Culture of neural cells on silicon wafers with nano-scale

Journal of Neuroscience Methods 120, 17-23 DOI: 10.1016/s0165-0270(02)00181-4

Citation Report

#	Article	IF	CITATIONS
1	Retinal pigment epithelium cell culture on surface modified poly(hydroxybutyrate-co-hydroxyvalerate) thin films. Biomaterials, 2003, 24, 4573-4583.	5.7	123
2	Quantitative assessment of the response of primary derived human osteoblasts and macrophages to a range of nanotopography surfaces in a single culture model in vitro. Biomaterials, 2003, 24, 4799-4818.	5.7	133
3	Elucidation of the separate roles of myosins IIA and IIB during neurite outgrowth, adhesion and retraction. IET Nanobiotechnology, 2003, 150, 111.	2.1	16
4	Controlling Cell Attachment Selectively onto Biological Polymerâ^Colloid Templates Using Polymer-on-Polymer Stamping. Langmuir, 2004, 20, 7215-7222.	1.6	62
5	Submicron-scale topographical control of cell growth using holographic surface relief grating. Materials Science and Engineering C, 2004, 24, 209-212.	3.8	72
6	UV Embossing of Sub-micrometer Patterns on Biocompatible Polymeric Films Using a Focused Ion Beam Fabricated TiN Mold. Chemistry of Materials, 2004, 16, 956-958.	3.2	21
7	Neural interfacing. , 2004, 2004, 5325-8.		1
8	Measuring membrane potential and electric field of brainstem neurons in vitro by confocal microscopy. Brain Research Protocols, 2004, 13, 84-90.	1.7	2
9	Influence of nanoscale surface roughness on neural cell attachment on silicon. Nanomedicine: Nanotechnology, Biology, and Medicine, 2005, 1, 125-129.	1.7	123
10	AFM study of hippocampal cells cultured on silicon wafers with nano-scale surface topograph. Colloids and Surfaces B: Biointerfaces, 2005, 44, 152-157.	2.5	16
11	Combinatorial screening of cell proliferation on poly(l-lactic acid)/poly(d,l-lactic acid) blends. Biomaterials, 2005, 26, 6906-6915.	5.7	106
12	Preparation of cells cultured on silicon wafers for mass spectrometry analysis. Microscopy Research and Technique, 2005, 66, 248-258.	1.2	22
13	Enhanced neurite outgrowth of rat neural cortical cells on surface-modified films of poly(lactic-co-glycolic acid). Biotechnology Letters, 2005, 27, 53-58.	1.1	8
14	Rapid Fabrication and Chemical Patterning of Polymer Microstructures and their Applications as a Platform for Cell Cultures. Biomedical Microdevices, 2005, 7, 179-184.	1.4	27
15	Application of polymer microstructures with controlled surface chemistries as a platform for creating and interfacing with synthetic neural networks. , 0, , .		4
16	Patterned Biomimetic Membranes:Â Effect of Concentration and pH. Langmuir, 2005, 21, 7468-7475.	1.6	26
17	Nanotechnology approaches for the regeneration and neuroprotection of the central nervous system. World Neurosurgery, 2005, 63, 301-306.	1.3	99
19	Neuroscience nanotechnology: progress, opportunities and challenges. Nature Reviews Neuroscience, 2006, 7, 65-74.	4.9	336

