CITATION REPORT List of articles citing

Hypercrosslinked polymers: basic principle of preparing the new class of polymeric materials

DOI: 10.1016/s1381-5148(02)00173-6 Reactive and Functional Polymers, 2002, 53, 193-203.

Source: https://exaly.com/paper-pdf/34610983/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
344	Adsorption of phenylhydrazine derivatives on hypercrosslinked polymeric adsorbents. <i>Reactive and Functional Polymers</i> , 2003 , 57, 93-102	4.6	24
343	Water-swelling behavior of hydrophobic porous copolymer resins composed of two kinds of crosslinkers. 2004 , 92, 997-1004		6
342	Water-swellable hydrophobic porous copolymer resins based on divinylbenzene and acrylonitrile. I. Water-swelling behavior. 2004 , 94, 2041-2049		4
341	Influence of hypercrosslinking on adsorption and absorption on or in styrenic polymers. <i>Reactive and Functional Polymers</i> , 2004 , 59, 71-79	4.6	34
340	Adsorption of Phenol from Aqueous Solution by Aminated Hypercrosslinked Polymers. 2005 , 23, 335-3	46	20
339	Adsorption behavior of water-wettable hydrophobic porous resins based on divinylbenzene and methyl acrylate. <i>Reactive and Functional Polymers</i> , 2005 , 63, 43-53	4.6	5
338	Adsorption of resorcinol and catechol from aqueous solution by aminated hypercrosslinked polymers. <i>Reactive and Functional Polymers</i> , 2005 , 64, 63-73	4.6	61
337	Pore structure and water-swelling behavior of porous resins based on methyl acrylate and different divinylbenzene isomers. 2005 , 96, 2071-2078		4
336	Adsorption of Trace Heavy Metals: Application of Surface Complexation Theory to a Macroporous Polymer and a Weakly Acidic Ion-Exchange Resin. 2005 , 44, 8671-8681		40
335	Rapid Generation and Control of Microporosity, Bimodal Pore Size Distribution, and Surface Area in Davankov-Type Hyper-Cross-Linked Resins. <i>Macromolecules</i> , 2006 , 39, 627-632	5.5	244
334	Synthesis of Ultrahigh Surface Area Monodisperse Porous Polymer Nanospheres. <i>Macromolecules</i> , 2006 , 39, 5381-5384	5.5	90
333	Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. <i>Chemical Society Reviews</i> , 2006 , 35, 675-83	58.5	1376
332	Three Generations of Polystyrene-Type Strong Acid Cation Exchangers: Textural Effects on Proton/Cadmium(II) Ion Exchange Kinetics. 2006 , 45, 9096-9106		9
331	The first representatives of hypercrosslinked hydrophilic networks: Alkylation and polymerization of 4-vinylpyridine in an ionic liquid. 2006 , 406, 6-8		9
330	Chromatographic resolution of a salt into its parent acid and base constituents. 2006 , 1136, 118-22		10
329	Effects of post-crosslinking of macroreticular styrenedivinylbenzene copolymers on their morphology. 2006 , 47, 6544-6550		44
328	Soluble hyperbranched polymers with high inner surface areas. 2006 , 16, 79		3

Pore structure of macroporous monolithic cryogels prepared from poly(vinyl alcohol). 2006, 100, 1057-1066 81 327 References. 2007, 437-469 326 The potential of organic polymer-based hydrogen storage materials. 2007, 9, 1802-8 184 325 Improved adsorption of 4-nitrophenol onto a novel hHyper-cross-linked polymer. 2007, 41, 5057-62 110 324 Hypercrosslinked polyanilines with nanoporous structure and high surface area: potential 263 323 adsorbents for hydrogen storage. 2007, 17, 4989 Hydrogen Storage in Microporous Hypercrosslinked Organic Polymer Networks. 2007, 19, 2034-2048 322 549 Microporous Polymers as Potential Hydrogen Storage Materials. 2007, 28, 995-1002 321 163 Exploring Polymers of Intrinsic Microporosity [Microporous, Soluble Polyamide and Polyimide. 320 224 **2007**, 28, 1871-1876 Mechanism of oxidative reaction in the post crosslinking of hypercrosslinked polymers. 2007, 43, 2732-2737 319 50 A fibrous hypercrosslinked sorbent prepared on PP-ST-DVB matrix via post-crosslinking reaction. 318 2007, 18, 588-590 Studies progress of preparation, properties and applications of hyper-cross-linked polystyrene 317 24 networks. 2007, 42, 7621-7629 Synthesis of Spherical Ultra-High-Surface-Area Monodisperse Amphipathic Polymer Sponges in the 316 49 Low-Micrometer Size Range. **2008**, 20, 1298-1302 Tailoring microporosity in covalent organic frameworks. 2008, 20, 2741-6 366 315 Improving anion exchange membranes for DMAFCs by inter-crosslinking CPPO/BPPO blends. 9.6 314 75 Journal of Membrane Science, 2008, 322, 286-292 Evaluation of exchange equilibria on strongly acidic ion exchangers with gel-type, macroporous and 4.6 313 9 macronet structure. Reactive and Functional Polymers, 2008, 68, 492-506 312 Facile synthesis and characterization of novel pseudo-hypercrosslinked resin. 2008, 19, 611-614 A hyper-cross-linked polystyrene with nano-pore structure. 2008, 44, 2516-2522 38 311 Synthesis of polymeric anion exchangers bearing dimethylhydrazine and alkylammonium functional 310 16 groups and comparison of their chromatographic properties. 2008, 63, 41-45

