Thermal degradation of poly[(R)-3-hydroxybutyrate], poly[(S)-lactide]

Polymer Degradation and Stability 76, 53-59 DOI: 10.1016/s0141-3910(01)00265-8

Citation Report

#	Article	IF	CITATIONS
1	Miscibility and Mechanical Properties of Blends of (l)-Lactide Copolymers with Atactic Poly(3-hydroxybutyrate). Macromolecules, 2002, 35, 8472-8477.	2.2	110
2	Thermal degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) as studied by TG, TG-FTIR, and Py-GC/MS. Journal of Applied Polymer Science, 2003, 89, 1530-1536.	1.3	87
3	Mechanical properties of uniaxially cold-drawn films of poly([R]-3-hydroxybutyrate). Polymer Degradation and Stability, 2003, 79, 217-224.	2.7	87
4	Solvent effects on the lipase catalyzed biodegradation of poly (ε-caprolactone) in solution. Polymer Degradation and Stability, 2003, 79, 413-418.	2.7	47
5	Pyrolysis kinetics of poly(l-lactide) with carboxyl and calcium salt end structures. Polymer Degradation and Stability, 2003, 79, 547-562.	2.7	115
6	Thermal degradation of poly (ε-caprolactone). Polymer Degradation and Stability, 2003, 80, 11-16.	2.7	80
7	Amphiphilic biodegradable copolymer, poly(aspartic acid-co-lactide): acceleration of degradation rate and improvement of thermal stability for poly(lactic acid), poly(butylene succinate) and poly(ε-caprolactone). Polymer Degradation and Stability, 2003, 80, 241-250.	2.7	48
8	Racemization on thermal degradation of poly(?-lactide) with calcium salt end structure. Polymer Degradation and Stability, 2003, 80, 503-511.	2.7	63
9	Thermal degradation of mixtures of polycaprolactone with cellulose derivatives. Polymer Degradation and Stability, 2003, 81, 353-358.	2.7	90
10	Poly(l-lactide) XI. Lactide formation by thermal depolymerisation of poly(l-lactide) in a closed system. Polymer Degradation and Stability, 2003, 81, 501-509.	2.7	52
11	Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending. Polymer, 2003, 44, 2891-2896.	1.8	263
12	Kinetics of thermal degradation of poly(ε-caprolactone). Journal of Analytical and Applied Pyrolysis, 2003, 70, 631-647.	2.6	96
13	Strontium-based initiator system for ring-opening polymerization of cyclic esters. Journal of Polymer Science Part A, 2003, 41, 1934-1941.	2.5	58
14	Processing, properties and stability of biodegradable composites based on Mater-Bi® and cellulose fibres. Polymers for Advanced Technologies, 2003, 14, 749-756.	1.6	68
15	Control of racemization for feedstock recycling of PLLA. Green Chemistry, 2003, 5, 575-579.	4.6	62
16	Effect of methyl substitution of the ethylene unit on the physical properties of poly(butylene) Tj ETQq1 1 0.7843	14.rgBT /0 2.4	Dverlock 10
17	Stereoselective polymerization ofrac-lactide with a bulky aluminum/Schiff base complex. Journal of Polymer Science Part A, 2004, 42, 5974-5982.	2.5	86
18	Reverse temperature injection molding of Biopol? and effect on its properties. Journal of Applied	1.3	23

#	Article	IF	CITATIONS
19	Mechanical properties and enzymatic degradation of poly([R]-3-hydroxybutyrate-co-[R]-3-hydroxyhexanoate) uniaxially cold-drawn films. Polymer Degradation and Stability, 2004, 83, 453-460.	2.7	46
20	Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites. Polymer Degradation and Stability, 2004, 84, 13-21.	2.7	224
21	Thermal stability of poly (l-lactide): influence of end protection by acetyl group. Polymer Degradation and Stability, 2004, 84, 143-149.	2.7	97
22	Effects of chain end structures on pyrolysis of poly(-lactic acid) containing tin atoms. Polymer Degradation and Stability, 2004, 84, 243-251.	2.7	59

Thermal degradation of binary physical mixtures and copolymers of poly($\hat{l}\mu$ -caprolactone), poly(d,) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

24	Biodegradation studies of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Polymer Degradation and Stability, 2004, 85, 815-821.	2.7	118
25	Thermal degradation behaviour of poly(lactic acid) stereocomplex. Polymer Degradation and Stability, 2004, 86, 197-208.	2.7	160
26	Thermal degradation of poly(l-lactide): effect of alkali earth metal oxides for selective l,l-lactide formation. Polymer, 2004, 45, 1197-1205.	1.8	138
27	Effect of acid–base interaction between silica and fragrant oil in the PCL/PEG microcapsules. Colloids and Surfaces B: Biointerfaces, 2004, 38, 35-40.	2.5	18
28	Thermal Degradation Processes of End-Capped Poly(l-lactide)s in the Presence and Absence of Residual Zinc Catalyst. Biomacromolecules, 2004, 5, 1606-1614.	2.6	88
29	Effects of Residual Zinc Compounds and Chain-End Structure on Thermal Degradation of Poly(ε-caprolactone). Biomacromolecules, 2004, 5, 1480-1488.	2.6	61
30	Hydrolytic degradation of poly(ε-caprolactone) in the melt. Polymer Degradation and Stability, 2005, 89, 336-343.	2.7	21
31	Thermal degradation and pyrolysis of mixtures based on poly(3-hydroxybutyrate-8%-3-hydroxyvalerate) and cellulose derivatives. Polymer Testing, 2005, 24, 526-534.	2.3	22
32	Thermal degradation mechanism of poly(ethylene succinate) and poly(butylene succinate): Comparative study. Thermochimica Acta, 2005, 435, 142-150.	1.2	200
33	Compositional analysis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by pyrolysis-gas chromatography in the presence of organic alkali. Journal of Analytical and Applied Pyrolysis, 2005, 74, 193-199.	2.6	24
34	Synthesis and characterization of a series of star-branched poly(ε-caprolactone)s with the variation in arm numbers and lengths. Polymer, 2005, 46, 9725-9735.	1.8	35
35	Enzymatic Degradation of Poly(l-lactide) Film by Proteinase K:Â Quartz Crystal Microbalance and Atomic Force Microscopy Study. Biomacromolecules, 2005, 6, 850-857.	2.6	99
36	Physical Properties, Crystallization, and Spherulite Growth of Linear and 3-Arm Poly(l-lactide)s. Biomacromolecules, 2005, 6, 244-254.	2.6	138

#	Article	IF	CITATIONS
37	Thermal Decomposition of Fungal Poly(β,l-malic acid) and Poly(β,l-malate)s. Biomacromolecules, 2006, 7, 3283-3290.	2.6	27
38	Thermal degradation kinetics of the biodegradable aliphatic polyester, poly(propylene succinate). Polymer Degradation and Stability, 2006, 91, 60-68.	2.7	91
39	Effects of residual metal compounds and chain-end structure on thermal degradation of poly(3-hydroxybutyric acid). Polymer Degradation and Stability, 2006, 91, 769-777.	2.7	79
40	Thermal degradation behavior of poly(4-hydroxybutyric acid). Polymer Degradation and Stability, 2006, 91, 2333-2341.	2.7	18
41	Kinetics of thermo-oxidative and thermal degradation of poly(d,l-lactide) (PDLLA) at processing temperature. Polymer Degradation and Stability, 2006, 91, 3259-3265.	2.7	111
42	Effect of molecular weight on thermal degradation mechanism of the biodegradable polyester poly(ethylene succinate). Thermochimica Acta, 2006, 440, 166-175.	1.2	91
43	Effect of starch addition on compression-molded poly(3-hydroxybutyrate)/starch blends. Journal of Applied Polymer Science, 2006, 100, 4338-4347.	1.3	60
44	Control of biodegradability of poly(3-hydroxybutyric acid) film with grafting acrylic acid and thermal remolding. Journal of Applied Polymer Science, 2006, 101, 3856-3861.	1.3	25
45	Nonisothermal melt-crystallization kinetics of hydroxyapatite-filled poly(3-hydroxybutyrate) composites. Journal of Applied Polymer Science, 2006, 102, 5388-5395.	1.3	23
46	Thermal Degradation of Environmentally Degradable Poly(hydroxyalkanoic acid)s. Macromolecular Bioscience, 2006, 6, 469-486.	2.1	100
47	Synthesis of poly(butylene succinate) nanocomposites via in-situ interlayer polymerization: thermo-mechanical properties and morphology of the hybrid fibers. Composite Interfaces, 2006, 13, 131-144.	1.3	4
48	Rheological Behavior and Modeling of Thermal Degradation of Poly(â^Š-Caprolactone) and Poly(L-Lactide). International Polymer Processing, 2007, 22, 389-394.	0.3	28
49	Synthesis and characterization of polyesters derived from glycerol and phthalic acid. Materials Research, 2007, 10, 257-260.	0.6	35
50	Thermal Degradation of Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyhexanoate) in Nitrogen and Oxygen Studied by Thermogravimetric–Fourier Transform Infrared Spectroscopy. Applied Spectroscopy, 2007, 61, 755-764.	1.2	33
51	Kinetics and Timeâ^'Temperature Equivalence of Polymer Degradation. Biomacromolecules, 2007, 8, 2301-2310.	2.6	177
52	New Biodegradable Polyhydroxybutyrate/Layered Silicate Nanocomposites. Biomacromolecules, 2007, 8, 3393-3400.	2.6	185
53	Synthesis and characterization of aliphatic polyesters from glycerol, by-product of biodiesel production, and adipic acid. Materials Research, 2007, 10, 335-339.	0.6	51
54	Thermal Degradation Behavior and Kinetic Analysis of Biodegradable Polymers Using Various Comparative Models, 1. Macromolecular Theory and Simulations, 2007, 16, 101-110.	0.6	23