# 20	ARTICLE Assessment of GaN chips for culturing cerebellar granule neurons. Biomaterials, 2006, 27, 3361-3367.	IF 5.7	CITATIONS
20	Assessment of Oak Chips for Culturing Cerebenal granule neurons. Biomaterials, 2000, 27, 5501-5507.	5.7	52
21	Methods for Fabrication of Nanoscale Topography for Tissue Engineering Scaffolds. Annals of Biomedical Engineering, 2006, 34, 89-101.	1.3	318
22	The Effect of Surface Topography on the Retention of Microorganisms. Food and Bioproducts Processing, 2006, 84, 253-259.	1.8	184
23	Compact self-wiring in cultured neural networks. Journal of Neural Engineering, 2006, 3, 95-101.	1.8	83
24	PC12 differentiation on biopolymer nanostructures. Nanotechnology, 2007, 18, 505103.	1.3	53
25	Cellular Behavior on Basement Membrane Inspired Topographically Patterned Synthetic Matrices. , 0, , 297-319.		2
26	A Hydrogel-Based Nerve Regeneration Conduit with Sub-Micrometer Feature Control. , 2007, , .		5
28	Submicron poly(L-lactic acid) pillars affect fibroblast adhesion and proliferation. Journal of Biomedical Materials Research - Part A, 2007, 82A, 80-91.	2.1	61
29	Response of human epithelial cells to culture surfaces with varied roughnesses prepared by immobilizing dendrimers with/without d-glucose display. Journal of Bioscience and Bioengineering, 2007, 103, 192-199.	1.1	31
30	Modern biomaterials: a review—bulk properties and implications of surface modifications. Journal of Materials Science: Materials in Medicine, 2007, 18, 1263-1277.	1.7	447
31	Atomic force and confocal microscopy for the study of cortical cells cultured on silicon wafers. Journal of Materials Science: Materials in Medicine, 2007, 18, 851-856.	1.7	11
32	A neural cell culture study on thin film electrode materials. Journal of Materials Science: Materials in Medicine, 2007, 18, 1745-1752.	1.7	22
33	Nanostructured scaffolds for neural applications. Nanomedicine, 2008, 3, 183-199.	1.7	140
34	Carbon nanotube micro-electrodes for neuronal interfacing. Journal of Materials Chemistry, 2008, 18, 5181.	6.7	72
35	FIB-Nanostructured Surfaces and Investigation of Bio/Nonbio Interactions at the Nanoscale. IEEE Transactions on Nanobioscience, 2008, 7, 1-10.	2.2	14
36	Tissue-Engineered Platforms of Axon Guidance. Tissue Engineering - Part B: Reviews, 2008, 14, 33-51.	2.5	90
37	Carbon microelectromechanical systems as a substratum for cell growth. Biomedical Materials (Bristol), 2008, 3, 034116.	1.7	58
38	Study on Si-surface modification with chitosan and cell adhesion. , 2008, , .		0

#	Article	IF	Citations
39	Response of Human Trabecular Meshwork Cells to Topographic Cues on the Nanoscale Level. , 2008, 49, 629.		38
40	Nanoscale through Substratum Topographic Cues Modulate Human Embryonic Stem Cell Self-Renewal. Journal of Biomimetics, Biomaterials, and Tissue Engineering, 2009, 2, 15-26.	0.7	5
41	Cell Culture on MEMS Platforms: A Review. International Journal of Molecular Sciences, 2009, 10, 5411-5441.	1.8	120
42	Nanomaterials for Neural Interfaces. Advanced Materials, 2009, 21, 3970-4004.	11.1	460
43	Influence of silicone surface roughness and hydrophobicity on adhesion and colonization of <i>Staphylococcus epidermidis</i> . Journal of Biomedical Materials Research - Part A, 2009, 88A, 454-463.	2.1	111
44	Titanium oxide as substrate for neural cell growth. Journal of Biomedical Materials Research - Part A, 2009, 90A, 94-105.	2.1	46
45	Enhanced polarization of embryonic hippocampal neurons on micron scale electrospun fibers. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1398-1406.	2.1	32
46	Role of PLLA plasma surface modification in the interaction with human marrow stromal cells. Journal of Applied Polymer Science, 2009, 114, 3602-3611.	1.3	37
47	The Role of Nanomedicine in Growing Tissues. Annals of Biomedical Engineering, 2009, 37, 2034-2047.	1.3	49
48	Advances and Prospect of Nanotechnology in Stem Cells. Nanoscale Research Letters, 2009, 4, 593-605.	3.1	82
49	On diamond surface properties and interactions with neurons. European Physical Journal E, 2009, 30, 149-56.	0.7	31
50	A mesoporous silica nanosphere-based drug delivery system using an electrically conducting polymer. Nanotechnology, 2009, 20, 275102.	1.3	64
51	Process entanglement as a neuronal anchorage mechanism to rough surfaces. Nanotechnology, 2009, 20, 015101.	1.3	97
52	Nanotechnological applications for the treatment of neurodegenerative disorders. Progress in Neurobiology, 2009, 88, 272-285.	2.8	149
53	Microfluidics: A new cosset for neurobiology. Lab on A Chip, 2009, 9, 644-652.	3.1	111
54	Textural guidance cues for controlling process outgrowth of mammalian neurons. Lab on A Chip, 2009, 9, 122-131.	3.1	76
55	Carbon nanotubes as substrates/scaffolds for neural cell growth. Progress in Brain Research, 2009, 180, 110-125.	0.9	42
56	Immune Response to Implanted Nanostructured Materials. , 2010, , 143-156.		1