309	Hyper-cross-linked resins with controllable pore structure. 2008 , 62, 2392-2395		12
308	Novel spirobisindanes for use as precursors to polymers of intrinsic microporosity. 2008 , 10, 2641-3		77
307	Polymers of Intrinsic Microporosity Derived from Bis(phenazyl) Monomers. <i>Macromolecules</i> , 2008 , 41, 1640-1646	5.5	138
306	Toward stable interfaces in conjugated polymers: microporous poly(p-phenylene) and poly(phenyleneethynylene) based on a spirobifluorene building block. 2008 , 130, 6334-5		396
305	Microporous Networks of High-Performance Polymers: Elastic Deformations and Gas Sorption Properties. <i>Macromolecules</i> , 2008 , 41, 2880-2885	5.5	277
304	Atomistic Simulation of Micropore Structure, Surface Area, and Gas Sorption Properties for Amorphous Microporous Polymer Networks. 2008 , 112, 20549-20559		55
303	Hard Templates for Soft Materials: Creating Nanostructured Organic Materials 2008, 20, 738-755		342
302	Mesoporous Poly(phenylenevinylene) Networks. <i>Macromolecules</i> , 2008 , 41, 1591-1593	5.5	60
301	Polymers of Intrinsic Microporosity. 2009,		5
300	Microporous Conjugated Poly(thienylene arylene) Networks. 2009 , 21, 702-705		269
300 299	Microporous Conjugated Poly(thienylene arylene) Networks. 2009 , 21, 702-705 Microporous polyisocyanurate and its application in heterogeneous catalysis. 2009 , 15, 1077-81		269 63
299	Microporous polyisocyanurate and its application in heterogeneous catalysis. 2009 , 15, 1077-81		63
299 298	Microporous polyisocyanurate and its application in heterogeneous catalysis. 2009 , 15, 1077-81 Porous polymers: enabling solutions for energy applications. 2009 , 30, 221-36		63
299 298 297	Microporous polyisocyanurate and its application in heterogeneous catalysis. 2009 , 15, 1077-81 Porous polymers: enabling solutions for energy applications. 2009 , 30, 221-36 Copolymers of Intrinsic Microporosity Based on 2,2',3,3'-Tetrahydroxy-1,1'-dinaphthyl. 2009 , 30, 584-8		63 168 62
299298297296	Microporous polyisocyanurate and its application in heterogeneous catalysis. 2009, 15, 1077-81 Porous polymers: enabling solutions for energy applications. 2009, 30, 221-36 Copolymers of Intrinsic Microporosity Based on 2,2',3,3'-Tetrahydroxy-1,1'-dinaphthyl. 2009, 30, 584-8 Nanoporous polymers for hydrogen storage. 2009, 5, 1098-111 Adsorption and desorption hysteresis of 4-nitrophenol on a hyper-cross-linked polymer resin	8.3	63 168 62 333
299298297296295	Microporous polyisocyanurate and its application in heterogeneous catalysis. 2009, 15, 1077-81 Porous polymers: enabling solutions for energy applications. 2009, 30, 221-36 Copolymers of Intrinsic Microporosity Based on 2,2',3,3'-Tetrahydroxy-1,1'-dinaphthyl. 2009, 30, 584-8 Nanoporous polymers for hydrogen storage. 2009, 5, 1098-111 Adsorption and desorption hysteresis of 4-nitrophenol on a hyper-cross-linked polymer resin NDA-701. 2009, 168, 1217-22 Synthesis and characterization of size-selective nanoporous polymeric adsorbents for blood	8.3	63 168 62 333 19

291	High surface area polyHIPEs with hierarchical pore system. 2009 , 5, 1055		75
290	Polymers of Intrinsic Microporosity Derived from Novel Disulfone-Based Monomers Macromolecules, 2009 , 42, 6023-6030	5.5	127
289	Nanoporous, hypercrosslinked polypyrroles: effect of crosslinking moiety on pore size and selective gas adsorption. 2009 , 1526-8		68
288	Cross-linked polyvinyl polymers versus polyureas as designed supports for catalytically active M(0) nanoclusters. Part III. Nanometer scale structure of the cross-linked polyurea support EnCat 30 and of the Pd(II)/EnCat 30 and Pd(0)/EnCat 30NP catalysts. 2009 , 11, 4068-76		13
287	Assembly of nanoporous organic materials from molecular building blocks. 2009 , 19, 1781		68
286	Microporous organic polymers: design, synthesis, and function. 2010 , 293, 1-33		96
285	1H NMR cryoporosimetry of swollen hypercrosslinked polymers. 2010 , 84, 460-465		2
284	Synthesis and sorption ability of telogenated hyper-cross-linked polydivinylbenzene networks. 2010 , 83, 885-889		
283	Facile Synthesis of Nanoporous Hydroquinone/Catechol Formaldehyde Resins and their Highly Selective, Efficient and Regenerate Reactive Adsorption for Gold Ions. 2010 , 211, 845-853		18
282	Preparation and characterization of polar polymeric adsorbents with high surface area for the removal of phenol from water. 2010 , 177, 773-80		57
281	Facile one-pot synthesis of nanoporous hypercrosslinked hydroxybenzene formaldehyde resins with high surface area and adjustable pore texture. <i>Microporous and Mesoporous Materials</i> , 2010 , 131, 141-147	5.3	10
2 80	Polymers of Intrinsic Microporosity with Dinaphthyl and Thianthrene Segments Macromolecules, 2010 , 43, 8580-8587	5.5	110
279	Triptycene-Based Polymers of Intrinsic Microporosity: Organic Materials That Can Be Tailored for Gas Adsorption. <i>Macromolecules</i> , 2010 , 43, 5287-5294	5.5	246
278	Exploitation of Intrinsic Microporosity in Polymer-Based Materials. <i>Macromolecules</i> , 2010 , 43, 5163-517	6 5.5	669
277	High Surface Area Networks from Tetrahedral Monomers: Metal-Catalyzed Coupling, Thermal Polymerization, and Click Chemistry. <i>Macromolecules</i> , 2010 , 43, 8531-8538	5.5	189
276	Porous Networks Assembled from Octaphenylsilsesquioxane Building Blocks. <i>Macromolecules</i> , 2010 , 43, 6995-7000	5.5	65
275	Fractal Dimensions of Macroporous and Hypercrosslinked Polymeric Adsorbents from Nitrogen Adsorption Data. 2010 , 55, 3147-3150		17
274	Simple systematic synthesis of size-tunable covalent organophosphonitridic framework nano- and microspheres. 2010 , 34, 215		16

273	Band gap engineering in fluorescent conjugated microporous polymers. 2011 , 2, 1777		230
272	Targeted synthesis of an electroactive organic framework. 2011 , 21, 18208		64
271	Tribenzotriquinacene-based polymers of intrinsic microporosity. <i>Polymer Chemistry</i> , 2011 , 2, 2257	4.9	55
270	Novel hydration induced flexible sulfonated poly(etherketoneketone) foam with super dielectric characteristics. 2011 , 21, 13546		2
269	Nanoporous Crystalline Phases of Poly(2,6-Dimethyl-1,4-phenylene)oxide. 2011 , 23, 3195-3200		66
268	Intrinsically Microporous Poly(imide)s: Structure P orosity Relationship Studied by Gas Sorption and X-ray Scattering. <i>Macromolecules</i> , 2011 , 44, 2025-2033	5.5	71
267	Thionyl Chloride-Catalyzed Preparation of Microporous Organic Polymers through Aldol Condensation. <i>Macromolecules</i> , 2011 , 44, 6382-6388	5.5	45
266	Atomistic Structure Generation and Gas Adsorption Simulations of Microporous Polymer Networks. Macromolecules, 2011 , 44, 4511-4519	5.5	79
265	Treatment of aqueous diethyl phthalate by adsorption using a functional polymer resin. 2011 , 32, 145-53	}	11
264	Phloroglucinol Based Microporous Polymeric Organic Frameworks with DH Functional Groups and High CO2 Capture Capacity. 2011 , 23, 1818-1824		214
263	Characterisation of porous hydrogen storage materials: carbons, zeolites, MOFs and PIMs. 2011 , 151, 75-94; discussion 95-115		66
262	Hypercrosslinked organic polymer networks as potential adsorbents for pre-combustion CO2 capture. 2011 , 21, 5475		273
261	Nanoporous copolymer networks through multiple Friedel@rafts-alkylation@tudies on hydrogen and methane storage. 2011 , 21, 2131-2135		70
260	Tailoring the pore size of hypercrosslinked polymers. 2011 , 7, 10910		66
259	Paradoxes of thermodynamics of swelling equilibria of polymers in liquids and vapors. 2011 , 115, 15188-	95	17
258	Immunomagnetic sulfonated hypercrosslinked polystyrene microspheres for electrochemical detection of proteins. 2011 , 21, 14783		17
257	Recent progress in the synthesis and applications of nanoporous carbon films. 2011 , 21, 313-323		73
256	Gas storage in porous aromatic frameworks (PAFs). 2011 , 4, 3991		378

