Thermal comfort in naturally ventilated buildings: revis

Energy and Buildings 34, 549-561 DOI: 10.1016/s0378-7788(02)00005-1

Citation Report

#	Article	IF	CITATIONS
2	Thermal comfort in Japanese schools. Solar Energy, 2003, 74, 245-252.	2.9	123
4	Adaptive thermal comfort standards in the hot–humid tropics. Energy and Buildings, 2004, 36, 628-637.	3.1	326
5	Thermal building behaviour in summer: long-term data evaluation using simplified models. Energy and Buildings, 2005, 37, 844-852.	3.1	28
6	Evaluation of simplified ventilation system with direct air supply through the facade in a school in a cold climate. Energy and Buildings, 2005, 37, 157-166.	3.1	13
7	Mitigating temperature increases in high lot density sub-tropical residential developments. Energy and Buildings, 2005, 37, 1212-1224.	3.1	12
8	CH2 Energy Harvesting Systems: Economic Use and Efficiency. Construction Economics and Building, 2005, 5, 20-31.	0.5	1
9	Impact of dynamic airflow on human thermal response. Indoor Air, 2006, 16, 348-355.	2.0	63
10	Ideal thermophysical properties for free-cooling (or heating) buildings with constant thermal physical property material. Energy and Buildings, 2006, 38, 1164-1170.	3.1	111
11	Total analysis of cooling effects of cross-ventilation affected by microclimate around a building. Solar Energy, 2006, 80, 371-382.	2.9	47
13	The skin's role in human thermoregulation and comfort. , 2006, , 560-602.		60
14	Predicting thermal comfort in Shanghai's non-air-conditioned buildings. Building Research and Information, 2006, 34, 507-514.	2.0	26
15	Thermal Comfort Requirements for Occupants of Semi-Outdoor and Outdoor Environments in Hot-Humid Regions. Architectural Science Review, 2007, 50, 357-364.	1.1	127
16	Mitigating CO2emissions from energy use in the world's buildings. Building Research and Information, 2007, 35, 379-398.	2.0	194
18	Monitoring Results of a Naturally Ventilated and Passively Cooled Office Building in Frankfurt, Germany. International Journal of Ventilation, 2007, 6, 3-20.	0.2	13
19	Thermal Comfort: Climate Change and the Environmental Design of Buildings in the United Kingdom. Built Environment, 2007, 33, 97-114.	0.4	32
20	Modeling Efficient Building Design: A Comparison of Conditioned and Free-Running House Rating Approaches. Architectural Science Review, 2007, 50, 52-59.	1.1	4
21	Energy efficient office buildings with passive cooling – Results and experiences from a research and demonstration programme. Solar Energy, 2007, 81, 424-434.	2.9	52
22	Maximum temperatures in European office buildings to avoid heat discomfort. Solar Energy, 2007, 81, 295-304.	2.9	111

TION RE

#	Article	IF	CITATIONS
23	Application of radiant cooling as a passive cooling option in hot humid climate. Building and Environment, 2007, 42, 543-556.	3.0	76
24	Impact of control rules on the efficiency of shading devices and free cooling for office buildings. Building and Environment, 2007, 42, 784-793.	3.0	94
25	Occupant comfort in UK offices—How adaptive comfort theories might influence future low energy office refurbishment strategies. Energy and Buildings, 2007, 39, 837-846.	3.1	116
27	Thermal comfort and workplace occupant satisfaction—Results of field studies in German low energy office buildings. Energy and Buildings, 2007, 39, 758-769.	3.1	248
28	Strategies for improved micro-climates in high-density residential developments in tropical climates. Energy for Sustainable Development, 2007, 11, 54-65.	2.0	17
29	Quantifying the relevance of adaptive thermal comfort models in moderate thermal climate zones. Building and Environment, 2007, 42, 156-170.	3.0	82
30	Estimating natural-ventilation potential considering both thermal comfort and IAQ issues. Building and Environment, 2007, 42, 2289-2298.	3.0	47
31	Thermal comfort in sub-Saharan Africa: Field study report in Jos-Nigeria. Applied Energy, 2008, 85, 1-11.	5.1	78
32	Thermal monitoring and indoor temperature predictions in a passive solar building in an arid environment. Building and Environment, 2008, 43, 1792-1804.	3.0	47
33	Thermal comfort in naturally ventilated and air-conditioned buildings in humid subtropical climate zone in China. International Journal of Biometeorology, 2008, 52, 385-398.	1.3	100
34	Daylighting analysis in a public school in Curitiba, Brazil. Renewable Energy, 2008, 33, 1695-1702.	4.3	27
35	Thermal comfort temperature range for factory workers in warm humid tropical climates. Renewable Energy, 2008, 33, 2057-2063.	4.3	39
36	Thermal behaviour and ventilation efficiency of a low-cost passive solar energy efficient house. Renewable Energy, 2008, 33, 1959-1973.	4.3	21
37	A study on the thermal comfort in sleeping environments in the subtropics—Developing a thermal comfort model for sleeping environments. Building and Environment, 2008, 43, 70-81.	3.0	195
38	Thermal performance of insulated roof slabs in tropical climates. Energy and Buildings, 2008, 40, 1153-1160.	3.1	41
39	Model to predict overheating risk based on an electrical capacitor analogy. Energy and Buildings, 2008, 40, 1240-1245.	3.1	26
40	Comparison of thermal comfort algorithms in naturally ventilated office buildings. Energy and Buildings, 2008, 40, 2215-2223.	3.1	77
41	Forty years of Fanger's model of thermal comfort: comfort for all?. Indoor Air, 2008, 18, 182-201.	2.0	511

	CITATION	Report	
#	ARTICLE Air-conditioned deployable force infrastructure as a strategy to combat sleep deprivation among	IF 0.9	CITATIONS
43	troops in hot countries. Building Services Engineering Research and Technology, 2008, 29, 327-339. A review of the IPCC Assessment Report Four, Part 2: Mitigation options for residential and commercial buildings. Building Services Engineering Research and Technology, 2008, 29, 363-374.	0.9	15
46	An integrated adaptive model for overheating risk prediction. Journal of Building Performance Simulation, 2008, 1, 43-55.	1.0	15
47	CHANGE OF THERMAL COMFORT OF STUDENT BY INSTALLATION OF AIR-CONDITIONING SYSTEM IN A CLASSROOM. Journal of Environmental Engineering (Japan), 2008, 73, 23-29.	0.1	3
48	Reinforcement Learning for Building Environmental Control. , 2008, , .		12
49	The impact of increasing the building envelope insulation upon the risk of overheating in summer and an increased energy consumption. Journal of Building Performance Simulation, 2009, 2, 267-282.	1.0	61
50	Thermal and daylighting evaluation of the effect of varying aspect ratios in urban canyons in Curitiba, Brazil. Journal of Renewable and Sustainable Energy, 2009, 1, 033108.	0.8	6
51	Investigating the adaptive model of thermal comfort for naturally ventilated school buildings in Taiwan. International Journal of Biometeorology, 2009, 53, 189-200.	1.3	94
52	Adaptive analysis of thermal comfort in university classrooms: Correlation between experimental data and mathematical models. Building and Environment, 2009, 44, 674-687.	3.0	128
53	Thermal perceptions, general adaptation methods and occupant's idea about the trade-off between thermal comfort and energy saving in hot–humid regions. Building and Environment, 2009, 44, 1128-1134.	3.0	144
54	A field study of thermal comfort in low-income dwellings in England before and after energy efficient refurbishment. Building and Environment, 2009, 44, 1228-1236.	3.0	147
55	On natural ventilation and thermal comfort in compact urban environments – the Old Havana case. Building and Environment, 2009, 44, 1943-1958.	3.0	93
56	A theoretical adaptive model of thermal comfort – Adaptive Predicted MeanÂVoteÂ(aPMV). Building and Environment, 2009, 44, 2089-2096.	3.0	496
57	Interactions with window openings by office occupants. Building and Environment, 2009, 44, 2378-2395.	3.0	336
58	Reducing energy use in the buildings sector: measures, costs, and examples. Energy Efficiency, 2009, 2, 139-163.	1.3	148
59	Overcoming problems in house energy ratings in temperate climates: A proposed new rating framework. Energy and Buildings, 2009, 41, 125-132.	3.1	27
60	Assessing the natural ventilation cooling potential of office buildings in different climate zones in China. Renewable Energy, 2009, 34, 2697-2705.	4.3	69
61	Evaluation method of natural ventilation system based on thermal comfort in China. Energy and Buildings, 2009, 41, 67-70.	3.1	38

#	Article	IF	CITATIONS
62	Assessment of monitored energy use and thermal comfort conditions in mosques in hot-humid climates. Energy and Buildings, 2009, 41, 607-614.	3.1	75
63	The effects of night ventilation technique on indoor thermal environment for residential buildings in hot-humid climate of Malaysia. Energy and Buildings, 2009, 41, 829-839.	3.1	154
64	Evidence base prioritisation of indoor comfort perceptions in Malaysian typical multi-storey hostels. Building and Environment, 2009, 44, 2158-2165.	3.0	52
65	Thermal comfort in residential buildings: Comfort values and scales for building energy simulation. Applied Energy, 2009, 86, 772-780.	5.1	281
66	Integrated thermal comfort analysis using a parametric manikin model for interactive real-time simulation. Journal of Building Performance Simulation, 2009, 2, 233-250.	1.0	23
68	THE EFFECTIVENESS OF NIGHT VENTILATION TECHNIQUE FOR RESIDENTIAL BUILDINGS IN HOT-HUMID CLIMATE OF MALAYSIA. Journal of Environmental Engineering (Japan), 2009, 74, 89-95.	0.1	3
69	UNDERSTANDING THE ACTUAL STATES OF ADAPTATION TO HEAT ARISING IN DAILY LIFE BASED ON EXPERIMENTS IN A CLIMATE CHAMBER. Journal of Environmental Engineering (Japan), 2009, 74, 115-124.	0.1	1
70	The Theory of Thermal Comfort in Naturally Ventilated Indoor Environments - "The Pleasure Principle― International Journal of Ventilation, 2009, 8, 243-250.	0.2	14
71	Estimating Natural-Ventilation Potential Considering Thermal Mass. , 2010, , .		1
72	Analysis of Thermal Comfort in Modern Train Station's Waiting Room of China. , 2010, , .		0
73	Application of a School Building Thermal Response Numerical Model in the Evolution of the Adaptive Thermal Comfort Level in the Mediterranean Environment. International Journal of Ventilation, 2010, 9, 287-304.	0.2	36
74	Derivation of the adaptive equations for thermal comfort in free-running buildings in European standard EN15251. Building and Environment, 2010, 45, 11-17.	3.0	402
75	Air movement acceptability limits and thermal comfort in Brazil's hot humid climate zone. Building and Environment, 2010, 45, 222-229.	3.0	164
76	Adaptive comfort model for tree-shaded outdoors in Taiwan. Building and Environment, 2010, 45, 1873-1879.	3.0	57
77	Passenger thermal perceptions, thermal comfort requirements, and adaptations in short- and long-haul vehicles. International Journal of Biometeorology, 2010, 54, 221-230.	1.3	36
78	Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design. International Journal of Biometeorology, 2010, 54, 319-334.	1.3	160
79	An investigation into thermal comfort and residential thermal environment in an intertropical sub-Saharan Africa region: Field study report during the Harmattan season in Cameroon. Energy Conversion and Management, 2010, 51, 1391-1397.	4.4	19
80	Occupants' adaptive responses and perception of thermal environment in naturally conditioned university classrooms. Applied Energy, 2010, 87, 1015-1022.	5.1	168

#	Article	IF	CITATIONS
81	Evaluating the impact of canyon geometry and orientation on cooling loads in a high-mass building in a hot dry environment. Applied Energy, 2010, 87, 2068-2078.	5.1	90
82	Thermal comfort: A review paper. Renewable and Sustainable Energy Reviews, 2010, 14, 2626-2640.	8.2	494
83	Impact of climate change on residential building envelope cooling loads in subtropical climates. Energy and Buildings, 2010, 42, 2098-2103.	3.1	64
84	Temperature ranges of the application of air-to-air heat recovery ventilator in supermarkets in winter, China. Energy and Buildings, 2010, 42, 2289-2295.	3.1	25
85	Air-conditioning Australian households: The impact of dynamic peak pricing. Energy Policy, 2010, 38, 7312-7322.	4.2	90
86	Potential model for single-sided naturally ventilated buildings in China. Solar Energy, 2010, 84, 1595-1600.	2.9	15
87	Thermal performance evaluation of a low-cost housing prototype made with plywood panels in Southern Brazil. Applied Energy, 2010, 87, 661-672.	5.1	16
88	Thermal performance study and evaluation of comfort temperatures in vernacular buildings of North-East India. Building and Environment, 2010, 45, 320-329.	3.0	146
89	Thermal acceptability assessment in buildings located in hot and humid regions in Brazil. Building and Environment, 2010, 45, 1225-1232.	3.0	40
90	Effectiveness of indirect evaporative cooling and thermal mass in a hot arid climate. Building and Environment, 2010, 45, 1422-1433.	3.0	57
91	Effect of MRT variation on the energy consumption in a PMV-controlled office. Building and Environment, 2010, 45, 1914-1922.	3.0	66
92	On the unification of thermal perception and adaptive actions. Building and Environment, 2010, 45, 2440-2457.	3.0	91
93	Evaluation of thermal comfort in a rail terminal location in India. Building and Environment, 2010, 45, 2571-2580.	3.0	62
94	Impact of climate change on cooling energy consumption. Journal of the Energy Institute, 2010, 83, 171-177.	2.7	4
96	Outdoor thermal comfort of two public squares in temperate and dry region of Esfahan, Iran. , 2010, ,		11
97	Comfort models and cooling of buildings in the Mediterranean zone. Advances in Building Energy Research, 2010, 4, 167-200.	1.1	26
98	Sensitivity of the Human Comfort Equation and of Free Convection in a Vertical Enclosure as Examples of the Use of Global Sensitivity to Evaluate Parameter Interactions. Journal of Heat Transfer, 2010, 132, .	1.2	1
99	Cooling exposure in hot humid climates: are occupants â€~addicted'?. Architectural Science Review, 2010, 53, 59-64.	1.1	50

ARTICLE IF CITATIONS Thermal comfort in buildings., 2010, , 127-147. 100 9 The environmental value of buildings: a proposal for performance assessment with reference to the case of the tall office building. Innovation: the European Journal of Social Science Research, 2011, 24, 31-55. Comfort standards and variations in exceedance for mixed-mode buildings. Building Research and 102 2.0 56 Information, 2011, 39, 118-133. Dynamic coupling of energy efficiency and building integrated photovoltaics in the residential sector. Integrating health, housing and energy policies: social practices of cooling. Building Research and 104 2.0 94 Information, 2011, 39, 154-168. Revisiting an old hypothesis of human thermal perception: alliesthesia. Building Research and Information, 2011, 39, 108-117. 221 Auditoria and Public Halls. The preserved Architectonic Heritage, in the Perspective of Sustainability. 106 1.2 1 Procedia Engineering, 2011, 21, 711-720. Adaptive thermal comfort model for different climatic zones of North-East India. Applied Energy, 2011, 5.1 88, 2420-2428. Influência da inércia térmica do solo e da ventilação natural no desempenho térmico: um estudo de 108 0.2 4 caso de um projeto residencial em light steel framing. Ambiente ConstruÃdo, 2011, 11, 113-128. Adaptive Comfort Degree-Days: A metric to compare adaptive comfort standards and estimate changes 109 3.1 in energy consumption for future UK climates. Energy and Buildings, 2011, 43, 2767-2778. Impact of European standard EN15251 in the energy certification of services buildingsâ€"A Portuguese 110 4.2 5 study case. Energy Policy, 2011, 39, 6390-6399. Implications of nonshivering thermogenesis for energy balance regulation in humans. American 0.9 245 Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R285-R296. Perception of temperature and wind by users of public outdoor spaces: relationships with weather 112 1.3 133 parameters and personal characteristics. International Journal of Biometeorology, 2011, 55, 665-680. Combined thermal acceptability and air movement assessments in a hot humid climate. Building and Environment, 2011, 46, 379-385. Operative temperature and thermal sensation assessments in non-air-conditioned multi-storey hostels 114 3.0 23 in Malaysia. Building and Environment, 2011, 46, 457-467. A comparison of the occupant comfort in a conventional high-rise office block and a contemporary 3.0 49 environmentally-concerned building. Building and Environment, 2011, 46, 535-545. Effect of personal and microclimatic variables on observed thermal sensation from a field study in 116 3.090 southern Brazil. Building and Environment, 2011, 46, 690-697. Indoor thermal environment evaluations and parametric analyses in naturally ventilated buildings in dry season using a field survey and PMVe-PPDe model. Building and Environment, 2011, 46, 1275-1283.

