Comparison of the mechanical properties of rice husk p composites with talc filled polypropylene composites

Polymer Testing 21, 833-839 DOI: 10.1016/s0142-9418(02)00018-1

Citation Report

#	Article	IF	CITATIONS
1	Effect of Processing Time on the Tensile, Morphological, and Thermal Properties of Rice Husk Powderâ€Filled Polypropylene Composites. Polymer-Plastics Technology and Engineering, 2003, 42, 827-851.	1.9	22
2	Preliminary Study on Application of Bentonite as a Filler in Polypropylene Composites. Polymer-Plastics Technology and Engineering, 2004, 43, 713-730.	1.9	7
3	Creep behavior and manufacturing parameters of wood flour filled polypropylene composites. Composite Structures, 2004, 65, 459-469.	3.1	141
4	Rice-husk flour filled polypropylene composites; mechanical and morphological study. Composite Structures, 2004, 63, 305-312.	3.1	417
5	Rice husk powder-filled polystyrene/styrene butadiene rubber blends. Journal of Applied Polymer Science, 2004, 92, 3320-3332.	1.3	38
6	Partial Replacement of Silica by Rice Husk Powder in Polystyrene–Styrene Butadiene Rubber Blends. Journal of Reinforced Plastics and Composites, 2004, 23, 1397-1408.	1.6	9
7	Study of composites based on polypropylene and calcium carbonate by experimental design. Polymer Testing, 2005, 24, 1049-1053.	2.3	21
8	Effect of coupling agents on rice-husk-filled HDPE extruded profiles. Polymer International, 2005, 54, 137-142.	1.6	79
9	Enhancement of Processability of Rice Husk Filled High-density Polyethylene Composite Profiles. Journal of Thermoplastic Composite Materials, 2005, 18, 445-458.	2.6	64
10	Effect of Various Coupling Agents on Properties of Alumina-filled PP Composites. Journal of Reinforced Plastics and Composites, 2006, 25, 745-759.	1.6	33
11	Modeling and investigation of the reinforcing effect of maize hull in PE matrix composites. Polymers for Advanced Technologies, 2006, 17, 825-829.	1.6	8
12	Water absorption behavior and mechanical properties of lignocellulosic filler–polyolefin bio-composites. Composite Structures, 2006, 72, 429-437.	3.1	293
13	Failure mode characterization in maize hull filled polyethylene composites by acoustic emission. Polymer Testing, 2006, 25, 353-357.	2.3	18
14	Effect of titanate coupling agent on the mechanical, thermal, dielectric, rheological, and morphological properties of filled nylon 6. Journal of Applied Polymer Science, 2006, 99, 266-272.	1.3	41
15	Studies on crystal morphology and crystallization kinetics of polypropylene filled with CaCO3 of different size and size distribution. Journal of Applied Polymer Science, 2006, 101, 2437-2444.	1.3	24
16	Effect of water absorption, freezing and thawing, and photo-aging on flexural properties of extruded HDPE/rice husk composites. Journal of Applied Polymer Science, 2006, 100, 3619-3625.	1.3	29
17	Effect of talc on the properties of polypropylene/ethylene/propylene/diene terpolymer blends. Journal of Applied Polymer Science, 2006, 101, 3033-3039.	1.3	19
18	Mechanical and thermal properties of ABS and leather waste composites. Journal of Applied Polymer Science, 2006, 101, 3062-3066.	1.3	45

#	Article	IF	CITATIONS
19	Polypropene nanocomposites by metallocene/MAO catalysts. Composite Interfaces, 2006, 13, 365-375.	1.3	15
20	Mechanical Properties of Oil Palm Fibre Reinforced Epoxy for Building Short Span Bridge. , 2007, , 97-98.		12
21	Obtenção de compósitos de resÃduos de ardósia e polipropileno. Polimeros, 2007, 17, 98-103.	0.2	21
22	Influence of grafted polypropylene on the mechanical properties of mineral-filled polypropylene composites. Journal of Applied Polymer Science, 2007, 103, 2343-2350.	1.3	16
23	Mechanical and thermal properties of polypropylene/sugarcane Bagasse composites. Journal of Applied Polymer Science, 2007, 103, 3827-3832.	1.3	39
24	An alternative approach to the modification of talc for the fabrication of polypropylene/talc composites. Journal of Applied Polymer Science, 2007, 106, 386-393.	1.3	16
25	Mechanical and Morphological Studies of Poly(propylene)â€Filled Eggshell Composites. Macromolecular Materials and Engineering, 2007, 292, 1027-1034.	1.7	47
26	Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites. Composite Structures, 2007, 77, 45-55.	3.1	280
27	Mechanical behaviour of vinyl plastisols with cellulosic fillers. Analysis of the interface between particles and matrices. International Journal of Adhesion and Adhesives, 2007, 27, 422-428.	1.4	17
28	Shrinkage behavior and mechanical performances of injection molded polypropylene/talc composites. Polymer Engineering and Science, 2007, 47, 2124-2128.	1.5	56
29	A Study on the thermal destruction of rice husk in air and nitrogen atmosphere. Journal of Thermal Analysis and Calorimetry, 2007, 89, 809-814.	2.0	48
30	Characterization of rice husks and the products of its thermal degradation in air or nitrogen atmosphere. Journal of Thermal Analysis and Calorimetry, 2008, 93, 387-396.	2.0	95
31	Morphology and mechanical properties of catalytic coke/polypropylene composites. Journal of Applied Polymer Science, 2008, 110, 2071-2077.	1.3	4
32	Properties of polypropylene filled with chemically treated rice husk. Journal of Applied Polymer Science, 2008, 110, 1271-1279.	1.3	14
33	Strain rate effects on the mechanical response of polypropylene-based composites deformed at small strains. Polymer Science - Series A, 2008, 50, 690-697.	0.4	9
34	Rice straw fiber-reinforced high-density polyethylene composite: Effect of fiber type and loading. Industrial Crops and Products, 2008, 28, 63-72.	2.5	207
35	Improvement of physico-mechanical properties of jute fiber reinforced polypropylene composites by post-treatment. Composites Part A: Applied Science and Manufacturing, 2008, 39, 1739-1747.	3.8	174
36	Comparison of Water Absorption and Mechanical Behaviors of Polypropene Composites Filled with Rice Husks Ash. Polymer-Plastics Technology and Engineering, 2008, 47, 809-818.	1.9	10

	CITATION	Report	
#	ARTICLE Morphological, Thermal and Mechanical Properties of Polypropylene and Vermiculite Blends.	IF	Citations
37 38	International Journal of Polymeric Materials and Polymeric Biomaterials, 2008, 57, 957-968. Polymer composites for the automotive industry: characterisation of the recycling effect on the	1.8	18
39	Wood Filler(WF)-recycled Polypropylene (RPP) Composite Pallet: Study of Static Deformation using FEA and Shadow Moire. Journal of Reinforced Plastics and Composites, 2008, 27, 1733-1744.	1.6	9
40	Water Absorption of Lignocellulosic Phenolic Composites. Polymers and Polymer Composites, 2008, 16, 379-387.	1.0	7
41	Mechanical Properties of Cost-Effective Polypropylene Composites Filled with Red-Mud Particles. Polymers and Polymer Composites, 2008, 16, 439-446.	1.0	11
42	Studies on the properties of rice-husk-filled-PP composites: effect of maleated PP. Materials Research, 2009, 12, 333-338.	0.6	91
43	Rice Husk/High Density Polyethylene Bio-Composite: Effect of Rice Husk Filler Size and Composition on Injection Molding Processability with Respect to Impact Property. Advanced Materials Research, 0, 83-86, 367-374.	0.3	12
44	Mechanical, Thermal and Morphological Characterization of High-Density Polyethylene and Vermiculate Composites. International Journal of Polymeric Materials and Polymeric Biomaterials, 2009, 58, 489-497.	1.8	4
45	Gray Relational Analysis between Size Distribution and Impact Strength of Polypropylene/Hollow Glass Bead Composites. Journal of Reinforced Plastics and Composites, 2009, 28, 1945-1955.	1.6	10
46	Relationship of Rheological Study with Morphological Characteristics of Multicomponent (Talc and) Tj ETQq1 Composites, 2009, 28, 2577-2587.	1 0.784314 1.6	rgBT /Overlo 10
47	The effects of a silane coupling agent on properties of rice husk-filled maleic acid anhydride compatibilized natural rubber/low-density polyethylene blend. Journal of Materials Science, 2009, 44, 2665-2673.	1.7	14
48	Thermal characterization of polypropylene/vermiculite composites. Journal of Thermal Analysis and Calorimetry, 2009, 97, 571-575.	2.0	13
49	Kinetics and thermodynamics of water adsorption onto rice husks ash filled polypropene composites during soaking. Journal of Polymer Research, 2009, 16, 151-164.	1.2	24
50	Thermal and dynamic-mechanical characterization of rice-husk filled polypropylene composites. Macromolecular Research, 2009, 17, 8-13.	1.0	42
51	Dispersion, crystallization kinetics, and parameters of Hoffman–Lauritzen theory of polypropylene and nanoscale calcium carbonate composite. Polymer Engineering and Science, 2009, 49, 1855-1864.	1.5	21
52	Physico-mechanical Properties of Maleic Acid Post Treated Jute Fiber Reinforced Polypropylene Composites. Journal of Thermoplastic Composite Materials, 2009, 22, 365-381.	2.6	21
53	Mechanical properties of polypropylene composites reinforced with chemically treated abaca. Composites Part A: Applied Science and Manufacturing, 2009, 40, 511-517.	3.8	174
54	Mechanical and Morphological Properties of Chemically Treated Coir-Filled Polypropylene Composites. Industrial & Engineering Chemistry Research, 2009, 48, 10491-10497.	1.8	38

