Plasma-surface modification of biomaterials

Materials Science and Engineering Reports 36, 143-206

DOI: 10.1016/s0927-796x(02)00004-9

Citation Report

#	Article	IF	CITATIONS
1	Haemocompatibility of hydrogenated amorphous carbon (a-C:H) films synthesized by plasma immersion ion implantation-deposition. Nuclear Instruments & Methods in Physics Research B, 2003, 206, 721-725.	0.6	22
2	Protein adsorption on blood-contact membranes. Journal of Membrane Science, 2003, 222, 3-18.	4.1	166
3	Surface engineering of biomaterials with plasma techniques. Journal of Biomaterials Science, Polymer Edition, 2003, 14, 1005-1028.	1.9	133
4	Production and Surface Modification of Polylactide-Based Polymeric Scaffolds for Soft-Tissue Engineering., 2004, 238, 87-112.		28
5	Modification of polymer surfaces: optimization of approaches. Perfusion (United Kingdom), 2003, 18, 33-39.	0.5	14
6	The importance of bias pulse rise time for determining shallow implanted dose in plasma immersion ion implantation. Applied Physics Letters, 2003, 82, 1827-1829.	1.5	26
7	Determination of the equilibrium steady ion sheath in drifting plasma. , 0, , .		2
8	Determination of the equilibrium ion sheath in the drifting plasma by numerical simulation. IEEE Transactions on Plasma Science, 2003, 31, 1044-1051.	0.6	12
9	Oxygenated polymeric thin films deposited from toluene and oxygen by remote plasma enhanced chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1655-1664.	0.9	5
10	Cell attachment and biocompatibility of polytetrafluoroethylene (PTFE) treated with glow-discharge plasma of mixed ammonia and oxygen. Journal of Biomaterials Science, Polymer Edition, 2003, 14, 917-935.	1.9	108
11	Fixing Atmospheric Nitrogen into Alcohol and Simultaneous Generation of Hydrogen on the Atomic Force Microscopy (AFM) Tip. Japanese Journal of Applied Physics, 2004, 43, L620-L623.	0.8	1
12	Implantation dynamics of plasma implantation into insulating strips. Journal Physics D: Applied Physics, 2004, 37, 50-54.	1.3	11
13	Simulated experiment for elimination of chemical and biological warfare agents by making use of microwave plasma torch. Physics of Plasmas, 2004, 11, 830-835.	0.7	57
14	Characteristics and anticoagulation behavior of polyethylene terephthalate modified by C2H2 plasma immersion ion implantation-deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 170-175.	0.9	12
15	Recent developments and applications of plasma immersion ion implantation. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 289.	1.6	106
16	Surface tailoring of poly(dl-lactic acid) by ligand-tethered amphiphilic polymer for promoting chondrocyte attachment and growth. Biomaterials, 2004, 25, 1859-1867.	5.7	34
17	Surface composition and surface energy of Teflon treated by metal plasma immersion ion implantation. Surface Science, 2004, 573, 426-432.	0.8	45
18	Preparation and characterization of nano-sized hydroxyapatite powders produced in a radio frequency (rf) thermal plasma. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 374, 101-108.	2.6	86

#	Article	IF	CITATIONS
19	Ablation plasma ion implantation using a dc power supply. Applied Physics A: Materials Science and Processing, 2004, 79, 969-971.	1.1	1
20	Atomic force microscopy and specular reflectance infrared spectroscopic studies of the surface structure of polypropylene treated with argon and oxygen plasmas. Macromolecular Research, 2004, 12, 608-614.	1.0	5
21	AFM and specular reflectance IR studies on the surface structure of poly(ethylene terephthalate) films upon treatment with argon and oxygen plasmas. Macromolecular Research, 2004, 12, 134-140.	1.0	9
22	Construction of multilayer coating onto poly-(dl-lactide) to promote cytocompatibility. Biomaterials, 2004, 25, 109-117.	5.7	42
23	Hemocompatibility of nitrogen-doped, hydrogen-free diamond-like carbon prepared by nitrogen plasma immersion ion implantation-deposition. Journal of Biomedical Materials Research Part B, 2004, 70A, 107-114.	3.0	45
24	Analysis of cellular morphology, adhesion, and proliferation on uncoated and differently coated PVC tubes used in extracorporeal circulation (ECC). Journal of Biomedical Materials Research Part B, 2004, 69B, 38-45.	3.0	11
25	Structure and properties of annealed amorphous hydrogenated carbon (a-C:H) films for biomedical applications. Surface and Coatings Technology, 2004, 177-178, 747-751.	2.2	32
26	In vitro studies of the biomineralization in amorphous carbon films. Surface and Coatings Technology, 2004, 177-178, 758-764.	2.2	33
27	Deposition and characterization of a-C:H coatings using a glow discharge. Surface and Coatings Technology, 2004, 187, 54-62.	2.2	5
28	Effects of DBD plasma operating parameters on the polymer surface modification. Surface and Coatings Technology, 2004, 185, 311-320.	2.2	143
29	Plasma surface modification of titanium for hard tissue replacements. Surface and Coatings Technology, 2004, 186, 227-233.	2.2	54
30	Bacterial repellence from polyethylene terephthalate surface modified by acetylene plasma immersion ion implantation–deposition. Surface and Coatings Technology, 2004, 186, 299-304.	2.2	96
31	Behavior of cultured human umbilical vein endothelial cells on titanium oxide films fabricated by plasma immersion ion implantation and deposition. Surface and Coatings Technology, 2004, 186, 270-276.	2.2	39
32	Absolute dose calibration in PIII. Surface and Coatings Technology, 2004, 186, 29-33.	2.2	2
33	Effect of annealing on structure and biomedical properties of amorphous hydrogenated carbon films. Surface and Coatings Technology, 2004, 186, 125-130.	2.2	32
34	Surface topographic and structural characterization of plasma treated PMAA–PMMA copolymer films. Surface Science, 2004, 560, 121-129.	0.8	6
35	Phosphorylcholine-Containing Polymers for Use in Cell Encapsulation. Artificial Cells, Blood Substitutes, and Biotechnology, 2004, 32, 91-104.	0.9	7
36	Numerical simulation of metal plasma-immersion ion implantation and deposition on a cone. Journal of Applied Physics, 2004, 96, 6045-6052.	1.1	7

3

#	Article	IF	Citations
37	Potential of Coatings in Total Hip Replacement. Clinical Orthopaedics and Related Research, 2005, 430, 72-79.	0.7	104
38	Surface modification of biomaterials using He glow-discharge plasma and NH/sub 3/ treatment for augmenting biocompatibility., 0,,.		1
39	lon irradiation of ceramic oxides: Disorder production and mechanical properties. Nuclear Instruments & Methods in Physics Research B, 2005, 240, 111-116.	0.6	13
40	Anti-corrosion performance of oxidized and oxygen plasma-implanted NiTi alloys. Materials Science & Scienc	2.6	47
41	Plasma based Ar+ beam assisted poly(dimethylsiloxane) surface modification. Nuclear Instruments & Methods in Physics Research B, 2005, 236, 552-562.	0.6	41
42	Formation of titanium nitride barrier layer in nickel–titanium shape memory alloys by nitrogen plasma immersion ion implantation for better corrosion resistance. Thin Solid Films, 2005, 488, 20-25.	0.8	50
43	Plasma surface modification of poly (d,l-lactic-co-glycolic acid) (65/35) film for tissue engineering. Surface and Coatings Technology, 2005, 193, 60-64.	2.2	51
44	Structure and properties of Ca-plasma-implanted titanium. Surface and Coatings Technology, 2005, 191, 43-48.	2.2	36
45	Statistical analysis of the effect of dielectric barrier discharge (DBD) operating parameters on the surface processing of poly(methylmethacrylate) film. Surface Science, 2005, 575, 273-286.	0.8	34
46	Improvement of surface bioactivity on titanium by water and hydrogen plasma immersion ion implantation. Biomaterials, 2005, 26, 6129-6135.	5.7	102
47	Plasma-treated nanostructured TiO2 surface supporting biomimetic growth of apatite. Biomaterials, 2005, 26, 6143-6150.	5.7	110
48	Experimental investigation of hybrid-evaporation-glow discharge plasma immersion ion implantation. Journal of Applied Physics, 2005, 97, 113301.	1.1	19
49	Bioactivity of titanium following sodium plasma immersion ion implantation and deposition. Biomaterials, 2005, 26, 5465-5473.	5.7	65
50	Enhanced vascular-related cellular affinity on surface modified copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx). Biomaterials, 2005, 26, 6991-7001.	5.7	127
51	Fabrication of thromboresistant multilayer thin film on plasma treated poly (vinyl chloride) surface. Journal of Materials Science: Materials in Medicine, 2005, 16, 687-692.	1.7	25
52	Fluoropolymer Coating of Medical Grade Poly(vinyl chloride) by Plasma-Enhanced Chemical Vapor Deposition Techniques. Plasma Processes and Polymers, 2005, 2, 104-111.	1.6	18
53	Soft Plasma Treated Surfaces: Tailoring of Structure and Properties for Biomaterial Applications. Plasma Processes and Polymers, 2005, 2, 351-372.	1.6	194
54	Fabrication of Bioactive Surfaces by Plasma Polymerization Techniques Using a Novel Acrylate-Derived Monomer. Plasma Processes and Polymers, 2005, 2, 605-611.	1.6	41

#	ARTICLE	IF	Citations
55	Influence of laser surface modification on corrosion behavior of stainless steel 316L and Ti–6Al–4V in simulated biofluid. Surface Engineering, 2005, 21, 297-306.	1.1	43
56	Ammonium chloride complex formation during downstream microwave ammonia plasma treatment of parylene-C. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 1605-1609.	0.9	4
57	Surface and corrosion characteristics of carbon plasma implanted and deposited nickel-titanium alloy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 525-530.	0.9	14
58	In Vivo Biocompatibility of a Novel Ceramic-Metal Biocomposite. Key Engineering Materials, 2005, 284-286, 807-810.	0.4	7
59	Decomposition of phosgene by microwave plasma-torch generated at atmospheric pressure. IEEE Transactions on Plasma Science, 2005, 33, 958-963.	0.6	26
60	Nano patterned covalent surface modification of poly(e-caprolactone). Israel Journal of Chemistry, 2005, 45, 429-435.	1.0	4
61	The Effect of Positive Ion Energy on Plasma Polymerization:Â A Comparison between Acrylic and Propionic Acids. Journal of Physical Chemistry B, 2005, 109, 3207-3211.	1.2	33
63	Review paper: Surface Modification for Bioimplants: The Role of Laser Surface Engineering. Journal of Biomaterials Applications, 2005, 20, 5-50.	1.2	370
64	Nanoscaled Materials: a Brief Introduction. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2006, , 3-26.	0.1	2
65	Initiated Chemical Vapor Deposition of Trivinyltrimethylcyclotrisiloxane for Biomaterial Coatings. Langmuir, 2006, 22, 7021-7026.	1.6	81
66	Effect of plasma immersion ion implantation and deposition on high temperature oxidation of titanium alloy IMI 834-aluminizing. Journal of Alloys and Compounds, 2006, 426, 375-383.	2.8	7
67	Plasma-based Fluorine Ion Implantation into Dental Materials for Inhibition of Bacterial Adhesion. Dental Materials Journal, 2006, 25, 684-692.	0.8	34
69	Surface Modification of Poly(L-lactide) by Atmospheric Pressure Plasma Treatment and Cell Response. Dental Materials Journal, 2006, 25, 560-565.	0.8	47
70	Oxygen plasma surface modification enhances immobilization of simvastatin acid. Biomedical Research, 2006, 27, 29-36.	0.3	46
71	Effects of oxygen plasma treatment on the surface of bisphenol A polycarbonate: a study using SIMS, principal component analysis, ellipsometry, XPS and AFM nanoindentation. Surface and Interface Analysis, 2006, 38, 1186-1197.	0.8	60
72	Applications of XPS in bioengineering. Surface and Interface Analysis, 2006, 38, 1380-1385.	0.8	92
73	Comparison of Primary Rat Hepatocyte Attachment to Collagen and Plasma-Polymerised Allylamine on Glass. Plasma Processes and Polymers, 2006, 3, 474-484.	1.6	19
74	Plasma Methods for the Generation of Chemically Reactive Surfaces for Biomolecule Immobilization and Cell Colonization - A Review. Plasma Processes and Polymers, 2006, 3, 392-418.	1.6	887

#	Article	IF	CITATIONS
75	Stability of Thin Plasma Polymer Films Applied on Coil Coatings. Plasma Processes and Polymers, 2006, 3, 618-626.	1.6	2
76	Regulation of the biological properties of medical polymer materials with the use of a gas-discharge plasma and vacuum ultraviolet radiation. High Energy Chemistry, 2006, 40, 79-85.	0.2	17
77	Bioactivity of plasma implanted biomaterials. Nuclear Instruments & Methods in Physics Research B, 2006, 242, 1-7.	0.6	23
78	Effect of tantalum content of titanium oxide film fabricated by magnetron sputtering on the behavior of cultured human umbilical vein endothelial cells (HUVEC). Nuclear Instruments & Methods in Physics Research B, 2006, 242, 26-29.	0.6	9
79	Modification of surface properties of polyethylene by Ar plasma discharge. Nuclear Instruments & Methods in Physics Research B, 2006, 244, 365-372.	0.6	72
80	Effects of O2 and H2O plasma immersion ion implantation on surface chemical composition and surface energy of poly vinyl chloride. Applied Surface Science, 2006, 252, 7884-7889.	3.1	15
81	An XPS study of pulsed plasma polymerised allyl alcohol film growth on polyurethane. Applied Surface Science, 2006, 252, 8203-8211.	3.1	30
82	Modification of surface properties of high and low density polyethylene by Ar plasma discharge. Polymer Degradation and Stability, 2006, 91, 1219-1225.	2.7	169
83	Antimicrobial properties of copper plasma-modified polyethylene. Polymer, 2006, 47, 7441-7445.	1.8	91
84	Yarn design for functional tissue engineering. Journal of Biomechanics, 2006, 39, 2232-2240.	0.9	53
85	Adhesion performance of UHMWPE after different surface modification techniques. Medical Engineering and Physics, 2006, 28, 323-330.	0.8	118
86	Carbon ion implantation of ultra-high molecular weight polyethylene using filtered cathodic vacuum arc with substrate pulse biasing. Surface and Coatings Technology, 2006, 200, 4104-4110.	2.2	19
87	Influence of nitrogen implantation on the high temperature oxidation of titanium-base alloys. Surface and Coatings Technology, 2006, 201, 3536-3546.	2.2	16
88	Oxygen grafting and etching of hexatriacontane in late N2–O2 post-discharges. Thin Solid Films, 2006, 506-507, 212-216.	0.8	25
89	Modification of Hexatriacontane by O2–N2 Microwave Post-Discharges. Plasma Chemistry and Plasma Processing, 2006, 26, 251-266.	1.1	32
90	Corrosion behavior of a low modulus \hat{I}^2 -Ti-45%Nb alloy for use in medical implants. Journal of Materials Science: Materials in Medicine, 2006, 17, 63-67.	1.7	78
91	Structural, chemical and biological properties of carbon layers sputtered on polyethyleneterephtalate. Journal of Materials Science: Materials in Medicine, 2006, 17, 229-234.	1.7	10
92	Hybrid ICP/sputter deposition of TiC/CaO nanocomposite films for biomedical application. Applied Physics A: Materials Science and Processing, 2006, 82, 503-507.	1.1	16

#	Article	IF	CITATIONS
93	Antibacterial properties of plasma-modified and triclosan or bronopol coated polyethylene. Polymer, 2006, 47, 931-936.	1.8	75
94	Synthesis and characterization of novel functionalized polylactides with pendent hydroxyl arms. Polymer, 2006, 47, 6978-6985.	1.8	20
95	Comparison of the surface characteristics of polypropylene films treated by Ar and mixed gas (Ar/O2) atmospheric pressure plasma. Journal of Colloid and Interface Science, 2006, 295, 409-416.	5.0	115
96	Chemical structure and surface morphology of plasma polymerized-allylamine film. Korean Journal of Chemical Engineering, 2006, 23, 505-511.	1.2	39
97	Surface antibacterial characteristics of plasma-modified polyethylene. Biopolymers, 2006, 83, 62-68.	1.2	25
98	Corrosion test, cell behavior test, andin vivo study of gradient TiO2 layers produced by compound electrochemical oxidation. Journal of Biomedical Materials Research - Part A, 2006, 78A, 515-522.	2.1	30
99	Treatment of Immobilized Collagen on Poly(tetrafluoroethylene) Nanoporous Membrane with Plasma. Japanese Journal of Applied Physics, 2006, 45, 8352-8357.	0.8	3
100	THE EFFECT OF AMMONIA AND SULPHUR DIOXIDE GAS PLASMA TREATMENTS ON POLYMER SURFACES. , 2006, , 491-498.		0
101	Effects of potential and duration of pulse width on sheath dynamics related to a target with a groove in two-dimensional simulation. Journal of Applied Physics, 2006, 100, 113301.	1.1	17
102	Experimental and theoretical investigation of the effects of sample size on copper plasma immersion ion implantation into polyethylene. Journal of Applied Physics, 2007, 101, 113302.	1.1	2
103	Surface Modification of Hydrogels and Cell Adhesion. Materials Science Forum, 2008, 567-568, 265-268.	0.3	2
104	MPACVD Nanocrystalline Diamond for Biomedical Applications. Key Engineering Materials, 2005, 280-283, 1595-1598.	0.4	3
105	Nano-film and Coating for Biomedical Application Prepared by Plasma-based Technologies. Materials Research Society Symposia Proceedings, 2007, 1020, 1.	0.1	0
106	The influence of surface diffusion on surface roughness and component distribution profiles during deposition of multilayers. Computational Materials Science, 2007, 38, 716-721.	1.4	6
107	Plasma-Treated Biomaterials. IEEE Transactions on Plasma Science, 2007, 35, 181-187.	0.6	72
108	Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel–titanium alloys: A comparative study with commonly used medical grade materials. Journal of Biomedical Materials Research - Part A, 2007, 82A, 403-414.	2.1	56
109	Synthesis and characterization of immobilized PAMAM dendrons. Chemical Communications, 2007, , 2482.	2.2	31
110	Impedance Spectroscopy Study of Composite Thin Films of Hydrated Polyethylene Glycol. IEEE Transactions on Plasma Science, 2007, 35, 1518-1526.	0.6	8