#	ARTICLE	IF	CITATIONS
118	The thermal mechanism of warm in winter and cool in summer in China traditional vernacular dwellings. Building and Environment, 2011, 46, 1709-1715.	3.0	45
119	An investigation on climate responsive design strategies of vernacular housing in Vietnam. Building and Environment, 2011, 46, 2088-2106.	3.0	116
120	Evaluation of adaptive thermal comfort models in moderate climates and their impact on energy use in office buildings. Energy and Buildings, 2011, 43, 423-432.	3.1	53
121	Simulation of the heating performance of the Kang system in one Chinese detached house using biomass. Energy and Buildings, 2011, 43, 189-199.	3.1	30
122	Field study of human thermal comfort and thermal adaptability during the summer and winter in Beijing. Energy and Buildings, 2011, 43, 1051-1056.	3.1	219
123	Impact of adaptive thermal comfort criteria on building energy use and cooling equipment size using a multi-objective optimization scheme. Energy and Buildings, 2011, 43, 2055-2067.	3.1	57
124	Simplified method for yearlong thermal analysis of building prototypes. Renewable Energy, 2011, 36, 699-708.	4.3	4
125	A new thermal comfort approach comparing adaptive and PMV models. Renewable Energy, 2011, 36, 951-956.	4.3	51
126	Notice of Retraction: Adaptive thermal comfort investigation of college dormitories. , 2011, , .		0
127	Energy Efficient and Low-Cost Indoor Environment Monitoring System Based on the IEEE 1451 Standard. IEEE Sensors Journal, 2011, 11, 2598-2610.	2.4	55
129	Evaluating daylighting potential and energy efficiency in a classroom building. Journal of Renewable and Sustainable Energy, 2011, 3, 063112.	0.8	11
130	A study on thermal parameters in residential buildings associated with hot humid environments. Architectural Science Review, 2011, 54, 23-38.	1.1	16
131	Text mining for occupant perspectives on the physical workplace. Building Research and Information, 2011, 39, 169-182.	2.0	26
132	The Impact of Hybrid Ventilation on Thermal and Energy Performance in Hot and Humid Weather. Advanced Materials Research, 0, 199-200, 1505-1508.	0.3	0
133	Housing, heat stress and health in a changing climate: promoting the adaptive capacity of vulnerable households, a suggested way forward. Health Promotion International, 2011, 26, 492-498.	0.9	69
134	Effect of variable ventilation modes on indoor thermal comfort and building energy consumption. International Journal of Low-Carbon Technologies, 2012, 7, 187-191.	1.2	7
135	Analysis of Building Hybrid Ventilation Efficiency in Different Climate Regions of China. Applied Mechanics and Materials, 0, 170-173, 2693-2698.	0.2	1
136	Use of natural ventilation in reducing building energy consumption in single-family housing in Brazil. , 2012, , .		1

	Сітаті	ION REPORT	
#	Article	IF	CITATIONS
137	The natural ventilation performance of buildings under alternative future weather projections. Building Services Engineering Research and Technology, 2012, 33, 35-50.	0.9	11
138	Investigation on a Passive Solar House Equipped with Water Thermal Storage Wall. Applied Mechanics and Materials, 0, 178-181, 193-196.	0.2	1
139	Adaptive Thermal Comfort: Principles and Practice. , 0, , .		200
140	An Urban Approach To Climate Sensitive Design. , 0, , .		36
141	Energy efficiency in buildings, industry and transportation. , 2012, , .		2
142	Exploiting a Hybrid Environmental Design Strategy in the Continental Climate of Beijing. International Journal of Ventilation, 2012, 11, 105-130.	0.2	4
143	Naturally ventilated classrooms: An assessment of existing comfort models for predicting the thermal sensation and preference of primary school children. Energy and Buildings, 2012, 53, 166-182.	3.1	189
144	Indoor thermal conditions and the potential of energy conservation of naturally ventilated rooms in summer, China. Energy and Buildings, 2012, 55, 183-188.	3.1	14
145	The feasibility of passive downdraught evaporative cooling for high-rise office buildings in Cairo. Architectural Science Review, 2012, 55, 307-319.	1.1	1
146	Impact of different building ventilation modes on occupant expectations ofÂtheÂmain IEQ factors. Building and Environment, 2012, 57, 184-193.	3.0	64
147	Challenges and future directions for energy and buildings research. Building Research and Information, 2012, 40, 391-400.	2.0	36
148	Contribuição ao zoneamento bioclimático brasileiro: reflexões sobre o semiárido nordestino. Ambiente ConstruÃdo, 2012, 12, 59-75.	0.2	10
149	A comparison of the thermal adaptability of people accustomed to air-conditioned environments and naturally ventilated environments. Indoor Air, 2012, 22, 110-118.	2.0	117
150	Effects of artificially induced heat acclimatization on subjects' thermal and air movement preferences. Building and Environment, 2012, 49, 251-258.	3.0	26
151	Human thermal adaptive behaviour in naturally ventilated offices for different outdoor air temperatures: A case study in Changsha China. Building and Environment, 2012, 50, 76-89.	3.0	47
152	Adaptive comfort from the viewpoint of human body exergy consumption. Building and Environment, 2012, 51, 351-360.	3.0	36
153	Mixed-mode buildings: A double standard in occupants' comfort expectations. Building and Environment, 2012, 54, 53-60.	3.0	131
154	Green occupants for green buildings: The missing link?. Building and Environment, 2012, 56, 21-27.	3.0	202

#	ARTICLE	IF	CITATIONS
155	An adaptive thermal comfort model for hot humid South-East Asia. Building and Environment, 2012, 56, 291-300.	3.0	130
156	Post-occupancy evaluation of 20 office buildings as basis for future IEQ standards and guidelines. Energy and Buildings, 2012, 46, 167-175.	3.1	157
157	A statistical approach for the evaluation of thermal and visual comfort in free-running buildings. Energy and Buildings, 2012, 47, 402-410.	3.1	62
158	The adaptive approach to thermal comfort: A critical overview. Energy and Buildings, 2012, 51, 101-110.	3.1	179
159	Estimation of some comfort parameters for sleeping environments in dry-tropical sub-Saharan Africa region. Energy Conversion and Management, 2012, 58, 110-119.	4.4	17
160	Peak electricity demand and social practice theories: Reframing the role of change agents in the energy sector. Energy Policy, 2012, 44, 226-234.	4.2	144
161	Residential thermal environment in cold climates at high altitudes and building energy use implications. Energy and Buildings, 2013, 62, 139-145.	3.1	64
162	A review into thermal comfort in buildings. Renewable and Sustainable Energy Reviews, 2013, 26, 201-215.	8.2	235
163	Multi-objective optimization of a building envelope for thermal performance using genetic algorithms and artificial neural network. Energy and Buildings, 2013, 67, 253-260.	3.1	122
164	Physiological and subjective thermal response from Indians. Building and Environment, 2013, 70, 306-317.	3.0	27
165	An overview of solar assisted air conditioning in Queensland's subtropical regions, Australia. Renewable and Sustainable Energy Reviews, 2013, 26, 781-804.	8.2	46
166	A comparison of suit dresses and summer clothes in the terms of thermal comfort. Journal of Environmental Health Science & Engineering, 2013, 11, 32.	1.4	5
167	Evaluation of thermal environmental conditions and thermal perception at naturally ventilated hostels of undergraduate studentsÂin composite climate. Building and Environment, 2013, 66, 42-53.	3.0	56
168	A numerical investigation into the feasibility of integrating green building technologies into row houses in the Middle East. Architectural Science Review, 2013, 56, 279-296.	1.1	41
169	Nutzerzufriedenheit mit dem thermischen Komfort in BürogebÃ ¤ den mit Umweltenergiekonzepten. Bauphysik, 2013, 35, 377-391.	1.2	3
170	HVAC systems testing and check: A simplified model to predict thermal comfort conditions in moderate environments. Applied Energy, 2013, 104, 117-127.	5.1	85
171	Development of an adaptive thermal comfort equation for naturally ventilated buildings in hot–humid climates using ASHRAE RP-884 database. Frontiers of Architectural Research, 2013, 2, 278-291.	1.3	140
172	Investigation on the influencing factors of energy consumption and thermal comfort for a passive solar house with water thermal storage wall. Energy and Buildings, 2013, 64, 218-223.	3.1	64

#	Article	IF	CITATIONS
173	Feedback from human adaptive behavior to neutral temperature in naturally ventilated buildings: Physical and psychological paths. Building and Environment, 2013, 67, 240-249.	3.0	29
174	Simulation of energy saving potential of a centralized HVAC system in an academic building using adaptive cooling technique. Energy Conversion and Management, 2013, 75, 617-628.	4.4	26
175	The potential for office buildings with mixed-mode ventilation and low energy cooling systems in arid climates. Energy and Buildings, 2013, 65, 368-381.	3.1	79
176	Impact of passive techniques and clean conditioning systems on comfort and economic feasibility in low-cost shelters. Energy and Buildings, 2013, 62, 414-426.	3.1	13
177	Correlations in thermal comfort and natural wind. Journal of Thermal Biology, 2013, 38, 419-426.	1.1	23
178	The impact of configuration and orientation of solar thermosyphonic systems on night ventilation and fan energy savings. Energy and Buildings, 2013, 57, 119-131.	3.1	12
179	Thermal comfort in naturally ventilated spaces and under indirect evaporative passive cooling conditions in hot–humid climate. Energy and Buildings, 2013, 63, 79-86.	3.1	27
180	Passive climatization using a cool roof and natural ventilation for internally displaced persons in hot climates: Case study for Haiti. Building and Environment, 2013, 59, 116-126.	3.0	38
181	Field investigation of comfort temperature in Indian office buildings: A case of Chennai and Hyderabad. Building and Environment, 2013, 65, 195-214.	3.0	81
182	Thermal comfort in offices in summer: Findings from a field study under the â€~setsuden' conditions in Tokyo, Japan. Building and Environment, 2013, 61, 114-132.	3.0	126
183	Indoor environmental quality assessment models: A literature review and a proposed weighting and classification scheme. Building and Environment, 2013, 70, 210-222.	3.0	208
184	A Field Study on Thermal Comfort of Occupants and Acceptable Neutral Temperature at the National Museum in Malaysia. Indoor and Built Environment, 2013, 22, 433-444.	1.5	31
185	Optimal Personal Comfort Management Using SPOT+. , 2013, , .		36
186	A Unified Adaptive Fanger's Model for Thermal Comfort in Tropical Countries. Applied Mechanics and Materials, 0, 393, 799-808.	0.2	2
187	Evaluation of the Workplace Environment in the UK, and the Impact on Users' Levels of Stimulation. Indoor and Built Environment, 2013, 22, 965-976.	1.5	10
188	Effect of the Environmental Stimuli upon the Human Body in Winter Outdoor Thermal Environment. Journal of Environmental and Public Health, 2013, 2013, 1-10.	0.4	16
189	Defining indoor heat thresholds for health in the UK. Perspectives in Public Health, 2013, 133, 158-164.	0.8	70
190	Some aspects of physiologic climatology in Nigeria. Interdisciplinary Environmental Review, 2013, 14, 150.	0.1	4

#	Article	IF	CITATIONS
191	Peak electricity demand and social practice theories: reframing the role of change agents in the energy sector. , 2013, , .		0
193	Demolish or refurbish – Environmental benefits of housing conservation. Construction Economics and Building, 2013, 13, 18-34.	0.5	13
194	Thermal Performance of Traditional and New Concept Houses in the Ancient Village of San Pedro De Atacama and Surroundings. Sustainability, 2014, 6, 3321-3337.	1.6	20
195	Is it hot in here or is it just me? Validating the post-occupancy evaluation. Intelligent Buildings International, 2014, 6, 112-134.	1.3	53
196	Data-driven state-space modeling of indoor thermal sensation using occupant feedback. , 2014, , .		1
197	Study on Natural Ventilation Potential for Residential Buildings in Southern China. Advanced Materials Research, 2014, 919-921, 1610-1617.	0.3	0
198	Influence of seasonal variation on thermal comfort and ventilation rates in Gaza Strip climate. Turkish Journal of Engineering and Environmental Sciences, 2014, 38, 197-208.	0.1	2
199	Energy-efficient retrofit of an unconditioned institute building. Architectural Science Review, 2014, 57, 49-62.	1.1	4
200	Indoor air quality and thermal comfort in temporary houses occupied after the Great East Japan Earthquake. Indoor Air, 2014, 24, 425-437.	2.0	25
201	Energy control algorithms for HVAC systems. , 2014, , .		1
202	Assessing thermal comfort and energy efficiency in tropical African offices using the adaptive approach. Structural Survey, 2014, 32, 396-412.	1.0	12
203	Effect of building envelope on thermal environmental conditions of a naturally ventilated building block in tropical climate. Building Services Engineering Research and Technology, 2014, 35, 280-295.	0.9	13
204	A climate analysis tool for passive heating and cooling strategies in hot humid climate based on Typical Meteorological Year data sets. Energy and Buildings, 2014, 68, 756-763.	3.1	43
205	Using the central ventilation shaft design within public buildings for natural aeration enhancement. Applied Thermal Engineering, 2014, 70, 219-230.	3.0	41
206	Individual and district heating: A comparison of residential heating modes with an analysis of adaptive thermal comfort. Energy and Buildings, 2014, 78, 17-24.	3.1	66
207	The influence of outdoor thermal environment on young Japanese females. International Journal of Biometeorology, 2014, 58, 963-974.	1.3	12
208	PMV model is insufficient to capture subjective thermal response from Indians. International Journal of Industrial Ergonomics, 2014, 44, 349-361.	1.5	52
209	Development of an Online Heat Index Measurement System for Thermal Comfort Determination. Mapan - Journal of Metrology Society of India, 2014, 29, 67-72.	1.0	4

	CITATION		
#	ARTICLE	IF	Citations
210	Overheating in multifamily residential buildings in New York. Energy Efficiency, 2014, 7, 401-415.	1.3	3
211	Handling model uncertainty in model predictive control for energy efficient buildings. Energy and Buildings, 2014, 77, 377-392.	3.1	177
212	The impact of acclimatization on thermophysiological strain for contrasting regional climates. International Journal of Biometeorology, 2014, 58, 2129-2137.	1.3	23
213	Thermal comfort and building energy consumption implications – A review. Applied Energy, 2014, 115, 164-173.	5.1	962
214	Thermal comfort assessment and potential for energy efficiency enhancement in modern tropical buildings: A review. Energy and Buildings, 2014, 68, 547-557.	3.1	116
215	Statistical analysis of the ranking capability of long-term thermal discomfort indices and their adoption in optimization processes to support building design. Building and Environment, 2014, 75, 114-131.	3.0	31
216	Can personal control influence human thermal comfort? A field study in residential buildings in China in winter. Energy and Buildings, 2014, 72, 411-418.	3.1	120
217	Estimating the flexible residential load using appliances availability. , 2014, , .		3
218	Achieving thermal comfort in naturally ventilated rammed earth houses. Building and Environment, 2014, 82, 588-598.	3.0	27
219	A review on predicted mean vote and adaptive thermal comfort models. Building Services Engineering Research and Technology, 2014, 35, 23-35.	0.9	56
220	Energy saving technique for cooling dominated academic building: Techno-economic analysis of its application. Applied Energy, 2014, 132, 192-199.	5.1	4
221	An introduction to the Chinese Evaluation Standard for the indoor thermal environment. Energy and Buildings, 2014, 82, 27-36.	3.1	99
222	Thermal and comfort conditions in a semi-closed rear wooded garden and its adjacent semi-open spaces in a Mediterranean climate (Athens) during summer. Architectural Science Review, 2014, 57, 63-82.	1.1	21
223	Development of surrogate models using artificial neural network for building shell energy labelling. Energy Policy, 2014, 69, 457-466.	4.2	62
224	Estimating the HVAC energy consumption of plug-in electric vehicles. Journal of Power Sources, 2014, 259, 117-124.	4.0	114
225	The effect of dwelling occupants on energy consumption: the case of heat waves in Australia. Architectural Engineering and Design Management, 2014, 10, 40-59.	1.2	5
226	What is the most adequate method to assess thermal comfort in hybrid commercial buildings located in hot-humid summer climate?. Renewable and Sustainable Energy Reviews, 2014, 29, 449-462.	8.2	28
227	Perception of the thermal environment in sports facilities through subjective approach. Building and Environment, 2014, 77, 12-19.	3.0	56

