Mechanical damage and strain in carbon fiber thermople electrical resistivity measurement

Polymer Composites 23, 425-432

DOI: 10.1002/pc.10444

Citation Report

#	Article	IF	CITATIONS
1	Quantitative damage detection in CFRP composites. Composites Science and Technology, 2003, 63, 1411-1422.	3.8	71
2	Self-sensing of Damage and Strain in Carbon Fiber Polymer-Matrix Structural Composites by Electrical Resistance Measurement. Polymers and Polymer Composites, 2003, 11, 515-525.	1.0	37
3	Identifying Delamination in Cross-ply and Quasi-isotropic Beams of CFRP by a Standardized Electrical Resistance Method. Polymers and Polymer Composites, 2004, 12, 75-85.	1.0	8
4	Electric Resistance Change Method for Cure/Strain/Damage Monitoring of CFRP Laminates. Key Engineering Materials, 2004, 270-273, 1812-1820.	0.4	12
5	Time-dependent uniaxial piezoresistive behavior of high-density polyethylene/short carbon fiber conductive composites. Journal of Materials Research, 2004, 19, 2625-2634.	1.2	57
6	Electrical Resistance Change of Unidirectional CFRP Due to Applied Load. JSME International Journal Series A-Solid Mechanics and Material Engineering, 2004, 47, 357-364.	0.4	109
7	Self-sensing of damage in carbon fiber polymer-matrix composite by measurement of the electrical resistance or potential away from the damaged region. Journal of Materials Science, 2005, 40, 6463-6472.	1.7	38
8	Effects of composite lay-up configuration and thickness on the damage self-sensing behavior of carbon fiber polymer-matrix composite. Journal of Materials Science, 2005, 40, 561-568.	1.7	22
9	Self-sensing of flexural strain and damage in carbon fiber polymer-matrix composite by electrical resistance measurement. Carbon, 2006, 44, 2739-2751.	5.4	172
10	Comparative evaluation of the electrical configurations for the two-dimensional electric potential method of damage monitoring in carbon fiber polymer–matrix composite. Smart Materials and Structures, 2006, 15, 1332-1344.	1.8	52
11	Comparison of the Electrical Resistance and Potential Techniques for the Self-sensing of Damage in Carbon Fiber Polymer-Matrix Composites. Journal of Intelligent Material Systems and Structures, 2006, 17, 853-861.	1.4	29
12	Damage detection using self-sensing concepts. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2007, 221, 509-520.	0.7	49
13	Strain and Damage Monitoring of CFRP Laminates by Means of Electrical Resistance Measurement. Journal of Solid Mechanics and Materials Engineering, 2007, 1, 947-974.	0.5	41
14	Room temperature resistance relaxation behavior for carbon black filled conductive polymer composites. Journal of Applied Polymer Science, 2008, 107, 3083-3089.	1.3	2
15	Percolation transition and hydrostatic piezoresistance for carbon black filled poly(methylvinylsilioxane) vulcanizates. Carbon, 2008, 46, 679-691.	5.4	41
16	Electrical Resistivity, Pulse Velocity, and Compressive Properties of Carbon Fiber-Reinforced Cement Mortar. Journal of Materials in Civil Engineering, 2008, 20, 93-101.	1.3	40
17	Time dependent piezoresistive behavior of polyvinylidene fluoride/carbon nanotube conductive composite. Materials Letters, 2009, 63, 1771-1773.	1.3	29
18	Electrical Resistance Change of CFRP under a Compression Load. Journal of Solid Mechanics and Materials Engineering, 2010, 4, 864-874.	0.5	16

#	Article	IF	CITATIONS
19	Resistive–conductive transitions in the time-dependent piezoresponse of PVDF-MWCNT nanocomposites. Polymer Journal, 2010, 42, 567-574.	1.3	14
20	Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon, 2012, 50, 3342-3353.	5.4	507
21	Strain and Damage Sensing in Polymer Composites and Nanocomposites with Conducting Fillers. Procedia Engineering, 2015, 114, 590-597.	1.2	19
22	Sensitive conductive polymer composites based on polylactic acid filled with multiwalled carbon nanotubes for chemical vapor sensing. Synthetic Metals, 2016, 215, 216-222.	2.1	24
23	Self-sensing structural composites in aerospace engineering. , 2016, , 295-331.		3
25	First report of capacitance-based self-sensing and in-plane electric permittivity of carbon fiber polymer-matrix composite. Carbon, 2018, 140, 413-427.	5.4	36
26	Investigation the conductivity of carbon fiber composites focusing on measurement techniques under dynamic and static loads. Journal of Materials Research and Technology, 2019, 8, 4863-4893.	2.6	52
28	Nonlinear Piezoresistive Behavior of Plain-Woven Carbon Fiber Reinforced Polymer Composite Subjected to Tensile Loading. Applied Sciences (Switzerland), 2020, 10, 1366.	1.3	11
29	Electret behavior of carbon fiber structural composites with carbon and polymer matrices, and its application in self-sensing and self-powering. Carbon, 2020, 160, 361-389.	5.4	31
30	Reverse piezo-resistivity of 3D printed continuous carbon fiber/PA6 composites in a low stress range. Advanced Composite Materials, 2021, 30, 380-395.	1.0	13
31	Piezoresistive sensor composites with oriented 1D structure of conducive filler. Polymer Journal, 2016, 38, 192-204.	0.3	0
32	Nonlinear behavior mechanism of change in electrical resistance on 3D printed carbon fiber / PA6 composites during cyclic tests. Advanced Composite Materials, 2023, 32, 1-20.	1.0	5
33	Strain monitoring in reduced graphene o <scp>xideâ€coated</scp> glass fiber/epoxy composite. Polymer Composites, 2022, 43, 7913-7927.	2.3	4
34	Extrusion-Based 3D Printing of Stretchable Electronic Coating for Condition Monitoring of Suction Cups. Micromachines, 2022, 13, 1606.	1.4	5