#	ARTICLE	IF	CITATIONS
111	Effect of chitosan membrane surface modification via plasma induced polymerization on the adhesion of osteoblast-like cells. Journal of Materials Chemistry, 2007, 17, 4064.	6.7	112
112	Decomposition Reaction of Organophosphorus Nerve Agents on Solid Surfaces with Atmospheric Radio Frequency Plasma Generated Gaseous Species. Langmuir, 2007, 23, 8074-8078.	1.6	47
113	Estudo da interação células Vero/PLGA após a modificação da superfÃcie por plasma de oxigênio. Revista Materia, 2007, 12, 164-172.	0.1	8
114	Simultaneous graft copolymerization of 2-hydroxyethyl methacrylate and acrylic acid onto polydimethylsiloxane surfaces using a two-step plasma treatment. Journal of Applied Polymer Science, 2007, 105, 2208-2217.	1.3	47
115	Surface characteristics, biocompatibility, and mechanical properties of nickel-titanium plasma-implanted with nitrogen at different implantation voltages. Journal of Biomedical Materials Research - Part A, 2007, 82A, 469-478.	2.1	34
116	From Carbon Nanostructures to New Photoluminescence Sources: An Overview of New Perspectives and Emerging Applications of Lowâ€Pressure PECVD. Chemical Vapor Deposition, 2007, 13, 267-279.	1.4	58
117	Enhancement of surface properties of biomaterials using plasma-based technologies. Surface and Coatings Technology, 2007, 201, 8076-8082.	2.2	67
118	Effect of hydrogen on the behavior of cultured human umbilical vein endothelial cells (HUVEC) on titanium oxide films fabricated by plasma immersion ion implantation and deposition. Surface and Coatings Technology, 2007, 201, 8140-8145.	2.2	7
119	Effects of pulsing frequency on shape recovery and investigation of nickel out-diffusion after mechanical bending of nitrogen plasma implanted NiTi shape memory alloys. Surface and Coatings Technology, 2007, 201, 8286-8290.	2.2	10
120	Plasma surface treatment of artificial orthopedic and cardiovascular biomaterials. Surface and Coatings Technology, 2007, 201, 5601-5606.	2.2	61
121	Nitrogen plasma-implanted nickel titanium alloys for orthopedic use. Surface and Coatings Technology, 2007, 201, 5607-5612.	2.2	27
122	Functional inorganic films fabricated by PIII(-D) for surface modification of blood contacting biomaterials: Fabrication parameters, characteristics and antithrombotic properties. Surface and Coatings Technology, 2007, 201, 6828-6832.	2.2	6
123	Structure and blood compatibility of tetrahedral amorphous hydrogenated carbon formed by a magnetic-field-filter plasma stream. Surface and Coatings Technology, 2007, 201, 6851-6856.	2.2	12
124	Characteristics of phosphorus-doped diamond-like carbon films synthesized by plasma immersion ion implantation and deposition (PIII and D). Surface and Coatings Technology, 2007, 201, 6643-6646.	2.2	10
125	PIII treatment of Ti alloys and NiTi for medical applications. Surface and Coatings Technology, 2007, 201, 6833-6838.	2.2	31
126	Modification of biomedical NiTi shape memory alloy by TiC/Ti films using PIIID. Surface and Coatings Technology, 2007, 201, 6857-6860.	2.2	22
127	Effects of plasma treatment on bioactivity of TiO2 coatings. Surface and Coatings Technology, 2007, 201, 6878-6881.	2.2	12
128	Behavior of endothelial cells on micro-patterned titanium oxide fabricated by plasma immersion ion implantation and deposition and plasma etching. Surface and Coatings Technology, 2007, 201, 6874-6877.	2.2	17

#	Article	IF	CITATIONS
129	Investigation of cytocompatibility of surface-treated cellulose nitrate films by using plasma immersion ion implantation. Surface and Coatings Technology, 2007, 201, 6897-6900.	2.2	2
130	Effect of Ar plasma etching of Ti–O film surfaces on biological behavior of endothelial cell. Surface and Coatings Technology, 2007, 201, 6901-6905.	2.2	14
131	Development and characterization of sol–gel silica–alumina composite coatings on AISI 316L for implant applications. Surface and Coatings Technology, 2007, 201, 7582-7588.	2.2	80
132	The effect of ion implantation on the wear of Co–Cr–Mo alloy. Vacuum, 2007, 81, 1191-1194.	1.6	15
133	Plasma-polymerized films for biosensors II. TrAC - Trends in Analytical Chemistry, 2007, 26, 433-443.	5.8	29
134	Surface modification of sulphur prevulcanized natural rubber latex sheet via layer-by-layer assembled PMMA particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 301, 147-152.	2.3	17
135	Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids and Surfaces B: Biointerfaces, 2007, 60, 137-157.	2.5	517
136	Stability of atmospheric-pressure plasma induced changes on polycarbonate surfaces. Journal of Electrostatics, 2007, 65, 269-273.	1.0	42
137	Hemocompatibility of titanium-based coatings prepared by metal plasma immersion ion implantation and deposition. Nuclear Instruments & Methods in Physics Research B, 2007, 257, 122-127.	0.6	23
138	Thermal characterization of Ag and Ag+N ion implanted ultra-high molecular weight polyethylene (UHMWPE). Nuclear Instruments & Methods in Physics Research B, 2007, 261, 699-703.	0.6	15
139	Fabrication of a three-dimensional nanostructured biomaterial for tissue engineering of bone. New Biotechnology, 2007, 24, 75-80.	2.7	42
140	Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption. Biomaterials, 2007, 28, 307-315.	5.7	97
141	Structure and wear properties of NiTi modified by nitrogen plasma immersion ion implantation. Materials Science & Diplement A: Structural Materials: Properties, Microstructure and Processing, 2007, 444, 192-197.	2.6	21
142	Fretting wear studies on uncoated, plasma nitrided and laser nitrided biomedical titanium alloys. Materials Science & Dipineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 445-446, 446-453.	2.6	28
143	Surface engineerings of polyacrylonitrile-based asymmetric membranes towards biomedical applications: An overview. Journal of Membrane Science, 2007, 304, 8-23.	4.1	186
144	Ablation and water etching of poly(ethylene) modified by argon plasma. Polymer Degradation and Stability, 2007, 92, 1645-1649.	2.7	50
145	Comparison of the effect of excimer laser irradiation and RF plasma treatment on polystyrene surface. Radiation Physics and Chemistry, 2007, 76, 1435-1440.	1.4	20
146	Enhanced Crystallinity of PTFE by Ion Irradiation in a Dense Plasma Focus. Plasma Processes and Polymers, 2007, 4, 186-191.	1.6	21

#	Article	IF	CITATIONS
147	Comparison of Direct and Indirect Effects of Non-Thermal Atmospheric-Pressure Plasma on Bacteria. Plasma Processes and Polymers, 2007, 4, 370-375.	1.6	487
148	Destruction of planktonic, adherent and biofilm cells of Staphylococcus epidermidis using a gliding discharge in humid air. Journal of Applied Microbiology, 2007, 103, 621-628.	1.4	64
149	Anbindung von Fluoreszenzfarbstoffen an plasmachemisch funktionalisierte und Cucurbiturilâ€modifizierte OberflÃ e hen. Vakuum in Forschung Und Praxis, 2007, 19, 31-37.	0.0	10
150	Influence of Plasma Treatments on the Hemocompatibility of PET and PETÂ+ÂTiO2 Films. Plasma Chemistry and Plasma Processing, 2007, 27, 95-112.	1.1	28
151	Floating Electrode Dielectric Barrier Discharge Plasma in Air Promoting Apoptotic Behavior in Melanoma Skin Cancer Cell Lines. Plasma Chemistry and Plasma Processing, 2007, 27, 163-176.	1.1	533
152	Corrosion degradation and prevention by surface modification of biometallic materials. Journal of Materials Science: Materials in Medicine, 2007, 18, 725-751.	1.7	201
153	Surface modification of poly(ethylene terephthalate) by plasma polymerization of poly(ethylene) Tj ETQq0 0 0 rg	gBT_/Overl	ock $_31$ 0 Tf 50 $^\circ$
154	The efficacy of acrylic acid grafting and arginine–glycine–aspartic acid peptide immobilization on fibrovascular ingrowth into porous polyethylene implants in rabbits. Graefe's Archive for Clinical and Experimental Ophthalmology, 2007, 245, 855-862.	1.0	2
155	Effects of water plasma immersion ion implantation on surface electrochemical behavior of NiTi shape memory alloys in simulated body fluids. Applied Surface Science, 2007, 253, 3154-3159.	3.1	22
156	Effects of NH3, O2, and N2 co-implantation on Cu out-diffusion and antimicrobial properties of copper plasma-implanted polyethylene. Applied Surface Science, 2007, 253, 8981-8985.	3.1	28
157	In vitro and in vivo characterization of novel plasma treated nickel titanium shape memory alloy for orthopedic implantation. Surface and Coatings Technology, 2007, 202, 1247-1251.	2.2	37
158	Characterization and cytocompatibility of carbon layers prepared by photo-induced chemical vapor deposition. Thin Solid Films, 2007, 515, 6765-6772.	0.8	30
159	Ion-beam modified polymers for biomedical applications. Nuclear Instruments & Methods in Physics Research B, 2007, 261, 690-693.	0.6	44
160	In vitro corrosion behavior of TiN layer produced on orthopedic nickel–titanium shape memory alloy by nitrogen plasma immersion ion implantation using different frequencies. Surface and Coatings Technology, 2008, 202, 2463-2466.	2.2	15
161	Influence of Plasma Treatments on the Hemocompatibility of PET and PETÂ+ÂTiO2 Films. Plasma Chemistry and Plasma Processing, 2008, 28, 535-551.	1.1	17
162	Thin surface layer of plasma treated polyethylene. Strength of Materials, 2008, 40, 86-89.	0.2	6
163	Increased response of Vero cells to PHBV matrices treated by plasma. Journal of Materials Science: Materials in Medicine, 2008, 19, 635-643.	1.7	49
164	Calcium phosphate formation on plasma immersion ion implanted low density polyethylene and polytetrafluorethylene surfaces. Journal of Materials Science: Materials in Medicine, 2008, 19, 1145-1153.	1.7	11

#	Article	IF	CITATIONS
165	Laser surface processing of Ti6Al4V in gaseous nitrogen: corrosion performance in physiological solution. Journal of Materials Science: Materials in Medicine, 2008, 19, 1363-1369.	1.7	14
166	Mechanical properties and biocompatibility of plasma-nitrided laser-cut 316L cardiovascular stents. Journal of Materials Science: Materials in Medicine, 2008, 19, 2079-2086.	1.7	15
167	Hyalocyte proliferation and ECM accumulation modulated by bFGF and TGF- $\hat{1}^21$. Graefe's Archive for Clinical and Experimental Ophthalmology, 2008, 246, 1275-1284.	1.0	18
168	Surface modification of polyester by oxygen―and nitrogenâ€plasma treatment. Surface and Interface Analysis, 2008, 40, 1444-1453.	0.8	249
169	Plasma Surface Modification of Chitosan Membranes: Characterization and Preliminary Cell Response Studies. Macromolecular Bioscience, 2008, 8, 568-576.	2.1	131
170	Surface Functionalization of Porous Resorbable Scaffolds by Covalent Grafting. Macromolecular Bioscience, 2008, 8, 645-654.	2.1	16
171	Microwave plasma surface modification of silicone elastomer with allylamine for improvement of biocompatibility. Journal of Biomedical Materials Research - Part A, 2008, 86A, 209-219.	2.1	38
172	Structural stability and bioapplicability assessment of hyaluronic acid–chitosan polyelectrolyte multilayers on titanium substrates. Journal of Biomedical Materials Research - Part A, 2008, 87A, 1061-1074.	2.1	60
173	The effect of surface treatments on the fretting behavior of Tiâ€6Alâ€4V alloy. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 86B, 407-416.	1.6	14
174	Plasma surface modification of poly(<scp>D,L</scp> â€lactic acid) as a tool to enhance protein adsorption and the attachment of different cell types. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 87B, 59-66.	1.6	74
175	Control of the blood–polymer interface by plasma treatment. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 87B, 364-373.	1.6	9
176	Preparation, characterization, and cellular interactions of collagenâ€immobilized PDMS surfaces. Journal of Applied Polymer Science, 2008, 110, 321-330.	1.3	15
177	Selective Surface Patterning with an Electric Discharge in the Fabrication of Microfluidic Structures. Angewandte Chemie - International Edition, 2008, 47, 7442-7445.	7.2	9
179	Effects of Titania Content and Sintering Temperature on Structural, Mechanical and Bioactive Behaviors of Titania Reinforced Hydroxyapatite Nanocomposites. Advanced Engineering Materials, 2008, 10, B53.	1.6	3
180	Hydroxyapatite/titania nanocomposites derived by combining high-energy ball milling with spark plasma sintering processes. Journal of the European Ceramic Society, 2008, 28, 3083-3090.	2.8	81
181	Morphological and surface compositional changes in poly(lactide-co-glycolide) tissue engineering scaffolds upon radio frequency glow discharge plasma treatment. Applied Surface Science, 2008, 254, 1929-1935.	3.1	35
182	Plasma polymerized epoxide functional surfaces for DNA probe immobilization. Biosensors and Bioelectronics, 2008, 24, 118-122.	5.3	20
183	Attachment of horseradish peroxidase to polytetrafluorethylene (teflon) after plasma immersion ion implantation. Acta Biomaterialia, 2008, 4, 1218-1225.	4.1	62

#	Article	IF	CITATIONS
184	Analyzing friction and scratch tests without in situ observation. Wear, 2008, 265, 664-673.	1.5	23
185	Initiated chemical vapor deposition of biopassivation coatings. Thin Solid Films, 2008, 516, 684-686.	0.8	14
186	Evaluation on corrosion behavior and haemocompatibility of phosphorus incorporated tetrahedral amorphous carbon films. Materials Science and Engineering C, 2008, 28, 1408-1413.	3.8	5
187	Peptide-based biopolymers in biomedicine and biotechnology. Materials Science and Engineering Reports, 2008, 62, 125-155.	14.8	264
188	Effects of operating parameters on plasma-induced PET surface treatment. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 3081-3085.	0.6	55
189	<i>>Fluorescence Measurements on Functionalized Polymer Surfacesâ€"Problems and Troubleshooting</i> Annals of the New York Academy of Sciences, 2008, 1130, 28-34.	1.8	3
190	Solvent-Induced Porosity in Ultrathin Amine Plasma Polymer Coatings. Journal of Physical Chemistry B, 2008, 112, 10915-10921.	1.2	91
191	Comparison of corrosion resistance and apatite-forming ability of NiTi treated by different low-temperature methods. Journal of Alloys and Compounds, 2008, 466, L5-L10.	2.8	16
192	Surface functionalization of polyurethane for the immobilization of bioactive moieties on tissue scaffolds. Journal of Materials Chemistry, 2008, 18, 2240.	6.7	42
194	Surface modification for natural-based biomedical polymers. , 2008, , 165-192.		1
195	Blood Platelet's Behavior on Nanostructured Superhydrophobic Surface. Journal of Nano Research, 0, 2, 129-136.	0.8	36
196	Surface Chemistry Influences Implant Biocompatibility. Current Topics in Medicinal Chemistry, 2008, 8, 270-280.	1.0	671
197	Electrochemical Behavior Al[sub 2]O[sub 3]â^•Al Coated Surgical AZ91 Magnesium Alloy in Simulated Body Fluids. Journal of the Electrochemical Society, 2008, 155, C178.	1.3	65
198	Argon-Oxygen Post-Discharge Treatment of Hexatriacontane: Heat Transfer between Gas Phase and Sample. Key Engineering Materials, 0, 373-374, 421-425.	0.4	17
199	Characterization of gaseous species in scanning atmospheric rf plasma with transmission infrared spectroscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 123-127.	0.9	2
200	Surface treatment of a polypropylene film with a nitrogen DBD at medium pressure. EPJ Applied Physics, 2008, 43, 289-294.	0.3	72
201	Análise histológica da Blenda PLLA/PCL como prótese de menisco. Revista Materia, 2009, 14, 1162-1171.	0.1	2
202	Increased Biocompatibility and Bioactivity after Energetic PVD Surface Treatments. Materials, 2009, 2, 1341-1387.	1.3	15

#	Article	IF	CITATIONS
203	A Novel Approach for Automated Analysis of Cell Attachment and Spreading Based on Backscattered Electron Imaging by Scanning Electron Microscopy. Materials, 2009, 2, 1402-1416.	1.3	7
204	Comparison of two Metal Ion Implantation Techniques for Fabrication of Gold and Titanium Based Compliant Electrodes on Polydimethylsiloxane. Materials Research Society Symposia Proceedings, 2009, 1188, 77.	0.1	7
205	Improved Adhesion, Growth and Maturation of Vascular Smooth Muscle Cells on Polyethylene Grafted with Bioactive Molecules and Carbon Particles. International Journal of Molecular Sciences, 2009, 10, 4352-4374.	1.8	34
206	Surface Plasma Modification of LLDPE for Biomedical Applications. Polymer-Plastics Technology and Engineering, 2009, 49, 1-7.	1.9	10
207	Ion implantation of oxygen and nitrogen in CpTi. Progress in Organic Coatings, 2009, 64, 259-263.	1.9	16
208	Chemical Vapor Deposition of Conformal, Functional, and Responsive Polymer Films. Advanced Materials, 2010, 22, 1993-2027.	11.1	329
209	Proteinâ€resistant polyurethane via surfaceâ€initiated atom transfer radical polymerization of oligo(ethylene glycol) methacrylate. Journal of Biomedical Materials Research - Part A, 2009, 91A, 1189-1201.	2.1	30
210	Topography characterization and initial cellular interaction of plasmaâ€based Ar ⁺ beamâ€treated PDMS surfaces. Journal of Applied Polymer Science, 2009, 111, 2637-2646.	1.3	8
211	Comparison of fibroblast and nerve cells response on plasma treated poly (<scp>L</scp> ″actide) surface. Journal of Applied Polymer Science, 2009, 112, 3429-3435.	1.3	15
212	The surface modification of medical polyurethane to improve the hydrophilicity and lubricity: The effect of pretreatment. Journal of Applied Polymer Science, 2010, 116, 1284-1290.	1.3	8
213	Applications of plasma-based technology to microelectronics and biomedical engineering. Surface and Coatings Technology, 2009, 203, 2793-2798.	2.2	28
214	Passivation and oxygen ion implantation double surface treatment on porous NiTi shape memory alloys and its Ni suppression performance. Surface and Coatings Technology, 2009, 204, 58-63.	2.2	22
215	Development of cell-selective films for layered co-culturing of vascular progenitor cells. Biomaterials, 2009, 30, 2241-2251.	5.7	40
216	Monte Carlo simulation of laser and plasma nitriding titanium. Journal of Materials Processing Technology, 2009, 209, 998-1003.	3.1	13
217	Deposition of gold nano-particles and nano-layers on polyethylene modified by plasma discharge and chemical treatment. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 2484-2488.	0.6	40
218	Sol–gel derived porous zirconium dioxide coated on 316LÂSS for orthopedic applications. Journal of Sol-Gel Science and Technology, 2009, 52, 188-196.	1.1	38
219	Bactericidal action of the plasma of high-frequency capacitive and barrier discharges on microorganisms. Journal of Engineering Physics and Thermophysics, 2009, 82, 419-426.	0.2	14
220	Anchoring of Fluorophores to Plasma-chemically Modified Polymer Surfaces and the Effect of Cucurbit[6]uril on Dye Emission. Journal of Fluorescence, 2009, 19, 229-237.	1.3	11

