A displacement method for the analysis of flexural shea composite beams

Computers and Structures 80, 1843-1851 DOI: 10.1016/s0045-7949(02)00223-7

Citation Report

#	Article	IF	CITATIONS
1	A displacement solution for transverse shear loading of beams using the boundary element method. Computers and Structures, 2008, 86, 771-779.	4.4	5
2	A Refined Beam Theory with Only Displacement Variables and Deformable Cross-Section. , 2009, , .		2
3	REFINED BEAM THEORIES BASED ON A UNIFIED FORMULATION. International Journal of Applied Mechanics, 2010, 02, 117-143.	2.2	249
5	ANALYSIS OF THIN-WALLED BEAMS VIA A ONE-DIMENSIONAL UNIFIED FORMULATION THROUGH A NAVIER-TYPE SOLUTION. International Journal of Applied Mechanics, 2011, 03, 407-434.	2.2	40
6	Buckling of thin-walled beams by a refined theory. Journal of Zhejiang University: Science A, 2012, 13, 747-759.	2.4	9
7	Performance of CUF Approach to Analyze the Structural Behavior of Slender Bodies. Journal of Structural Engineering, 2012, 138, 285-297.	3.4	79
8	Refined free vibration analysis of one-dimensional structures with compact and bridge-like cross-sections. Thin-Walled Structures, 2012, 56, 49-61.	5.3	47
9	Refined beam elements with only displacement variables and plate/shell capabilities. Meccanica, 2012, 47, 537-556.	2.0	180
10	Comparisons between 1D (Beam) and 2D (Plate/Shell) Finite Elements to Analyze Thin Walled Structures. Aerotecnica Missili & Spazio, 2014, 93, 3-16.	0.9	6
11	Dynamic response of aerospace structures by means of refined beam theories. Aerospace Science and Technology, 2015, 46, 360-373.	4.8	25
12	Design variation of thin-walled composite beam cross-section properties. Multidiscipline Modeling in Materials and Structures, 2016, 12, 558-576.	1.3	0
13	Free vibration analysis of simply supported beams with solid and thin-walled cross-sections using higher-order theories based on displacement variables. Thin-Walled Structures, 2016, 98, 478-495.	5.3	37
14	Cross-sectional mapping for refined beam elements with applications to shell-like structures. Computational Mechanics, 2017, 59, 1031-1048.	4.0	16
15	Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature. Composite Structures, 2017, 171, 486-504.	5.8	349
16	An efficient warping model for elastoplastic torsional analysis of composite beams. Composite Structures, 2017, 178, 37-49.	5.8	10
17	Hierarchical theories of structures based on Legendre polynomial expansions with finite element applications. International Journal of Mechanical Sciences, 2017, 120, 286-300.	6.7	68
18	A new analytical model to predict the transversal deflection under load of stepped shafts. International Journal of Mechanical Sciences, 2018, 146-147, 91-104.	6.7	7
19	Bi-directional functionally graded thin-walled non-prismatic Euler beams of generic open/closed cross section Part I: Theoretical formulations. Thin-Walled Structures, 2019, 141, 627-645.	5.3	20

CITATION REPORT

#	Article	IF	CITATIONS
20	Quasi-3D solutions for the vibration of solid and hollow slender structures with general boundary conditions. Computers and Structures, 2019, 211, 14-26.	4.4	6
21	Truss and Beam Structures. Springer Tracts in Civil Engineering, 2021, , 77-190.	0.5	0
22	Mechanical properties of thin-walled composite beams of generic open and closed sections. Structural Engineering and Mechanics, 2005, 21, 591-620.	1.0	7
23	Determination of the shear correction factors of complex plane sections for the bending of beams and application to airfoils. Indian Journal of Physics, 0, , 1.	1.8	0
25	Exact component-wise solutions for 3D free vibration and stress analysis of hybrid steel–concrete composite beams. Thin-Walled Structures, 2022, 174, 109094.	5.3	10
26	Stress Analysis of Laminated HSDT Beams Considering Bending Extension Coupling. , 2023, 34, 1-23.		2
27	Analysis of thin-walled beams via a one-dimensional unified formulation through a navier-type solution. International Journal of Applied Mechanics, 0, , .	2.2	1
28	Coupled free vibration analysis of rotating non-uniform cantilever beams by an element-wise Ritz method using local hierarchical functions. Computers and Structures, 2023, 288, 107133	4.4	0