	C	ITATION REPORT	
#	Article	IF	Citations
228	Estimating broad-brush rebound effects for household energy consumption in the EU 28 countries and Norway: some policy implications of Odyssee data. Energy Policy, 2014, 73, 323-332.	4.2	57
229	Adaptive model of thermal comfort for offices in hot and humid climates of India. Building and Environment, 2014, 74, 39-53.	3.0	197
230	Numerical Study of Heat Pipes Effects to a 3-Dimensional Room With Natural Driven Ventilation. , 20 , .)14,	0
231	Thermal Environments and Human Performance. , 2014, , 426-447.		0
232	Comparison of the Efficiency of Building Hybrid Ventilation Systems with Different Thermal Comfort Models. Energy Procedia, 2015, 78, 2820-2825.	1.8	18
233	Predicting individual thermal comfort using machine learning algorithms. , 2015, , .		35
234	Improved Thermal Comfort of Office Occupants Through Better Air Diffuser Designs. , 2015, , .		0
235	Adaptive Thermal Comfort: Foundations and Analysis. , 0, , .		35
236	EMPIRICAL INVESTIGATION OF INDOOR ENVIRONMENTAL QUALITY (IEQ) PERFORMANCE IN HOSPIT BUILDINGS IN NIGERIA. Jurnal Teknologi (Sciences and Engineering), 2015, 77, .	AL 0.3	1
237	A Review of Ultrasonic Tomography for Monitoring the Corrosion of Steel Pipes. Jurnal Teknologi (Sciences and Engineering), 2015, 73, .	0.3	1
238	Suitability of different comfort indices for the prediction of thermal conditions in tree-covered outdoor spaces in arid cities. Theoretical and Applied Climatology, 2015, 122, 69-83.	1.3	28
239	Comparative analysis of modified PMV models and SET models to predict human thermal sensation i naturally ventilated buildings. Building and Environment, 2015, 92, 200-208.	n 3.0	59
240	Perceptive-cognitive aspects investigation in relation to indoor environment satisfaction collected from naturally ventilated multi-storey student accommodations in Malaysia. Indoor and Built Environment, 2015, 24, 116-127.	1.5	9
241	A comprehensive sensitivity study of major passive design parameters for the public rental housing development in Hong Kong. Energy, 2015, 93, 1804-1818.	4.5	38
242	Review of Natural Ventilation Models. Energy Procedia, 2015, 78, 2700-2705.	1.8	44
243	Impacts of heat waves and corresponding measures: a review. Journal of Cleaner Production, 2015, 9 1-12.	92, 4.6	180
244	Integrated analysis of CFD data with K-means clustering algorithm and extreme learning machine for localized HVAC control. Applied Thermal Engineering, 2015, 76, 98-104.	3.0	33
245	A data-driven state-space model of indoor thermal sensation using occupant feedback for low-energy buildings. Energy and Buildings, 2015, 91, 187-198.	y 3.1	36

#	Article	IF	CITATIONS
246	Evaluating thermal comfort in mixed-mode buildings: A field study in a subtropical climate. Building and Environment, 2015, 88, 46-54.	3.0	142
247	Personal environmental control: Effects of pre-set conditions for heating and lighting on personal settings, task performance and comfort experience. Building and Environment, 2015, 86, 166-176.	3.0	49
248	The reliability of Predicted Mean Vote model predictions in an air-conditioned mosque during daily prayer times in Malaysia. Architectural Science Review, 2015, 58, 67-76.	1.1	27
249	Preliminary design method for naturally ventilated buildings using target air change rate and natural ventilation potential maps in the United States. Energy, 2015, 89, 655-666.	4.5	39
250	Impact of different thermal comfort models on zero energy residential buildings in hot climate. Energy and Buildings, 2015, 102, 117-128.	3.1	105
251	A review on natural ventilation applications through building façade components and ventilation openings in tropical climates. Energy and Buildings, 2015, 101, 153-162.	3.1	180
252	Understanding and mitigating overheating and indoor PM _{2.5} risks using coupled temperature and indoor air quality models. Building Services Engineering Research and Technology, 2015, 36, 275-289.	0.9	37
253	A field study on thermal comfort in an Italian hospital considering differences in gender and age. Applied Ergonomics, 2015, 50, 177-184.	1.7	74
254	Dynamic characteristics and comfort assessment of airflows in indoor environments: A review. Building and Environment, 2015, 91, 5-14.	3.0	65
255	Evaluating the potential of an indirect evaporative passive cooling system for Brazilian dwellings. Building and Environment, 2015, 87, 265-273.	3.0	36
256	Appropriate indoor operative temperature and bedding micro climate temperature that satisfies the requirements of sleep thermal comfort. Building and Environment, 2015, 92, 20-29.	3.0	61
257	Combined thermal and daylight analysis of a typical public rental housing development to fulfil green building guidance in Hong Kong. Energy and Buildings, 2015, 108, 420-432.	3.1	37
258	The use of adaptive thermal comfort models to evaluate the summer performance of a Mediterranean earth building. Energy and Buildings, 2015, 104, 350-359.	3.1	17
259	Evaluation of the Effect of the Different Distances between Two Facades Natural Ventilation on Atrium Buildings with DSF and PMV-PPD Comfort. Procedia Engineering, 2015, 121, 667-674.	1.2	5
260	Investigating the principal adaptive comfort relationships for young children. Building Research and Information, 2015, 43, 371-382.	2.0	18
261	Numerical investigation on the airflow characteristics and thermal comfort in buoyancy-driven natural ventilation rooms. Energy and Buildings, 2015, 109, 255-266.	3.1	34
262	Advanced building energy monitoring using wireless sensor integrated EnergyPlus platform for personal climate control. , 2015, , .		5
263	Urban heat island and indoor comfort effects in social housing dwellings. Landscape and Urban Planning, 2015, 134, 147-156.	3.4	16

ARTICLE IF CITATIONS # Geographical and temporal differences in electric vehicle range due to cabin conditioning energy 264 4.0 76 consumption. Journal of Power Sources, 2015, 275, 468-475. In-use monitoring of buildings: An overview and classification of evaluation methods. Energy and 3.1 Buildings, 2015, 86, 176-189. Development of thermal comfort models for various climatic zones of North-East India. Sustainable 266 5.1 40 Cities and Society, 2015, 14, 133-145. Global forecasting of thermal health hazards: the skill of probabilistic predictions of the Universal 79 Thermal Climate Index (UTCI). International Journal of Biometeorology, 2015, 59, 311-323. Perceived Thermal Discomfort and Stress Behaviours Affecting Students' Learning in Lecture Theatres 268 1.4 26 in the Humid Tropics. Buildings, 2016, 6, 18. Thermal history and comfort in a Brazilian subtropical climate: a 'cool' addiction hypothesis. 0.2 Ambiente ConstruÃdo, 2016, 16, 7-20. Efeitos da ilha de calor nos nÃveis de conforto em ambientes externos e internos para as condições 270 0.1 2 climÃ;ticas de Curitiba. Engenharia Sanitaria E Ambiental, 2016, 21, 459-467. Sustainability of Social Housing in Asia: A Holistic Multi-Perspective Development Process for 271 1.6 37 Bamboo-Based Construction in the Philippines. Sustainability, 2016, 8, 151. 272 Modeling the relationship between the environment and human experiences. Work, 2016, 54, 765-771. 0.6 8 Avaliação do potencial de resfriamento de um sistema teto-reservatório para condições subtropicais. 0.2 Ambiente ConstruÃdo, 2016, 16, 107-125. Intelligent Facades in Buildings Facades of local Office Buildings - Case Study. MATEC Web of 274 0.1 2 Conferences, 2016, 66, 00104. Thermal Assessment of Low-Cost Rural Housing—A Case Study in the Ecuadorian Andes. Buildings, 1.4 2016, 6, 36. Evaluating Thermal Comfort in a Naturally Conditioned Office in a Temperate Climate Zone. Buildings, 276 1.4 24 2016, 6, 27. Brown Adipose Tissue Is Linked to a Distinct Thermoregulatory Response to Mild Cold in People. 1.3 Frontiers in Physiology, 2016, 7, 129. Determination of Thermal Comfort for Social Impact Assessment: Case Study in Kota Damansara, 278 0.1 8 Selangor, Malaysia. American Journal of Applied Sciences, 2016, 13, 1156-1170. Effectiveness and Discussion of Ventilation Design with Automatic Revolving Window. MATEC Web of 279 Conferences, 2016, 44, 01083. Life Cycle Assessment of Residential Heating Systems: A Comparison of Distributed and Centralized 280 1.8 18 Systems. Energy Procedia, 2016, 104, 287-292. Extending the applicability of the adaptive comfort model to the control of air-conditioning systems. Building and Environment, 2016, 105, 13-23.

	Сітатіо	on Report	
# 282	ARTICLE Impact of indoor environmental quality on occupant well-being and comfort: A review of the literature. International Journal of Sustainable Built Environment, 2016, 5, 1-11.	IF 3.2	Citations 445
283	Adaptation of ANFIS model to assess thermal comfort of an urban square in moderate and dry climate. Stochastic Environmental Research and Risk Assessment, 2016, 30, 1189-1203.	1.9	13
284	Naturally comfortable and sustainable: Informed design guidance and performance labeling for passive commercial buildings in hot climates. Applied Energy, 2016, 174, 256-274.	5.1	59
285	Economic and thermodynamic study of different cooling options: A review. Renewable and Sustainable Energy Reviews, 2016, 62, 164-194.	8.2	16
286	Influence of household air-conditioning use modes on the energy performance of residential district cooling systems. Building Simulation, 2016, 9, 429-441.	3.0	54
287	A quantitative study of the climate-responsive design strategies of ancient timber-frame halls in northern China based on field measurements. Energy and Buildings, 2016, 133, 306-320.	3.1	16
288	Drivers and barriers to heat stress resilience. Science of the Total Environment, 2016, 571, 603-614.	3.9	47
289	Field study on thermal comfort of passenger at high-speed railway station in transition season. Building and Environment, 2016, 108, 220-229.	3.0	44
290	Hygrothermal performance of a straw bale building: In situ and laboratory investigations. Journal of Building Engineering, 2016, 8, 91-98.	1.6	51
291	Modelling the effect of tree-shading on summer indoor and outdoor thermal condition of two similar buildings in a Nigerian university. Energy and Buildings, 2016, 130, 721-732.	3.1	87
292	From simulation to monitoring: Evaluating the potential of mixed-mode ventilation (MMV) systems for integrating natural ventilation in office buildings through a comprehensive literature review. Energy and Buildings, 2016, 127, 1008-1018.	3.1	61
293	From Accounting to Firm Value. Procedia Economics and Finance, 2016, 39, 685-692.	0.6	4
294	Natural ventilation potential for gymnasia – Case study of ventilation and comfort in a multisport facility in northeastern United States. Building and Environment, 2016, 108, 85-98.	3.0	20
295	Assessing the Implementation Potential of PCMs: The Situation for Residential Buildings in the Netherlands. Energy Procedia, 2016, 96, 17-32.	1.8	14
296	Review of natural ventilation models. International Journal of Ventilation, 2016, , 1-19.	0.2	2
297	Adaptive thermal comfort in the two college campuses of Salesian College, Darjeeling – Effect of difference in altitude. Building and Environment, 2016, 109, 25-41.	3.0	27
298	Energy saving potential of natural ventilation in China: The impact of ambient air pollution. Applied Energy, 2016, 179, 660-668.	5.1	225
299	Smart Connected Buildings Design Automation: Foundations and Trends. Foundations and Trends in Electronic Design Automation, 2016, 10, 1-143.	1.0	16

#	Article	IF	CITATIONS
300	Impact of natural versus mechanical ventilation on simulated indoor air quality and energy consumption in offices in fourteen U.S. cities. Building and Environment, 2016, 104, 320-336.	3.0	105
301	An experimental study on the indoor thermal environment in prefabricated houses in the subtropics. Energy and Buildings, 2016, 127, 529-539.	3.1	29
302	Numerical evaluation of indoor thermal comfort and energy saving by operating the heating panel radiator at different flow strategies. Energy and Buildings, 2016, 121, 298-308.	3.1	30
303	Comparison of human thermal responses between the urban forest area and the central building district in Seoul, Korea. Urban Forestry and Urban Greening, 2016, 15, 133-148.	2.3	27
304	A field study of thermal and hygric inertia and its effects on indoor thermal comfort: Characterization of travertine stone envelope. Building and Environment, 2016, 106, 57-77.	3.0	21
305	Occupant productivity and office indoor environment quality: A review of the literature. Building and Environment, 2016, 105, 369-389.	3.0	497
306	Natural ventilation in Beirut residential buildings for extended comfort hours. International Journal of Sustainable Energy, 2016, 35, 996-1013.	1.3	16
307	Analysis on combinations of indoor thermal microclimate parameters in radiant cooled residential buildings and drawing of new thermal comfort charts. Building Services Engineering Research and Technology, 2016, 37, 66-84.	0.9	12
308	Predicting thermal and energy performance of mixed-mode ventilation using an integrated simulation approach. Building Simulation, 2016, 9, 335-346.	3.0	31
309	Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: A review. Renewable and Sustainable Energy Reviews, 2016, 59, 1426-1447.	8.2	291
310	The underlying linkage between personal control and thermal comfort: Psychological or physical effects?. Energy and Buildings, 2016, 111, 56-63.	3.1	130
311	Assessment of thermal comfort in existing pre-1945 residential building stock. Energy, 2016, 98, 122-134.	4.5	42
312	Indoor climate and thermal physiological adaptation: Evidences from migrants with different cold indoor exposures. Building and Environment, 2016, 98, 30-38.	3.0	92
313	Evaluating thermal comfort and building climatic response in warm-humid climates for vernacular dwellings in Suggenhalli (India). Architectural Science Review, 2016, 59, 12-26.	1.1	28
314	The impact of different solar passive systems on energy saving in public buildings and occupants' thermal and visual comfort. Journal of Building Physics, 2016, 40, 177-197.	1.2	13
315	The dynamics of thermal comfort expectations: The problem, challenge and impication. Building and Environment, 2016, 95, 322-329.	3.0	119
316	Dwelling performance and adaptive summer comfort in low-income Australian households. Building Research and Information, 2017, 45, 443-456.	2.0	41
317	Assessment of human thermal perception in the hot-humid climate of Dar es Salaam, Tanzania. International Journal of Biometeorology, 2017, 61, 69-85.	1.3	52

#	Article	IF	CITATIONS
318	Energy and comfort in contemporary open plan and traditional personal offices. Applied Energy, 2017, 185, 1542-1555.	5.1	36
319	Indoor air quality and thermal comfort optimization in classrooms developing an automatic system for windows opening and closing. Energy and Buildings, 2017, 139, 732-746.	3.1	103
320	Management and assessment of performance risks for bioclimatic buildings. Journal of Cleaner Production, 2017, 147, 654-667.	4.6	7
321	The analysis of microclimate parameters in the classrooms located in different climate zones. Applied Thermal Engineering, 2017, 113, 1088-1096.	3.0	18
322	Adjustments of the adaptive thermal comfort model based on the running mean outdoor temperature for Chinese people: A case study in Changsha China. Building and Environment, 2017, 114, 357-365.	3.0	36
323	Thermal comfort analysis of hostels in National Institute of Technology Calicut, India. Sadhana - Academy Proceedings in Engineering Sciences, 2017, 42, 63-73.	0.8	9
324	Student responses to classroom thermal environments in rural primary and secondary schools in winter. Building and Environment, 2017, 115, 104-117.	3.0	60
325	Applying passive cooling measures to a temporary disaster-relief prefabricated house to improve its indoor thermal environment in summer in the subtropics. Energy and Buildings, 2017, 139, 456-464.	3.1	25
326	Adapting to â€~extreme' weather: mobile practice memories of keeping warm and cool as a climate change adaptation strategy. Environment and Planning A, 2017, 49, 1432-1450.	2.1	34
327	Thermal performance assessment of passive techniques integrated into a residential building in semi-arid climate. Energy and Buildings, 2017, 143, 1-16.	3.1	44
328	Perceived indoor environmental quality of classrooms and outcomes: a study of a higher education institution in India. Architectural Engineering and Design Management, 2017, 13, 202-222.	1.2	15
329	Indoor thermal comfort predictions: Selected issues and trends. Renewable and Sustainable Energy Reviews, 2017, 74, 569-580.	8.2	62
330	Thermal and visual comfort assessment of natural ventilated office buildings in Europe and North America. Energy and Buildings, 2017, 140, 210-223.	3.1	41
331	Estimating natural ventilation potential for high-rise buildings considering boundary layer meteorology. Applied Energy, 2017, 193, 276-286.	5.1	104
332	Study of thermal comfort in underground construction based on field measurements and questionnaires in China. Building and Environment, 2017, 116, 45-54.	3.0	48
333	Thermal adaptive models in the residential buildings in different climate zones of Eastern China. Energy and Buildings, 2017, 141, 28-38.	3.1	72
334	Human thermal adaptation based on university students in China's severe cold area. Science and Technology for the Built Environment, 2017, 23, 413-420.	0.8	28
335	Reducing thermal energy demand in residential buildings under Spanish climatic conditions: Qualitative control strategies for massive shutter positioning. Building Simulation, 2017, 10, 643-661.	3.0	10