ARTICLE IF CITATIONS # Comparison of Polylactic Acid/Kenaf and Polylactic Acid/Rise Husk Composites: The Influence of the Natural Fibers on the Mechanical, Thermal and Biodegradability Properties. Journal of Polymers and 2.4 257 55 the Environment, 2010, 18, 422-429. Influence of Fiber Treatment on the Mechanical and Morphological Properties of Sawdust Reinforced 2.4 34 Polypropylene Composites. Journal of Polymers and the Environment, 2010, 18, 443-450. Study of plastic compounds containing polypropylene and wood derived fillers from waste of 57 1.3 8 different origin. Journal of Applied Polymer Science, 2010, 117, NA-NA. Influence of talc content on some properties of gamma irradiated composites of polyethylene and 58 1.3 recycled rubber wastes. Journal of Applied Polymer Science, 2010, 117, 2428-2435. Development of environmentally friendly highâ€density polyethylene and turmeric spent composites: Physicomechanical, thermal, and morphological studies. Journal of Applied Polymer Science, 2010, 118, 59 1.3 2 1204-1210. Reinforcement of natural rubber/high density polyethylene blends with electron beam irradiated liquid natural rubber-coated rice husk. Radiation Physics and Chemistry, 2010, 79, 906-911. 1.4 Environmental benefits of substituting talc by sugarcane bagasse fibers as reinforcement in polypropylene composites: Ecodesign and LĆA as strategy for automotive components. Resources, Conservation and Recycling, 2010, 54, 1135-1144. 61 5.3 131 Role of micro/nano fillers on mechanical and tribological properties of polyamide66/polypropylene 5.1 100 composites. Materials & Design, 2010, 31, 1993-2000. Wet-spun alginate/chitosan whiskers nanocomposite fibers: Preparation, characterization and release 63 5.1 88 characteristic of the whiskers. Carbohydrate Polymers, 2010, 79, 738-746. Micromechanical modeling of the mechanical behavior of thermoplastic olefin. Polymer Engineering 64 1.5 and Science, 2010, 50, 536-542. Mechanical Properties of Unplasticised PVC (PVC-U) Containing Rice Husk and an Impact Modifier. 65 1.0 10 Polymers and Polymer Composites, 2010, 18, 527-536. Physico-Mechanical Properties of Jute Fiber Reinforced Polypropylene Composites. Journal of 1.6 Reinforced Plastics and Composites, 2010, 29, 445-455. Mechanical, Thermal and Morphological Behaviors of Coconut Shell Powder Filled Pu/Ps 67 0.3 0 Biocomposites. Advanced Materials Research, 2010, 123-125, 331-334. Coir Fiber Reinforced Polypropylene Composites: Physical and Mechanical Properties. Advanced Composite Materials, 2010, 19, 91-106. 1.0 34 Mechanical Properties of Thermoplastic Olefin Composites: Effect of Fillers Content, Strain Rate and 69 1.9 8 Temperature. Polymer-Plastics Technology and Engineering, 2010, 49, 121-127. The Effects of Recycled Acrylonitrile Butadiene Rubber Content and Maleic Anhydride Modified Polypropylene (PPMAH) on the Mixing, Tensile Properties, Swelling Percentage and Morphology of Polypropylene/Recycled Acrylonitrile Butadiene Rubber/Rice Husk Powder (PP/NBRr/RHP) Composites. 24 Polymer-Plastics Technology and Engineering, 2010, 49, 1323-1328 Study on the Thermooxidative Degradation Kinetics of Tetrafluoroethylene-Ethylene Copolymer Filled 71 1.9 26 with Rice Husks Ash. Polymer-Plastics Technology and Engineering, 2010, 49, 541-554. Rice husk as reinforcing filler in polypropylene composites. Reviews in Chemical Engineering, 2010, 26, 2.3

#	Article	IF	CITATIONS
73	Effect of the Incorporation of PVC on the Mechanical Properties of the Jute-Reinforced LLDPE Composite. Polymer-Plastics Technology and Engineering, 2010, 49, 707-712.	1.9	21
74	The Effect of Waste Office White Paper Content and Size on the Mechanical and Thermal Properties of Low-Density Polyethylene (LDPE) Composites. Polymer-Plastics Technology and Engineering, 2010, 49, 672-677.	1.9	12
75	Chemical Modification of Chitosan-Filled Polypropylene (PP) Composites: The Effect of 3-Aminopropyltriethoxysilane on Mechanical and Thermal Properties. International Journal of Polymeric Materials and Polymeric Biomaterials, 2011, 60, 429-440.	1.8	40
76	Mechanical Properties of Chemically Treated Sawdust-Reinforced Recycled Polyethylene Composites. Industrial & Engineering Chemistry Research, 2011, 50, 11124-11129.	1.8	22
77	Potential of using coconut shell particle fillers in eco-composite materials. Journal of Alloys and Compounds, 2011, 509, 2381-2385.	2.8	136
78	Effect of Different Parameters on Mechanical and Erosion Wear Behavior of Bamboo Fiber Reinforced Epoxy Composites. International Journal of Polymer Science, 2011, 2011, 1-10.	1.2	72
79	Tensile properties, swelling, and water absorption behavior of riceâ€huskâ€powderâ€filled polypropylene/(recycled acrylonitrileâ€butadiene rubber) composites. Journal of Vinyl and Additive Technology, 2011, 17, 190-197.	1.8	25
80	Physical properties of ligninâ€based polypropylene blends. Polymer Composites, 2011, 32, 1019-1025.	2.3	106
81	Study on the viscosity of polypropylene composites filled with different size and size distribution CaCO ₃ . Polymer Composites, 2011, 32, 1026-1033.	2.3	6
82	Crystallization kinetics of polypropylene composites filled with nano calcium carbonate modified with maleic anhydride. Journal of Applied Polymer Science, 2011, 119, 1516-1527.	1.3	20
83	Mechanical properties of reinforced polyvinyl chloride composites: Effect of filler form and content. Journal of Applied Polymer Science, 2011, 120, 1788-1793.	1.3	26
84	Fabrication and Mechanical Characterization of Jute Fabrics: Reinforced Polyvinyl Chloride/Polypropylene Hybrid Composites. International Journal of Polymeric Materials and Polymeric Biomaterials, 2011, 60, 576-590.	1.8	28
85	Influences of Modified Chemical Blowing Agents on Foaming of Wood Plastic Composites Prepared from Poly(Vinyl Chloride) and Rice Hull. Advanced Materials Research, 0, 306-307, 869-873.	0.3	10
86	Effect of Filler Loading and Coupling Agent on Tensile and Impact Properties of Polypropylene with Oil Palm Ash Composites. Key Engineering Materials, 0, 471-472, 1130-1135.	0.4	1
87	Physical and Mechanical Properties of Rapeseed Waste-filled LLDPE Composites. Journal of Thermoplastic Composite Materials, 2011, 24, 447-458.	2.6	14
88	Effect of various additives on mechanical properties of rice husk polypropylene (RHPP) composites. Journal of Polymer Engineering, 2012, 32, .	0.6	5
89	Studies on Friction and Mechanical Properties of High Density Polypropylene (HDPP) Filled with Modified Talc. Advanced Materials Research, 2012, 624, 279-282.	0.3	1
90	Mechanical Properties and Morphologies of PP/Co-PP/Talc Composites for Microwave Application. Advanced Materials Research, 0, 626, 711-715.	0.3	2