		CITATION REPORT	
#	Article	IF	CITATIONS
57	Modulating cellular adhesion through nanotopography. Biomaterials, 2010, 31, 173-179.	5.7	135
58	Cells preferentially grow on rough substrates. Biomaterials, 2010, 31, 7205-7212.	5.7	240
59	Influence of nanoscale surface topography on protein adsorption and cellular response. N 2010, 5, 66-78.	ano Today, 6.2	514
60	Micro- and nanotechnology approaches for capturing circulating tumor cells. Cancer Nanotechnology, 2010, 1, 3-11.	1.9	14
61	A comprehensive review of surface modification for neural cell adhesion and patterning. Jo Biomedical Materials Research - Part A, 2010, 93A, 1209-1224.	ournal of 2.1	65
62	Direct and Proteinâ€Mediated Cell Attachment on Differently Terminated Nanocrystalline Chemical Vapor Deposition, 2010, 16, 42-49.	Diamond. 1.4	18
63	Processing Technologies for 3D Nanostructured Tissue Engineering Scaffolds. Advanced E Materials, 2010, 12, B467.	ngineering 1.6	36
64	Fabrication of Density Gradients of Biodegradable Polymer Microparticles and Their Use in Neurite Outgrowth. Advanced Functional Materials, 2010, 20, 1632-1637.	n Guiding 7.8	39
66	Pitchâ€Đependent Acceleration of Neurite Outgrowth on Nanostructured Anodized Alum Substrates. Angewandte Chemie - International Edition, 2010, 49, 10114-10118.	inum Oxide 7.2	26
67	Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polymer I and Stability, 2010, 95, 2126-2146.	Degradation 2.7	823
68	Neuronal adhesion and differentiation driven by nanoscale surface free-energy gradients. Biomaterials, 2010, 31, 3762-3771.	5.7	42
69	Template synthesized poly(É>-caprolactone) nanowire surfaces for neural tissue engineeri Biomaterials, 2010, 31, 3492-3501.	ng. 5.7	56
70	Controlling cellular activity by manipulating silicone surface roughness. Colloids and Surfa Biointerfaces, 2010, 78, 237-242.	aces B: 2.5	59
71	The extracellular matrix microtopography drives critical changes in cellular motility and Rh activity in colon cancer cells. Cancer Cell International, 2010, 10, 24.	io A 1.8	6
72	Electrically active nanomaterials as improved neural tissue regeneration scaffolds. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 635-647.	3.3	57
73	Nanoscale surfacing for regenerative medicine. Wiley Interdisciplinary Reviews: Nanomedi Nanobiotechnology, 2010, 2, 478-495.	icine and 3.3	58
74	Nanotechnology applications and approaches for neuroregeneration and drug delivery to nervous system. Annals of the New York Academy of Sciences, 2010, 1199, 221-230.	the central 1.8	52
75	Bio-nanotechnology Approaches to Neural Tissue Engineering. , 2010, , .		3

# 76	ARTICLE Nanostructured biocomposites for tissue engineering scaffolds. , 2010, , 509-546.	IF	CITATIONS
77	Stem Cell Interaction with Topography. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2010, , 61-87.	0.7	1
78	Carbon Nanotube-Based Neurochips. Methods in Molecular Biology, 2010, 625, 171-177.	0.4	4
79	Nanotopography/Mechanical Induction of Stem-Cell Differentiation. Methods in Cell Biology, 2010, 98, 241-294.	0.5	64
80	Conducting polymer-hydrogels for medical electrode applications. Science and Technology of Advanced Materials, 2010, 11, 014107.	2.8	221
81	Enabling individualized therapy through nanotechnology. Pharmacological Research, 2010, 62, 57-89.	3.1	188
84	Polarization-Controlled Differentiation of Human Neural Stem Cells Using Synergistic Cues from the Patterns of Carbon Nanotube Monolayer Coating. ACS Nano, 2011, 5, 4704-4711.	7.3	60
85	Initial cellular response to laser surface engineered biomaterials. MRS Bulletin, 2011, 36, 1034-1042.	1.7	4
86	Microstructured platforms to study nanotube-mediated long-distance cell-to-cell connections. Biointerphases, 2011, 6, 22-31.	0.6	6
87	Biomedical Sensors and Measurement. Advanced Topics in Science and Technology in China, 2011, , .	0.0	16
88	Large Protein Absorptions from Small Changes on the Surface of Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 18275-18283.	1.5	49
90	Nanostructured Material Surfaces – Preparation, Effect on Cellular Behavior, and Potential Biomedical Applications: A Review. International Journal of Artificial Organs, 2011, 34, 963-985.	0.7	26
91	Controllable silicon nano-grass formation using a hydrogenation assisted deep reactive ion etching. Materials Science in Semiconductor Processing, 2011, 14, 199-206.	1.9	15
92	Wallerian-Like Degeneration of Central Neurons After Synchronized and Geometrically Registered Mass Axotomy in a Three-Compartmental Microfluidic Chip. Neurotoxicity Research, 2011, 19, 149-161.	1.3	66
93	Effects of surface wettability, flow, and protein concentration on macrophage and astrocyte adhesion in an <i>in vitro</i> model of central nervous system catheter obstruction. Journal of Biomedical Materials Research - Part A, 2011, 97A, 433-440.	2.1	27
94	Controlling neurite outgrowth with patterned substrates. Journal of Biomedical Materials Research - Part A, 2011, 97A, 451-456.	2.1	10
95	One-step approach for hydroxyapatite-incorporated TiO2 coating on titanium via a combined technique of micro-arc oxidation and electrophoretic deposition. Applied Surface Science, 2011, 257, 7010-7018.	3.1	47
96	Biomaterial surface topography to control cellular response: technologies, cell behaviour and biomedical applications. , 2011, , 169-201.		7