255	Polymeric Frameworks: Toward Porous Semiconductors. 2011 , 119-154		3
254	Microporous organic polymers for carbon dioxide capture. 2011 , 4, 4239		497
253	References to Part Two. 2011 , 56, 359-367		
252	References To Part Three. 2011 , 623-636		
251	Synthesis and chromatographic properties of new polymer-based anion exchangers. <i>Moscow University Chemistry Bulletin</i> , 2011 , 66, 161-165	0.5	4
250	Crystal Structures of 5,6,5?,6?-Tetramethoxy-1,1?-spirobisindane-3,3?-dione and two of its Fluorene Adducts. 2011 , 41, 98-104		6
249	Porous polymer monoliths for small molecule separations: advancements and limitations. 2011 , 400, 2289-304		96
248	Functional Porous Polymers by Emulsion Templating: Recent Advances. <i>Advanced Functional Materials</i> , 2011 , 21, 211-225	15.6	326
247	Facile synthesis of hypercrosslinked resin via photochlorination of p-xylene and succedent alkylation polymerization. 2011 , 22, 1115-1118		3
246	Hypercrosslinked microporous polymer networks for effective removal of toxic metal ions from water. <i>Microporous and Mesoporous Materials</i> , 2011 , 138, 207-214	5.3	110
245	Synthesis, characterization and adsorption performance of a novel post-crosslinked adsorbent. 2011 , 354, 353-8		21
244	Polymers with Inherent Microporosity. 2011 , 1-29		2
243	On the nature of functional groups In non-functionalized hypercrosslinked polystyrenes. <i>Reactive and Functional Polymers</i> , 2012 , 72, 973-982	4.6	32
242	Storage of hydrogen, methane, carbon dioxide in electron-rich porous aromatic framework (JUC-Z2). 2012 , 18, 375-380		23
241	Enhanced adsorption of puerarin onto a novel hydrophilic and polar modified post-crosslinked resin from aqueous solution. 2012 , 385, 166-73		35
240	Hypercrosslinked porous poly(styrene-co-divinylbenzene) resin: a promising nanostructure-incubator for hydrogen storage. 2012 , 22, 12752		23
239	Materials challenges for the development of solid sorbents for post-combustion carbon capture. 2012 , 22, 2815-2823		224
238	Construction and characterization of models of hypercrosslinked polystyrene. 2012 , 290, 1443-1450		14

237	Design and preparation of porous polymers. 2012 , 112, 3959-4015		1282
236	Synthesis of microporous polymers by Friedel@rafts reaction of 1-bromoadamantane with aromatic compounds and their surface modification. <i>Polymer Chemistry</i> , 2012 , 3, 868	4.9	35
235	Conjugated porous polymers for energy applications. 2012 , 5, 7819		343
234	Gallic acid modified hyper-cross-linked resin and its adsorption equilibria and kinetics toward salicylic acid from aqueous solution. <i>Chemical Engineering Journal</i> , 2012 , 191, 195-201	14.7	28
233	Phenol adsorption on an N-methylacetamide-modified hypercrosslinked resin from aqueous solutions. <i>Chemical Engineering Journal</i> , 2012 , 192, 192-200	14.7	65
232	Bisphenol-A modified hyper-cross-linked polystyrene resin for salicylic acid removal from aqueous solution: adsorption equilibrium, kinetics and breakthrough studies. 2012 , 372, 108-12		16
231	A comparative adsorption study of maphthol on four polymeric adsorbents from aqueous solutions. 2012 , 380, 166-72		7
230	Nanoporous organic polymer networks. 2012 , 37, 530-563		941
229	Synthesis, characterization and adsorption properties of diethylenetriamine-modified hypercrosslinked resins for efficient removal of salicylic acid from aqueous solution. 2012 , 217-218, 400	6-15	61
228	Adsorption of Vanillin by an Anisole-Modified Hyper-Cross-Linked Polystyrene Resin from Aqueous Solution: Equilibrium, Kinetics, and Dynamics. 2013 , 32, E221-E230		15
227	PEG-modified magnetic hypercrosslinked poly(styrene-co-divinylbenzene) microspheres to minimize sorption of serum proteins. <i>Reactive and Functional Polymers</i> , 2013 , 73, 1122-1129	4.6	6
226	Fabrication and characterization of flexible high performance thermoplastic foams derived from rigid polyetherketoneketone via a VOC-free foaming method. 2013 , 48, 3517-3527		1
225	Synthesis of Triptycene-Based Organosoluble, Thermally Stable, and Fluorescent Polymers: Efficient Host © uest Complexation with Fullerene. <i>Macromolecules</i> , 2013 , 46, 6824-6831	5.5	19
224	Organic molecules of intrinsic microporosity: Characterization of novel microporous materials. <i>Microporous and Mesoporous Materials</i> , 2013 , 176, 55-63	5.3	25
223	Two Organic Phase Suspension Polymerization for Novel Hypercrosslinked Resin Bead by Polycondensation of CMB. <i>Chinese Journal of Chemical Engineering</i> , 2013 , 21, 447-452	3.2	1
222	Aniline modified hypercrosslinked polystyrene resins and their adsorption equilibriums, kinetics and dynamics towards salicylic acid from aqueous solutions. <i>Chemical Engineering Journal</i> , 2013 , 233, 124-131	14.7	38
221	Versatile postmodification of linear poly-p-phenylene to prepare microporous polymeric networks using the double aromatic nucleophilic substitution reaction. 2013 , 54, 5358-5362		5
220	Resorcinol modified hypercrosslinked poly(styrene-co-divinlybenzene) resin and its adsorption equilibriums, kinetics and dynamics towards p-hydroxylbenzaldehyde from aqueous solution. <i>Chemical Engineering Journal</i> , 2013 , 219, 238-244	14.7	22

(2013-2013)

