577-585.	0.8	48
519	Charring temperatures are driven by the fuel types burned in a peatland wildfire. Frontiers in Plant Science, 2014, 5, 714.	1.7	26
520	Modeling the impacts of policy interventions from REDD+ in Southeast Asia: A case study in Indonesia. Science China Earth Sciences, 2014, 57, 2374-2385.	2.3	1
521	Carbon dioxide emissions through oxidative peat decomposition on a burnt tropical peatland. Global Change Biology, 2014, 20, 555-565.	4.2	94

#	Article	IF	CITATIONS
522	A largeâ€scale field assessment of carbon stocks in humanâ€modified tropical forests. Global Change Biology, 2014, 20, 3713-3726.	4.2	300
523	Land use change affects microbial biomass and fluxes of carbon dioxide and nitrous oxide in tropical peatlands. Soil Science and Plant Nutrition, 2014, 60, 423-434.	0.8	30
524	The distribution and amount of carbon in the largest peatland complex in Amazonia. Environmental Research Letters, 2014, 9, 124017.	2.2	155
525	Background component of carbon dioxide concentration in the near-surface air. Izvestiya - Atmospheric and Oceanic Physics, 2014, 50, 576-582.	0.2	10
526	Cardiopulmonary toxicity of peat wildfire particulate matter and the predictive utility of precision cut lung slices. Particle and Fibre Toxicology, 2014, 11, 29.	2.8	69
527	Analysis of biophysical and anthropogenic variables and their relation to the regional spatial variation of aboveground biomass illustrated for North and East Kalimantan, Borneo. Carbon Balance and Management, 2014, 9, 8.	1.4	9
528	The Contemporary Carbon Cycle. , 2014, , 399-435.		20
529	Contribution of vegetation and peat fires to particulate air pollution in Southeast Asia. Environmental Research Letters, 2014, 9, 094006.	2.2	101
530	Indonesia's contested domains. Deforestation, rehabilitation and conservation-with-development in Central Kalimantan's tropical peatlands. International Forestry Review, 2014, 16, 405-420.	0.3	16
531	Smouldering combustion of peat in wildfires: Inverse modelling of the drying and the thermal and oxidative decomposition kinetics. Combustion and Flame, 2014, 161, 1633-1644.	2.8	129
532	Estimation of fuel mass and its loss during a forest fire in peat swamp forests of Central Kalimantan, Indonesia. Forest Ecology and Management, 2014, 314, 1-8.	1.4	15
533	The Tropical Peatland Plantation-Carbon Assessment Tool: estimating CO2 emissions from tropical peat soils under plantations. Mitigation and Adaptation Strategies for Global Change, 2014, 19, 863-885.	1.0	8
534	The effects of land-use policies on the conservation of Borneo's endemic Presbytis monkeys. Biodiversity and Conservation, 2014, 23, 891-908.	1.2	7
535	Carbon pools and fluxes in Bruguiera parviflora dominated naturally growing mangrove forest of Peninsular Malaysia. Wetlands Ecology and Management, 2014, 22, 15-23.	0.7	20
536	Land Use and Land Cover Mapping in Europe. Remote Sensing and Digital Image Processing, 2014, , .	0.7	37
537	The socio-ecological drivers of forest degradation in part of the tropical peatlands of Central Kalimantan, Indonesia. Forestry, 2014, 87, 335-345.	1.2	51
538	Canal blocking strategies for hydrological restoration of degraded tropical peatlands in Central Kalimantan, Indonesia. Catena, 2014, 114, 11-20.	2.2	103
539	Spatio-temporal evaluation of carbon emissions from biomass burning in Southeast Asia during the period 2001–2010. Ecological Modelling, 2014, 272, 98-115.	1.2	44

#	Article	IF	CITATIONS
540	Land use change from C3 grassland to C4 <i>Miscanthus</i> : effects on soil carbon content and estimated mitigation benefit after six years. GCB Bioenergy, 2014, 6, 360-370.	2.5	83
541	Perturbations in the carbon budget of the tropics. Global Change Biology, 2014, 20, 3238-3255.	4.2	145
542	Global potential of biospheric carbon management for climate mitigation. Nature Communications, 2014, 5, 5282.	5.8	153
543	Peat-fire-related air pollution in Central Kalimantan, Indonesia. Environmental Pollution, 2014, 195, 257-266.	3.7	120
544	Primary forest cover loss in Indonesia over 2000–2012. Nature Climate Change, 2014, 4, 730-735.	8.1	695
545	Pyrogenic carbon: the influence of particle size and chemical composition on soil carbon release. International Journal of Wildland Fire, 2014, 23, 1027.	1.0	13
546	Burning issues: statistical analyses of global fire data to inform assessments of environmental change. Environmetrics, 2014, 25, 472-481.	0.6	50
547	Drought: The most important physical stress of terrestrial ecosystems. Acta Ecologica Sinica, 2014, 34, 179-183.	0.9	24
548	A high-resolution and multi-year emissions inventory for biomass burning in Southeast Asia during 2001–2010. Atmospheric Environment, 2014, 98, 8-16.	1.9	63
549	Climate and environmental monitoring for decision making. Earth Perspectives Transdisciplinarity Enabled, 2014, 1, 16.	1.4	12
550	2013 Southeast Asian Smoke Haze: Fractionation of Particulate-Bound Elements and Associated Health Risk. Environmental Science & Technology, 2014, 48, 4327-4335.	4.6	209
551	A tree-ring perspective on the terrestrial carbon cycle. Oecologia, 2014, 176, 307-322.	0.9	131
552	Mapping Ecosystem Services for Land Use Planning, the Case of Central Kalimantan. Environmental Management, 2014, 54, 84-97.	1.2	60
553	Thermogravimetric analysis of peat decomposition under different oxygen concentrations. Journal of Thermal Analysis and Calorimetry, 2014, 117, 489-497.	2.0	21
554	CO2 emissions from tropical drained peat in Sumatra, Indonesia. Mitigation and Adaptation Strategies for Global Change, 2014, 19, 845-862.	1.0	65
555	Natural regeneration in a degraded tropical peatland, Central Kalimantan, Indonesia: Implications for forest restoration. Forest Ecology and Management, 2014, 324, 8-15.	1.4	65
556	The Geochemistry of Amazonian Peats. Wetlands, 2014, 34, 905-915.	0.7	23
557	Ecology of Testate Amoebae in an Amazonian Peatland and Development of a Transfer Function for Palaeohydrological Reconstruction. Microbial Ecology, 2014, 68, 284-298.	1.4	57

#	Article	IF	CITATIONS
558	Importance of bistatic SAR features from TanDEM-X for forest mapping and monitoring. Remote Sensing of Environment, 2014, 151, 16-26.	4.6	85
559	Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature, 2014, 510, 254-258.	13.7	296
560	Remote Sensing Applications in Environmental Research. Society of Earth Scientists Series, 2014, , .	0.2	20
561	Carbon storage and release in Indonesian peatlands since the last deglaciation. Quaternary Science Reviews, 2014, 97, 1-32.	1.4	122
562	The carbon stock of alpine peatlands on the Qinghai–Tibetan Plateau during the Holocene and their future fate. Quaternary Science Reviews, 2014, 95, 151-158.	1.4	118
563	Smouldering fire signatures in peat and their implications for palaeoenvironmental reconstructions. Geochimica Et Cosmochimica Acta, 2014, 137, 134-146.	1.6	58
564	Characterization of properties and main processes related to the genesis and evolution of tropical mountain mires from Serra do Espinhaço Meridional, Minas Gerais, Brazil. Geoderma, 2014, 232-234, 183-197.	2.3	33
565	Wildland fire emissions, carbon, and climate: Wildfire–climate interactions. Forest Ecology and Management, 2014, 317, 80-96.	1.4	181
566	Microbial and metabolic profiling reveal strong influence of water table and land-use patterns on classification of degraded tropical peatlands. Biogeosciences, 2014, 11, 1727-1741.	1.3	42
567	Climate change reduces the capacity of northern peatlands to absorb the atmospheric carbon dioxide: The different responses of bogs and fens. Global Biogeochemical Cycles, 2014, 28, 1005-1024.	1.9	95
568	Terrestrial and Inland Water Systems. , 0, , 271-360.		25
569	Assessing the regional impact of indonesian biomass burning emissions based on organic molecular tracers and chemical mass balance modeling. Atmospheric Chemistry and Physics, 2014, 14, 8043-8054.	1.9	94
570	Trace gas emissions from combustion of peat, crop residue, domestic biofuels, grasses, and other fuels: configuration and Fourier transform infrared (FTIR) component of the fourth Fire Lab at Missoula Experiment (FLAME-4). Atmospheric Chemistry and Physics, 2014, 14, 9727-9754.	1.9	188
571	Development and demonstration of a Lagrangian dispersion modeling system for realâ€time prediction of smoke haze pollution from biomass burning in Southeast Asia. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12605-12630.	1.2	21
572	Longâ€ŧerm disturbance dynamics and resilience of tropical peat swamp forests. Journal of Ecology, 2015, 103, 16-30.	1.9	65
573	Hydrologic implications of smoldering fires in wetland landscapes. Freshwater Science, 2015, 34, 1394-1405.	0.9	16
574	Revealing important nocturnal and dayâ€ŧoâ€day variations in fire smoke emissions through a multiplatform inversion. Geophysical Research Letters, 2015, 42, 3609-3618.	1.5	73
575	Centuryâ€scale patterns and trends of global pyrogenic carbon emissions and fire influences on terrestrial carbon balance. Global Biogeochemical Cycles, 2015, 29, 1549-1566.	1.9	21

#	Article	IF	CITATIONS
576	Wildfires impact on surface nitrogen oxides and ozone in Central Italy. Atmospheric Pollution Research, 2015, 6, 29-35.	1.8	10
577	Moderate drop in water table increases peatland vulnerability to post-fire regime shift. Scientific Reports, 2015, 5, 8063.	1.6	122
578	Importance of transboundary transport of biomass burning emissions to regional air quality in Southeast Asia during a high fire event. Atmospheric Chemistry and Physics, 2015, 15, 363-373.	1.9	66
579	The ENSO signal in atmospheric composition fields: emission-driven versus dynamically induced changes. Atmospheric Chemistry and Physics, 2015, 15, 9083-9097.	1.9	30
580	ldentification and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatography–time-of-flight mass spectrometry. Atmospheric Chemistry and Physics, 2015, 15, 1865-1899.	1.9	154
581	Characterization of biomass burning emissions from cooking fires, peat, crop residue, and other fuels with high-resolution proton-transfer-reaction time-of-flight mass spectrometry. Atmospheric Chemistry and Physics, 2015, 15, 845-865.	1.9	266
582	Annual variations of carbonaceous PM _{2.5} in Malaysia: influence by Indonesian peatland fires. Atmospheric Chemistry and Physics, 2015, 15, 13319-13329.	1.9	35
583	Numerical Analysis of Electromagnetic Wave Propagation in Forest. Nihon AEM Gakkaishi, 2015, 23, 131-136.	0.0	0
584	Industrial concessions, fires and air pollution in Equatorial Asia. Environmental Research Letters, 2015, 10, 091001.	2.2	10
585	Modeling relationships between water table depth and peat soil carbon loss in Southeast Asian plantations. Environmental Research Letters, 2015, 10, 074006.	2.2	101
586	Measurement and monitoring needs, capabilities and potential for addressing reduced emissions from deforestation and forest degradation under REDD+. Environmental Research Letters, 2015, 10, 123001.	2.2	115
587	Computational study of critical moisture and depth of burn in peat fires. International Journal of Wildland Fire, 2015, 24, 798.	1.0	61
588	Integrated radar and lidar analysis reveals extensive loss of remaining intact forest on Sumatra 2007–2010. Biogeosciences, 2015, 12, 6637-6653.	1.3	6
589	Modeling Peat-Fire Hazards. , 2015, , 89-120.		1
590	HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers. Biogeosciences, 2015, 12, 887-903.	1.3	36
591	Seasonal forecasting of fire over Kalimantan, Indonesia. Natural Hazards and Earth System Sciences, 2015, 15, 429-442.	1.5	49
592	Modelling Deforestation and Land Cover Transitions of Tropical Peatlands in Sumatra, Indonesia Using Remote Sensed Land Cover Data Sets. Land, 2015, 4, 670-687.	1.2	20
593	Severe Wildfires Near Moscow, Russia in 2010: Modeling of Carbon Monoxide Pollution and Comparisons with Observations. Remote Sensing, 2015, 7, 395-429.	1.8	16

#	Article	IF	CITATIONS
594	Imaging tropical peatlands in Indonesia using ground-penetrating radar (GPR) and electrical resistivity imaging (ERI): implications for carbon stock estimates and peat soil characterization. Biogeosciences, 2015, 12, 2995-3007.	1.3	62
595	Smoldering-Peat Megafires. , 2015, , 1-11.		7
596	Landscape-scale changes in forest canopy structure across a partially logged tropical peat swamp. Biogeosciences, 2015, 12, 6707-6719.	1.3	14
597	Monitoring, Observations, and Remote Sensing – Global Dimensionsâ~†. , 2015, , .		4
598	Lateral carbon fluxes and CO ₂ outgassing from a tropical peat-draining river. Biogeosciences, 2015, 12, 5967-5979.	1.3	59
599	Postfire Ecosystem Restoration. , 2015, , 229-246.		9
600	Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE – Part 2: Carbon emissions and the role of fires in the global carbon balance. Geoscientific Model Development, 2015, 8, 1321-1338.	1.3	69
601	Freedom in the Anthropocene. , 2015, , .		26
602	Detection of severe air pollution from multidirectional perspectives. Proceedings of SPIE, 2015, , .	0.8	0
603	Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: evidence from the 2013 Sumatran fires. Scientific Reports, 2014, 4, 6112.	1.6	258
604	Fire enhances phosphorus availability in topsoils depending on binding properties. Ecology, 2015, 96, 1598-1606.	1.5	41
605	Fire evolution split by continent. Nature Geoscience, 2015, 8, 167-168.	5.4	16
606	Ecosystem services from a degraded peatland of Central Kalimantan: implications for policy, planning, and management. , 2015, 25, 70-87.		42
607	Measurement matters in managing landscape carbon. Ecosystem Services, 2015, 13, 6-15.	2.3	14
608	Improving estimates of tropical peatland area, carbon storage, and greenhouse gas fluxes. Wetlands Ecology and Management, 2015, 23, 327-346.	0.7	51
609	Ore metals beneath volcanoes. Nature Geoscience, 2015, 8, 168-170.	5.4	8
610	Litterfall production and chemistry of Koompassia malaccensis and Shorea uliginosa in a tropical peat swamp forest: plant nutrient regulation and climate relationships. Trees - Structure and Function, 2015, 29, 527-537.	0.9	31
611	Charcoalified logs as evidence of hypautochthonous/autochthonous wildfire events in a peat-forming environment from the Permian of southern Paraná Basin (Brazil). International Journal of Coal Geology, 2015, 146, 55-67.	1.9	35

#	Article	IF	CITATIONS
612	Sensitivity and complacency of sedimentary biogeochemical records to climate-mediated forest disturbances. Earth-Science Reviews, 2015, 148, 121-133.	4.0	21
613	Regional air quality impacts of future fire emissions in Sumatra and Kalimantan. Environmental Research Letters, 2015, 10, 054010.	2.2	36
614	Linkages between climate, fire and vegetation in southwest China during the last 18.5ka based on a sedimentary record of black carbon and its isotopic composition. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 435, 86-94.	1.0	61
615	Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communications, 2015, 6, 7537.	5.8	1,224
616	Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012. Environmental Research Letters, 2015, 10, 074002.	2.2	142
617	Estimating the impacts of conservation on ecosystem services and poverty by integrating modeling and evaluation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7420-7425.	3.3	96
618	Nonlinear processes reinforce extreme Indian Ocean Dipole events. Scientific Reports, 2015, 5, 11697.	1.6	20
619	Better land-use allocation outperforms land sparing and land sharing approaches to conservation in Central Kalimantan, Indonesia. Biological Conservation, 2015, 186, 276-286.	1.9	54
620	Hydrothermal Carbonation of K–Rich Ash, Value Added Energy Engineering and CO2 Mineral Sequestration. Procedia Chemistry, 2015, 14, 56-65.	0.7	1
621	Numerical investigation of downward smoldering combustion in an organic soil column. International Journal of Heat and Mass Transfer, 2015, 84, 253-261.	2.5	20
622	Vegetative and climatic controls on Holocene wildfire and erosion recorded in alluvial fans of the Middle Fork Salmon River, Idaho. Holocene, 2015, 25, 857-871.	0.9	12
623	Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Clobal Change Biology, 2015, 21, 2861-2880.	4.2	683
624	Sensitivity of global terrestrial carbon cycle dynamics to variability in satelliteâ€observed burned area. Global Biogeochemical Cycles, 2015, 29, 207-222.	1.9	29
625	Population status of the Bornean orang-utan <i>Pongo pygmaeus</i> in a vanishing forest in Indonesia: the former Mega Rice Project. Oryx, 2015, 49, 473-480.	0.5	55
626	Monitoring and analysis of burning in coal tailing dumps: a case study from the Czech Republic. Environmental Earth Sciences, 2015, 73, 6601-6612.	1.3	18
627	Approaching a Standardized Method for the Hot-Water Extraction of Peat Material to Determine Labile SOM in Organic Soils. Communications in Soil Science and Plant Analysis, 2015, 46, 1044-1060.	0.6	9
628	Effects of fire on the hydrology, biogeochemistry, and ecology of peatland river systems. Freshwater Science, 2015, 34, 1406-1425.	0.9	45
629	Quantifying soil carbon loss and uncertainty from a peatland wildfire using multi-temporal LiDAR. Remote Sensing of Environment, 2015, 170, 306-316.	4.6	67

