Chromium adsorption and Cr(VI) reduction to trivalent soya cake

Journal of Hazardous Materials 94, 49-61 DOI: 10.1016/s0304-3894(02)00054-7

Citation Report

#	Article	IF	CITATIONS
1	Removal of cadmium and nickel from wastewater using bagasse fly ash—a sugar industry waste. Water Research, 2003, 37, 4038-4044.	11.3	498
3	Adsorption of Pb(II) from aqueous solution by Azadirachta indica (Neem) leaf powder. Journal of Hazardous Materials, 2004, 113, 97-109.	12.4	205
4	A Study on the Reduction of Hexavalent Chromium in Aqueous Solutions by Vinasse. Environmental Technology (United Kingdom), 2004, 25, 1257-1263.	2.2	3
5	Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Agave lechuguilla biomass. Journal of Chemical Thermodynamics, 2005, 37, 343-347.	2.0	176
6	Wastewater treatment with multilayer media of waste and natural indigenous materials. Journal of Environmental Management, 2005, 74, 107-110.	7.8	22
7	Adsorption of Chromium (VI) on Azadirachta Indica (Neem) Leaf Powder. Adsorption, 2005, 10, 327-338.	3.0	120
8	Effect of temperature on wastewater treatment with natural and waste materials. Clean Technologies and Environmental Policy, 2005, 7, 198-202.	4.1	23
9	Utilization of Activated Carbon Prepared from Industrial Solid Waste for the Removal of Chromium(VI) Ions from Synthetic Solution and Industrial Effluent. Adsorption Science and Technology, 2005, 23, 145-160.	3.2	19
10	The evaluation of electrical energy per order (EEo) for photooxidative decolorization of four textile dye solutions by the kinetic model. Chemosphere, 2005, 59, 761-767.	8.2	208
11	Adsorption of Chromium(VI) from Water by Clays. Industrial & Engineering Chemistry Research, 2006, 45, 7232-7240.	3.7	194
12	Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust. Biochemical Engineering Journal, 2006, 31, 216-222.	3.6	311
13	Decolorization of basic dye solutions by electrocoagulation: An investigation of the effect of operational parameters. Journal of Hazardous Materials, 2006, 129, 116-122.	12.4	474
14	Adsorption of chromium(VI) on pomace—An olive oil industry waste: Batch and column studies. Journal of Hazardous Materials, 2006, 138, 142-151.	12.4	363
15	Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. Journal of Hazardous Materials, 2006, 137, 762-811.	12.4	1,482
16	Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Science of the Total Environment, 2006, 366, 409-426.	8.0	608
17	Study of acid orange 7 removal from aqueous solutions by powdered activated carbon and modeling of experimental results by artificial neural network. Desalination, 2007, 211, 87-95.	8.2	89
18	Chromium(VI) removal by calcined bauxite. Biochemical Engineering Journal, 2007, 34, 69-75.	3.6	86
19	Adsorption of chromium from aqueous solution by activated alumina and activated charcoal. Bioresource Technology, 2007, 98, 954-957.	9.6	248

#	Article	IF	CITATIONS
20	Hexavalent chromium removal from wastewater using aniline formaldehyde condensate coated silica gel. Journal of Hazardous Materials, 2007, 143, 24-32.	12.4	188
21	Uptake of trivalent chromium ions from aqueous solutions using kaolinite. Journal of Hazardous Materials, 2007, 148, 56-63.	12.4	57
22	Removal of Cr(VI) from industrial wastewaters by adsorption. Journal of Hazardous Materials, 2007, 149, 482-491.	12.4	148
23	Potential of tea factory waste for chromium(VI) removal from aqueous solutions: Thermodynamic and kinetic studies. Separation and Purification Technology, 2007, 54, 291-298.	7.9	255
24	Removal and recovery of chromium from wastewater using short chain polyaniline synthesized on jute fiber. Chemical Engineering Journal, 2008, 141, 130-140.	12.7	190
25	Immobilization of calix[6]arene bearing carboxylic acid and amide groups on aminopropyl silica gel and its sorption properties for Cr(VI). Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2008, 61, 53-60.	1.6	32
26	Adsorption of Cr(VI) using activated neem leaves: kinetic studies. Adsorption, 2008, 14, 85-92.	3.0	227
27	Kinetics and mechanism of Cr(VI) adsorption onto teaâ€leaves waste. Asia-Pacific Journal of Chemical Engineering, 2008, 3, 452-458.	1.5	11
28	Characterization of Cr(VI) removal from aqueous solutions by a surplus agricultural waste—Rice straw. Journal of Hazardous Materials, 2008, 150, 446-452.	12.4	223
29	Adsorptive removal of heavy metals from aqueous solution by treated sawdust (Acacia arabica). Journal of Hazardous Materials, 2008, 150, 604-611.	12.4	207
30	Removal of Cr(VI) from aqueous solutions using agricultural waste â€~maize bran'. Journal of Hazardous Materials, 2008, 152, 356-365.	12.4	138
31	Hexavalent chromium reduction with scrap iron in continuous-flow system. Journal of Hazardous Materials, 2008, 153, 655-662.	12.4	78
32	Adsorption of chromium(VI) from aqueous solution by activated carbon derived from olive bagasse and applicability of different adsorption models. Chemical Engineering Journal, 2008, 144, 188-196.	12.7	295
33	Chromium sorption and Cr(VI) reduction to Cr(III) by grape stalks and yohimbe bark. Bioresource Technology, 2008, 99, 5030-5036.	9.6	116
34	Removal of Chromium(VI) and Chromium(III) from Aqueous Solution by Grainless Stalk of Corn. Separation Science and Technology, 2008, 43, 3200-3220.	2.5	21
35	Management of Chromium Plating Rinsewater Using Electrochemical Ion Exchange. Industrial & Engineering Chemistry Research, 2008, 47, 2279-2286.	3.7	70
36	Removal of Cr(VI) from wastewater using activated tamarind seeds as an adsorbent. Journal of Environmental Engineering and Science, 2008, 7, 553-557.	0.8	37
37	Interactions of Pb(II), Cd(II) and Cr(VI) with Neem (Azadirachta indica) leaf powder: kinetics and thermodynamics. International Journal of Environment and Pollution, 2008, 34, 374.	0.2	3