#	Article	IF	CITATIONS
55	Comparative study of the effect of different nanoparticles on the mechanical properties and thermal degradation mechanism of in situ prepared poly(îµ-caprolactone) nanocomposites. Composites Science and Technology, 2007, 67, 2165-2174.	3.8	182
56	Synthesis, characterization and thermal degradation mechanism of three poly(alkylene adipate)s: Comparative study. Polymer Degradation and Stability, 2007, 92, 222-230.	2.7	103
57	Racemization behavior of l,l-lactide during heating. Polymer Degradation and Stability, 2007, 92, 552-559.	2.7	71
58	Investigation of thermal degradation mechanism of an aliphatic polyester using pyrolysis–gas chromatography–mass spectrometry and a kinetic study of the effect of the amount of polymerisation catalyst. Polymer Degradation and Stability, 2007, 92, 525-536.	2.7	64
59	Thermal degradation of poly(p-phenylene-graft-É›-caprolactone) copolymer. Polymer Degradation and Stability, 2007, 92, 838-848.	2.7	15
60	Effects of MgO catalyst on depolymerization of poly-l-lactic acid to l,l-lactide. Polymer Degradation and Stability, 2007, 92, 1350-1358.	2.7	74
61	Poly(l-lactide)/nano-structured carbon composites: Conductivity, thermal properties, crystallization, and biodegradation. Polymer, 2007, 48, 4213-4225.	1.8	148
62	The influence of nanopowder metal oxides on the methylating activity of dimethyl carbonate in analytical pyrolysis. Journal of Analytical and Applied Pyrolysis, 2007, 79, 2-8.	2.6	6
63	Synthesis, characterization, and thermal degradation mechanism of fast biodegradable PPSu/PCL copolymers. Journal of Polymer Science Part A, 2007, 45, 5076-5090.	2.5	28
64	Comparison of different nucleating agents on crystallization of poly(3-hydroxybutyrate-co-3-hydroxyvalerates). Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1564-1577.	2.4	63
65	Thermal properties of poly(alkylene dicarboxylate)s derived from 1,12-dodecanedioic acid and even aliphatic diols. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1053-1067.	2.4	21
66	Binary mixtures based on polycaprolactone and cellulose derivatives. Journal of Thermal Analysis and Calorimetry, 2007, 88, 851-856.	2.0	22
67	Thermal behavior of the maleic anhydride modified poly(3-hydroxybutyrate). Journal of Thermal Analysis and Calorimetry, 2007, 87, 673-677.	2.0	9
68	Pyrolysis of polyphenylenes with PCL or/and PSt side chains. Journal of Analytical and Applied Pyrolysis, 2007, 80, 453-459.	2.6	14
69	Thermal decomposition of microbial poly(γ-glutamic acid) and poly(γ-glutamate)s. Polymer Degradation and Stability, 2007, 92, 1916-1924.	2.7	29
70	Pyrolysis of poly(phenylene vinylene)s with polycaprolactone side chains. Polymer Degradation and Stability, 2008, 93, 904-909.	2.7	9
71	Determination of multiple thermal degradation mechanisms of poly(3-hydroxybutyrate). Polymer Degradation and Stability, 2008, 93, 1433-1439.	2.7	102
72	Degradation of polycaprolactone in supercritical fluids. Polymer Degradation and Stability, 2008, 93, 1901-1908.	2.7	43

#	Article	IF	CITATIONS
73	In-line monitoring of the thermal degradation of poly(l-lactic acid) duringÂmelt extrusion by UV–vis spectroscopy. Polymer, 2008, 49, 1257-1265.	1.8	121
74	Biodegradable Blends Based on Starch and Poly(Lactic Acid): Comparison of Different Strategies and Estimate of Compatibilization. Journal of Polymers and the Environment, 2008, 16, 286-297.	2.4	88
75	Synthesis, physical properties, and crystallization of optically active poly(<scp>L</scp> â€phenyllactic) Tj ETQq0 0 Polymer Science, 2008, 110, 3954-3962.	0 rgBT /C 1.3)verlock 10 ⁻ 39
76	Thermal and thermo-mechanical degradation of poly(3-hydroxybutyrate)-based multiphase systems. Polymer Degradation and Stability, 2008, 93, 413-421.	2.7	138
77	Effect of metal compounds on thermal degradation behavior of aliphatic poly(hydroxyalkanoic acid)s. Polymer Degradation and Stability, 2008, 93, 776-785.	2.7	51
78	Preparation of porous poly(É>-caprolactone) scaffolds by gas foaming process and in vitro/in vivo degradation behavior using γ-ray irradiation. Journal of Industrial and Engineering Chemistry, 2008, 14, 436-441.	2.9	19
79	Novel copolyesters based on poly(alkylene dicarboxylate)s: 1. Thermal behavior and biodegradation of aliphatic–aromatic random copolymers. European Polymer Journal, 2008, 44, 3650-3661.	2.6	21
80	Flash co-pyrolysis of biomass with polyhydroxybutyrate: Part 1. Influence on bio-oil yield, water content, heating value and the production of chemicals. Fuel, 2008, 87, 2523-2532.	3.4	53
81	Thermal Decomposition and Kinetics of Mixtures of Polylactic Acid and Biomass during Copyrolysis. Chinese Journal of Chemical Engineering, 2008, 16, 929-933.	1.7	37
82	Thermal Stabilities and the Thermal Degradation Kinetics of Poly(ε-Caprolactone). Polymer-Plastics Technology and Engineering, 2008, 47, 398-403.	1.9	45
83	Production of 9-Hydroxynonanoic Acid from Methyl Oleate and Conversion into Lactone Monomers for the Synthesis of Biodegradable Polylactones. Biomacromolecules, 2008, 9, 949-953.	2.6	31
84	Performance Enhancement of Poly(lactic acid) and Sugar Beet Pulp Composites by Improving Interfacial Adhesion and Penetration. Industrial & Engineering Chemistry Research, 2008, 47, 8667-8675.	1.8	60
85	Thermal Degradation of Poly(<i>ε</i> â€caprolactone), Poly(Lâ€lactic acid) and their Blends with Poly(3â€hydroxyâ€butyrate) Studied by TGA/FTâ€lR Spectroscopy. Macromolecular Symposia, 2008, 265, 183-19	4 ^{0.4}	89
86	Thermal Properties of Poly(L″actide)/Calcium Carbonate Nanocomposites. Macromolecular Symposia, 2008, 263, 96-101.	0.4	29
87	Effect of salt leaching on PCL and PLGA(50/50) resorbable scaffolds. Materials Research, 2008, 11, 75-80.	0.6	33
88	Thermal and thermooxidative degradation. , 2008, , 72-85.		2
89	Selective Depolymerization and Effects of Homolysis of Poly(L-lactic acid) in a Blend with Polypropylene. International Journal of Polymer Science, 2009, 2009, 1-9.	1.2	8
90	Anhydride production as an additional mechanism of poly(3â€hydroxybutyrate) pyrolysis. Journal of Applied Polymer Science, 2009, 111, 323-328.	1.3	24