#	Article	IF	CITATIONS
630	A review of forest and tree plantation biomass equations in Indonesia. Annals of Forest Science, 2015, 72, 981-997.	0.8	21
631	Fighting carbon loss of degraded peatlands by jump-starting ecosystem functioning with ecological restoration. Science of the Total Environment, 2015, 537, 268-276.	3.9	42
632	A 21st Century Viewpoint on Natural Tropical Forest Silviculture. , 2015, , 1-28.		0
633	Using Thermal Sensitivity Analysis to Determine the Impact of Drainage on the Hydrochemistry of a Tropical Peat Soil from Malaysia. Communications in Soil Science and Plant Analysis, 2015, 46, 2168-2176.	0.6	2
634	Wildfire smoke and public health risk. International Journal of Wildland Fire, 2015, 24, 1029.	1.0	96
635	Global vulnerability of peatlands to fire and carbon loss. Nature Geoscience, 2015, 8, 11-14.	5.4	547
636	The assessment of the impact of oil palm and rubber plantations on the biotic and abiotic properties of tropical peat swamp soil in Indonesia. International Journal of Agricultural Sustainability, 2015, 13, 150-166.	1.3	19
637	Dynamics of the multi-stakeholder forum and its effectiveness in promoting sustainable forest fire management practices in South Sumatra, Indonesia. Environmental Development, 2015, 13, 4-17.	1.8	11
638	TanDEM-X data for aboveground biomass retrieval in a tropical peat swamp forest. Remote Sensing of Environment, 2015, 158, 255-266.	4.6	43
639	Operational perspective of remote sensing-based forest fire danger forecasting systems. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 104, 224-236.	4.9	80
640	Climate change mitigation strategies in agriculture and land use in Indonesia. Mitigation and Adaptation Strategies for Global Change, 2015, 20, 409-424.	1.0	34
641	Landscape characteristics derived from satellite-tracking data of wintering habitats used by oriental honey buzzards in Borneo. Landscape and Ecological Engineering, 2015, 11, 61-71.	0.7	6
642	Evapotranspiration of tropical peat swamp forests. Global Change Biology, 2015, 21, 1914-1927.	4.2	62
643	Carbon accumulation of tropical peatlands over millennia: a modeling approach. Global Change Biology, 2015, 21, 431-444.	4.2	75
644	More-frequent extreme northward shifts of eastern Indian Ocean tropical convergence under greenhouse warming. Scientific Reports, 2014, 4, 6087.	1.6	18
645	Computational smoldering combustion: Predicting the roles of moisture and inert contents in peat wildfires. Proceedings of the Combustion Institute, 2015, 35, 2673-2681.	2.4	98
646	Carbon stock in the Sundarbans mangrove forest: spatial variations in vegetation types and salinity zones. Wetlands Ecology and Management, 2015, 23, 269-283.	0.7	136
648	Contrasting transit times of water from peatlands and eucalypt forests in the Australian Alps determined by tritium: implications for vulnerability and the source of water in upland catchments. Hydrology and Earth System Sciences, 2016, 20, 4757-4773.	1.9	23

#	Article	IF	CITATIONS
652	Land-Based Mitigation Strategies under the Mid-Term Carbon Reduction Targets in Indonesia. Sustainability, 2016, 8, 1283.	1.6	6
653	Preface: Impacts of extreme climate events and disturbances on carbon dynamics. Biogeosciences, 2016, 13, 3665-3675.	1.3	16
654	Wavelet Based Analysis of TanDEM-X and LiDAR DEMs across a Tropical Vegetation Heterogeneity Gradient Driven by Fire Disturbance in Indonesia. Remote Sensing, 2016, 8, 641.	1.8	11
659	A comparative assessment of the financial costs and carbon benefits of REDD+ strategies in Southeast Asia. Environmental Research Letters, 2016, 11, 114022.	2.2	27
661	Degradation of Tropical Malaysian Peatlands Decreases Levels of Phenolics in Soil and in Leaves of Macaranga pruinosa. Frontiers in Earth Science, 2016, 4, .	0.8	26
662	The Potential of Sentinel Satellites for Burnt Area Mapping and Monitoring in the Congo Basin Forests. Remote Sensing, 2016, 8, 986.	1.8	125
663	Tropical Peatland Burn Depth and Combustion Heterogeneity Assessed Using UAV Photogrammetry and Airborne LiDAR. Remote Sensing, 2016, 8, 1000.	1.8	38
664	Improving Farming Practices for Sustainable Soil Use in the Humid Tropics and Rainforest Ecosystem Health. Sustainability, 2016, 8, 841.	1.6	13
665	Carbon Cycle–Climate Feedbacks. , 0, , 563-593.		0
666	Variable carbon losses from recurrent fires in drained tropical peatlands. Global Change Biology, 2016, 22, 1469-1480.	4.2	107
667	Characterizing forest structure variations across an intact tropical peat dome using field samplings and airborne Li DAR. Ecological Applications, 2016, 26, 587-601.	1.8	4
668	The impact of Indonesian peatland degradation on downstream marine ecosystems and the global carbon cycle. Global Change Biology, 2016, 22, 325-337.	4.2	22
669	A Burning Issue: Anthropogenic Vegetation Fires. , 2016, , 335-348.		5
670	Could alluvial knickpoint retreat rather than fire drive the loss of alluvial wet monsoon forest, tropical northern Australia?. Earth Surface Processes and Landforms, 2016, 41, 1583-1594.	1.2	14
671	Land cover changes from 1995 to 2016 in sebubus forest of sambas regency, Indonesia. , 2016, , .		0
672	Propagation probability and spread rates of self-sustained smouldering fires under controlled moisture content and bulk density conditions. International Journal of Wildland Fire, 2016, 25, 456.	1.0	55
673	Measurement of carbon dioxide flux from tropical peatland in Indonesia using the nocturnal temperature-inversion trap method. Environmental Research Letters, 2016, 11, 095011.	2.2	5
674	Species mixture effects on flammability across plant phylogeny: the importance of litter particle size and the special role for nonâ€ <i>Pinus</i> Pinaceae. Ecology and Evolution, 2016, 6, 8223-8234.	0.8	24

#	Article	IF	CITATIONS
675	Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia. Scientific Reports, 2016, 6, 37074.	1.6	151
676	The 2015 Borneo fires: What have we learned from the 1997 and 2006 El Niños?. Environmental Research Letters, 2016, 11, 104003.	2.2	26
677	Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Scientific Reports, 2016, 6, 26886.	1.6	270
678	South-east Asia's forest fires: blazing the policy trail. Oryx, 2016, 50, 207-212.	0.5	8
679	Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo. Scientific Reports, 2016, 6, 32017.	1.6	302
680	Nighttime warming enhances drought resistance of plant communities in a temperate steppe. Scientific Reports, 2016, 6, 23267.	1.6	47
681	Mitigating wildfire carbon loss in managed northern peatlands through restoration. Scientific Reports, 2016, 6, 28498.	1.6	59
682	Comprehensive assessment of PM _{2.5} physicochemical properties during the Southeast Asia dry season (southwest monsoon). Journal of Geophysical Research D: Atmospheres, 2016, 121, 14,589.	1.2	39
683	Energy and environment in Indonesia. , 2016, , .		0
684	Identification and Seasonal Analysis of Degraded Tropical Peatland by Using ALOS AVNIR-2 Data. Agriculture and Agricultural Science Procedia, 2016, 11, 90-94.	0.6	Ο
685	Monitoring peat subsidence and carbon emission in Indonesia peatlands using InSAR time series. , 2016, , .		4
686	Mitigating Climate Change by Preventing Peatland Fire: Conditions for Successful REDD+ in Indonesia. , 2016, , 145-158.		0
687	Combustion kinetics and emission characteristics of peat by using TG-FTIR technique. Journal of Thermal Analysis and Calorimetry, 2016, 124, 519-528.	2.0	26
688	The pyrohealth transition: how combustion emissions have shaped health through human history. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150173.	1.8	16
689	In the line of fire: the peatlands of Southeast Asia. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150176.	1.8	181
690	Living on a flammable planet: interdisciplinary, cross-scalar and varied cultural lessons, prospects and challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150469.	1.8	39
691	Climate Change Policies and Challenges in Indonesia. , 2016, , .		0
692	Recent Advances and Remaining Uncertainties in Resolving Past and Future Climate Effects on Global Fire Activity. Current Climate Change Reports, 2016, 2, 1-14.	2.8	110

#	Article	IF	CITATIONS
693	Recent global aerosol optical depth variations and trends — A comparative study using MODIS and MISR level 3 datasets. Remote Sensing of Environment, 2016, 181, 137-150.	4.6	129
694	Catastrophic Declines in Wilderness Areas Undermine Global Environment Targets. Current Biology, 2016, 26, 2929-2934.	1.8	359
695	Hotspot Pattern Distribution in Peat Land Area in Sumatera Based on Spatio Temporal Clustering. Procedia Environmental Sciences, 2016, 33, 635-645.	1.3	21
696	Air Quality Downwind of Burned Areas. Comprehensive Analytical Chemistry, 2016, 73, 491-515.	0.7	0
697	Modeling of Two-Dimensional Natural Downward Smoldering of Peat. Energy & Fuels, 2016, 30, 8765-8775.	2.5	27
698	Variability of fire carbon emissions in equatorial Asia and its nonlinear sensitivity to El Niño. Geophysical Research Letters, 2016, 43, 10,472.	1.5	60
699	Long-term environmental drivers of DOC fluxes: Linkages between management, hydrology and climate in a subtropical coastal estuary. Estuarine, Coastal and Shelf Science, 2016, 182, 112-122.	0.9	26
700	TanDEM-X elevation model data for canopy height and aboveground biomass retrieval in a tropical peat swamp forest. International Journal of Remote Sensing, 2016, 37, 5021-5044.	1.3	22
701	Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9204-9209.	3.3	253
702	The need for longâ€ŧerm remedies for Indonesia's forest fires. Conservation Biology, 2016, 30, 5-6.	2.4	54
703	Earth's surface water change over the past 30 years. Nature Climate Change, 2016, 6, 810-813.	8.1	301
704	Impact of North American intense fires on aerosol optical properties measured over the European Arctic in July 2015. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14,487.	1.2	31
705	Climate–vegetation–fire interactions and feedbacks: trivial detail or major barrier to projecting the future of the Earth system?. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7, 910-931.	3.6	76
706	Regional carbon fluxes from land use and land cover change in Asia, 1980–2009. Environmental Research Letters, 2016, 11, 074011.	2.2	31
707	Management driven changes in carbon mineralization dynamics of tropical peat. Biogeochemistry, 2016, 129, 115-132.	1.7	20
708	Peatlands and Global Change: Response and Resilience. Annual Review of Environment and Resources, 2016, 41, 35-57.	5.6	189
709	Peatlands. , 2016, , 1-18.		2
710	Doubling of annual ammonia emissions from the peat fires in Indonesia during the 2015 El Niño. Geophysical Research Letters, 2016, 43, 11,007.	1.5	41

#	Article	IF	CITATIONS
711	Brown carbon aerosols from burning of boreal peatlands: microphysical properties, emission factors, and implications for direct radiative forcing. Atmospheric Chemistry and Physics, 2016, 16, 3033-3040.	1.9	119
712	Atmospheric CH ₄ and CO ₂ enhancements and biomass burning emission ratios derived from satellite observations of the 2015 Indonesian fire plumes. Atmospheric Chemistry and Physics. 2016. 16. 10111-10131.	1.9	49
713	Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño. Atmospheric Chemistry and Physics, 2016, 16, 11711-11732.	1.9	161
714	Radiative effects of interannually varying vs. interannually invariant aerosol emissions from fires. Atmospheric Chemistry and Physics, 2016, 16, 14495-14513.	1.9	23
715	Parameterization of single-scattering albedo (SSA) and absorption Ångström exponent (AAE) with EC / OC for aerosol emissions from biomass burning. Atmospheric Chemistry and Physics, 2016, 16, 9549-9561.	1.9	149
716	Effectiveness of Roundtable on Sustainable Palm Oil (RSPO) for reducing fires on oil palm concessions in Indonesia from 2012 to 2015. Environmental Research Letters, 2016, 11, 105007.	2.2	64
717	Tropical forest heterogeneity from TanDEM-X InSAR and lidar observations in Indonesia. Proceedings of SPIE, 2016, , .	0.8	0
718	Visibility deterioration and hygroscopic growth of biomass burning aerosols over a tropical coastal city: a case study over Singapore's airport. Atmospheric Science Letters, 2016, 17, 624-629.	0.8	13
719	Could biodiversity loss have increased Australia's bushfire threat?. Animal Conservation, 2016, 19, 490-497.	1.5	38
720	Soft but significant power in the Paris Agreement. Nature Climate Change, 2016, 6, 643-646.	8.1	67
721	Preventing fires and haze in Southeast Asia. Nature Climate Change, 2016, 6, 640-643.	8.1	113
722	Effects of spatial heterogeneity in moisture content on the horizontal spread of peat fires. Science of the Total Environment, 2016, 572, 1422-1430.	3.9	38
723	Experimental study of the formation and collapse of an overhang in the lateral spread of smouldering peat fires. Combustion and Flame, 2016, 168, 393-402.	2.8	78
724	Historical Forest fire Occurrence Analysis in Jambi Province During the Period of 2000 – 2015: Its Distribution & Land Cover Trajectories. Procedia Environmental Sciences, 2016, 33, 450-459.	1.3	14
725	El Niño and a record CO2 rise. Nature Climate Change, 2016, 6, 806-810.	8.1	208
726	Sources of anthropogenic fire ignitions on the peat-swamp landscape in Kalimantan, Indonesia. Global Environmental Change, 2016, 39, 205-219.	3.6	99
727	Determination and analysis of trace metals and surfactant in air particulate matter during biomass burning haze episode in Malaysia. Atmospheric Environment, 2016, 141, 219-229.	1.9	44
728	Repeated fires trap Amazonian blackwater floodplains in an open vegetation state. Journal of Applied Ecology, 2016, 53, 1597-1603.	1.9	44

		TION REPORT	
#	Article	IF	Citations
729	State space analysis of forest fires. JVC/Journal of Vibration and Control, 2016, 22, 2153-2164.	1.5	7
730	Knowing the subterranean: Land grabbing, oil palm, and divergent expertise in Indonesia's peat soil. Environment and Planning A, 2016, 48, 754-770.	2.1	49
731	Peat Fire Occurrence. , 2016, , 377-395.		8
732	Applying Advanced Ground-Based Remote Sensing in the Southeast Asian Maritime Continent to Characterize Regional Proficiencies in Smoke Transport Modeling. Journal of Applied Meteorology and Climatology, 2016, 55, 3-22.	0.6	31
733	Forest Structure and Productivity of Tropical Heath and Peatland Forests. , 2016, , 151-166.		9
734	Tropical Peatland Ecosystems. , 2016, , .		49
735	Local Community Safeguard by REDD+ and Payment for Ecosystem Services (PES) in Peatland. , 2016, , 563-584.		0
736	Late Cenozoic fire enhancement response to aridification in mid-latitude Asia: Evidence from microcharcoal records. Quaternary Science Reviews, 2016, 139, 53-66.	1.4	30
737	Prediction of column ozone concentrations using multiple regression analysis and principal component analysis techniques: A case study in peninsular Malaysia. Atmospheric Pollution Research, 2016, 7, 533-546.	1.8	42
738	Using palaeoecology to advise peatland conservation: An example from West Arkengarthdale, Yorkshire, UK. Journal for Nature Conservation, 2016, 30, 90-102.	0.8	34
739	Peatland in Kalimantan. , 2016, , 91-112.		9
740	Peat Mapping. , 2016, , 455-467.		2
741	Methane and Nitrous Oxide Emissions from Tropical Peat Soil. , 2016, , 339-351.		6
742	Land Change Analysis from 2000 to 2004 in Peatland of Central Kalimantan, Indonesia Using GIS and an Extended Transition Matrix. , 2016, , 433-443.		6
743	Groundwater in Peatland. , 2016, , 265-279.		13
744	Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Global Ecology and Conservation, 2016, 6, 67-78.	1.0	354
745	Tropical Peatland Forestry: Toward Forest Restoration and Sustainable Use of Wood Resources in Degraded Peatland. , 2016, , 513-549.		1
746	Tropical Peatland of the World. , 2016, , 3-32.		27