#	Article	IF	CITATIONS
38	Reâ€use of Exhausted Ground Coffee Waste for Cr(VI) Sorption. Separation Science and Technology, 2008, 43, 582-596.	2.5	46
39	Étude de la biosorption du chrome (Ⅵ) par une biomasse méditerranéenneÂ: Posidonia oceanica (L.) delile. Revue Des Sciences De L'Eau, 0, 21, 441-449.	0.2	6
40	Fluoride removal from drinking water by adsorption using bone char as a biosorbent. International Journal of Environmental Technology and Management, 2008, 9, 59.	0.2	28
41	Adsorption Mechanism of Cr(VI) onto Coir Pith. Bioremediation Journal, 2009, 13, 188-197.	2.0	5
42	Electrocoagulation of Textile Effluent: RSM and ANN Modeling. International Journal of Chemical Reactor Engineering, 2009, 7, .	1.1	11
43	Statistical Optimization of Process Parameters for Cr (VI) Biosorption onto Mixed Cultures of <i>Pseudomonas aeruginosa</i> and <i>Bacillus subtilis</i> . Clean - Soil, Air, Water, 2009, 37, 319-327.	1.1	49
44	Removal of toxic metal Cr(VI) from aqueous solutions using sawdust as adsorbent: Equilibrium, kinetics and regeneration studies. Chemical Engineering Journal, 2009, 150, 352-365.	12.7	363
45	Biosorption of Cr(VI) from Water Using Biomass of Aeromonas hydrophila: Central Composite Design for Optimization of Process Variables. Applied Biochemistry and Biotechnology, 2009, 158, 524-539.	2.9	24
46	Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. Journal of Hazardous Materials, 2009, 167, 482-488.	12.4	473
47	Performance evaluation of low cost adsorbents in reduction of COD in sugar industrial effluent. Journal of Hazardous Materials, 2009, 168, 800-805.	12.4	39
48	Modeling of kinetics of Cr(VI) sorption onto grape stalk waste in a stirred batch reactor. Journal of Hazardous Materials, 2009, 170, 286-291.	12.4	23
49	A comparative study for the removal of hexavalent chromium from aqueous solution by agriculture wastes' carbons. Journal of Hazardous Materials, 2009, 171, 83-92.	12.4	163
50	Removal of Cr (VI) from aqueous solutions using wheat bran. Chemical Engineering Journal, 2009, 151, 113-121.	12.7	86
51	Removal of hexavalent chromium from aqueous solutions by micellar compounds. Desalination, 2009, 249, 768-773.	8.2	23
52	Optimization of activated carbon fiber preparation from Kenaf using K2HPO4 as chemical activator for adsorption of phenolic compounds. Bioresource Technology, 2009, 100, 6586-6591.	9.6	100
53	Utilization of waste product (tamarind seeds) for the removal of Cr(VI) from aqueous solutions: Equilibrium, kinetics, and regeneration studies. Journal of Environmental Management, 2009, 90, 3013-3022.	7.8	127
54	Nanoâ€adsorbents for the removal of metallic pollutants from water and wastewater. Environmental Technology (United Kingdom), 2009, 30, 583-609.	2.2	352
55	Application of Fly Ash Mixed with Electroplating Sludge and Activated Sudge Manufacture Ceramsite. , 2009, , .		1