#	Article	IF	CITATIONS
91	Reducing the formation of six-membered ring ester during thermal degradation of biodegradable PHBV to enhance its thermal stability. Polymer Degradation and Stability, 2009, 94, 18-24.	2.7	127
92	Thermal degradation of star-shaped poly(É>-caprolactone). Polymer Degradation and Stability, 2009, 94, 1040-1046.	2.7	18
93	Kinetic model of poly(3-hydroxybutyrate) thermal degradation from experimental non-isothermal data. Journal of Thermal Analysis and Calorimetry, 2009, 96, 287-291.	2.0	18
94	Thermal degradation of poly(lactic acid) measured by thermogravimetry coupled to Fourier transform infrared spectroscopy. Journal of Thermal Analysis and Calorimetry, 2009, 97, 929-935.	2.0	178
95	High temperature pyrolysis of poly(phenylene vinylene)s with poly(ε-caprolactone) or polystyrene side chains. Journal of Thermal Analysis and Calorimetry, 2009, 98, 527-532.	2.0	2
96	Production of optically pure poly(lactic acid) from lactic acid. Polymer Bulletin, 2009, 63, 637-651.	1.7	15
97	The effect of hyperbranched polymers on processing and thermal stability of biodegradable polyesters. Polymer Engineering and Science, 2009, 49, 559-566.	1.5	7
98	Poly(3-hydroxybutyrate) nanocomposites: Isothermal degradation and kinetic analysis. Thermochimica Acta, 2009, 485, 26-32.	1.2	30
99	Thermal degradation kinetics of g-HA/PLA composite. Thermochimica Acta, 2009, 493, 90-95.	1.2	48
100	Effect of clay organomodifiers on degradation of polyhydroxyalkanoates. Polymer Degradation and Stability, 2009, 94, 789-796.	2.7	97
101	Synthesis, characterization and thermal properties of a novel star polymer consisting of poly(ε-caprolactone) arms emanating from an octa-functional porphyrazine core. Reactive and Functional Polymers, 2009, 69, 705-713.	2.0	28
102	Novel copolyesters based on poly(alkylene dicarboxylate)s: 2. Thermal behavior and biodegradation of fully aliphatic random copolymers containing 1,4-cyclohexylene rings. European Polymer Journal, 2009, 45, 2402-2412.	2.6	24
103	Fatty Acid-Derived Diisocyanate and Biobased Polyurethane Produced from Vegetable Oil: Synthesis, Polymerization, and Characterization. Biomacromolecules, 2009, 10, 884-891.	2.6	234
104	Chemical recycling of polyhydroxyalkanoates as a method towards sustainable development. Biotechnology Journal, 2010, 5, 484-492.	1.8	73
105	Highly selective transformation of poly[(R)-3-hydroxybutyric acid] into trans-crotonic acid by catalytic thermal degradation. Polymer Degradation and Stability, 2010, 95, 1375-1381.	2.7	82
106	TGA/DTG/DSC investigation of thermal ageing effects on polyamide–imide enamel. Journal of Thermal Analysis and Calorimetry, 2010, 101, 647-650.	2.0	19
107	Environmentally Friendly Copolyesters Containing 1,4 yclohexane Dicarboxylate Units, 1â€Relationships Between Chemical Structure and Thermal Properties. Macromolecular Chemistry and Physics, 2010, 211, 1559-1571.	1.1	22
108	Correlations between microstructural characterization and thermal properties of well defined poly(ε-caprolactone) samples by ring opening polymerization with neutral and cationic bis(2,4.6-triisopropylphenyl)tin(IV) compounds. Reactive and Functional Polymers. 2010. 70. 151-158.	2.0	11

#	Article	IF	CITATIONS
109	Effects of synthetic and natural zeolites on morphology and thermal degradation of poly(lactic acid) composites. Polymer Degradation and Stability, 2010, 95, 1769-1777.	2.7	92
110	Thermal properties of poly(l-lactide)/olive stone flour composites. Thermochimica Acta, 2010, 510, 97-102.	1.2	45
111	A convenient route to PHB macromonomers via anionically controlled moderateâ€ŧemperature degradation of PHB. Journal of Polymer Science Part A, 2010, 48, 5490-5497.	2.5	35
112	Morphological changes of annealed polyâ€îµâ€caprolactone by enzymatic degradation with lipase. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 202-211.	2.4	39
113	SÃntese e caracterização do copolÃmero poli(3-hidroxibutirato-co-ε-caprolactona) a partir de poli (3-hidroxibutirato) e poli(ε-caprolactona). Polimeros, 2010, 20, 221-226.	0.2	15
114	Miscibility influence in the thermal stability and kinetic parameters of poly (3-hydroxybutyrate)/poly (ethylene terephthalate) sulphonated blends. Polimeros, 2010, 20, 153-158.	0.2	15
115	Degradation of Natural and Artificial Poly[(R)-3-hydroxyalkanoate]s: From Biodegradation to Hydrolysis. Microbiology Monographs, 2010, , 283-321.	0.3	8
117	Molecular Weight Dependence of the Thermal Degradation of Poly(ε-caprolactone): A Thermogravimetric Differential Thermal Fourier Transform Infrared Spectroscopy Study. Applied Spectroscopy, 2010, 64, 805-809.	1.2	44
118	Effect of modified montmorillonite on biodegradable PHB nanocomposites. Applied Clay Science, 2010, 47, 263-270.	2.6	126
119	Synthesis and characterization of two-armed poly(É>-caprolactone) polymers initiated by the Schiff's base complexes of copper(II) and nickel(II). Synthetic Metals, 2010, 160, 1973-1980.	2.1	7
120	UV-induced crosslinking of the biopolyester poly(3-hydroxybutyrate)-co-(3-hydroxyvalerate). Green Chemistry, 2010, 12, 1796.	4.6	19
122	Water-catalyzed racemisation of lactide. Polymer Degradation and Stability, 2011, 96, 1745-1750.	2.7	19
123	Exploratory study on the pyrolysis and PAH emissions of polylactic acid. Atmospheric Environment, 2011, 45, 123-127.	1.9	13
124	The Properties of Poly(l-Lactide) Prepared by Different Synthesis Procedure. Journal of Polymers and the Environment, 2011, 19, 419-430.	2.4	21
125	Thermal characterization of the interaction of poly(3-hydroxybutyrate) with maleic anhydride. Journal of Thermal Analysis and Calorimetry, 2011, 106, 453-458.	2.0	1
126	Threeâ€Dimensional Microvascular Fiberâ€Reinforced Composites. Advanced Materials, 2011, 23, 3654-3658.	11.1	203
127	Organic acids catalyzed polymerization of εâ€caprolactone: Synthesis and characterization. Journal of Applied Polymer Science, 2011, 119, 1873-1882.	1.3	30
128	Quantification of thermal material degradation during the processing of biomedical thermoplastics. Journal of Applied Polymer Science, 2011, 120, 2872-2880.	1.3	17