#	Article	IF	CITATIONS
747	Peatland in Indonesia. , 2016, , 49-58.		21
748	Restoration of tropical peat soils: The application of soil microbiology for monitoring the success of the restoration process. Agriculture, Ecosystems and Environment, 2016, 216, 293-303.	2.5	26
749	Toward clearer skies: Challenges in regulating transboundary haze in Southeast Asia. Environmental Science and Policy, 2016, 55, 87-95.	2.4	70
750	Mixed policies give more options in multifunctional tropical forest landscapes. Journal of Applied Ecology, 2017, 54, 51-60.	1.9	57
751	Soil carbon 4 per mille. Geoderma, 2017, 292, 59-86.	2.3	1,279
752	Soil carbon dioxide emissions from a rubber plantation on tropical peat. Science of the Total Environment, 2017, 581-582, 857-865.	3.9	66
753	Understanding the drivers of <scp>S</scp> outheast <scp>A</scp> sian biodiversity loss. Ecosphere, 2017, 8, e01624.	1.0	335
754	Vast peatlands found in the Congo Basin. Nature, 2017, 542, 38-39.	13.7	7
755	Temperature and burning history affect emissions of greenhouse gases and aerosol particles from tropical peatland fire. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1281-1292.	1.2	15
756	Global and regional fluxes of carbon from land use and land cover change 1850–2015. Global Biogeochemical Cycles, 2017, 31, 456-472.	1.9	362
757	Greenhouse gas and air pollutant emissions from land and forest fire in Indonesia during 2015 based on satellite data. IOP Conference Series: Earth and Environmental Science, 2017, 54, 012060.	0.2	10
758	Smallholder Farmers and the Dynamics of Degradation of Peatland Ecosystems in Central Kalimantan, Indonesia. Ecological Economics, 2017, 136, 101-113.	2.9	27
759	Intensified water storage loss by biomass burning in Kalimantan: Detection by GRACE. Journal of Geophysical Research: Solid Earth, 2017, 122, 2409-2430.	1.4	12
760	Forest and Land Fires Hazard Level Modeling: Case study of Kapuas, Central Kalimantan. Disaster Risk Reduction, 2017, , 539-560.	0.2	6
761	Characterization of rainwater chemical composition after a Southeast Asia haze event: insight of transboundary pollutant transport during the northeast monsoon. Environmental Science and Pollution Research, 2017, 24, 15278-15290.	2.7	18
762	Grand Challenges in Understanding the Interplay of Climate and Land Changes. Earth Interactions, 2017, 21, 1-43.	0.7	24
763	Biomass burning in Indo-China peninsula and its impacts on regional air quality and global climate change-a review. Environmental Pollution, 2017, 227, 414-427.	3.7	77
764	Self-ignition of natural fuels: Can wildfires of carbon-rich soil start by self-heating?. Fire Safety Journal, 2017, 91, 828-834.	1.4	43

#	Article	IF	CITATIONS
765	Amplification of wildfire area burnt by hydrological drought in the humid tropics. Nature Climate Change, 2017, 7, 428-431.	8.1	96
766	When will the jungle burn?. Nature Climate Change, 2017, 7, 390-391.	8.1	4
767	Disaster Risk Reduction in Indonesia. Disaster Risk Reduction, 2017, , .	0.2	32
769	From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990. Environmental Research Letters, 2017, 12, 024014.	2.2	155
770	The vegetation history of an Amazonian domed peatland. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 468, 129-141.	1.0	41
771	Environmental dynamics and carbon accumulation rate of a tropical peatland in Central Sumatra, Indonesia. Quaternary Science Reviews, 2017, 169, 173-187.	1.4	43
772	Singapore's willingness to pay for mitigation of transboundary forest-fire haze from Indonesia. Environmental Research Letters, 2017, 12, 024017.	2.2	21
773	How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5187-E5196.	3.3	79
774	Spectroscopic and microscopic characterization of atmospheric particulate matter. Instrumentation Science and Technology, 2017, 45, 659-682.	0.9	16
775	Emission Factor from Small Scale Tropical Peat Combustion. IOP Conference Series: Materials Science and Engineering, 2017, 180, 012113.	0.3	5
776	An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Global Change Biology, 2017, 23, 3581-3599.	4.2	236
777	Light-Absorbing Brown Carbon Aerosol Constituents from Combustion of Indonesian Peat and Biomass. Environmental Science & Technology, 2017, 51, 4415-4423.	4.6	86
778	Scaling up flammability from individual leaves to fuel beds. Oikos, 2017, 126, 1428-1438.	1.2	45
779	Effect of groundwater level fluctuation on soil respiration rate of tropical peatland in Central Kalimantan, Indonesia. Soil Science and Plant Nutrition, 2017, 63, 1-13.	0.8	40
780	Quantitative assessment of source contributions to PM2.5 on the west coast of Peninsular Malaysia to determine the burden of Indonesian peatland fire. Atmospheric Environment, 2017, 171, 111-117.	1.9	28
781	Estimation and Uncertainty of Recent Carbon Accumulation and Vertical Accretion in Drained and Undrained Forested Peatlands of the Southeastern USA. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 2563-2579.	1.3	22
782	Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. Science, 2017, 358, .	6.0	307
783	Influence of El Niño on atmospheric CO ₂ over the tropical Pacific Ocean: Findings from NASA's OCO-2 mission. Science, 2017, 358, .	6.0	90

#	Article	IF	CITATIONS
784	Southeast Asian Forest Fires (1997/1998): El Niño as a Driver of Regional Impacts. Air Pollution Reviews, 2017, , 191-225.	0.1	1
785	A review of the drivers of tropical peatland degradation in South-East Asia. Land Use Policy, 2017, 69, 349-360.	2.5	156
786	Fire activity in Borneo driven by industrial land conversion and drought during El Niño periods, 1982–2010. Global Environmental Change, 2017, 47, 95-109.	3.6	59
787	Heightened fire probability in Indonesia in non-drought conditions: the effect of increasing temperatures. Environmental Research Letters, 2017, 12, 054002.	2.2	27
788	Benchmarking carbon fluxes of the ISIMIP2a biome models. Environmental Research Letters, 2017, 12, 045002.	2.2	30
789	Longâ€Lead Prediction of the 2015 Fire and Haze Episode in Indonesia. Geophysical Research Letters, 2017, 44, 9996.	1.5	16
790	Temporal comparison of global inventories of CO2 emissions from biomass burning during 2002–2011 derived from remotely sensed data. Environmental Science and Pollution Research, 2017, 24, 16905-16916.	2.7	15
791	Tree species identity in high-latitude forests determines fire spread through fuel ladders from branches to soil and vice versa. Forest Ecology and Management, 2017, 400, 475-484.	1.4	15
792	Fire Distribution in Peninsular Malaysia, Sumatra and Borneo in 2015 with Special Emphasis on Peatland Fires. Environmental Management, 2017, 60, 747-757.	1.2	67
793	Aerosol optical properties over Svalbard: a comparison between Ny-Ãlesund and Hornsund. Oceanologia, 2017, 59, 431-444.	1.1	15
794	Emissions and Partitioning of Intermediate-Volatility and Semi-Volatile Polar Organic Compounds (I/SV-POCs) During Laboratory Combustion of Boreal and Sub-Tropical Peat. Aerosol Science and Engineering, 2017, 1, 25-32.	1.1	10
795	A human-driven decline in global burned area. Science, 2017, 356, 1356-1362.	6.0	694
796	Fire and ecosystem change in the Arctic across the Paleocene–Eocene Thermal Maximum. Earth and Planetary Science Letters, 2017, 467, 149-156.	1.8	34
797	Sustained Biogeochemical Impacts of Wildfire in a Mountain Lake Catchment. Ecosystems, 2017, 20, 813-829.	1.6	17
798	Assessing the influence of return density on estimation of lidar-based aboveground biomass in tropical peat swamp forests of Kalimantan, Indonesia. International Journal of Applied Earth Observation and Geoinformation, 2017, 56, 24-35.	1.4	10
799	Dioxins from Biomass Combustion: An Overview. Waste and Biomass Valorization, 2017, 8, 1-20.	1.8	69
800	Integrating Wildland and Urban Fire Risks in Local Development Strategies in Indonesia. , 2017, , 31-43.		2
801	Fire dynamics under monsoonal climate in Yunnan, SW China: past, present and future. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 465, 168-176.	1.0	21

#	Article	IF	CITATIONS
802	A review of the ecosystem functions in oil palm plantations, using forests as a reference system. Biological Reviews, 2017, 92, 1539-1569.	4.7	222
803	Darcy Scale Modeling of Smoldering: Impact of Heat Loss. Combustion Science and Technology, 2017, 189, 340-365.	1.2	21
804	Denial of longâ€ŧerm issues with agriculture on tropical peatlands will have devastating consequences. Global Change Biology, 2017, 23, 977-982.	4.2	114
805	Keep wetlands wet: the myth of sustainable development of tropical peatlands – implications for policies and management. Global Change Biology, 2017, 23, 534-549.	4.2	105
806	Impacts of conversion of tropical peat swamp forest to oil palm plantation on peat organic chemistry, physical properties and carbon stocks. Geoderma, 2017, 289, 36-45.	2.3	104
807	A commonâ€sense approach to tropical peat swamp forest restoration in Southeast Asia. Restoration Ecology, 2017, 25, 312-321.	1.4	51
808	Tropical peatlands monitoring by using C-band dual-polarization Sentinel-1 data. , 2017, , .		0
809	Release of Black Carbon From Thawing Permafrost Estimated by Sequestration Fluxes in the East Siberian Arctic Shelf Recipient. Global Biogeochemical Cycles, 2017, 31, 1501-1515.	1.9	12
810	Water uptake by fresh Indonesian peat burning particles is limited by water-soluble organic matter. Atmospheric Chemistry and Physics, 2017, 17, 11591-11604.	1.9	22
811	Relative importance of black carbon, brown carbon, and absorption enhancement from clear coatings in biomass burning emissions. Atmospheric Chemistry and Physics, 2017, 17, 5063-5078.	1.9	81
812	Wildfire air pollution hazard during the 21stÂcentury. Atmospheric Chemistry and Physics, 2017, 17, 9223-9236.	1.9	66
813	Biomass burning aerosols and the low-visibility events in Southeast Asia. Atmospheric Chemistry and Physics, 2017, 17, 965-980.	1.9	67
814	Emission factors of CO2, CO and CH4 from Sumatran peatland fires in 2013 based on shipboard measurements. Tellus, Series B: Chemical and Physical Meteorology, 2017, 69, 1399047.	0.8	14
815	Carbon Emissions during Wildland Fire on a North American Temperate Peatland. Fire Ecology, 2017, 13, 34-57.	1.1	16
816	Annual greenhouse gas budget for a bog ecosystem undergoing restoration by rewetting. Biogeosciences, 2017, 14, 2799-2814.	1.3	40
817	Scaling the Costs of Natural Ecosystem Degradation and Biodiversity Losses in Aceh Province, Sumatra. , 2017, , 231-271.		7
818	A Review of Wetland Remote Sensing. Sensors, 2017, 17, 777.	2.1	279
819	Precipitation–fire linkages in Indonesia (1997–2015). Biogeosciences, 2017, 14, 3995-4008.	1.3	48

#	Article	IF	CITATIONS
820	Managing fire risk during drought: the influence of certification and El Niño on fire-driven forest conversion for oil palm in Southeast Asia. Earth System Dynamics, 2017, 8, 749-771.	2.7	21
821	Was the Little Ice Age more or less El Niño-like than the Medieval Climate Anomaly? Evidence from hydrological and temperature proxy data. Climate of the Past, 2017, 13, 267-301.	1.3	20
825	The Characteristics of Peats and Co2 Emission Due to Fire in Industrial Plant Forests. IOP Conference Series: Earth and Environmental Science, 2017, 97, 012029.	0.2	4
827	Assigning dates and identifying areas affected by fires in Portugal based on MODIS data. Anais Da Academia Brasileira De Ciencias, 2017, 89, 1487-1501.	0.3	4
828	A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1). Geoscientific Model Development, 2017, 10, 4443-4476.	1.3	51
829	Dynamics and Effectiveness of the Multistakeholder Forum in Promoting Sustainable Forest Fire Management Practices in South Sumatra, Indonesia. , 2017, , 157-174.		1
830	A new method for performing smouldering combustion field experiments in peatlands and rich-organic soils. International Journal of Wildland Fire, 2017, 26, 1040.	1.0	8
831	ADVANCED LAND COVER MAPPING OF TROPICAL PEAT SWAMP ECOSYSTEM USING AIRBORNE DISCRETE RETURN LIDAR. Geoplanning, 2017, 4, 1.	0.5	1
832	A Review of Techniques for Effective Tropical Peatland Restoration. Wetlands, 2018, 38, 275-292.	0.7	72
833	Strengthening community participation in reducing GHG emission from forest and peatland fire. IOP Conference Series: Earth and Environmental Science, 2018, 122, 012076.	0.2	5
834	South/Southeast Asia Research Initiative (SARI): A Response to Regional Needs in Land Cover/Land Use Change Science and Education. Springer Remote Sensing/photogrammetry, 2018, , 3-29.	0.4	1
835	Wetlands In a Changing Climate: Science, Policy and Management. Wetlands, 2018, 38, 183-205.	0.7	234
836	Characterization of Wildfireâ€Induced Aerosol Emissions From the Maritime Continent Peatland and Central African Dry Savannah with MISR and CALIPSO Aerosol Products. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3116-3125.	1.2	16
837	Reducing CO2 emissions and supporting food security in Central Kalimantan, Indonesia, with improved peatland management. Land Use Policy, 2018, 72, 325-332.	2.5	23
838	The Role of Peatlands and Their Carbon Storage Function in the Context of Climate Change. GeoPlanet: Earth and Planetary Sciences, 2018, , 169-187.	0.2	37
839	The transient shift of driving environmental factors of carbon dioxide and methane fluxes in Tibetan peatlands before and after hydrological restoration. Agricultural and Forest Meteorology, 2018, 250-251, 138-146.	1.9	15
840	In Situ Tropical Peatland Fire Emission Factors and Their Variability, as Determined by Field Measurements in Peninsula Malaysia. Global Biogeochemical Cycles, 2018, 32, 18-31.	1.9	38
841	Policy Design for Sustainability at Multiple Scales: The Case of Transboundary Haze Pollution in Southeast Asia. , 2018, , 37-51.		0

#	Article	IF	CITATIONS
842	Chemical characterization of fine particulate matter emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño. Atmospheric Chemistry and Physics, 2018, 18, 2585-2600.	1.9	66
843	Insights into the phenomenon of alien plant invasion and its synergistic interlinkage with three current ecological issues. Journal of Asia-Pacific Biodiversity, 2018, 11, 188-198.	0.2	9
844	Fine Particle Emissions From Tropical Peat Fires Decrease Rapidly With Time Since Ignition. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5607-5617.	1.2	21
845	Forest and Land Fires in Riau Province: A Case Study in Fire Prevention Policy Implementation with Local Concession Holders. Springer Remote Sensing/photogrammetry, 2018, , 143-169.	0.4	9
846	Land use change and El Niño-Southern Oscillation drive decadal carbon balance shifts in Southeast Asia. Nature Communications, 2018, 9, 1154.	5.8	28
847	Forest loss and Borneo's climate. Environmental Research Letters, 2018, 13, 044009.	2.2	53
848	Climate Change and Air Pollution. Springer Climate, 2018, , .	0.3	10
849	Climate Change and Air Pollution in Malaysia. Springer Climate, 2018, , 241-254.	0.3	5
850	Physicochemical factors and their potential sources inferred from long-term rainfall measurements at an urban and a remote rural site in tropical areas. Science of the Total Environment, 2018, 613-614, 1401-1416.	3.9	27
851	PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis. Catena, 2018, 160, 134-140.	2.2	421
852	Climate change, carbon market instruments, and biodiversity: focusing on synergies and avoiding pitfalls. Wiley Interdisciplinary Reviews: Climate Change, 2018, 9, e486.	3.6	17
853	Underground fire prospective technologies. , 2018, , 583-599.		1
854	Spatial evaluation of Indonesia's 2015 fireâ€affected area and estimated carbon emissions using Sentinelâ€1. Global Change Biology, 2018, 24, 644-654.	4.2	93
855	The effect of volcanism on submontane rainforest vegetation composition: Paleoecological evidence from Danau Njalau, Sumatra (Indonesia). Holocene, 2018, 28, 293-307.	0.9	3
856	Recognizing Women Leaders in Fire Science: Revisited. Fire, 2018, 1, 45.	1.2	4
857	Effect of Rewetting on Smouldering Combustion of a Tropical Peat. E3S Web of Conferences, 2018, 67, 02042.	0.2	5
859	Modeling Burned Areas in Indonesia: The FLAM Approach. Forests, 2018, 9, 437.	0.9	12
860	Tropical land carbon cycle responses to 2015/16 El Niño as recorded by atmospheric greenhouse gas and remote sensing data. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170302.	1.8	37