#	ARTICLE	IF	CITATIONS
56	Chromium(VI) sorption from dilute aqueous solutions using wool. Desalination and Water Treatment, 2009, 3, 43-49.	1.0	33
57	The treatment of chromium tanning wastewater using natural marl. Chemical Speciation and Bioavailability, 2009, 21, 185-191.	2.0	9
58	Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coordination Chemistry Reviews, 2010, 254, 2959-2972.	18.8	474
59	Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation. Chemical Engineering Journal, 2010, 163, 373-381.	12.7	345
60	Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: A review. Journal of Hazardous Materials, 2010, 180, 1-19.	12.4	795
61	Adsorption studies on fruits of Gular (Ficus glomerata): Removal of Cr(VI) from synthetic wastewater. Journal of Hazardous Materials, 2010, 181, 405-412.	12.4	76
62	Hexavalent chromium reduction with scrap iron in continuous-flow system. Part 2: Effect of scrap iron shape and size. Journal of Hazardous Materials, 2010, 182, 484-493.	12.4	49
63	Removal of heavy metals and cyanide from gold mine wastewater. Journal of Chemical Technology and Biotechnology, 2010, 85, 590-613.	3.2	179
64	Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. Journal of Colloid and Interface Science, 2010, 342, 135-141.	9.4	520
65	Removal of acid green dye 50 from wastewater by anodic oxidation and electrocoagulation—A comparative study. Journal of Hazardous Materials, 2010, 179, 113-119.	12.4	120
66	Optimization of preparation of activated carbon from cotton stalk by microwave assisted phosphoric acid-chemical activation. Journal of Hazardous Materials, 2010, 182, 217-224.	12.4	148
67	Adsorption of hexaâ€valent chromium using treated wood charcoal – elucidation of rateâ€limiting process. Environmental Technology (United Kingdom), 2010, 31, 1495-1505.	2.2	14
68	Synthesis and Application of Nano-Al ₂ O ₃ Powder for the Reclamation of Hexavalent Chromium from Aqueous Solutions. Journal of Chemical & Engineering Data, 2010, 55, 2390-2398.	1.9	68
69	Experimental, kinetic, equilibrium and regeneration studies for adsorption of Cr(VI) from aqueous solutions using low cost adsorbent (activated flyash). Desalination and Water Treatment, 2010, 20, 168-178.	1.0	22
70	Kinetics and equilibrium study of chromium adsorption on zeoliteNaX. International Journal of Environmental Science and Technology, 2010, 7, 395-404.	3.5	131
71	Removal of C.I. Basic Yellow 2 from aqueous solution by lowâ€cost adsorbent: hardened paste of Portland cement. Environmental Technology (United Kingdom), 2010, 31, 277-284.	2.2	14
72	Polyethyleneimine modified eggshell membrane as a novel biosorbent for adsorption and detoxification of Cr(VI) from water. Journal of Materials Chemistry, 2011, 21, 17413.	6.7	174
73	Cellulosic substrates for removal of pollutants from aqueous systems: A review. 1. Metals. BioResources, 2011, 6, 2161-2287.	1.0	136

#	Article	IF	CITATIONS
74	Modulated Cr(III) oxidation in KOH solutions at a gold electrode: Competition between disproportionation and stepwise electron transfer. Electrochimica Acta, 2011, 56, 8311-8318.	5.2	30
75	An investigation on the new operational parameter effective in Cr(VI) removal efficiency: A study on electrocoagulation by alternating pulse current. Journal of Hazardous Materials, 2011, 190, 119-124.	12.4	109
76	Cotton Fiber/ZrO ₂ , A New Material for Adsorption of Cr(VI) lons in Water. Clean - Soil, Air, Water, 2011, 39, 289-295.	1.1	19
77	Sorption equilibrium of Cr(VI) ions on oak wood charcoal (Carbo Ligni) and charcoal ash as low-cost adsorbents. Fuel Processing Technology, 2011, 92, 65-70.	7.2	37
78	Enhanced removal of trace Cr(VI) ions from aqueous solution by titanium oxide–Ag composite adsorbents. Journal of Hazardous Materials, 2011, 190, 723-728.	12.4	47
79	Treatment of Chromium-Containing Mine Wastewater with Layered Nanometer Co ₃ O ₄ Hydroxide. Advanced Materials Research, 2011, 356-360, 1482-1487.	0.3	0
80	Removal of Cr(VI) ions from aqueous solution using foundry waste material: Kinetic and equilibrium studies. Canadian Metallurgical Quarterly, 2012, 51, 413-418.	1.2	2
81	Removal of Zn(II) from aqueous solutions using Lewatit S1468. Desalination and Water Treatment, 2012, 37, 146-151.	1.0	9
82	Efficient Catalytic Reduction of Hexavalent Chromium Using Palladium Nanoparticle-Immobilized Electrospun Polymer Nanofibers. ACS Applied Materials & Interfaces, 2012, 4, 3054-3061.	8.0	179
83	Reduction of hexavalent chromium with scrap iron in a fixed bed reactor. Frontiers of Environmental Science and Engineering, 2012, 6, 761-769.	6.0	6
84	Polyelectrolyte-Promoted Forward Osmosis–Membrane Distillation (FO–MD) Hybrid Process for Dye Wastewater Treatment. Environmental Science & Technology, 2012, 46, 6236-6243.	10.0	224
85	Influence of operational parameters and kinetics analysis on the photocatalytic reduction of Cr(VI) by immobilized ZnO. Environmental Technology (United Kingdom), 2012, 33, 265-271.	2.2	19
86	CELLULOSIC SUBSTRATES FOR REMOVAL OF POLLUTANTS FROM AQUEOUS SYSTEMS: A REVIEW. 2. DYES. BioResources, 2012, 7, .	1.0	65
88	Single, binary and ternary metal adsorption using acidâ€ŧreated <i>Aegle marmelos Correa</i> shell: kinetic, mechanistic and thermodynamic study. Asia-Pacific Journal of Chemical Engineering, 2012, 7, 928-939.	1.5	5
89	Column adsorption of chromium(VI) by strong alkaline anionâ€exchange fiber. Journal of Applied Polymer Science, 2012, 126, 1733-1738.	2.6	18
90	Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: Adsorption kinetics, equilibrium and thermodynamic studies. Chemical Engineering Journal, 2012, 184, 238-247.	12.7	581
91	Removal of Cr(VI) from aqueous solutions by modified walnut shells. Food Chemistry, 2012, 132, 693-700.	8.2	161
92	Treating Leather Tanning Wastewater with Stone Cutting Solid Waste. Clean - Soil, Air, Water, 2012, 40, 206-210.	1.1	5