219	Conjugated Microporous Polymers with Rose Bengal Dye for Highly Efficient Heterogeneous Organo-Photocatalysis. <i>Macromolecules</i> , 2013 , 46, 8779-8783	5.5	155
218	Targeted synthesis of electroactive porous organic frameworks containing triphenyl phosphine moieties. 2013 , 371, 20120312		11
217	Kinetics of Lactose Hydrogenation over Ruthenium Nanoparticles in Hypercrosslinked Polystyrene. 2013 , 52, 14066-14080		18
216	A hypercrosslinked poly(styrene-co-divinylbenzene) PS resin as a specific polymeric adsorbent for adsorption of 2-naphthol from aqueous solutions. <i>Chemical Engineering Journal</i> , 2013 , 218, 267-275	14.7	23
215	Copolymerization of terephthalaldehyde with pyrrole, indole and carbazole gives microporous POFs functionalized with unpaired electrons. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 10465	13	43
214	Novel lithium-loaded porous aromatic framework for efficient CO2 and H2 uptake. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 752-758	13	77
213	Hypercrosslinked poly(styrene-co-divinylbenzene) resin as a specific polymeric adsorbent for purification of berberine hydrochloride from aqueous solutions. 2013 , 400, 78-87		24
212	Structural and thermodynamic factors on the adsorption process of phenolic compounds onto polyvinylpolypyrrolidone. 2013 , 418, 105-111		19
211	Bioregeneration of hyper-cross-linked polymeric resin preloaded with phenol. 2013 , 142, 701-5		6
210	Preparation of highly porous hypercrosslinked polystyrene adsorbents: Effects of hydrophilicity on the adsorption and microwave-assisted desorption behavior toward benzene. <i>Microporous and Mesoporous Materials</i> , 2013 , 181, 222-227	5.3	20
209	Microporous Functionalized Triazine-Based Polyimides with High CO2 Capture Capacity. 2013 , 25, 970-	980	219
208	Covalent Triazine Frameworks Prepared from 1,3,5-Tricyanobenzene. 2013 , 25, 1542-1548		297
207	Alkaline polymer electrolyte membranes for fuel cell applications. <i>Chemical Society Reviews</i> , 2013 , 42, 5768-87	58.5	473
206	Phenol adsorption on Adichloro-p-xylene (DCX) and 4,4?-bis(chloromethyl)-1,1?-biphenyl (BCMBP) modified XAD-4 resins from aqueous solutions. <i>Chemical Engineering Journal</i> , 2013 , 222, 1-8	14.7	25
205	Microporous organic polymers with ketal linkages: synthesis, characterization, and gas sorption properties. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 4166-72	9.5	19
204	Crosslinked PS-DVB microspheres with sulfonated polystyrene brushes as new generation of ion exchange resins. 2013 , 309, 141-147		37
203	Robust monolithic multiscale nanoporous polyimides and conversion to isomorphic carbons. 2013 , 3, 26459		31
202	Strong Cation Exchange with Innocence: Synthesis and Characterization of Borate Containing Resins and Macroporous Monoliths. <i>Macromolecules</i> , 2013 , 46, 5423-5433	5.5	8

201	Covalent organic frameworks (COFs): from design to applications. <i>Chemical Society Reviews</i> , 2013 , 42, 548-68	58.5	2213
2 00	Porous aromatic frameworks: Synthesis, structure and functions. 2013 , 15, 17-26		205
199	Conjugated Porous Networks Based on Cyclotriveratrylene Building Block for Hydrogen Adsorption. 2013 , 31, 617-623		6
198	Novel functionalized microporous organic networks based on triphenylphosphine. 2013 , 19, 10024-9		44
197	Tetrakis-(4-thiyphenyl)methane: Origin of a Reversible 3D-Homopolymer. <i>Advanced Functional Materials</i> , 2014 , 24, 1054-1058	15.6	14
196	Design, preparation and application of conjugated microporous polymers. 2014 , 63, 381-392		79
195	Role of water as a coporogen in the synthesis of mesoporous poly(divinylbenzenes). 2014 , 131, n/a-n/a		7
194	Sulfonation of a hypercrosslinked polymer adsorbent for microwave-assisted desorption of adsorbed benzene. 2014 , 20, 2484-2489		6
193	Effect of catalyst concentration and reaction time on one-step synthesized hypercrosslinked polyxylene. 2014 , 22, 481-486		6
192	A new approach to the preparation of large surface area poly(styrene-co-divinylbenzene) monoliths via knitting of looselthains using external crosslinkers and application of theselmonolithicltolumns forlseparation of small molecules. 2014 , 55, 340-346		70
191	An ethylenediamine-modified hypercrosslinked polystyrene resin: Synthesis, adsorption and separation properties. <i>Chemical Engineering Journal</i> , 2014 , 242, 19-26	14.7	28
190	Porous Materials for Carbon Dioxide Capture. <i>Green Chemistry and Sustainable Technology</i> , 2014 ,	1.1	16
189	Microporous Polymers: Synthesis, Characterization, and Applications. 2014 , 1-49		2
188	Dry- and swollen-state morphology of novel high surface area polymers. <i>Microporous and Mesoporous Materials</i> , 2014 , 185, 26-29	5.3	15
187	Post polymerisation hypercrosslinking of styrene/divinylbenzene poly(HIPE)s: Creating micropores within macroporous polymer. 2014 , 55, 410-415		48
186	Microporous Hyper-Cross-Linked Aromatic Polymers Designed for Methane and Carbon Dioxide Adsorption. 2014 , 118, 28699-28710		83
185	Melamine based porous organic amide polymers for CO2 capture. 2014 , 4, 52263-52269		49
184	Synthesis, characterization and adsorption properties of an amide-modified hyper-cross-linked resin. 2014 , 4, 41172-41178		9

183	Synthesis, characterization and gas permeation properties of anthracene maleimide-based polymers of intrinsic microporosity. 2014 , 4, 32148		22
182	Formation of Microporosity in Hyper-Cross-Linked Polymers. <i>Macromolecules</i> , 2014 , 47, 5409-5415 5.5	i	50
181	Highly stable CO2/N2 and CO2/CH4 selectivity in hyper-cross-linked heterocyclic porous polymers. ACS Applied Materials & amp; Interfaces, 2014, 6, 7325-33	;	131
180	Hydrogen bonding controlled catalysis of a porous organic framework containing benzimidazole moieties. 2014 , 38, 2292		19
179	Hexaphenyl-p-xylene: A Rigid Pseudo-Octahedral Core at the Service of Three-Dimensional Porous Frameworks. 2014 , 79, 1176-1182		8
178	Microporous Organic Polymers: Synthesis, Types, and Applications. 2014 , 125-164		2
177	Covalently Linked Organic Networks. 2015 , 2,		5
176	The effect of molecular weight on the porosity of hypercrosslinked polystyrene. <i>Polymer Chemistry</i> , 2015 , 6, 7280-7285)	20
175	Maltose hydrogenation over ruthenium nanoparticles impregnated in hypercrosslinked polystyrene. <i>Chemical Engineering Journal</i> , 2015 , 282, 37-44	.7	9
174	Hierarchically porous polystyrene membranes fabricated via a CO2-expanded liquid selective swelling and in situ hyper-cross-linking method. 2015 , 5, 68639-68645		5
173	Postmodification of linear poly- p -phenylenes to prepare hyper-crosslinked polymers: Tuning the surface areas by the molecular weight. 2015 , 60, 234-240		13
172	Acetamide-modified hyper-cross-linked resin: Synthesis, characterization, and adsorption performance to phenol from aqueous solution. 2015 , 132, n/a-n/a		9
171	Nanoporous hypercrosslinked polymers containing Tg enhancing comonomers. 2015 , 59, 42-48		16
170	Hierarchically structured porous organic polymer microspheres with built-in Fe3O4 supraparticles: construction of dual-level pores for Pt-catalyzed enantioselective hydrogenation. <i>Polymer</i> 4.9 <i>Chemistry</i> , 2015 , 6, 2892-2899)	25
169	Free volume and gas permeation in anthracene maleimide-based polymers of intrinsic microporosity. 2015 , 5, 214-27		17
168	Topology-directed design and synthesis of carbazole-based conjugated microporous networks for gas storage. 2015 , 5, 70904-70909		5
167	Sulfur-based hyper cross-linked polymers. 2015 , 5, 23152-23159		6
166	Knitting hypercrosslinked conjugated microporous polymers with external crosslinker. 2015 , 70, 336-342		54