#	Article	IF	CITATIONS
861	Tropical Peatland Vegetation Structure and Biomass: Optimal Exploitation of Airborne Laser Scanning. Remote Sensing, 2018, 10, 671.	1.8	12
862	Dominant contribution of oxygenated organic aerosol to haze particles from real-time observation in Singapore during an Indonesian wildfire event in 2015. Atmospheric Chemistry and Physics, 2018, 18, 16481-16498.	1.9	24
863	Contributions of natural systems and human activity to greenhouse gas emissions. Advances in Climate Change Research, 2018, 9, 243-252.	2.1	111
864	Variation in Soil Properties Regulate Greenhouse Gas Fluxes and Global Warming Potential in Three Land Use Types on Tropical Peat. Atmosphere, 2018, 9, 465.	1.0	21
865	Getting forest science to policy discourse: a theory-based outcome assessment of a global research programme. International Forestry Review, 2018, 20, 469-487.	0.3	4
866	Carbon Stocks In OKI Regency Peatland – A Benefit Transfer Approach. , 2018, , .		Ο
867	Extending wire method for field assessment of surface peat thickness loss due to peat fire incidence in oil palm plantations. IOP Conference Series: Earth and Environmental Science, 2018, 209, 012052.	0.2	1
868	Potential shift from a carbon sink to a source in Amazonian peatlands under a changing climate. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12407-12412.	3.3	54
869	Smoke radiocarbon measurements from Indonesian fires provide evidence for burning of millennia-aged peat. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12419-12424.	3.3	52
870	Microbial Community Structure in a Malaysian Tropical Peat Swamp Forest: The Influence of Tree Species and Depth. Frontiers in Microbiology, 2018, 9, 2859.	1.5	43
871	Assessment of Suitability of Tree Species for Bioenergy Production on Burned and Degraded Peatlands in Central Kalimantan, Indonesia. Land, 2018, 7, 115.	1.2	17
872	A POLITICAL ECONOMY ANALYSIS OF THE SOUTHEAST ASIAN HAZE. Singapore Economic Review, 2018, 63, 1085-1100.	0.9	0
873	The challenges of using satellite data sets to assess historical land use change and associated greenhouse gas emissions: a case study of three Indonesian provinces. Carbon Management, 2018, 9, 399-413.	1.2	11
874	Global climate forcing driven by altered BVOC fluxes from 1990 to 2010 land cover change in maritime Southeast Asia. Atmospheric Chemistry and Physics, 2018, 18, 16931-16952.	1.9	14
875	New insights into the variability of the tropical land carbon cycle from the El Niño of 2015/2016. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170298.	1.8	21
876	The role of satellite observations in understanding the impact of El Niño on the carbon cycle: current capabilities and future opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170407.	1.8	8
877	Early Pennsylvanian ombrotrophic mire of the Prokop Coal (Upper Silesian Basin); what does it say about climate?. International Journal of Coal Geology, 2018, 198, 116-143.	1.9	10
878	Carbon Emission from Peat Fire in 2015. IOP Conference Series: Earth and Environmental Science, 2018, 166, 012041.	0.2	8

#	Article	IF	CITATIONS
879	Autothermal pyrolysis of biomass due to intrinsic thermal decomposition effects. Journal of Thermal Analysis and Calorimetry, 2018, 134, 1045-1057.	2.0	18
880	The Response of Forest Ecosystems to Climate Change. Developments in Soil Science, 2018, , 185-206.	0.5	13
881	A successful prediction of the record CO ₂ rise associated with the 2015/2016 El Niño. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170301.	1.8	22
882	Net primary productivity and its control of the Middle Jurassic peatlands: An example from the southern Junggar coalfield. Science China Earth Sciences, 2018, 61, 1633-1643.	2.3	5
883	Influence of internal climate variability on Indian Ocean Dipole properties. Scientific Reports, 2018, 8, 13500.	1.6	17
884	Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nature Climate Change, 2018, 8, 907-913.	8.1	188
885	Impact of Peat Fire on the Soil and Export of Dissolved Organic Carbon in Tropical Peat Soil, Central Kalimantan, Indonesia. ACS Earth and Space Chemistry, 2018, 2, 692-701.	1.2	22
886	Wildfire smoke impacts activity and energetics of wild Bornean orangutans. Scientific Reports, 2018, 8, 7606.	1.6	21
887	Review of emissions from smouldering peat fires and their contribution to regional haze episodes. International Journal of Wildland Fire, 2018, 27, 293.	1.0	133
888	Interpretation of El Niño–Southern Oscillationâ€related precipitation anomalies in northâ€western Borneo using isotopic tracers. Hydrological Processes, 2018, 32, 2176-2186.	1.1	9
889	An analysis of the developmental differences in Borneo's Southeastern and Northwestern Coastal Zones. Journal of Coastal Conservation, 2018, 22, 1045-1055.	0.7	0
890	Role of the Maddenâ€Julian Oscillation in the Transport of Smoke From Sumatra to the Malay Peninsula During Severe Nonâ€El Niño Haze Events. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6282-6294.	1.2	17
891	Carbon Sequestration in Wetland Soils. , 2018, , 211-234.		3
892	Summary of workshop large outdoor fires and the built environment. Fire Safety Journal, 2018, 100, 76-92.	1.4	51
893	Land-use change and income inequality in rural Indonesia. Forest Policy and Economics, 2018, 94, 55-66.	1.5	31
894	Ground-based measurements of column-averaged carbon dioxide molar mixing ratios in a peatland fire-prone area of Central Kalimantan, Indonesia. Scientific Reports, 2018, 8, 8437.	1.6	7
895	ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO ₂ , water, and energy fluxes on daily to annual scales. Geoscientific Model Development, 2018, 11, 497-519.	1.3	43
896	Major perturbations in the Earth's forest ecosystems. Possible implications for global warming. Earth-Science Reviews, 2018, 185, 544-571.	4.0	72

#	Article	IF	CITATIONS
897	Review article: A systematic literature review of research trends and authorships on natural hazards, disasters, risk reduction and climate change in Indonesia. Natural Hazards and Earth System Sciences, 2018, 18, 1785-1810.	1.5	37
898	Disentangling effects of key coarse woody debris fuel properties on its combustion, consumption and carbon gas emissions during experimental laboratory fire. Forest Ecology and Management, 2018, 427, 275-288.	1.4	5
899	Restoration to offset the impacts of developments at a landscape scale reveals opportunities, challenges and tough choices. Global Environmental Change, 2018, 52, 152-161.	3.6	36
900	The tropical forest carbon cycle and climate change. Nature, 2018, 559, 527-534.	13.7	425
901	Remote Sensing of Wetland Types: Peat Swamps. , 2018, , 1649-1657.		0
902	New Tropical Peatland Gas and Particulate Emissions Factors Indicate 2015 Indonesian Fires Released Far More Particulate Matter (but Less Methane) than Current Inventories Imply. Remote Sensing, 2018, 10, 495.	1.8	49
903	Secondary aerosol formation promotes water uptake by organic-rich wildfire haze particles in equatorial Asia. Atmospheric Chemistry and Physics, 2018, 18, 7781-7798.	1.9	15
904	Carbon emissions from Southâ€East Asian peatlands will increase despite emissionâ€reduction schemes. Global Change Biology, 2018, 24, 4598-4613.	4.2	76
905	Peatlands. , 2018, , 227-244.		7
906	Transient gas and particle emissions from smouldering combustion of peat. Proceedings of the Combustion Institute, 2019, 37, 4035-4042.	2.4	38
907	Upward-and-downward spread of smoldering peat fire. Proceedings of the Combustion Institute, 2019, 37, 4025-4033.	2.4	78
908	Net carbon emissions from African biosphere dominate pan-tropical atmospheric CO2 signal. Nature Communications, 2019, 10, 3344.	5.8	81
909	Satellite soil moisture observations predict burned area in Southeast Asian peatlands. Environmental Research Letters, 2019, 14, 094014.	2.2	22
910	Peatland Hydrological Dynamics as A Driver of Landscape Connectivity and Fire Activity in the Boreal Plain of Canada. Forests, 2019, 10, 534.	0.9	38
911	Comment on: "Peatland carbon stocks and burn history: Blanket bog peat core evidence highlights charcoal impacts on peat physical properties and longâ€ŧerm carbon storage,―by A. Heinemeyer, Q. Asena, W. L. Burn and A. L. Jones (<i>Geo: Geography and Environment</i> 2018; e00063). Geo: Geography and Environment, 2019, 6, e00075.	0.5	2
912	Review of the Transition From Smouldering to Flaming Combustion in Wildfires. Frontiers in Mechanical Engineering, 2019, 5, .	0.8	61
913	A Significant Portion of Water-Soluble Organic Matter in Fresh Biomass Burning Particles Does Not Contribute to Hygroscopic Growth: An Application of Polarity Segregation by 1-Octanol–Water Partitioning Method. Environmental Science & Technology, 2019, 53, 10034-10042.	4.6	11
914	Smouldering combustion of peat with various permeability at natural convection of oxidizer. Journal of Physics: Conference Series, 2019, 1276, 012085.	0.3	0

#	Article	IF	CITATIONS
915	Degradation and forgone removals increase the carbon impact of intact forest loss by 626%. Science Advances, 2019, 5, eaax2546.	4.7	87
916	Relationship Between Fire and Forest Cover Loss in Riau Province, Indonesia Between 2001 and 2012. Forests, 2019, 10, 889.	0.9	21
917	InSAR Time Series Analysis of L-Band Data for Understanding Tropical Peatland Degradation and Restoration. Remote Sensing, 2019, 11, 2592.	1.8	15
918	Photocatalystâ€Free Visible Lightâ€Induced Synthesis of βâ€Oxo Sulfones via Oxysulfonylation of Alkenes with Arylazo Sulfones and Dioxygen in Air. Advanced Synthesis and Catalysis, 2019, 361, 5277-5282.	2.1	48
919	Development Paludiculture on Tropical Peatland for Productive and Sustainable Ecosystem in Riau. IOP Conference Series: Earth and Environmental Science, 2019, 256, 012048.	0.2	2
920	Large contribution of meteorological factors to inter-decadal changes in regional aerosol optical depth. Atmospheric Chemistry and Physics, 2019, 19, 10497-10523.	1.9	169
921	Tropical peat debris storage in the tidal flat in northern part of the Bengkalis island, Indonesia. MATEC Web of Conferences, 2019, 276, 06002.	0.1	3
925	Can peat soil support a flaming wildfire?. International Journal of Wildland Fire, 2019, 28, 601.	1.0	51
926	Fire in the Swamp Forest: Palaeoecological Insights Into Natural and Human-Induced Burning in Intact Tropical Peatlands. Frontiers in Forests and Global Change, 2019, 2, .	1.0	21
927	New estimate of particulate emissions from Indonesian peat fires in 2015. Atmospheric Chemistry and Physics, 2019, 19, 11105-11121.	1.9	63
928	Experimental study of moisture content effects on the transient gas and particle emissions from peat fires. Combustion and Flame, 2019, 209, 408-417.	2.8	28
929	Autonomic nervous system dysfunction in mild traumatic brain injury: a review of related pathophysiology and symptoms. Brain Injury, 2019, 33, 1129-1136.	0.6	41
930	Peatland Volume Mapping Over Resistive Substrates With Airborne Electromagnetic Technology. Geophysical Research Letters, 2019, 46, 6459-6468.	1.5	17
931	Open fires in Greenland in summer 2017: transport, deposition and radiative effects of BC, OC and BrC emissions. Atmospheric Chemistry and Physics, 2019, 19, 1393-1411.	1.9	46
932	Digital mapping of peatlands – A critical review. Earth-Science Reviews, 2019, 196, 102870.	4.0	102
933	Scientists' warning on wildfire — a Canadian perspective. Canadian Journal of Forest Research, 2019, 49, 1015-1023.	0.8	120
934	Distribution of Inertinites in the Early Paleogene Lignites of Western India: On the Possibility of Wildfire Activities. Journal of the Geological Society of India, 2019, 93, 523-532.	0.5	9
935	Investigating Smoke Aerosol Emission Coefficients Using MODIS Active Fire and Aerosol Products: A Case Study in the CONUS and Indonesia. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1413-1429.	1.3	12

#	Article	IF	CITATIONS
936	A new method to determine multi-angular reflectance factor from lightweight multispectral cameras with sky sensor in a target-less workflow applicable to UAV. Remote Sensing of Environment, 2019, 229, 60-68.	4.6	18
937	Widespread Decline in Vegetation Photosynthesis in Southeast Asia Due to the Prolonged Drought During the 2015/2016 El Niño. Remote Sensing, 2019, 11, 910.	1.8	23
938	Effective moratoria on land acquisitions reduce tropical deforestation: evidence from Indonesia. Environmental Research Letters, 2019, 14, 044009.	2.2	23
939	Beyond Fires and Deforestation: Tackling Land Subsidence in Peatland Areas, a Case Study from Riau, Indonesia. Land, 2019, 8, 76.	1.2	19
940	Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sensing of Environment, 2019, 225, 45-64.	4.6	287
941	An approach to achieve sustainable development goals through participatory land and forest conservation: a case study in South Kalimantan Province, Indonesia. Journal of Sustainable Forestry, 2019, 38, 558-571.	0.6	16
942	AERONET Remotely Sensed Measurements and Retrievals of Biomass Burning Aerosol Optical Properties During the 2015 Indonesian Burning Season. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4722-4740.	1.2	40
943	Chemical speciation of water-soluble ionic components in PM2.5 derived from peatland fires in Sumatra Island. Atmospheric Pollution Research, 2019, 10, 1260-1266.	1.8	17
944	Short- and long-term hydrologic controls on smouldering fire in wetland soils. International Journal of Wildland Fire, 2019, 28, 177.	1.0	11
945	Recent changes in global drylands: Evidences from two major aridity databases. Catena, 2019, 178, 209-231.	2.2	93
946	Seeking natural capital projects: Forest fires, haze, and early-life exposure in Indonesia. Proceedings of the United States of America, 2019, 116, 5239-5245.	3.3	44
947	Thermal enrichment of different types of biomass by low-temperature pyrolysis. Fuel, 2019, 245, 29-38.	3.4	47
948	Estimation of Carbon Stock in the Peat Soils of Bangladesh. Journal of the Asiatic Society of Bangladesh Science, 2019, 45, 127-136.	0.1	1
949	Plantation Mapping in Southeast Asia. Frontiers in Big Data, 2019, 2, 46.	1.8	2
950	Groundwater level response of the primary forest, ex-peatland fire, and community mix plantation in the Kampar peninsula, Indonesia. IOP Conference Series: Earth and Environmental Science, 2019, 361, 012034.	0.2	1
951	Effectiveness of ameliorant and fertilizer on improving soil fertility, growth and yields of red chili in degraded peatland. IOP Conference Series: Earth and Environmental Science, 2019, 393, 012011.	0.2	2
952	Spatial analysis of hotspot data for tracing the source of annual peat fires in South Sumatera, Indonesia. IOP Conference Series: Earth and Environmental Science, 2019, 393, 012068.	0.2	1
953	Changes in degraded peat land characteristic using FTIR-spectrocopy. IOP Conference Series: Earth and Environmental Science, 2019, 393, 012091.	0.2	1