#	Article	IF	CITATIONS
93	Removal of COD from Industrial Effluent Containing Indigo Dye Using Adsorption Method by Activated Carbon Cloth: Optimization, Kinetic, and Isotherm Studies. Clean - Soil, Air, Water, 2012, 40, 87-94.	1.1	48
94	Chromium removal technologies. Research on Chemical Intermediates, 2013, 39, 2267-2286.	2.7	61
95	Photoreduction of Cr(VI) from acidic aqueous solution using TiO2-impregnated glutaraldehyde-crosslinked alginate beads and the effects of Fe(III) ions. Chemical Engineering Journal, 2013, 226, 131-138.	12.7	61
96	γ-Fe ₂ O ₃ Nanoparticles Encapsulated Millimeter-Sized Magnetic Chitosan Beads for Removal of Cr(VI) from Water: Thermodynamics, Kinetics, Regeneration, and Uptake Mechanisms. Journal of Chemical & Engineering Data, 2013, 58, 3142-3149.	1.9	64
97	Photo-Fenton process for the degradation of Tartrazine (E102) in aqueous medium. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 990-994.	5.3	57
98	Effective adsorption of Cr (VI) from aqueous solution using natural Akadama clay. Journal of Colloid and Interface Science, 2013, 395, 198-204.	9.4	94
99	CdS–graphene nanocomposites as visible light photocatalyst for redox reactions in water: A green route for selective transformation and environmental remediation. Journal of Catalysis, 2013, 303, 60-69.	6.2	202
100	Preparation of Nano‣epidocrocite and an Investigation of Its Ability to Remove a Metal Complex Dye. Clean - Soil, Air, Water, 2013, 41, 890-898.	1.1	30
101	Kinetic, equilibrium isotherm and thermodynamic studies of Cr(VI) adsorption onto low-cost adsorbent developed from peanut shell activated with phosphoric acid. Environmental Science and Pollution Research, 2013, 20, 3351-3365.	5.3	119
102	Chromium Contamination and Its Risk Management in Complex Environmental Settings. Advances in Agronomy, 2013, 120, 129-172.	5.2	110
103	Kinetics of adsorption of bovine serum albumin on magnetic carboxymethyl chitosan nanoparticles. International Journal of Biological Macromolecules, 2013, 58, 57-65.	7.5	38
104	Ultrasound assisted synthesis of Ca–Al hydrotalcite for U (VI) and Cr (VI) adsorption. Chemical Engineering Journal, 2013, 218, 295-302.	12.7	67
105	Adsorption of chromium(VI) from aqueous solutions onto amine-functionalized natural and acid-activated sepiolites. Applied Clay Science, 2013, 80-81, 202-210.	5.2	44
106	Hexavalent Chromium Removal From Aqueous Solutions by Fe-Modified Peanut Husk. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	21
107	Use of Forestry Wastes for Biosorption of Dyes and Cr (VI). Journal of Chemistry, 2013, 2013, 1-10.	1.9	6
108	Investigation onto feasibility of an adsorbent for chromium abatement with its extended application for real mine drainage water. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2013, 48, 67-78.	1.7	1
109	Removal of Cr(VI) from Aqueous Environments Using Micelle-Clay Adsorption. Scientific World Journal, The, 2013, 2013, 1-7.	2.1	24
110	Performance of MWCNTs and a low-cost adsorbent for Chromium(VI) ion removal. Journal of Nanostructure in Chemistry, 2014, 4, 171-178.	9.1	34