#	Article	IF	CITATIONS
91	Composites of Polypropylene/Pottery Stone/Magnesium Oxysulfate. Advanced Materials Research, 2012, 488-489, 643-647.	0.3	1
92	Microstructure, friction and wear analysis of thermoplastic based composites with solid lubricant. Mechanics and Industry, 2012, 13, 337-346.	0.5	8
93	Effects of Acetic Anhydride on the Properties of Polypropylene(PP)/Recycled Acrylonitrile Butadiene(NBRr)/Rice Husk Powder(RHP) Composites. Polymer-Plastics Technology and Engineering, 2012, 51, 1505-1512.	1.9	14
94	Flammability, Biodegradability and Mechanical Properties of Bio-Composites Waste Polypropylene/Kenaf Fiber Containing Nano CaCO3 with Diammonium Phosphate. Procedia Chemistry, 2012, 4, 282-287.	0.7	39
95	The Effect of Rice Husk Powder on Standard Malaysian Natural Rubber Grade L (SMR L) and Epoxidized Natural Rubber (ENR 50) Composites. Polymer-Plastics Technology and Engineering, 2012, 51, 231-237.	1.9	13
96	Novel bio-commingled composites based on jute/polypropylene yarns: Effect of chemical treatments on the mechanical properties. Composites Part A: Applied Science and Manufacturing, 2012, 43, 219-230.	3.8	53
97	A comparison study on creep behavior of wood–plastic composite, solid wood, and polypropylene. Journal of Composite Materials, 2012, 46, 801-808.	1.2	15
98	Carbon Black (CB)/Rice Husk Powder (RHP) Hybrid Filler-Filled Natural Rubber Composites: Effect of CB/RHP Ratio on Property of the Composites. Polymer-Plastics Technology and Engineering, 2012, 51, 655-662.	1.9	40
99	Mechanical and Thermal Properties of Compatibilized Waste Office White Paper-Filled Low-Density Polyethylene Composites. Journal of Thermoplastic Composite Materials, 2012, 25, 193-207.	2.6	10
100	The Effects of Kenaf Loadings and 3-aminopropyltriethoxysilane (APTES) Coupling Agent on Mechanical Properties of Polypropylene/Waste Tire Dust/Kenaf (Pp/WTD/KNF) Composites. Advanced Materials Research, 2012, 626, 828-833.	0.3	2
101	Chemical Treatment of Coir Fiber Reinforced Polypropylene Composites. Industrial & Engineering Chemistry Research, 2012, 51, 3958-3965.	1.8	34
102	EFFECT OF MALEIC ANHYDRIDE ON KENAF DUST FILLED POLYCAPROLACTONE/THERMOPLASTIC SAGO STARCH COMPOSITES. BioResources, 2012, 7, .	0.5	7
103	Obtaining Some Polymer Composites Filled with Rice Husks Ash-A Review. International Journal of Chemistry, 2012, 4, .	0.3	39
104	Mechanical Properties of Rice Husk Fiiled Cashew Nut Shell Liquid Resin Composites. Journal of Materials Science Research, 2012, 1, .	0.1	13
105	Comparative experimental measurements of jute fiber/polypropylene and coir fiber/polypropylene composites as ionizing radiation. Polymer Composites, 2012, 33, 1077-1084.	2.3	29
106	Isolation and characterization of betel nut leaf fiber: Its potential application in making composites. Polymer Composites, 2012, 33, 764-772.	2.3	21
107	Effect of compatibilizing agents on the mechanical property of rice husk flour as nanoâ€potential filler in polypropylene biocomposite. Journal of Applied Polymer Science, 2012, 125, 1310-1317.	1.3	6
108	Preparation and characterization of polypropylene composites reinforced with chemically treated coir. Journal of Polymer Research, 2012, 19, 1.	1.2	49

		15	Circumonia
#	ARTICLE	IF	CHATIONS
109	eco-composites. Composites Part B: Engineering, 2012, 43, 2230-2236.	5.9	27
110	Influence of fibre treatments on mechanical properties of short Sansevieria cylindrica/polyester composites. Materials & Design, 2012, 37, 111-121.	5.1	105
111	Study on mechanical and tribo-performance of rice-husk filled glass–epoxy hybrid composites. Materials & Design, 2012, 41, 131-141.	5.1	121
112	The effect of the addition of polypropylene grafted SiO2 nanoparticle on the crystallization behavior of isotactic polypropylene. Journal of Thermal Analysis and Calorimetry, 2013, 113, 1511-1519.	2.0	36
113	Degradation Behavior of Natural Fiber Reinforced Polymer Matrix Composites. Procedia Engineering, 2013, 56, 795-800.	1.2	55
114	Improvement of physico-mechanical properties of coir-polypropylene biocomposites by fiber chemical treatment. Materials & Design, 2013, 52, 251-257.	5.1	106
115	Effects of rice hull particle size and content on the mechanical properties and visual appearance of wood plastic composites prepared from poly(vinyl chloride). Journal of Bionic Engineering, 2013, 10, 110-117.	2.7	47
116	Preparation and properties of dynamically cured polypropylene (PP)/maleic anhydride–grafted polypropylene (MAH-g-PP)/calcium carbonate (CaCO ₃)/epoxy composites. Journal of Thermoplastic Composite Materials, 2013, 26, 1192-1205.	2.6	9
117	Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Materials & Design, 2013, 46, 391-410.	5.1	488
118	Mechanical performance of composites based on wastes of polyethylene aluminum and lignocellulosics. Composites Part B: Engineering, 2013, 47, 150-154.	5.9	29
120	Characterisation of sago pith waste and its composites. Industrial Crops and Products, 2013, 45, 319-326.	2.5	39
121	A study on the mechanical properties of urea-treated coir reinforced polypropylene composites. Journal of Thermoplastic Composite Materials, 2013, 26, 139-155.	2.6	10
122	Comparison of Melt Flow and Mechanical Properties of Rice Husk and Kenaf Hybrid Composites. Advanced Materials Research, 0, 701, 42-46.	0.3	5
123	Effects of Calcium Carbonate on Melt Flow and Mechanical Properties of Rice Husk/HDPE and Kenaf/HDPE Hybrid Composites. Advanced Materials Research, 0, 795, 286-289.	0.3	2
124	Effect of hydrazine post-treatment on natural fibre reinforced polymer composites. Materials Research Innovations, 2013, 17, s19-s26.	1.0	11
125	Effects of Trans-Polyoctylene Rubber in Polypropylene/Recycled Acrylonitrile Butadiene/Rice Husk Powder Composites. Key Engineering Materials, 2013, 594-595, 613-617.	0.4	0
126	Effect of Catalyst Calcination Temperature on the Synthesis of MWCNTs-Talc Hybrid Compound Using CVD Method. Key Engineering Materials, 2013, 594-595, 63-67.	0.4	0
127	Novel, synergistic composites of polypropylene and rice husk ash: Sustainable resource hybrids prepared by solid-state shear pulverization. Polymer Composites, 2013, 34, 1211-1221.	2.3	34