#	Article	IF	Citations
	Monsoon Season Quantitative Assessment of Biomass Burning Clear-Sky Aerosol Radiative Effect at		
954	Surface by Ground-Based Lidar Observations in Pulau Pinang, Malaysia in 2014. Remote Sensing, 2019, 11, 2660.	1.8	44
955	Quantification of Peat Thickness and Stored Carbon at the Landscape Scale in Tropical Peatlands: A Comparison of Airborne Geophysics and an Empirical Topographic Method. Journal of Geophysical Research F: Earth Surface, 2019, 124, 3107-3123.	1.0	23
956	Calibration and Assessment of Burned Area Simulation Capability of the LPJ-WHyMe Model in Northeast China. Forests, 2019, 10, 992.	0.9	0
957	Biomass Burning Unlikely to Account for Missing Source of Carbonyl Sulfide. Geophysical Research Letters, 2019, 46, 14912-14920.	1.5	21
958	SDG 3: Good Health and Well-Being – Framing Targets to Maximise Co-Benefits for Forests and People. , 2019, , 72-107.		2
959	Role of Local Airâ€Sea Interaction in Fire Activity Over Equatorial Asia. Geophysical Research Letters, 2019, 46, 14789-14797.	1.5	7
960	The Impact of Forest Fire on the Biodiversity and the Soil Characteristics of Tropical Peatland. Climate Change Management, 2019, , 287-303.	0.6	12
961	Deforestation dynamics in an endemic-rich mountain system: Conservation successes and challenges in West Java 1990–2015. Biological Conservation, 2019, 229, 152-159.	1.9	17
962	Analysis fire patterns and drivers with a global SEVER-FIREÂv1.0 model incorporated into dynamic global vegetation model and satellite and on-ground observations. Geoscientific Model Development, 2019, 12, 89-110.	1.3	17
963	Peat Fires in Ireland. , 2019, , 451-482.		4
964	Hidden challenges for conservation and development along the Trans-Papuan economic corridor. Environmental Science and Policy, 2019, 92, 98-106.	2.4	40
965	Biodiversity and the Loss of Biodiversity Affecting Human Health. , 2019, , 340-350.		2
966	Computational study of the effects of density, fuel content, and moisture content on smoldering propagation of cellulose and hemicellulose mixtures. Proceedings of the Combustion Institute, 2019, 37, 4091-4098.	2.4	9
967	Satellite remote sensing for disaster management support: A holistic and staged approach based on case studies in Sentinel Asia. International Journal of Disaster Risk Reduction, 2019, 33, 417-432.	1.8	71
968	Commodifying sustainability: Development, nature and politics in the palm oil industry. World Development, 2019, 121, 218-228.	2.6	78
969	Congo Basin peatlands: threats and conservation priorities. Mitigation and Adaptation Strategies for Clobal Change, 2019, 24, 669-686.	1.0	64
970	Is Indonesian peatland loss a cautionary tale for Peru? A two-country comparison of the magnitude and causes of tropical peatland degradation. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 591-623.	1.0	35
971	Matching policy and science: Rationale for the â€~4 per 1000 - soils for food security and climate' initiative. Soil and Tillage Research, 2019, 188, 3-15.	2.6	208

#	Article	IF	CITATIONS
972	Effect of Processing Conditions on Flexural Strength Properties of Chicken Feather Fibre (CFF) and Its Hybrid Composites with Polypropylene Resin. Journal of Natural Fibers, 2020, 17, 933-944.	1.7	10
973	L-band SAR for estimating aboveground biomass of rubber plantation in Java Island, Indonesia. Geocarto International, 2020, 35, 1327-1342.	1.7	11
974	Peatland subsidence and vegetation cover degradation as impacts of the 2015 El niño event revealed by Sentinel-1A SAR data. International Journal of Applied Earth Observation and Geoinformation, 2020, 84, 101953.	1.4	11
975	Exploring how fire spread mode shapes the composition of pyrogenic carbon from burning forest litter fuels in a combustion wind tunnel. Science of the Total Environment, 2020, 698, 134306.	3.9	5
976	Contribution To Climate Change Of Forest Fires In Spain: Emissions And Loss Of Sequestration. Journal of Sustainable Forestry, 2020, 39, 417-431.	0.6	3
977	Precession-scale climate forcing of peatland wildfires during the early middle Jurassic greenhouse period. Global and Planetary Change, 2020, 184, 103051.	1.6	31
978	Effects of distance from canal and degradation history on peat bulk density in a degraded tropical peatland. Science of the Total Environment, 2020, 699, 134199.	3.9	56
979	The microbial diversity and structure in peatland forest in Indonesia. Soil Use and Management, 2020, 36, 123-138.	2.6	14
980	Review of aerosol optical depth retrieval using visibility data. Earth-Science Reviews, 2020, 200, 102986.	4.0	24
981	Towards an improved understanding of greenhouse gas emissions and fluxes in tropical peatlands of Southeast Asia. Sustainable Cities and Society, 2020, 53, 101881.	5.1	15
982	Reducing Emissions From Tropical Deforestation and Forest Degradation. , 2020, , 260-268.		2
983	Source country-specific burden on health due to high concentrations of PM2.5. Environmental Research, 2020, 182, 109085.	3.7	4
984	Haze emissions from smouldering peat: The roles of inorganic content and bulk density. Fire Safety Journal, 2020, 113, 102940.	1.4	8
985	Advances in Modeling and Interpretation in Near Surface Geophysics. Springer Geophysics, 2020, , .	0.9	7
986	Envisioning tropical environments: Representations of peatlands in Malaysian media. Environment and Planning E, Nature and Space, 2020, 3, 857-884.	1.6	5
987	Causes of Indonesia's forest fires. World Development, 2020, 127, 104717.	2.6	45
988	Tropical forest and peatland conservation in Indonesia: Challenges and directions. People and Nature, 2020, 2, 4-28.	1.7	74
989	Warmer spring alleviated the impacts of 2018 European summer heatwave and drought on vegetation photosynthesis. Agricultural and Forest Meteorology, 2020, 295, 108195.	1.9	48

#	Article	IF	CITATIONS
990	Multispectral satellite based monitoring of land cover change and associated fire reduction after large-scale peatland rewetting following the 2010 peat fires in Moscow Region (Russia). Ecological Engineering, 2020, 158, 106044.	1.6	18
991	The Comprehensive Fire Information Reconciled Emissions (CFIRE) inventory: Wildland fire emissions developed for the 2011 and 2014 U.S. National Emissions Inventory. Journal of the Air and Waste Management Association, 2020, 70, 1165-1185.	0.9	24
992	Oil palm â€~slash-and-burn' practice increases post-fire greenhouse gas emissions and nutrient concentrations in burnt regions of an agricultural tropical peatland. Science of the Total Environment, 2020, 742, 140648.	3.9	18
993	Identification before-after Forest Fire and Prediction of Mangrove Forest Based on Markov-Cellular Automata in Part of Sembilang National Park, Banyuasin, South Sumatra, Indonesia. Remote Sensing, 2020, 12, 3700.	1.8	13
994	Perceptions of Change: Adopting the Concept of Livelihood Styles for a More Inclusive Approach to â€~Building with Nature'. Sustainability, 2020, 12, 10011.	1.6	3
995	The Carbon Cycle of Terrestrial Ecosystems. , 2020, , 141-182.		4
996	Land Cover and Land Use Change on Islands. Social and Ecological Interactions in the Galapagos Islands, 2020, , .	0.4	1
997	Fuelling the fires: practical steps towards wildfires in Indonesia. IOP Conference Series: Earth and Environmental Science, 2020, 504, 012021.	0.2	0
998	Development of peatland-friendly commodities to achieve sustainable forest management in Jambi Province. IOP Conference Series: Earth and Environmental Science, 2020, 528, 012007.	0.2	2
999	Processes defining smouldering combustion: Integrated review and synthesis. Progress in Energy and Combustion Science, 2020, 81, 100869.	15.8	86
1000	Changes in land cover and ecological stress in Borneo based on remote sensing and an ecological footprint method. Landscape and Ecological Engineering, 2020, 16, 319-333.	0.7	11
1001	Spatially resolved horizontal spread in smouldering peat combining infrared and visual diagnostics. Combustion and Flame, 2020, 220, 328-336.	2.8	7
1003	Next-Generation Digital Ecosystem for Climate Data Mining and Knowledge Discovery: A Review of Digital Data Collection Technologies. Frontiers in Big Data, 2020, 3, 29.	1.8	15
1004	Oceanic Processes in Ocean Temperature Products Key to a Realistic Presentation of Positive Indian Ocean Dipole Nonlinearity. Geophysical Research Letters, 2020, 47, e2020GL089396.	1.5	17
1005	Traces of the 1997 Indonesian Wildfires in the Marine Environment From a Network of Coral δ ¹³ C Records. Geophysical Research Letters, 2020, 47, e2020GL090383.	1.5	5
1006	Dissolved organic carbon and physicochemical variables of peat water in tropical peat swamp forests. IOP Conference Series: Earth and Environmental Science, 2020, 591, 012045.	0.2	0
1007	Spatio-temporal distribution of forest and land fires in Labuhanbatu Utara District, North Sumatera Province, Indonesia. IOP Conference Series: Earth and Environmental Science, 2020, 454, 012081.	0.2	5
1008	A proposal of community-based firefighting in peat hydrological unit of Kahayan – Sebangau River: methods and approaches. IOP Conference Series: Earth and Environmental Science, 2020, 504, 012025.	0.2	Ο

#	Article	IF	CITATIONS
1009	Climate Change Litigation in Indonesia. , 2020, , 234-260.		1
1010	Microbial communities of upland peat swamps were no different 1 year after a hazard reduction burn. International Journal of Wildland Fire, 2020, 29, 1021.	1.0	1
1011	Wide-Area Near-Real-Time Monitoring of Tropical Forest Degradation and Deforestation Using Sentinel-1. Remote Sensing, 2020, 12, 3263.	1.8	28
1012	Lowâ€severity fire as a mechanism of organic matter protection in global peatlands: Thermal alteration slows decomposition. Global Change Biology, 2020, 26, 3930-3946.	4.2	44
1013	Postâ€fire carbon dynamics in the tropical peat swamp forests of Brunei reveal longâ€ŧerm elevated CH ₄ flux. Global Change Biology, 2020, 26, 5125-5145.	4.2	25
1014	Fire Frequency and Related Land-Use and Land-Cover Changes in Indonesia's Peatlands. Remote Sensing, 2020, 12, 5.	1.8	50
1015	The abnormal change of air quality and air pollutants induced by the forest fire in Sumatra and Borneo in 2015. Atmospheric Research, 2020, 243, 105027.	1.8	16
1016	Human-induced changes in Indonesian peatlands increase drought severity. Environmental Research Letters, 2020, 15, 084013.	2.2	23
1017	Air quality and health impacts of vegetation and peat fires in Equatorial Asia during 2004–2015. Environmental Research Letters, 2020, 15, 094054.	2.2	30
1018	Wetland extent tools for SDG 6.6.1 reporting from the Satellite-based Wetland Observation Service (SWOS). Remote Sensing of Environment, 2020, 247, 111892.	4.6	43
1019	El Niño Driven Changes in Global Fire 2015/16. Frontiers in Earth Science, 2020, 8, .	0.8	28
1020	A New Method for Rapid Measurement of Canal Water Table Depth Using Airborne LiDAR, with Application to Drained Peatlands in Indonesia. Water (Switzerland), 2020, 12, 1486.	1.2	4
1021	Widespread subsidence and carbon emissions across Southeast Asian peatlands. Nature Geoscience, 2020, 13, 435-440.	5.4	75
1022	Evidence of widespread wildfires in coal seams from the Middle Jurassic of Northwest China and its impact on paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 559, 109819.	1.0	27
1023	Anti-phase Variation of Hydrology and In-Phase Carbon Accumulations in Two Wetlands in Southern and Northern China Since the Last Deglaciation. Frontiers in Earth Science, 2020, 8, .	0.8	4
1024	The Role of Hydrocarbons in the Global Energy Agenda: The Focus on Liquefied Natural Gas. Resources, 2020, 9, 59.	1.6	91
1025	Satellite hydrology observations as operational indicators of forecasted fire danger across the contiguous United States. Natural Hazards and Earth System Sciences, 2020, 20, 1097-1106.	1.5	9
1026	Relations between Interannual Variability of Regional-Scale Indonesian Precipitation and Large-Scale Climate Modes during 1960–2007. Journal of Climate, 2020, 33, 5271-5291.	1.2	15

#	Article	IF	CITATIONS
1027	Fire as an Earth System Process. Managing Forest Ecosystems, 2020, , 31-51.	0.4	0
1028	Study of Chemical and Optical Properties of Biomass Burning Aerosols during Long-Range Transport Events toward the Arctic in Summer 2017. Atmosphere, 2020, 11, 84.	1.0	18
1029	Mapping deep peat carbon stock from a LiDAR based DTM and field measurements, with application to eastern Sumatra. Carbon Balance and Management, 2020, 15, 4.	1.4	17
1030	Rewetting Offers Rapid Climate Benefits for Tropical and Agricultural Peatlands But Not for Forestryâ€Drained Peatlands. Global Biogeochemical Cycles, 2020, 34, e2019GB006503.	1.9	23
1031	Criteria-Based Identification of Important Fuels for Wildland Fire Emission Research. Atmosphere, 2020, 11, 640.	1.0	7
1032	Adaptive flammability syndromes in thermo-Mediterranean vegetation, captured by alternative resource-use strategies. Science of the Total Environment, 2020, 718, 137437.	3.9	7
1033	Sentinel-1 observation frequency significantly increases burnt area detectability in tropical SE Asia. Environmental Research Letters, 2020, 15, 054008.	2.2	16
1034	Peat Dome Conservation and Its Problems Based On Geomorphometry: Case Study in Tebing Tinggi Island. IOP Conference Series: Earth and Environmental Science, 2020, 412, 012031.	0.2	1
1035	Satellite-Based Estimation of Carbon Dioxide Budget in Tropical Peatland Ecosystems. Remote Sensing, 2020, 12, 250.	1.8	10
1036	Enhanced Primary Production in the Oligotrophic South China Sea Related to Southeast Asian Forest Fires. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015663.	1.0	6
1037	Occurrence frequencies and regional variations in Visible Infrared Imaging Radiometer Suite (VIIRS) global active fires. Global Change Biology, 2020, 26, 2970-2987.	4.2	20
1038	Estimating burn severity and carbon emissions from a historic megafire in boreal forests of China. Science of the Total Environment, 2020, 716, 136534.	3.9	18
1039	Characteristics, Main Impacts, and Stewardship of Natural and Artificial Freshwater Environments: Consequences for Biodiversity Conservation. Water (Switzerland), 2020, 12, 260.	1.2	117
1040	Influence of soil conditions on the multidimensional spread of smouldering combustion in shallow layers. Combustion and Flame, 2020, 214, 361-370.	2.8	22
1041	Skillful seasonal prediction of key carbon cycle components: NPP and fire risk. Environmental Research Communications, 2020, 2, 055002.	0.9	9
1042	Can rain suppress smoldering peat fire?. Science of the Total Environment, 2020, 727, 138468.	3.9	24
1043	Forest and Land Fires Are Mainly Associated with Deforestation in Riau Province, Indonesia. Remote Sensing, 2020, 12, 3.	1.8	32
1044	The invisible commodity: Local experiences with forest carbon offsetting in Indonesia. Environment and Planning E, Nature and Space, 2021, 4, 499-524.	1.6	5

ARTICLE IF CITATIONS Vegetation fire activity and the Potential Fire Index (PFIv2) performance in the last two decades 1045 1.5 6 (2001–2016). International Journal of Climatology, 2021, 41, E78. Cross-Scale Systemic Resilience: Implications for Organization Studies. Business and Society, 2021, 60, 1046 4.2 95-124. Influence of wind and slope on multidimensional smouldering peat fires. Proceedings of the 1047 2.4 3 Combustion Institute, 2021, 38, 5033-5041. Tropical peatlands and their contribution to the global carbon cycle and climate change. Global 1048 64 Change Biology, 2021, 27, 489-505. Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. Nature 1049 8.1 79 Climate Change, 2021, 11, 27-32. Fire danger assessment using geospatial modelling in Mekong delta, Vietnam: Effects on wetland 0.8 resources. Remote Sensing Applications: Society and Environment, 2021, 21, 100456. Expert assessment of future vulnerability of the global peatland carbon sink. Nature Climate Change, 1051 8.1 167 2021, 11, 70-77. A new indicator of forest fire risk for Indonesia based on peat soil reflectance spectra measurements. 1.3 International Journal of Remote Sensing, 2021, 42, 1917-1927. Biomass burning-derived airborne particulate matter in Southeast Asia: A critical review. Journal of 1053 6.5 62 Hazardous Materials, 2021, 407, 124760. The effect of heat and smoke on the soil seed banks of heathlands on permanent freshwater swamps. 1054 Austral Ecology, 2021, 46, 39-51. Identifying and addressing knowledge gaps for improving greenhouse gas emissions estimates from 1055 17 3.9 tropical peat forest fires. Science of the Total Environment, 2021, 763, 142933. Learning-Based Resource Allocation Strategy for Industrial IoT in UAV-Enabled MEC Systems. IEEE Transactions on Industrial Informatics, 2021, 17, 5031-5040. Peatland Wildfire Severity and Post-fire Gaseous Carbon Fluxes. Ecosystems, 2021, 24, 713-725. 1057 1.6 7 Understanding the political challenges of introducing a carbon tax in Indonesia. International Journal of Environmental Science and Technology, 2021, 18, 1479-1488. 1058 1.8 Studies of Atmospheric PM2.5 and its Inorganic Water Soluble Ions and Trace Elements around 1059 19 1.3 Southeast Asia: a Review. Asia-Pacific Journal of Atmospheric Sciences, 2021, 57, 361-385. Characteristics of soil and hillslope responses in humid tropical forests in Sumatra, Indonesia. 1060 Hydrological Research Letters, 2021, 15, 23-30. Principles of Hydrological Management of Tropical Peatland., 2021, 537-566. 1061 0 PeatFire: an agent-based model to simulate fire ignition and spreading in a tropical peatland ecosystem. International Journal of Wildland Fire, 2021, 30, 71.