#	Article	IF	CITATIONS
336	Numerical assessment of night ventilation impact on the thermal comfort of vernacular buildings. Journal of Building Pathology and Rehabilitation, 2017, 2, 1.	0.7	9
337	Design and implementation of an HVAC System for converting a decommissioned hangar in a conference room with a capacity of 800 seats. , 2017, , .		Ο
338	Fabrication and characterization of form-stable capric-palmitic-stearic acid ternary eutectic mixture/nano-SiO2 composite phase change material. Energy and Buildings, 2017, 147, 41-46.	3.1	63
339	Experimental and numerical study of back-cooling car-seat system using embedded heat pipes to improve passenger's comfort. Energy Conversion and Management, 2017, 144, 123-131.	4.4	13
340	Parametric study of passive design strategies for high-rise residential buildings in hot and humid climates: miscellaneous impact factors. Renewable and Sustainable Energy Reviews, 2017, 69, 442-460.	8.2	50
341	A review of thermal comfort models and indicators for indoor environments. Renewable and Sustainable Energy Reviews, 2017, 79, 1353-1379.	8.2	221
342	Effect of thermal sensation on emotional responses as measured through brain waves. Building and Environment, 2017, 118, 32-39.	3.0	32
343	A Bayesian approach for probabilistic classification and inference of occupant thermal preferences in office buildings. Building and Environment, 2017, 118, 323-343.	3.0	87
344	Natural ventilation for cooling in mediterranean climate: A case study in vernacular architecture of Cyprus. Energy and Buildings, 2017, 144, 333-345.	3.1	75
345	Thermal Comfort Evaluation of a Mixed-mode Ventilated Office Building with Advanced Natural Ventilation and Underfloor air Distribution Systems. Energy Procedia, 2017, 111, 520-529.	1.8	14
346	An enthalpy-based energy savings estimation method targeting thermal comfort level in naturally ventilated buildings in hot-humid summer zones. Applied Energy, 2017, 187, 717-731.	5.1	24
347	A methodology to evaluate the indoor natural ventilation in hot climates: Heat Balance Index. Building and Environment, 2017, 114, 366-373.	3.0	21
348	Exposure duration in overheating assessments: a retrofit modelling study. Building Research and Information, 2017, 45, 60-82.	2.0	23
350	Thermal comfort evaluation in cruise terminals. Building and Environment, 2017, 126, 276-287.	3.0	13
351	Personalized human comfort in indoor building environments under diverse conditioning modes. Building and Environment, 2017, 126, 304-317.	3.0	205
352	Classroom ventilation with manual opening of windows: Findings from a two-year-long experimental study of a Portuguese secondary school. Building and Environment, 2017, 124, 118-129.	3.0	32
354	Development of outdoor thermal comfort model for tourists in urban historical areas; A case study in Isfahan. Building and Environment, 2017, 125, 356-372.	3.0	76
355	Applying biomimicry to design building envelopes that lower energy consumption in a hot-humid climate. Architectural Science Review, 2017, 60, 360-370.	1.1	25

ARTICLE IF CITATIONS Neural correlates of ambient thermal sensation: An fMRI study. Scientific Reports, 2017, 7, 11279. 23 356 1.6 Parasitic energy consumption for heating and cooling., 2017, , 125-137. Assessing the potential of PV hybrid systems to cover HVAC loads in a grid-connected residential 358 5.1 40 building through intelligent control. Applied Energy, 2017, 206, 249-266. Adaptive thermal comfort in the offices of North-East India in autumn season. Building and 3.0 Environment, 2017, 124, 14-30. The influence of relative humidity on adaptive thermal comfort. Building and Environment, 2017, 124, 360 3.0 116 171-185. Occupants' thermal comfort: State of the art and the prospects of personalized assessment in office 3.1 buildings. Energy and Buildings, 2017, 153, 136-149. Numerical analysis of passive strategies for energy retrofit of existing buildings in Mediterranean 362 0.7 2 climate: thermal mass and natural ventilation combination. Sustainable Buildings, 2017, 2, 4. Study of thermal satisfaction in an Australian educational precinct. Building and Environment, 2017, 123, 119-132. The relationship between thermal comfort and indoor PM<inf>4</inf> mass concentration within 364 0 low-cost houses in Ikageng., 2017,,. Investigating natural ventilation potentials across the globe: Regional and climatic variations. 140 Building and Environment, 2017, 122, 386-396. Experimental evaluation of subjective thermal perceptions for sewing activity. Energy and Buildings, 366 4 3.12017, 149, 450-462. Certain personal and environmental factors as predictors of thermal sensation perceived by a population of students in a university setting from Timisoara, Romania: a case study. Environmental Health and Preventive Medicine, 2017, 22, 56. 1.4 Energy and indoor environmental performance of typical Egyptian offices: Survey, baseline model and 368 3.1 13 uncertainties. Energy and Buildings, 2017, 135, 367-384. Effect of external air-conditioner units' heat release modes and positions on energy consumption in large public buildings. Building and Environment, 2017, 111, 47-60. A study of the impact of individual thermal control on user comfort in the workplace: Norwegian 370 12 1.1 cellular vs. British open plan offices. Architectural Science Review, 2017, 60, 49-61. Prediction of discomfort glare from windows under tropical skies. Building and Environment, 2017, 371 49 113, 107-120. Case Study of Trombe Wall Inducing Natural Ventilation through Cooled Basement Air to Meet Space 372 1.0 8 Cooling Needs. Journal of Energy Engineering - ASCE, 2017, 143, . Indoor Climate Data Analysis Based a Monitoring Platform for Thermal Comfort Evaluation and 373 1.8 Energy Conservation. Energy Procedia, 2017, 138, 211-216.

#	Article	IF	CITATIONS
374	Indoor Environmental Quality: Thermal Comfort. , 2017, , 209-219.		1
375	Why Are Naturally Ventilated Office Spaces Not Popular in New Zealand?. Sustainability, 2017, 9, 902.	1.6	14
376	Understanding User Satisfaction Evaluation in Low Occupancy Sustainable Workplaces. Sustainability, 2017, 9, 1720.	1.6	10
377	BioclimaticÂAnalysisÂinÂPreâ€ĐesignÂStageÂofÂPassive HouseÂinÂIndonesia. Buildings, 2017, 7, 24.	1.4	19
378	A Co-Citation Analysis on Thermal Comfort and Productivity Aspects in Production and Office Buildings. Buildings, 2017, 7, 36.	1.4	25
379	Natural Ventilation: A Mitigation Strategy to Reduce Overheating In Buildings under Urban Heat Island Effect in South American Cities. IOP Conference Series: Materials Science and Engineering, 2017, 245, 072046.	0.3	6
380	An Energy-Efficient Approach for Controlling Heating and Air-Conditioning Systems. , 2017, , .		3
381	Integração da simulação termoenergética nas primeiras fases do processo projetual: o estudo de seis casos. Ambiente ConstruÃdo, 2017, 17, 245-266.	0.2	1
382	Discussão dos limites das propriedades térmicas dos fechamentos opacos segundo as normas de desempenho térmico brasileiras. Ambiente ConstruÃdo, 2017, 17, 183-200.	0.2	12
383	Classificação e agrupamento das cidades brasileiras em graus-dia de aquecimento e resfriamento: 1960 a 2013. Urbe, 2017, 9, 286-300.	0.3	2
384	Data-Enabled Building Energy Savings (D-E BES). Proceedings of the IEEE, 2018, 106, 661-679.	16.4	15
385	Integrated energy performance optimization of a passively designed high-rise residential building in different climatic zones of China. Applied Energy, 2018, 215, 145-158.	5.1	64
386	Statistical analysis of wind data using Weibull distribution for natural ventilation estimation. Science and Technology for the Built Environment, 2018, 24, 922-932.	0.8	10
387	Benchmarking thermoception in virtual environments to physical environments for understanding human-building interactions. Advanced Engineering Informatics, 2018, 36, 254-263.	4.0	26
388	Building Performance and Post Occupancy Evaluation for an off-grid low carbon and solar PV plus-energy powered building. A case from the Western Desert in Egypt. Journal of Building Engineering, 2018, 18, 418-428.	1.6	16
389	Field study on acceptable indoor temperature in temporary shelters built in Nepal after massive earthquake 2015. Building and Environment, 2018, 135, 330-343.	3.0	35
390	Promoting acceptance of direct load control programs in the United States: Financial incentive versus control option. Energy, 2018, 147, 1278-1287.	4.5	55
391	Evaluating building material based thermal comfort of a typical low-cost modular house in India. Materials Today: Proceedings, 2018, 5, 311-317.	0.9	6

#	Article	IF	CITATIONS
392	User satisfaction and energy use behavior in offices in Qatar. Building Services Engineering Research and Technology, 2018, 39, 391-405.	0.9	11
393	Challenges of using air conditioning in an increasingly hot climate. International Journal of Biometeorology, 2018, 62, 401-412.	1.3	63
394	Fuel Poverty Potential Risk Index in the context of climate change in Chile. Energy Policy, 2018, 113, 157-170.	4.2	40
395	Investigating the association of healthcare-seeking behavior with the freshness of indoor spaces in low-income tenement housing in Mumbai. Habitat International, 2018, 71, 156-168.	2.3	32
396	Subgroups holding different conceptions of scales rate room temperatures differently. Building and Environment, 2018, 128, 236-247.	3.0	13
397	A passive design solution to enhance thermal comfort in an educational building in the warm humid climatic zone of Madurai. Journal of Building Engineering, 2018, 18, 395-407.	1.6	41
398	Review of adaptive thermal comfort models in built environmental regulatory documents. Building and Environment, 2018, 137, 73-89.	3.0	175
399	A Comfort-Based Approach to Smart Heating and Air Conditioning. ACM Transactions on Intelligent Systems and Technology, 2018, 9, 1-20.	2.9	16
400	A discussion about thermal comfort evaluation in a bus terminal. Energy and Buildings, 2018, 168, 86-96.	3.1	18
401	Pathways for optimal provision of thermal comfort and sustainability of residential housing in hot and humid tropics of Australia – A critical review. Indoor and Built Environment, 2018, 27, 1022-1040.	1.5	12
402	Thermal comfort analysis of Indian subjects in multi-storeyed apartments: An adaptive approach in composite climate. Indoor and Built Environment, 2018, 27, 1216-1246.	1.5	11
403	Simulation-based approach to optimize passively designed buildings: A case study on a typical architectural form in hot and humid climates. Renewable and Sustainable Energy Reviews, 2018, 82, 1712-1725.	8.2	72
403 404	architectural form in hot and humid climates. Renewable and Sustainable Energy Reviews, 2018, 82,	8.2 0.8	72 54
	architectural form in hot and humid climates. Renewable and Sustainable Energy Reviews, 2018, 82, 1712-1725. Development and implementation of a thermostat learning algorithm. Science and Technology for the		
404	architectural form in hot and humid climates. Renewable and Sustainable Energy Reviews, 2018, 82, 1712-1725. Development and implementation of a thermostat learning algorithm. Science and Technology for the Built Environment, 2018, 24, 43-56. Vernacular and bioclimatic architecture and indoor thermal comfort implications in hot-humid	0.8	54
404 405	architectural form in hot and humid climates. Renewable and Sustainable Energy Reviews, 2018, 82, 1712-1725. Development and implementation of a thermostat learning algorithm. Science and Technology for the Built Environment, 2018, 24, 43-56. Vernacular and bioclimatic architecture and indoor thermal comfort implications in hot-humid climates: An overview. Renewable and Sustainable Energy Reviews, 2018, 82, 1726-1736. Comprehensive analysis of the relationship between thermal comfort and building control research -	0.8 8.2	54 47
404 405 406	 architectural form in hot and humid climates. Renewable and Sustainable Energy Reviews, 2018, 82, 1712-1725. Development and implementation of a thermostat learning algorithm. Science and Technology for the Built Environment, 2018, 24, 43-56. Vernacular and bioclimatic architecture and indoor thermal comfort implications in hot-humid climates: An overview. Renewable and Sustainable Energy Reviews, 2018, 82, 1726-1736. Comprehensive analysis of the relationship between thermal comfort and building control research - A data-driven literature review. Renewable and Sustainable Energy Reviews, 2018, 82, 2664-2679. Climate information for building designers: a graphical approach. Architectural Science Review, 2018, 82	0.8 8.2 8.2	54 47 205

#	Article	IF	CITATIONS
410	Heat stress-resistant building design in the Australian context. Energy and Buildings, 2018, 158, 290-299.	3.1	35
411	Critical Frameworks for Building Evaluation: User Satisfaction, Environmental Measurements and the Technical Attributes of Building Systems (POE + M). , 2018, , 29-48.		5
412	Field study of thermal comfort in non-air-conditioned buildings in a tropical island climate. Applied Ergonomics, 2018, 66, 89-97.	1.7	44
413	Design optimization for ventilation shafts of naturally-ventilated underground shelters for improvement of ventilation rate and thermal comfort. Renewable Energy, 2018, 115, 183-198.	4.3	32
414	Adaptive thermal comfort in the residential buildings of north east India—An effect of difference in elevation. Building Simulation, 2018, 11, 245-267.	3.0	29
415	Thermal comfort in naturally ventilated office buildings in cold and cloudy climate of Darjeeling, India – An adaptive approach. Energy and Buildings, 2018, 160, 44-60.	3.1	30
416	Thermal comfort of pedestrian spaces and the influence of pavement materials on warming up during summer. Energy and Buildings, 2018, 159, 474-485.	3.1	39
417	Modelling study of the impact of thermal comfort criteria on housing energy use in Australia. Applied Energy, 2018, 210, 152-166.	5.1	47
418	Mixed-mode ventilation and air conditioning as alternative for energy savings: a case study in Beirut current and future climate. Energy Efficiency, 2018, 11, 13-30.	1.3	29
419	Evaluating positivist theories of occupant satisfaction: a statistical analysis. Building Research and Information, 2018, 46, 430-443.	2.0	10
420	The Analysis of Outdoor Climate, Moist Air Enthalpy and their Relation to Cooling Energy Consumption in the Tropics. International Journal of Engineering and Technology(UAE), 2018, 7, 254.	0.2	0
421	A review on thermal comfort assessment factors for industrialised building system (IBS) residences. , 2018, , .		0
422	Numerical modeling of heat transfer through the air interlayer considering the surface radiation. IOP Conference Series: Materials Science and Engineering, 2018, 456, 012096.	0.3	3
423	Linguistic descriptions of thermal comfort data for buildings: Definition, implementation and evaluation. Building Simulation, 2018, 11, 1095-1108.	3.0	1
424	Numerical Thermal Characterization and Performance Metrics of Building Envelopes Containing Phase Change Materials for Energy-Efficient Buildings. Sustainability, 2018, 10, 2657.	1.6	7
425	Exploring the "black box―of thermal adaptation using information entropy. Building and Environment, 2018, 146, 166-176.	3.0	26
426	Influence of Adaptive Comfort Models in Execution Cost Improvements for Housing Thermal Environment in ConcepciÃ ³ n, Chile. Sustainability, 2018, 10, 2368.	1.6	1
427	Energy-Related Occupant Behaviour and Its Implications in Energy Use: A Chronological Review. Sustainability, 2018, 10, 2635.	1.6	28

#	Article	IF	CITATIONS
428	Adaptive Comfort Models Applied to Existing Dwellings in Mediterranean Climate Considering Global Warming. Sustainability, 2018, 10, 3507.	1.6	17
429	Facility Energy Management based on adaptive thermal comfort protocols: A case-study. , 2018, , .		1
430	Indoor Environmental Quality of Urban Residential Buildings in Cuenca—Ecuador: Comfort Standard. Buildings, 2018, 8, 90.	1.4	17
431	A/C Energy Management and Vehicle Cabin Thermal Comfort Control. IEEE Transactions on Vehicular Technology, 2018, 67, 11238-11242.	3.9	10
432	Integrated Design and Retrofit of Buildings. , 2018, , 313-384.		2
433	Multi-objective optimization of microclimate in museums for concurrent reduction of energy needs, visitors' discomfort and artwork preservation risks. Applied Energy, 2018, 224, 147-159.	5.1	42
434	Experimental investigation of the effect of indoor air temperature on students' learning performance under the summer conditions in China. Building and Environment, 2018, 140, 140-152.	3.0	38
435	Influence of human thermal adaptation and its development on human thermal responses to warm environments. Building and Environment, 2018, 139, 134-145.	3.0	20
436	Low-income housing layouts under socio-architectural complexities: A parametric study for sustainable slum rehabilitation. Sustainable Cities and Society, 2018, 41, 126-138.	5.1	45
437	Development of the ASHRAE Global Thermal Comfort Database II. Building and Environment, 2018, 142, 502-512.	3.0	279
438	The Application of Eco-efficiency in University Buildings: Policies and Decision-Making Processes. World Sustainability Series, 2018, , 141-158.	0.3	2
439	Computational modeling of natural ventilation in low-rise non-rectangular floor-plan buildings. Building Simulation, 2018, 11, 1255-1271.	3.0	10
440	Non-intrusive interpretation of human thermal comfort through analysis of facial infrared thermography. Energy and Buildings, 2018, 176, 246-261.	3.1	139
441	Characteristics of Thermal Comfort Conditions in Cold Rural Areas of China: A Case study of Stone Dwellings in a Tibetan Village. Buildings, 2018, 8, 49.	1.4	25
442	Influence of Iwans on the Thermal Comfort of Talar Rooms in the Traditional Houses: A Study in Shiraz, Iran. Buildings, 2018, 8, 81.	1.4	10
443	Study on the rural residence heating temperature based on the residents behavior pattern in South Liaoning province. Energy and Buildings, 2018, 174, 179-189.	3.1	22
444	Influence of Adaptive Comfort Models on Energy Improvement for Housing in Cold Areas. Sustainability, 2018, 10, 859.	1.6	8
445	Phase Change Material (PCM) Application in a Modernized Korean Traditional House (Hanok). Sustainability, 2018, 10, 948.	1.6	10

