Continuous vinegar decolorization with exchange resin

Journal of Food Engineering 51, 311-317 DOI: 10.1016/s0260-8774(01)00073-5

Citation Report

#	Article	IF	CITATION
1	Oxidation of activated carbon: application to vinegar decolorization. Journal of Colloid and Interface Science, 2003, 257, 173-178.	5.0	27
2	Chapter 9 Activated carbon filters and their industrial applications. Interface Science and Technology, 2006, 7, 421-474.	1.6	20
3	Decolorisation of Hâ€acid manufacturing process wastewater by anion exchange resin. Coloration Technology, 2007, 123, 323-328.	0.7	2
4	New approach to continuous vinegar decolourisation with exchange resins. Journal of Food Engineering, 2007, 78, 991-994.	2.7	7
5	Impact of saccharides and amino acids on the interaction of apple polyphenols with ion exchange and adsorbent resins. Journal of Food Engineering, 2010, 98, 230-239.	2.7	33
6	Adsorption and Ion Exchange: Basic Principles and Their Application in Food Processing. Journal of Agricultural and Food Chemistry, 2011, 59, 22-42.	2.4	131
7	Decolorization method of crude alkaline protease preparation produced from an alkalophilic Bacillus clausii. Biotechnology and Bioprocess Engineering, 2011, 16, 89-96.	1.4	3
8	Decolorization of polysaccharides solution from Cyclocarya paliurus (Batal.) Iljinskaja using ultrasound/H2O2 process. Carbohydrate Polymers, 2011, 84, 255-261.	5.1	48
9	Recovery, concentration and purification of phenolic compounds by adsorption: A review. Journal of Food Engineering, 2011, 105, 1-27.	2.7	391
10	Discoloration Kinetics of Clarified Apple Juice Treated with Lewatit® S 4528 Adsorbent Resin During Processing. Food and Bioprocess Technology, 2012, 5, 2132-2139.	2.6	6
11	Applications of Ion Exchangers in Alcohol Beverage Industry. , 2012, , 97-107.		1
12	Adsorption of naphthalene onto a high-surface-area carbon from waste ion exchange resin. Journal of Environmental Sciences, 2013, 25, 188-194.	3.2	44
13	Optimization of Decolorization Technology of Polysaccharides from <i>Lethariella</i> spp <i>.</i> with Activated Carbon. Advanced Materials Research, 0, 962-965, 1226-1230.	0.3	0
14	Antioxidant, antimicrobial, mineral, volatile, physicochemical and microbiological characteristics of traditional home-made Turkish vinegars. LWT - Food Science and Technology, 2015, 63, 144-151.	2.5	106
15	Ion exchange resin applied to obtain the clarified cashew juice. Separation Science and Technology, 0, , 150707113216002.	1.3	4
16	Production of colorless liquid sugar by ultrafiltration coupled with ion exchange. Food and Bioproducts Processing, 2016, 98, 11-20.	1.8	28
17	Cytotoxic potential of denture base and reline acrylic resins after immersion in disinfectant solutions. Journal of Prosthetic Dentistry, 2018, 120, 155.e1-155.e7.	1.1	16
18	Bleaching of sugar cane juice using a food-grade adsorber resin and explained by a kinetic model describing the variation in time of the content of adsorbate. Food Science and Technology International, 2018, 24, 264-274.	1.1	0

#	Article	IF	CITATIONS
19	Structure and functional properties of protein from defatted <i>Camellia oleifera</i> seed cake: Effect of hydrogen peroxide decolorization. International Journal of Food Properties, 2019, 22, 1283-1295.	1.3	11
21	Predicción por redes neuronales artificiales de la calidad fisicoquÃmica de vinagre de melaza de caña por efecto de tiempo-temperatura de alimentación a evaporador-destilador flash. Scientia Agropecuaria, 2010, , 63-73.	0.5	2
23	Decolorization and detoxication of plant-based proteins using hydrogen peroxide and catalase. Scientific Reports, 2022, 12, .	1.6	5

CITATION REPORT