		CITATION REPORT		
#	Article		IF	CITATIONS
1063	What does climate change have to do with bushfires?. Australian Health Review, 2021	, 45, 4.	0.5	7
1064	Disaster literacy among young peatland farmers in Central Kalimantan. E3S Web of Cc 249, 03009.	nferences, 2021,	0.2	1
1066	Tropical Peat Swamp Forests. , 2021, , .			0
1068	Laboratory study on the suppression of smouldering peat wildfires: effects of flow rate agent. International Journal of Wildland Fire, 2021, 30, 378-390.	and wetting	1.0	15
1069	Effects of peat fires on soil chemical and physical properties: a case study in South Sur Conference Series: Earth and Environmental Science, 2021, 648, 012146.	natra. IOP	0.2	7
1070	Estimating Greenhouse Gas Emissions From Peat Combustion in Wildfires on Indonesi Their Uncertainty. Global Biogeochemical Cycles, 2021, 35, e2019GB006218.	an Peatlands, and	1.9	3
1071	Evaluating accuracy of four MODIS-derived burned area products for tropical peatland non-peatland fires. Environmental Research Letters, 2021, 16, 035015.	and	2.2	28
1072	Carbon emissions from the peat fire problem—a review. Environmental Science and F Research, 2021, 28, 16948-16961.	Pollution	2.7	10
1073	Comparison of uncertainty quantification techniques for national greenhouse gas inve Mitigation and Adaptation Strategies for Global Change, 2021, 26, 1.	ntories.	1.0	2
1074	Dynamics of local governance: The case of peatland restoration in Central Kalimantan, Use Policy, 2021, 102, 105270.	Indonesia. Land	2.5	8
1075	Heat improves silicon availability in mineral soils. Geoderma, 2021, 386, 114909.		2.3	14
1076	Impact of wildfires on SO2 detoxification mechanisms in leaves of oak and beech trees Pollution, 2021, 272, 116389.	s. Environmental	3.7	11
1077	A Novel Low-Cost, High-Resolution Camera System for Measuring Peat Subsidence and Dynamics. Frontiers in Environmental Science, 2021, 9, .	l Water Table	1.5	13
1078	White-Sand Savannas Expand at the Core of the Amazon After Forest Wildfires. Ecosy: 1624-1637.	stems, 2021, 24,	1.6	27
1079	Drainage Canals in Southeast Asian Peatlands Increase Carbon Emissions. AGU Advance e2020AV000321.	es, 2021, 2,	2.3	17
1080	Our future in the Anthropocene biosphere. Ambio, 2021, 50, 834-869.		2.8	275
1081	How Can We Mitigate Power Imbalances in Collaborative Environmental Governance? Role of the Village Facilitation Team Approach Observed in West Kalimantan, Indonesia 2021, 13, 3972.		1.6	5
1082	Fate of Pollution Emitted During the 2015 Indonesian Fire Season. Journal of Geophysi Atmospheres, 2021, 126, e2020JD033474.	cal Research D:	1.2	3

#	Article	IF	CITATIONS
1083	Peat-forest burning smoke in Maritime Continent: Impacts on receptor PM2.5 and implications at emission sources. Environmental Pollution, 2021, 275, 116626.	3.7	9
1084	Testing the Contribution of Multi-Source Remote Sensing Features for Random Forest Classification of the Greater Amanzule Tropical Peatland. Sensors, 2021, 21, 3399.	2.1	16
1085	Influence of disturbances and environmental changes on albedo in tropical peat ecosystems. Agricultural and Forest Meteorology, 2021, 301-302, 108348.	1.9	2
1086	Atmospheric Trends of CO and CH4 from Extreme Wildfires in Portugal Using Sentinel-5P TROPOMI Level-2 Data. Fire, 2021, 4, 25.	1.2	23
1087	Degradation of Southeast Asian tropical peatlands and integrated strategies for their better management and restoration. Journal of Applied Ecology, 2021, 58, 1370-1387.	1.9	30
1088	Spectral signature analysis of false positive burned area detection from agricultural harvests using Sentinel-2 data. International Journal of Applied Earth Observation and Geoinformation, 2021, 97, 102296.	1.4	10
1089	Cycles of Fire? Politics and Forest Burning in Indonesia. AEA Papers and Proceedings American Economic Association, 2021, 111, 415-419.	0.7	5
1090	Estimation of fire-induced carbon emissions from Equatorial Asia in 2015 using in situ aircraft and ship observations. Atmospheric Chemistry and Physics, 2021, 21, 9455-9473.	1.9	5
1091	Effects of Excessive Equatorial Cold Tongue Bias on the Projections of Tropical Pacific Climate Change. Part II: The Extreme El Niño Frequency in CMIP5 Multi-Model Ensemble. Atmosphere, 2021, 12, 851.	1.0	2
1092	Biotic and abiotic drivers of dispersion dynamics in a large-bodied tropical vertebrate, the Western Bornean orangutan. Oecologia, 2021, 196, 707-721.	0.9	4
1093	The future of Southeast Asia's tropical peatlands: Local and global perspectives. Anthropocene, 2021, 34, 100292.	1.6	9
1094	Restoring Land and Growing Renewable Energy: Opportunities, Challenges, and the Future Steps. Jurnal Ilmu Pertanian Indonesia, 2021, 26, 334-342.	0.1	0
1095	Post-fire co-stimulation of gross primary production and ecosystem respiration in a meadow grassland on the Tibetan Plateau. Agricultural and Forest Meteorology, 2021, 303, 108388.	1.9	13
1096	Degradation of wetlands on the Qinghai-Tibetan Plateau causing a loss in soil organic carbon in 1966–2016. Plant and Soil, 2021, 467, 253-265.	1.8	11
1097	Peat Soil Burning in the Mezzano Lowland (Po Plain, Italy): Triggering Mechanisms and Environmental Consequences. GeoHealth, 2021, 5, e2021GH000444.	1.9	5
1098	Assessing Wood and Soil Carbon Losses from a Forest-Peat Fire in the Boreo-Nemoral Zone. Forests, 2021, 12, 880.	0.9	9
1099	Leaf Thermal and Chemical Properties as Natural Drivers of Plant Flammability of Native and Exotic Tree Species of the ValparaÃso Region, Chile. International Journal of Environmental Research and Public Health, 2021, 18, 7191.	1.2	16
1100	Smouldering fire and emission characteristics of <i>Eucalyptus</i> litter fuel. Fire and Materials, 2022, 46, 576-586.	0.9	5

#	Article	IF	CITATIONS
1101	The effects of humus moisture content on underground fires in a Larix gmelinii plantation. Journal of Forestry Research, 2022, 33, 865-873.	1.7	2
1102	Discrimination of the geographical origins of rice based on polycyclic aromatic hydrocarbons. Environmental Geochemistry and Health, 2022, 44, 1619-1632.	1.8	6
1103	Application of agroforestry business models to tropical peatland restoration. Ambio, 2022, 51, 863-874.	2.8	15
1104	Carbon balance of tropical peat forests at different fire history and implications for carbon emissions. Science of the Total Environment, 2021, 779, 146365.	3.9	13
1107	Assessing the carbon dioxide balance of a degraded tropical peat swamp forest following multiple fire events of different intensities. Agricultural and Forest Meteorology, 2021, 306, 108448.	1.9	4
1108	Communities' Adaptation and Vulnerability to Climate Change: Implications for Achieving a Climate-Smart Landscape. Land, 2021, 10, 816.	1.2	3
1109	Machine-learning modelling of fire susceptibility in a forest-agriculture mosaic landscape of southern India. Ecological Informatics, 2021, 64, 101348.	2.3	53
1111	Total organic carbon and the contribution from speciated organics in cloud water: airborne data analysis from the CAMP ² Ex field campaign. Atmospheric Chemistry and Physics, 2021, 21, 14109-14129.	1.9	10
1112	Loss and Recovery of Carbon in Repeatedly Burned Degraded Peatlands of Kalimantan, Indonesia. Fire, 2021, 4, 64.	1.2	7
1113	Evaluation and intercomparison of wildfire smoke forecasts from multiple modeling systems for the 2019 Williams Flats fire. Atmospheric Chemistry and Physics, 2021, 21, 14427-14469.	1.9	37
1114	Drainage canal impacts on smoke aerosol emissions for Indonesian peatland and non-peatland fires. Environmental Research Letters, 2021, 16, 095008.	2.2	5
1115	Fire prevention in managed landscapes: Recent success and challenges in Indonesia. Mitigation and Adaptation Strategies for Global Change, 2021, 26, 1.	1.0	10
1116	Rapid estimation of CO2 emissions from forest fire events using cloud-based computation of google earth engine. Environmental Monitoring and Assessment, 2021, 193, 669.	1.3	4
1117	Evaluation of the influence of ENSO on tropical vegetation in long time series using a new indicator. Ecological Indicators, 2021, 129, 107872.	2.6	7
1118	Ecohydrological trade-offs from multiple peatland disturbances: The interactive effects of drainage, harvesting, restoration and wildfire in a southern Ontario bog. Journal of Hydrology, 2021, 601, 126793.	2.3	5
1119	Interannual variability and climatic sensitivity of global wildfire activity. Advances in Climate Change Research, 2021, 12, 686-695.	2.1	9
1120	Characteristics of organic components in PM2.5 emitted from peatland fires on Sumatra in 2015: Significance of humic-like substances. Atmospheric Environment: X, 2021, 11, 100116.	0.8	2
1121	Late Holocene ENSO-related fire impact on vegetation, nutrient status and carbon accumulation of peatlands in Jambi, Sumatra, Indonesia. Review of Palaeobotany and Palynology, 2021, 293, 104482.	0.8	7

#	Article	IF	CITATIONS
1122	Climate-induced Arctic-boreal peatland fire and carbon loss in the 21st century. Science of the Total Environment, 2021, 796, 148924.	3.9	26
1123	Smouldering wildfires in peatlands, forests and the arctic: Challenges and perspectives. Current Opinion in Environmental Science and Health, 2021, 24, 100296.	2.1	29
1124	How to build a firebreak to stop smouldering peat fire: insights from a laboratory-scale study. International Journal of Wildland Fire, 2021, 30, 454-461.	1.0	13
1125	Combustion dynamics of large-scale wildfires. Proceedings of the Combustion Institute, 2021, 38, 157-198.	2.4	49
1126	Response of the positive Indian Ocean dipole to climate change and impact on Indian summer monsoon rainfall. , 2021, , 413-432.		1
1129	Observing a Vulnerable Carbon Cycle. Ecological Studies, 2008, , 5-32.	0.4	16
1130	Estimating Sources and Sinks of Methane: An Atmospheric View. Ecological Studies, 2008, , 113-133.	0.4	3
1131	Smoldering Combustion. , 2016, , 581-603.		62
1132	Wildland Fires. , 2016, , 3283-3302.		4
1133	Coal Fire Study Over East Basuria Colliery. Springer Geophysics, 2020, , 295-334.	0.9	1
1134	Reframing the Competition for Land between Food and Energy Production in Indonesia. Social and Ecological Interactions in the Galapagos Islands, 2020, , 241-260.	0.4	1
1135	Spatial Variations in Vegetation Fires and Carbon Monoxide Concentrations in South Asia. Society of Earth Scientists Series, 2014, , 131-149.	0.2	3
1136	Global Forests Management for Climate Change Mitigation. , 2017, , 395-432.		2
1137	Southeast Asian Fire Regimes and Land Development Policy. , 2007, , 261-271.		3
1138	Saturation of the Terrestrial Carbon Sink. , 2007, , 59-78.		97
1139	Fire Weather and Land Degradation. , 2007, , 223-251.		5
1140	The past, present, and future importance of fire in tropical rainforests. , 2011, , 213-240.		8
1142	The COFC-GOLD Fire Mapping and Monitoring Theme: Assessment and Strategic Plans. , 2013, , 341-372.		3

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1143	Estimates of Wildland Fire Emissions. , 2013, , 117-133.			1
1144	21st Century Viewpoint on Tropical Silviculture. , 2016, , 1605-1638.			1
1145	Peat-Fire Impact on Forest Structure in Peatland of Central Kalimantan. , 2016, , 197-212.			3
1146	Carbon Stock Estimate. , 2016, , 353-365.			1
1148	Livelihood Strategies of Transmigrant Farmers in Peatland of Central Kalimantan. , 2016, ,	613-638.		3
1149	Effects of Disturbance, Succession and Management on Carbon Sequestration. , 2010, , 10	03-157.		5
1150	Carbon Dynamics and Pools in Major Forest Biomes of the World. , 2010, , 159-205.			6
1151	Loss of biodiversity and ecosystem functioning in Indo-Malayan peat swamp forests. Topic Biodiversity and Conservation, 2008, , 81-97.	s in	0.3	2
1152	European CO2 fluxes from atmospheric inversions using regional and global transport mod , 93-115.	dels. , 2010,		6
1153	Tropical Peat Swamp Forests of Southeast Asia. , 2018, , 1753-1761.			2
1154	Remote Sensing of Wetland Types: Peat Swamps. , 2016, , 1-10.			1
1155	Natural Hazards Mitigation Services of Carbon-Rich Ecosystems. , 2013, , 221-293.			11
1156	Carbon Stock Estimation of Tropical Forests on Borneo, Indonesia, for REDD+. Remote Ser Digital Image Processing, 2014, , 411-427.	ising and	0.7	4
1157	Soil-Borne Particles and Their Impact on Environment and Human Health. , 2018, , 99-177.			6
1158	TransCom 3 inversion intercomparison: Impact of transport model errors on the interannu variability of regional CO2fluxes, 1988-2003. Global Biogeochemical Cycles, 2006, 20, n/a-		1.9	2
1159	Fast and Slow Feedbacks in Future Climates. , 2012, , 99-139.			1
1160	Resolving the thickness of peat deposits with contact-less electromagnetic methods: A cas the Venice coastland. Science of the Total Environment, 2020, 737, 139361.	se study in	3.9	18
1163	Near-complete loss of fire-resistant primary tropical forest cover in Sumatra and Kalimanta Communications Earth & Environment, 2020, 1, .	n.	2.6	34