#	Article	IF	Citations
129	Thermal decomposition of poly(propylene sebacate) and poly(propylene azelate) biodegradable polyesters: Evaluation of mechanisms using TGA, FTIR and GC/MS. Journal of Analytical and Applied Pyrolysis, 2011, 92, 123-130.	2.6	44
130	Polyhydroxyalkanoates (PHAs) for food packaging. , 2011, , 498-526.		32
131	Novel polyurethane produced from canola oil based poly(ether ester) polyols: Synthesis, characterization and properties. European Polymer Journal, 2012, 48, 2097-2106.	2.6	111
132	Chemical Treatment of Poly(lactic acid) Fibers to Enhance the Rate of Thermal Depolymerization. ACS Applied Materials & Interfaces, 2012, 4, 503-509.	4.0	55
133	PHA/Clay Nano-Biocomposites. Green Energy and Technology, 2012, , 143-163.	0.4	3
134	Transforming polylactide into valueâ€∎dded materials. Journal of Polymer Science Part A, 2012, 50, 4814-4822.	2.5	91
135	Thermal Properties of Electrospun Poly(Lactic Acid) Membranes. Journal of Macromolecular Science - Physics, 2012, 51, 411-424.	0.4	20
136	Melting behavior of biodegradable polyesters in carbon dioxide at high pressures. Journal of Supercritical Fluids, 2012, 72, 278-287.	1.6	33
137	Improvement of thermal properties of biodegradable polymer poly(3â€hydroxybutyrate) by modification with acryloyloxyethyl isocyanate. Polymer Engineering and Science, 2012, 52, 1524-1531.	1.5	6
138	Synthesis, characterization, and thermal degradation kinetic of polystyreneâ€ <i>g</i> â€polycaprolactone. Journal of Applied Polymer Science, 2012, 126, 1236-1246.	1.3	9
139	Particular thermal properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) oligomers. Journal of Polymer Research, 2012, 19, 1.	1.2	12
140	Calculating D-lactide content by probability using gas chromatographic data. Chemometrics and Intelligent Laboratory Systems, 2012, 110, 32-37.	1.8	5
141	A statistical data-processing methodology of Py–GC/MS data for the simulation of flash co-pyrolysis reactor experiments. Chemometrics and Intelligent Laboratory Systems, 2012, 110, 123-128.	1.8	4
142	Toward the controlled production of oligoesters by microwave-assisted degradation of poly(3-hydroxyalkanoate)s. Polymer Degradation and Stability, 2012, 97, 322-328.	2.7	18
143	<i>In Situ</i> synthesis of multiblock copolymers of poly(ϵ aprolactone) with different poly(ether) Tj ETQq0 (3765-3773.	0 0 rgBT /0 1.3	Overlock 10 T 2
144	Biodegradation study on poly(<i>ε</i> â€caprolactone) with bimodal molecular weight distribution. Journal of Applied Polymer Science, 2013, 127, 4726-4735.	1.3	23
145	Durability of PCL Nanocomposites Under Different Environments. Journal of Polymers and the Environment, 2013, 21, 710-717.	2.4	5
146	High-pressure crystallization of poly(lactic acid) with and without N2 atmosphere protection. Journal of Materials Science, 2013, 48, 7374-7383.	1.7	5

#	Article	IF	CITATIONS
147	Synthesis and properties of novel star-shaped polyesters based on l-lactide and castor oil. Polymer Bulletin, 2013, 70, 1723-1738.	1.7	19
148	Thermogravimetric and DSC testing of poly(lactic acid) nanocomposites. Thermochimica Acta, 2013, 573, 186-192.	1.2	31
149	Thermophysical properties and rheology of PHB/lignin blends. Industrial Crops and Products, 2013, 50, 270-275.	2.5	88
150	Comparative thermal, biological and photodegradation kinetics of polylactide and effect on crystallization rates. Polymer Degradation and Stability, 2013, 98, 771-784.	2.7	55
151	Thermal stability of copolymer derived from l-lactic acid and poly(tetramethylene) glycol through direct polycondensation. Journal of Thermal Analysis and Calorimetry, 2013, 111, 633-646.	2.0	19
152	Ringâ€opening polymerization of <scp>L</scp> ″actide using halfâ€ŧitanocene complexes of the ATiCl ₂ Nu type: Synthesis, characterization, and thermal properties. Journal of Polymer Science Part A, 2013, 51, 1162-1174.	2.5	11
153	The influence of isosorbide on thermal properties of poly(<scp>L</scp> ″actide) synthesized by different methods. Polymer Engineering and Science, 2013, 53, 1374-1382.	1.5	8
154	Development of a novel pyrolysis-gas chromatography/mass spectrometry method for the analysis of poly(lactic acid) thermal degradation products. Journal of Analytical and Applied Pyrolysis, 2013, 101, 150-155.	2.6	63
155	Biodegradable Polyesters from Renewable Resources. Annual Review of Chemical and Biomolecular Engineering, 2013, 4, 143-170.	3.3	55
156	Effects of repeat unit sequence distribution and residual catalyst on thermal degradation of poly(l-lactide/Îμ-caprolactone) statistical copolymers. Polymer Degradation and Stability, 2013, 98, 1293-1299.	2.7	30
157	Chemical equilibrium and molar group contribution analysis of the flammability of poly-3-hydroxybutyrate. Polymer Degradation and Stability, 2013, 98, 387-391.	2.7	5
158	Effect of bioactive glass particles on the thermal degradation behaviour of medical polyesters. Polymer Degradation and Stability, 2013, 98, 751-758.	2.7	30
159	Methanolysis of poly(lactic acid) (PLA) catalyzed by ionic liquids. Polymer Degradation and Stability, 2013, 98, 2760-2764.	2.7	66
160	Thermal degradation of poly(3â€hydroxybutyrate) and poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyvalerat in drying treatment. Journal of Applied Polymer Science, 2013, 130, 3659-3667.	e) _{1.3}	28
161	Thermally Initiated Trans-esterification in Poly(ε-caprolactone) and Its Dependence on Molecular Weight. Journal of Polymers and the Environment, 2014, 22, 479-487.	2.4	4
162	Characterization and use of ultravioletâ€reactive lowâ€molecularâ€weight polyhydroxybutyrate to prepare biodegradable acrylates. Journal of Applied Polymer Science, 2014, 131, .	1.3	0
163	Start a Research on Biopolymer Polyhydroxyalkanoate (PHA): A Review. Polymers, 2014, 6, 706-754.	2.0	364
164	Conversion of poly(lactic acid) to lactide via microwave assisted pyrolysis. Journal of Analytical and Applied Pyrolysis, 2014, 110, 55-65.	2.6	36

#	Article	IF	CITATIONS
165	Kinetics of thermal degradation applied to biocomposites with TPS, PCL and sisal fibers by non-isothermal procedures. Journal of Thermal Analysis and Calorimetry, 2014, 115, 153-160.	2.0	43
166	Effect of Organo-Modified Montmorillonite on Thermal Properties of Bacterial Poly(3-hydroxybutyrate). Polymer-Plastics Technology and Engineering, 2014, 53, 90-96.	1.9	15
167	Synthesis and characterization of highâ€molecular weight aliphatic polyesters from monomers derived from renewable resources. Journal of Applied Polymer Science, 2014, 131, .	1.3	40
168	Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 2014, 50, 255-270.	2.6	288
169	Oxidative degradation of polylactide (PLA) and its effects on physical and mechanical properties. European Polymer Journal, 2014, 50, 109-116.	2.6	121
170	Synthesis and Properties of Alternating Copolymers of 3-Hydroxybutyrate and Lactate Units with Different Stereocompositions. Macromolecules, 2014, 47, 7354-7361.	2.2	28
171	Hydrolysis of poly(lactic acid) into calcium lactate using ionic liquid [Bmim][OAc] for chemical recycling. Polymer Degradation and Stability, 2014, 110, 65-70.	2.7	48
172	Characterization and osteogenic activity of a silicatein/biosilica-coated chitosan-graft-polycaprolactone. Acta Biomaterialia, 2014, 10, 4456-4464.	4.1	28
173	Early damage detection in epoxy matrix using cyclobutane-based polymers. Smart Materials and Structures, 2014, 23, 095038.	1.8	25
174	Fast procedure for the analysis of poly(hydroxyalkanoates) in bacterial cells by off-line pyrolysis/gas-chromatography with flame ionization detector. Journal of Chromatography A, 2014, 1359, 230-236.	1.8	29
175	Mild pyrolysis of P3HB/switchgrass blends for the production of bio-oil enriched with crotonic acid. Journal of Analytical and Applied Pyrolysis, 2014, 107, 40-45.	2.6	25
179	Thermal stability and degradation of biological terpolyesters over a broad temperature range. Journal of Applied Polymer Science, 2015, 132, .	1.3	3
180	Depolymerization of Freeâ€Radical Polymers with Spin Migrations. ChemPhysChem, 2015, 16, 3308-3312.	1.0	11
181	Biomimetic Selfâ€Healing. Angewandte Chemie - International Edition, 2015, 54, 10428-10447.	7.2	370
182	Commercialization of Bacterial Cell Factories for the Sustainable Production of Polyhydroxyalkanoate Thermoplastics: Progress and Prospects. Recent Patents on Biotechnology, 2015, 9, 4-21.	0.4	18
183	Preparation and Characterization of Chitosan-Coated Poly(l-Lactic Acid) Fibers and Their Braided Rope. Fibers, 2015, 3, 380-393.	1.8	8
184	A Route from Biomass to Hydrocarbons via Depolymerization and Decarboxylation of Microbially Produced Polyhydroxybutyrate. , 2015, , 383-394.		1
185	The Moon as a Recorder of Organic Evolution in the Early Solar System: A Lunar Regolith Analog Study. Astrobiology, 2015, 15, 154-168.	1.5	18