#	Article	IF	CITATIONS
221	Wettability Modification of Nanomaterials by Low-Energy Electron Flux. Nanoscale Research Letters, 2009, 4, 1209-1217.	3.1	32
222	Surface Modification of Electrospun Polycaprolactone Nanofiber Meshes by Plasma Treatment to Enhance Biological Performance. Small, 2009, 5, 1195-1206.	5 . 2	244
223	Introduction of Carboxyl Functional Groups onto Platinum by RF Plasma Deposition. Plasma Processes and Polymers, 2009, 6, 219-227.	1.6	14
224	Positive Ion Mass Spectrometry during an Atmospheric Pressure Plasma Treatment of Polymers. Plasma Processes and Polymers, 2009, 6, 521-529.	1.6	14
225	Preparation and Multiâ€Characterization of Plasma Polymerized Allylamine Films. Plasma Processes and Polymers, 2009, 6, 593-604.	1.6	43
226	Plasmaâ€Mediated Modification of Austenitic Stainless Steel: Application to the Prevention of Yeast Adhesion. Plasma Processes and Polymers, 2009, 6, 813-824.	1.6	3
227	Glow discharge plasma-induced immobilization of heparin and insulin on polyethylene terephthalate film surfaces enhances anti-thrombogenic properties. Materials Science and Engineering C, 2009, 29, 796-805.	3.8	36
228	Surface modification of Ti–Nb–Zr–Sn alloy by thermal and hydrothermal treatments. Materials Science and Engineering C, 2009, 29, 1245-1251.	3.8	10
229	Polycarbonate surface cell's adhesion examination after Nd:YAG laser irradiation. Materials Science and Engineering C, 2009, 29, 1491-1497.	3.8	22
230	Cytocompatibility of Ar+ plasma treated and Au nanoparticle-grafted PE. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 1904-1910.	0.6	53
231	Poly(vinyl alcohol)/poly(acrylic acid) hydrogel coatings for improving electrode–neural tissue interface. Biomaterials, 2009, 30, 4143-4151.	5.7	170
232	Mechanical properties of Al2O3/Al bi-layer coated AZ91 magnesium alloy. Thin Solid Films, 2009, 517, 5357-5360.	0.8	25
233	Surface modifications of polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) copolymer by treatment with atmospheric plasma. Surface and Coatings Technology, 2009, 203, 2173-2180.	2.2	108
234	Covalent attachment of trypsin on plasma polymerized allylamine. Colloids and Surfaces B: Biointerfaces, 2009, 73, 315-324.	2.5	33
235	Surface modification of a titanium alloy with a phospholipid polymer prepared by a plasma-induced grafting technique to improve surface thromboresistance. Colloids and Surfaces B: Biointerfaces, 2009, 74, 96-102.	2.5	40
236	Substrate effects on the microstructure of hydrogenated amorphous carbon films. Current Applied Physics, 2009, 9, 937-942.	1.1	27
237	Biological response of stainless steel surface modified by N2O/O2 glow discharge plasma. Applied Surface Science, 2009, 255, 7257-7262.	3.1	11
238	Nonthermal Plasma Technology as a Versatile Strategy for Polymeric Biomaterials Surface Modification: A Review. Biomacromolecules, 2009, 10, 2351-2378.	2.6	599

#	Article	IF	CITATIONS
239	Plasmochemical modification of fluorocarbon polymers for creation of new hemocompatible materials. Russian Journal of General Chemistry, 2009, 79, 596-605.	0.3	5
240	Improvement of Surface Lubricity of Polymers and Metals by a Glow-Discharge Plasma Cross-Linking Process. Journal of Biomaterials Science, Polymer Edition, 2009, 20, 511-527.	1.9	3
241	Anodic fabrication and bioactivity of Nb-doped TiO ₂ nanotubes. Nanotechnology, 2009, 20, 305103.	1.3	43
242	Attachment of Human Primary Osteoblast Cells to Modified Polyethylene Surfaces. Langmuir, 2009, 25, 3718-3727.	1.6	54
243	New Advances in Cell Adhesion Technology. , 2009, , 69-130.		1
245	Amorphous carbonated apatite formation on diamond-like carbon containing titanium oxide. Diamond and Related Materials, 2009, 18, 1139-1144.	1.8	33
246	Non-thermal Plasmas Chemistry as a Tool for Environmental Pollutants Abatement. Reviews of Environmental Contamination and Toxicology, 2009, 201, 117-136.	0.7	10
247	Nanostructured Materials For Advanced Technological Applications: A Brief Introduction. NATO Science for Peace and Security Series B: Physics and Biophysics, 2009, , 3-34.	0.2	4
248	Polyurethane coating with thin polymer films produced by plasma polymerization of diglyme. Journal of Physics: Conference Series, 2009, 167, 012056.	0.3	3
249	Wettability, optical properties and molecular structure of plasma polymerized diethylene glycol dimethyl ether. Journal of Physics: Conference Series, 2009, 167, 012053.	0.3	6
250	Increase in the Hydrophilicity and Lewis Acid-Base Properties of Solid Surfaces Achieved by Electric Cliding Discharge in Humid Air: Effects on Bacterial Adherence. Plasma Science and Technology, 2009, 11, 187-193.	0.7	12
251	Surface-modified 3D starch-based scaffold for improved endothelialization for bone tissue engineering. Journal of Materials Chemistry, 2009, 19, 4091.	6.7	35
252	A conventional route to scalable morphology-controlled regular structures and their superhydrophobic/hydrophilic properties for biochips application. Lab on A Chip, 2009, 9, 2140.	3.1	33
253	Surface modification of stainless steel by plasma-based fluorine and silver dual ion implantation and deposition. Dental Materials Journal, 2009, 28, 735-742.	0.8	18
254	The Impact of Contact Angle on the Biocompatibility of Biomaterials. Optometry and Vision Science, 2010, 87, 387-399.	0.6	410
255	Surface Modification of Slide-Ring Gel by Strip-line Microwave Micro Atmospheric Plasma. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2010, 23, 535-540.	0.1	1
256	Plasma-Based Surface Modification of Polystyrene Microtiter Plates for Covalent Immobilization of Biomolecules. ACS Applied Materials & Samp; Interfaces, 2010, 2, 2884-2891.	4.0	73
257	Protein adhesion and cell response on atmospheric pressure dielectric barrier discharge-modified polymer surfaces. Acta Biomaterialia, 2010, 6, 2609-2620.	4.1	61

#	Article	IF	CITATIONS
258	An in vitro bacterial adhesion assessment of surface-modified medical-grade PVC. Colloids and Surfaces B: Biointerfaces, 2010, 77, 246-256.	2.5	69
259	Au-nanoparticles grafted on plasma treated PE. Radiation Physics and Chemistry, 2010, 79, 315-317.	1.4	21
260	Extreme durability of wettability changes on polyolefin surfaces by atmospheric pressure plasma torch. Surface and Coatings Technology, 2010, 205, 396-402.	2.2	94
261	Plasma surface modification of magnesium alloy for biomedical application. Surface and Coatings Technology, 2010, 205, S182-S187.	2.2	85
262	Lens epithelial cell response to atmospheric pressure plasma modified poly(methylmethacrylate) surfaces. Journal of Materials Science: Materials in Medicine, 2010, 21, 1703-1712.	1.7	17
263	Induced superhydrophobicity in ZnO nanomaterial. Journal of Nanoparticle Research, 2010, 12, 2427-2433.	0.8	14
264	Polymer- and colloid-mediated bioassays, sensors and diagnostics. Trends in Biotechnology, 2010, 28, 485-494.	4.9	20
265	<i>In vitro</i> evaluation of cell proliferation and collagen synthesis on titanium following plasma electrolytic oxidation. Journal of Biomedical Materials Research - Part A, 2010, 94A, 38-46.	2.1	48
266	Plasmaâ€Assisted Approaches in Inorganic Nanostructure Fabrication. Advanced Materials, 2010, 22, 1451-1473.	11.1	158
267	Molecular biomimetics: GEPIâ€based biological routes to technology. Biopolymers, 2010, 94, 78-94.	1.2	88
268	Integrity of functional self-assembled monolayers on hydrogen-terminated silicon-on-insulator wafers. Applied Surface Science, 2010, 257, 1314-1318.	3.1	8
269	Polymeric materials for bone and cartilage repair. Progress in Polymer Science, 2010, 35, 403-440.	11.8	788
270	Plasma-induced grafting of polydimethylsiloxane onto polyurethane surface: Characterization and in vitro assay. Radiation Physics and Chemistry, 2010, 79, 947-952.	1.4	19
271	Nitrogen plasma-implanted titanium as bipolar plates in polymer electrolyte membrane fuel cells. Journal of Power Sources, 2010, 195, 6798-6804.	4.0	35
272	Argon plasma irradiation of polypropylene. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 2111-2114.	0.6	69
273	Apatite formation from simulated body fluid on various phases of TiO2 thin films prepared by filtered cathodic vacuum arc deposition. Thin Solid Films, 2010, 519, 1300-1306.	0.8	18
274	Recent applications of plasma-based ion implantation and deposition to microelectronic, nano-structured, and biomedical materials. Surface and Coatings Technology, 2010, 204, 2853-2863.	2.2	28
275	Development of new technologies and practical applications of plasma immersion ion deposition (PIID). Surface and Coatings Technology, 2010, 204, 2869-2874.	2.2	57

#	Article	IF	Citations
276	Plasma pre-treatment and TiO2 coating of PMMA for the improvement of antibacterial properties. Surface and Coatings Technology, 2010, 205, 465-469.	2.2	84
277	Plasma polymerized allylamine films deposited on 316L stainless steel for cardiovascular stent coatings. Surface and Coatings Technology, 2010, 205, 2461-2468.	2.2	28
278	Plasma-induced polymerization as a tool for surface functionalization of polymer scaffolds for bone tissue engineering: An in vitro study. Acta Biomaterialia, 2010, 6, 3704-3712.	4.1	51
279	Surface modification of bacterial cellulose by nitrogen-containing plasma for improved interaction with cells. Carbohydrate Polymers, 2010, 82, 692-698.	5.1	167
280	pH responsive surfaces with nanoscale topography. Journal of Polymer Science Part A, 2010, 48, 2982-2990.	2.5	25
281	A Physicochemical Approach to Render Antibacterial Surfaces on Plasmaâ€Treated Medicalâ€Grade PVC: Irgasan Coating. Plasma Processes and Polymers, 2010, 7, 504-514.	1.6	60
282	Early Stages of Growth of Plasma Polymer Coatings Deposited from Nitrogen―and Oxygenâ€Containing Monomers. Plasma Processes and Polymers, 2010, 7, 824-835.	1.6	84
283	Silver nanoparticlesâ€modified films versus biomedical deviceâ€associated infections. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 670-684.	3.3	68
284	Dentin surface treatment using a nonâ€thermal argon plasma brush for interfacial bonding improvement in composite restoration. European Journal of Oral Sciences, 2010, 118, 510-516.	0.7	108
285	Bioresorbable Polymers for Tissue Engineering. , 0, , .		12
286	Surface Engineered Polymeric Biomaterials with Improved Biocontact Properties. International Journal of Polymer Science, 2010, 2010, 1-22.	1.2	128
287	Citocompatibilidade de blendas de poli(p-dioxanona)/ poli(hidroxi butirato) (PPD/PHB) para aplicações em engenharia de tecido cartilaginoso. Polimeros, 2010, 20, 383-388.	0.2	5
288	Cell Proliferation of HaCaT Keratinocytes on Collagen Films Modified by Argon Plasma Treatment. Molecules, 2010, 15, 2845-2856.	1.7	64
289	Two-dimensional particle-in-cell plasma source ion implantation of a prolate spheroid target. Chinese Physics B, 2010, 19, 035201.	0.7	3
290	Optimization of Integrated Properties of Zirconia Ceramic Coatings Fabricated by a Plasma Spraying. Advanced Materials Research, 0, 156-157, 670-676.	0.3	0
291	Polysaccharides Coatings on Medical-Grade PVC: A Probe into Surface Characteristics and the Extent of Bacterial Adhesion. Molecules, 2010, 15, 1007-1027.	1.7	68
292	Plasma Surface Fluorination of Hydrogel Materialsâ€"Coating Stability and <i>in vitro</i> i>Biocompatibility Testing. Soft Materials, 2010, 8, 164-182.	0.8	3
293	Enhanced retained dose uniformity in NiTi spinal correction rod treated by three-dimensional mesh-assisted nitrogen plasma immersion ion implantation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 407-410.	0.9	3

#	ARTICLE	IF	CITATIONS
294	Simulated plasma immersion ion implantation processing of thin wires. Journal of Applied Physics, 2010, 108, 063308.	1.1	2
295	The surface properties modification of polyethylene by enhanced glow discharge plasma immersion ion implantation. , 2010, , .		0
296	Gold Nanolayers on Plasma-Treated Polypropylene. Journal of Adhesion Science and Technology, 2010, 24, 731-742.	1.4	3
297	Effect of plasma surface modification on the biocompatibility of UHMWPE. Biomedical Materials (Bristol), 2010, 5, 054102.	1.7	27
298	Plasma Polymer Surfaces for Cell Expansion and Delivery. Journal of Adhesion Science and Technology, 2010, 24, 2215-2236.	1.4	12
299	Potential applications of natural origin polymer-based systems in soft tissue regeneration. Critical Reviews in Biotechnology, 2010, 30, 200-221.	5.1	102
300	Functional Coatings or Films for Hard-Tissue Applications. Materials, 2010, 3, 3994-4050.	1.3	128
301	Gas plasmas and plasma modified materials in medicine. Journal of Applied Biomedicine, 2010, 8, 55-66.	0.6	93
303	Long-Lasting Hydrophilicity on Nanostructured Si-Incorporated Diamond-Like Carbon Films. Langmuir, 2010, 26, 17203-17209.	1.6	40
304	Isotope Evidence for Ozone Formation on Surfaces. Journal of Physical Chemistry A, 2010, 114, 9709-9719.	1.1	28
305	Microstructure and in vitro bioactivity of laser-cladded bioceramic coating on titanium alloy in a simulated body fluid. Journal of Alloys and Compounds, 2010, 489, 211-214.	2.8	36
306	Cell behavior on microparticles with different surface morphology. Journal of Alloys and Compounds, 2010, 493, 246-251.	2.8	17
307	Surface Investigation on Biomimetic Materials to Control Cell Adhesion: The Case of RGD Conjugation on PCL. Langmuir, 2010, 26, 9875-9884.	1.6	100
308	Enhanced Cell Colonization of Collagen Scaffold by Ultraviolet/Ozone Surface Processing. Tissue Engineering - Part C: Methods, 2010, 16, 1305-1314.	1.1	8
309	Cell Adhesion and Proliferation on Plasma-Treated and Poly(ethylene glycol)-Grafted Polyethylene. Journal of Adhesion Science and Technology, 2010, 24, 743-754.	1.4	37
310	Plasma-Enhanced Chemical Vapor Deposition of Functional Coatings. , 2010, , 392-465.		37
311	Towards proteomics-on-chip: The role of the surface. Molecular BioSystems, 2011, 7, 101-115.	2.9	20
312	3-D hierarchical wrinkled micro-pillars for anti-cells proliferation surfaces. , 2011, , .		2

#	Article	IF	CITATIONS
313	Laser micro- and nanofabrication of biomaterials. MRS Bulletin, 2011, 36, 973-982.	1.7	20
314	Alteration of PTFE Surface to Increase Its Blood Compatibility. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 1443-1457.	1.9	16
315	Design and Fabrication of Artificial Skin: Chitosan and Gelatin Immobilization on Silicone by Poly Acrylic Acid Graft Using a Plasma Surface Modification Method. Journal of Macromolecular Science - Physics, 2011, 50, 1972-1982.	0.4	21
316	Design, fabrication and characterization of PCL electrospun scaffolds—a review. Journal of Materials Chemistry, 2011, 21, 9419.	6.7	499
317	Orthogonal Functionalization of Nanoporous Substrates: Control of 3D Surface Functionality. ACS Applied Materials & Samp; Interfaces, 2011, 3, 1068-1076.	4.0	26
318	Modeling Reaction Pathways of Low Energy Particle Deposition on Polymer Surfaces via First Principle Calculations. Journal of Physical Chemistry A, 2011, 115, 4976-4987.	1.1	1
319	Effect of Low Molecular Weight Additives on Immobilization Strength, Activity, and Conformation of Protein Immobilized on PVC and UHMWPE. Langmuir, 2011, 27, 6138-6148.	1.6	29
320	Peptide- and Protein-Modified Surfaces. , 2011, , 145-159.		1
321	Surface Analytical Characterization of Biosensor Materials. NATO Science for Peace and Security Series B: Physics and Biophysics, 2011, , 81-102.	0.2	0
322	Surface modification of polytetrafluoroethylene film using single liquid electrode atmospheric-pressure glow discharge. Chinese Physics B, 2011, 20, 065206.	0.7	6
323	Determination of ro-vibrational excitations of N $<$ sub $>$ 2 $<$ /sub $>$ (B, v \hat{a} \in 2) and N $<$ sub $>$ 2 $<$ /sub $>$ (C, v \hat{a} \in 2) states in N $<$ sub $>$ 2 $<$ /sub $>$ microwave discharges using visible and IR spectroscopy. Journal Physics D: Applied Physics, 2011, 44, 155207.	1.3	20
324	Perspectives in nanoscale plasma etching: what are the ultimate limits?. Journal Physics D: Applied Physics, 2011, 44, 174011.	1.3	40
325	Plasma-enhanced chemical vapour deposition of inorganic nanomaterials using a chloride precursor. Journal Physics D: Applied Physics, 2011, 44, 174015.	1.3	10
326	Bacterial Retention on Superhydrophobic Titanium Surfaces Fabricated by Femtosecond Laser Ablation. Langmuir, 2011, 27, 3012-3019.	1.6	366
327	Bacterial Nanocellulose for Medicine Regenerative. Journal of Nanotechnology in Engineering and Medicine, 2011, 2, .	0.8	25
328	Dissoluble and degradable CaLi-based metallic glasses. Journal of Non-Crystalline Solids, 2011, 357, 236-239.	1.5	3
329	Cell Adhesion and Proliferation onto Chitosan-based Membranes Treated by Plasma Surface Modification. Journal of Biomaterials Applications, 2011, 26, 101-116.	1.2	72
330	Plasma-Modified Biomaterials for Self-Antimicrobial Applications. ACS Applied Materials & Description of the Plasma-Modified Biomaterials for Self-Antimicrobial Applications. ACS Applied Materials & Description of the Plasma-Modified Biomaterials for Self-Antimicrobial Applications. ACS Applied Materials & Description of the Plasma-Modified Biomaterials for Self-Antimicrobial Applications. ACS Applied Materials & Description of the Plasma-Modified Biomaterials & Description of the Plasma-Modified Biomaterials for Self-Antimicrobial Applications. ACS Applied Materials & Description of the Plasma-Modified Biomaterials & Description of the P	4.0	61