165	Polar modified post-cross-linked resin and its adsorption toward salicylic acid from aqueous solution: Equilibrium, kinetics and breakthrough studies. 2015 , 451, 1-6	18
164	Bottom-up Approach for the Synthesis of a Three-Dimensional Nanoporous Graphene Nanoribbon Framework and Its Gas Sorption Properties. 2015 , 27, 2576-2583	34
163	A new strategy to synthesize hypercross-linked conjugated polystyrene and its application towards CO2 sorption. 2015 , 16, 1458-1467	12
162	Synthesis of a crosslinked polymer with a benzyl(triphenyl)phosphonium ionic liquid moiety and its catalytic activity. 2015 , 5, 99448-99453	8
161	Enhanced recognition of a nitrogen containing organic compound by adjusting the acidity of the porous organic frameworks base (JUC-Z2). <i>Journal of Materials Chemistry A</i> , 2015 , 3, 2628-2633	5
160	Great Prospects for PAF-1 and its derivatives. 2015 , 2, 11-21	63
159	Microporous spiro-centered poly(benzimidazole) networks: preparation, characterization, and gas sorption properties. <i>Polymer Chemistry</i> , 2015 , 6, 748-753	23
158	Novel microporous hypercross-linked polymers as sorbent for volatile organic compounds and CO2 adsorption. 2015 , 21, 1231-1238	19
157	High performance CO2 filtration and sequestration by using bromomethyl benzene linked microporous networks. 2016 , 6, 66324-66335	6
156	Observation of the wrapping mechanism in amine carbon dioxide molecular interactions on heterogeneous sorbents. 2016 , 18, 14177-81	34
155	A formaldehyde carbonyl groups-modified self-crosslinked polystyrene resin: Synthesis, adsorption and separation properties. 2016 , 500, 1-9	14
154	Solid-state emissive cyanostilbene based conjugated microporous polymers via cost-effective Knoevenagel polycondensation. <i>Polymer Chemistry</i> , 2016 , 7, 3983-3988	52
153	Porous aromatic frameworks (PAFs) as efficient supports for N-heterocyclic carbene catalysts. 2016 , 6, 6037-6045	21
152	Reversible and easy post-crosslinking method for developing a surface ion-imprinted hypercrosslinked monolith for specific Cd(II) ion removal from aqueous solutions. 2016 , 6, 88777-88787	6
151	Synthesis of magnetic microporous organic nanotube networks for adsorption application. 2016 , 6, 87745-8	377592
150	A novel Schiff base network-1 nanocomposite coated fiber for solid-phase microextraction of phenols from honey samples. 2016 , 161, 22-30	68
149	Hypercrosslinked cholesterol-based polystyrene monolithic capillary columns. 2016 , 1477, 11-21	12
148	Hyperporous Carbons from Hypercrosslinked Polymers. 2016 , 28, 9804-9810	163

147	Synthesis and Gas Storage Application of Hierarchically Porous Materials. 2016 , 217, 1995-2003		11
146	Solid-phase extraction of explosive nitramines on macroreticular polymers modified by freezing with water or acetone. 2016 , 39, 1524-32		2
145	Adsorption of Rhodamine B on two novel polar-modified post-cross-linked resins: Equilibrium and kinetics. 2016 , 467, 230-238		56
144	Polar-modified post-cross-linked polystyrene and its adsorption towards salicylic acid from aqueous solution. <i>Chemical Engineering Journal</i> , 2016 , 286, 400-407	7	54
143	Morphology controlled synthesis of octahedral covalent imine frameworks through acid modulated aldehyde-amine polycondensation. 2016 , 24, 366-370		10
142	Conjugated Microporous Polymers Incorporating BODIPY Moieties as Light-Emitting Materials and Recyclable Visible-Light Photocatalysts. <i>Macromolecules</i> , 2016 , 49, 1666-1673	5	117
141	Hyper-Cross-Linked Organic Microporous Polymers Based on Alternating Copolymerization of Bismaleimide. 2016 , 5, 377-381		53
140	Investigation of the new sorption preconcentration systems for determination of noble metals in rocks by inductively coupled plasma-mass spectrometry. 2016 , 153, 240-6		13
139	A novel polar-modified post-cross-linked resin and its enhanced adsorption to salicylic acid: Equilibrium, kinetics and breakthrough studies. 2016 , 470, 1-9		26
138	A facile synthesis of cost-effective triphenylamine-containing porous organic polymers using different crosslinkers. 2016 , 82, 114-120		18
137	Preparation and chromatographic performance of polymer-based anion exchangers for ion chromatography: A review. 2016 , 904, 33-50		55
136	Hydrophobic-hydrophilic post-cross-linked polystyrene/poly (methyl acryloyl diethylenetriamine) interpenetrating polymer networks and its adsorption properties. 2016 , 463, 61-8		28
135	Multi-length scale porous polymer films from hypercrosslinked breath figure arrays. 2016 , 461, 179-184		13
134	Synthesis of bare and functionalized porous adsorbent materials for CO2 capture. 2017 , 7, 399-459		21
133	Porosity-Enhanced Polymers from Hyper-Cross-Linked Polymer Precursors. <i>Macromolecules</i> , 2017 , 50, 956-962	5	34
132	Synthesis and adsorption study of hyper-crosslinked styrene-based nanocomposites containing multi-walled carbon nanotubes. 2017 , 7, 6865-6874		27
131	Hypercrosslinked porous polymer materials: design, synthesis, and applications. <i>Chemical Society Reviews</i> , 2017 , 46, 3322-3356	··5	670
130	Swellable functional hypercrosslinked polymer networks for the uptake of chemical warfare agents. <i>Polymer Chemistry</i> , 2017 , 8, 1914-1922	€	35