		CITATION REPORT	
#	Article	IF	CITATIONS
128	Effect of Gelatin Addition on Properties of Pullulan Films. Journal of Food Science, 2013, 78, C80	5-10. 1.5	39
129	Processing and properties of polypropyleneâ€based composites containing inertized fly ash fron municipal solid waste incineration. Journal of Applied Polymer Science, 2013, 130, 4157-4164.	ו 1.3	14
130	Comparison Effect of Mica and Talc as Filler in EPDM Composites on Curing, Tensile and Therma Properties. Progress in Rubber, Plastics and Recycling Technology, 2013, 29, 109-122.	0.8	14
131	Advances in the Valorization of Lignocellulosic Materials by Biotechnology: An Overview. BioResources, 2013, 8, .	0.5	161
132	Processing, Mechanical, and Thermal Properties of Polypropylene/Rattan Powder/Talc Hybrid Composites. BioResources, 2013, 8, .	0.5	1
133	Physical, Chemical, and Rheological Properties of Rice Husks Treated by Composting Process. BioResources, 2014, 10, .	0.5	5
134	Polypropylene/Rattan Powder/Kaolin Hybrid Composites: Processing, Mechanical and Thermal Properties. Polymer-Plastics Technology and Engineering, 2014, 53, 451-458.	1.9	9
135	Characterization and comparison of mechanical behavior of agro fiber-filled high-density polyethylene bio-composites. Journal of Reinforced Plastics and Composites, 2014, 33, 37-46.	1.6	30
137	Improvement of Inflammability and Biodegradability of Bio-Composites Using Recycled Polyprop with Kenaf Fiber Containing Mixture Fire Retardant. Advanced Materials Research, 2014, 950, 18	ylene 0.3 3-23.	14
138	Study of the Mechanical and Morphology Properties of Recycled HDPE Composite Using Rice Hu Filler. Advances in Materials Science and Engineering, 2014, 2014, 1-6.	sk 1.0	41
139	New Composition of Maleic-Anhydride-Grafted Poly(Lactic Acid)/Rice Husk with Methylenedipher Diisocyanate. Medziagotyra, 2014, 20, .	1yl 0.1	15
140	Effect of alumina particles loading on the mechanical properties of light-cured dental resin composites. Materials & Design, 2014, 54, 430-435.	5.1	68
141	Impact of succinic anhydride on the properties of jute fiber/polypropylene biocomposites. Fibers Polymers, 2014, 15, 307-314.	and 1.1	30
142	Effects of Kenaf core on properties of poly(lactic acid) bio-composite. Polymer Composites, 2014 1220-1227.	4, 35, <u>2.3</u>	20
144	Structure–morphology–mechanical properties relationship of some polypropylene/lignocellı composites. Materials & Design, 2014, 56, 763-772.	ılosic 5.1	73
145	Effects of kenaf loading and 3-aminopropyltriethoxysilane coupling agent on the properties of polypropylene/waste tire dust/kenaf composites. Journal of Thermoplastic Composite Materials, 27, 1607-1619.	2014, 2.6	17
146	Improvement of the physicoâ€mechanical properties and stability of waste polypropylene in the of wood flour and (maleic anhydride)â€grafted polypropylene. Journal of Vinyl and Additive Technology, 2014, 20, 24-30.	presence 1.8	10
147	Epoxidized natural rubber toughened polylactic acid/talc composites: Mechanical, thermal, and morphological properties. Journal of Composite Materials, 2014, 48, 769-781.	1.2	36

#	Article	IF	CITATIONS
148	Green composites of polypropylene and eggshell: Effective biofiller size reduction and dispersion by single-step processing with solid-state shear pulverization. Composites Science and Technology, 2014, 102, 152-160.	3.8	66
149	Effect of kenaf fibre loading and thymol concentration on the mechanical and thermal properties of PLA/kenaf/thymol composites. Industrial Crops and Products, 2014, 61, 74-83.	2.5	120
150	Jute fiber reinforced epoxy composites and comparison with the glass and neat epoxy composites. Journal of Composite Materials, 2014, 48, 2537-2547.	1.2	112
151	Mechanical, thermal and water absorption properties of plasticised sago pith waste. Fibers and Polymers, 2014, 15, 971-978.	1.1	3
152	Effect of reinforcement and chemical treatment of fiber on The Properties of jute-coir fiber reinforced hybrid polypropylene composites. Fibers and Polymers, 2014, 15, 1023-1028.	1.1	101
153	Physical and mechanical properties of flat pressed HDPE composite filled with a mixture of bagasse/rice husk. Journal of the Indian Academy of Wood Science, 2014, 11, 50-56.	0.3	3
154	Mechanical, thermal and friction properties of rice bran carbon/nitrile rubber composites: Influence of particle size and loading. Materials & Design, 2014, 63, 565-574.	5.1	98
155	Date palm wood flour as filler of linear low-density polyethylene. Composites Part B: Engineering, 2014, 56, 137-141.	5.9	86
156	Utilization of Palm Oil Fuel Ash and Rice Husks in Unfired Bricks for Sustainable Construction Materials Development. MATEC Web of Conferences, 2014, 15, 01032.	0.1	3
157	Preparation and characterisation of epoxidised natural rubber/polyvinyl chloride/rice husk (ENR/PVC/RH) thin film composite by solution casting technique. International Journal of Materials Engineering Innovation, 2014, 5, 61.	0.2	4
158	Dispersion and Property Enhancements in Polyolefin/Soy Flour Biocomposites Prepared via Melt Extrusion Followed by Solidâ€ S tate Shear Pulverization. Macromolecular Materials and Engineering, 2015, 300, 772-784.	1.7	16
159	Soil burial, tensile properties, morphology, and biodegradability of (rice husk powder)â€filled natural rubber latex foam. Journal of Vinyl and Additive Technology, 2015, 21, 128-133.	1.8	11
160	Study of Sound Absorption Coefficients and Characterization of Rice Straw Stem Fibers Reinforced Polypropylene Composites. BioResources, 2015, 10, .	0.5	33
161	Influence of Filler from a Renewable Resource and Silane Coupling Agent on the Properties of Epoxidized Natural Rubber Vulcanizates. Journal of Chemistry, 2015, 2015, 1-15.	0.9	41
162	Rice Husk Filled Polymer Composites. International Journal of Polymer Science, 2015, 2015, 1-32.	1.2	116
163	Heat Combustion, Tensile Strength and Biodegradability of Recycled Polypropylene Modified Multifunctional Agent Composites in the Presence of Pineapple Leave Fiber and Bentonite. Applied Mechanics and Materials, 0, 736, 13-18.	0.2	6
164	Utilization of cocoa pod husk as filler in polypropylene biocomposites. Journal of Thermoplastic Composite Materials, 2015, 28, 1507-1521.	2.6	40
165	Studies on wear resistance of organic tamarind kernel powder filled glass-epoxy composites based on Taguchi technique. Industrial Lubrication and Tribology, 2015, 67, 407-417.	0.6	4

#	Article	IF	CITATIONS
166	A Review of Natural Fibers Used in Biocomposites: Plant, Animal and Regenerated Cellulose Fibers. Polymer Reviews, 2015, 55, 107-162.	5.3	515
167	Pithecellobium Clypearia Benth Fiber/Recycled Acrylonitrile-Butadiene-Styrene (ABS) Composites Prepared in a Vane Extruder: Analysis of Mechanical Properties and Morphology. Journal of Macromolecular Science - Physics, 2015, 54, 1-16.	0.4	4
168	Lignocellulosic fibre mediated rubber composites: An overview. Composites Part B: Engineering, 2015, 76, 180-191.	5.9	104
169	Mechanical Properties of High Density Polyethylene (HDPE)/Sawdust Composites under Wide Range of Strain Rate. Applied Mechanics and Materials, 0, 754-755, 83-88.	0.2	5
170	Effect of kenaf fibre modification on morphology and mechanical properties of thermoplastic polyurethane materials. Industrial Crops and Products, 2015, 74, 566-576.	2.5	90
171	Wood polypropylene composites prepared by thermally modified fibers at two extrusion speeds: mechanical and viscoelastic properties. Holzforschung, 2015, 69, 313-319.	0.9	14
172	Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles. Composites Part B: Engineering, 2015, 81, 14-25.	5.9	190
173	Different coupling agents in wood-polypropylene composites containing recycled mineral wool: A comparison of the effects. Journal of Reinforced Plastics and Composites, 2015, 34, 879-895.	1.6	21
174	Sustainable Green Hybrids of Polyolefins and Lignin Yield Major Improvements in Mechanical Properties When Prepared via Solid-State Shear Pulverization. ACS Sustainable Chemistry and Engineering, 2015, 3, 959-968.	3.2	37
175	How do graphite nanoplates affect the fracture toughness of polypropylene composites?. Composites Science and Technology, 2015, 111, 9-16.	3.8	27
176	Chemical modification routes of synthetic talc: Influence on its nucleating power and on its dispersion state. Applied Clay Science, 2015, 109-110, 107-118.	2.6	30
177	Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder. Composites Part B: Engineering, 2015, 78, 256-265.	5.9	134
178	Wear rate and fracture toughness of porous particle-filled phenol composites. Composites Part B: Engineering, 2015, 77, 19-26.	5.9	1
179	Comparison of polyolefin biocomposites prepared with waste cardboard, microcrystalline cellulose, and cellulose nanocrystals via solid-state shear pulverization. Polymer, 2015, 75, 78-87.	1.8	45
180	Characterization of chemically modified sawdust-reinforced recycled polyethylene composites. Journal of Thermoplastic Composite Materials, 2015, 28, 1135-1153.	2.6	22
181	Performance of biomass filled polyolefin composites. , 2015, , 257-301.		1
182	Manufacturing of Natural Fibre Reinforced Polymer Composites. , 2015, , .		44
183	Manufacturing of Coir Fibre-Reinforced Polymer Composites by Hot Compression Technique. , 2015, , 309-330.		9