#	Article	IF	CITATIONS
331	Effect of Surface Wettability and Topography on the Adhesion of Osteosarcoma Cells on Plasma-modified Polystyrene. Journal of Biomaterials Applications, 2011, 26, 327-347.	1.2	314
332	Surface Treatments of Nearly Equiatomic NiTi Alloy (Nitinol) for Surgical Implants. , 2011, , .		1
333	Biocompatibility of Niobium Coatings. Coatings, 2011, 1, 72-87.	1.2	88
334	UNCD/a-C nanocomposite films for biotechnological applications. Surface and Coatings Technology, 2011, 206, 667-675.	2.2	13
335	Plasma surface modification of titanium by TiB precipitation for biomedical applications. Surface and Coatings Technology, 2011, 206, 330-337.	2.2	24
336	The effect of microstructure on fatigue performance of Ti–6Al–4V alloy after EDM surface treatment for application in orthopaedics. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 1955-1962.	1.5	60
337	Layer-by-layer construction of the heparin/fibronectin coatings on titanium surface:stability and functionality. Physics Procedia, 2011, 18, 112-121.	1.2	17
338	Au nanoparticles grafted on plasma treated polymers. Journal of Materials Science, 2011, 46, 7917-7922.	1.7	25
339	Povidone–iodine as a corrosion inhibitor towards a low modulus beta Ti-45Nb implant alloy in a simulated body fluid. Journal of Materials Science: Materials in Medicine, 2011, 22, 773-779.	1.7	9
340	Interaction Mechanisms Between Ar–O2 Post-Discharge and Stearic Acid II: Behaviour of Thick Films. Plasma Chemistry and Plasma Processing, 2011, 31, 205-215.	1.1	12
341	Comparison of glow argon plasma-induced surface changes of thermoplastic polymers. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 83-88.	0.6	66
342	"Soft and rigid" dithiols and Au nanoparticles grafting on plasma-treated polyethyleneterephthalate. Nanoscale Research Letters, 2011, 6, 607.	3.1	31
343	Rapid synthesis of poly(HPAâ€∢i>coà€VeoVa 10) amphiphilic gels toward removal of toxic solvents via plasmaâ€ignited frontal polymerization. Journal of Polymer Science Part A, 2011, 49, 5217-5226.	2.5	18
344	The Influence on Cell Growth Properties in Different Microtiterplate Types by Coronaâ€Dielectric Barrier Discharge Plasma at Atmospheric Pressure. Plasma Processes and Polymers, 2011, 8, 70-76.	1.6	7
345	A Simple Approach to Surface Modification Using Polytetrafluoroethylene (PTFE) with Laminar and Turbulent Flows of Micro Plasma Jets at Atmospheric Pressure. Plasma Processes and Polymers, 2011, 8, 535-541.	1.6	32
346	Plasma Polymerized Silylated Ciprofloxacin as an Antibiotic Coating. Plasma Processes and Polymers, 2011, 8, 599-606.	1.6	9
347	Surface grafting thermoresponsive PEO-PPO-PEO chains. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 394-401.	1.3	4
348	Covalent Heparin Modification of a Polysulfone Flat Sheet Membrane for Selective Removal of Lowâ€Density Lipoproteins: A Simple and Versatile Method. Macromolecular Bioscience, 2011, 11, 1218-1226.	2.1	35

#	Article	IF	CITATIONS
349	Surface characterization of Ti and Yâ€₹ZP following nonâ€thermal plasma exposure. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 99B, 199-206.	1.6	54
350	Fabrication of highly porous scaffolds for tissue engineering based on starâ€shaped functional poly(εâ€caprolactone). Biotechnology and Bioengineering, 2011, 108, 694-703.	1.7	26
351	Surface modification of POSSâ€nanocomposite biomaterials using reactive oxygen plasma treatment for cardiovascular surgical implant applications. Biotechnology and Applied Biochemistry, 2011, 58, 147-161.	1.4	39
352	Application of plasma surface modification techniques to improve hemocompatibility of vascular grafts: A review. Biotechnology and Applied Biochemistry, 2011, 58, 311-327.	1.4	45
353	Autohesion of plasma treated semi-crystalline PEEK: Comparative study of argon, nitrogen and oxygen treatments. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 374, 88-95.	2.3	84
354	Surface bioactivity modification of titanium by CO2 plasma treatment and induction of hydroxyapatite: In vitro and in vivo studies. Applied Surface Science, 2011, 257, 1813-1823.	3.1	65
355	Electro-spark alloying using graphite electrode on titanium alloy surface for biomedical applications. Applied Surface Science, 2011, 257, 6364-6371.	3.1	94
356	Nanomechanical and nanotribological properties of bioactive titanium surfaces prepared by alkali treatment. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 756-765.	1.5	23
357	Tribo-mechanical characterization of rough, porous and bioactive Ti anodic layers. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 796-806.	1.5	39
358	Fatigue endurance of Ti-6Al-4V alloy with electro-eroded surface for improved bone in-growth. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 417-422.	1.5	39
359	Spontaneously reactive plasma polymer micropatterns. Polymer, 2011, 52, 1882-1890.	1.8	17
360	Diamond-like carbon thin films produced by femtosecond pulsed laser deposition of fullerite. Surface and Coatings Technology, 2011, 205, 3747-3753.	2.2	21
361	The effect of pore characteristics on Ni suppression of porous NiTi shape memory alloys modified by surface treatment. Thin Solid Films, 2011, 519, 5297-5301.	0.8	6
362	Plasma spraying for thermal barrier coatings: processes and applications., 2011,, 99-114.		5
363	Surface Characteristic of Wheat Straw Treated with Plasma. Advanced Materials Research, 0, 295-297, 1639-1642.	0.3	4
364	Surface treatment of carbon nanotubes via plasma technology., 2011,, 25-54.		3
365	Surface modification of biomaterials by plasma polymerization., 2011,, 3-39.		9
366	Biomimetic Tailoring of the Surface Properties of Polymers at the Nanoscale: Medical Applications. Nanoscience and Technology, 2011, , 645-689.	1.5	2

#	Article	IF	CITATIONS
367	Spatial Patterns of Microbial Retention on Polymer Surfaces. Journal of Adhesion Science and Technology, 2011, 25, 2255-2280.	1.4	5
368	Surface Modification of Polyamide 6 Immobilized with Collagen: Characterization and Cytocompatibility. International Journal of Polymeric Materials and Polymeric Biomaterials, 2011, 60, 907-921.	1.8	9
369	Interfacial Adhesion in Polymer Systems. Microsystems, 2012, , 101-133.	0.3	3
370	The Intersection of Design, Manufacturing, and Surface Engineering. , 2012, , 443-480.		1
371	Study on Surface Modification of Polyethylene Terephthalate(PET) Film by RF-Ar/O ₂ Plasma Treatment. Applied Mechanics and Materials, 0, 200, 194-198.	0.2	4
372	Enhancement of Polymer Cytocompatibility by Nanostructuring of Polymer Surface. Journal of Nanomaterials, 2012, 2012, 1-17.	1.5	11
373	Mechanisms for Covalent Immobilization of Horseradish Peroxidase on Ion-Beam-Treated Polyethylene. Scientifica, 2012, 2012, 1-28.	0.6	22
374	Superhydrophobic to Superhydrophylic Biomimetic Poly(3-Hydroxybutyrate) Surfaces Made by Phase Inversion. Materials Science Forum, 2012, 730-732, 44-49.	0.3	2
375	Surface characterization of $Zr/Ti/Nb$ tri-layered films deposited by magnetron sputtering on $Si(111)$ and stainless steel substrates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	0.9	10
376	Study on bovine bone surface after atmospheric plasma treatment. , 2012, , .		1
377	Inhibition of Staphylococcus epidermidis Biofilm by Trimethylsilane Plasma Coating. Antimicrobial Agents and Chemotherapy, 2012, 56, 5923-5937.	1.4	69
378	Poly(Lactic Acid)-Based Biomaterials: Synthesis, Modification and Applications. , 0, , .		92
379	Biomedical production of implants by additive electro-chemical and physical processes. CIRP Annals - Manufacturing Technology, 2012, 61, 635-655.	1.7	255
380	Oxidation Behavior of C- and Au-lon-Implanted Biodegradable Polymers. IEEE Transactions on Plasma Science, 2012, 40, 863-869.	0.6	11
381	Treatment and Stability of Sodium Hyaluronate Films in Low Temperature Inductively Coupled Ammonia Plasma. Plasma Chemistry and Plasma Processing, 2012, 32, 1075-1091.	1.1	9
382	Plasma Surface Modification of Biomedical Polymers: Influence on Cell-Material Interaction. Plasma Chemistry and Plasma Processing, 2012, 32, 1039-1073.	1.1	206
383	Evaluation of Protein Adsorption on Atmospheric Plasma Deposited Coatings Exhibiting Superhydrophilic to Superhydrophobic Properties. Biointerphases, 2012, 7, 31.	0.6	134
384	Radiation tolerance of ultra-thin Formvar films. Applied Physics Letters, 2012, 101, 071908.	1.5	7

#	Article	IF	CITATIONS
385	Effect of Ammonia Plasma Treatment on the Properties and Cytocompatibility of a Poly(L-Lactic Acid) Film Surface. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 763-777.	1.9	15
386	Surface characterization of polyethylene terephthalate films treated by ammonia low-temperature plasma. Applied Surface Science, 2012, 258, 7207-7212.	3.1	35
387	Air plasma processing of poly(methyl methacrylate) micro-beads: Surface characterisations. Applied Surface Science, 2012, 259, 840-846.	3.1	8
388	Development of bio/blood compatible polypropylene through low pressure nitrogen plasma surface modification. Materials Science and Engineering C, 2012, 32, 1767-1778.	3.8	36
389	Plasma polymerizationâ€modified bacterial polyhydroxybutyrate nanofibrillar scaffolds. Journal of Applied Polymer Science, 2013, 128, 1904-1912.	1.3	7
390	Modulation of biocompatibility on poly(vinylidene fluoride) and polysulfone by oxygen plasma treatment and dopamine coating. Journal of Biomedical Materials Research - Part A, 2012, 100A, 3177-3188.	2.1	26
391	Polymers in orthopedic surgery and tissue engineering: From engineering materials to smart biofunctionalization of a surface. Polymer Science - Series A, 2012, 54, 585-601.	0.4	13
392	Plasma-based biofunctionalization of vascular implants. Nanomedicine, 2012, 7, 1907-1916.	1.7	40
393	Antimicrobial Activity of Silver and Copper Nanoparticles: Variation in Sensitivity Across Various Strains of Bacteria and Fungi., 2012,, 225-251.		21
394	Engineering Nanostructured Silver Coatings for Antimicrobial Applications. , 2012, , 313-336.		12
395	Improved corrosion resistance on biodegradable magnesium by zinc and aluminum ion implantation. Applied Surface Science, 2012, 263, 608-612.	3.1	37
396	DC discharge plasma modification of chitosan/gelatin/PLLA films: Surface properties, chemical structure and cell affinity. Surface and Coatings Technology, 2012, 207, 508-516.	2.2	48
397	Recent Progress in Surface Modification of Polyvinyl Chloride. Materials, 2012, 5, 2937-2959.	1.3	87
398	Oxygen and nitrogen plasma hydrophilization and hydrophobic recovery of polymers. Biomicrofluidics, 2012, 6, 16501-1650110.	1.2	147
399	Three-Dimensional Poly($\hat{l}\mu$ -caprolactone) Bioactive Scaffolds with Controlled Structural and Surface Properties. Biomacromolecules, 2012, 13, 3510-3521.	2.6	93
400	Surface coating by means of velocity shear instability in plasma. Theoretical Foundations of Chemical Engineering, 2012, 46, 508-514.	0.2	1
401	Biofunctionalized bacterial cellulose membranes by cold plasmas. Cellulose, 2012, 19, 1975-1988.	2.4	31
402	Thin films generated by plasma immersion ion implantation and deposition of hexamethyldisilazane mixed with nitrogen in different proportions. Journal of Physics: Conference Series, 2012, 370, 012028.	0.3	3

#	Article	IF	CITATIONS
403	Surface Modification Techniques of Polyetheretherketone, Including Plasma Surface Treatment. , 2012, , 145-161.		12
404	Stimuli Responsive Polymers for Nanoengineering of Biointerfaces. Methods in Molecular Biology, 2012, 811, 51-78.	0.4	16
405	Atmospheric Pressure Plasma Surface Modification of Poly(<scp>D</scp> , <scp>L</scp> â€lactic acid) Increases Fibroblast, Osteoblast and Keratinocyte Adhesion and Proliferation. Plasma Processes and Polymers, 2012, 9, 491-502.	1.6	38
406	Nonâ€stick Polymer Coatings for Energyâ€based Surgical Devices Employed in Vessel Sealing. Plasma Processes and Polymers, 2012, 9, 446-452.	1.6	16
407	Plasma Deposition of PEOâ€Like Coatings with Aerosolâ€Assisted Dielectric Barrier Discharges. Plasma Processes and Polymers, 2012, 9, 1176-1183.	1.6	57
408	One step multifunctional micropatterning of surfaces using asymmetric glow discharge plasma polymerization. Chemical Communications, 2012, 48, 1907.	2.2	18
409	Functionalized Synthetic Biodegradable Polymer Scaffolds for Tissue Engineering. Macromolecular Bioscience, 2012, 12, 911-919.	2.1	246
410	Increased connective tissue attachment to silicone implants by a water vapor plasma treatment. Journal of Biomedical Materials Research - Part A, 2012, 100A, 3400-3407.	2.1	18
411	Compound Finishing of Bombyx mori Silk: A Study of Cold Oxygen Plasma/Titania Sols Treatments and Their Influences on Fiber Structure and Performance. Plasma Chemistry and Plasma Processing, 2012, 32, 629-642.	1.1	15
412	On the Use of Atmospheric Pressure Plasma for the Bio-Decontamination of Polymers and Its Impact on Their Chemical and Morphological Surface Properties. Plasma Chemistry and Plasma Processing, 2012, 32, 801-816.	1.1	38
413	Plasma treatment induced wetting transitions on biological tissue (pigeon feathers). Colloids and Surfaces B: Biointerfaces, 2012, 92, 367-371.	2.5	21
414	Surface modification of poly(propylene carbonate) by aminolysis and layer-by-layer assembly for enhanced cytocompatibility. Colloids and Surfaces B: Biointerfaces, 2012, 93, 75-84.	2.5	49
415	Surface characterisation of oxygen plasma treated electrospun polyurethane fibres and their interaction with red blood cells. European Polymer Journal, 2012, 48, 472-482.	2.6	47
416	A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials, 2012, 33, 6020-6041.	5.7	1,086
417	Surface and protein analyses of normal human cell attachment on PIII-modified chitosan membranes. Nuclear Instruments & Methods in Physics Research B, 2012, 272, 386-390.	0.6	12
418	PTFE surface modification by Ar plasma and its characterization. Vacuum, 2012, 86, 643-647.	1.6	50
419	Activation of poly(methyl methacrylate) surfaces by atmospheric pressure plasma. Polymer Degradation and Stability, 2012, 97, 886-892.	2.7	41
420	Modification of Food-Contacting Surfaces by Plasma Polymerization Technique: Reducing the Biofouling of Microorganisms on Stainless Steel Surface. Food and Bioprocess Technology, 2012, 5, 166-175.	2.6	42

#	Article	IF	CITATIONS
421	Surface modification of polyamide and poly(vinylidene fluoride) membranes. Journal of Applied Polymer Science, 2013, 128, 322-331.	1.3	26
422	Progress in direct-current plasma immersion ion implantation and recent applications of plasma immersion ion implantation and deposition. Surface and Coatings Technology, 2013, 229, 2-11.	2.2	25
423	Surface engineering and modification of biomaterials. Thin Solid Films, 2013, 528, 93-105.	0.8	39
424	Plasma treated polyethylene grafted with adhesive molecules for enhanced adhesion and growth of fibroblasts. Materials Science and Engineering C, 2013, 33, 1116-1124.	3.8	33
425	Surface modification of fiber reinforced polymer composites and their attachment to bone simulating material. Journal of Materials Science: Materials in Medicine, 2013, 24, 1145-1152.	1.7	7
426	Effect of crosslinking in chitosan/aloe vera-based membranes for biomedical applications. Carbohydrate Polymers, 2013, 98, 581-588.	5.1	98
429	Surface Nanoarchitecture for Bioâ€Applications: Selfâ€Regulating Intelligent Interfaces. Advanced Functional Materials, 2013, 23, 4483-4506.	7.8	79
430	Plasma surface modification effects on biodegradability and protein adsorption properties of chitosan films. Applied Surface Science, 2013, 282, 735-740.	3.1	41
431	Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured network on polyetheretherketone. Biomaterials, 2013, 34, 9264-9277.	5.7	302
432	Atmospheric rf plasma deposition of superhydrophobic coatings using tetramethylsilane precursor. Surface and Coatings Technology, 2013, 234, 14-20.	2.2	49
433	Effect of Si-incorporation on hydrophilicity and bioactivity of titania film. Surface and Coatings Technology, 2013, 229, 156-161.	2.2	14
434	Interior surface plasma immersion ion implantation of a small oval tube. Surface and Coatings Technology, 2013, 229, 200-204.	2.2	2
435	In vivo synthesis of calcium oxalate whiskers on CoCrMo alloy surfaces via biomineralization. Materials Science and Engineering C, 2013, 33, 3839-3844.	3.8	1
436	Plasma treatment for improving cell biocompatibility of a biodegradable polymer scaffold for vascular graft applications. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 78-86.	2.0	85
437	Enhanced Adhesion of Human Osteoblast-Like Cells on Femtosecond Laser Treated Ti-6Al-4V. Advanced Materials Research, 0, 739, 101-105.	0.3	1
438	Protein Adsorption on Various Plasma-Treated Polyethylene Terephthalate Substrates. Molecules, 2013, 18, 12441-12463.	1.7	49
439	Advanced Materials Design via Low-Damage Plasma Processes. , 2013, , 225-236.		0
440	In vitro cell culture, platelet adhesion tests and in vivo implant tests of plasma-polymerized para-xylene films. Applied Surface Science, 2013, 280, 456-461.	3.1	2