#	Article	IF	Citations
446	Target Air Change Rate and Natural Ventilation Potential Maps for Assisting with Natural Ventilation Design During Early Design Stage in China. Sustainability, 2018, 10, 1448.	1.6	8
447	Sensing transient outdoor comfort: A georeferenced method to monitor and map microclimate. Journal of Building Engineering, 2018, 20, 94-104.	1.6	30
448	Numerical Investigation of Particle Concentration Distribution Characteristics in Twin-Tunnel Complementary Ventilation System. Mathematical Problems in Engineering, 2018, 2018, 1-13.	0.6	27
449	Mitigating particulate matter exposure in naturally ventilated buildings during haze episodes. Building and Environment, 2018, 128, 96-106.	3.0	21
450	Thermal comfort in urban spaces: a cross-cultural study in the hot arid climate. International Journal of Biometeorology, 2018, 62, 1901-1909.	1.3	54
451	Energy consequences of Comfort-driven temperature setpoints in office buildings. Energy and Buildings, 2018, 177, 33-46.	3.1	52
452	Thermal sensation and climate: a comparison of UTCI and PET thresholds in different climates. International Journal of Biometeorology, 2018, 62, 1695-1708.	1.3	50
453	Adaptive thermal comfort in the different buildings of Darjeeling Hills in eastern India – Effect of difference in elevation. Energy and Buildings, 2018, 173, 649-677.	3.1	26
454	Recovery in sensory-enriched break environments: integrating vision, sound and scent into simulated indoor and outdoor environments. Ergonomics, 2019, 62, 521-536.	1.1	21
455	Season influence on rapid thermal sensation assessment by young adults. Engineering Reports, 2019, 1, e12029.	0.9	1
456	Development of a rating scale to measuring the KPIs in the generation and evaluation of holistic renovation scenarios. IOP Conference Series: Earth and Environmental Science, 2019, 294, 012043.	0.2	1
457	The potential influence of building optimization and passive design strategies on natural ventilation systems in underground buildings: The state of the art. Tunnelling and Underground Space Technology, 2019, 92, 103065.	3.0	40
458	Study on the wintry thermal improvement of makeshift shelters built after Nepal earthquake 2015. Energy and Buildings, 2019, 199, 62-71.	3.1	13
459	Avaliação de modelos preditivos de conforto térmico em escritórios no clima subtropical brasileiro. Ambiente ConstruÃdo, 2019, 19, 91-107.	0.2	4
460	Evaluation of indoor environmental conditions in university classrooms. Proceedings of Institution of Civil Engineers: Energy, 2019, 172, 148-161.	0.5	4
461	Assessment of indoor thermal environment in different prototypical school buildings in Jordan. AEJ - Alexandria Engineering Journal, 2019, 58, 699-711.	3.4	25
462	Modelling the impact of ground temperature and ground insulation on cooling energy use in a tropical house constructed to the Passivhaus Standard. IOP Conference Series: Earth and Environmental Science, 2019, 329, 012010.	0.2	2
463	Practical natural ventilation performance metric based on thermal autonomy for sustainable building design. E3S Web of Conferences, 2019, 111, 03062.	0.2	0

#	Article	IF	Citations
464	Investigation of thermal comfort efficacy of solar chimneys under different climates and operation time periods. Energy and Buildings, 2019, 205, 109528.	3.1	19
465	Effect of long-term indoor thermal history on human physiological and psychological responses: A pilot study in university dormitory buildings. Building and Environment, 2019, 166, 106425.	3.0	21
466	Validation of the climatic zoning defined by ASHRAE standard 169-2013. Energy Policy, 2019, 135, 111016.	4.2	17
467	Patterns of thermal preference and Visual Thermal Landscaping model in the workplace. Applied Energy, 2019, 255, 113674.	5.1	16
468	Developing window behavior models for residential buildings using XGBoost algorithm. Energy and Buildings, 2019, 205, 109564.	3.1	80
469	Difference in the thermal response of the occupants living in northern and southern China. Energy and Buildings, 2019, 204, 109475.	3.1	16
470	Smart utilization of solar energy with Optic-Variable Wall (OVW) for thermal comfort. Energy and Buildings, 2019, 202, 109376.	3.1	5
471	The State-of-the-Art of Sensors and Environmental Monitoring Technologies in Buildings. Sensors, 2019, 19, 3648.	2.1	46
472	Study on Adaptive Thermal Comfort in Naturally Ventilated Secondary School Buildings in Nepal. IOP Conference Series: Earth and Environmental Science, 2019, 294, 012062.	0.2	1
473	Simulation Study on the Dynamic Ventilation Control of Single Head Roadway in High-Altitude Mine Based on Thermal Comfort. Advances in Civil Engineering, 2019, 2019, 1-12.	0.4	28
474	Effect of Window Arrangement on Controlling the Smoke Spread in a Refuge Floor. , 2019, , .		0
475	A field investigation on the wintry thermal comfort and clothing adjustment of residents in traditional Nepalese houses. Journal of Building Engineering, 2019, 26, 100886.	1.6	31
476	Daylight affects human thermal perception. Scientific Reports, 2019, 9, 13690.	1.6	71
477	Thermal adaptation of the elderly during summer in a hot humid area: Psychological, behavioral, and physiological responses. Energy and Buildings, 2019, 203, 109450.	3.1	63
478	Transferring the index of vulnerable homes: Application at the local-scale in England to assess fuel poverty vulnerability. Energy and Buildings, 2019, 203, 109458.	3.1	30
479	Crowdsensing for a sustainable comfort and for energy saving. Energy and Buildings, 2019, 186, 208-220.	3.1	18
480	Natural ventilation potential for residential buildings in a densely built-up and highly polluted environment. A case study. Renewable Energy, 2019, 138, 340-353.	4.3	38
481	Study on outdoor thermal comfort of the commercial pedestrian block in hot-summer and cold-winter region of southern China-a case study of The Taizhou Old Block. Tourism Management, 2019, 75, 186-205.	5.8	27

#	Article	IF	CITATIONS
482	Experimental Confirmation of the Reliability of Fanger's Thermal Comfort Model—Case Study of a Near-Zero Energy Building (NZEB) Office Building. Sustainability, 2019, 11, 2461.	1.6	40
483	A Study of the Pedestrianized Zone for Tourists: Urban Design Effects on Humans' Thermal Comfort in Fo Shan City, Southern China. Sustainability, 2019, 11, 2774.	1.6	12
484	A pilot study of thermal comfort in subtropical mixed-mode higher education office buildings with different change-over control strategies. Energy and Buildings, 2019, 196, 194-205.	3.1	30
485	Optimizing the energy consumption in a residential building at different climate zones: Towards sustainable decision making. Journal of Cleaner Production, 2019, 233, 634-649.	4.6	35
486	Occupants' subjective perceptions in three activity types to naturally ventilated & air conditioned room of mixed-function office building. Building and Environment, 2019, 160, 106157.	3.0	11
487	Perceptual and physiological responses of elderly subjects to moderate temperatures. Building and Environment, 2019, 156, 117-122.	3.0	89
488	Exploring the effects of ventilation practices in mitigating in-vehicle exposure to traffic-related air pollutants in China. Environment International, 2019, 127, 773-784.	4.8	38
489	Energy performance and summer thermal comfort of traditional courtyard buildings in a desert climate. Environmental Progress and Sustainable Energy, 2019, 38, e13256.	1.3	13
490	Thermal comfort guidelines for production spaces within multi-storey garment factories located in Bangladesh. Building and Environment, 2019, 157, 319-345.	3.0	13
491	CFD simulations of natural cross ventilation through an apartment with modified hourly wind information from a meteorological station. Energy and Buildings, 2019, 195, 16-25.	3.1	28
492	Thermal comfort assessment in naturally ventilated offices located in a cold tropical climate, Bogotá. Building and Environment, 2019, 158, 237-247.	3.0	33
493	Correlation of Ventilative Cooling Potentials and Building Energy Savings in Various Climatic Zones. Energies, 2019, 12, 968.	1.6	3
494	Bioclimatic Design—Where to Start?. , 2019, , 33-65.		1
495	Bioclimatic Potential—A Way to Determine Climate Adaptability. , 2019, , 117-139.		0
496	Studying comfort and energy usage for different room arrangements using a simplified flow pattern for highly-cooled and conventional operations. Ain Shams Engineering Journal, 2019, 10, 83-91.	3.5	3
497	Blinded by the light: Occupant perceptions and visual comfort assessments of three dynamic daylight control systems and shading strategies. Building and Environment, 2019, 154, 107-121.	3.0	74
498	Renaturing a microclimate: The impact of greening a neighbourhood on indoor thermal comfort during a heatwave in Manchester, UK. Solar Energy, 2019, 182, 245-255.	2.9	21
499	Heat Stress in Indoor Environments of Scandinavian Urban Areas: A Literature Review. International Journal of Environmental Research and Public Health, 2019, 16, 560.	1.2	44

#	Article	IF	Citations
	Outdoor thermal sensation and logistic regression analysis of comfort range of meteorological		
500	parameters in Hong Kong. Building and Environment, 2019, 155, 175-186.	3.0	41
501	Outdoor thermal comfort autonomy: Performance metrics for climate-conscious urban design. Building and Environment, 2019, 155, 145-160.	3.0	52
502	Towards a multiple-indicator approach to energy poverty in the European Union: A review. Energy and Buildings, 2019, 193, 36-48.	3.1	140
503	Insights into the thermal comfort of different naturally ventilated buildings of Darjeeling, India – Effect of gender, age and BMI. Energy and Buildings, 2019, 193, 267-288.	3.1	35
504	Bioclimatic design strategies: A guideline to enhance human thermal comfort in Cfa climate zones. Journal of Building Engineering, 2019, 25, 100758.	1.6	25
505	Towards the quantification of energy demand and consumption through the adaptive comfort approach in mixed mode office buildings considering climate change. Energy and Buildings, 2019, 187, 173-185.	3.1	75
506	Seasonal Thermal Sensation Vote – An indicator for long-term energy performance of dwellings with no HVAC systems. Energy and Buildings, 2019, 187, 64-76.	3.1	6
507	The effect of air conditioners on occupants' thermal adaptive behaviours and wellbeing: advances and challenges. E3S Web of Conferences, 2019, 80, 03003.	0.2	2
508	Approaching low-energy high-rise building by integrating passive architectural design with photovoltaic application. Journal of Cleaner Production, 2019, 220, 313-330.	4.6	40
509	A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system. Applied Energy, 2019, 239, 757-784.	5.1	65
510	Field assessment of thermal comfort conditions and energy performance of social housing: The case of hot summers in the Mediterranean climate. Energy Policy, 2019, 128, 377-392.	4.2	32
511	Human thermal comfort for residential buildings in hot summer and cold winter region, a user based approach. Journal of Physics: Conference Series, 2019, 1343, 012150.	0.3	2
512	Performance evaluation and post-occupancy evaluation of a naturally ventilated lecture theatre in Reunion Island. Journal of Physics: Conference Series, 2019, 1343, 012189.	0.3	3
513	The effect of indoor thermal history on human thermal responses in cold environments of early winter. Journal of Thermal Biology, 2019, 86, 102448.	1.1	18
514	Estimating Adaptive Setpoint Temperatures Using Weather Stations. Energies, 2019, 12, 1197.	1.6	14
515	Experimental Study on the Indoor Thermo-Hygrometric Conditionsof the Mongolian Yurt. Sustainability, 2019, 11, 687.	1.6	6
516	Variation of indoor minimum mortality temperature in different cities: Evidence of local adaptations. Environmental Pollution, 2019, 246, 745-752.	3.7	8
517	Evaluation of passive cooling methods to improve microclimate for natural ventilation of a house during summer. Building and Environment, 2019, 149, 275-287.	3.0	17

		TION REPORT	
#	Article	IF	CITATIONS
518	Bioclimatic Approach: Thermal Environment. Design Science and Innovation, 2019, , 243-278.	0.1	1
519	Investigation of comfort temperature and thermal adaptation for patients and visitors in Malaysian hospitals. Energy and Buildings, 2019, 183, 484-499.	3.1	65
520	Low-cost retrofit packages for residential buildings in hot-humid Lagos, Nigeria. International Journal of Building Pathology and Adaptation, 2019, 37, 250-272.	0.7	14
521	The effects of filters for an intelligent air pollutant control system considering natural ventilation and the occupants. Science of the Total Environment, 2019, 657, 410-419.	3.9	15
522	Assessing IEQ Performance in Buildings. Design Science and Innovation, 2019, , 311-340.	0.1	0
523	Coping with extremes, creating comfort: User experiences of â€~low-energy' homes in Australia. Ener Research and Social Science, 2019, 51, 44-54.	rgy 3.0	20
524	Personal control and environmental user satisfaction in office buildings: Results of case studies in the Netherlands. Building and Environment, 2019, 149, 428-435.	3.0	60
525	A comparative study of thermal comfort in learning spaces using three different ventilation strategies on a tropical university campus. Building and Environment, 2019, 148, 579-599.	3.0	51
526	A window of one's own: a public office post-occupancy evaluation. Building Research and Information, 2019, 47, 437-452.	2.0	17
527	Data Driven Electricity Management for Residential Air Conditioning Systems: An Experimental Approach. IEEE Transactions on Emerging Topics in Computing, 2019, 7, 380-391.	3.2	21
528	Application of adaptive thermal comfort methods for Iranian schoolchildren. Building Research and Information, 2019, 47, 173-189.	2.0	30
529	A novel Index of Vulnerable Homes: Findings from application in Spain. Indoor and Built Environment, 2020, 29, 311-330.	1.5	28
530	Office occupants as active actors in assessing and informing comfort: a context-embedded comfort assessment in indoor environmental quality investigations. Advances in Building Energy Research, 2020, 14, 41-65.	1.1	7
531	A new adaptive thermal comfort model for the Romanian climate. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2020, 173, 151-159.	0.4	6
532	Analysis of transient thermal sensation for "overheating―and "subcooling―conditions in a roo International Journal of Ventilation, 2020, 19, 85-96.	m. 0.2	1
533	Optimal interior design for naturally ventilated low-income housing: a design-route for environmental quality and cooling energy saving. Advances in Building Energy Research, 2020, 14, 494-526.	1.1	21
534	Building in Hot and Humid Regions. , 2020, , .		3
535	Energy Efficiency and Conservation Consideration for the Design of Buildings for Hot and Humid Regions. , 2020, , 107-135.		0

#	Article	IF	CITATIONS
536	Air-fluctuation nozzle and its periodic, wave-like air distribution evaluation. Indoor and Built Environment, 2020, 29, 196-207.	1.5	1
537	Influence of window opening degree on natural ventilation performance of residential buildings in Hong Kong. Science and Technology for the Built Environment, 2020, 26, 28-41.	0.8	16
538	Cold comfort: A post-completion evaluation of internal temperatures and thermal comfort in 6-Homestar dwellings. Building and Environment, 2020, 167, 106466.	3.0	2
539	Energy poverty goes south? Understanding the costs of energy poverty with the index of vulnerable homes in Spain. Energy Research and Social Science, 2020, 60, 101325.	3.0	70
540	Evaluation of Natural Ventilation Potential for Indoor Thermal Comfort in a Low-Rise Building in Arid and Semi-arid Climates of India. Lecture Notes in Civil Engineering, 2020, , 203-221.	0.3	5
541	Field Study in the Residential Buildings in the Old City of Tartous in Syria During the Summer Period. Advances in Science, Technology and Innovation, 2020, , 549-565.	0.2	1
542	A comparative study on energy demand through the adaptive thermal comfort approach considering climate change in office buildings of Spain. Building Simulation, 2020, 13, 51-63.	3.0	27
543	Seeing is believing: an innovative approach to post-occupancy evaluation. Energy Efficiency, 2020, 13, 473-486.	1.3	12
544	An assessment of the impact of natural ventilation strategies and window opening patterns in office buildings in the mediterranean basin. Building and Environment, 2020, 175, 106384.	3.0	40
545	Towards optimal control of air handling units using deep reinforcement learning and recurrent neural network. Building and Environment, 2020, 168, 106535.	3.0	87
546	The Dynamics and Mechanism of Human Thermal Adaptation in Building Environment. Springer Theses, 2020, , .	0.0	4
547	Field measurements on thermal stratification and cooling potential of natural ventilation for large space buildings. International Journal of Ventilation, 2020, 19, 49-62.	0.2	4
548	A new adaptive thermal comfort model for homes in temperate climates of Australia. Energy and Buildings, 2020, 210, 109728.	3.1	28
549	Has a singular focus of building regulations created unhealthy homes?. Architectural Science Review, 2020, 63, 387-401.	1.1	2
550	Integrability assessment methodology for building integrated photovoltaics: concept and application. International Journal of Sustainable Energy, 2020, 39, 362-379.	1.3	2
551	Combined effects of acoustic, thermal, and illumination on human perception and performance: A review. Building and Environment, 2020, 169, 106593.	3.0	41
552	Indoor Environmental Quality. Lecture Notes in Civil Engineering, 2020, , .	0.3	20
553	Defining the thermal sensitivity (Griffiths constant) of building occupants in the Korean residential context. Energy and Buildings, 2020, 208, 109648.	3.1	30