#	Article	IF	CITATIONS
97	Carbon nanotubes in neural interfacing applications. Journal of Neural Engineering, 2011, 8, 011001.	1.8	93
98	Nanotechnology Enabled In situ Sensors for Monitoring Health. , 2011, , .		8
99	Dual-Scale Polymeric Constructs as Scaffolds for Tissue Engineering. Materials, 2011, 4, 527-542.	1.3	57
100	Porous Membrane Substrates Offer Better Niches to Enhance the Wnt Signaling and Promote Human Embryonic Stem Cell Growth and Differentiation. Tissue Engineering - Part A, 2012, 18, 1419-1430.	1.6	23
102	Electrospun Poly(γ-Benzyl-L-Glutamate) and Its Alkali-Treated Meshes: Their Water Wettability and Cell-Adhesion Potential. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1055-1067.	1.9	7
103	Advanced Nanostructured Surfaces for the Control of Biofouling: Cell Adhesions to Three-Dimensional Nanostructures. Green Energy and Technology, 2012, , 79-103.	0.4	4
104	Green Tribology. Green Energy and Technology, 2012, , .	0.4	70
105	Modulating cellular behaviors through surface nanoroughness. Journal of Materials Chemistry, 2012, 22, 15654.	6.7	42
106	Neurons on Parafilm: Versatile elastic substrates for neuronal cell cultures. Journal of Neuroscience Methods, 2012, 204, 28-34.	1.3	6
107	The interplay between osteoblast functions and the degree of nanoscale roughness induced by grain boundary grooving of nanograined materials. Materials Science and Engineering C, 2012, 32, 330-340.	3.8	25
108	Carbon nanotubes: Their potential and pitfalls for bone tissue regeneration and engineering. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 1139-1158.	1.7	111
109	Nitric oxide synthase mediates PC12 differentiation induced by the surface topography of nanostructured TiO2. Journal of Nanobiotechnology, 2013, 11, 35.	4.2	59
110	Chemically Functionalized Single-Walled Carbon Nanotube Films Modulate the Morpho-Functional and Proliferative Characteristics of Astrocytes. Nano Letters, 2013, 13, 4387-4392.	4.5	25
111	Understanding the role of nano-topography on the surface of a bone-implant. Biomaterials Science, 2013, 1, 135-151.	2.6	61
112	Laminin Adsorption on Nanostructures: Switching the Molecular Orientation by Local Curvature Changes. Langmuir, 2013, 29, 8335-8342.	1.6	26
113	Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects. Frontiers in Neural Circuits, 2012, 6, 122.	1.4	129
114	Nanomaterials for cartilage tissue engineering. , 2013, , 301-334.		0
115	Patterned neuronal networks using nanodiamonds and the effect of varying nanodiamond properties on neuronal adhesion and outgrowth. Journal of Neural Engineering, 2013, 10, 056022.	1.8	49