#	Article	IF	CITATIONS
441	Synthesis and characterization of di(ethylene glycol) vinyl ether films deposited by atmospheric pressure corona discharge plasma. Surface and Coatings Technology, 2013, 234, 33-41.	2.2	4
442	Effects of chromium ion implantation voltage on the corrosion resistance and cytocompatibility of dual chromium and oxygen plasma-ion-implanted biodegradable magnesium. Surface and Coatings Technology, 2013, 235, 875-880.	2.2	12
443	Plasma treatment of electrodes significantly enhances the development of anodic electrochemically active biofilms. Electrochimica Acta, 2013, 108, 566-574.	2.6	35
444	Surface modification of several dental substrates by non-thermal, atmospheric plasma brush. Dental Materials, 2013, 29, 871-880.	1.6	111
445	Effects of plasma treatments on the controlled drug release from poly(ethylene-co-vinyl acetate). Surface and Coatings Technology, 2013, 216, 318-323.	2.2	41
446	Effects of plasma power and reaction gases on the surface properties of ePTFE materials during a plasma modification process. Surface and Coatings Technology, 2013, 228, S477-S481.	2.2	22
447	PIII-induced enhancement and inhibition of human cell attachment on chitosan membranes. Surface and Coatings Technology, 2013, 229, 112-119.	2.2	11
448	Accelerated Mice Skin Acute Wound Healing In Vivo by Combined Treatment of Argon and Helium Plasma Needle. Archives of Medical Research, 2013, 44, 169-177.	1.5	81
449	Effects of carbon dioxide plasma immersion ion implantation on the electrochemical properties of AZ31 magnesium alloy in physiological environment. Applied Surface Science, 2013, 286, 257-260.	3.1	18
450	Microstructure and corrosion resistance of AZ91D magnesium alloy treated by hybrid ion implantation and heat treatment. Vacuum, 2013, 89, 233-237.	1.6	23
451	Improved anticoagulation of titanium by sequential immobilization of oligo(ethylene glycol) and 2-methacryloyloxyethyl phosphorylcholine. Colloids and Surfaces B: Biointerfaces, 2013, 112, 508-512.	2.5	10
452	Surface characterisation and bonding of Y-TZP following non-thermal plasma treatment. Journal of Dentistry, 2013, 41, 51-59.	1.7	98
453	Surface modification of fused deposition modeling ABS to enable rapid prototyping of biomedical microdevices. Journal of Materials Processing Technology, 2013, 213, 947-954.	3.1	161
454	Hydrophilization of synthetic biodegradable polymer scaffolds for improved cell/tissue compatibility. Biomedical Materials (Bristol), 2013, 8, 014101.	1.7	105
455	Microencapsulated chitosan–dextran sulfate nanoparticles for controled delivery of bioactive molecules and cells in bone regeneration. Polymer, 2013, 54, 5-15.	1.8	52
456	Modification in polyethylene–iron oxide joints induced by laser irradiation. Applied Surface Science, 2013, 272, 99-103.	3.1	17
457	Designing Atmospheric-Pressure Plasma Sources for Surface Engineering of Nanomaterials. Plasma Chemistry and Plasma Processing, 2013, 33, 479-490.	1.1	14
458	Exploring the Future of Hydrogels in Rapid Prototyping: A Review on Current Trends and Limitations. Springer Series in Biomaterials Science and Engineering, 2013, , 201-249.	0.7	1

#	ARTICLE	IF	Citations
459	Control of Surface Degradation on Biodegradable Magnesium Alloys by Plasma-Based Technology. IEEE Transactions on Plasma Science, 2013, 41, 725-730.	0.6	7
460	Mechanical properties of inorganic biomedical thin films and their corresponding testing methods. Surface and Coatings Technology, 2013, 233, 39-48.	2.2	36
461	Physicochemical Surface Modification of Materials Used in Medicine. , 2013, , 259-276.		15
462	Active screen plasma nitriding enhances cell attachment to polymer surfaces. Applied Surface Science, 2013, 273, 787-798.	3.1	25
463	Plasmas for medicine. Physics Reports, 2013, 530, 291-320.	10.3	763
464	Surface modification of a granular activated carbon by dielectric barrier discharge plasma and its effects on pentachlorophenol adsorption. Journal of Electrostatics, 2013, 71, 689-694.	1.0	33
466	Multifunctional nanostructured PLA materials for packaging and tissue engineering. Progress in Polymer Science, 2013, 38, 1720-1747.	11.8	527
467	Block Copolymer Modified Surfaces for Conjugation of Biomacromolecules with Control of Quantity and Activity. Langmuir, 2013, 29, 1122-1128.	1.6	40
468	Surface modification of cardiovascular materials and implants. Surface and Coatings Technology, 2013, 233, 80-90.	2.2	108
469	Surface Modification for Biocompatibility. , 2013, , 189-220.		8
471	Plasma co-polymerized nano coatings – As a biodegradable solid carrier for tunable drug delivery applications. Polymer, 2013, 54, 4820-4829.	1.8	42
472	Comparison of Two Different Plasma Surface-Modification Techniques for the Covalent Immobilization of Protein Monolayers. Langmuir, 2013, 29, 6645-6651.	1.6	28
473	Effects of Ar–N ₂ –O ₂ Microwave Plasma on Polyâ€ <scp>L</scp> â€Lactic Acid Thin Films Designed for Tissue Engineering. Plasma Processes and Polymers, 2013, 10, 535-543.	1.6	9
474	Evaluation of plasma treatment effects on improving adhesive–dentin bonding by using the same tooth controls and varying crossâ€sectional surface areas. European Journal of Oral Sciences, 2013, 121, 355-362.	0.7	52
475	Investigation of Root Canal Debridement Efficacy of Low Temperature Atmospheric Pressure Plasma Compared to the Current Techniques. Biotechnology and Biotechnological Equipment, 2013, 27, 3547-3552.	0.5	0
476	Investigation of the Formation Mechanism of Aligned Nano-Structured Siloxane Coatings Deposited Using an Atmospheric Plasma Jet. Plasma Processes and Polymers, 2013, 10, 888-903.	1.6	21
477	Effects of Carbon and Nitrogen Plasma Immersion Ion Implantation on In vitro and In vivo Biocompatibility of Titanium Alloy. ACS Applied Materials & Samp; Interfaces, 2013, 5, 1510-1516.	4.0	81
478	Osteoblast responses to novel titanium-based surfaces produced by plasma- and ion beam technologies. RSC Advances, 2013, 3, 11205.	1.7	4

#	Article	IF	CITATIONS
479	Surface Modification of Wood. Reviews of Adhesion and Adhesives, 2013, 1, 216-247.	3.3	65
480	Postelectrospinning "Click―Modification of Degradable Amino Acid-Based Poly(ester urea) Nanofibers. Macromolecules, 2013, 46, 9515-9525.	2.2	49
481	Surface treatment of carbon nanotubes using plasma technology., 2013,, 474-505.		2
482	Effects of Varying Heptylamine and Propionaldehyde Plasma Polymerization Parameters on Mesenchymal Stem Cell Attachment. Plasma Processes and Polymers, 2013, 10, 19-28.	1.6	19
483	An XPS study on the chemical bond structure at the interface between SiOxNy and N doped polyethylene terephthalate. Journal of Chemical Physics, 2013, 138, 104706.	1.2	18
484	Optimization of Mechanical Properties of Plasma Spraying Ceramic Coatings Using Artificial Intelligent Approaches. Advanced Materials Research, 0, 717, 164-169.	0.3	0
485	Surface Modification of Polypropylene Blood Oxygenator Membrane by Poly Ethylene Glycol Grafting. Advanced Materials Research, 0, 816-817, 459-463.	0.3	9
486	Antibacterial <mml:math id="M1" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>TiO</mml:mtext></mml:mrow><mml:mtext>2<td>ml:mtext></td><td></td></mml:mtext></mml:msub></mml:mrow></mml:math>	ml:mtext>	
487	Local Mechanical Properties of Au Thin Films on Polyethylene. Key Engineering Materials, 0, 586, 87-90.	0.4	0
488	Surface Properties of Different Travel Speeds and Powder-Feeder Rates for Plasma-Sprayed Coatings on Aluminum Substrates. Advanced Materials Research, 2013, 717, 84-89.	0.3	0
489	"Short―Dithiol and Au Nanoparticles Grafting on Plasma Treated Polyethyleneterephthalate. Journal of Nano Research, 2013, 25, 40-48.	0.8	7
490	Ion Irradiation Effects in some Electro-Active and Engineering Polymers Studies by Conventional and Novel Techniques. Defect and Diffusion Forum, 0, 341, 1-49.	0.4	10
491	The adhesion and proliferation of bone marrow-derived mesenchymal stem cells promoted by nanoparticle surface. Journal of Biomaterials Applications, 2013, 27, 525-536.	1.2	5
492	Controlled biopolymer roughness induced by plasma and excimer laser treatment. EXPRESS Polymer Letters, 2013, 7, 950-958.	1.1	33
493	Low Pressure Radio-Frequency Oxygen Plasma Induced Oxidation of Titanium – Surface Characteristics and Biological Effects. PLoS ONE, 2013, 8, e84898.	1.1	9
494	Wetting transitions of polymers via thermal and plasma enhanced atomic layer depositions. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	0.9	7
495	The Distribution of CH ₃ Over the Film Thickness and Shrinkage of H ₂ Plasmaâ€Modified PDMS Films. Plasma Processes and Polymers, 2013, 10, 320-327.	1.6	2
497	Using field emission to control the electron energy distribution in high-pressure microdischarges at microscale dimensions. Applied Physics Letters, 2013, 103, .	1.5	17

#	Article	IF	CITATIONS
498	Effect of Argon Plasma Pretreatment on Tensile Bond Strength of a Silicone Soft Liner to Denture Base Polymers. Journal of Adhesion, 2013, 89, 594-610.	1.8	9
499	Interaction of polypropylene with sputtered and evaporated au nanolayers. Polymer Engineering and Science, 2013, 53, 2270-2275.	1.5	1
500	Photo-induced switchable TiO2thin films for biological applications. Bioinspired, Biomimetic and Nanobiomaterials, 2013, 2, 100-116.	0.7	2
501	Benefits of oxygen and nitrogen plasma treatment in Vero cell affinity to poly(lactide-co-glycolide) Tj ETQq1 1 0.7	'84314 rg 0.6	BT_/Overlock
502	Review of Major Directions in Non-Equilibrium Atmospheric Plasma Treatments in Medical, Biological, and Bioengineering Applications. Plasma Medicine, 2013, 3, 175-243.	0.2	4
503	Osteopontin (OPN) Is an Important Protein to Mediate Improvements in the Biocompatibility of C Ion-Implanted Silicone Rubber. PLoS ONE, 2014, 9, e98320.	1.1	13
504	A Novel Modular Bioreactor to In Vitro Study the Hepatic Sinusoid. PLoS ONE, 2014, 9, e111864.	1.1	31
505	Effect of Plasma Processing and Organosilane Modifications of Polyethylene onAeromonas hydrophilaBiofilm Formation. BioMed Research International, 2014, 2014, 1-8.	0.9	13
506	Effect of Gamma Irradiation on Structural and Biological Properties of a PLGA-PEG-Hydroxyapatite Composite. Scientific World Journal, The, 2014, 2014, 1-9.	0.8	60
507	Phthalocyanine Nano Colloids in Water Prepared by Reprecipitation Method. Transactions of the Materials Research Society of Japan, 2014, 39, 71-74.	0.2	0
508	Development of antibacterial silver treatments on $\langle scp \rangle HDPE \langle /scp \rangle$ nets for agriculture. Journal of Applied Polymer Science, 2015, 132, .	1.3	4
510	Plasma Sources in Thin Film Deposition. , 2014, , 307-324.		2
511	Antibacterial Performance of Alginic Acid Coating on Polyethylene Film. International Journal of Molecular Sciences, 2014, 15, 14684-14696.	1.8	17
512	Advances in the surface modification techniques of bone-related implants for last 10 years. International Journal of Energy Production and Management, 2014, 1, 67-79.	1.9	96
513	Laser Gas–Assisted Nitriding of Ti Alloys. , 2014, , 261-278.		4
514	Interfacing hard and living matter: plasma-assembled proteins on inorganic functional materials for enhanced coupling to cells and tissue. Journal of Materials Chemistry B, 2014, 2, 7739-7746.	2.9	6
515	An overview of current decontamination practices of surgical instruments and medical devices. , 2014, , 503-547.		0
516	Direct writing of bio-functional coatings for cardiovascular applications. Journal of Biomedical Materials Research - Part A, 2014, 102, n/a-n/a.	2.1	6

#	Article	IF	CITATIONS
517	Effect of surface modification by nitrogen ion implantation on the electrochemical and cellular behaviors of super-elastic NiTi shape memory alloy. Journal of Materials Science: Materials in Medicine, 2014, 25, 2605-2617.	1.7	24
518	Freeâ€Standing Cell Sheet Assembled with Ultrathin Extracellular Matrix as an Innovative Approach for Biomimetic Tissues. Advanced Functional Materials, 2014, 24, 2216-2223.	7.8	22
519	Surface Modification of PVC Film with Allylamine Plasma Polymers. Advances in Polymer Technology, 2014, 33, .	0.8	19
520	Surface modification of polymers for biocompatibility via exposure to extreme ultraviolet radiation. Journal of Biomedical Materials Research - Part A, 2014, 102, 3298-3310.	2.1	71
521	Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1363-1374.	1.6	24
522	Surface Modification of Biodegradable Poly(<scp>L</scp> â€Lactic Acid) by Argon Plasma: Fibroblasts and Keratinocytes in the Spotlight. Plasma Processes and Polymers, 2014, 11, 1057-1067.	1.6	26
523	Medical Polyurethane Covered by Diglyme Plasma Polymer. Materials Science Forum, 2014, 805, 89-93.	0.3	0
524	A Survey of Surface Modification Techniques for Next-Generation Shape Memory Polymer Stent Devices. Polymers, 2014, 6, 2309-2331.	2.0	71
525	Wear Behavior of Plasma Oxidized CoCrMo Alloy under Dry and Simulated Body Fluid Conditions. Journal of Bionic Engineering, 2014, 11, 303-310.	2.7	16
526	Eelectrochemical properties and corrosion resistance of carbon-ion-implanted magnesium. Corrosion Science, 2014, 82, 173-179.	3.0	65
527	Clinical Plasma Medicine: State and Perspectives of <i>in Vivo</i> Application of Cold Atmospheric Plasma. Contributions To Plasma Physics, 2014, 54, 104-117.	0.5	209
528	Structure and Properties of Ti–O–N Coatings Produced by Reactive Magnetron Sputtering. Russian Physics Journal, 2014, 56, 1144-1149.	0.2	16
529	Wear studies on plasma sprayed Al2O3–40 wt% 8YSZ composite ceramic coating on Ti–6Al–4V alloy used for biomedical applications. Wear, 2014, 311, 101-113.	1.5	49
530	Polyelectrolyte multilayered assemblies in biomedical technologies. Chemical Society Reviews, 2014, 43, 3453.	18.7	262
531	Improving stability of TiO2 particles in water by RF-plasma polymerization of poly(acrylic acid) on the particle surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 451, 66-74.	2.3	37
532	Electrospun Nanofiber Scaffolds and Plasma Polymerization: A Promising Combination Towards Complete, Stable Endothelial Lining for Vascular Grafts. Macromolecular Bioscience, 2014, 14, 1084-1095.	2.1	50
533	Effects of zirconium and oxygen plasma ion implantation on the corrosion behavior of ZK60 Mg alloy in simulated body fluids. Corrosion Science, 2014, 82, 7-26.	3.0	106
534	Periâ€implant bone formation of nonâ€thermal atmospheric pressure plasma–treated zirconia implants with different surface roughness in rabbit tibiae. Clinical Oral Implants Research, 2014, 25, 573-579.	1.9	48

#	Article	IF	CITATIONS
535	Inactivation of Staphylococcus aureus on the beef jerky by radio-frequency atmospheric pressure plasma discharge treatment. Innovative Food Science and Emerging Technologies, 2014, 22, 124-130.	2.7	94
536	Surface Modification of Castor Oilâ€Based Polyurethane by Polyacrylic Acid Graft using a Twoâ€5tep Plasma Treatment for Biomedical Applications. Advances in Polymer Technology, 2014, 33, .	0.8	13
537	Effect of Al/Cu ratios on the optical, electrical, and electrochemical properties of Cu–Al–Ca–O thin films. Journal of Alloys and Compounds, 2014, 609, 111-115.	2.8	9
538	Carboxyl Surface Functionalization of Poly(<scp>L</scp> -lactic acid) Electrospun Nanofibers through Atmospheric Non-Thermal Plasma Affects Fibroblast Morphology. Plasma Processes and Polymers, 2014, 11, 203-213.	1.6	46
539	Structure, characterization and cytotoxicity study on plasma surface modified Ti–6Al–4V and γ-TiAl alloys. Chemical Engineering Journal, 2014, 240, 516-526.	6.6	44
540	Bioartificial Biomaterials for Regenerative Medicine Applications. , 2014, , 113-136.		1
541	Plasma Treatment of Polymeric Materials. , 2014, , 227-269.		6
542	The effect of anti-TGF-β2 antibody functionalized intraocular lens on lens epithelial cell migration and epithelial–mesenchymal transition. Colloids and Surfaces B: Biointerfaces, 2014, 113, 33-42.	2.5	17
543	Nanohardness, corrosion and protein adsorption properties of CuAlO2 films deposited on 316L stainless steel for biomedical applications. Applied Surface Science, 2014, 289, 455-461.	3.1	20
544	Biomolecular Structure at Solid–Liquid Interfaces As Revealed by Nonlinear Optical Spectroscopy. Chemical Reviews, 2014, 114, 8388-8415.	23.0	102
545	Cold plasma surface modification of biodegradable polymer biomaterials., 2014,, 202-224.		12
546	Non-thermal atmospheric plasma brush induces HEMA grafting onto dentin collagen. Dental Materials, 2014, 30, 1369-1377.	1.6	23
547	Synthesis of MA POSS–PMMA as an intraocular lens material with high light transmittance and good cytocompatibility. RSC Advances, 2014, 4, 52959-52966.	1.7	37
548	Effects of Atmospheric Pressure Air Plasma Pretreatment on the Seed Germination and Early Growth of <i>Andrographis paniculata </i> . Plasma Science and Technology, 2014, 16, 260-266.	0.7	111
549	Modification of Silicone Elastomer with Zwitterionic Silane for Durable Antifouling Properties. Langmuir, 2014, 30, 11386-11393.	1.6	121
550	Facile immobilization of enzyme by entrapment using a plasma-deposited organosilicon thin film. Journal of Molecular Catalysis B: Enzymatic, 2014, 110, 77-86.	1.8	20
551	Growth and surface characterization of TiNbZr thin films deposited by magnetron sputtering for biomedical applications. Materials Science and Engineering C, 2014, 43, 45-49.	3.8	32
552	Investigation of the Interfacial Effects of Small Chemical-Modified TiO ₂ Nanotubes on 3T3 Fibroblast Responses. ACS Applied Materials & Samp; Interfaces, 2014, 6, 12071-12082.	4.0	19