#	Article	IF	CITATIONS
184	The effect of sugarcane bagasse fiber on the properties of recycled high density polyethylene. Journal of Composite Materials, 2015, 49, 3251-3262.	1.2	38
185	Polyethylene terephthalate/calcined kaolin composites: Effect of uniaxial stretching on the properties. Polymer Engineering and Science, 2015, 55, 1767-1775.	1.5	4
186	Rice husk flour biocomposites based on recycled high-density polyethylene/polyethylene terephthalate blend: effect of high filler loading on physical, mechanical and thermal properties. Journal of Composite Materials, 2015, 49, 1241-1253.	1.2	43
187	Effects of polypropylene methyl polyhedral oligomeric silsesquioxanes and polypropylene-grafted maleic anhydride compatibilizers on the properties of palm kernel shell reinforced polypropylene biocomposites. Polimeros, 2016, 26, 228-235.	0.2	12
188	A study on flexural and water absorption of surface modified rice husk flour/E-glass/polypropylene hybrid composite. IOP Conference Series: Materials Science and Engineering, 2016, 152, 012061.	0.3	5
189	Wood Sawdust/Natural Rubber Ecocomposites Cross-Linked by Electron Beam Irradiation. Materials, 2016, 9, 503.	1.3	37
190	Estimatation of talc properties after milling. AIP Conference Proceedings, 2016, , .	0.3	1
191	Effect of single flame retardant aluminum tri-hydroxide and boric acid against inflammability and biodegradability of recycled PP/KF composites. AIP Conference Proceedings, 2016, , .	0.3	4
192	The Role of Oil Palm (Elaeis guineensis) Frond as Filler in Polypropylene Matrix with Relation of Filler Loading and Particle Size Effects. , 2016, , 393-404.		4
193	Novel eco-friendly commingled polypropylene/banana fiber composite: studies on thermal and mechanical properties. Polymer Bulletin, 2016, 73, 2987-3005.	1.7	9
194	Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review. Waste Management, 2016, 54, 62-73.	3.7	360
195	Mechanical and thermo-mechanical properties of short carbon fiber reinforced polypropylene composites using exfoliated graphene nanoplatelets coating. Journal of Industrial and Engineering Chemistry, 2016, 38, 37-42.	2.9	56
196	Natural fiber-mediated epoxy composites – A review. Composites Part B: Engineering, 2016, 99, 425-435.	5.9	245
197	Effects of different filler types on decay resistance and thermal, physical, and mechanical properties of recycled high-density polyethylene composites. Iranian Polymer Journal (English Edition), 2016, 25, 615-622.	1.3	5
198	Optimization of mechanical properties of polypropylene/talc/graphene composites using response surface methodology. Polymer Testing, 2016, 53, 283-292.	2.3	90
199	Development of green thermoplastic composites from <i>Centella</i> spent and study of its physicomechanical, tribological, and morphological characteristics. Journal of Thermoplastic Composite Materials, 2016, 29, 1297-1311.	2.6	8
200	Heat distortion temperature and mechanical properties of agricultural wastes-reinforced phenolic composites. Journal of Polymer Engineering, 2016, 36, 641-647.	0.6	2
201	Effect of Different Preparation Methods on Crosslink density and Mechanical Properties of Carrageenan filled Natural Rubber (NR) Latex Films. Procedia Chemistry, 2016, 19, 986-992.	0.7	22

#	Article	IF	CITATIONS
202	Thermal properties of palm fiber and palm fiber-reinforced ABS composite. Journal of Thermal Analysis and Calorimetry, 2016, 124, 1281-1289.	2.0	24
203	Effect of the talc filler on structural, water vapor barrier and mechanical properties of poly(lactic) Tj ETQq1	L 0.784314 rgBT	/Overlock 1
204	Studies on mechanical and biodegradability properties of PVA/lignin blend films. International Journal of Environmental Studies, 2016, 73, 18-24.	0.7	31
205	The comparison of properties of (rubber tree seed shell flour)â€filled polypropylene and highâ€density polyethylene composites. Journal of Vinyl and Additive Technology, 2016, 22, 91-99.	1.8	4
206	Cellulose powder treatment on <i>Cissus quadrangularis</i> stem fiber-reinforcement in unsaturated polyester matrix composites. Journal of Reinforced Plastics and Composites, 2016, 35, 212-227.	1.6	46
207	Radiation fabrication and characterization of the nanocomposite: Waste polyethylene /ethylene propylene diene/treated nanokaolin. Polymer Composites, 2017, 38, 616-623.	2.3	4
208	A review on new bio-based constituents for natural fiber-polymer composites. Journal of Cleaner Production, 2017, 149, 582-596.	4.6	394
209	Elaboration of performance of tea dust–polypropylene composites. Journal of Applied Polymer Science, 2017, 134, .	1.3	2
210	Mixer design optimization with fractured surface topography of mechanical properties of polymer biocomposites. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74, 272-280.	2.7	8
211	Maleic anhydride grafted linear lowâ€density polyethylene/waste paper powder composites with superior mechanical behavior. Journal of Applied Polymer Science, 2017, 134, 45167.	1.3	20
212	Thermal and mechanical properties of PP/HDPE/wood powder and MAPP/HDPE/wood powder polymer blend composites. Thermochimica Acta, 2017, 654, 40-50.	1.2	45
213	Properties and effect of preparation method of thermally conductive polypropylene/aluminum oxide composite. Journal of Materials Science, 2017, 52, 2524-2533.	1.7	30
214	Effect of surface modified rice husk (RH) on the flexural properties of recycled HDPE/RH composite. Advances in Materials and Processing Technologies, 2017, 3, 482-489.	0.8	10
215	Comparison on mechanical properties of lignocellulosic flour epoxy composites prepared by using coconut shell, rice husk and teakwood as fillers. Polymer Testing, 2017, 58, 60-69.	2.3	42
216	Recycling polymeric waste from electronic and automotive sectors into value added products. Frontiers of Environmental Science and Engineering, 2017, 11, 1.	3.3	10
217	Biocomposites Formulated with Virgin/Recycled Acrylonitrile Butadiene Styrene. Materials Science Forum, 0, 900, 23-26.	0.3	0
218	Effects of ammonium polyphosphate content on mechanical, thermal and flammability properties of kenaf/polypropylene and rice husk/polypropylene composites. Construction and Building Materials, 2017, 152, 484-493.	3.2	38
219	Influence of flame retardant magnesium hydroxide on the mechanical properties of high density polyethylene composites. Journal of Reinforced Plastics and Composites, 2017, 36, 1802-1816.	1.6	79

#	Article	IF	CITATIONS
222	Structural properties of rice huskÂand its polymer matrix composites. , 2017, , 473-490.		10
223	Investigation on Mechanical Properties of Hybrid Fibre Reinforced Polymer Composites. International Journal of Engineering Research and Applications, 2017, 07, 86-92.	0.1	2
224	Rice husk and kenaf fiber reinforced polypropylene biocomposites. , 2017, , 77-94.		8
225	Mechanical recycling of tags and labels residues using sugarcane bagasse ash. Polimeros, 2017, 27, 8-15.	0.2	3
226	Thermal Analysis of Bamboo Fibre and Its Composites. BioResources, 2017, 12, .	0.5	11
227	Are functional fillers improving environmental behavior of plastics? A review on LCA studies. Science of the Total Environment, 2018, 626, 927-940.	3.9	67
228	A study of mechanical and morphological properties of PLA based biocomposites prepared with EJO vegetable oil based plasticiser and kenaf fibres. Materials Research Express, 2018, 5, 085314.	0.8	26
229	Thermal and Morphological Properties of Polypropylene/Styrene-Butadiene-Styrene Nanocomposites. Polymer-Plastics Technology and Engineering, 2018, 57, 1542-1553.	1.9	1
230	Mechanical properties of chemically treated banana and pineapple leaf fiber reinforced hybrid polypropylene composites. Advances in Materials and Processing Technologies, 2018, 4, 527-537.	0.8	27
231	The effects of using agricultural waste as partial substitute for sand in cement blocks. Journal of Building Engineering, 2018, 19, 216-227.	1.6	80
232	An Attempt to Find a Suitable Biomass for Biochar-Based Polypropylene Biocomposites. Environmental Management, 2018, 62, 403-413.	1.2	56
233	Properties and characterization of ([Mengkuang leaf fiber]â€filled ethylene vinyl acetate)/(natural) Tj ETQq1 1 0. Additive Technology, 2018, 24, 109-115.	.784314 r 1.8	gBT /Overlock 4
234	Investigation of physicoâ€mechanical and thermoâ€mechanical analysis of alumina filled needleâ€punch nonwoven jute epoxy composites. Polymer Composites, 2018, 39, 1553-1561.	2.3	4
235	Green coupling agent for agroâ€waste based thermoplastic composites. Polymer Composites, 2018, 39, 2441-2450.	2.3	17
236	Preparation of toughened polypropyleneâ€ <i>g</i> â€poly(butyl acrylateâ€ <i>co</i> â€acrylated castor oil) by suspension grafting polymerization. Polymer Engineering and Science, 2018, 58, 86-93.	1.5	4
237	Effects of fiber-surface modification on the properties of bamboo flour/polypropylene composites and their interfacial compatibility. Journal of Polymer Engineering, 2018, 38, 157-166.	0.6	9
238	Conference Proceedings of the Second International Conference on Recent Advances in Bioenergy Research. Springer Proceedings in Energy, 2018, , .	0.2	3
239	Utilization of Bagasse Ash as a Filler in Natural Rubber and Styrene–Butadiene Rubber Composites. Arabian Journal for Science and Engineering, 2018, 43, 221-227.	1.7	13