129	Controllable Synthesis of Polar Modified Hyper-Cross-Linked Resins and Their Adsorption of 2-Naphthol and 4-Hydroxybenzoic Acid from Aqueous Solution. 2017 , 56, 2984-2992		33
128	Synthesis of polyesters by an efficient heterogeneous phosphazene (P1)-Porous Polymeric Aromatic Framework catalyzed-Ring Opening Polymerization of lactones. 2017 , 95, 775-784		19
127	Polyphenylene sulfide-based adsorption resins: synthesis, characterization and adsorption performance for Hg(II) and As(V). 2017 , 28, 1735-1742		7
126	Polymers of Intrinsic Microporosity derived from a carbocyclic analogue of Trger's base. 2017 , 126, 324-329		10
125	Adsorption of p-chlorophenol on three amino-modified hyper-cross-linked resins. 2017 , 505, 585-592		47
124	Intrinsically Hierarchical Nanoporous Polymers via Polymerization-Induced Microphase Separation. Macromolecules, 2017 , 50, 4363-4371	5.5	16
123	Synthesis of anion-functionalized mesoporous poly(ionic liquid)s via a microphase separation-hypercrosslinking strategy: highly efficient adsorbents for bioactive molecules. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 14114-14123	13	42
122	Metal-organic and covalent organic frameworks as single-site catalysts. <i>Chemical Society Reviews</i> , 2017 , 46, 3134-3184	58.5	696
121	One-step hyper-cross-linking of porous styrenic polymers using dichloroalkane cross-linkers to maintain hydrophobicity. 2017 , 116, 278-286		21
120	Prediction of Adsorption Equilibrium of VOCs onto Hyper-Cross-Linked Polymeric Resin at Environmentally Relevant Temperatures and Concentrations Using Inverse Gas Chromatography. 2017 , 51, 522-530		22
119	Aerospace Application of Polymer Nanocomposite with Carbon Nanotube, Graphite, Graphene Oxide, and Nanoclay. 2017 , 56, 1438-1456		59
118	Immobilization of cyanobacteria and microalgae on polyethylenimine-based sorbents. 2017 , 86, 629-639		4
117	One-pot solvothermal synthesis of hypercrosslinked porous ionic polymer and its catalytic activity. 2017 , 58, 321-327		1
116	A facile synthetic route for the morphology-controlled formation of triazine-based covalent organic nanosheets (CONs). <i>Polymer Chemistry</i> , 2017 , 8, 5655-5659	4.9	26
115	Novel fullerene-based porous materials constructed by a solvent knitting strategy. 2017 , 53, 12758-1276	51	5
114	Tunable porosity and polarity of polar post-cross-linked resins and selective adsorption. 2017 , 487, 231-2	238	31
113	Composite coating composed of zeolite Y (FAU) and binder prepared from bis(triethoxysilyl)ethane. 2017 , 14, 153-162		1
112	Trends in Sorption Recovery of Platinum Metals: A Critical Survey. 2017 , 62, 1797-1818		14

A New Sorption Method for the Production of Bacillus subtilis Amylase with the Use of FAF Microfine Anion Exchanger. **2017**, 87, 3115-3122

110	Microporous Hyper-Crosslinked Polystyrenes and Nanocomposites with High Adsorption Properties: A Review. 2017 , 9,		43
109	Methods for Preparing High Performance Stationary Phases for Anion-Exchange Chromatography. <i>Moscow University Chemistry Bulletin</i> , 2017 , 72, 289-302	0.5	4
108	Flexible and UV Resistant Films Based on Thiophene-Substituted Conjugated Microporous Polymers Bearing Alkyl Chains: Tuning of Rigidity into Soft. 2018 , 303, 1700619		5
107	Tailoring the pore size distribution of self-cross-linked 4,4?-bis(chloromethyl)-1,1?-biphenyl polymers using reactive and non-reactive co-solvents. 2018 , 143, 331-335		3
106	Ethylene glycol dimethacrylate modified hyper-cross-linked resins: Porogen effect on pore structure and adsorption performance. <i>Chemical Engineering Journal</i> , 2018 , 339, 278-287	14.7	47
105	Use of a hypercrosslinked triphenylamine polymer as an efficient adsorbent for the enrichment of phenylurea herbicides. 2018 , 1538, 1-7		19
104	Thiourea modified hyper-crosslinked polystyrene resin for heavy metal ions removal from aqueous solutions. 2018 , 135, 45568		32
103	Hypercrosslinked Polymers: A Review. 2018 , 58, 1-41		124
102	Heteroatom-rich porous organic polymers constructed by benzoxazine linkage with high carbon dioxide adsorption affinity. 2018 , 509, 457-462		30
101	Optical Properties and Model of the Electronic and Spatial Structure of Hypercrosslinked Polystyrene. 2018 , 92, 2507-2512		0
100	Application of Hypercrosslinked Polystyrenes to the Preconcentration and Separation of Organic Compounds and Ions of Elements. 2018 , 73, 1053-1063		7
99	Novel hypercrosslinking approach toward high surface area functional 2-hydroxyethyl methacrylate-based polyHIPEs. <i>Reactive and Functional Polymers</i> , 2018 , 132, 51-59	4.6	15
98	Covalent and electrostatic incorporation of amines into hypercrosslinked polymers for increased CO2 selectivity. 2018 , 56, 2513-2521		5
97	Modeling Amorphous Microporous Polymers for CO Capture and Separations. 2018 , 118, 5488-5538		134
96	Molecularly Imprinted Porous Aromatic Frameworks Serving as Porous Artificial Enzymes. 2018 , 30, e18	00069	45
95	Carbonaceous Materials in Hydrogen Storage. 2018 , 197-228		
94	Harvesting of Microalgae Biomass with Polyethylenimine-Based Sorbents. 2018 , 73, 36-38		3