#	Article	IF	CITATIONS
1164	Climate Change and Forest Dynamics: A Soils Perspective. Issues in Environmental Science and Technology, 2012, , 158-182.	0.4	6
1165	CO emissions from biomass burning in South-east Asia in the 2006 El Niño year: shipboard and AIRS satellite observations. Environmental Chemistry, 2011, 8, 213.	0.7	21
1166	Characterizing and mapping fuels for Malaysia and western Indonesia. International Journal of Wildland Fire, 2004, 13, 323.	1.0	18
1167	Effects of vegetation zones and climatic changes on fire-induced atmospheric carbon emissions: a model based on paleodata. International Journal of Wildland Fire, 2010, 19, 1015.	1.0	11
1168	Estimating the multi-decadal carbon deficit of burned Amazonian forests. Environmental Research Letters, 2020, 15, 114023.	2.2	32
1169	The oldest extant tropical peatland in the world: a major carbon reservoir for at least 47 000 years. Environmental Research Letters, 2020, 15, 114027.	2.2	18
1170	Peat lost by fire in Kalampangan area, Central Kalimantan, Indonesia. IOP Conference Series: Earth and Environmental Science, 0, 504, 012009.	0.2	3
1172	Travel adaptations of Bornean Agile Gibbons Hylobates albibarbis (Primates: Hylobatidae)in a degraded secondary forest, Indonesia. Journal of Threatened Taxa, 2013, 5, 3963-3968.	0.1	21
1173	Future Wildfire Trends, Impacts, and Mitigation Options in the Southern United States. , 2013, , 85-126.		7
1174	Land Use Changes and GHG Emissions from Tropical Forest Conversion by Oil Palm Plantations in Riau Province, Indonesia. PLoS ONE, 2013, 8, e70323.	1.1	66
1175	Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests. PLoS ONE, 2015, 10, e0133139.	1.1	13
1176	Do ENSO and Coastal Development Enhance Coastal Burial of Terrestrial Carbon?. PLoS ONE, 2015, 10, e0145136.	1.1	12
1177	Detection and Characterization of Low Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity Fire Monitoring Satellite Sensor (FireBird). PLoS ONE, 2016, 11, e0159410.	1.1	43
1178	Burnt area mapping in insular Southeast Asia using medium resolution satellite imagery. Dissertationes Forestales, 2007, 2007, .	0.1	5
1179	Thoughts on Fire. Palaios, 2004, 19, 111-112.	0.6	1
1186	Drought Index for Peatland Wildfire Management in Central Kalimantan, Indonesia During El Niño Phenomenon. Journal of Disaster Research, 2019, 14, 939-948.	0.4	8
1187	Measurement and Monitoring for REDD+: The Needs, Current Technological Capabilities, and Future Potential. SSRN Electronic Journal, 0, , .	0.4	5
1188	Interannual Variation of Upper Tropospheric CO over the Western Pacific Linked with Indonesian Fires. Scientific Online Letters on the Atmosphere, 2019, 15, 205-210.	0.6	5

#	Article	IF	CITATIONS
1189	BIOFUEL CHARACTERIZATION AND PYROLYSIS KINETICS OF ACACIA MANGIUM. Chemistry and Chemical Technology, 2017, 11, 392-396.	0.2	6
1190	Recent Progress in Indonesian Peat Utilization Research. Journal of MMIJ, 2008, 124, 871-877.	0.4	1
1191	Forest Fire Impact Monitoring in Peat Swamp Area Using Satellite data; Case Study in Central Kalimantan, Indonesia. J Agricultural Meteorology, 2005, 60, 415-420.	0.8	3
1192	Environmental dependence and seasonal variation of diffuse solar radiation in tropical peatland. J Agricultural Meteorology, 2014, 70, 223-232.	0.8	4
1193	Smouldering natural fires: comparison of burning dynamics in boreal peat and Mediterranean humus. , 2008, , .		25
1194	Risk analysis of global warming-induced greenhouse GAS emissions from natural sources. International Journal of Safety and Security Engineering, 2016, 6, 181-192.	0.5	1
1195	Understanding ignition of natural fuels by heated particles. WIT Transactions on the Built Environment, 2013, , .	0.0	5
1196	Climate change and the future occurrence of moorland wildfires in the Peak District of the UK. Climate Research, 2010, 45, 105-118.	0.4	56
1197	Overcoming Limitations with Landsat Imagery for Mapping of Peat Swamp Forests in Sundaland. Remote Sensing, 2012, 4, 2595-2618.	1.8	47
1198	Drainage effects on leaf traits of trees in tropical peat swamp forests in Central Kalimantan, Indonesia. Tropics, 2019, 28, 1-11.	0.2	3
1199	Effect of Forest Fire on Stand Structure in Raja Musa Peat Swamp Forest Reserve, Selangor, Malaysia. Journal of Environmental Science and Technology, 2009, 3, 56-62.	0.3	8
1200	Methods to Estimate Above-Ground Biomass and Carbon Stock in Natural Forests - A Review. Journal of Ecosystem & Ecography, 2012, 02, .	0.2	170
1201	Evaluating Spatial and Temporal Variations of Aerosol Optical Depth and Biomass Burning over Southeast Asia Based on Satellite Data Products. Aerosol and Air Quality Research, 2015, 15, 2625-2640.	0.9	10
1202	Modelling Weather and Climate Related Fire Risk in Africa. American Journal of Climate Change, 2013, 02, 209-224.	0.5	3
1203	Fighting the Ignorance: Public Authorities' and Land Users' Responses to Land Subsidence in Indonesia. American Journal of Climate Change, 2017, 06, 1-21.	0.5	14
1204	Estimation of Potential CHC Emission Reduction through Corresponded REDD Plus Activities in Remote Area in Central Kalimantan, Indonesia—Case Study in the Paduran Area. Open Journal of Forestry, 2014, 04, 338-348.	0.1	3
1205	Gaseous, PM _{2.5} mass, and speciated emission factors from laboratory chamber peat combustion. Atmospheric Chemistry and Physics, 2019, 19, 14173-14193.	1.9	26
1225	Peatlands and the carbon cycle: from local processes to global implications – a synthesis. Biogeosciences, 2008, 5, 1475-1491.	1.3	630

		_
CITAT	ION	DEDODT
CHAL	ION	Report

#	Article	IF	CITATIONS
1246	Estimation of Biomass Carbon Stocks over Peat Swamp Forests using Multi-Temporal and Multi-Polratizations SAR Data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-7/W3, 551-556.	0.2	3
1248	Climate Change Mitigation Through Sustainable Degraded Peatlands Management in Central Kalimantan, Indonesia. International Journal of the Commons, 2019, 13, 859-866.	0.6	10
1249	Fire, Livelihoods, and Environmental Change in the Middle Mahakam Peatlands, East Kalimantan. Ecology and Society, 2005, 10, .	1.0	42
1250	Reconceiving Conservation and Resource Management. , 2011, , 24-34.		2
1252	Carbon Rich Mangrove Forests: An Overview for Strategic Management and Climate Change Mitigation. Advances in Research, 0, , 1-9.	0.3	2
1253	Ignition and Combustion of Peat of Different Permeabilities with Natural Air Convection. Russian Journal of Physical Chemistry B, 2021, 15, 630-636.	0.2	0
1255	Satellites to spot wildfire fallout. Nature, 0, , .	13.7	0
1256	Burning bogs belch carbon. Nature, 0, , .	13.7	0
1258	Agriculture, Forestry and Fisheries. , 2004, , 175-193.		69
1260	Editor contact details. , 2006, , xiii.		0
1264	ESTIMATION OF NET PRIMARY PRODUCTION (NPP) USING REMOTE SENSING APPROACH AND PLANT PHYSIOLOGICAL MODELING <b< td=""><td>0 0. ¶rgB1</td><td>[/Øverlock 1</td></b<>	0 0. ¶rgB1	[/Øverlock 1
1265	The Boao Forum for Asia Progress of Asian Economic Integration Annual Report 2009. SSRN Electronic Journal, 0, , .	0.4	1
1266	An Application of AHP/ANP to a Wildfire Management Project to Help Mitigate Global Warming. , 2009, ,		1
1267	FASA – Fire Airborne Spectral Analysis of natural disasters. Annals of Geophysics, 2009, 49, .	0.5	0
1268	Large-scale Forest Biomass Survey using Airborne Laser Altimetry. Trends in the Sciences, 2010, 15, 71-81.	0.0	0
1269	ANALISIS TREN IKLIM DAN KETERSEDIAAN AIR TANAH DI PALEMBANG, SUMATRA SELATAN <i>CLIMATE AND SOIL WATER TRENDS ANALYSIS FOR PALEMBANG REGION, SOUTH SUMATRA<i>. Agromet, 2010, 24, 42.</i></i>	0.4	1
1271	ANALISIS PERILAKU INDEKS KEKERINGAN DI WILAYAH RENTAN KEBAKARAN, SUMATRA SELATAN <i>BEHAVIOR ANALYSIS OF DROUGHT INDEX IN FIRE-PRONE REGION OF SOUTH SUMATRA </i> . Agromet, 2010, 24, 9.	0.4	1
1272	The False Promise. , 2010, , 15-28.		2

#	Article	IF	CITATIONS
1274	Regulating Harvest in a Changing World. , 2011, , 171-179.		0
1275	The Hordes at the Gates. , 2011, , 159-168.		0
1276	Developing Strategies to Reduce Vulnerability. , 2011, , 70-87.		0
1277	Using Models and Technology. , 2011, , 88-105.		0
1278	Buying Time. , 2011, , 37-54.		0
1279	Climate Change and Its Effects. , 2011, , 6-23.		3
1280	Integrating the Needs of Nature and People. , 2011, , 189-198.		0
1281	Strengthening Protected Areas. , 2011, , 109-122.		0
1282	Focusing on Species. , 2011, , 123-135.		0
1283	Adapting Governance for Change. , 2011, , 199-212.		0
1284	Regulating Pollutants in a Changing World. , 2011, , 180-188.		0
1285	The Role of Connectivity. , 2011, , 136-146.		0
1286	Assessing Vulnerability to Climate Change. , 2011, , 55-69.		2
1287	Restoring for the Future. , 2011, , 147-158.		0
1288	Carbon baseline as limiting factor in managing environmental sound activities in peatland for reducing greenhouse gas emission. Biodiversitas, 2016, 12, .	0.2	0
1290	Peat forest Rehabilitation in Central Kalimantan and REDD+: Conflicting Roles of Government Agencies. Annals of Tropical Research, 2011, , 49-66.	0.1	0
1294	Interpretation of Soil Water Content into Dryness Index: Implication for Forest Fire Management. Jurnal Manajemen Hutan Tropika, 2012, 18, 31-38.	0.1	1
1297	Forest Soil and Climate Change. , 2013, , 173-182.		1

#	Article	IF	CITATIONS
1299	Naturschutzfachliche Grundlagen. Schriftenreihe Natur Und Recht, 2014, , 7-67.	0.0	0
1300	IMPACT OF HYDRAULIC SCHEMES ON OLT RIVER AND ON ITS FLOODPLAIN ENVIRONMENT IN CIUC DEPRESSION, HARGHITA COUNTY, ROMANIA. Environmental Engineering and Management Journal, 2014, 13, 2387-2394.	0.2	0
1301	DROUGHT AND FINE FUEL MOISTURE CODE EVALUATION: AN EARLY WARNING SYSTEM FOR FOREST/LAND FIRE USING REMOTE SENSING APPROACH. International Journal of Remote Sensing and Earth Sciences (IJReSES), 2014, 9, .	0.6	1
1302	Developing Site-Specific Allometric Equations for Above-Ground Biomass Estimation in Peat Swamp Forests of Rokan Hilir District, Riau Province, Indonesia. Indonesian Journal of Forestry Research, 2014, 1, 47-65.	0.4	1
1303	Policy Case Study – Food Labeling: Climate for Sustainable Growth. SSRN Electronic Journal, 0, , .	0.4	0
1304	Ecosystem Approaches to Human Exposures to Pollutants and Toxicants in Wetlands: Examples, Dilemmas and Alternatives. Wetlands: Ecology, Conservation and Management, 2015, , 75-94.	0.0	2
1310	Reflection on Peat Swamp Fires in Indonesia. , 2016, , .		0
1311	Field Data Transmission System by Universal Mobile Telecommunication Network. , 2016, , 479-489.		1
1312	Evaluation of Disturbed Peatland/Forest CO2 Emissions by Atmospheric Concentration Measurements. , 2016, , 367-373.		0
1313	Fire in Borneo Peatlands. , 2016, , 1-7.		0
1314	Climate Regulation: South East Asian Peat Swamps. , 2016, , 1-8.		0
1315	Fire in Borneo Peatlands. , 2016, , 1-7.		0
1317	Project Evaluation Criteria for Feasibility Project Towards Inclusive Growth in Indonesia. SSRN Electronic Journal, 0, , .	0.4	0
1318	Peat. Encyclopedia of Earth Sciences Series, 2017, , 1-4.	0.1	0
1319	ANALISIS KORELASI KERAPATAN TITIK API DENGAN CURAH HUJAN DI PULAU SUMATERA DAN KALIMANTAN. Jurnal Sains & Teknologi Modifikasi Cuaca, 2017, 18, 17.	0.2	9
1320	Temporal variation in tree biomass and carbon stocks of Pinus roxburghii Sargent forests of Rajouri forest division in Jammu & Kashmir State. Environment Conservation Journal, 2017, 18, 123-133.	0.1	1
1321	Climate Regulation: Southeast Asian Peat Swamps. , 2018, , 1197-1204.		0
1322	Fire in Borneo Peatlands. , 2018, , 65-71.		0

#	Article	IF	CITATIONS
1323	Peat. Encyclopedia of Earth Sciences Series, 2018, , 1197-1200.	0.1	0
1324	Smoldering Combustion. , 2019, , 1-12.		0
1325	ASSESSING NDVI BASED PHENOLOGY IN DIFFERENT FIRE SEVERITY IN THE KAMAISHI 2017 FOREST FIRE. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2019, 75, I_135-I_140.	0.1	1
1326	The Study on Biophysical Peatland Landscape in Sebangau National Park: Case in Mangkok Resort. Jurnal Ilmu Pertanian Indonesia, 2019, 24, 188-200.	0.1	1
1327	Assessing Land Cover Changes and CO2 Emissions in Tropical Forests, 1998-2016: A Case Study of the Sungai Wain Protection Forest. Polish Journal of Environmental Studies, 2019, 28, 3597-3604.	0.6	0
1328	Experimental Investigation of Smoldering Combustion of Tropical Peat Layer Under Stratified Moisture Content. , 2020, , 605-619.		2
1329	Manifesting Ecofeminism in Peatland Restoration: Policies, Actions, and Challenges. Jurnal Perempuan, 2020, 25, 1.	0.1	1
1330	Restoration of Degraded Tropical Peatland in Indonesia: A Review. Land, 2021, 10, 1170.	1.2	25
1331	Biomass and carbon approximation model on burnt peatland in Eks- Milion Ha, Central Kalimantan Province of Indonesia. Archives of Agriculture and Environmental Science, 2020, 5, 525-529.	0.2	0
1332	Carbon cycle in tropical peatlands and coastal seas. , 2022, , 83-142.		2
1334	Minimizing carbon loss through integrated water resource management on peatland utilization in Pulau Burung, Riau, Indonesia. E3S Web of Conferences, 2020, 200, 02019.	0.2	1
1335	Smoldering Combustion. , 2020, , 942-952.		0
1337	Identifying Key Drivers of Peatland Fires Across Kalimantan's Exâ€Mega Rice Project Using Machine Learning. Earth and Space Science, 2021, 8, .	1.1	6
1338	Consequences of Deforestation and Climate Change on Biodiversity. , 0, , 24-51.		5
1339	Gas exsolution and gas invasion in peat: towards a comprehensive modelling framework. Geotechnique Letters, 2020, 10, 461-467.	0.6	0
1340	Tracing devastating fires in Portugal to a snow archive in the Swiss Alps: a case study. Cryosphere, 2020, 14, 3731-3745.	1.5	4
1342	Alternative natural capital-based livelihoods in facing peatland degradation in Rengas Merah hamlet, Ogan Komering Ilir Regency, Indonesia: a financial analysis approach. IOP Conference Series: Earth and Environmental Science, 2021, 917, 012017.	0.2	0
1343	Identification of land cover changes before and after forest and land fires in conservation areas of North Sumatra, Indonesia. IOP Conference Series: Earth and Environmental Science, 2021, 912, 012026.	0.2	0