#	ARTICLE	IF	CITATIONS
553	Behavior of potassium titanate whisker in simulated body fluid. Materials Letters, 2014, 135, 139-142.	1.3	7
554	Electrochemical and biological characterization of coatings formed on Ti–15Mo alloy by plasma electrolytic oxidation. Materials Science and Engineering C, 2014, 43, 172-181.	3.8	41
555	Human hair keratin and its-based biomaterials for biomedical applications. Tissue Engineering and Regenerative Medicine, 2014, 11, 255-265.	1.6	112
556	Molecular Interactions Driving the Layer-by-Layer Assembly of Multilayers. Chemical Reviews, 2014, 114, 8883-8942.	23.0	697
557	Immobilization of silver nanoparticles on polyethylene terephthalate. Nanoscale Research Letters, 2014, 9, 305.	3.1	24
558	Controlling the Cell Adhesion Property of Silk Films by Graft Polymerization. ACS Applied Materials & Samp; Interfaces, 2014, 6, 5005-5011.	4.0	28
559	Surface modification of oxidized cellulose haemostat by argon plasma treatment. Cellulose, 2014, 21, 2445-2456.	2.4	24
560	Improvement of adhesion and barrier properties of biomedical stainless steel by deposition of YSZ coatings using RF magnetron sputtering. Materials Characterization, 2014, 91, 50-57.	1.9	17
561	The Role of Scaffold Architecture and Composition on the Bone Formation by Adipose-Derived Stem Cells. Tissue Engineering - Part A, 2014, 20, 434-444.	1.6	36
562	Surface Roughening of PET Films through Blend Phase Coarsening. ACS Applied Materials & Samp; Interfaces, 2014, 6, 6415-6424.	4.0	8
563	Texturation and superhydrophobicity of polyethylene terephthalate thanks to plasma technology. Applied Surface Science, 2014, 292, 782-789.	3.1	28
564	Biomimetic porous scaffolds for bone tissue engineering. Materials Science and Engineering Reports, 2014, 80, 1-36.	14.8	854
565	Functionalization of biomedical materials using plasma and related technologies. Applied Surface Science, 2014, 310, 11-18.	3.1	21
566	The effect of different surface treatments on the bond strength of PEEK composite materials. Dental Materials, 2014, 30, e209-e215.	1.6	116
567	Cytocompatibility of polymers grafted by activated carbon nano-particles. Carbon, 2014, 69, 361-371.	5.4	25
568	Protein immobilization onto poly (vinylidene fluoride) microporous membranes activated by the atmospheric pressure low temperature plasma. Polymer, 2014, 55, 2780-2791.	1.8	45
569	Effects of zirconium and nitrogen plasma immersion ion implantation on the electrochemical corrosion behavior of Mg–Y–RE alloy in simulated body fluid and cell culture medium. Corrosion Science, 2014, 86, 239-251.	3.0	53
570	Stimulation of bone growth following zinc incorporation into biomaterials. Biomaterials, 2014, 35, 6882-6897.	5.7	241

#	Article	IF	CITATIONS
571	Surface modification of polypropylene membrane by polyethylene glycol graft polymerization. Materials Science and Engineering C, 2014, 42, 443-450.	3.8	58
572	Non-thermal atmospheric plasmas in dental restoration: Improved resin adhesive penetration. Journal of Dentistry, 2014, 42, 1033-1042.	1.7	57
573	The effect of plasmaâ€nitrided titanium surfaces on osteoblastic cell adhesion, proliferation, and differentiation. Journal of Biomedical Materials Research - Part A, 2014, 102, 991-998.	2.1	17
574	Cell and scaffold surface engineering to enhance cell migration and tissue regeneration. Surface Innovations, 2014, 2, 17-25.	1.4	8
576	Changes in surface properties of polymethylmethacrylate (PMMA) treated with air plasma. Annales Universitatis Mariae Curie-Sklodowska Sectio AA – Chemia, 2015, 70, .	0.2	2
577	Cold plasma-induced surface modification of heat-polymerized acrylic resin and prevention of early adherence of <i>Candida albicans </i> . Dental Materials Journal, 2015, 34, 529-536.	0.8	18
578	Experimental investigations of electron heating dynamics and ion energy distributions in capacitive discharges driven by customized voltage waveforms. Journal of Applied Physics, 2015, 118, .	1.1	21
579	Effects of coating with different ceromers on the impact strength, transverse strength and elastic modulus of polymethyl methacrylate. Dental Materials Journal, 2015, 34, 379-387.	0.8	6
580	Characterization of plasma deposited hydrocarbon diffusion barriers for embolic foam devices. , 2015, , .		0
581	Effect of Al ₂ O ₃ –Ti composite coating on corrosion behavior of TiAl ₆ V ₄ alloy. Materials and Corrosion - Werkstoffe Und Korrosion, 2015, 66, 479-485.	0.8	10
582	DC Discharge Plasma Modification of Chitosan Films: An Effect of Chitosan Chemical Structure. Plasma Processes and Polymers, 2015, 12, 710-718.	1.6	27
583	Study of Bacterial Cell Colonization on Plasma Induced Bioâ€Adoptable Polymer Nanocomposites Membranes. Macromolecular Symposia, 2015, 357, 52-60.	0.4	1
584	POLYHYDROXYALKANOATES (PHAs) FOR TISSUE ENGINEERING APPLICATIONS: BIOTRANSFORMATION OF PALM OIL MILL EFFLUENT (POME) TO VALUE-ADDED POLYMERS. Jurnal Teknologi (Sciences and) Tj ETQq0 0 0 rg	gBTO/ :0 verlo	oc ls 10 Tf 50
585	THE EFFECT OF SURFACE HETEROGENEITY ON WETTABILITY OF POROUS THREE DIMENSIONAL (3-D) SCAFFOLDS OF POLY(3-HYDROXYBUTYRIC ACID) (PHB) AND POLY(3-HYDROXYBUTYRIC-CO-3-HYDROXYVALERIC ACID) (PHBV). Jurnal Teknologi (Sciences and) Tj ETQq1 1 0.	784314 rş	gB <mark>f</mark> /Overloci
586	Noble Metal Nanoparticles Prepared by Metal Sputtering into Glycerol and their Grafting to Polymer Surface. , 0, , .		3
587	Plasma Processing for Tailoring the Surface Properties of Polymers. , 0, , .		16
588	Wear Performance of UHMWPE and Reinforced UHMWPE Composites in Arthroplasty Applications: A Review. Lubricants, 2015, 3, 413-436.	1,2	109
589	Tailoring Membrane Surface Charges: A Novel Study on Electrostatic Interactions during Membrane Fouling. Polymers, 2015, 7, 2017-2030.	2.0	58

#	Article	IF	CITATIONS
590	Composition and Modifications of Dental Implant Surfaces. Journal of Oral Implants, 2015, 2015, 1-14.	1.0	24
591	Incorporation of Primary Amines via Plasma Technology on Biomaterials. , 2015, , .		4
592	High-current anodization: A novel strategy to functionalize titanium-based biomaterials. Electrochimica Acta, 2015, 173, 345-353.	2.6	52
593	Photothermal study of RF-plasma polymerized hexamethyldisilazane thin films. Materials Science in Semiconductor Processing, 2015, 37, 223-228.	1.9	1
594	Thromboresistance of functionalized poly(methylmethacrylate): the effect of surface polarity. Bulletin of Materials Science, 2015, 38, 769-772.	0.8	2
595	Chemical species from diethylene glycol-dimethyl ether/argon discharges investigated at low pressure by mass spectrometry. Vacuum, 2015, 122, 321-325.	1.6	0
596	Power supply and impedance matching to drive technological radio-frequency plasmas with customized voltage waveforms. Review of Scientific Instruments, 2015, 86, 053504.	0.6	44
597	Review: Polymers, Surface-Modified Polymers, and Self Assembled Monolayers as Surface-Modifying Agents for Biomaterials. Polymer-Plastics Technology and Engineering, 2015, 54, 1358-1378.	1.9	54
598	Rhamnolipid biosurfactant adsorption on a plasma-treated polypropylene surface to induce antimicrobial and antiadhesive properties. RSC Advances, 2015, 5, 33089-33097.	1.7	39
599	Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene. Materials Science and Engineering C, 2015, 52, 259-266.	3.8	35
600	Surface modification of poplar veneer by means of radio frequency oxygen plasma (RF-OP) to improve interfacial adhesion with urea-formaldehyde resin. Holzforschung, 2015, 69, 193-198.	0.9	16
601	Preparation and characterisation of bamboo charcoal/titanium dioxide (BC/TiO ₂) nanocomposite with plasma surface treatment. Materials Technology, 2015, 30, A104-A108.	1.5	13
602	Influence of atmospheric pressure plasma treatment on mechanical proprieties of enamel and sealant bond strength. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1082-1091.	1.6	18
603	Relatively uniform and accelerated degradation of pure iron coated with micro-patterned Au disc arrays. Materials Science and Engineering C, 2015, 48, 679-687.	3.8	30
604	Enhancing hydrophilicity of polyethylene terephthalate surface through melt blending. Polymer Engineering and Science, 2015, 55, 349-358.	1.5	13
605	Surface design of biodegradable magnesium alloys for biomedical applications. , 2015, , 89-119.		6
606	Engineering and functionalization of biomaterials via surface modification. Journal of Materials Chemistry B, 2015, 3, 2024-2042.	2.9	138
607	Antibacterial wound dressing: plasma treatment effect on chitosan impregnation and in situ synthesis of silver chloride on cellulose surface. RSC Advances, 2015, 5, 17690-17699.	1.7	53

#	Article	IF	CITATIONS
609	Poly (vinyl alcohol)/gum karaya electrospun plasma treated membrane for the removal of nanoparticles (Au, Ag, Pt, CuO and Fe3O4) from aqueous solutions. Journal of Hazardous Materials, 2015, 287, 102-110.	6.5	55
610	Application of extremely non-equilibrium plasmas in the processing of nano and biomedical materials. Plasma Sources Science and Technology, 2015, 24, 015026.	1.3	34
611	Dielectric barrier discharge plasma treatment of ultrahigh molecular weight polyethylene in different discharge atmospheres at medium pressure: A cell-biomaterial interface study. Biointerphases, 2015, 10, 029502.	0.6	24
612	Synthesis, fabrication and antibacterial properties of a plasma modified electrospun membrane consisting of gum Kondagogu, dodecenyl succinic anhydride and poly (vinyl alcohol). Surface and Coatings Technology, 2015, 271, 32-38.	2.2	37
613	Photo-patterned natural rubber surfaces with tunable tribological properties. European Polymer Journal, 2015, 66, 236-246.	2.6	15
614	Metal-Based Antibacterial Substrates for Biomedical Applications. Biomacromolecules, 2015, 16, 1873-1885.	2.6	139
615	Plasmon-induced broadband fluorescence enhancement on Al-Ag bimetallic substrates. Scientific Reports, 2014, 4, 6014.	1.6	24
616	Charging effects in the ion beam analysis of insulating polymers. Polymer, 2015, 72, 59-62.	1.8	12
617	Bacterial cellulose as a material for wound treatment: Properties and modifications. A review. Biotechnology Advances, 2015, 33, 1547-1571.	6.0	330
618	Fundamentals of nanotechnology and orthopedic materials. , 2015, , 1-25.		3
619	Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review. Journal of the Royal Society Interface, 2015, 12, 20150254.	1.5	266
620	Multifunctional Plasma-Polymerized Film: Toward Better Anticorrosion Property, Enhanced Cellular Growth Ability, and Attenuated Inflammatory and Histological Responses. ACS Biomaterials Science and Engineering, 2015, 1, 513-524.	2.6	13
621	Antibacterial effect of silver nanofilm modified stainless steel surface. International Journal of Modern Physics B, 2015, 29, 1540013.	1.0	9
622	Wettability of modified silica layers deposited on glass support activated by plasma. Applied Surface Science, 2015, 353, 843-850.	3.1	22
623	Direct Covalent Biomolecule Immobilization on Plasma-Nanotextured Chemically Stable Substrates. ACS Applied Materials & Samp; Interfaces, 2015, 7, 14670-14681.	4.0	36
624	The Relationship between the Hydrophilicity and Surface Chemical Composition Microphase Separation Structure of Multicomponent Silicone Hydrogels. Journal of Physical Chemistry B, 2015, 119, 9780-9786.	1.2	19
625	Impact of thermal treatment versus cold atmospheric plasma processing on the techno-functional protein properties from Pisum sativum â€~Salamanca'. Journal of Food Engineering, 2015, 167, 166-174.	2.7	127
626	Peptide-functionalized zirconia and new zirconia/titanium biocermets for dental applications. Journal of Dentistry, 2015, 43, 1162-1174.	1.7	29

#	Article	IF	CITATIONS
627	Preparation and characterization of Protein A-immobilized PVDF and PES membranes. EXPRESS Polymer Letters, 2015, 9, 2-13.	1.1	14
628	Drug nano-reservoirs synthesized using layer-by-layer technologies. Biotechnology Advances, 2015, 33, 1310-1326.	6.0	67
629	Influence of oxygen plasma treatment parameters on poly(vinylidene fluoride) electrospun fiber mats wettability. Progress in Organic Coatings, 2015, 85, 151-158.	1.9	79
630	Effects of atmospheric air plasma treatment of graphite and carbon felt electrodes on the anodic current from Shewanella attached cells. Bioelectrochemistry, 2015, 106, 186-193.	2.4	27
631	Plasma surface modification of metallic biomaterials. , 2015, , 103-157.		8
632	Improving polymeric surfaces for biomedical applications: a review. Journal of Coatings Technology Research, 2015, 12, 463-475.	1.2	49
633	Introduction to surface coating and modification for metallic biomaterials., 2015,, 3-60.		40
634	Human hair keratin-based biofilm for potent application to periodontal tissue regeneration. Macromolecular Research, 2015, 23, 300-308.	1.0	22
635	Bacteriostatic activity of fluoroquinolone coatings on polyethylene films. Polymer Bulletin, 2015, 72, 2049-2058.	1.7	4
636	Surface Modified Biodegradable Electrospun Membranes as a Carrier for Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells. Tissue Engineering - Part A, 2015, 21, 2301-2314.	1.6	39
637	Silkâ€Based Biomaterials in Biomedical Textiles and Fiberâ€Based Implants. Advanced Healthcare Materials, 2015, 4, 1134-1151.	3.9	130
638	The effect of plasma surface modification on the biodegradation rate and biocompatibility of a poly(butylene succinate)-based copolymer. Polymer Degradation and Stability, 2015, 121, 271-279.	2.7	20
639	Antibacterial Coatings: Challenges, Perspectives, and Opportunities. Trends in Biotechnology, 2015, 33, 637-652.	4.9	599
640	Electron heating via self-excited plasma series resonance in geometrically symmetric multi-frequency capacitive plasmas. Plasma Sources Science and Technology, 2015, 24, 044009.	1.3	28
641	Nitric oxide releasing plasma polymer coating with bacteriostatic properties and no cytotoxic side effects. Chemical Communications, 2015, 51, 7058-7060.	2.2	37
642	Construction of a blood-compatible interface based on surface segregation in a polymer blend. Polymer, 2015, 78, 219-224.	1.8	12
643	Surface modification of highly porous titanium by plasma treatment. Materials Letters, 2015, 141, 194-197.	1.3	29
644	VUV treatment combined with mechanical strain of stretchable polymer foils resulting in cell alignment. Applied Surface Science, 2015, 325, 105-111.	3.1	11

#	Article	IF	CITATIONS
645	Polyglycerol coated polypropylene surfaces for protein and bacteria resistance. Polymer Chemistry, 2015, 6, 1350-1359.	1.9	45
646	Effect of argon plasma-treated polyethylene terepthalate on ZnO:Al properties for flexible thin film silicon solar cells applications. Solar Energy Materials and Solar Cells, 2015, 133, 170-179.	3.0	28
647	Methane reforming in a small-scaled plasma reactor – Industrial application of a plasma process from the viewpoint of the environmental profile. Chemical Engineering Journal, 2015, 262, 766-774.	6.6	25
648	Lowâ€Pressure Plasma Methods for Generating Nonâ€Reactive Hydrophilic and Hydrogel‣ike Bioâ€Interface Coatings – A Review. Plasma Processes and Polymers, 2015, 12, 8-24.	1.6	56
649	Laser Ablation of Biomaterials. , 2016, , .		0
650	Non-thermal plasma assisted lithography for biomedical applications: an overview. International Journal of Nanotechnology, 2016, 13, 695.	0.1	6
651	Progress in Bioactive Metal and, Ceramic Implants for Load-Bearing Application., 0,,.		9
652	Enhancement of carbon-steel peel adhesion to rubber blend using atmospheric pressure plasma. EPJ Applied Physics, 2016, 75, 24714.	0.3	2
653	Optimizing Injection Molding Parameters of Different Halloysites Type-Reinforced Thermoplastic Polyurethane Nanocomposites via Taguchi Complemented with ANOVA. Materials, 2016, 9, 947.	1.3	17
654	Degradation of Albumin on Plasma-Treated Polystyrene by Soft X-ray Exposure. Polymers, 2016, 8, 244.	2.0	3
655	Effect of Argon Plasma Treatment on Tribological Properties of UHMWPE/MWCNT Nanocomposites. Polymers, 2016, 8, 295.	2.0	39
656	Non-thermal Plasma Technology for the Improvement of Scaffolds for Tissue Engineering and Regenerative Medicine - A Review. , 0, , .		6
657	Effects of Precursor and Deposition Conditions on Prevention of Bacterial Biofilm Growth on Chlorinated Plasma Polymers. Plasma Processes and Polymers, 2016, 13, 654-662.	1.6	9
658	Biological performance of functionalized biomedical polymers for potential applications as intraocular lens. Journal of Biomedical Materials Research - Part A, 2016, 104, 1961-1967.	2.1	5
659	Bioactive Nanofiber Matrices Functionalized with Fibronectinâ€Mimetic Peptides Driving the Alignment and Tubular Commitment of Adult Renal Stem Cells. Macromolecular Chemistry and Physics, 2016, 217, 199-212.	1.1	7
660	Ag:TiNâ€Coated Polyurethane for Dry Biopotential Electrodes: From Polymer Plasma Interface Activation to the First EEG Measurements. Plasma Processes and Polymers, 2016, 13, 341-354.	1.6	27
661	Surface Treatment of Polydimethylsiloxane (PDMS) with Atmospheric Pressure Rotating Plasma Jet. Modeling and Optimization of the Surface Treatment Conditions. Plasma Processes and Polymers, 2016, 13, 459-469.	1.6	30
662	Designing Hydrophobicity of the PLA Polymer Blend Surfaces by ICP Etching. Plasma Processes and Polymers, 2016, 13, 869-878.	1.6	11