щ		IF	CITATIONS
#	ARTICLE Large-scale and long-term monitoring of the thermal environments and adaptive behaviors in Chinese	IF	CITATIONS
554	urban residential buildings. Building and Environment, 2020, 168, 106524.	3.0	22
555	Energy saving potential in current and future world built environments based on the adaptive comfort approach. Journal of Cleaner Production, 2020, 249, 119306.	4.6	32
556	Learning occupants' indoor comfort temperature through a Bayesian inference approach for office buildings in United States. Renewable and Sustainable Energy Reviews, 2020, 119, 109593.	8.2	32
557	Impacts of façade openings' geometry on natural ventilation and occupants' perception: A review. Building and Environment, 2020, 170, 106613.	3.0	49
558	Thermal comfort in mixed-mode buildings: A field study in Tianjin, China. Building and Environment, 2020, 185, 107244.	3.0	10
559	Open-plan office design for improved natural ventilation and reduced mixed mode supplementary loads. Indoor and Built Environment, 2022, 31, 2145-2167.	1.5	10
560	Analysing natural ventilation to reduce the cooling energy consumption and the fuel poverty of social dwellings in coastal zones. Applied Energy, 2020, 279, 115845.	5.1	37
561	Parametric study to maximize the peak load shifting and thermal comfort in residential buildings located in cold climates. Journal of Energy Storage, 2020, 30, 101560.	3.9	12
562	Impact assessment of air velocity on thermal comfort in composite climate of India. Science and Technology for the Built Environment, 2020, 26, 1301-1320.	0.8	10
563	Winter Thermal Comfort and Perceived Air Quality: A Case Study of Primary Schools in Severe Cold Regions in China. Energies, 2020, 13, 5958.	1.6	13
564	Status of thermal comfort in naturally ventilated university classrooms of Bangladesh in hot and humid summer season. Journal of Building Engineering, 2020, 32, 101700.	1.6	24
565	Acceptable temperature steps for occupants moving between air-conditioned main space and naturally ventilated transitional space of building. Building and Environment, 2020, 182, 107150.	3.0	10
566	The CPMV* for assessing indoor thermal comfort and thermal acceptability under global solar radiation in transparent envelope buildings. Energy and Buildings, 2020, 225, 110306.	3.1	21
567	Experimental field study of the integration of passive and evaporative cooling techniques with Mashrabiya in hot climates. Energy and Buildings, 2020, 225, 110325.	3.1	25
568	Simulation study for natural ventilation retrofitting techniques in educational classrooms – A case study. Heliyon, 2020, 6, e05171.	1.4	12
569	On-site measurement and evaluations of indoor thermal environment in low-cost dwellings of urban Kampung district. Building and Environment, 2020, 184, 107239.	3.0	7
570	Constructive systems for social housing deployment in developing countries: A case study using dynamic life cycle carbon assessment and cost analysis in Brazil. Energy and Buildings, 2020, 227, 110395.	3.1	16
571	Passive space design, building environment and thermal comfort: A university building under severe cold climate, China. Indoor and Built Environment, 2020, , 1420326X2093923.	1.5	12

	CITATION	Report	
#	Article	IF	CITATIONS
572	Estimation model for natural ventilation by wind force considering wind direction and building orientation for low-rise building in China. Indoor and Built Environment, 2022, 31, 2036-2052.	1.5	9
573	A Comprehensive Survey about Thermal Comfort under the IoT Paradigm: Is Crowdsensing the New Horizon?. Sensors, 2020, 20, 4647.	2.1	20
574	Thermal performance of passive techniques integrated to a house and the concept of passive house in the six climates of Morocco. Science and Technology for the Built Environment, 2020, 26, 1490-1508.	0.8	12
575	Structural Equation Model of Occupant Satisfaction for Evaluating the Performance of Office Buildings. Arabian Journal for Science and Engineering, 2020, 45, 8759-8784.	1.7	24
576	PersonalisedComfort: a personalised thermal comfort model to predict thermal sensation votes for smart building residents. Enterprise Information Systems, 2022, 16, .	3.3	29
577	Investigation on adaptive thermal comfort considering the thermal history of local and migrant peoples living in sub-tropical climate of Nepal. Building and Environment, 2020, 185, 107237.	3.0	21
578	Evaluating the potential of adaptive comfort approach using historic data to reduce energy consumption in buildings in southern Spain. Building and Environment, 2020, 185, 107313.	3.0	6
579	Prediction for Overheating Risk Based on Deep Learning in a Zero Energy Building. Sustainability, 2020, 12, 8974.	1.6	8
580	An international review of occupant-related aspects of building energy codes and standards. Building and Environment, 2020, 179, 106906.	3.0	59
581	Effect of long-term thermal history on physiological acclimatization and prediction of thermal sensation in typical winter conditions. Building and Environment, 2020, 179, 106936.	3.0	18
582	Dynamic metrics of natural ventilation cooling effectiveness for interactive modeling. Building and Environment, 2020, 180, 106994.	3.0	14
583	Effect of thermal comfort on occupant productivity in office buildings: Response surface analysis. Building and Environment, 2020, 180, 107021.	3.0	96
584	Intelligent buildings: An overview. Energy and Buildings, 2020, 223, 110192.	3.1	65
585	Understanding the impact of building thermal environments on occupants' comfort and mental workload demand through human physiological sensing. , 2020, , 291-341.		5
586	Emerging Materials and Strategies for Personal Thermal Management. Advanced Energy Materials, 2020, 10, 1903921.	10.2	290
587	Window Design of Naturally Ventilated Offices in the Mediterranean Climate in Terms of CO2 and Thermal Comfort Performance. Sustainability, 2020, 12, 473.	1.6	23
588	The Right Amount of Technology in School Buildings. Sustainability, 2020, 12, 1134.	1.6	5
589	Quantification of thermal environments and comfort expectations of residents in hostel dormitories during hot and humid days in Indian composite climate. Advances in Building Energy Research, 2020, , 1-35.	1.1	5

#	Article	IF	CITATIONS
590	Urban Morphology and Outdoor Microclimate around the "Shophouse―Dwellings in Ho Chi Minh City, Vietnam. Buildings, 2020, 10, 40.	1.4	4
591	Analysis of the Indoor Thermal Environment and Passive Energy-Saving Optimization Design of Rural Dwellings in Zhalantun, Inner Mongolia, China. Sustainability, 2020, 12, 1103.	1.6	22
592	Optimization of the design of the primary school classrooms in terms of energy and daylight performance considering occupants' thermal and visual comfort. Energy Reports, 2020, 6, 1590-1607.	2.5	93
593	The validity of the index of vulnerable homes: evidence from consumers vulnerable to energy poverty in the UK. Energy Sources, Part B: Economics, Planning and Policy, 2020, 15, 72-91.	1.8	22
594	Analysis of Energy Consumption in Different European Cities: The Adaptive Comfort Control Implemented Model (ACCIM) Considering Representative Concentration Pathways (RCP) Scenarios. Applied Sciences (Switzerland), 2020, 10, 1513.	1.3	11
595	Determination of thermal comfort of religious buildings by measurement and survey methods: Examples of mosques in a temperate-humid climate. Journal of Building Engineering, 2020, 30, 101246.	1.6	11
596	Developing Guidelines for Thermal Comfort and Energy Saving during Hot Season of Multipurpose Senior Centers in Thailand. Sustainability, 2020, 12, 170.	1.6	15
597	A study of thermal comfort in naturally ventilated churches in a Mediterranean climate. Energy and Buildings, 2020, 213, 109843.	3.1	26
598	The use of artificial intelligence (AI) methods in the prediction of thermal comfort in buildings: energy implications of AI-based thermal comfort controls. Energy and Buildings, 2020, 211, 109807.	3.1	135
599	Low carbon building performance in the construction industry: a multi-method approach of system dynamics and building performance modelling. Construction Management and Economics, 2020, 38, 856-876.	1.8	9
600	Evaluation of the efficiency and sustainability of timber-based construction. Journal of Cleaner Production, 2020, 259, 120835.	4.6	44
601	A field study of adaptive thermal comfort in primary and secondary school classrooms during winter season in Northwest China. Building and Environment, 2020, 175, 106802.	3.0	32
602	Applying the Passivhaus standard to a terraced house in a hot and humid tropical climate – Evaluation of comfort and energy performance. Building Services Engineering Research and Technology, 2020, 41, 247-260.	0.9	7
603	Revisiting individual and group differences in thermal comfort based on ASHRAE database. Energy and Buildings, 2020, 219, 110017.	3.1	59
604	Thermal comfort study in prefab construction site office in subtropical China. Energy and Buildings, 2020, 217, 109958.	3.1	26
605	Review on air and water thermal energy storage of buildings with phase change materials. Experimental and Computational Multiphase Flow, 2021, 3, 77-99.	1.9	24
606	Summertime comparative evaluation of indoor temperature and comfort in Auckland New Zealand: a survey of green certified, code and older homes. Building Research and Information, 2021, 49, 336-351.	2.0	2
607	Evaluating the perception of thermal environment in naturally ventilated schools in a warm and humid climate in Nigeria. Building Services Engineering Research and Technology, 2021, 42, 5-25.	0.9	9

#	Article	IF	CITATIONS
608	Natural ventilation usability under climate change in Canada and the United States. Building Research and Information, 2021, 49, 367-386.	2.0	14
609	A review on thermal comfort, indoor air quality and energy consumption in temples. Journal of Building Engineering, 2021, 35, 102013.	1.6	22
610	The effect of urban shading and canyon geometry on outdoor thermal comfort in hot climates: A case study of Ahvaz, Iran. Sustainable Cities and Society, 2021, 65, 102638.	5.1	60
611	Regional classification maps for engineered natural ventilation design of office buildings in Japan. Japan Architectural Review, 2021, 4, 253-261.	0.4	1
612	A field investigation of the thermal environment and adaptive thermal behavior in bedrooms in different climate regions in China. Indoor Air, 2021, 31, 887-898.	2.0	6
613	Numerical investigation of indoor thermal comfort and air quality for a multi-purpose hall with various shading and glazing ratios. Thermal Science and Engineering Progress, 2021, 22, 100812.	1.3	10
614	Proposal of Relative Thermal Sensation: Another Dimension of Thermal Comfort and Its Investigation. IEEE Access, 2021, 9, 36266-36281.	2.6	10
615	Threshold temperatures for subjective heat stress in urban apartments—Analysing nocturnal bedroom temperatures during a heat wave in Germany. Climate Risk Management, 2021, 32, 100286.	1.6	13
616	Energy Retrofitting in Public Housing and Fuel Poverty Reduction: Cost–Benefit Trade-Offs. Green Energy and Technology, 2021, , 539-554.	0.4	0
617	Percepção térmica em um ambiente com painéis radiantes acoplados a um teto-reservatório. Ambiente ConstruÃdo, 2021, 21, 335-356.	0.2	0
618	Applying IoT and Data Analytics toÂThermal Comfort: A Review. Studies in Computational Intelligence, 2021, , 171-198.	0.7	2
619	Localized heating element distribution in composite metal foamâ€phase change material: Fourier's law and creeping flow effects. International Journal of Energy Research, 2021, 45, 13380-13396.	2.2	22
620	Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality. Renewable and Sustainable Energy Reviews, 2021, 138, 110669.	8.2	102
621	A Case Study on the Assumption of Mean Radiant Temperature Equals to Indoor Air Temperature in a Free-Running Building. Kocaeli Journal of Science and Engineering, 0, , .	0.3	1
622	Model-based adaptive controller for personalized ventilation and thermal comfort in naturally ventilated spaces. Building Simulation, 2021, 14, 1757-1771.	3.0	11
623	Resilience of vernacular and modernising dwellings in three climatic zones to climate change. Scientific Reports, 2021, 11, 9172.	1.6	13
624	Analysis of Climate-Oriented Researches in Building. Applied Sciences (Switzerland), 2021, 11, 3251.	1.3	10
625	Simple method to improve the TCXDVN 306:2004 indoor climate standard for closed office workplaces in Vietnam. Scientific Review Engineering and Environmental Sciences, 2021, 30, 117-133.	0.2	1

#	Article	IF	CITATIONS
626	How indoor environmental quality affects occupants' cognitive functions: A systematic review. Building and Environment, 2021, 193, 107647.	3.0	72
627	Thermal Comfort Analysis of Residential Home in Coastal City Based on Physiological Equivalent Temperature (PET) Index and Operative Temperature Zone. IOP Conference Series: Earth and Environmental Science, 2021, 738, 012004.	0.2	0
628	Research on Indoor Thermal Comfort and Age of Air in Qilou Street Shop under Mechanical Ventilation Scheme: A Case Study of Nanning Traditional Block in Southern China. Sustainability, 2021, 13, 4037.	1.6	4
629	Can building orientation perturb micro-climatic conditions inside classrooms located in hot-humid climatic condition?. Energy and Built Environment, 2022, 3, 467-477.	2.9	2
630	On the potential of demand-controlled ventilation system to enhance indoor air quality and thermal condition in Australian school classrooms. Energy and Buildings, 2021, 238, 110838.	3.1	42
631	Airflow and thermal comfort evaluation of a room with different outlet opening sizes and elevations ventilated by a two-sided wind catcher. Journal of Building Engineering, 2021, 37, 102112.	1.6	6
632	Towards optimal aerodynamic design of wind catchers: Impact of geometrical characteristics. Renewable Energy, 2021, 168, 1344-1363.	4.3	30
634	Factors Affecting Occupants' Satisfaction in Governmental Buildings: The Case of the Kingdom of Bahrain. Buildings, 2021, 11, 231.	1.4	12
635	Tree-configuration and species effects on the indoor and outdoor thermal condition and energy performance of courtyard buildings. Urban Climate, 2021, 37, 100861.	2.4	20
636	A model for thermal comfort assessment of naturally ventilated housing in the hot and dry tropical climate. International Journal of Building Pathology and Adaptation, 2022, 40, 183-201.	0.7	10
637	A holistic approach to the evaluation of the indoor temperature based on thermal comfort and learning performance. Building and Environment, 2021, 196, 107803.	3.0	26
638	Indoor airflow and thermal comfort in a cross-ventilated building within an urban-like block array using large-eddy simulations. Building and Environment, 2021, 196, 107811.	3.0	21
639	Method of determining acceptable air temperature thresholds in Chinese HVAC buildings based on a data-driven model. Energy and Buildings, 2021, 241, 110920.	3.1	21
640	Multi-objective optimization of building design for life cycle cost and CO2 emissions: A case study of a low-energy residential building in a severe cold climate. Building Simulation, 2022, 15, 83-98.	3.0	41
641	Thermal pleasure inside solar screened spaces: an experimental study to explore alliesthesia in architecture. Building Research and Information, 2021, 49, 795-812.	2.0	5
642	Thermal Comfort Performance of Naturally Ventilated Royal Malaysian Police (RMP) Lockup in Hot and Humid Climate of Malaysia. Pertanika Journal of Science and Technology, 2021, 29, .	0.3	1
643	Present and Future Energy Poverty, a Holistic Approach: A Case Study in Seville, Spain. Sustainability, 2021, 13, 7866.	1.6	3
644	Indoor Thermal Comfort Analysis: A Case Study of Modern and Traditional Buildings in Hot-Arid Climatic Region of Ethiopia. Urban Science, 2021, 5, 53.	1.1	10

#	Article	IF	CITATIONS
645	A comparative case study of volcanic-rock vernacular dwelling and modern dwelling in terms of thermal performance and climate responsive design strategies in Hainan Island. Journal of Asian Architecture and Building Engineering, 2022, 21, 1381-1398.	1.2	8
646	The in-situ implementation of a feature-rich thermostat: A building engineering and human factors approach to improve perceived control in offices. Building and Environment, 2021, 199, 107884.	3.0	8
647	Occupant behaviour and its relation to climate in Australia. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2021, 174, 174-188.	0.4	1
648	Determining Building Natural Ventilation Potential via IoT-Based Air Quality Sensors. Frontiers in Environmental Science, 2021, 9, .	1.5	10
649	Assessment of thermal comfort indices in an open air-conditioned stadium in hot and arid environment. Journal of Building Engineering, 2021, 40, 102378.	1.6	24
650	Interactions between the Built Environment and the Energy-Related Behaviors of Occupants in Government Office Buildings. Sustainability, 2021, 13, 10607.	1.6	5
651	Ventilation Characteristics and Performance Evaluation of Different Window-Opening Forms in a Typical Office Room. Applied Sciences (Switzerland), 2021, 11, 8966.	1.3	4
652	Thermal Comfort Model for HVAC Buildings Using Machine Learning. Arabian Journal for Science and Engineering, 2022, 47, 2045-2060.	1.7	14
653	Assessing the real-time thermal performance of reinforced cement concrete roof during summer- a study in the warm humid climate of Kerala. Journal of Building Engineering, 2021, 41, 102735.	1.6	6
654	HVAC systems and thermal comfort in buildings climate control: An experimental case study. Energy Reports, 2021, 7, 269-277.	2.5	28
655	Development of a back-propagation neural network and adaptive grey wolf optimizer algorithm for thermal comfort and energy consumption prediction and optimization. Energy and Buildings, 2021, 253, 111439.	3.1	31
656	Effects of climate changes on building energy demand and thermal comfort in Canadian office buildings adopting different temperature setpoints. Journal of Building Engineering, 2021, 42, 102725.	1.6	26
657	Potential of applying adaptive strategies in buildings to reduce the severity of fuel poverty according to the climate zone and climate change: The case of Andalusia. Sustainable Cities and Society, 2021, 73, 103088.	5.1	14
658	Revisiting thermal comfort in the cold climate of Darjeeling, India – Effect of assumptions in comfort scales. Building and Environment, 2021, 203, 108095.	3.0	5
659	Improving the suitability of selected thermal indices for predicting outdoor thermal sensation in Tehran. Sustainable Cities and Society, 2021, 74, 103205.	5.1	17
660	Investigation of physiological and subjective responses under composite air carrying energy radiant air-conditioning system. Journal of Building Engineering, 2021, 43, 103146.	1.6	1
661	Field study on adaptive thermal comfort models for nursing homes in the Mediterranean climate. Energy and Buildings, 2021, 252, 111475.	3.1	20
662	Outdoor thermal comfort enhancement using various vegetation species and materials (case study:) Tj ETQq1 1	0.784314 5.1	rgBT /Overlo