~		~	
(11		REPO	דסר
	IAL	IL PU	ואכ

#	Article	IF	CITATIONS
116	Selective modulation of cell response on engineered fractal silicon substrates. Scientific Reports, 2013, 3, 1461.	1.6	32
117	Infra-red laser ablative micromachining of parylene-C on SiO 2 substrates for rapid prototyping, high yield, human neuronal cell patterning. Biofabrication, 2013, 5, 025006.	3.7	13
118	Poly(Trimethylene Carbonate-co-ε-Caprolactone) Promotes Axonal Growth. PLoS ONE, 2014, 9, e88593.	1.1	24
119	Maintenance and Neuronal Cell Differentiation of Neural Stem Cells C17.2 Correlated to Medium Availability Sets Design Criteria in Microfluidic Systems. PLoS ONE, 2014, 9, e109815.	1.1	21
120	Neural Cell Response to Nanostructured Biosensor Surfaces. Procedia Engineering, 2014, 87, 971-974.	1.2	0
121	Quantification of Axonal Outgrowth on a Surface with Asymmetric Topography. Materials Research Society Symposia Proceedings, 2014, 1621, 243-248.	0.1	0
122	Neural circuits and in vivo monitoring using diamond. , 2014, , 291-304.		1
123	Defined Patterns of Neuronal Networks on 3D Thiol-functionalized Microstructures. Nano Letters, 2014, 14, 6906-6909.	4.5	16
124	Neuron Growth on Nanodiamond. RSC Nanoscience and Nanotechnology, 2014, , 195-220.	0.2	1
125	The orientation of the neuronal growth process can be directed via magnetic nanoparticles under an applied magnetic field. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1549-1558.	1.7	84
126	Protocol and cell responses in three-dimensional conductive collagen gel scaffolds with conductive polymer nanofibres for tissue regeneration. Interface Focus, 2014, 4, 20130050.	1.5	70
127	Nanoscale investigation on <i>Pseudomonas aeruginosa</i> biofilm formed on porous silicon using atomic force microscopy. Scanning, 2014, 36, 551-553.	0.7	6
128	Neurons on nanometric topographies: insights into neuronal behaviors in vitro. Biomaterials Science, 2014, 2, 148-155.	2.6	45
129	Fabrication of biocompatible free-standing nanopatterned films for primary neuronal cultures. RSC Advances, 2014, 4, 45696-45702.	1.7	31
130	Azobenzene based polymers as photoactive supports and micellar structures for applications in biology. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 291, 16-25.	2.0	35
131	A miniâ€review: Cell response to microscale, nanoscale, and hierarchical patterning of surface structure. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1580-1594.	1.6	170
132	Fabrication of planarised conductively patterned diamond for bio-applications. Materials Science and Engineering C, 2014, 43, 135-144.	3.8	23
133	Silicon substrate as a novel cell culture device for myoblast cells. Journal of Biomedical Science, 2014, 21, 47.	2.6	18

		CITATION REPORT		
#	Article		IF	CITATIONS
134	Cell-Based Biosensors and Their Application in Biomedicine. Chemical Reviews, 2014, 1	114, 6423-6461.	23.0	294
135	Investigation of the quenched surfaces of visibly luminescent macro/nanoporous silico exposure of typical neuron culture media. Surface Engineering and Applied Electrocher 318-325.	n under the mistry, 2015, 51,	0.3	0
136	Bridging the lesion—engineering a permissive substrate for nerve regeneration. Inter of Energy Production and Management, 2015, 2, 203-214.	national Journal	1.9	24
137	Fabrication of three-dimensional hydrogel scaffolds for modeling shunt failure by tissu obstruction in hydrocephalus. Fluids and Barriers of the CNS, 2015, 12, 26.	e	2.4	15
138	Nanoâ€ŧextured fluidic biochip as biological filter for selective survival of neuronal cell Biomedical Materials Research - Part A, 2015, 103, 2015-2023.	s. Journal of	2.1	11
140	Bone marrow-derived mesenchymal cells feature selective migration behavior on subm nano-dimensional multi-patterned substrates. Acta Biomaterialia, 2015, 16, 117-125.	iicro- and	4.1	21
141	Overview on Cell-Biomaterial Interactions. , 2015, , 91-128.			2
142	Progress towards biocompatible intracortical microelectrodes for neural interfacing ap Journal of Neural Engineering, 2015, 12, 011001.	plications.	1.8	309
144	Surface topography effect on fibroblasts population on epiclon-based polyimide films. Adhesion Science and Technology, 2015, 29, 2190-2207.	Journal of	1.4	17
145	Recent advances in silicon-based neural microelectrodes and microsystems: a review. S Actuators B: Chemical, 2015, 215, 300-315.	Sensors and	4.0	80
146	Positive and negative bioimprinted polymeric substrates: new platforms for cell culture Biofabrication, 2015, 7, 025002.	2.	3.7	27
147	A microfluidic neuronal platform for neuron axotomy and controlled regenerative stud Advances, 2015, 5, 73457-73466.	ies. RSC	1.7	38
148	Advanced Polymers in Medicine. , 2015, , .			24
149	Brain cells and neuronal networks: Encounters with controlled microenvironments. Microelectronic Engineering, 2015, 132, 176-191.		1.1	21
150	Neural Engineering. , 2016, , .			8
151	Engineering Neuronal Patterning and Defined Axonal Elongation In Vitro. , 2016, , 83-1	.21.		2
152	Roughness threshold for cell attachment and proliferation on plasma micro-nanotextu surfaces: the case of primary human skin fibroblasts and mouse immortalized 3T3 fibro Physics D: Applied Physics, 2016, 49, 304002.	red polymeric oblasts. Journal	1.3	37
153	Hydrophobicity of silver surfaces with microparticle geometry. Applied Surface Science 1195-1201.	2, 2016, 387,	3.1	4