93	Adsorption of catecholamines from their aqueous solutions on hypercrosslinked polystyrene. <i>Reactive and Functional Polymers</i> , 2018 , 131, 56-63	4.6	9
92	Hypercrosslinked Polycondensation Networks: Copolymers of p-Xylylene Dichloride. <i>Polymer Science - Series B</i> , 2018 , 60, 91-98	0.8	
91	Swellable Organically Modified Silica (SOMS) as a Catalyst Scaffold for Catalytic Treatment of Water Contaminated with Trichloroethylene. 2018 , 8, 6796-6809		14
90	Microporous Polymeric Membrane Reactors. 2019 , 281-299		
89	Adsorptive Removal of Catechol from Aqueous Solution with a Water-Stable and Hydroxyl-Functionalized Terbium Drganic Framework. 2019 , 58, 20090-20098		14
88	Porous organic polymer composites as surging catalysts for visible-light-driven chemical transformations and pollutant degradation. 2019 , 41, 100319		18
87	Ferrocene-based nanoporous organic polymer as solid-phase extraction sorbent for the extraction of chlorophenols from tap water, tea drink and peach juice samples. 2019 , 297, 124962		23
86	SorptionMass Spectrometry Determination of Platinum Metals in Basic Rocs and Ores. 2019 , 74, 33-40		3
85	Hollow Hyper-Cross-Linked Polymer Microspheres for Efficient Rhodamine B Adsorption and CO2 Capture. 2019 , 64, 1662-1670		18
84	Flexible chain & rigid skeleton complementation polycarbazole microporous system for gas storage. <i>Microporous and Mesoporous Materials</i> , 2019 , 284, 205-211	5.3	4
83	Luminescent and Swellable Conjugated Microporous Polymers for Detecting Nitroaromatic Explosives and Removing Harmful Organic Vapors. <i>ACS Applied Materials & Detecting Nitroaromatic ACS Applied Materials & Detecting Nitroaromatic National Science (No. 1988)</i> 11, 48	3 ⁹ 2-48	33 1 82
82	Poly(styrenecinnamic acid) (SCA), an approach to modified polystyrene with enhanced impact toughness, heat resistance and melt strength 2019 , 9, 39631-39639		1
81	Insight into highly efficient removal of sulfonic acid pollutants by a series of newly-synthesized resins from aqueous media: Physical & chemical adsorption. 2019 , 95, 383-392		9
80	Recent Advancements in the Synthesis of Covalent Triazine Frameworks for Energy and Environmental Applications. 2018 , 11,		47
79	Exceptionally High CO2 Adsorption at 273 K by Microporous Carbons from Phenolic Aerogels: The Role of Heteroatoms in Comparison with Carbons from Polybenzoxazine and Other Organic Aerogels. 2019 , 220, 1800333		14
78	Dendritic post-cross-linked resin for the adsorption of crystal violet from aqueous solution. 2019 , 130, 235-242		18
77	Manufacturing Nanoporous Materials for Energy-Efficient Separations. 2020, 33-81		7
76	Adsorption isotherm, kinetics simulation and breakthrough analysis of 5-hydroxymethylfurfural adsorption/desorption behavior of a novel polar-modified post-cross-linked poly (divinylbenzene-co-ethyleneglycoldimethacrylate) resin. 2020 , 239, 124732		17

75	Porous Ladder Polymer Networks. 2020 , 6, 2558-2590		10
74	A review on porous carbon electrode material derived from hypercross-linked polymers for supercapacitor applications. 2020 , 32, 101831		46
73	Five-Minute Mechanosynthesis of Hypercrosslinked Microporous Polymers. 2020 , 32, 7694-7702		18
72	Porous organic polymer material supported palladium nanoparticles. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 17360-17391	13	44
71	Hypercrosslinked porous organic polymers based on tetraphenylanthraquinone for CO2 uptake and high-performance supercapacitor. 2020 , 205, 122857		30
70	Filling the Pores of the Post-Cross-Linked Polymers with Different Rigid Cross-Linking Bridges. 2020 , 5, 7941-7946		2
69	Thiol-functionalized PIM-1 for removal and sensing for mercury (II). 2020, 8, 104545		1
68	Construction of the Heterologous Laccase Producer Aspergillus nidulans lac (arg B) and Its Application for the Progesterone Transformation. 2020 , 56, 321-328		O
67	Fabrication of hypercrosslinked hydroxyl-rich solid phase extractants for cesium separation from the salt lake brine. <i>Chemical Engineering Journal</i> , 2020 , 400, 125991	14.7	17
66	Effect of High Temperature on Swellable Organically Modified Silica (SOMS) and Its Application for Preferential CO Oxidation in H2 Rich Environment. 2020 , 12, 3753-3768		4
65	NNN Pincer-functionalized Porous Organic Polymer Supported Ru(III) as a Heterogeneous Catalyst for Levulinic Acid Hydrogenation to Evalerolactone. 2021 , 13, 695-703		4
64	Efficient Synthesis of Folate-Conjugated Hollow Polymeric Capsules for Accurate Drug Delivery to Cancer Cells. 2021 , 22, 732-742		13
63	Surface Modification of Hypercrosslinked Vinylbenzyl Chloride PolyHIPEs by Grafting via RAFT. 2021 , 222, 2000381		5
62	Role of ultramicropores in the remarkable gas storage in hypercrosslinked polystyrene networks studied by positron annihilation. 2021 , 23, 13603-13611		O
61	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ 		
60	Lignin characterization: structure, size, and stability. 2021 , 147-182		
59	Thermal Conductivities of Crosslinked Polyisoprene and Polybutadiene from Molecular Dynamics Simulations. 2021 , 13,		3
58	Physical characterisation and stability study of formulated Chromolaena odorata gel. 2021 ,		1

57	Evaluation of hyper-cross-linked polymers performances in the removal of hazardous heavy metal ions: A review. <i>Separation and Purification Technology</i> , 2021 , 260, 118221	8.3	13
56	On the Mechanism of Swelling of Gel-Type, Macroporous and Hypercrosslinked Copolymers of Styrene. 2021 , 63, 260-266		O
55	Extensive Screening of Solvent-Linked Porous Polymers through Friedel Trafts Reaction for Gas Adsorption. 2021 , 2, 2100064		4
54	Eco-Friendly Phosphorus and Nitrogen-Rich Inorganic Drganic Hybrid Hypercross-linked Porous Polymers via a Low-Cost Strategy. <i>Macromolecules</i> , 2021 , 54, 5848-5855	5.5	10
53	Hyper Cross-Linked Polymers as Additives for Preventing Aging of PIM-1 Membranes. 2021 , 11,		1
52	Preparation of hypercrosslinked PolyHIPEs by using a bio-derived monomer. 2021 , 152, 110474		3
51	Using Hypercrosslinked Polystyrene for the Multicomponent Solid-Phase Extraction of Residues of 63 Veterinary Preparations in Their Determination in Chicken Meat by High-Performance Liquid Chromatography Mandem Mass Spectrometry. 2021 , 76, 946-959		1
50	Potential applications of porous organic polymers as adsorbent for the adsorption of volatile organic compounds. 2021 , 105, 184-203		14
49	Influence of Functional Group Concentration on Hypercrosslinking of Poly(vinylbenzyl chloride) PolyHIPEs: Upgrading Macroporosity with Nanoporosity. 2021 , 13,		О
48	Molecular Cage-Mediated Radial Gradient Porous Sponge Nanofiber for Selective Adsorption of a Mustard Gas Simulant. <i>ACS Applied Materials & District Materials & Mustard Gas Simulant</i> . <i>ACS Applied Materials & District </i>	9.5	1
47	Removal of water pollutants using composite hydrogels comprised of collagen, guar gum, and metal-organic frameworks. 2021 , 28, 1		2
46	Protocols for synthesis of nanomaterials, polymers, and green materials as adsorbents for water treatment technologies. 2021 , 24, 101821		118
45	Organic Porous Polymer Materials: Design, Preparation, and Applications. 2017, 71-150		1
44	Carbon Dioxide Capture in Porous Aromatic Frameworks. <i>Green Chemistry and Sustainable Technology</i> , 2014 , 115-142	1.1	1
43	Microporous polymeric membranes inspired by adsorbent for gas separation. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 13294-13319	13	61
42	Nanoporous Polymers. 2013 , 1-42		3
41	Physical Sorption of Molecular Hydrogen by Microporous Organic Polymers. <i>Chemistry and Chemical Technology</i> , 2019 , 13, 85-94	0.9	1
40	Porous Organic Polymers for Catalytic Conversion of Carbon Dioxide. <i>Chemistry - an Asian Journal</i> , 2021 , 16, 3833-3850	4.5	1