#	Article	IF	CITATIONS
111	Investigation on Fluidized Bed Bioreactor Treating Ice Cream Wastewater Using Response Surface Methodology and Artificial Neural Network. International Journal of Chemical Reactor Engineering, 2014, 12, 563-573.	1.1	6
112	Batch and dynamics modeling of the biosorption of Cr(VI) from aqueous solutions by solid biomass waste from the biodiesel production. Environmental Progress and Sustainable Energy, 2014, 33, 342-352.	2.3	14
113	Kinetics of tartrazine photodegradation by UV/H2O2 in aqueous solution. Chemical Papers, 2014, 68, .	2.2	21
114	Minimization of electrical energy consumption in the photocatalytic reduction of Cr(vi) by using immobilized Mg, Ag co-impregnated TiO2 nanoparticles. RSC Advances, 2014, 4, 28587.	3.6	48
115	Investigation on the catalytic reduction kinetics of hexavalent chromium by viral-templated palladium nanocatalysts. Catalysis Today, 2014, 233, 108-116.	4.4	61
116	Highly efficient removal of Cr(VI) from wastewater via adsorption with novel magnetic Fe3O4@C@MgAl-layered double-hydroxide. Chinese Chemical Letters, 2015, 26, 1137-1143.	9.0	61
117	Porous p-NiO/n-Nb2O5 nanocomposites prepared by an EISA route with enhanced photocatalytic activity in simultaneous Cr(VI) reduction and methyl orange decolorization under visible light irradiation. Journal of Hazardous Materials, 2015, 286, 64-74.	12.4	58
118	Removal of Heavy Metals Cd ²⁺ , Pb ²⁺ , and Ni ²⁺ From Aqueous Solutions Using Synthesized Azide Cancrinite, Na ₈ [AlSiO ₄] ₆ (N ₃) _{2.4} (H ₂ O) _{4 Iournal of Chemical & amp: Engineering Data. 2015. 60. 586-593.}	4.6	. ³²
119	High-capacity adsorption of dissolved hexavalent chromium using amine-functionalized magnetic corn stalk composites. Bioresource Technology, 2015, 190, 550-557.	9.6	103
120	Cr total removal in aqueous solution by PHENOTAN AP based tannin gel (TFC). Journal of Environmental Chemical Engineering, 2015, 3, 725-733.	6.7	26
121	Removal of Cr(VI) from Wastewater Using a Natural Nanoporous Adsorbent: Experimental, Kinetic and Optimization Studies. Adsorption Science and Technology, 2015, 33, 71-88.	3.2	22
122	Hexavalent chromium removal using metal oxide photocatalysts. Applied Catalysis B: Environmental, 2015, 176-177, 740-748.	20.2	135
123	Fast degradation of Acid Orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4 catalyst. Journal of the Taiwan Institute of Chemical Engineers, 2015, 55, 90-100.	5.3	44
124	A novel magnetic adsorbent based on waste litchi peels for removing Pb(II) from aqueous solution. Journal of Environmental Management, 2015, 155, 24-30.	7.8	81
125	Equilibrium, thermodynamic and kinetic studies on removal of chromium, copper, zinc and arsenic from aqueous solutions onto fly ash coated by chitosan. Chemical Engineering Journal, 2015, 274, 200-212.	12.7	192
126	The adsorption kinetics and modeling for heavy metals removal from wastewater by Moringa pods. Journal of Environmental Chemical Engineering, 2015, 3, 775-784.	6.7	196
127	Comparison between the Cr(VI) adsorption by hydrotalcite and hydrotalcite-gibbsite compounds. Separation Science and Technology, 0, , 150716070905002.	2.5	3
128	Adsorption of malachite green by magnetic litchi pericarps: AÂresponse surface methodology investigation. Journal of Environmental Management, 2015, 162, 232-239.	7.8	46

ARTICLE IF CITATIONS Efficacy of mangrove leaf powder for bioremediation of chromium (VI) from aqueous solutions: 129 5.6 27 kinetic and thermodynamic evaluation. Applied Water Science, 2015, 5, 153-160. Role of functional groups on protonated de-oiled soybean involved in triclosan biosorption from 3.6 aqueous solution. RSC Advances, 2016, 6, 67319-67330. Adsorption of cefixime from aqueous solutions using modified hardened paste of Portland cement by 131 2.520 perlite; optimization by Taguchi method. Water Science and Technology, 2016, 74, 1069-1078. Reassessment of adsorption–reduction mechanism of hexavalent chromium in attaining practicable mechanistic kinetic model. Chemical Engineering Research and Design, 2016, 102, 98-105. Adsorption Kinetics for the Removal of Chromium(VI) from Synthetic Waste Water Using Adsorbent 133 2 Derived from Saw Dust, Bark and Rice Husk., 2016, , 153-163. Metal Oxides: Nanostructured Metal Oxides for Gas Sensing Applications., 2016, , 552-567. Adsorptive modelling of toxic cations and ionic dyes onto cellulosic extract. Modeling Earth Systems 135 3.4 13 and Environment, 2016, 2, 1-15. Oak (Quercus robur) Acorn Peel as a Low-Cost Adsorbent for Hexavalent Chromium Removal from 2.4 Aquatic Ecosystems and Industrial Effluents. Water, Air, and Soil Pollution, 2016, 227, 1. Dye removal by incineration residues of pharmaceutical wastes in aqueous solution. Desalination and 137 1.0 7 Water Treatment, 2016, 57, 6063-6071. Comparison of different rice straw based adsorbents for chromium removal from aqueous solutions. 1.0 Desalination and Water Treatment, 2016, 57, 6991-6999. Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review. Applied Water 139 5.6 186 Science, 2017, 7, 2113-2136. An Efficient Cost-Effective Removal of Ca²⁺, Mg²⁺, and Cu²⁺ lons from Aqueous Medium Using Chlorosodalite Synthesized from Coal Fly Ash. Journal of Chemical & amp; Engineering Data, 2017, 62, 596-607. Application of common nano-materials for removal of selected metallic species from water and 141 4.9 96 wastewaters: A critical review. Journal of Molecular Liquids, 2017, 240, 656-677. Magnetic EDTA functionalized CoFe2O4 nanoparticles (EDTA-CoFe2O4) as a novel catalyst for peroxymonosulfate activation and degradation of Orange G. Environmental Science and Pollution 142 5.3 Research, 2017, 24, 11536-11548. Comparative sorption studies of chromate by nano-and-micro sized Fe2O3 particles. Open Chemistry, 143 1.9 1 2017, 15, 147-155. Efficient removal and environmentally benign detoxification of Cr(VI) in aqueous solutions by Zr(IV) 144 cross-linking chitosan magnetic microspheres. Chemosphere, 2017, 185, 991-1000. A comparative study of the removal of Cr(<scp>vi</scp>) from synthetic solution using natural 145 2.8 47 biosorbents. New Journal of Chemistry, 2017, 41, 10799-10807. Preparation of PEI/CS aerogel beads with a high density of reactive sites for efficient 146 Cr(<scp>vi</scp>) sorption: batch and column studies. RSC Advances, 2017, 7, 40227-40236.