#	Article	IF	CITATIONS
154	Fabrication of micro-structured scaffold using self-assembled particles and effects of surface geometries on cell adhesion. Mechanical Engineering Journal, 2016, 3, 15-00521-15-00521.	0.2	2
155	Optimizing growth and post treatment of diamond for high capacitance neural interfaces. Biomaterials, 2016, 104, 32-42.	5.7	45
156	Neurobiochemical changes in the vicinity of a nanostructured neural implant. Scientific Reports, 2016, 6, 35944.	1.6	24
157	Preparation, characterisation, and <i>in vitro</i> evaluation of electrically conducting poly(É›â€ɛaprolactone)â€based nanocomposite scaffolds using <scp>PC</scp> 12 cells. Journal of Biomedical Materials Research - Part A, 2016, 104, 853-865.	2.1	36
158	The influence of sterilization on nitrogen-included ultrananocrystalline diamond for biomedical applications. Materials Science and Engineering C, 2016, 61, 324-332.	3.8	23
159	Different methods to alter surface morphology of high aspect ratio structures. Applied Surface Science, 2016, 365, 180-190.	3.1	20
160	An investigation of cell adhesion and growth on micro/nano-scale structured surface—Self-assembled micro particles as a scaffold. Precision Engineering, 2016, 43, 294-298.	1.8	15
161	On-chip nanostructuring and impedance trimming of transparent and flexible ITO electrodes by laser induced coherent sub-20 nm cuts. Applied Surface Science, 2016, 360, 494-501.	3.1	2
162	Scale of Carbon Nanomaterials Affects Neural Outgrowth and Adhesion. IEEE Transactions on Nanobioscience, 2016, 15, 11-18.	2.2	4
163	Controlling the morphology and outgrowth of nerve and neuroglial cells: The effect of surface topography. Acta Biomaterialia, 2017, 51, 21-52.	4.1	171
164	Modeling the Adhesive Contact Between Cells and a Wavy Extracellular Matrix Mediated by Receptor–Ligand Interactions. Journal of Applied Mechanics, Transactions ASME, 2017, 84, .	1.1	4
165	Hierarchical thermoplastic rippled nanostructures regulate Schwann cell adhesion, morphology and spatial organization. Nanoscale, 2017, 9, 14861-14874.	2.8	20
166	Direct Laser Writing of Tubular Microtowers for 3D Culture of Human Pluripotent Stem Cell-Derived Neuronal Cells. ACS Applied Materials & Interfaces, 2017, 9, 25717-25730.	4.0	35
167	Effects of small intestinal submucosa content on the adhesion and proliferation of retinal pigment epithelial cells on SIS-PLGA films. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 99-108.	1.3	10
168	Selective PEGylation of Parylene-C/SiO2 Substrates for Improved Astrocyte Cell Patterning. Scientific Reports, 2018, 8, 2754.	1.6	7
169	Orienting proteins by nanostructured surfaces: evidence of a curvature-driven geometrical resonance. Nanoscale, 2018, 10, 7544-7555.	2.8	7
170	Preparation of Cytocompatible ITO Neuroelectrodes with Enhanced Electrochemical Characteristics Using a Facile Anodic Oxidation Process. Advanced Functional Materials, 2018, 28, 1605035.	7.8	16
171	A Materials Roadmap to Functional Neural Interface Design. Advanced Functional Materials, 2018, 28, 1701269.	7.8	266