		CHAHON REPORT	
# 240	ARTICLE Characterization of Wood Apple Shell Particles, Springer Proceedings in Energy, 2018. , 139-146.	IF 0.2	Citations
241	Mechanical, Morphological and Thermal Properties of Alkali Treated Ladies Finger Fiber Reinforced	0.3	2
242	Mechanical Properties of Silk and Glass Fiber Reinforced Hybrid Polypropylene Composites. IOP Conference Series: Materials Science and Engineering, 0, 438, 012007.	0.3	3
243	Optimization of the Young's Modulus of Low Flow Polypropylene Talc/Colemanite Hybrid Composite Materials with Artificial Neural Networks. IFAC-PapersOnLine, 2018, 51, 277-281.	0.5	2
244	Effect of Alkali Treatment on Mechanical Properties of Rice Husk Flour Reinforced Epoxy Bio-Composite. Materials Today: Proceedings, 2018, 5, 24330-24338.	0.9	8
245	The Effects of Wood Sawdust Loading on Tensile and Physical Properties of Up/Pf/Wsd Composites. IOP Conference Series: Materials Science and Engineering, 2018, 454, 012193.	0.3	5
246	Critical review on agrowaste cellulose applications for biopolymers. International Journal of Plastics Technology, 2018, 22, 185-216.	2.9	77
247	Multi-response optimization of the mechanical properties of PP/talc/CaCO ₃ ternary nanocomposites by the response surface methodology combined with desirability function approach. Journal of Elastomers and Plastics, 0, , 009524431881918.	0.7	5
248	Physico-Mechanical Properties of Pineapple Leaf and Banana Fiber Reinforced Hybrid Polypropylene Composites: Effect of Fiber Ratio and Sodium Hydroxide Treatment. IOP Conference Series: Materials Science and Engineering, 2018, 438, 012027.	0.3	12
249	The Role of Bamboo Nanoparticles in Kenaf Fiber Reinforced Unsaturated Polyester Composites. Journal of Renewable Materials, 2018, 6, 75-86.	1.1	19
250	Biogenic Amorphous Silica as Filler for Elastomers. Journal of Renewable Materials, 2018, 6, 402-412.	1.1	4
251	The Effects of Different Rice Husk Loading and Size on The Properties of Standard Malaysian Rubber / Rice Husk Composites. Journal of Physics: Conference Series, 2018, 1019, 012091.	0.3	2
252	Tensile and Impact Properties of Microcrystalline Cellulose Nanoclay Polypropylene Composites. International Journal of Polymer Science, 2018, 2018, 1-13.	1.2	14
253	The Effect of Titanate Coupling Agent on Water Absorption and Mechanical Properties of Rice Husk Filled Poly(vinyl Chloride) Composites. , 2018, , 197-210.		6
254	Solving Materials' Small Data Problem with Dynamic Experimental Databases. Processes, 2018, 6, 79.	1.3	18
255	UV/O3 treatment as a surface modification of rice husk towards preparation of novel biocomposites. PLoS ONE, 2018, 13, e0197345.	1.1	20
256	reinforced rice husk composite. IOP Conference Series: Materials Science and Engineering, 2018, 342, 012046.	0.3	14
257	Characterization of Banana Natural Fiber Nanocomposites by Thermal Analysis. Lecture Notes on Multidisciplinary Industrial Engineering, 2019, , 659-670.	0.4	0

#	Article	IF	CITATIONS
258	Nanoindentation and flammability characterisation of five rice husk biomasses for biocomposites applications. Composites Part A: Applied Science and Manufacturing, 2019, 125, 105566.	3.8	20
259	Fabrication and mechanical characterization of bagasse, rice husk, saw dust reinforced epoxy composites. , 2019, , .		3
260	Mechanical, thermal, viscoelastic performance and product application of PP- rice husk Colombian biocomposites. Composites Part B: Engineering, 2019, 176, 107135.	5.9	46
261	Neural network approach to quality monitoring of injection molding of photoluminescent polymers. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	10
262	Impact and shear properties of carbon fabric/ poly-dicyclopentadiene composites manufactured by vacuumâ€assisted resin transfer molding. E-Polymers, 2019, 19, 437-443.	1.3	12
263	Effect of Maleated Anhydride on Mechanical Properties of Rice Husk Filler Reinforced PLA Matrix Polymer Composite. International Journal of Precision Engineering and Manufacturing - Green Technology, 2019, 6, 113-124.	2.7	39
264	Characterization of cellulose microfibrils, cellulose molecules, and hemicelluloses in buckwheat and rice husks. Cellulose, 2019, 26, 6529-6541.	2.4	43
265	The influence of polyvinyl acetate and rice starch binders on molded rice straw filled rice bran: comparative study. Materials Research Express, 2019, 6, 075325.	0.8	1
266	Particulate Filled Polypropylene: Structure and Properties. , 2019, , 357-417.		3
267	A Novel Hybrid Foaming Method for Low-Pressure Microcellular Foam Production of Unfilled and Talc-Filled Copolymer Polypropylenes. Polymers, 2019, 11, 1896.	2.0	15
268	Influence of the Design Solutions of Extruder Screw Mixing Tip on Selected Properties of Wheat Bran-Polyethylene Biocomposite. Polymers, 2019, 11, 2120.	2.0	9
269	Mechanical Performance of Bioâ€Wasteâ€Filled Carbon Fabric/Epoxy Composites. Polymer Composites, 2019, 40, E1504.	2.3	8
270	Tailoring of thermal and mechanical properties of hollow glass beadâ€filled polypropylene porous Films via stretching ratio and filler content. Polymer Composites, 2019, 40, 2938-2945.	2.3	5
271	Synthesis and characterization of natural fiber reinforced polymer composites as core for honeycomb core structure: A review. Journal of Sandwich Structures and Materials, 2020, 22, 525-550.	2.0	30
272	Development of fiber-reinforced polypropylene with NaOH pretreated rice and coffee husks as fillers: Mechanical and thermal properties. Journal of Thermoplastic Composite Materials, 2020, 33, 1269-1291.	2.6	36
273	Reinforcement of jute, net and epoxy composite. Materials Today: Proceedings, 2020, 21, 820-822.	0.9	3
274	Effect of MMT Clay on Mechanical, Thermal and Barrier Properties of Treated Aloevera Fiber/ PLA-Hybrid Biocomposites. Silicon, 2020, 12, 1751-1760.	1.8	45
275	Groundnut shell / rice husk agro-waste reinforced polypropylene hybrid biocomposites. Journal of Building Engineering, 2020, 27, 100991.	1.6	47