#	Article	IF	CITATIONS
147	Application in chromium (VI) removal of natural and dried cactus. Ciência & Tecnologia Dos Materiais, 2017, 29, 145-152.	0.5	4
148	Kinetics, equilibrium data and modeling studies for the sorption of chromium by Prosopis juliflora bark carbon. Arabian Journal of Chemistry, 2017, 10, S1567-S1577.	4.9	35
149	Facile fabrication of graphene oxide-polyethylenimine composite and its application for the Cr(VI) removal. Separation Science and Technology, 2018, 53, 2376-2387.	2.5	17
150	Cyanide removal study by raw and iron-modified synthetic zeolites in batch adsorption experiments. Journal of Water Process Engineering, 2018, 22, 80-86.	5.6	33
151	Removal of Cr (III) and Ni (II) from tannery effluent using calcium carbonate coated bacterial magnetosomes. Npj Clean Water, 2018, 1, .	8.0	33
152	Removal of hazardous hexavalent chromium from aqueous phase using zirconium oxide-immobilized alginate beads. Applied Geochemistry, 2018, 88, 113-121.	3.0	44
153	Treatment of heavy metal ions in wastewater using layered double hydroxides: A review. Journal of Dispersion Science and Technology, 2018, 39, 792-801.	2.4	69
154	Simultaneous photodegradation of acid orange 7 and removal of Pb2+ from polluted water using reusable clinoptilolite–TiO2 nanocomposite. Research on Chemical Intermediates, 2018, 44, 1505-1521.	2.7	24
155	Sorption performance of light rare earth elements using zirconium titanate and polyacrylonitrile zirconium titanate ion exchangers. Particulate Science and Technology, 2018, 36, 618-627.	2.1	10
156	Chromium(VI) adsorption by Codium tomentosum: evidence for adsorption by porous media from sigmoidal dose–response curve. International Journal of Environmental Science and Technology, 2018, 15, 2595-2606.	3.5	10
157	Physical Activation of Wooden Chips and the Effect of Particle Size, Initial Humidity, and Acetic Acid Extraction on the Properties of Activated Carbons. Journal of Carbon Research, 2018, 4, 66.	2.7	5
158	Adsorption of Heavy Metal Ions from Aqueous Solutions onto Rice Husk Ash Low Cost Adsorbent. , 2018, 08, .		8
159	Rapid removal of Cr(VI) ions by densely grafted corn stalk fibers: High adsorption capacity and excellent recyclable property. Journal of the Taiwan Institute of Chemical Engineers, 2018, 89, 95-104.	5.3	33
160	Preparation, characterization, and application of low-cost açaÃ-seed-based activated carbon for phenol adsorption. International Journal of Environmental Research, 2018, 12, 755-764.	2.3	23
161	Fractionational and structural characterization of lignin and its modification as biosorbents for efficient removal of chromium from wastewater: a review. Journal of Leather Science and Engineering, 2019, 1, .	6.0	84
162	Facile Synthesis of Heterojunctioned ZnO/Bi2S3 Nanocomposites for Enhanced Photocatalytic Reduction of Aqueous Cr(VI) under Visible-Light Irradiation. Catalysts, 2019, 9, 624.	3.5	30
163	Study of the properties and mechanism of deep reduction and efficient adsorption of Cr(VI) by low-cost Fe3O4-modified ceramsite. Science of the Total Environment, 2019, 688, 994-1004.	8.0	61
164	Potentiality of mosambi (Citrus limetta) peel dust toward removal of Cr(VI) from aqueous solution: an optimization study. Applied Water Science, 2019, 9, 1.	5.6	22