#	Article	IF	CITATIONS
172	Surfaces functionalized by graphene oxide nanosheets for single cell investigations. Sensors and Actuators B: Chemical, 2018, 255, 1735-1743.	4.0	14
173	Nanostructured Materials for Neural Electrical Interfaces. Advanced Functional Materials, 2018, 28, 1701145.	7.8	50
174	Fundamentals of Biomaterials. , 2018, , .		20
175	Effects of diamond-like carbon thin film and wrinkle microstructure on cell proliferation. Diamond and Related Materials, 2018, 90, 194-201.	1.8	15
176	Nano- and Microarchitecture of Biomaterial Surfaces. , 2018, , 303-329.		1
177	Cell Attachment and Spreading on Carbon Nanotubes Is Facilitated by Integrin Binding. Frontiers in Bioengineering and Biotechnology, 2018, 6, 129.	2.0	25
178	Nanoscale and Macroscale Scaffolds with Controlled-Release Polymeric Systems for Dental Craniomaxillofacial Tissue Engineering. Materials, 2018, 11, 1478.	1.3	27
179	Microporous Titanium-Based Materials Coated by Biocompatible Thin Films. , 2018, , .		2
180	Biomimetic polycaprolactone-chitosan nanofibrous substrate influenced cell cycle and ECM secretion affect cellular uptake of nanoclusters. Bioactive Materials, 2019, 4, 79-86.	8.6	21
181	Comparing the effects of uncoated nanostructured surfaces on primary neurons and astrocytes. Journal of Biomedical Materials Research - Part A, 2019, 107, 2350-2359.	2.1	8
182	Anomalous diffusion for neuronal growth on surfaces with controlled geometries. PLoS ONE, 2019, 14, e0216181.	1.1	16
183	Gold nanostructure microelectrode arrays for <i>in vitro</i> recording and stimulation from neuronal networks. Nanotechnology, 2019, 30, 235501.	1.3	13
184	Carbon multiâ€electrode arrays as peripheral nerve interface for neural recording and nerve stimulation. Medical Devices & Sensors, 2019, 2, e10026.	2.7	3
185	Microscaffolds by Direct Laser Writing for Neurite Guidance Leading to Tailorâ€Made Neuronal Networks. Advanced Biology, 2019, 3, e1800329.	3.0	23
186	Neuron dynamics on directional surfaces. Soft Matter, 2019, 15, 9931-9941.	1.2	9
187	Relating the rate of growth of metal nanoparticles to cluster size distribution in electroless deposition. Nanoscale Advances, 2019, 1, 228-240.	2.2	13
188	Oxide thin films as bioactive coatings. Journal of Physics Condensed Matter, 2019, 31, 033001.	0.7	7
189	Vertically-Aligned Functionalized Silicon Micropillars for 3D Culture of Human Pluripotent Stem Cell-Derived Cortical Progenitors. Cells, 2020, 9, 88.	1.8	21

#	Article	IF	CITATIONS
190	Toward Brain-on-a-Chip: Human Induced Pluripotent Stem Cell-Derived Guided Neuronal Networks in Tailor-Made 3D Nanoprinted Microscaffolds. ACS Nano, 2020, 14, 13091-13102.	7.3	44
191	Forced peeling and relaxation of neurite governed by rate-dependent adhesion and cellular viscoelasticity. Extreme Mechanics Letters, 2020, 40, 100902.	2.0	0
192	Pyrolytic Carbon Nanograss Enhances Neurogenesis and Dopaminergic Differentiation of Human Midbrain Neural Stem Cells. Advanced Healthcare Materials, 2020, 9, e2001108.	3.9	7
193	Neurite guidance and neuro-caging on steps and grooves in 2.5 dimensions. Nanoscale Advances, 2020, 2, 5192-5200.	2.2	8
194	Graphene oxide nanofilm and the addition of l-glutamine can promote development of embryonic muscle cells. Journal of Nanobiotechnology, 2020, 18, 76.	4.2	10
195	Recent developments in smart window engineering: from antibacterial activity to self-cleaning behavior. , 2020, , 227-263.		1
196	Fundamental Characteristics of Neuron Adhesion Revealed by Forced Peeling and Time-Dependent Healing. Biophysical Journal, 2020, 118, 1811-1819.	0.2	10
197	Laser-Induced Periodic Surface Structure Enhances Neuroelectrode Charge Transfer Capabilities and Modulates Astrocyte Function. ACS Biomaterials Science and Engineering, 2020, 6, 1449-1461.	2.6	12
198	Impact of silicon-based substrates on graphene THz antenna. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 126, 114479.	1.3	13
200	Proliferation of mesenchymal stem cells by graphene-attached soft material structure. Diamond and Related Materials, 2021, 111, 108229.	1.8	3
201	Carbon Nanotube Modified Microelectrode Array for Neural Interface. Frontiers in Bioengineering and Biotechnology, 2020, 8, 582713.	2.0	25
202	Pyrolytic carbon nanograss electrodes for electrochemical detection of dopamine. Electrochimica Acta, 2021, 379, 138122.	2.6	12
203	Neuronal Growth and Formation of Neuron Networks on Directional Surfaces. Biomimetics, 2021, 6, 41.	1.5	6
204	Nanoparticle and Biomolecule Surface Modification Synergistically Increases Neural Electrode Recording Yield and Minimizes Inflammatory Host Response. Advanced Healthcare Materials, 2021, 10, e2002150.	3.9	19
205	Axonal growth on surfaces with periodic geometrical patterns. PLoS ONE, 2021, 16, e0257659.	1.1	4
206	Fractal Electronics as a Generic Interface to Neurons. Springer Series in Computational Neuroscience, 2016, , 553-565.	0.3	2
207	The Effect of Substratum Properties on the Survival of Attached Microorganisms on Inert Surfaces. Springer Series on Biofilms, 2009, , 13-33.	0.0	22
208	APP Processing Induced by Herpes Simplex Virus Type 1 (HSV-1) Yields Several APP Fragments in Human and Rat Neuronal Cells. PLoS ONE, 2010, 5, e13989.	1.1	121