#	Article	IF	CITATIONS
663	Influence of Surfactant Bilayers on the Refractive Index Sensitivity and Catalytic Properties of Anisotropic Gold Nanoparticles. Small, 2016, 12, 330-342.	5.2	70
664	<i>In situ</i> plasma fabrication of ceramicâ€like structure on polymeric implant with enhanced surface hardness, cytocompatibility and antibacterial capability. Journal of Biomedical Materials Research - Part A, 2016, 104, 1102-1112.	2.1	4
665	Affect of magnetic field variation in ECR plasma discharge unit on polymer treatments. , 2016, , .		O
666	Characterization of Amorphous Oxide Nano-Thick Layers on 316L Stainless Steel by Electron Channeling Contrast Imaging and Electron Backscatter Diffraction. Microscopy and Microanalysis, 2016, 22, 997-1006.	0.2	10
667	Aerosol-Assisted Plasma Deposition of Biocomposite Coatings: Investigation of Processing Conditions on Coating Properties. IEEE Transactions on Plasma Science, 2016, 44, 3091-3098.	0.6	18
668	Observations of multiple stationary striation phenomena in an atmospheric pressure neon plasma jet. Japanese Journal of Applied Physics, 2016, 55, 010301.	0.8	15
669	Efficient nanostructure construction on polymer substrates by plasma treatment for tissue engineering. , $2016, , .$		0
670	Electron Temperature Measurement by Floating Probe Method Using AC Voltage. Plasma Science and Technology, 2016, 18, 1089-1094.	0.7	4
671	Covalent immobilization of MSC-affinity peptide on poly(L-lactide-co-ε-caprolactone) copolymer to enhance stem cell adhesion and retention for tissue engineering applications. Macromolecular Research, 2016, 24, 986-994.	1.0	9
672	Maskless localized patterning of biomolecules on carbon nanotube microarray functionalized by ultrafine atmospheric pressure plasma jet using biotin-avidin system. Applied Physics Letters, 2016, 109, .	1.5	12
673	Surface properties of glass plates activated by air, oxygen, nitrogen and argon plasma. Glass Physics and Chemistry, 2016, 42, 535-541.	0.2	45
674	New method of plasma immersion ion implantation and also deposition of industrial components using tubular fixture and plasma generated inside the tube by high voltage pulses. Review of Scientific Instruments, 2016, 87, 013902.	0.6	13
675	The critical zeta potential of polymer membranes: how electrolytes impact membrane fouling. RSC Advances, 2016, 6, 98180-98189.	1.7	50
676	Green Synthesis: Nanoparticles and Nanofibres Based on Tree Gums for Environmental Applications. Ecological Chemistry and Engineering S, 2016, 23, 533-557.	0.3	30
678	Zwitterionic materials for antifouling membrane surface construction. Acta Biomaterialia, 2016, 40, 142-152.	4.1	392
679	In-vitro dissolution and structural and electrokinetic characteristics of titanium-oxynitride coatings formed via reactive magnetron sputtering. Journal of Surface Investigation, 2016, 10, 282-291.	0.1	23
680	Development of an industrial applicable dielectric barrier discharge (DBD) plasma treatment for improving bondability of poplar veneer. Holzforschung, 2016, 70, 683-690.	0.9	14
681	Autohesion of polymers. Polymer, 2016, 97, 387-407.	1.8	61

#	Article	IF	CITATIONS
682	Plasma and ion-beam modification of metallic biomaterials for improved anti-bacterial properties. Surface and Coatings Technology, 2016, 306, 140-146.	2.2	18
683	Optimization of cold nitrogen plasma surface modification process for setting up antimicrobial low density polyethylene films. Journal of the Taiwan Institute of Chemical Engineers, 2016, 64, 299-305.	2.7	19
684	Functionalization of Polyurethane/Urea Copolymers with Amide Groups by Polymer Treatment with Ammonia Plasma. Plasma Chemistry and Plasma Processing, 2016, 36, 835-848.	1.1	8
685	Cold atmospheric pressure (CAP) plasma assisted tailoring of LDPE film surfaces for enhancement of adhesive and cytocompatible properties: Influence of operating parameters. Vacuum, 2016, 130, 34-47.	1.6	7
686	Effect of cold atmospheric pressure plasma gas composition on the surface and cyto-compatible properties of low density polyethylene (LDPE) films. Current Applied Physics, 2016, 16, 784-792.	1.1	17
687	Surface functionalization of biomaterials by radical polymerization. Progress in Materials Science, 2016, 83, 191-235.	16.0	120
688	Cold Plasma Reticulation of Shape Memory Embolic Tissue Scaffolds. Macromolecular Rapid Communications, 2016, 37, 1945-1951.	2.0	11
689	Spectroscopy of reactive species produced by low-energy atmospheric-pressure plasma on conductive target material surface. Journal Physics D: Applied Physics, 2016, 49, 394001.	1.3	26
690	The Influence of Gas Pressure, Voltage, and Frequency on Plasma Propagation in Tube. IEEE Transactions on Plasma Science, 2016, 44, 2608-2614.	0.6	3
691	Plasma Chemistry as a Tool for Eco-Friendly Processing of Cotton Textile. , 2016, , 137-167.		1
693	Surface modification of electrospun polycaprolactone microfibers by air plasma treatment: Effect of plasma power and treatment time. European Polymer Journal, 2016, 84, 502-513.	2.6	46
694	Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Acta Biomaterialia, 2016, 46, 256-265.	4.1	150
695	High power plasma as an efficient tool for polymethylpentene cytocompatibility enhancement. RSC Advances, 2016, 6, 76000-76010.	1.7	11
696	Plasma polymerized carvone as an antibacterial and biocompatible coating. Materials Science and Engineering C, 2016, 68, 861-871.	3.8	40
697	Load-bearing metallic implants: electrochemical characterisation of corrosion phenomena. Materials Technology, 2016, 31, 705-718.	1.5	22
698	Developing a biomaterial interface based on poly(lactic acid) via plasma-assisted covalent anchorage of d-glucosamine and its potential for tissue regeneration. Colloids and Surfaces B: Biointerfaces, 2016, 148, 59-65.	2.5	10
699	Surface conductivity dependent dynamic behaviour of an ultrafine atmospheric pressure plasma jet for microscale surface processing. Applied Surface Science, 2016, 390, 489-496.	3.1	37
700	Particle adsorption on a polyether sulfone membrane: how electrostatic interactions dominate membrane fouling. RSC Advances, 2016, 6, 65383-65391.	1.7	33

#	Article	IF	CITATIONS
701	Mussel-inspired polydopamine for bio-surface functionalization. Biosurface and Biotribology, 2016, 2, 121-136.	0.6	283
702	Properties of PEEK-supported films of biological substances prepared by the Langmuir-Blodgett technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 510, 263-274.	2.3	22
703	A Cold Planar Nitrogen-Based Atmospheric-Pressure Dielectric Barrier Discharge Jet With Enhanced UV Emission and Radical Generation Using Short Electrodes. IEEE Transactions on Plasma Science, 2016, 44, 3183-3188.	0.6	6
704	A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose. Carbohydrate Polymers, 2016, 153, 406-420.	5.1	250
705	Plasma Surface Modification of Polyhedral Oligomeric Silsequioxane-Poly(carbonate-urea) Urethane with Allylamine Enhances the Response and Osteogenic Differentiation of Adipose-Derived Stem Cells. ACS Applied Materials & Differentials & D	4.0	20
706	Characterization of titanium nitride–hydroxyapatite on PEEK for dental implants by co-axis target magnetron sputtering. Surface and Coatings Technology, 2016, 306, 164-170.	2.2	17
707	Surface micro- and nano-texturing of stainless steel by femtosecond laser for the control of cell migration. Scientific Reports, 2016, 6, 36296.	1.6	94
709	Increased adhesion of polydimethylsiloxane (PDMS) to acrylic adhesive tape for medical use by surface treatment with an atmospheric pressure rotating plasma jet. Journal Physics D: Applied Physics, 2016, 49, 334001.	1.3	14
711	How mobile are dye adsorbates and acetonitrile molecules on the surface of TiO2 nanoparticles? A quasi-elastic neutron scattering study. Scientific Reports, 2016, 6, 39253.	1.6	6
712	Microwave plasma for hydrogen production from liquids. Nukleonika, 2016, 61, 185-190.	0.3	14
713	Study of the adhesive properties versus stability/aging of hernia repair meshes after deposition of RF activated plasma polymerized acrylic acid coating. Materials Science and Engineering C, 2016, 65, 287-294.	3.8	10
714	Electron power absorption dynamics in capacitive radio frequency discharges driven by tailored voltage waveforms in CF ₄ . Plasma Sources Science and Technology, 2016, 25, 045015.	1.3	63
715	Strategy towards independent electrical stimulation from cochlear implants: Guided auditory neuron growth on topographically modified nanocrystalline diamond. Acta Biomaterialia, 2016, 31, 211-220.	4.1	27
716	Bending and turbulent enhancement phenomena of neutral gas flow containing an atmospheric pressure plasma by applying external electric fields measured by schlieren optical method. Japanese Journal of Applied Physics, 2016, 55, 01AB08.	0.8	14
717	The effect of plasma treatment on mechanical properties, surface roughness and durability of plywood treated with copper-based wood preservatives. Wood Science and Technology, 2016, 50, 179-191.	1.4	18
718	rBMSC and bacterial responses to isoelastic carbon fiber-reinforced poly(ether-ether-ketone) modified by zirconium implantation. Journal of Materials Chemistry B, 2016, 4, 96-104.	2.9	20
719	A review of hydroxyapatite-based coating techniques: Sol–gel and electrochemical depositions on biocompatible metals. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 57, 95-108.	1.5	276
720	Facile immobilization of vascular endothelial growth factor on a tannic acid-functionalized plasma-polymerized allylamine coating rich in quinone groups. RSC Advances, 2016, 6, 17188-17195.	1.7	23

#	ARTICLE	IF	Citations
721	Toward 3D Printing of Medical Implants: Reduced Lateral Droplet Spreading of Silicone Rubber under Intense IR Curing. ACS Applied Materials & Samp; Interfaces, 2016, 8, 8239-8246.	4.0	23
722	Cell resistant zwitterionic polyelectrolyte coating promotes bacterial attachment: an adhesion contradiction. Biomaterials Science, 2016, 4, 689-698.	2.6	13
723	Influence of non-thermal TiCl4/Ar + O2 plasma-assisted TiOx based coatings on the surface of polypropylene (PP) films for the tailoring of surface properties and cytocompatibility. Materials Science and Engineering C, 2016, 62, 908-918.	3.8	6
724	"Thunderstruck― Plasma-Polymer-Coated Porous Silicon Microparticles As a Controlled Drug Delivery System. ACS Applied Materials & Samp; Interfaces, 2016, 8, 4467-4476.	4.0	33
725	Effects of pulse voltage and deposition time on the adhesion strength of graded metal/carbon films deposited on bendable stainless steel foils by hybrid cathodic arc – glow discharge plasma assisted chemical vapor deposition. Applied Surface Science, 2016, 366, 535-544.	3.1	4
726	Surface Functionalization of Microfluidic Devices. , 2016, , 59-97.		2
727	Sintered Ti–Ti3P–CaO electrodes and their application for pulsed electrospark treatment of titanium. Ceramics International, 2016, 42, 7043-7053.	2.3	8
728	Surface modification of TiO2 coatings by Zn ion implantation for improving antibacterial activities. Bulletin of Materials Science, 2016, 39, 285-291.	0.8	11
729	Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomaterialia, 2016, 31, 425-434.	4.1	471
730	Superhydrophilic poly(l-lactic acid) electrospun membranes for biomedical applications obtained by argon and oxygen plasma treatment. Applied Surface Science, 2016, 371, 74-82.	3.1	44
731	Influence of atmospheric pressure low-temperature plasma treatment on the shear bond strength between zirconia and resin cement. Journal of Prosthodontic Research, 2016, 60, 289-293.	1.1	42
732	Improvement of corrosion resistance and biocompatibility of biodegradable metallic vascular stent via plasma allylamine polymerized coating. Materials and Design, 2016, 96, 341-349.	3.3	28
733	Nanotribology of silver and silicon doped carbon coatings. Diamond and Related Materials, 2016, 67, 8-15.	1.8	23
734	Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering. Materials Science and Engineering C, 2016, 59, 1181-1194.	3.8	170
735	The Influence of Surface Modification on Friction and Lubrication Mechanism Under a Bovine Serum–Lubricated Condition. Tribology Transactions, 2016, 59, 316-322.	1.1	2
736	Plasma modification of polylactide nonwovens for dressing and sanitary applications. Textile Reseach Journal, 2016, 86, 72-85.	1.1	11
737	Tailoring biomaterial surface properties to modulate host-implant interactions: implication in cardiovascular and bone therapy. Journal of Materials Chemistry B, 2016, 4, 1586-1599.	2.9	59
738	Recent advances in anti-infection surfaces fabricated on biomedical implants by plasma-based technology. Surface and Coatings Technology, 2017, 312, 2-6.	2.2	14

#	Article	IF	CITATIONS
739	PCL/PHBV blended three dimensional scaffolds fabricated by fused deposition modeling and responses of chondrocytes to the scaffolds., 2017, 105, 1141-1150.		57
740	Hemocompatibility and oxygenation performance of polysulfone membranes grafted with polyethylene glycol and heparin by plasma-induced surface modification., 2017, 105, 1737-1746.		34
741	Development circumstances of four recycling industries (used motor oil, acidic sludge, plastic) Tj ETQq0 0 0 rgBT	Qverlock 8.2	10 Tf 50 66
742	Fluorescent Si QD decoration onto a flexible polymeric electrospun nanofibrous mat for the colorimetric sensing of TNT. Journal of Materials Chemistry C, 2017, 5, 1816-1825.	2.7	13
743	Enhanced chromium adsorption capacity via plasma modification of natural zeolites. Japanese Journal of Applied Physics, 2017, 56, 01AF02.	0.8	26
744	Fabrication of Nanostructured Mesoporous Germanium for Application in Laser Desorption Ionization Mass Spectrometry. ACS Applied Materials & Spect	4.0	21
745	Evaluation of the role of substrate and albumin on Pseudomonas aeruginosa biofilm morphology through FESEM and FTIR studies on polymeric biomaterials. Progress in Biomaterials, 2017, 6, 27-38.	1.8	15
746	Mineralization of a superficially porous microsphere scaffold via plasma modification. RSC Advances, 2017, 7, 3521-3527.	1.7	3
747	Biofunctional polyethylene glycol coatings on titanium: An in vitro-based comparison of functionalization methods. Colloids and Surfaces B: Biointerfaces, 2017, 152, 367-375.	2.5	50
748	Crucial roles of reactive chemical species in modification of respiratory syncytial virus by nitrogen gas plasma. Materials Science and Engineering C, 2017, 74, 131-136.	3.8	25
749	Surface Treatment of Human Hard Dental Tissues with Atmospheric Pressure Plasma Jet. Plasma Chemistry and Plasma Processing, 2017, 37, 401-413.	1.1	13
750	Surface nanotopography guides kidney-derived stem cell differentiation into podocytes. Acta Biomaterialia, 2017, 56, 171-180.	4.1	27
751	Solvent―and catalystsâ€free immobilization of tannic acid and polyvinylpyrrolidone onto PMMA surface by DBD plasma. Plasma Processes and Polymers, 2017, 14, 1600202.	1.6	7
752	Increasing strength of a biomedical Ti-Nb-Ta-Zr alloy by alloying with Fe, Si and O. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71, 329-336.	1.5	7 5
753	Synthesis and biological properties of Zn-incorporated micro/nano-textured surface on Ti by high current anodization. Materials Science and Engineering C, 2017, 78, 175-184.	3.8	18
754	Affinity Binding of EMR2 Expressing Cells by Surface-Grafted Chondroitin Sulfate B. Biomacromolecules, 2017, 18, 1697-1704.	2.6	6
755	Experimental investigation on electrical characteristics and dose measurement of dielectric barrier discharge plasma device used for therapeutic application. Review of Scientific Instruments, 2017, 88, 043504.	0.6	7
756	Macroscopic control of DMAHEMA and HEMA plasma polymerization to tune the surface mechanical properties of hydrogelâ€ike coatings. Plasma Processes and Polymers, 2017, 14, 1600215.	1.6	28

#	ARTICLE	IF	CITATIONS
757	Surface analysis of nitrogen plasma-treated C60/PS nanocomposite films for antibacterial activity. Journal of Biological Physics, 2017, 43, 211-224.	0.7	10
758	Development of antimicrobial coating by later-by-layer dip coating of chlorhexidine-loaded micelles. Journal of Materials Science: Materials in Medicine, 2017, 28, 90.	1.7	22
759	Plasma immersion ion implantation of polyurethane shape memory polymer: Surface properties and protein immobilization. Applied Surface Science, 2017, 416, 686-695.	3.1	30
760	Copper–gold sandwich structures on PE and PET and their SERS enhancement effect. RSC Advances, 2017, 7, 23055-23064.	1.7	8
761	Corrosion and surface modification on biocompatible metals: A review. Materials Science and Engineering C, 2017, 77, 1261-1274.	3.8	482
762	Characterization of plasma polymerized HMDSN films deposited by atmospheric plasma jet. Surface and Coatings Technology, 2017, 312, 117-122.	2.2	5
763	A brief review of recent developments in the designs that prevent bio-fouling on silicon and silicon-based materials. Chemistry Central Journal, 2017, 11, 18.	2.6	34
764	Multifunctional electrospun polymeric nanofibrous mats for catalytic reduction, photocatalysis and sensing. Nanoscale, 2017, 9, 9606-9614.	2.8	9
765	Comparative Study of Surface Chemical Composition and Oxide Layer Modification upon Oxygen Plasma Cleaning and Piranha Etching on a Novel Low Elastic Modulus Ti25Nb21Hf Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 3770-3776.	1.1	10
766	A comprehensive review on the application of active packaging technologies to muscle foods. Food Control, 2017, 82, 163-178.	2.8	214
767	A versatile and rapid coating method via a combination of plasma polymerization and surfaceâ€initiated SETâ€LRP for the fabrication of lowâ€fouling surfaces. Journal of Polymer Science Part A, 2017, 55, 2527-2536.	2.5	12
768	Antimicrobial and anti-biofilm properties of polypropylene meshes coated with metal-containing DLC thin films. Journal of Materials Science: Materials in Medicine, 2017, 28, 97.	1.7	29
769	Advances in metals and alloys for joint replacement. Progress in Materials Science, 2017, 88, 232-280.	16.0	227
770	Lanthanide-integrated supramolecular polymeric nanoassembly with multiple regulation characteristics for multidrug-resistant cancer therapy. Biomaterials, 2017, 129, 83-97.	5.7	37
771	Orientation and characterization of immobilized antibodies for improved immunoassays (Review). Biointerphases, 2017, 12, 02D301.	0.6	271
772	Enhancing the cell proliferation performance of NiTi substrate by laser diffusion nitriding. Surface and Coatings Technology, 2017, 309, 59-66.	2.2	29
773	Chemical group-dependent plasma polymerisation preferentially directs adipose stem cell differentiation towards osteogenic or chondrogenic lineages. Acta Biomaterialia, 2017, 50, 450-461.	4.1	56
774	Optimization of Methyl Methacrylate Inductively Coupled Plasma Surface Modification of ZrO2Particles used in Acrylic Bone Cement Formulations. Polymer-Plastics Technology and Engineering, 2017, 56, 777-787.	1.9	1