#	Article	IF	CITATIONS
186	Morphology and thermal degradation studies of melt-mixed poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) biodegradable polymer blend nanocomposites with TiO2 as filler. Polymer Testing, 2015, 45, 93-100.	2.3	142
187	Thermal degradation mechanism of poly(hexamethylene carbonate). Polymer Degradation and Stability, 2015, 112, 70-77.	2.7	11
188	Thermal stability and thermal degradation kinetics (model-free kinetics) of nanocomposites based on poly (lactic acid)/graphene: the influence of functionalization. Polymer Bulletin, 2015, 72, 1095-1112.	1.7	34
189	Melt Rheology and Thermal Stability of Nanoclay Filled Poly(3hydroxybutyrate-co-4hydroxybutyrate) Biocomposites. Journal of Polymers and the Environment, 2015, 23, 165-170.	2.4	2
190	Efficient P(3HB) extraction from Burkholderia sacchari cells using non-chlorinated solvents. Biochemical Engineering Journal, 2015, 103, 39-46.	1.8	37
191	Polycaprolactone/multi-wall carbon nanotube nanocomposites prepared by in situ ring opening polymerization: Decomposition profiling using thermogravimetric analysis and analytical pyrolysis–gas chromatography/mass spectrometry. Journal of Analytical and Applied Pyrolysis, 2015, 115,125,131	2.6	14
192	Nanocomposites of Polyhydroxyalkanoates Reinforced with Carbon Nanotubes: Chemical and Biological Properties. Advanced Structured Materials, 2015, , 79-108.	0.3	13
193	Morphology and thermal degradation studies of melt-mixed poly(hydroxybutyrate-co-valerate) (PHBV)/poly(ε-caprolactone) (PCL) biodegradable polymer blend nanocomposites with TiO2 as filler. Journal of Materials Science, 2015, 50, 3812-3824.	1.7	46
194	Chain extended poly(3-hydroxybutyrate) with improved rheological properties and thermal stability, through reactive modification in the melt state. Polymer Degradation and Stability, 2015, 121, 222-229.	2.7	29
195	Biopolymer foaming with supercritical CO2—Thermodynamics, foaming behaviour and mechanical characteristics. Journal of Supercritical Fluids, 2015, 96, 349-358.	1.6	59
196	A comparison study on thermal decomposition behavior of poly(l-lactide) with different kinetic models. Journal of Thermal Analysis and Calorimetry, 2015, 119, 2015-2027.	2.0	32
197	Desenvolvimento e caracterização de filmes à base de Poli(3-hidroxibutirato) aditivado com ZnOnano. Brazilian Journal of Food Technology, 2016, 19, .	0.8	0
198	Modification and Potential Application of Short-Chain-Length Polyhydroxyalkanoate (SCL-PHA). Polymers, 2016, 8, 273.	2.0	87
199	Molecular characterisation of a bioâ€based active packaging containing <i>Origanum vulgare</i> L. essential oil using pyrolysis gas chromatography–mass spectrometry. Journal of the Science of Food and Agriculture, 2016, 96, 3207-3212.	1.7	12
200	Styrene–hydroxyethyl acrylate copolymer based alkyd resins with a combâ€ŧype structural morphology obtained with a high solid content. Journal of Applied Polymer Science, 2016, 133, .	1.3	8
201	Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Advanced Drug Delivery Reviews, 2016, 107, 333-366.	6.6	895
202	Characterisation of a bio-based packaging containing a natural additive from Allium spp. using analytical pyrolysis and carbon stable isotopes. Journal of Analytical and Applied Pyrolysis, 2016, 120, 334-340.	2.6	12
203	Poly[(R)3-hydroxybutyrate] (PHB)/poly(l-lactic acid) (PLLA) blends with poly(PHB/PLLA urethane) as a compatibilizer. Polymer Degradation and Stability, 2016, 134, 30-40.	2.7	25

	C	CITATION REPORT		
# 204	ARTICLE Silk nanocrystals stabilized melt extruded poly (lactic acid) nanocomposite films: Effect of recycling on thermal degradation kinetics and optimization studies. Thermochimica Acta, 2016, 643, 41-52.	IF 1,2	Citations	
205	Preparation of PCL/Clay and PVA/Clay Electrospun Fibers for Cadmium (Cd+2), Chromium (Cr+3), Copper (Cu+2) and Lead (Pb+2) Removal from Water. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	22	
206	Mechanical, thermal and decomposition behavior of poly(ε-caprolactone) nanocomposites with clay-supported carbon nanotube hybrids. Thermochimica Acta, 2016, 642, 67-80.	1.2	27	
207	Cellulose: Structure and Property Relationships. , 2016, , 225-288.		0	
208	Thermal degradation of polyesters filled with magnesium dihydroxide and magnesium oxide. Fire and Materials, 2016, 40, 445-463.	0.9	9	
209	Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews, 2016, 107, 367-392.	6.6	1,957	
210	Direct Production of Propene from the Thermolysis of Poly(β-hydroxybutyrate) (PHB). An Experiment and DFT Investigation. Journal of Physical Chemistry A, 2016, 120, 332-345.	al 1.1	15	
211	Kinetic study of thermal degradation of poly(l-lactide) filled with β-zeolite. Journal of Thermal Analysis and Calorimetry, 2016, 124, 1471-1484.	2.0	24	
212	Thermal degradation of polylactide and its electrospun fiber. Fibers and Polymers, 2016, 17, 66-73.	1.1	13	
213	Influence of nanoclay and graft copolymer on the thermal and flammability properties of poly(lactic)	Ij ETQq1 1 0.784314 r 1.8	gBT /Overlo	
214	Evaluation of polycaprolactone â^' poly-D,L-lactide copolymer as biomaterial for breast tissue engineering. Polymer International, 2017, 66, 77-84.	2 1.6	17	
215	Long-term properties and end-of-life of polymers from renewable resources. Polymer Degradation and Stability, 2017, 137, 35-57.	2.7	82	
216	Thermal stability and decomposition kinetic studies of antimicrobial PCL/nanoclay packaging films. Polymer Bulletin, 2017, 74, 3833-3853.	1.7	29	
217	Synthesis of meso-lactide by thermal configurational inversion and depolymerization of poly(I) Tj ETC 141, 77-83.	2q1 1 0.784314 rgBT /(2.7	Overlock 10 27	
218	Synthesis and characterization of block poly(esterâ€etherâ€urethane)s from bacterial poly(3â€hydroxybutyrate) oligomers. Journal of Polymer Science Part A, 2017, 55, 1949-1961.	2.5	26	
219	Biodegradable blends of urea plasticized thermoplastic starch (UTPS) and poly(Îμ-caprolactone) (PCL) Morphological, rheological, thermal and mechanical properties. Carbohydrate Polymers, 2017, 167, 177-184.	: 5.1	57	
220	An approach to developing high dielectric constant nanocomposites based on polyrotaxane derivative. European Polymer Journal, 2017, 90, 312-322.	2.6	4	
221	Evaluation of short-chain-length polyhydroxyalkanoate accumulation in Bacillus aryabhattai. Brazilian Journal of Microbiology, 2017, 48, 451-460.	0.8	42	