#	Article	IF	CITATIONS
165	Sustainable Removal of Cr(VI) by Lime Peel and Pineapple Core Wastes. Applied Sciences (Switzerland), 2019, 9, 1967.	2.5	15
166	Effect of pH on hexavalent and total chromium removal from aqueous solutions by avocado shell using batch and continuous systems. Environmental Science and Pollution Research, 2019, 26, 3157-3173.	5.3	41
167	Study and identification of contaminant phases in commercial activated carbons. Journal of Environmental Chemical Engineering, 2020, 8, 103636.	6.7	21
168	Metal-organic frameworks-derived 3D yolk shell-like structure Ni@carbon as a recyclable catalyst for Cr(VI) reduction. Chemical Engineering Journal, 2020, 389, 123428.	12.7	57
169	Effects of seepage velocity and concentration on chromium(VI) removal in abiotic and biotic iron columns. Journal of Environmental Quality, 2020, 49, 654-662.	2.0	2
170	Arsenate Adsorption on Fly Ash, Chitosan and Their Composites and Its Relations with Surface, Charge and Pore Properties of the Sorbents. Materials, 2020, 13, 5381.	2.9	6
171	Prospecting bacterial consortia from a geothermal site for metals biotransformation. Biodegradation, 2020, 31, 235-247.	3.0	1
172	Nonlinear regression analysis and response surface modeling of Cr (VI) removal from synthetic wastewater by an agro-waste <i>Cocos Nucifera:</i> Box-Behnken Design (BBD). International Journal of Phytoremediation, 2021, 23, 791-808.	3.1	16
173	Kinetic characterization of hexavalent chromium stabilization in contaminated soils amended with cocopeat. Arabian Journal of Geosciences, 2020, 13, 1.	1.3	0
174	Oil industry waste based non-magnetic and magnetic hydrochar to sequester potentially toxic post-transition metal ions from water. Journal of Hazardous Materials, 2020, 400, 123247.	12.4	132
175	Synthesis and Characterization of Silica-Coated Oxyhydroxide Aluminum/Doped Polymer Nanocomposites: A Comparative Study and Its Application as a Sorbent. Molecules, 2020, 25, 1520.	3.8	9
176	Nanofibers for heavy metal ion adsorption: Correlating surface properties to adsorption performance, and strategies for ion selectivity and recovery. Environmental Nanotechnology, Monitoring and Management, 2020, 13, 100297.	2.9	12
177	Preparation of a novel functionalized magnetic nanobiocomposite as a carrier for protein adsorption. Spectroscopy Letters, 2020, 53, 289-305.	1.0	3
178	Carnauba (Copernicia prunifera) palm tree biomass as adsorbent for Pb(II) and Cd(II) from water medium. Environmental Science and Pollution Research, 2021, 28, 18941-18952.	5.3	15
179	Effective Reduction of Cr(VI) and Organic Dyes Using Pd NPs/Fe3O4@nanocellulose as a Recoverable Catalyst in Aqueous Media. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 319-330.	3.7	22
180	Characterization and analysis of activated carbons prepared from furfural residues by microwave-assisted pyrolysis and activation. Fuel Processing Technology, 2021, 213, 106640.	7.2	22
181	Combination of interfacial reduction of hexavalent chromium and trivalent chromium immobilization on tin-functionalized hydroxyapatite materials. Applied Surface Science, 2021, 539, 148227.	6.1	20
182	Electrospun cationic nanofiber membranes for adsorption and determination of Cr(<scp>vi</scp>) in aqueous solution: adsorption characteristics and discoloration mechanisms. RSC Advances, 2021, 11, 31795-31806.	3.6	2

			2
#	ARTICLE	IF	CITATIONS
183	Review Paper. Utilization of Low-Cost Adsorbents for the Adsorption Process of Chromium ions IOP Conference Series: Materials Science and Engineering, 2021, 1076, 012095.	0.6	1
184	Recyclable methodology over bimetallic zero-valent Mg:Zn composition for hexavalent chromium remediation via batch and flow systems in industrial wastewater: an experimental design. Journal of Materials Research and Technology, 2021, 11, 1-18.	5.8	8
185	Investigation the Effects of Green-Synthesized Copper Nanoparticles on the Performance of Activated Carbon-Chitosan-Alginate for the Removal of Cr(VI) from Aqueous Solution. Molecules, 2021, 26, 2617.	3.8	9
186	Pentaclethra macrophylla stem bark extract anchored on functionalized MWCNT-spent molecular sieve nanocomposite for the biosorption of hexavalent chromium. International Journal of Phytoremediation, 2021, , 1-10.	3.1	4
187	The excursion covered for the elimination of chromate by exploring the coordination mechanisms between chromium species and various functional groups. Coordination Chemistry Reviews, 2021, 437, 213868.	18.8	21
188	An Efficient Strategy for Enhancing the Adsorption of Antibiotics and Drugs from Aqueous Solutions Using an Effective Limestone-Activated Carbon–Alginate Nanocomposite. Molecules, 2021, 26, 5180.	3.8	12
189	Adsorption characteristics of Cr(VI) on microalgae immobilized by different carriers. International Journal of Phytoremediation, 2022, 24, 704-720.	3.1	6
190	Chromium(VI) adsorption–reduction using a fibrous amidoxime-grafted adsorbent. Separation and Purification Technology, 2021, 277, 119536.	7.9	18
191	Adsorption behavior of gardenia yellow pigment on embedded spherical cellulose adsorbent. RSC Advances, 2021, 11, 4407-4416.	3.6	9
192	Restoration of Degraded Soil for Sustainable Agriculture. , 2020, , 31-81.		15
193	Comparison of Electrocoagulation and Chemical Coagulation Processes in Removing Reactive red 196 from Aqueous Solution. Journal of Human, Environment, and Health Promotion, 2016, 1, 172-182.	0.4	7
194	REMOVAL OF Cr(VI) FROM AQUEOUS ENVIRONMENT USING PEAT MOSS: EQUILIBRIUM STUDY. Environmental Engineering and Management Journal, 2012, 11, 21-28.	0.6	6
195	Biosorption of Chromium (VI) Using Rice Husk Ash and Modified Rice Husk Ash. Environmental Research Journal, 2010, 4, 244-250.	0.4	30
196	Hexavalent Chromium Removal and Reduction to Cr (III) by Polystyrene Tris(2-aminoethyl)amine. American Journal of Analytical Chemistry, 2015, 06, 26-37.	0.9	11
197	Concurrent Removal and Reduction of Cr(VI) by Wool: Short and Long Term Equilibration Studies. American Journal of Analytical Chemistry, 2015, 06, 47-57.	0.9	16
198	Application of Response Surface Methodology for Hexavalent Chromium Adsorption onto Alluvial Soil of Indian Origin. International Journal of Environmental Pollution and Solutions, 0, , .	1.0	5
199	Removal of C.I.Basic yellow 2 from aqueous solution by adsorption onto granular activated carbon using an on-line spectrophotometric analysis system: Kinetic and equilibrium study. Global Nest Journal, 2013, 13, 246-254.	0.1	1
200	Removal of chromium (VI) from aqueous solution by natural clay. Archives of Business Research, 2018, 6, .	0.1	0