#	Article	IF	CITATIONS
663	Thermal comfort studies for the naturally ventilated built environments in Indian subcontinent: A review. Journal of Building Engineering, 2021, 44, 103242.	1.6	13
664	Adaptive Thermal Comfort Models for Buildings. SpringerBriefs in Architectural Design and Technology, 2021, , 13-33.	0.3	0
665	PASTA: An Efficient Proactive Adaptation Approach Based on Statistical Model Checking for Self-Adaptive Systems. Lecture Notes in Computer Science, 2021, , 292-312.	1.0	6
666	Assessment of Climatic Guidelines and Urban Planning in North-Eastern Coast of Brazil. , 2021, , 199-220.		0
667	The urban moisture island phenomenon and its mechanisms in a highâ€rise highâ€density city. International Journal of Climatology, 2021, 41, E150.	1.5	24
668	Biophilic Design. , 2020, , 43-85.		11
669	Adaptation and Thermal Environment. , 2009, , 9-32.		21
670	Biophilic Design. , 2018, , 1-44.		6
672	Sustainable Energy. Green Energy and Technology, 2020, , 17-33.	0.4	2
673	Literature Review: Thermal Comfort and Air-Conditioning. Springer Theses, 2013, , 17-52.	0.0	2
674	Modelling, Implementation and Validation Approaches. SpringerBriefs in Energy, 2018, , 63-77.	0.2	3
675	Investigating the Applicability of Different Thermal Comfort Models in Kuwait Classrooms Operated in Hybrid Air-Conditioning Mode. , 2009, , 347-355.		14
676	Thermal Comfort. Green Energy and Technology, 2011, , 31-51.	0.4	1
677	Using Natural Ventilation in Office Buildings Under Subtropical Climate: A case Study in Shenzhen. Lecture Notes in Electrical Engineering, 2014, , 381-388.	0.3	2
678	Indoor Air Quality and Thermal Comfort in Green Building: A Study for Measurement, Problem and Solution Strategies. Lecture Notes in Civil Engineering, 2020, , 139-146.	0.3	10
679	Geo-climatic potential of direct evaporative cooling in the Mediterranean Region: A comparison of key performance indicators. Building and Environment, 2019, 151, 318-337.	3.0	22
680	The vulnerability of homes to overheating in Myanmar today and in the future: A heat index analysis of measured and simulated data. Energy and Buildings, 2020, 223, 110201.	3.1	17
681	Human Ecology and Building Science: A Necessary Synthesis. , 2015, , .		2

#	Article	IF	CITATIONS
682	A Neural Network-based Model Predictive Control Approach for Buildings Comfort Management. , 2020, , .		4
683	Development policy in social housing allocation: Fuel poverty potential risk index. Indoor and Built Environment, 2017, 26, 980-998.	1.5	25
684	The human factor in sustainable architecture. Sustainable Energy Developments, 2016, , 137-158.	0.3	5
685	Avaliação de modelos de Ãndices adaptativos para uso no projeto arquitetônico bioclimático. Ambiente ConstruÃdo, 2010, 10, 31-51.	0.2	13
686	Aplicabilidade dos limites da velocidade do ar para efeito de conforto térmico em climas quentes e úmidos. Ambiente ConstruÃdo, 2010, 10, 59-68.	0.2	11
687	Efeito de uma onda de calor na aclimatação no curto prazo durante experimentos suportados por câmara climática. Ambiente ConstruÃdo, 2018, 18, 491-501.	0.2	1
688	Toward Sustainable Building Design: Improving Thermal Performance by Applying Natural Ventilation in Hot–Humid Climate. Indian Journal of Science and Technology, 2015, 8, .	0.5	12
689	Thermal Acceptability Assessment in Vernacular Buildings of Cold and Cloudy Regions of North-East India. , 2011, , .		1
690	El enfoque adaptativo del confort térmico en Sevilla = The adaptive approach to thermal comfort in Seville Anales De Edificación, 2016, 2, 38.	0.1	5
691	AN APPROACH TOWARDS DEVELOPMENT OF PMV BASED THERMAL COMFORT SMART SENSOR. International Journal on Smart Sensing and Intelligent Systems, 2010, 3, 621-642.	0.4	15
695	A Building energy simulation methodology to validate energy balance and comfort in zero energy buildings. Journal of Energy Systems, 2019, 3, 168-182.	0.8	7
696	A FIELD SURVEY ON USAGE OF AIR-CONDITIONERS AND WINDOWS IN TERRACED HOUSE AREAS IN JOHOR BAHRU CITY. Journal of Environmental Engineering (Japan), 2006, 71, 81-87.	0.1	6
697	Measurements of Energy Consumption and Environment Quality of High-Speed Railway Stations in China. Energies, 2020, 13, 168.	1.6	8
698	Thermal Comfort Evaluation Using Linear Discriminant Analysis (LDA) and Artificial Neural Networks (ANNs). Energies, 2020, 13, 538.	1.6	14
699	El comportamiento térmico de los edificios de tierra. Informes De La Construccion, 2011, 63, 117-126.	0.1	30
700	THERMAL ENVIRONMENTS OF AN OFFICE BUILDING WITH DOUBLE SKIN FACADE. Journal of Green Building, 2017, 12, 3-22.	0.4	3
701	Thermal comfort and older adults. Gerontechnology, 2006, 4, .	0.0	42
702	A Perspective of the Diurnal Aspect of Thermal Comfort in Nigeria. Atmospheric and Climate Sciences, 2014, 04, 696-709.	0.1	9

#	Article	IF	CITATIONS
703	Skin Temperature and Body Surface Section in Non-Uniform and Asymmetric Outdoor Thermal Environment. Health, 2018, 10, 1321-1341.	0.1	5
704	An Assessment of Thermal Comfort in Multi Storey Office Buildings in Ghana. Journal of Building Construction and Planning Research, 2014, 02, 30-38.	0.6	7
705	Target Air Change Rate Map for Naturally Ventilated Buildings in the Early Stage of Building Design. Journal of Wind Engineering, 2018, 43, 73-78.	0.3	1
706	Exploring role of different floor, wall and roof details in energy efficiency of a bungalow house in Malaysia. Scientific Research and Essays, 2011, 6, .	0.1	5
707	Field Study on Thermal Comfort and Adaptive Behaviors of University Students in the Cold Climate Zone. Strategies for Sustainability, 2021, , 111-131.	0.2	0
708	Understanding the Challenges of Determining Thermal Comfort in Vernacular Dwellings: A Meta-Analysis. SSRN Electronic Journal, 0, , .	0.4	0
709	The friluftsliv response: Connection, drive, and contentment reactions to biophilic design in consumer environments. International Journal of Research in Marketing, 2022, 39, 364-379.	2.4	3
710	Evaluating approaches of selecting extreme hot years for assessing building overheating conditions during heatwaves. Energy and Buildings, 2022, 254, 111610.	3.1	15
711	Evaluating the role of the albedo of material and vegetation scenarios along the urban street canyon for improving pedestrian thermal comfort outdoors. Urban Climate, 2021, 40, 100993.	2.4	47
712	CONTROL STRATEGY OF NATURAL VENTILATION BASED ON THERMAL COMFORT AND ENERGY SAVING EFFECT : Measurement survey on natural ventilation Part2. Journal of Environmental Engineering (Japan), 2004, 69, 7-12.	0.1	2
713	ADAPTIVE THERMAL COMFORT IN THE WET TROPICS FOR HOUSING DESIGN WITH PASSIVE COOLING. International Journal on Design and Manufacturing Technologies, 2008, 2, 74-78.	0.1	0
714	Avaliação de desempenho térmico de protótipo de baixo custo em madeira de reflorestamento. Revista Escola De Minas, 2009, 62, 447-454.	0.1	0
715	A Development of Data-Logger for Indoor Environment. Lecture Notes in Electrical Engineering, 2010, , 59-69.	0.3	2
716	Development of Multi-Channel Data Logger for Indoor Environment. Engineering, 2010, 02, 690-697.	0.4	6
717	Influências dos algoritmos de condução e convecção sobre os resultados de simulações do comportamento tA©rmico de edificações. Ambiente ConstruÃdo, 2011, 11, 79-97.	0.2	1
718	Personalized Thermal Comfort Forecasting for Smart Buildings via Locally Weighted Regression with Adaptive Bandwidth. , 2013, , .		0
719	Study on Indoor air Quality of a University Classroom in Northern Region—Illustrated by the Case of Dalian. Advances in Environmental Protection, 2013, 03, 95-102.	0.0	0
720	La consommation énergétique à Calcutta (Inde) : du confort thermique aux statuts sociaux. VertigO: La Revue Electronique En Sciences De L'environnement, 2013, , .	0.0	2

#	Article	IF	CITATIONS
721	Standards on Thermal Comfort. SpringerBriefs in Applied Sciences and Technology, 2014, , 21-32.	0.2	0
724	Ubiquitous Monitoring and Adaptation of the Tempered Environment. , 2015, , 445-457.		Ο
725	Adaptive Comfort: Passive Design for Active Occupants. Revista De Engenharia Civil IMED, 2015, 2, 29-32.	0.0	1
726	WpÅ,yw systemów pasywnej kontroli zysków sÅ,onecznych na bilans energetyczny budynków oraz komfort cieplny i wizualny użytkowników. MateriaÅy Budowlane, 2015, 1, 68-71.	0.0	0
728	Design of Fuzzy-PI Decoupling Controller for the Temperature and Humidity Process in HVAC System. International Journal of Engineering Research & Technology, 2016, V5, .	0.2	3
729	The human factor in sustainable architecture. , 2016, , 177-198.		0
730	Intra-Urban Air Temperature Distribution, Urban Heat Island and Thermal Comfort Implications in A Subtropical City. International Journal of Architectural Engineering Technology, 2016, 2, 127-137.	0.1	0
731	Office Workplaces. Human Factors and Ergonomics, 2016, , 151-168.	0.0	0
732	OPTIMIZATION OF SOLAR CHIMNEY FOR VENTILATION SPACES. Smart Moves Journal Ijoscience, 2016, 2, .	0.0	0
733	Sensor solutions for an energy-efficient and user-centered heating system. Journal of Sensors and Sensor Systems, 2017, 6, 27-35.	0.6	1
734	Mixed Mode buildings as approach to reduce energy consumption in office buildings in greater Cairo in Egypt. Port-Said Engineering Research Journal, 2017, 21, 1-7.	0.0	0
736	Development of an Adaptive Thermal Comfort Equation for Naturally Ventilated Buildings in Hot and Humid Climates. , 2018, , 145-154.		1
737	Effect of Gender, Age, Air-Conditioning and Thermal Experience on the Perceptions of Inhaled Air. Advances in Intelligent Systems and Computing, 2019, , 170-179.	0.5	0
738	Indoor Environmental Quality performance of mixed-mode ventilated shopping malls in hot-humid climatic region. Jurnal Alam Bina, 2018, 5, .	0.2	2
739	Effects of Outdoor Thermal Environment upon the Human Responses. Engineering, 2019, 11, 475-503.	0.4	3
740	Investigation of Thermal Sensation of Occupants in Domestic Buildings Located in Different Regions of China. International Journal of Sustainable and Green Energy, 2019, 8, 45.	0.5	0
741	Evaluation and Management Approaches. , 2020, , 41-73.		0
743	Conforto térmico em ambientes de internação hospitalar naturalmente ventilados. Ambiente ConstruÃdo, 2020, 20, 113-134.	0.2	1

#	Article	IF	CITATIONS
744	Eficiência energética em prédios de salas de aula naturalmente ventilados. PARC: Pesquisa Em Arquitetura E Construção, 0, 11, e020015.	0.3	1
745	Summer thermal discomfort in substandard housing with openable windows in Hong Kong. Science and Technology for the Built Environment, 2021, 27, 462-476.	0.8	3
746	Comparison of Occupant Thermal Comfort with and without Passive Design for a Naturally Ventilated Educational Building: a case study in Cairo, Egypt. IOP Conference Series: Materials Science and Engineering, 0, 974, 012027.	0.3	2
747	Study of thermal comfort in the residents of different climatic regions of India—Effect of the COVIDâ€19 lockdown. Indoor Air, 2021, 31, 899-917.	2.0	9
748	Evaluation of a Coupled Model to Predict the Impact of Adaptive Behaviour in the Thermal Sensation of Occupants of Naturally Ventilated Buildings in Warm-Humid Regions. Sustainability, 2021, 13, 255.	1.6	4
749	Sistemas de acondicionamiento de aire y ventilación como foco infeccioso de SARS CoV-2 en hospitales, clÃnicas e instituciones de salud. Ipsa Scientia: Revista CientÃfica Multidisciplinaria, 2020, 5, 28-35.	0.9	3
750	Comprehensive validation of experimental and numerical natural ventilation predictions based on field measurement with experimental house. Building and Environment, 2022, 207, 108433.	3.0	13
751	Combining EnergyPlus and CFD to predict and optimize the passive ventilation mode of medium-sized gymnasium in subtropical regions. Building and Environment, 2022, 207, 108420.	3.0	14
752	CFD-Based Numerical Method for Temperature Set-Point Commissioning and PMV Assessment of Occupied Individual Air-Conditioning Zone. Environmental Science and Engineering, 2020, , 19-28.	0.1	0
753	From hygrothermal adaptation of endemic plants to meteorosensitive biomimetic architecture: case of Mediterranean biodiversity hotspot in Northeastern Algeria. Environment, Development and Sustainability, 2021, , 1-26.	2.7	3
754	The P.A.R.C.O. Protocol for Sustainable Project. An Analysis for Indoor Environmental Quality. Smart Innovation, Systems and Technologies, 2021, , 2131-2142.	0.5	1
755	Energy effectiveness of passive cooling design strategies to reduce the impact of long-term heatwaves on occupants' thermal comfort in Europe: Climate change and mitigation. Journal of Cleaner Production, 2022, 330, 129675.	4.6	48
756	A Field Study on Thermal Comfort and Cooling Load Demand Optimization in a Tropical Climate. Sustainability, 2021, 13, 12425.	1.6	4
757	Thermal performance of a non–segmented and segmented tall atrium in hot and humid climate. Journal of Physics: Conference Series, 2021, 2042, 012162.	0.3	0
759	Influence of the RCP scenarios on the effectiveness of adaptive strategies in buildings around the world. Building and Environment, 2022, 208, 108631.	3.0	8
760	Numerical simulation of natural ventilation with passive cooling by diagonal solar chimneys and windcatcher and water spray system in a hot and dry climate. Energy and Buildings, 2022, 256, 111714.	3.1	13
761	I want it that way. , 2021, , .		3
762	Subject's thermal adaptation in different built environments: An analysis of updated metadata-base of thermal comfort data in India. Journal of Building Engineering, 2022, 46, 103844.	1.6	4

#	Article	IF	CITATIONS
763	Study on psychological performance of occupant in Indian buildings influenced by human comfort and indoor air quality. AIP Conference Proceedings, 2021, , .	0.3	0
765	Improving comfort conditions as an energy upgrade tool for housing stock: Analysis of a house prototype. Energy for Sustainable Development, 2022, 66, 209-221.	2.0	9
766	Impact of climate change on energy saving potentials of natural ventilation and ceiling fans in mixed-mode buildings. Building and Environment, 2022, 209, 108662.	3.0	38
767	Thermal comfort in naturally ventilated dwellings in the central Mexican plateau. Building and Environment, 2022, 211, 108713.	3.0	10
768	Thermal responses of people exhibiting high metabolic rates when exercising in piloti spaces in hot and humid areas. Journal of Building Engineering, 2022, 48, 103930.	1.6	3
770	Study on winter thermal comfort of membrane structure gymnasium in severe cold region of China. Science and Technology for the Built Environment, 0, , 1-14.	0.8	5
772	Prediction of the Impact of Air Speed Produced by a Mechanical Fan and Operative Temperature on the Thermal Sensation. Buildings, 2022, 12, 101.	1.4	7
773	Investigation of thermal comfort and adaptation among the residents of cold climate in the lower Himalayan region of eastern India. Indoor and Built Environment, 2022, 31, 1613-1635.	1.5	6
774	The impact of human occupancy in thermal performance of a historic religious building in sub-humid temperate climate. Energy and Buildings, 2022, 259, 111912.	3.1	8
775	Psychological adaptation to thermal environments and its effects on thermal sensation. Physiology and Behavior, 2022, 247, 113724.	1.0	14
776	Performance evaluation of active chilled beam systems for office buildings – A literature review. Sustainable Energy Technologies and Assessments, 2022, 52, 101999.	1.7	3
777	Living with air-conditioning: experiences in Dubai, Chongqing and London. Buildings and Cities, 2022, 3, 10-27.	1.1	9
778	Derivation of spatially distributed thermal comfort levels in Jordan as investigated from remote sensing, GIS tools, and computational methods. Theoretical and Applied Climatology, 2022, 148, 569-583.	1.3	3
779	Using machine learning algorithms to multidimensional analysis of subjective thermal comfort in a library. Building and Environment, 2022, 212, 108790.	3.0	12
780	Analysis of the Influence of the Gas Infrared Heater and Equipment Elements Relative Positions on Industrial Premises Thermal Conditions. SSRN Electronic Journal, 0, , .	0.4	0
782	Analysis of the Influence of the Gas Infrared Heater and Equipment Elements Relative Positions on Industrial Premises Thermal Conditions. SSRN Electronic Journal, 0, , .	0.4	0
783	Discrepancies between predicted and actual indoor environmental (dis)comfort: the role of hospitalized patients' adaptation strategies. Building Research and Information, 2022, 50, 792-809.	2.0	3
784	Effects of Bottom-Overhead Design Variables on Pedestrian-Level Thermal Comfort during Summertime in Different High-Rise Residential Buildings: A Case Study in Chongqing, China. Buildings, 2022, 12, 265.	1.4	6