	CITATION	N REPORT	
# 222	ARTICLE Characterization of poly(lactic acid)s with reduced molecular weight fabricated through an autoclave process. Polymer Testing, 2017, 60, 132-139.	IF 2.3	CITATIONS
223	Pyrolysis-gas chromatography–isotope ratio mass spectrometry for monitoring natural additives in polylactic acid active food packages. Journal of Chromatography A, 2017, 1525, 145-151.	1.8	15
224	Effects of calcium sulfate whisker on the mechanical property, morphological structure and thermal degradation of poly (lactic acid) composites. Polymer Degradation and Stability, 2017, 144, 270-280.	2.7	20
225	Protection of highâ€density polyethylene–silicon composites from ultraviolet–visible photodegradation. Journal of Applied Polymer Science, 2017, 134, 45439.	1.3	2
226	PLA-Based Nanocomposites Reinforced with CNC for Food Packaging Applications: From Synthesis to Biodegradation. , 2017, , 265-300.		6
227	Enhanced thermal stabilization of polymer nanofibrous web using self-polymerized 3,4-dihydroxy-L-phenylalanine. Polymer, 2017, 125, 126-133.	1.8	14
228	Improvement of physical properties of poly(glycerol sebacate) by copolymerization with polyhydroxybutyrate-diols. Journal of Polymer Research, 2017, 24, 1.	1.2	7
229	Hydrolysis and Biodegradation of Poly(lactic acid). Advances in Polymer Science, 2017, , 119-151.	0.4	74
230	Lewis Acidic Ionic Liquid [Bmim]FeCl4 as a High Efficient Catalyst for Methanolysis of Poly (lactic) Tj ETQq0 C) 0 rgBT /Over	lock 10 Tf 50
231	Chemiluminescence kinetic analysis on the oxidative degradation of poly(lactic acid). Journal of Thermal Analysis and Calorimetry, 2017, 128, 185-191.	2.0	10
232	Progress and challenges in producing polyhydroxyalkanoate biopolymers from cyanobacteria. Journal of Applied Phycology, 2017, 29, 1213-1232.	1.5	93
233	Thermal degradation behaviour of nanoamphiphilic chitosan dispersed poly (lactic acid) bionanocomposite films. International Journal of Biological Macromolecules, 2017, 95, 1267-1279.	3.6	34
234	Nanofibers for fiber-reinforced composites. , 2017, , 251-275.		5
235	On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials, 2017, 10, 1008.	1.3	272
236	An Insight into the Flammability of Some Bio-Based Polyesters. Polymers, 2017, 9, 706.	2.0	2
237	Reprocessability of PHB in extrusion: ATR-FTIR, tensile tests and thermal studies. Polimeros, 2017, 27, 122-128.	0.2	40
238	Structure-property relationships in peroxide-assisted blends of poly(ε-caprolactone) and poly(3-hydroxybutyrate). Reactive and Functional Polymers, 2018, 127, 113-122.	2.0	9
239	Evolution of the mechanical properties and estimation of the useful lifespan of poly(lactic acid) based compounds. Polymer International, 2018, 67, 761-769.	1.6	1

#	Article	IF	CITATIONS
240	Mechanical properties of polyamide 11 reinforced with cellulose nanofibres from Triodia pungens. Cellulose, 2018, 25, 2367-2380.	2.4	14
241	Performance of poly(lactic acid)/ cellulose nanocrystal composite blown films processed by two different compounding approaches. Polymer Engineering and Science, 2018, 58, 1965-1974.	1.5	27
242	Effects of UV/Photo-Initiator Treatments on Enhancement of Crystallinity of Polylactide Films and Their Physicochemical Properties. Journal of Polymers and the Environment, 2018, 26, 2793-2802.	2.4	5
243	Thermal degradation of poly(caprolactone), poly(lactic acid), and poly(hydroxybutyrate) studied by TGA/FTIR and other analytical techniques. Polymer Bulletin, 2018, 75, 4191-4205.	1.7	60
244	Structural, mechanical and thermal behavior assessments of PCL/PHB blends reactively compatibilized with organic peroxides. Polymer Testing, 2018, 67, 513-521.	2.3	44
245	Thermal stability of polylactide with different end-groups depending on the catalyst used for the polymerization. Polymer Degradation and Stability, 2018, 151, 100-104.	2.7	16
246	Thermal stability and fire reaction of poly(butylene succinate) nanocomposites using natural clays and FR additives. Polymers for Advanced Technologies, 2018, 29, 69-83.	1.6	34
247	Injection-Molded Bioblends from Lignin and Biodegradable Polymers: Processing and Performance Evaluation. Journal of Polymers and the Environment, 2018, 26, 2360-2373.	2.4	13
248	Morphological structure, impact toughness, thermal property and kinetic analysis on the cold crystallization of poly (lactic acid) bio-composites toughened by precipitated barium sulfate. Polymer Degradation and Stability, 2018, 158, 176-189.	2.7	11
249	Effect of Molecular Weight on Physical and Crystallization Properties of UHMW-poly [<i>(R)</i> -3-hydroxybutyrate- <i>co-(R)</i> -3-hydroxyhexanoate]. Journal of Fiber Science and Technology, 2018, 74, 30-39.	0.2	7
250	Polylactide-based self-reinforced composites biodegradation: Individual and combined influence of temperature, water and compost. Polymer Degradation and Stability, 2018, 158, 40-51.	2.7	35
251	Pyrolysis mechanism of Poly(lactic acid) for giving lactide under the catalysis of tin. Polymer Degradation and Stability, 2018, 157, 212-223.	2.7	34
252	Determination of geometrical and viscoelastic properties of PLA/PHB samples made by additive manufacturing for urethral substitution. Journal of Biotechnology, 2018, 284, 123-130.	1.9	35
253	Biotic and Abiotic Synthesis of Renewable Aliphatic Polyesters from Short Building Blocks Obtained from Biotechnology. ChemSusChem, 2018, 11, 3836-3870.	3.6	33
254	Specific Mechanical Energy and Thermal Degradation of Poly(lactic acid) and Poly(caprolactone)/Date Pits Composites. International Journal of Polymer Science, 2018, 2018, 1-10.	1.2	9
255	Effect of clay treatment on the thermal degradation of PHB based nanocomposites. Applied Clay Science, 2018, 163, 146-152.	2.6	21
256	Rheology, mechanical properties and thermal degradation kinetics of polypropylene (PP) and polylactic acid (PLA) blends. Materials Research Express, 2018, 5, 085304.	0.8	19
257	Microphase Separation of Polybutyrolactone-Based Block Copolymers with Sub-20 nm Domains. Macromolecules, 2018, 51, 6534-6541.	2.2	10

#	Article	IF	CITATIONS
258	Natural wastes as particle filler for poly(lactic acid)-based composites. Journal of Composite Materials, 2019, 53, 783-797.	1.2	46
259	Thermal behavior and structural study of ZrO2/poly(ε-caprolactone) hybrids synthesized via sol-gel route. Ceramics International, 2019, 45, 2771-2778.	2.3	5
260	Kinetic modelling of thermal degradation and non-isothermal crystallization of silk nano-discs reinforced poly (lactic acid) bionanocomposites. Polymer Bulletin, 2019, 76, 1349-1382.	1.7	8
261	Evaluating the effect of hydroxyapatite nanoparticles on morphology, thermal stability and dynamic mechanical properties of multicomponent blend systems based on polylactic acid/Starch/Polycaprolactone. Journal of Vinyl and Additive Technology, 2019, 25, E83.	1.8	15
262	Biodegradation of polyurethaneâ€polyhydroxybutyrate elastomeric composite investigated from morphological and structural viewpoint. Journal of Applied Polymer Science, 2019, 136, 46909.	1.3	9
263	Thermal Stability and Flammability Behavior of Poly(3-hydroxybutyrate) (PHB) Based Composites. Materials, 2019, 12, 2239.	1.3	44
264	Designing of energetic miktoarm A 2 B 2 starâ€shaped polymer by means of click chemistry and ROP techniques. Polymers for Advanced Technologies, 2019, 30, 2827-2832.	1.6	0
265	Investigation on the environmentalâ€friendly poly(lactic acid) composites based on precipitated barium sulfate: Mechanical, thermal properties, and kinetic study of thermal degradation. Journal of Applied Polymer Science, 2019, 136, 47995.	1.3	4
266	Formulation and characterization of a novel PHBV nanocomposite for bone defect filling and infection treatment. Materials Science and Engineering C, 2019, 104, 110004.	3.8	26
267	Polyhydroxyalkanoates based copolymers. International Journal of Biological Macromolecules, 2019, 140, 522-537.	3.6	31
268	Synergistic effects of wood fiber and polylactic acid during co-pyrolysis using TG-FTIR-MS and Py-GC/MS. Energy Conversion and Management, 2019, 202, 112212.	4.4	74
269	Betulin-Based Thermoplastics and Thermosets through Sustainable and Industrially Viable Approaches: New Insights for the Valorization of an Underutilized Resource. ACS Sustainable Chemistry and Engineering, 2019, 7, 16371-16381.	3.2	21
270	Use of microperlite in direct polymerization of lactic acid. International Journal of Polymer Analysis and Characterization, 2019, 24, 142-149.	0.9	1
271	Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Progress in Polymer Science, 2019, 96, 1-20.	11.8	366
272	Enhancing the Properties of Poly(Îμ-caprolactone) by Simple and Effective Random Copolymerization of Îμ-Caprolactone with <i>p</i> -Dioxanone. Biomacromolecules, 2019, 20, 3171-3180.	2.6	29
273	Thermal and thermooxidative degradation. , 2019, , 99-126.		2
274	Synthesis, characterization and non-isothermal degradation kinetics of poly(Îμ-caprolactone)/Fe3O4-dye nanocomposites. SN Applied Sciences, 2019, 1, 1.	1.5	2
275	A circular economy approach to plastic waste. Polymer Degradation and Stability, 2019, 165, 170-181.	2.7	236