#	Article	IF	CITATIONS
201	Reduction and Biosorption of Cr(VI) from Aqueous Solutions by Acid-Modified Guava Seeds: Kinetic and Equilibrium Studies. Polish Journal of Chemical Technology, 2020, 22, 36-47.	0.5	2
202	Carbon based nanomaterial for removal of heavy metals from wastewater: a review. International Journal of Environmental Analytical Chemistry, 2023, 103, 7961-7978.	3.3	3
203	Bimetallic CuPd nanoparticle-decorated MgAl-LDH/g-C3N4 composites for efficient photocatalytic reduction of aqueous Cr(VI). Journal of Industrial and Engineering Chemistry, 2022, 111, 183-191.	5.8	12
204	Preparation of Chitosan-Coated Silica from Rice Husk and Its Application on Chromium Adsorption. , 2021, , .		0
205	Selective removal of heavy metals by Zr-based MOFs in wastewater: New acid and amino functionalization strategy. Journal of Environmental Sciences, 2023, 124, 268-280.	6.1	39
206	An assessment of the lignocellulose-based biosorbents in removing Cr(VI) from contaminated water: A critical review. Results in Chemistry, 2022, 4, 100406.	2.0	5
207	Efficient photocatalytic degradation of metronidazole in wastewater under simulated sunlight using surfactant- and CuS-activated zeolite nanoparticles. Journal of Environmental Management, 2022, 319, 115697.	7.8	13
208	Adsorption and desorption characteristics of arsenic in calcareous soils as a function of time; equilibrium and thermodynamic study. Environmental Science and Pollution Research, 0, , .	5.3	1
209	Removal of hexavalent chromium ions using micellar modified adsorbent: isothermal and kinetic investigations. RSC Advances, 2022, 12, 23898-23911.	3.6	5
210	Chromium (VI) reduction by two-chamber bioelectrochemical system with electrically conductive wall. Electrochimica Acta, 2023, 440, 141738.	5.2	0
211	A Comprehensive Review of the Current Progress of Chromium Removal Methods from Aqueous Solution. Toxics, 2023, 11, 252.	3.7	10
212	Sorption properties of groundwater treatment residuals containing iron oxides. Journal of Environmental Chemical Engineering, 2023, 11, 110342.	6.7	0
214	Treatment of hazardous industrial solid wastes from electroplating industry: a comprehensive review. , 2023, , 141-167.		0
215	Utilizing Modified Maize Cobs as an Agricultural Waste Adsorbent for Removing Zinc (II) and Chromium (VI) Ions from Wastewater. Water Conservation Science and Engineering, 2023, 8, .	1.7	0
216	Antibiofilm and Anti-Quorum Sensing Potential of Safely-Synthesized Hydrated Zirconium Oxide-Coated Alginate Beads against Some Pathogenic Bacteria. Journal of Chemistry, 2023, 2023, 1-14.	1.9	2
218	Preparation and characterization of Allium cepa extract coated biochar and adsorption performance for hexavalent chromium. Scientific Reports, 2023, 13, .	3.3	0
219	Highly porous biochars from different biomasses as potential adsorbents for chromium removal: optimization by response surface methodology. International Journal of Environmental Science and Technology, 0, , .	3.5	0
220	Removal of hexavalent chromium from electroplating wastewater by ion-exchange in presence of Ni(II) and Zn(II) ions. Journal of Water Process Engineering, 2024, 58, 104815.	5.6	Ο

#	Article	IF	CITATIONS
221	TiO2/Multi-walled carbon nanotube electrospun nanofibers mats for enhanced Cr(VI) photoreduction. Journal of Cleaner Production, 2024, 448, 141611.	9.3	0