#	Article	IF	CITATIONS
276	Polyvinyl alcohol/gelatin irradiated blends filled by lignin as green filler for antimicrobial packaging materials. International Journal of Environmental Analytical Chemistry, 2020, 100, 1578-1602.	1.8	38
977	Key advances in development of straw fibre bio-composite boards: An overview. Materials Research	0.8	10
211	Express, 2020, 7, 012005.	0.8	10
278	The Influence of Different Compounding Sequence and Peanut Shell Powder Loading on Properties of Polylactic Acid/Thermoplastic Corn Starch Biocomposites. Journal of Vinyl and Additive Technology, 2020, 26, 413-422.	1.8	4
279	Material Extrusion-Based Additive Manufacturing with Blends of Polypropylene and Hydrocarbon Resins. ACS Applied Polymer Materials, 2020, 2, 911-921.	2.0	42
280	Contribution of oriented structure and rigid nanofillers to mechanical enhancement of die-drawn PP/MWCNT composites. Polymer Testing, 2020, 81, 106165.	2.3	9
281	Advanced polymeric composites via commingling for critical engineering applications. Polymer Testing, 2020, 91, 106774.	2.3	15
282	Preparation and characterization of natural fiber filled polystyrene composite using in situ polymerisation technique. Advances in Materials and Processing Technologies, 2020, , 1-11.	0.8	4
283	Polyolefin Based Copolymers as Matrix Component in Coir Fiber Reinforced Composites. Fibers and Polymers, 2020, 21, 2042-2054.	1.1	0
284	The effect of polyethylene on the properties of talc-filled recycled polypropylene. Plastics, Rubber and Composites, 2022, 51, 118-125.	0.9	7
285	Effect of natural filler materials on fiber reinforced hybrid polymer composites: An Overview. Journal of Natural Fibers, 2022, 19, 4132-4147.	1.7	124
286	The occurrence of Hg, Se, S, Ni, Cr, and Th in Talc Ore: A scanning electron microscopy (SEM) study of historical samples from the Willow Creek Mine, Montana. Results in Geochemistry, 2020, 1, 100003.	0.3	2
287	Mechanical and structural properties for recycled thermoplastics from waste fishing ropes. Journal of Material Cycles and Waste Management, 2020, 22, 1682-1689.	1.6	7
288	Advances in microcellular injection moulding. Journal of Cellular Plastics, 2020, 56, 646-674.	1.2	18
289	Study of mechanical behaviour of raw and chemical treated bio-filler composites and its effect on moisture absorption. Materials Today: Proceedings, 2020, 26, 1936-1940.	0.9	9
290	Impact strength of LDPE/RH composites for industrial injection moulded parts. AIP Conference Proceedings, 2020, , .	0.3	2
291	Flexural properties of rice husk (Oryza sativa) reinforced low density polyethylene composites for industrial injection moulded parts. AIP Conference Proceedings, 2020, , .	0.3	2
292	Evaluation of the Mechanical, Thermal and Rheological Properties of Recycled Polyolefins Rice-hull Composites. Materials, 2020, 13, 667.	1.3	12
293	Physico-mechanical properties investigation of sponge-gourd and betel nut reinforced hybrid polyester composites. Advances in Materials and Processing Technologies, 2021, 7, 304-316.	0.8	10

#	Article	IF	CITATIONS
294	Influence of Montmorillonite Clay Content on Thermal, Mechanical, Water Absorption and Biodegradability Properties of Treated Kenaf Fiber/ PLA-Hybrid Biocomposites. Silicon, 2021, 13, 109-118.	1.8	35
295	Valorization of waste rice husk by preparing nanocomposite with polyvinyl chloride and montmorillonite clay. Journal of Thermoplastic Composite Materials, 2021, 34, 801-816.	2.6	8
296	A review on the mechanical properties of bio waste particulate reinforced polymer composites. Materials Today: Proceedings, 2021, 37, 1757-1760.	0.9	23
297	Joining behavior of polymeric composites fabricated using agricultural waste as fillers. Journal of Adhesion Science and Technology, 2021, 35, 1652-1663.	1.4	9
299	Studies on mechanical and thermal performance of carbon nanotubes/polypropylene nanocomposites. Materials Today: Proceedings, 2021, 46, 7182-7186.	0.9	13
300	Eggshell and rice husk ash utilization as reinforcement in development of composite material: A review. Materials Today: Proceedings, 2021, 43, 426-433.	0.9	8
301	Mechanical characteristics and hydrophobicity of alkyl ketene dimer compatibilized hybrid biopolymer composites. Polymer Composites, 2021, 42, 2324-2333.	2.3	9
302	Effect of Different Fibers Loading on Palm and Aramid Fiber Reinforced Hybrid Epoxy Composite. Advances in Materials and Processing Technologies, 2022, 8, 1889-1900.	0.8	3
303	Flame retarding cardanol based novolac-epoxy/rice husk composites. Materials Chemistry and Physics, 2021, 263, 124225.	2.0	21
304	Polylactide and its Composites on Various Scales of Hardness. Pertanika Journal of Science and Technology, 2021, 29, .	0.3	3
305	Synthesis and Mechanical Behavior of Ball-Milled Agro-Waste RHA and Eggshell Reinforced Composite Material. Materials Performance and Characterization, 2021, 10, 237-254.	0.2	6
306	Polylactide and its Composites on Various Scales of Hardness. Pertanika Journal of Science and Technology, 2021, 29, .	0.3	1
307	Wear behavior of rice straw powder in automotive brake pads. Materialpruefung/Materials Testing, 2021, 63, 458-461.	0.8	5
308	Influence of h-BN fillers on mechanical and tribological properties of PP/PA6 blend. World Journal of Engineering, 2021, ahead-of-print, .	1.0	10
309	Will stem cells from fat and growth factors from blood bring new hope to female patients with reproductive disorders?. Reproductive Biology, 2021, 21, 100472.	0.9	2
310	Advances in development of green composites based on natural fibers: a review. Emergent Materials, 2022, 5, 811-831.	3.2	20
311	Effect of fiber orientations and their weight percentage on banana fiber-based hybrid composite. Materials Today: Proceedings, 2022, 50, 1275-1281.	0.9	2
312	Assessment the using of silica nanoparticles (SiO2NPs) biosynthesized from rice husks by Trichoderma harzianum MF780864 as water lead adsorbent for immune status of Nile tilapia (Oreochromis) Tj ETQq1 1 0.784	131148rgBT	/O ve rlock_10

#	Article	IF	CITATIONS
313	Mechanical properties of rice husk and rice husk ash filled maleated polymers compatibilized polypropylene composites. Journal of Applied Polymer Science, 2022, 139, 51702.	1.3	6
314	Assessment on hybrid jute/coir fibers reinforced polyester composite with hybrid fillers under different environmental conditions. Construction and Building Materials, 2021, 301, 124117.	3.2	29
315	Optimization of tensile strength of PLA/clay/rice husk composites using Box-Behnken design. Biomass Conversion and Biorefinery, 2023, 13, 11727-11753.	2.9	15
316	Rice Husk-Reinforced Composites: A Review. Lecture Notes in Mechanical Engineering, 2014, , 395-405.	0.3	2
317	The Strength characteristics of Chitosan- and Titanium- Poly (L-lactic) Acid Based Composites. Journal of Physics: Conference Series, 2019, 1378, 022061.	0.3	4
318	Effects of Rice Hush as Substitute for Fine Aggregate in Concrete Mixture. International Journal of Advanced Science and Technology, 2013, 58, 29-40.	0.3	18
319	Rice husk as a fibre in composites: A review. Journal of the Mechanical Behavior of Materials, 2020, 29, 147-162.	0.7	33
322	Use of Rice Husk Ash as Partial Replacement with Cement In Concrete- A Review. International Journal of Engineering Research, 2015, 4, 506-509.	0.1	15
323	Study on Physio-Mechanical Properties of Rice Husk Ash Polyester Resin Composite. International Letters of Chemistry, Physics and Astronomy, 0, 53, 95-105.	0.0	10
324	Rice Husk and Its Applications: Review. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 1144-1156.	0.0	50
325	Thermal, mechanical and morphological properties of polypropylene/clay/wood flour nanocomposites. EXPRESS Polymer Letters, 2008, 2, 78-87.	1.1	83
326	Highly Filled Polypropylene Rubber Wood Flour Composites. Engineering Journal, 2011, 15, 17-30.	0.5	23
327	Review of Agro Waste Plastic Composites Production. Journal of Minerals and Materials Characterization and Engineering, 2013, 01, 271-279.	0.1	30
328	The Application of a Representative Volume Element (RVE) Model for the Prediction of Rice Husk Particulate-Filled Polymer Composite Properties. Materials Sciences and Applications, 2019, 10, 78-103.	0.3	4
329	Effect of Mass Flow and Mold Temperature in the Mechanical Properties of Polypropylene-rice Rusk Ash. Advances in Materials Science and Applications, 2013, 2, 101-109.	0.7	2
330	Non-isothermal Crystallization Kinetics of Polypropylene (PP) and Polypropylene (PP)/Talc Nanocomposite. International Journal of Chemical Engineering and Applications (IJCEA), 2010, , 346-353.	0.3	6
331	Mechanical Properties of Cocoa-Pod/Epoxy Composite; Effect of Filler Fraction. American Chemical Science Journal, 2013, 3, 526-531.	0.2	18
332	Effects of MAPI/HMDA Dual Compatibilizer and Filler Loading on Physico-Mechanical and Water Sorption Properties of Natural Rubber/Poly (Ethylene Terephthalate) (PET)/Dikanut Shell Powder Bio-Composites. British Journal of Applied <u>Science & Technology, 2014, 4, 3383-3401.</u>	0.2	1