39	Recent progress in porous organic polymers and their application for CO2 capture. <i>Chinese Journal of Chemical Engineering</i> , 2021 , 42, 91-91	3.2	6
38	Ion Exchange Resins for Trace Metal Sequestration from Water.		
37	Study on Adsorption Kinetics and Thermodynamics of M-Phenylenediamine onto Acid Adsorption Resins. <i>Hans Journal of Chemical Engineering and Technology</i> , 2018 , 08, 276-283	O	
36	Covalent Organic Framework (COF)-Based Hybrids for Electrocatalysis: Recent Advances and Perspectives <i>Small Methods</i> , 2021 , 5, e2100945	12.8	5
35	Emulsion Templated Hierarchical Macroporous Polymers. Engineering Materials, 2022, 43-86	0.4	1
34	Synthesis methods of microporous organic polymeric adsorbents: a review. <i>Polymer Chemistry</i> , 2021 , 12, 6962-6997	4.9	O
33	Novel preparation of amidoxime functionalized hyper-cross-linked polymeric adsorbent on the efficient adsorption of uranium in aqueous solution. <i>Microporous and Mesoporous Materials</i> , 2022 , 331, 111647	5.3	0
32	Enhancement of performance and stability of thin-film nanocomposite membranes for organic solvent nanofiltration using hypercrosslinked polymer additives. <i>Journal of Membrane Science</i> , 2022 , 644, 120172	9.6	O
31	A strategy of synergistically using ether oxygen and phenolic hydroxyl groups for Ultra-High selective and fast Cs+ isolation. <i>Separation and Purification Technology</i> , 2022 , 284, 120285	8.3	0
30	Nanostructured Hypercrosslinked Porous Organic Polymers: Morphological Evolution and Rapid Separation of Polar Organic Micropollutants <i>ACS Applied Materials & Description of Polar Organic Micropollutants ACS Applied Materials & Description of Polar Organic Micropollutants ACS Applied Materials & Description of Polar Organic Micropollutants</i>	9.5	3
29	Design, synthesis, and performance of adsorbents for heavy metal removal from wastewater: a review. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 1047-1085	13	8
28	Emerging porous organic polymers for biomedical applications Chemical Society Reviews, 2022,	58.5	9
27	Porous organic polymers for light-driven organic transformations Chemical Society Reviews, 2022,	58.5	20
26	Fully Hydrocarbon Membrane Electrode Assemblies for Proton Exchange Membrane Fuel Cells and Electrolyzers: An Engineering Perspective. <i>Advanced Energy Materials</i> , 2103559	21.8	3
25	Hypercrosslinked triazine-phloroglucinol hierarchical porous polymers for the effective removal of organic micropollutants. <i>Chemical Engineering Journal</i> , 2022 , 435, 134990	14.7	1
24	Hypercrosslinked Triazine-Phloroglucinol Hierarchical Porous Polymers for the Effective Removal of Organic Micropollutants. <i>SSRN Electronic Journal</i> ,	1	
23	Hierarchical Porosity in Emulsion-Templated, Porogen-Containing Interpenetrating Polymer Networks: Hyper-Cross-Linking and Carbonization. <i>Macromolecules</i> , 2022 , 55, 1992-2002	5.5	2
22	"We Are Here!" Oxygen Functional Groups in Carbons for Electrochemical Applications <i>ACS Omega</i> , 2022 , 7, 11544-11554	3.9	5

21	Ferrocene-based hypercrosslinked polymers derived from phenolic polycondensation with unexpected H2 adsorption capacity. <i>Materials Today Chemistry</i> , 2022 , 24, 100854	6.2	O
20	Porous Polymeric Substrates Based on a StyreneDivinylbenzene Copolymer for Reversed-Phase and Ion Chromatography. <i>Moscow University Chemistry Bulletin</i> , 2022 , 77, 68-89	0.5	O
19	Synthesis of Strong Anion Exchangers by the Interaction of 4-Vinylpyridine with Epoxy-Containing Alkylating Reagents and Their Use in the Sorption of Noble Metals. <i>Polymer Science - Series B</i> ,	0.8	
18	Ternary-Porous Conjugated N -Halamine Nanofibers/Graphene Aerogels for Rechargeable Degradation of Mustard Gas. <i>Advanced Functional Materials</i> , 2206018	15.6	1
17	MetalBrganic framework (MOF)-, covalent-organic framework (COF)-, and porous-organic polymers (POP)-catalyzed selective CH bond activation and functionalization reactions.		12
16	Development and synthesis of nanoparticles and nanoadsorbents. 2022 , 127-165		O
15	Synthesis and post-polymerization functionalization of a tosylated hyper-crosslinked polymer for fast and efficient removal of organic pollutants in water.		0
14	Amidoxime-modified hypercrosslinked porous poly(styrene-co-acrylonitrile) adsorbent with tunable porous structure for extracting uranium efficiently from seawater. 2022 , 368, 120741		O
13	Porous organic polymers: a progress report in China.		0
12	Hypercrosslinked microporous polystyrene: from synthesis to properties to applications. 2023 , 29, 1013	392	O
11	One-step synthesis of boronic acid-functionalized hypercrosslinked polymers for efficient separation of 1,2,4-butanetriol. 2023 , 314, 123436		0
10	Upcycling of polyphenylene ether waste products to hypercrosslinked organic porous materials. 2023 , 34, 105489		O
9	Tuning Ion Transport at the Anode-Electrolyte Interface via a Sulfonate-Rich Ion-Exchange Layer for Durable Zinc-Iodine Batteries. 2023 , 13,		0
8	Perylene Diimide-Containing Dynamic Hyper-crosslinked Ionic Porous Organic Polymers: Modulation of Assembly and Gas Storage. 2023 , 5, 2097-2104		O
7	The review and introduction of hypercrosslinked polymer. 2023 , 1-28		O
6	Recent advances in ground-breaking conjugated microporous polymers-based materials, their synthesis, modification and potential applications. 2023 ,		O
5	Respiration-based investigation of adsorbent-bioprocess compatibility. 2023, 16,		0
4	Mini-review on the novel synthesis and potential applications of carbazole and its derivatives. 2023 , 26, 90-105		O

CITATION REPORT

Synthesis of Ultramicroporous Materials via Cross-Linking Reaction of Polynaphthalene.

All-Organic Hyper-Crosslinked Polymer/Polyimide Composite Films with Ultralow High-Frequency Dielectric Constant.

Synthesis and design of hypercrosslinked porous organic frameworks containing

tetraphenylpyrazine unit for high-performance supercapacitor.

О