#	Article	IF	CITATIONS
209	Effects of Surface Asymmetry on Neuronal Growth. PLoS ONE, 2014, 9, e106709.	1.1	26
210	Organic electrode coatings for next-generation neural interfaces. Frontiers in Neuroengineering, 2014, 7, 15.	4.8	211
211	Commensal <i>E. Coli</i> Strains Uniquely Alter the ECM Topography Independent of Colonic Epithelial Cells. Journal of Biomaterials and Nanobiotechnology, 2012, 03, 70-78.	1.0	2
212	Advances of Nanotechnology in the Stem Cells Research and Development. Nano Biomedicine and Engineering, 2010, 2, .	0.3	2
213	Guidance Strategies in Hand Tissue Engineering: Manipulating the Microenvironment Through Cellular and Material Cues. , 2010, , 125-139.		0
214	Electrically Active Neural Biomaterials. , 2011, , 95-114.		0
215	Micro and Nano Engineered Extracellular Matrices. Fundamental Biomedical Technologies, 2012, , 101-121.	0.2	0
217	Characterization of Nanoscale Biological Systems: Multimodal Atomic Force Microscopy for Nanoimaging, Nanomechanics, and Biomolecular Interactions. Fundamental Biomedical Technologies, 2012, , 45-68.	0.2	0
218	Instant Intracellular Delivery of miRNA via Photothermal Effect Induced on Plasmonic Pyramid Arrays. Advanced Functional Materials, 2022, 32, 2107999.	7.8	6
219	Scaffold Design for Nerve Regeneration. , 2021, , 257-283.		0
220	Fibroblast response is enhanced by poly(L-lactic acid) nanotopography edge density and proximity. International Journal of Nanomedicine, 2007, 2, 201-11.	3.3	19
221	Trends of Antibacterial, Antivirus and Antibiofilm Surface Treatments. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2021, 72, 252-258.	0.1	3
222	Bidirectional Modulation of Neuronal Cells Electrical and Mechanical Properties Through Pristine and Functionalized Graphene Substrates. Frontiers in Neuroscience, 2021, 15, 811348.	1.4	3
223	Controlled assembly of retinal cells on fractal and Euclidean electrodes. PLoS ONE, 2022, 17, e0265685.	1.1	4
225	Nanoscale geometry determines mechanical biocompatibility of vertically aligned nanofibers. Acta Biomaterialia, 2022, 146, 235-247.	4.1	6
226	Surface Area and Local Curvature: Why Roughness Improves the Bioactivity of Neural Implants. Langmuir, 2022, 38, 7512-7521.	1.6	6
227	Effects of neuronal cell adhesion molecule L1 and nanoparticle surface modification on microglia. Acta Biomaterialia, 2022, 149, 273-286.	4.1	6
228	Correlation of Cell Proliferation with Surface Properties of Polymer-like Carbon Films of Different Thicknesses Prepared by a Radio-Frequency Plasma CVD Process. Materials, 2022, 15, 4466.	1.3	2

		CITATION RE	CITATION REPORT		
#	Article		IF	CITATIONS	
229	Adhesion Energy Modulation Acts as an NGF Receptor Activator for Neuronal Differenti NGFâ€Free Medium. Advanced Materials Interfaces, 2022, 9, 2200717.	ation in	1.9	0	
230	Comparison of fractal and grid electrodes for studying the effects of spatial confinemend dissociated retinal neuronal and glial behavior. Scientific Reports, 2022, 12, .	nt on	1.6	3	
231	Semiconducting electrodes for neural interfacing: a review. Chemical Society Reviews, 2 1491-1518.	2023, 52,	18.7	5	