#	Article	IF	CITATIONS
276	Thermal degradation behavior of bacterial poly(3-hydroxybutyrate-co-3-mercaptopropionate). Polymer Degradation and Stability, 2019, 165, 35-42.	2.7	6
277	Thermal and rheological properties of modified polyhydroxybutyrate (PHB). Polymer Engineering and Science, 2019, 59, 1057-1064.	1.5	15
278	Rapid Degradation of Poly(lactic acid) with Organometallic Catalysts. ACS Applied Materials & Interfaces, 2019, 11, 46226-46232.	4.0	20
279	Micro structural and nonâ€isothermal crystallization and degradation kinetics studies on manganese thioglycolate end capped poly(εâ€caprolactone). Polymer Engineering and Science, 2019, 59, 633-642.	1.5	3
280	Toward Infinitely Recyclable Plastics Derived from Renewable Cyclic Esters. CheM, 2019, 5, 284-312.	5.8	239
281	Functionalization of poly(3â€hydroxybutyrate) with different thiol compounds inhibits MDM2–p53 interactions in MCF7 cells. Journal of Applied Polymer Science, 2019, 136, 46924.	1.3	12
282	Extrusion of wood fibre reinforced poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) biocomposites: Statistical analysis of the effect of processing conditions on mechanical performance. Polymer Degradation and Stability, 2019, 159, 1-14.	2.7	34
283	Expanding the Material Space of Biosustainable Poly(sophorolipids) by Modular Functionalization. Macromolecular Rapid Communications, 2019, 40, e1800612.	2.0	2
284	Poly(lactic acid) Degradation into Methyl Lactate Catalyzed by a Well-Defined Zn(II) Complex. ACS Catalysis, 2019, 9, 409-416.	5.5	99
285	The combined effect of H2O2 and light emitting diodes (LED) process assisted by TiO2 on the photooxidation behaviour of PLA. Polymer Testing, 2019, 73, 268-275.	2.3	10
286	Behaviours of poly(Îμ-caprolactone)/silver-montmorillonite nanocomposite in membrane ultrafiltration for wastewater treatment. Environmental Technology (United Kingdom), 2020, 41, 2049-2060.	1.2	12
287	Flame retardant effect of aluminum hypophosphite in heteroatom-containing polymers. Polymer Bulletin, 2020, 77, 291-306.	1.7	19
288	Thermal properties and degradation of enantiomeric copolyesteramides poly(lactic acid-co-alanine)s. Polymer Degradation and Stability, 2020, 171, 109047.	2.7	8
289	Cascade strategies for the full valorisation of Garganega white grape pomace towards bioactive extracts and bio-based materials. PLoS ONE, 2020, 15, e0239629.	1.1	7
290	Hierarchical Surface Texturing of Hydroxyapatite Ceramics: Influence on the Adhesive Bonding Strength of Polymeric Polycaprolactone. Journal of Functional Biomaterials, 2020, 11, 73.	1.8	15
291	Study on Thermal Behavior of Some Biocompatible and Biodegradable Materials Based on Plasticized PLA, Chitosan, and Rosemary Ethanolic Extract. International Journal of Polymer Science, 2020, 2020, 1-18.	1.2	11
292	Preparation and characterization of PLA composites with modified magnesium hydroxide obtained from seawater. Journal of Thermal Analysis and Calorimetry, 2020, 142, 1877-1889.	2.0	12
293	Layer-by-Layer nanostructured interphase produces mechanically strong and flame retardant bio-composites. Composites Part B: Engineering, 2020, 200, 108310.	5.9	38

#	Article	IF	CITATIONS
294	Hydrolytic degradation of star-shaped poly(ε-caprolactone)s with different number of arms and their cytotoxic effects. Journal of Bioactive and Compatible Polymers, 2020, 35, 517-537.	0.8	6
295	Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chemistry, 2020, 22, 5519-5558.	4.6	439
296	Depolymerization of Endâ€ofâ€Life Poly(lactide) to Lactide via Zincâ€Catalysis. ChemistrySelect, 2020, 5, 14759-14763.	0.7	29
297	Ionic liquid aided solution-precipitation method to prepare polymer blends from cellulose with polyesters or polyamide. European Polymer Journal, 2020, 133, 109743.	2.6	8
298	Two‧tep Solventâ€Free Synthesis of Poly(hydroxybutyrate)â€Based Photocurable Resin with Potential Application in Stereolithography. Macromolecular Rapid Communications, 2020, 41, e1900660.	2.0	12
299	Three-Dimensional Visualization for Early-Stage Evolution of Polymer Aging. ACS Central Science, 2020, 6, 771-778.	5.3	19
300	Nanocomposites from functionalized bacterial cellulose and poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polymer Degradation and Stability, 2020, 179, 109203.	2.7	14
301	Self-reinforcing nanoscalar polycaprolactone-polyethylene terephthalate electrospun fiber blends. Polymer, 2020, 202, 122573.	1.8	3
302	Mono- and dimeric zinc(<scp>ii</scp>) complexes for PLA production and degradation into methyl lactate – a chemical recycling method. Polymer Chemistry, 2020, 11, 2381-2389.	1.9	40
303	Preparation and characterization of PLA foam chain extended through grafting octa(epoxycyclohexyl) POSS onto carbon nanotubes. Frontiers in Forests and Global Change, 2020, 39, 117-138.	0.6	6
304	Recycling of Bioplastics: Routes and Benefits. Journal of Polymers and the Environment, 2020, 28, 2551-2571.	2.4	180
305	Mechanical properties of cold-drawn films of ultrahigh-molecular-weight poly(3-hydroxybutyrate-co-3-hydroxyvalerate) produced by Haloferax mediterranei. Polymer Journal, 2020, 52, 1299-1306.	1.3	12
306	Influence of the carbon source on the properties of poly-(3)-hydroxybutyrate produced by Paraburkholderia xenovorans LB400 and its electrospun fibers. International Journal of Biological Macromolecules, 2020, 152, 11-20.	3.6	23
307	Thermal properties of aliphatic polyesters. , 2020, , 151-189.		1
308	Effect of modified microcrystalline cellulose on poly(3-hydroxybutyrate) molecular dynamics by proton relaxometry. Polymers and Polymer Composites, 2021, 29, 553-560.	1.0	4
309	Thermal degradation kinetics study of molten polylactide based on Raman spectroscopy. Polymer Engineering and Science, 2021, 61, 201-210.	1.5	26
310	Thermal degradation behavior of poly[(R)-3-hydroxybutyrate-co-4-hydroxybutyrate]. Polymer Degradation and Stability, 2021, 183, 109460.	2.7	14
311	Biodegradable Polymer Blends Based on Thermoplastic Starch. Journal of Polymers and the Environment, 2021, 29, 492-508.	2.4	48