(ITATION DEDOE	
CITATION REPOR	

#	Article	IF	CITATIONS
785	Comparative analysis between constant and variable solar radiation reflectivity for exterior walls in the hot-summer and cold-winter zone. International Journal of Low-Carbon Technologies, 2022, 17, 571-580.	1.2	1
786	Multifunctional Wearable Thermoelectrics for Personal Thermal Management. Advanced Functional Materials, 2022, 32, .	7.8	75
787	Impact of Hybrid Ventilation Strategies in Energy Savings of Buildings: In Regard to Mixed-Humid Climate Regions. Energies, 2022, 15, 1960.	1.6	5
788	Learning based cost optimal energy management model for campus microgrid systems. Applied Energy, 2022, 311, 118630.	5.1	7
789	Hygrothermal behavior of post-retrofit housing: A review of the impacts of the energy efficiency upgrade strategies. Energy and Buildings, 2022, 262, 112001.	3.1	14
790	Associating indoor air temperature with building spatial design and occupancy features: A statistical analysis on university classrooms. Building and Environment, 2022, 216, 109009.	3.0	9
791	Comparison analysis on simplification methods of building performance optimization for passive building design. Building and Environment, 2022, 216, 108990.	3.0	5
792	Cool roofs can mitigate cooling energy demand for informal settlement dwellers. Renewable and Sustainable Energy Reviews, 2022, 159, 112183.	8.2	18
793	Bayesian prediction model of thermally satisfied occupants considering stochasticity due to inter- and intra-individual thermal sensation variations. Journal of Building Engineering, 2022, 52, 104414.	1.6	3
794	The decision-making process towards implementing energy efficiency in a university-built park in southern Brazil. International Journal of Hydrology, 2021, 5, 265-279.	0.2	1
796	Patient well-being, adaptation of and to indoor conditions, and hospital room design: two mixed methods case studies. Building Research and Information, 2022, 50, 105-133.	2.0	3
797	A Multi-factor Comprehensive Model of Human Thermal Sensation in Free-running Built Environment in Summer in Xi'an, China. , 2021, , .		0
798	Assessing annual thermal comfort extent in central courtyards: Baghdad as a case study. Smart and Sustainable Built Environment, 2023, 12, 660-681.	2.2	2
799	Effect of outdoor thermal comfort condition on visit of tourists in historical urban plazas of Sevilla and Madrid. Environmental Science and Pollution Research, 2022, 29, 60641-60661.	2.7	14
800	Understanding thermal comfort in vernacular dwellings in Alentejo, Portugal: A mixed-methods adaptive comfort approach. Building and Environment, 2022, 217, 109084.	3.0	16
802	Influence of a Better Prediction of Thermal Satisfaction for the Implementation of an HVAC-Based Demand Response Strategy. Energies, 2022, 15, 3094.	1.6	0
803	Energy-saving contribution of the thermochromic coating in exterior walls in hot-summer and cold-winter zone. International Journal of Low-Carbon Technologies, 2022, 17, 710-719.	1.2	2
804	Thermal Network Model for an Assessment of Summer Indoor Comfort in a Naturally Ventilated Residential Building. Energies, 2022, 15, 3709.	1.6	1

#	Article	IF	CITATIONS
805	Cooling performance analysis of nanofluid assisted novel photovoltaic thermoelectric air conditioner for energy efficient buildings. Applied Thermal Engineering, 2022, 213, 118691.	3.0	23
806	Indoor Environmental Quality: Thermal Comfort. , 2022, , .		Ο
807	Validity of Orifice equation and impact of building parameters on wind-induced natural ventilation rates with minute mean wind pressure difference. Building and Environment, 2022, 219, 109248.	3.0	10
808	Transient analysis of buildings with Trombe wall in a southern envelope and strengthening efficacy by adding phase change material. Journal of Building Engineering, 2022, 55, 104670.	1.6	4
810	MODES. , 2022, , .		2
811	Occupant plugload management for demand response in commercial buildings: Field experimentation and statistical characterization. Sustainable Cities and Society, 2022, 84, 103984.	5.1	0
812	Evaluating the indoor thermal resilience of ventilative cooling in non-residential low energy buildings: A review. Building and Environment, 2022, 222, 109376.	3.0	17
813	Assessment of the impact of construction materials on the building's thermal behaviour and indoor thermal comfort in a hot and semi-arid climate. Advances in Building Energy Research, 2022, 16, 711-735.	1.1	3
814	Thermal Comfort in the Design Classroom for Architecture in the Cold Area of China. Sustainability, 2022, 14, 8307.	1.6	5
815	Evaluation of the accuracy of PMV and its several revised models using the Chinese thermal comfort Database. Energy and Buildings, 2022, 271, 112334.	3.1	25
816	Modelling the thermal response of the human body for thermal comfort assessment in indoor spaces: an experimental validation. , 2022, , .		0
817	Field study of seasonal thermal comfort and adaptive behavior for occupants in residential buildings of Xi'an, China. Journal of Central South University, 2022, 29, 2403-2414.	1.2	4
818	Thermal Environment and Energy Performance of a Typical Classroom Building in a Hot-Humid Region: A Case Study in Guangzhou, China. Geofluids, 2022, 2022, 1-14.	0.3	1
819	Natural Ventilation In A Warming Climate: An Evaluation Of Computational Simulation Methods And Metrics. , 2022, , .		0
820	Development of thermal comfort models over the past years: a systematic literature review. International Journal of Ambient Energy, 2022, 43, 8830-8846.	1.4	1
821	A Performance-Based Window Design and Evaluation Model for Naturally Ventilated Offices. Buildings, 2022, 12, 1141.	1.4	6
822	Emerging tunable window technologies for active transparency tuning. Applied Physics Reviews, 2022, 9, .	5.5	9
823	Turbulence-induced ventilation of an isolated building: Ventilation route identification using spectral proper orthogonal decomposition. Building and Environment, 2022, 223, 109471.	3.0	10

		15	0
#	ARTICLE	IF	CITATIONS
824	Multi-objective optimization of energy, visual, and thermal performance for building envelopes in China's hot summer and cold winter climate zone. Journal of Building Engineering, 2022, 59, 105034.	1.6	21
825	Quantifying the impact of personal comfort systems on thermal satisfaction and energy consumption in office buildings under different U.S. climates. Energy and Buildings, 2022, 274, 112448.	3.1	4
826	Extreme learning machine evolved by fuzzified hunger games search for energy and individual thermal comfort optimization. Journal of Building Engineering, 2022, 60, 105187.	1.6	8
827	Sensitivity analysis of the effect of current mood states on the thermal sensation in educational buildings. Indoor Air, 2022, 32, .	2.0	5
828	Integration of GIS and remote sensing to derive spatially continuous thermal comfort and degree days across the populated areas in Jordan. International Journal of Biometeorology, 2022, 66, 2273-2285.	1.3	3
829	Ventilación por convección entre patios en las casas tradicionales de la ciudad de Lima. La casa Riva-Agüero. Informes De La Construccion, 2022, 74, e454.	0.1	0
830	Effect of flow structures on natural ventilation performance in office model. Journal of Visualization, 2023, 26, 289-298.	1.1	2
831	Evaluación del confort térmico y la calidad de aire en centros docentes públicos en Madrid. Estudio de tres casos durante un año. Informes De La Construccion, 2022, 74, e456.	0.1	0
832	A Comparison Between Predicted and Actual Thermal Sensation in Non-air-conditioned Residential Buildings in a Tropical Climate: A Case Study. Lecture Notes in Civil Engineering, 2023, , 477-487.	0.3	0
833	Investigative Study on Adaptive Thermal Comfort in Office Buildings with Evaporative Cooling Systems (ECS) under Dry Hot Climate. Buildings, 2022, 12, 1827.	1.4	2
834	Statistical Evaluation and Development of General Thermal Comfort Equations for Naturally Ventilated Buildings in Humid and Dry Hot Climates. Buildings, 2022, 12, 1803.	1.4	2
835	Robust Building Scheme Design Optimization for Uncertain Performance Prediction. , 2017, , .		1
836	Mapping Comfort: An Analysis Method For Understanding Diversity In The Thermal Environment. , 2013, , .		1
837	Optimisation Methodology For The Design Of Solar Shading For Thermal And Visual Comfort In Tropical Climates. , 2013, , .		2
838	An Occupant Behavior Model Based On Artificial Intelligence For Energy Building Simulation. , 2013, , .		3
839	Climate-Specific Modeling And Analysis for Best-Practice Indian Office Buildings. , 2015, , .		1
840	Definition of Urban Built Environment Climate Adaptive Design Actions Aided by Environmental Data-Driven Design Processes. Atmosphere, 2022, 13, 1835.	1.0	0
841	Natural and Mechanical Ventilation Concepts for Indoor Comfort and Well-Being with a Sustainable Design Perspective: A Systematic Review. Buildings, 2022, 12, 1983.	1.4	8

	CITATION	N REPORT	
#	Article	IF	Citations
842	A year-long field investigation on the spatio-temporal variations of occupant's thermal comfort in Chinese traditional courtyard dwellings. Building and Environment, 2023, 228, 109836.	3.0	12
843	Combining microclimatic monitoring with questionnaires, for understanding thermal comfort in Linpan, a typical agricultural ecosystem settlement in the Chengdu plain. Building and Environment, 2023, 228, 109868.	3.0	1
844	Thermal performance of historic buildings in Mexico: An analysis of passive systems under the influence of climate change. Energy for Sustainable Development, 2023, 72, 100-113.	2.0	4
845	A new thermal comfort model based on physiological parameters for the smart design and control of energy-efficient HVAC systems. Renewable and Sustainable Energy Reviews, 2023, 173, 113015.	8.2	18
846	Influence of Ventilation on Indoor Air Quality. , 2022, , 1637-1673.		1
847	Airborne transmission of biological agents within the indoor built environment: a multidisciplinary review. Air Quality, Atmosphere and Health, 2023, 16, 477-533.	1.5	5
848	Analysis of the Influence of the Gas Infrared Heater and Equipment Element Relative Positions on Industrial Premises Thermal Conditions. Energies, 2022, 15, 8749.	1.6	2
849	Field Measurements and Analysis on Temperature, Relative Humidity, Airflow Rate and Oil Fume Emission Concentration in a Typical Campus Canteen Kitchen in Tianjin, China. Applied Sciences (Switzerland), 2022, 12, 11755.	1.3	2
850	Passive Solar Systems for the Promotion of Thermal Comfort in African Countries: A Review. Energies, 2022, 15, 9167.	1.6	2
851	Thermal Comfort Survey II: A Field Study Investigation on the Regression Forecasting of Neutral Adaptive Thermal Comfort. , 2022, , 393-452.		0
852	Energy Consumption of Apartment Conversion into Passive Houses in Hot-Summer and Cold-Winter Regions of China. Buildings, 2023, 13, 168.	1.4	3
853	Holistic Approach towards a Sustainable Urban Renewal: Thermal Comfort Perspective of Urban Housing in Kigali, Rwanda. Buildings, 2023, 13, 146.	1.4	0
854	Thermal Assessment of a Ventilated Double Skin Façade Component with a Set of Air Filtering Photocatalytic Slats in the Cavity. Buildings, 2023, 13, 272.	1.4	1
855	Aplicação de experimento fatorial como método para a definição de zonas bioclimáticas a partir do conforto térmico. PARC: Pesquisa Em Arquitetura E Construção, 0, 14, e023005.	0.3	1
856	Occupant Behavior Impact on Building Sustainability Performance: A Literature Review. Sustainability, 2023, 15, 2440.	1.6	2
857	Characteristic analysis and improvement methods of the indoor thermal environment in post-disaster temporary residential buildings: A systematic review. Building and Environment, 2023, 235, 110198.	3.0	8
858	Predicting energy performances of buildings' envelope wall materials via the random forest algorithm. Journal of Building Engineering, 2023, 69, 106263.	1.6	4
859	A detailed view of the Adaptive-Comfort-Control-Implementation Script (ACCIS): The capabilities of the automation system for adaptive setpoint temperatures in building energy models. Energy and Buildings, 2023, 288, 113019.	3.1	4

~			<u> </u>	
C	ΙΤΑΤΙ	ON	REPC	INT

#	Article	IF	CITATIONS
860	Simulation of thermal comfort and energy demand in buildings of sub-Himalayan eastern India - Impact of climate change at mid (2050) and distant (2080) future. Journal of Building Engineering, 2023, 68, 106068.	1.6	2
861	Thermal Comfort in Buildings: Scientometric Analysis and Systematic Review. Journal of Architectural Engineering, 2023, 29, .	0.8	1
862	Experimental investigation of thermally activated building system under the two different floor covering materials to maximize the underfloor cooling efficiency. International Journal of Thermal Sciences, 2023, 188, 108223.	2.6	1
863	Quantitative analysis and enhancement on passive survivability of vernacular houses in the hot and humid region of China. Journal of Building Engineering, 2023, 71, 106431.	1.6	3
865	State-of-the-Art II: Bibliometric Review of the Last 30 Years Energy Policy in Europe. , 2022, , 93-156.		0
866	A feasibility study on emissions reductions and demand response in a seaport building. , 2022, , .		2
867	A novel index for assessing the climate potential of free-running buildings based on the acceptable upper limits of thermal comfort models across China. Energy Conversion and Management, 2023, 278, 116692.	4.4	1
868	Thermal Conditions in Indoor Environments: Exploring the Reasoning behind Standard-Based Recommendations. Energies, 2023, 16, 1587.	1.6	4
869	Developing a surrogate model for naturally ventilated cellular offices in Brazil. Building and Environment, 2023, 233, 110075.	3.0	1
870	Energy efficient cooling through natural ventilation in Kosovo. Journal of Energy Systems, 2023, 7, 30-45.	0.8	1
871	Climate chamber investigation of the effect of indoor thermal histories on thermal adaptation in different seasons. Energy and Built Environment, 2024, 5, 455-463.	2.9	5
872	Passive mitigation of overheating in Finnish apartments under current and future climates. Indoor and Built Environment, 2023, 32, 1372-1392.	1.5	3
873	Cold Housing in Central Mexico: Environmental Dissatisfaction and Underheating Lowers Self-Perceived Health in Central Mexico. Buildings, 2023, 13, 814.	1.4	0
874	Effect of cement and geopolymer stabilization on the thermal comfort: case study of an earthen building in Burkina Faso. International Journal of Building Pathology and Adaptation, 0, , .	0.7	1
880	Thermal Comfort. , 2023, , 1-23.		1
881	Hardware-in-the-loop Towards Frequency Regulation Service by HVACs with Real-time Digital Simulator. , 2023, , .		0
886	The Daylit Area and the Regional Aspect of Daylight Sufficiency Metrics. Green Energy and Technology, 2023, , 243-254.	0.4	0
892	A Detailed Analysis on the Programming Approach to Apply Adaptive Setpoint Temperatures. Lecture Notes in Civil Engineering, 2023, , 459-471.	0.3	0

#	Article	IF	CITATIONS
895	Well-being in the Built Environment. , 2023, , 77-107.		0
903	Roots and Mechanisms of Thermal Comfort Expectations: From Individuals' Own Background to Adaptation and Change. Environmental Science and Engineering, 2023, , 2325-2336.	0.1	2
917	Assessment of the Impact of Building Orientation on PMV and PPD in Naturally Ventilated Rooms During Summers in Warm and Humid Climate of Kharagpur, India. , 2023, , .		1
925	Gaps in Studies and Implementations on Thermal Comfort in Residences in Vietnam. Lecture Notes in Civil Engineering, 2024, , 82-90.	0.3	0
932	BIM and CFD Based Simulation Approach in Reducing Thermal Energy Demands of a Residential Building: A Case Study in Bangladesh. Lecture Notes in Civil Engineering, 2024, , 297-309.	0.3	0