IF ARTICLE CITATIONS Experimental Testing Of Natural Composite Material (Jute Fiber). IOSR Journal of Mechanical and Civil 333 0.1 4 Engineering, 2014, 11, 01-09. Effects of Chemical Modification on Physical And Mechanical Properties of Rice Husk - Stripped Oil Palm Fruit Bunch Fiber Polypropylene Hybrid Composite. IOSR Journal of Mechanical and Civil 334 0.1 Engineering, 2014, 11, 01-05. Effect of Manufacturing Factors on Mechanical Properties of the Rice-husk Powder Composites. 335 0.1 0 Transactions of the Korean Society of Mechanical Engineers, A, 2006, 30, 794-799. Physico-Mechanical Properties of Cellulose Acetate Butyrate/ Yellow Poplar Wood Fiber Composites as a Function of Fiber Aspect Ratio, Fiber Loading, and Fiber Acetylation. International Journal of Basic and Applied Science, 2012, 1, 371-383. The Effects of D'Nealian® Worksheets, Tracing, and Visual Prompts to Teach Four Preschool Students with Disabilities to Write Their Names. International Journal of Basic and Applied Science, 2012, 1, 337 1.0 0 364-370. Valorization of Agricultural By-Products in Poly(Lactic Acid) to Develop Biocomposites., 2013, , 11-44. Properties of Rubber Seed Shell Flour-Filled Polypropylene Composites: The Effect of Poly(ethylene) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 339

340	Viscoelastic Performance of Biocomposites. , 0, , .		0
341	Karbon Elyaf Dolgulu Pa6 Polimer Kompozitlerinin Aşınma Özellikleri Üzerine Uygulanan Yük ve Kayma Hızının Etkisi. Academic Platform Journal of Engineering and Science, 0, , 49-57.	0.5	0
342	A Review of Chemical Treatments on Natural Fibers-Based Hybrid Composites for Engineering Applications. Advances in Chemical and Materials Engineering Book Series, 2018, , 16-37.	0.2	0
343	Bonding of birch solid wood of sawmill surface roughness with use of selected thermoplastic biopolymers. Annals of WULS Forestry and Wood Technology, 2019, 106, 9-15.	0.0	4
344	Wear Characteristics of Untreated and Alkali-Treated Rice Husk–Epoxy Bio-composite. Lecture Notes on Multidisciplinary Industrial Engineering, 2019, , 33-41.	0.4	1
345	Fabrication and Study of Mechanical and Thermal Properties of Natural Fibre Composites Material Based on SCB and GNSP. International Journal of Scientific Research in Science, Engineering and Technology, 2019, , 51-56.	0.1	0
346	The effect of changing injection temperature on some mechanical and morphological properties for polypropylene material (PP). Production Engineering Archives, 2019, 24, 20-24.	0.8	1
347	Use of waste rubber and bionanofiller in preparation of rubber nanocomposites for friendly environmental flooring applications. Egyptian Journal of Chemistry, 2019, .	0.1	2
348	PhưÆ;ng phÃ;p cá°£i thiện độ bá»n mà î trưá»ng cá»§a vá°t liệu composite từ nhá»±a polypropylene Journal of Science, 2020, 56, 1.	yĄ̃trá⁰¥u. 0.1	Jap Chi K
349	Egg Shell Powder Reinforced Polypropylene (PP)Composite: Effect of Mechanical and Heat Capacity. Al-Qadisiyah Journal of Pure Science, 2020, 25, 16-27.	0.1	1
350	Influence of biowaste additive and treated short woven flax fibers on the flame retardancy and mechanical properties of PP composites. Industrial Crops and Products, 2021, 174, 114176.	2.5	5

#	Article	IF	CITATIONS
351	Structural Characterization and Mechanical Behaviour of Sodium Hydroxide-Treated Urena lobata Fiber Reinforced Polypropylene Matrix Composites. Fibers and Polymers, 2020, 21, 2983-2992.	1.1	5
352	Mechanical Performance Studies on Composites Using Polyethylene Terephthalate Char Derived from Polyethylene Terephthalate Waste Bottle–Reinforced Polyester Composites. Materials Performance and Characterization, 2020, 9, 20190066.	0.2	2
353	Correlation between Parameters of Extrusion Technique and Both of Optical and Physical Characteristics of Reinforced Polypropylene Composites. Egyptian Journal of Chemistry, 2020, .	0.1	1
354	Effect of rice husk (treated/untreated) and rice husk ash on fracture toughness of epoxy bio-composite. Journal of the Mechanical Behavior of Materials, 2020, 29, 177-185.	0.7	3
355	Engineering design of sustainable aluminium composite material with rice husk core. International Journal of Sustainable Engineering, 0, , 1-14.	1.9	2
356	Experimental Study on Mechanical Behavior of Polypropylene-based Blends with Talc Fillers. Advances in Science, Technology and Engineering Systems, 2020, 5, 571-576.	0.4	2
357	Creep and Stress Relaxation Behaviour of Rice Husk Reinforced Low Density Polyethylene Composites. European Journal of Sustainable Development Research, 2020, 4, em0144.	0.4	2
358	Study of Mechanical Properties of Polypropylene Natural Fiber Composite. International Journal for Research in Applied Science and Engineering Technology, 2020, 8, 255-259.	0.1	0
359	Experimental investigation on mechanical properties of polymer composites reinforced with aluminium nitride & amp; rice husk. Materials Today: Proceedings, 2022, 52, 1781-1787.	0.9	3
360	Chemical Treatments for Modification of the Surface Morphology of Coir Fiber: A Review. Journal of Natural Fibers, 2022, 19, 11940-11961.	1.7	1
361	Roadmap of Effects of Biowaste-Synthesized Carbon Nanomaterials on Carbon Nano-Reinforced Composites. Catalysts, 2021, 11, 1485.	1.6	9
362	Alkali Konsantrasyonunun Odun Unu Takviyeli PVC Kompozitlerin Mekanik Özelliklerine Etkisi. Bartın Orman Fakültesi Dergisi, 2022, 24, 145-156.	0.2	1
363	Effect of infill density with ZnO concentration on the mechanical properties of 3D printed PLA/ZnO composites. AIP Conference Proceedings, 2022, , .	0.3	1
364	Natural Fiber-Reinforced Thermoplastic ENR/PVC Composites as Potential Membrane Technology in Industrial Wastewater Treatment: A Review. Polymers, 2022, 14, 2432.	2.0	7
365	Comparative analysis of mechanical behaviour of glass fiber and rice husk reinforced composites. Materials Today: Proceedings, 2022, , .	0.9	0
366	Grafting and reactive extrusion technologies for compatibilization of ground tyre rubber composites: Compounding, properties, and applications. Journal of Cleaner Production, 2022, 369, 133084.	4.6	13
367	Evaluation of the physico-mechanical properties of polyester/corn stalk composite. Poljoprivredna Tehnika, 2022, 47, 9-22.	0.1	0
368	PRODUCTION OF BIO-COMPOSITE POLYMERS WITH RICE AND COFFEE HUSKS AS REINFORCING FILLERS USING A LOW-COST COMPRESSION MOLDING MACHINE. Journal of Engineering in Agriculture & the Environment, 2019, 5, 12.	0.0	0

#	Article	IF	CITATIONS
369	RICE HUSK AS POTENTIAL RESOURCE FOR BIOMEDICAL APPLICATIONS: A REVIEW. Cellulose Chemistry and Technology, 2022, 56, 911-928.	0.5	0
370	Flammability of Polymer Compositions Filled with Wheat Bran. Materials, 2022, 15, 8955.	1.3	1
371	Performance of Filler Reinforced Composites. Engineering Materials, 2023, , 109-130.	0.3	0
372	Cellulose fiber-reinforced polymer composites as packaging materials. , 2023, , 283-316.		0
373	Condition Monitoring of Wood Polymer Composite for Civil Engineering. Composites Science and Technology, 2023, , 87-114.	0.4	0
374	Importance of Fiber-/Nanofiller-Based Polymer Composites in Mechanical and Erosion Performance: A Review. Journal of Nanomaterials, 2023, 2023, 1-16.	1.5	3
375	The Effect of Wastes of Nettle Fiber on Mechanical and Thermal Properties of Polypropylene Composite. Journal of Natural Fibers, 2023, 20, .	1.7	0
376	A comprehensive study on extraction and characterization of cellulose from rice husk. AIP Conference Proceedings, 2023, , .	0.3	0
384	Comparing the effects of biochar addition to polypropylene on the erosion rate of biocomposites. AIP Conference Proceedings, 2024, , .	0.3	0