#	Article	IF	CITATIONS
312	Novel pranoprofenâ€poly(εâ€caprolactone) conjugates: microwaveâ€assisted synthesis and structural characterization. Polymer International, 2021, 70, 604-611.	1.6	3
313	Carriers based on poly-3-hydroxyalkanoates containing nanomagnetite to trigger hormone release. International Journal of Biological Macromolecules, 2021, 166, 448-458.	3.6	5
314	Utilization of coffee silverskin in the production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biopolymer-based thermoplastic biocomposites for food contact applications. Composites Part A: Applied Science and Manufacturing, 2021, 140, 106172.	3.8	27
315	Production of Poly-3-Hydroxybutyrate (P3HB) with Ultra-High Molecular Weight (UHMW) by Mutant Strains of Azotobacter vinelandii Under Microaerophilic Conditions. Applied Biochemistry and Biotechnology, 2021, 193, 79-95.	1.4	8
316	Thermal stability enhancement of poly(hydroxybutyrate-co-hydroxyvalerate) through <i>in situ</i> reaction. Designed Monomers and Polymers, 2021, 24, 113-124.	0.7	5
317	Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review. RSC Advances, 2021, 11, 17151-17196.	1.7	226
318	Syntheses and chemical transformations of glycolide and lactide as monomers for biodegradable polymers. Polymer Degradation and Stability, 2021, 183, 109427.	2.7	22
319	Synthesis and Characterization of Methyl Acrylate-Copolymerized Medium-Chain-Length Poly-3-hydroxyalkanoates. Journal of Polymers and the Environment, 2021, 29, 3004-3014.	2.4	4
320	Recovery of Polyhydroxyalkanoates From Single and Mixed Microbial Cultures: A Review. Frontiers in Bioengineering and Biotechnology, 2021, 9, 624021.	2.0	65
321	Polycaprolactone/alendronate systems intended for production of biomaterials. Journal of Applied Polymer Science, 2021, 138, 50678.	1.3	1
322	Thermal Degradation Mechanism and Decomposition Kinetic Studies of Poly(Lactic Acid) and Its Copolymers with Poly(Hexylene Succinate). Polymers, 2021, 13, 1365.	2.0	24
323	Effect of Exogenous Carboxyl and Hydroxyl Groups on Pyrolysis Reaction of High Molecular Weight Poly(L-Lactide) under the Catalysis of Tin. Chinese Journal of Polymer Science (English Edition), 2021, 39, 966-974.	2.0	6
324	Magnetotactic Bacteria-Based Biorefinery: Potential for Generating Multiple Products from a Single Fermentation. ACS Sustainable Chemistry and Engineering, 2021, 9, 10537-10546.	3.2	5
325	Thermal Stability and Decomposition Mechanism of PLA Nanocomposites with Kraft Lignin and Tannin. Polymers, 2021, 13, 2818.	2.0	19
326	Characterisation and Modelling of PLA Filaments and Evolution with Time. Polymers, 2021, 13, 2899.	2.0	11
327	Evaluating haloarchaeal culture media for ultrahigh-molecular-weight polyhydroxyalkanoate biosynthesis by Haloferax mediterranei. Applied Microbiology and Biotechnology, 2021, 105, 6679-6689.	1.7	4
328	Structure–Property Relationships of 3D-Printable Chain-Extended Block Copolymers with Tunable Elasticity and Biodegradability. ACS Applied Polymer Materials, 2021, 3, 4708-4716.	2.0	8
329	Zn(II)- and Mg(II)-Complexes of a Tridentate {ONN} Ligand: Application to Poly(lactic acid) Production and Chemical Upcycling of Polyesters. Macromolecules, 2021, 54, 8453-8469.	2.2	33

# 330	ARTICLE Polyhydroxyalkanoates (PHAs), their Blends, Composites and Nanocomposites: State of the Art, New Challenges and Opportunities. RSC Green Chemistry, 2014, , 1-17.	IF 0.0	CITATIONS
331	Polyhydroxyalkanoate-based Multiphase Materials. RSC Green Chemistry, 2014, , 119-140.	0.0	2
332	Potential Use of Polyhydroxyalkanoate (PHA) for Biocomposite Development. , 2009, , 193-226.		4
333	Measurement and Simulation of Thermal Stability of Poly(Lactic Acid) by Thermogravimetric Analysis. Journal of Testing and Evaluation, 2009, 37, 364-370.	0.4	10
334	Impacto do co-monômero hidroxivalerato na cinética de degradação térmica dos poli(3-hidroxialcanoatos). Revista Materia, 2009, 14, 946-956.	0.1	2
335	From Obtaining to Degradation of PHB:Material Properties. Part I. IngenierÃa Y Ciencia, 2017, 13, 269-298.	0.3	38
336	Ring-opening copolymerization of (R,S)-β-butyrolactone and Îμ-caprolactone using sodium hydride as initiator. EXPRESS Polymer Letters, 2010, 4, 431-441.	1.1	13
337	Synthetic routes to degradable copolymers deriving from the biosynthesized polyhydroxyalkanoates: A mini review. EXPRESS Polymer Letters, 2016, 10, 36-53.	1.1	29
338	Effect of the Incorporation of Polycaprolactone (PCL) on the Retrogradation of Binary Blends with Cassava Thermoplastic Starch (TPS). Polymers, 2021, 13, 38.	2.0	26
339	A Single Catalyst for Promoting Reverse Processes: Synthesis and Chemical Degradation of Polylactide. ChemSusChem, 2021, 14, 5470-5475.	3.6	27
340	Degradation Mechanisms of Condensation Polymers. , 2006, , 81-103.		1
341	Kinetic Analysis of Thermally Simulated Processes in Biopolymer Poly(3-Hydroxybutyrate). Journal of Testing and Evaluation, 2011, 39, 468-473.	0.4	1
342	Polylactic Acid: Environmental Degradation Behaviors. , 0, , 6422-6432.		0
343	The Multiweek Thermal Stability of Medicalâ€Grade Poly(ε aprolactone) During Melt Electrowriting. Small, 2022, 18, e2104193.	5.2	20
344	Designing ultratough, malleable and foldable biocomposites for robust green electronic devices. Journal of Materials Chemistry A, 2022, 10, 1497-1505.	5.2	14
345	Co-pyrolysis characteristics and flammability of polylactic acid and acrylonitrile-butadiene-styrene plastic blend using TG, temperature-dependent FTIR, Py-GC/MS and cone calorimeter analyses. Fire Safety Journal, 2022, 128, 103543.	1.4	15
346	A Review on Biological Synthesis of the Biodegradable Polymers Polyhydroxyalkanoates and the Development of Multiple Applications. Catalysts, 2022, 12, 319.	1.6	64
347	Mechanical properties and highly-ordered structural analysis of elastic poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] fibers fabricated by partially melting crystals. Polymer, 2022, 247, 124772.	1.8	3

#	Article	IF	CITATIONS
348	Structural and Thermal Properties of Polycaprolactone/PEG-Coated Zinc Oxide Nanocomposites. Polymer Science - Series A, 2021, 63, 855-864.	0.4	1
350	Innovative solutions and challenges to increase the use of Poly(3-hydroxybutyrate) in food packaging and disposables. European Polymer Journal, 2022, 178, 111505.	2.6	21
351	Synthesis and properties of ABA-triblock copolymers from polyester A-blocks and easily degradable polyacetal B-blocks. Polymer Chemistry, 2022, 13, 5243-5255.	1.9	6
352	Identification and Quantification of Micro-Bioplastics in Environmental Samples by Pyrolysis–Gas Chromatography–Mass Spectrometry. Environmental Science & Technology, 2022, 56, 13774-13785.	4.6	25
353	End-of-life biodegradation? how to assess the composting of polyesters in the lab and the field. Waste Management, 2022, 154, 36-48.	3.7	10
354	Thermal degradation and combustion properties of most popular synthetic biodegradable polymers. Waste Management and Research, 2023, 41, 431-441.	2.2	5
355	Simulation of the thermal degradation kinetics of biobased/biodegradable and non-biodegradable polymers using the random chain-scission model. Capabilities and limitations. Journal of Analytical and Applied Pyrolysis, 2022, 168, 105767.	2.6	5
357	Chemical recycling of bioplastics: technical opportunities to preserve chemical functionality as path towards a circular economy. Green Chemistry, 2022, 24, 9428-9449.	4.6	27
358	Pyrolysis Kinetic Study of Polylactic Acid. Polymers, 2023, 15, 12.	2.0	7
359	Thermal degradation of polymers, copolymers, and blends. , 2023, , 49-147.		0
360	Recycling of polymers by thermal degradation. , 2023, , 303-326.		0
361	A thermoanalytical insight into the composition of biodegradable polymers and commercial products by EGA-MS and Py-GC-MS. Journal of Analytical and Applied Pyrolysis, 2023, 171, 105937.	2.6	6
362	Thermal pre-processing before extraction of polyhydroxyalkanoates for molecular weight quality control. Polymer Degradation and Stability, 2023, 209, 110277.	2.7	2
363	Recent Advancements and Perspectives of Biodegradable Polymers for Supercapacitors. Advanced Functional Materials, 2023, 33, .	7.8	11
364	Thermal Properties of Biopolymers. , 2023, , 1-28.		0
365	Poly(hydroxyalkanoates) (PHAs) based circular materials for a sustainable future. , 2023, , 273-303.		1
366	Molecular Pathways for Polymer Degradation during Conventional Processing, Additive Manufacturing, and Mechanical Recycling. Molecules, 2023, 28, 2344.	1.7	14
367	Chemically circular, mechanically tough, and melt-processable polyhydroxyalkanoates. Science, 2023, 380, 64-69.	6.0	43

#	Article	IF	CITATIONS
368	Thermal Properties of Biopolymers. , 2023, , 269-296.		0
374	Recent advances in enantioselective ring-opening polymerization and copolymerization. Communications Chemistry, 2023, 6, .	2.0	6
384	The global burden of plastics in oral health: prospects for circularity, sustainable materials development and practice. , 2024, 2, 881-902.		0