#	Article	IF	CITATIONS
1344	Land Cover and Land Use Change Decreases Net Ecosystem Production in Tropical Peatlands of West Kalimantan, Indonesia. Forests, 2021, 12, 1587.	0.9	5
1345	Assessing Impact of Multiple Fires on a Tropical Peat Swamp Forest Using High and Very High-Resolution Satellite Images. Fire, 2021, 4, 89.	1.2	3
1346	The morphological character variation analysis of Schizostachyum lima (Blanco) Merr in Central Lombok Regency. IOP Conference Series: Earth and Environmental Science, 2021, 886, 012054.	0.2	0
1347	Transformation of Post-disaster Governance of Indonesian Peatland Wildfires. Disaster Risk Reduction, 2022, , 87-119.	0.2	1
1348	Remote Sensing Mapping of Peat-Fire-Burnt Areas: Identification among Other Wildfires. Remote Sensing, 2022, 14, 194.	1.8	9
1349	Investigation of the Parallelization Performance of the Computational Algorithm for Calculating the Time-Dependent Axisymmetric Gas Flows through Porous Objects with Heterogeneous Combustion Sources. , 2020, , .		Ο
1350	Significant sedge-mediated methane emissions from degraded tropical peatlands. Environmental Research Letters, 0, , .	2.2	3
1351	Lesson Learned From The 2019 Peatland Fire In Tumbang Nusa Area, Indonesia. IOP Conference Series: Earth and Environmental Science, 2022, 959, 012054.	0.2	0
1352	Peat fire risk assessment in Central Kalimantan, Indonesia using the Standardized Precipitation Index (SPI). IOP Conference Series: Earth and Environmental Science, 2022, 959, 012058.	0.2	3
1353	A review of carbon monitoring in wet carbon systems using remote sensing. Environmental Research Letters, 2022, 17, 025009.	2.2	29
1354	Active fires show an increasing elevation trend in the tropical highlands. Global Change Biology, 2022, 28, 2790-2803.	4.2	5
1355	Modelling the performance of bunds and ditch dams in the hydrological restoration of tropical peatlands. Hydrological Processes, 2022, 36, .	1.1	3
1356	Are Landâ€Use Change Emissions in Southeast Asia Decreasing or Increasing?. Global Biogeochemical Cycles, 2022, 36, .	1.9	7
1357	Duff burning from wildfires in a moist region: different impacts on PM _{2.5} and ozone. Atmospheric Chemistry and Physics, 2022, 22, 597-624.	1.9	4
1358	Peatland characteristics and oil palm productivity at Siak Regency, Riau Province. IOP Conference Series: Earth and Environmental Science, 2022, 950, 012025.	0.2	0
1359	Exploring Dissolved Organic Carbon Variations in a High Elevation Tropical Peatland Ecosystem: Cerro de la Muerte, Costa Rica. Frontiers in Water, 2022, 3, .	1.0	1
1360	Tropical peatlands in the anthropocene: Lessons from the past. Anthropocene, 2022, 37, 100324.	1.6	12
1361	ProbFire: a probabilistic fire early warning system for Indonesia. Natural Hazards and Earth System Sciences, 2022, 22, 303-322.	1.5	4

-			_	
C 17		ON	REPOR	Τ.
	IAL		REPOR	

#	Article	IF	CITATIONS
1362	Understanding the Greenhouse Gas Impact of Deforestation Fires in Indonesia and Brazil in 2019 and 2020. Frontiers in Climate, 2022, 4, .	1.3	7
1363	Tropical Peatland Hydrology Simulated With a Global Land Surface Model. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	9
1364	The net primary productivity of early Permian peatland and their control factors: evidenced by the no. 6 coal seam of Jungar coalfield in North China. World Journal of Engineering, 2019, 16, 582-591.	1.0	1
1365	Above-and-Belowground Carbon Stocks in Two Contrasting Peatlands in the Philippines. Forests, 2022, 13, 303.	0.9	5
1366	Sea level rise and climate change acting as interactive stressors on development and dynamics of tropical peatlands in coastal Sumatra and South Borneo since the Last Glacial Maximum. Global Change Biology, 2022, 28, 3459-3479.	4.2	9
1367	Characterizing and predicting smoldering temperature variations based on non-linear mixed effects models. Journal of Forestry Research, 2022, 33, 1829-1839.	1.7	1
1368	How Well Do We Understand the Landâ€Oceanâ€Atmosphere Carbon Cycle?. Reviews of Geophysics, 2022, 60, .	9.0	38
1369	The IOD–ENSO Interaction: The Role of the Indian Ocean Current's System. Atmosphere, 2021, 12, 1662.	1.0	10
1370	Global intercomparison of functional pyrodiversity from two satellite sensors. International Journal of Remote Sensing, 2021, 42, 9523-9541.	1.3	3
1371	Why estimates of the peat burned in fires in Sumatra and Kalimantan are unreliable and why it matters. Singapore Journal of Tropical Geography, 2022, 43, 7-25.	0.6	6
1372	Forestry and Hunting. , 2022, , 221-314.		1
1373	Tackling Climate Change with Machine Learning. ACM Computing Surveys, 2023, 55, 1-96.	16.1	195
1374	Risks to carbon storage from land-use change revealed by peat thickness maps of Peru. Nature Geoscience, 2022, 15, 369-374.	5.4	25
1375	Interactions between microtopography, root exudate analogues and temperature determine CO2 and CH4 production rates in fire-degraded tropical peat. Soil Biology and Biochemistry, 2022, 169, 108646.	4.2	6
1376	Comparing national greenhouse gas budgets reported in UNFCCC inventories against atmospheric inversions. Earth System Science Data, 2022, 14, 1639-1675.	3.7	58
1377	Global and Regional Trends and Drivers of Fire Under Climate Change. Reviews of Geophysics, 2022, 60,	9.0	182
1378	Carbon cycle–climate feedbacks. , 0, , 489-519.		0
1410	A Field Study of Tropical Peat Fire Behaviour and Associated Carbon Emissions. Fire, 2022, 5, 62.	1.2	11

#	Article	IF	CITATIONS
1411	Carbon and Water Cycling in Two Rubber Plantations and a Natural Forest in Mainland Southeast Asia. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	5
1412	The impact of El Niño southern oscillation and Indian Ocean Dipole on the burned area in Indonesia. Terrestrial, Atmospheric and Oceanic Sciences, 2022, 33, .	0.3	6
1413	The state of wildfire and bushfire science: Temporal trends, research divisions and knowledge gaps. Safety Science, 2022, 153, 105797.	2.6	12
1414	Anthropogenic impacts on lowland tropical peatland biogeochemistry. Nature Reviews Earth & Environment, 2022, 3, 426-443.	12.2	28
1415	Airborne Emission Rate Measurements Validate Remote Sensing Observations and Emission Inventories of Western U.S. Wildfires. Environmental Science & amp; Technology, 2022, 56, 7564-7577.	4.6	15
1417	Analysis of land cover changes due to forest fires in Gunung Leuser National Park, North Sumatra Province, Indonesia. Biodiversitas, 2022, 23, .	0.2	3
1418	The Potential of Peatlands as Nature-Based Climate Solutions. Current Climate Change Reports, 2022, 8, 71-82.	2.8	25
1419	Climate change-induced peatland drying in Southeast Asia. Environmental Research Letters, 2022, 17, 074026.	2.2	3
1420	Impact of interannual and multidecadal trends on methane-climate feedbacks and sensitivity. Nature Communications, 2022, 13, .	5.8	11
1421	Modeling forest-shrubland fire susceptibility based on machine learning and geospatial approaches in mountains of Kurdistan Region, Iraq. Arabian Journal of Geosciences, 2022, 15, .	0.6	3
1423	Land clearing area prioritization using GLAD alert data to prevent peat fires in South Sumatera, Indonesia. IOP Conference Series: Earth and Environmental Science, 2022, 1025, 012009.	0.2	0
1424	Feedback in tropical forests of the Anthropocene. Global Change Biology, 2022, 28, 5041-5061.	4.2	12
1425	Mapping peat thickness and carbon stocks of the central Congo Basin using field data. Nature Geoscience, 2022, 15, 639-644.	5.4	20
1426	Numerical Simulation of Heterogeneous Combustion of Axisymmetric Porous Objects under Forced Filtration and Natural Convection. Combustion, Explosion and Shock Waves, 2022, 58, 290-302.	0.3	1
1427	Knowledge systems approaches for enhancing project impacts in complex settings: community fire management and peatland restoration in Indonesia. Regional Environmental Change, 2022, 22, .	1.4	1
1428	Spatial Predictions of Human and Natural-Caused Wildfire Likelihood across Montana (USA). Forests, 2022, 13, 1200.	0.9	2
1429	Tropical peat fire emissions: 2019 field measurements in Sumatra and Borneo and synthesis with previous studies. Atmospheric Chemistry and Physics, 2022, 22, 10173-10194.	1.9	7
1430	Peatlands in Southeast Asia: A comprehensive geological review. Earth-Science Reviews, 2022, 232, 104149.	4.0	14

#	Article	IF	CITATIONS
1431	Satellite-Based Quantification of Methane Emissions from Wetlands and Rice Paddies Ecosystems in North and Northeast India. Hydrobiology, 2022, 1, 317-330.	0.9	5
1432	Improved estimation of fire particulate emissions using a combination of VIIRS and AHI data for Indonesia during 2015–2020. Remote Sensing of Environment, 2022, 281, 113238.	4.6	3
1433	GAMBUT field experiment of peatland wildfires in Sumatra: from ignition to spread and suppression. International Journal of Wildland Fire, 2022, 31, 949-966.	1.0	7
1434	Implementation of Circular Economy in Peatlands to Support Sustainable Food Security in Post Covid-19 Era. Journal of Resilient Economies, 2022, 2, .	0.2	0
1435	Declining severe fire activity on managed lands in Equatorial Asia. Communications Earth & Environment, 2022, 3, .	2.6	7
1436	A scoping review on the health effects of smoke haze from vegetation and peatland fires in Southeast Asia: Issues with study approaches and interpretation. PLoS ONE, 2022, 17, e0274433.	1.1	4
1437	Targeted land management strategies could halve peatland fire occurrences in Central Kalimantan, Indonesia. Communications Earth & Environment, 2022, 3, .	2.6	3
1438	Polycyclic aromatic hydrocarbons in terrestrial and aquatic environments following wildfire: a review. Environmental Reviews, 2023, 31, 141-167.	2.1	4
1439	Differences in Tropical Peat Soil Physical and Chemical Properties Under Different Land Uses: A Systematic Review and Meta-analysis. Journal of Soil Science and Plant Nutrition, 2022, 22, 4063-4083.	1.7	5
1440	Carbon isotopes of n-alkanes allow for estimation of the CO2 pressure in the Early Jurassic - A case study from lacustrine shale and cannel boghead in the Dachanggou Basin, Xinjiang, Northwest China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 607, 111252.	1.0	6
1441	The vulnerability of tropical peatlands to oil and gas exploration and extraction. , 2022, 1, 84-114.		4
1442	Experimental study of the ignition conditions for self-sustained smouldering in peat. Proceedings of the Combustion Institute, 2023, 39, 4125-4133.	2.4	4
1443	Overview of extreme weather events, impacts and forecasting techniques. , 2023, , 1-86.		0
1444	Using machine learning algorithms to predict groundwater levels in Indonesian tropical peatlands. Science of the Total Environment, 2023, 857, 159701.	3.9	14
1445	Development of gas signatures of smouldering peat wildfire from emission factors. International Journal of Wildland Fire, 2022, 31, 1014-1032.	1.0	6
1446	Peatland Tree Species for Rehabilitation. Sustainability, 2022, 14, 14720.	1.6	0
1447	Fire regime of peatlands in the Angolan Highlands. Environmental Monitoring and Assessment, 2023, 195, .	1.3	5
1448	Spatio-temporal shift in fire activity in the Indo-Gangetic region. Geocarto International, 2023, 38, 1-19.	1.7	3

		CITATION REPORT		
#	Article		IF	CITATIONS
1449	Tropical peatlands in the Anthropocene: The present and the future. Anthropocene, 202	2, 40, 100354.	1.6	4
1450	Deep peat fire persistently smouldering for weeks: a laboratory demonstration. Internat of Wildland Fire, 2023, 32, 86-98.	ional Journal	1.0	5
1451	Fire and tree species diversity in tropical peat swamp forests. Forest Ecology and Manaş 529, 120704.	zement, 2023,	1.4	6
1452	Managed Forests and Methane: Recent Research and Prospects for Best Management F Handbook of Environmental Chemistry, 2022, , .	ractices.	0.2	0
1453	Estimation of Ground Water Level (GWL) for Tropical Peatland Forest Using Machine Le Access, 2022, 10, 126180-126187.	arning. IEEE	2.6	5
1454	Global biomass burning fuel consumption and emissions at 500 m spatial resolutio Global Fire Emissions Database (GFED). Geoscientific Model Development, 2022, 15, 84		1.3	14
1455	Future fire risk under climate change and deforestation scenarios in tropical Borneo. En Research Letters, 0, , .	vironmental	2.2	0
1456	The distinct impacts of the two types of ENSO on rainfall variability over Southeast Asia Dynamics, 2023, 61, 2155-2172.	. Climate	1.7	2
1457	Effect of biomass burning on premature mortality associated with long-term exposure t Equatorial Asia. Journal of Environmental Management, 2023, 330, 117154.	o PM2.5 in	3.8	1
1458	Geomorphometric and Geophysical Constraints on Outlining Drained Shallow Mountair Geosciences (Switzerland), 2023, 13, 43.	i Mires.	1.0	0
1459	Suspension of Crustal Materials from Wildfire in Indonesia as Revealed by Pb Isotope Ar Earth and Space Chemistry, 2023, 7, 379-387.	ialysis. ACS	1.2	3
1460	Storylines of Maritime Continent dry period precipitation changes under global warming Environmental Research Letters, 2023, 18, 034017.	g.	2.2	3
1461	Study on the Limit of Moisture Content of Smoldering Humus during Sub-Surface Fires Forests of China. Forests, 2023, 14, 252.	in the Boreal	0.9	3
1462	Water pollution risks by smoldering fires in degraded peatlands. Science of the Total En 2023, 871, 161979.	vironment,	3.9	4
1463	Impact of climate and socioeconomic changes on fire carbon emissions in the future: Su economic development might decrease future emissions. Global Environmental Change 102667.		3.6	5
1464	Impacts of different biomass burning emission inventories: Simulations of atmospheric concentrations based on GEOS-Chem. Science of the Total Environment, 2023, 876, 16	CO2 2825.	3.9	8
1465	Computational study of the multidimensional spread of smouldering combustion at diff conditions. Fuel, 2023, 345, 128064.	erent peat	3.4	1
1467	The Characteristics of Gas and Particulate Emissions from Smouldering Combustion in t pumila Forest of Huzhong National Nature Reserve of the Daxing'an Mountains. For		0.9	1

#	Article	IF	CITATIONS
1468	Peatland. , 2023, , 153-184.		0
1469	The utilization of multi-sensor remote sensing and cloud-computing platform for mapping burned areas. AIP Conference Proceedings, 2023, , .	0.3	0
1470	Field Experimental Investigations on the Performance of an Environmentally Friendly Soap-Based Firefighting Agent on Indonesian Peat Fire. Fire Technology, 2023, 59, 1007-1025.	1.5	0
1471	Modelling the climate factors affecting forest fire in Sumatra using Random Forest and Artificial Neural Network. , 2022, , .		0
1472	Estimation of Carbon pool in various agricultural crops in peatlands of West and Central Kalimantan, Indonesia. Journal of Experimental Biology and Agricultural Sciences, 2023, 11, 199-208.	0.1	0
1473	Basics of Remote Sensing Techniques Applicable in Wetlands Ecosystems. , 2023, , 303-377.		1
1474	Introduction: The Vulnerability and Transformation of Indonesian Peatlands. Global Environmental Studies, 2023, , 1-13.	0.2	0
1475	Detecting tropical peatland degradation: Combining remote sensing and organic geochemistry. PLoS ONE, 2023, 18, e0280187.	1.1	3
1478	KAPAS II: simulation of peatland wildfires with daily variations of peat moisture content. International Journal of Wildland Fire, 2023, , .	1.0	2
1485	Measurements ofÂAtmospheric Carbon Dioxide Emissions from Fire-Prone Peatlands in Central Kalimantan, Indonesia, UsingÂGround-Based Instruments. , 2023, , 385-399.		0
1486	Chemical Speciation of PM10 Emissions from Peat Burning Emission in Central Kalimantan, Indonesia. , 2023, , 417-432.		0
1487	GHG Emissions' Estimation from Peatland Fires in Indonesia—Review and Importance of Combustion Factor. , 2023, , 433-445.		1
1488	Forest Fire Emissions in Equatorial Asia and Their Recent Delay Anomaly in the Dry Season. , 2023, , 447-462.		0
1489	Southeast Asian Transboundary Haze in the Southern Philippines, 2019 and Meteorological Drivers. , 2023, , 559-574.		0
1497	Optimal Convex Relaxation-based Wavelet Covariance Transform for More Robust AOD-PM Characterization and Tracer Tracking of Biomass Burning Over Land/Sea Boundary Regions. , 2022, , .		1
1512	Fires. , 2024, , 243-261.		0
1515	Forest disturbances. , 2024, , 125-150.		0
1523	Integrated Eco-Evaluation Practices of Industrial Forest Plantation in Peatland of West Kalimantan, Indonesia. , 2023, , 71-100.		0

#	Article	IF	CITATIONS
1524	Appraisal of LiDAR Measurements for Monitoring Tropical Peatlands. , 2023, , 235-251.		0