#	Article	IF	CITATIONS
775	Plasma-Generated Poly(allyl alcohol) Antifouling Coatings for Cellular Attachment. ACS Biomaterials Science and Engineering, 2017, 3, 88-94.	2.6	6
776	Antibacterial performance on plasma polymerized heptylamine films loaded with silver nanoparticles. Japanese Journal of Applied Physics, 2017, 56, 01AC07.	0.8	1
777	A Facile and Versatile Method to Endow Biomaterial Devices with Zwitterionic Surface Coatings. Advanced Healthcare Materials, 2017, 6, 1601091.	3.9	51
778	Friction Stir Processing of Stainless Steel for Ascertaining Its Superlative Performance in Bioimplant Applications. ACS Applied Materials & Eamp; Interfaces, 2017, 9, 36615-36631.	4.0	16
779	Variable Lysozyme Transport Dynamics on Oxidatively Functionalized Polystyrene Films. Langmuir, 2017, 33, 10818-10828.	1.6	15
780	Surface Modifications of the PMMA Optic of a Keratoprosthesis to Improve Biointegration. Cornea, 2017, 36, S15-S25.	0.9	24
781	Ultrafast synthesis of 13X@NaA composites through plasma treatment for highly selective carbon capture. Journal of Materials Chemistry A, 2017, 5, 18801-18807.	5.2	12
782	Plasma treatment as an efficient tool for controlled drug release from polymeric materials: A review. Journal of Controlled Release, 2017, 266, 57-74.	4.8	70
783	Versatile Surface Modification Using Polydopamine and Related Polycatecholamines: Chemistry, Structure, and Applications. Advanced Materials Interfaces, 2017, 4, 1601192.	1.9	266
785	Development of a Multifunctional Nanobiointerface Based on Self-Assembled Fusion-Protein rSbpA/ZZ for Blood Cell Enrichment and Phenotyping. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34423-34434.	4.0	4
786	Influence of microstructure on fatigue of biocompatible \hat{l}^2 -phase Ti-45Nb. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 706, 83-94.	2.6	21
787	Endothelial Cell Culture Under Perfusion On A Polyester-Toner Microfluidic Device. Scientific Reports, 2017, 7, 10466.	1.6	20
788	Characterization and bioactivity of hydroxyapatite-based coatings formed on steel by electro-spark deposition and micro-arc oxidation. Surface and Coatings Technology, 2017, 326, 111-120.	2.2	27
789	Fluoropolymer-Based Flexible Neural Prosthetic Electrodes for Reliable Neural Interfacing. ACS Applied Materials & Description (2017), 9, 43420-43428.	4.0	8
790	Influence of the electrolyte's pH on the properties of electrochemically deposited hydroxyapatite coating on additively manufactured Ti64 alloy. Scientific Reports, 2017, 7, 16819.	1.6	49
791	Combination of laser patterning and nano PTFE sputtering for the creation a super-hydrophobic surface on 304 stainless steel in medical applications. Surfaces and Interfaces, 2017, 8, 219-224.	1.5	13
792	Plasma assisted surface treatments of biomaterials. Biophysical Chemistry, 2017, 229, 151-164.	1.5	37
793	Effective dose delivery in atmospheric pressure plasma jets for plasma medicine: a model predictive control approach. Plasma Sources Science and Technology, 2017, 26, 085005.	1.3	44

#	Article	IF	Citations
794	Tuning Surface Chemistry of Polyetheretherketone by Gold Coating and Plasma Treatment. Nanoscale Research Letters, 2017, 12, 424.	3.1	13
7 95	A chemical stability study of trimethylsilane plasma nanocoatings for coronary stents. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 15-32.	1.9	11
796	Plasma-Based Deposition and Processing Techniques for Optical Fiber Sensing. Smart Sensors, Measurement and Instrumentation, 2017, , 95-114.	0.4	3
797	Enhancement of cell growth on honeycomb-structured polylactide surface using atmospheric-pressure plasma jet modification. Applied Surface Science, 2017, 394, 534-542.	3.1	27
798	Sol-gel synthesis and antibacterial study on BC/ZnO/TiO ₂ nanocomposite treated by DC glow discharge plasma. Journal of Adhesion Science and Technology, 2017, 31, 1075-1086.	1.4	2
799	RF plasma based selective modification of hydrophilic regions on super hydrophobic surface. Applied Surface Science, 2017, 394, 543-553.	3.1	18
800	NiTi shape memory alloy with enhanced wear performance by laser selective area nitriding for orthopaedic applications. Surface and Coatings Technology, 2017, 309, 1015-1022.	2.2	22
801	The effect of plasma treatment and bioglass paste on enamel white spot lesions. Saudi Journal for Dental Research, 2017, 8, 58-66.	1.2	8
802	Microbial bioelectrosynthesis of hydrogen: Current challenges and scale-up. Enzyme and Microbial Technology, 2017, 96, 1-13.	1.6	49
803	Fabrication and Applications of Micro/Nanostructured Devices for Tissue Engineering. Nano-Micro Letters, 2017, 9, 1 .	14.4	171
804	Investigation of nano-structured Zirconium oxide film on Ti6Al4V substrate to improve tribological properties prepared by PIII&D. Applied Surface Science, 2017, 394, 586-597.	3.1	24
805	Extreme Ultraviolet Light Lithography for Producing Nanofeatures in Next-Generation Semiconductor Processing., 2017,, 35-54.		0
806	Translational plasma stomatology: applications of cold atmospheric plasmas in dentistry and their extension. High Voltage, 2017, 2, 188-199.	2.7	35
807	Biosensor for the detection of bacteriophages based on a super-high-frequency resonator. Applied Biochemistry and Microbiology, 2017, 53, 725-732.	0.3	4
808	Study of diglyme plasmas by mass spectrometry. , 2017, , .		0
809	The Role of Controlled Surface Topography and Chemistry on Mouse Embryonic Stem Cell Attachment, Growth and Self-Renewal. Materials, 2017, 10, 1081.	1.3	21
810	Preparation and Characterization of Resorbable Bacterial Cellulose Membranes Treated by Electron Beam Irradiation for Guided Bone Regeneration. International Journal of Molecular Sciences, 2017, 18, 2236.	1.8	43
811	The Efficacy of Electron Beam Irradiated Bacterial Cellulose Membranes as Compared with Collagen Membranes on Guided Bone Regeneration in Peri-Implant Bone Defects. Materials, 2017, 10, 1018.	1.3	23

#	Article	IF	Citations
812	Deposition Methods for Microstructured and Nanostructured Coatings on Metallic Bone Implants: A Review. Advances in Materials Science and Engineering, 2017, 2017, 1-9.	1.0	32
813	4.13 Peptide- and Protein-Modified Surfaces \hat{a} [*] †., 2017, , 200-220.		1
814	Cold Plasma Applications in Food Packaging. , 2017, , .		6
815	Remineralizing effect of cold plasma and/or bioglass on demineralized enamel. Dental Materials Journal, 2017, 36, 157-167.	0.8	16
816	The Impact of Plasma Treatment of Cercon \hat{A}^{\otimes} Zirconia Ceramics on Adhesion to Resin Composite Cements and Surface Properties. Journal of Lasers in Medical Sciences, 2017, 8, S56-S61.	0.4	31
817	Fouling-resistant membranes for water reuse. Environmental Chemistry Letters, 2018, 16, 715-763.	8.3	80
818	Polydopamine Surface Chemistry: A Decade of Discovery. ACS Applied Materials & Decades, 2018, 10, 7523-7540.	4.0	1,232
819	Reviewâ€"Covalent Functionalization of Carbon Nanomaterials for Biosensor Applications: An Update. Journal of the Electrochemical Society, 2018, 165, B103-B117.	1.3	40
820	The effect of sterilization procedures on the physiochemical properties and performance of plasma polymer films. Plasma Processes and Polymers, 2018, 15, 1800002.	1.6	1
821	Preparation of polymeric coatings by ionized jet deposition method. Chemical Papers, 2018, 72, 1735-1739.	1.0	14
822	Cytocompatible tantalum films on Ti6Al4V substrate by filtered cathodic vacuum arc deposition. Bioelectrochemistry, 2018, 122, 32-39.	2.4	16
823	Oxygen-plasma treatment-induced surface engineering of biomimetic polyurethane nanofibrous scaffolds for gelatin-heparin immobilization. E-Polymers, 2018, 18, 275-285.	1.3	24
824	Nanocellulose as a natural source for groundbreaking applications in materials science: Today's state. Materials Today, 2018, 21, 720-748.	8.3	625
825	Phosphine plasma activation of α-Fe2O3 for high energy asymmetric supercapacitors. Nano Energy, 2018, 49, 155-162.	8.2	173
826	3D Plasma Nanotextured® Polymeric Surfaces for Protein or Antibody Arrays, and Biomolecule and Cell Patterning. Methods in Molecular Biology, 2018, 1771, 27-40.	0.4	2
827	Antiadhesion Function between a Biological Surface and a Metallic Device Interface at High Temperature by Wettability Control. ACS Biomaterials Science and Engineering, 2018, 4, 1891-1899.	2.6	4
828	Acrylic acid plasma polymerization for biomedical use. Applied Surface Science, 2018, 448, 168-185.	3.1	67
829	Performance enhancement of ultrafiltration in apple juice clarification via low-pressure oxygen plasma: A comparative evaluation versus pre-flocculation treatment. LWT - Food Science and Technology, 2018, 91, 511-517.	2.5	14

#	Article	IF	CITATIONS
830	Diagnostics of microwave assisted electron cyclotron resonance plasma source for surface modification of nylon 6. Review of Scientific Instruments, 2018, 89, 013509.	0.6	5
831	Plasmaâ€Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy. Advanced Materials, 2018, 30, e1705850.	11.1	476
832	Model-Based Feedback Control of a kHz-Excited Atmospheric Pressure Plasma Jet. IEEE Transactions on Radiation and Plasma Medical Sciences, 2018, 2, 129-137.	2.7	28
833	Innovative surface treatments for improved ceramic bonding: Lithium disilicate glass ceramic. International Journal of Adhesion and Adhesives, 2018, 82, 60-66.	1.4	15
834	Effect of DC-pulsed magnetron sputtering power on structural, tribological and biocompatibility of Ti–Zr–N thin film. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	14
835	Recent progress on non-thermal plasma technology for high barrier layer fabrication. Plasma Science and Technology, 2018, 20, 063001.	0.7	17
836	An in situ silicone–silicone interpenetrating polymer network (IPN) with higher mechanical property, higher hydrophilicity, and lower protein adsorption. Journal of Materials Science, 2018, 53, 9325-9339.	1.7	14
837	Plasma dye coating as straightforward and widely applicable procedure for dye immobilization on polymeric materials. Nature Communications, 2018, 9, 1123.	5.8	25
838	A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials. Ceramics International, 2018, 44, 1250-1268.	2.3	259
839	Low-temperature, chemical vapor deposition of thin-layer pyrolytic carbon coatings derived from camphor as a green precursor. Journal of Materials Science, 2018, 53, 959-976.	1.7	8
840	Scaffolds of polylactic acid/hydroxyapatite coated by plasma with polypyrrole-iodine for the generation of neo-tissue–bone ⟨i⟩in vivo⟨/i⟩: Study in rabbit. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 427-437.	1.8	12
841	Development of arginine-glycine-aspartate-immobilized 3D printed poly(propylene fumarate) scaffolds for cartilage tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 917-931.	1.9	24
842	Progress and perspectives in PTFE membrane: Preparation, modification, and applications. Journal of Membrane Science, 2018, 549, 332-349.	4.1	249
843	Surface modification: activation and deactivation of osteogenic differentiation based on detachable growth factor protein. Journal of Materials Chemistry B, 2018, 6, 236-240.	2.9	3
844	Novel method for NH-rich coatings engineering by means of aerosol assisted atmospheric pressure plasma deposition. Materials Letters, 2018, 214, 76-79.	1.3	15
845	Surface functionalization of biomaterials by plasma and ion beam. Surface and Coatings Technology, 2018, 336, 2-8.	2.2	22
846	Efficacy of Irradiated Bioactive Glass 45S5 on Attenuation of Microbial Growth and Eradication of Biofilm from AISI 316 L Discs: In-vitro Study. Silicon, 2018, 10, 931-942.	1.8	6
847	Hydrophobicity Recovery of Polydimethylsiloxane Treated with Oxygen Plasma and Ion Implantation. Journal of Physics: Conference Series, 2018, 1144, 012110.	0.3	1

#	Article	IF	CITATIONS
848	Processing of printed silver patterns on an ETFE substrate., 2018,,.		0
849	Plasma modification of textiles: understanding the mechanisms involved. Textile Progress, 2018, 50, 185-229.	1.3	11
850	A brief review on plasma for synthesis and processing of electrode materials. Materials Today Nano, 2018, 3, 28-47.	2.3	59
851	Enhanced bonding strength of heat-treated wood using a cold atmospheric-pressure nitrogen plasma jet. European Journal of Wood and Wood Products, 2018, 76, 1697-1705.	1.3	8
852	Deposition of thin metal layers on chitosan films. Materials Technology, 2018, 33, 845-853.	1.5	15
853	Plasma Processes for Life Sciences. , 2018, , .		3
854	Surface patterning of monocrystalline silicon induced by spot laser melting. Journal of Applied Physics, 2018, 124, 163104.	1.1	8
855	Minimal attachment of <i>Pseudomonas aeruginosa</i> to DNA modified surfaces. Biointerphases, 2018, 13, 06E405.	0.6	12
856	VUV Photodeposition of Thiol-Terminated Films: A Wavelength-Dependent Study. Langmuir, 2018, 34, 12234-12243.	1.6	6
857	Efficient scheme for calculating work of adhesion between a liquid and polymer-grafted substrate. Journal of Chemical Physics, 2018, 149, 064703.	1.2	6
858	Some Strategies for Utilization of Rice Bran Functional Lipids and Phytochemicals. Journal of Oleo Science, 2018, 67, 669-678.	0.6	9
859	The electrical asymmetry effect in a multi frequency geometrically asymmetric capacitively coupled plasma: A study by a nonlinear global model. Journal of Applied Physics, 2018, 123, .	1.1	9
860	Promoting porcelain–zirconia bonding using different atmospheric pressure gas plasmas. Dental Materials, 2018, 34, 1188-1198.	1.6	33
861	Various Techniques to Functionalize Nanofibers. , 2018, , 1-26.		0
862	The Intersection of Design, Manufacturing, and Surface Engineering., 2018,, 397-422.		3
863	Dust cloud evolution in sub-stellar atmospheres via plasma deposition and plasma sputtering. Astronomy and Astrophysics, 2018, 611, A91.	2.1	2
864	Atmospheric pressure plasma jet: A facile method to modify the intimal surface of polymeric tubular conduits. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	0.9	15
865	Metallic biomaterials. , 2018, , 1-33.		24

#	Article	IF	CITATIONS
866	Surface Nanostructuring of Parylene-C Coatings for Blood Contacting Implants. Materials, 2018, 11, 1109.	1.3	21
867	Frequency dependence of electron temperature in hollow cathode-type discharge as measured by several different floating probe methods. Plasma Science and Technology, 2018, 20, 085405.	0.7	2
868	Low pressure plasma modifications for the generation of hydrophobic coatings for biomaterials applications. Plasma Processes and Polymers, 2018, 15, 1800059.	1.6	21
869	CHAOS: An octree-based PIC-DSMC code for modeling of electron kinetic properties in a plasma plume using MPI-CUDA parallelization. Journal of Computational Physics, 2018, 373, 571-604.	1.9	49
870	Medical-grade ultra-high molecular weight polyethylene: Past, current and future. Materials Science and Technology, 2018, 34, 1940-1953.	0.8	25
871	System-level model and experiments for irrigation water alkalinity reduction and enrichment using an atmospheric pressure dielectric barrier discharge. Water Research, 2018, 144, 728-739.	5. 3	4
872	Applications of Plasma in Energy Conversion and Storage Materials. Advanced Energy Materials, 2018, 8, 1801804.	10.2	77
873	Immobilization of peptides on cardiovascular stent. , 2018, , 305-318.		9
874	Dielectric barrier discharge (DBD) plasma pretreatment of lignocellulosic materials in air at atmospheric pressure for their improved wettability: a literature review. Holzforschung, 2018, 72, 979-991.	0.9	41
875	Surface Functionalization With Biopolymers via Plasma-Assisted Surface Grafting and Plasma-Induced Graft Polymerization—Materials for Biomedical Applications. , 2018, , 115-151.		16
876	Surface modification of the laser sintering standard powder polyamide 12 by plasma treatments. Plasma Processes and Polymers, 2018, 15, 1800032.	1.6	9
877	Binding of Nanoparticles to Aminated Plasma Polymer Surfaces is Controlled by Primary Amine Density and Solution pH. Journal of Physical Chemistry C, 2018, 122, 14986-14995.	1.5	9
878	Dynamic measurements of optical emission during plasma immersion ion implantation. Surface and Coatings Technology, 2019, 365, 94-101.	2.2	2
879	Improvement in antibacterial properties and cytocompatibility of titanium by fluorine and oxygen dual plasma-based surface modification. Applied Surface Science, 2019, 463, 261-274.	3.1	35
880	Effectiveness of Surface Treatment with Amine Plasma for Improving the Biocompatibility of Maxillofacial Plates. Materials, 2019, 12, 2581.	1.3	12
881	Immobilization of quaternary ammonium based antibacterial monomer onto dentin substrate by non-thermal atmospheric plasma. Dental Materials Journal, 2019, 38, 821-829.	0.8	3
882	Durability of resin bonding to zirconia ceramic after contamination and the use of various cleaning methods. Dental Materials, 2019, 35, 1388-1396.	1.6	22
883	A review of biomimetic surface functionalization for bone-integrating orthopedic implants: Mechanisms, current approaches, and future directions. Progress in Materials Science, 2019, 106, 100588.	16.0	147

#	Article	IF	CITATIONS
884	Performance of Hybrid Powder-Suspension Axial Plasma Sprayed Al2O3â€"YSZ Coatings in Bovine Serum Solution. Materials, 2019, 12, 1922.	1.3	14
885	Nanostructured Green Biopolymer Composites for Orthopedic Application. Materials Horizons, 2019, , 159-190.	0.3	4
886	Multilayered polyelectrolyte structures with potential for intracavity drug delivery systems. Applied Surface Science, 2019, 493, 620-627.	3.1	2
887	Bacterial nanocellulose: Present status, biomedical applications and future perspectives. Materials Science and Engineering C, 2019, 104, 109963.	3.8	122
888	Effect of Plasma Treatment of Titanium Surface on Biocompatibility. Applied Sciences (Switzerland), 2019, 9, 2257.	1.3	26
889	Plasma-based organism evaluation equipment using atmospheric-pressure plasma jets: Efficacy for controlling insect pests. Journal of Asia-Pacific Entomology, 2019, 22, 868-873.	0.4	7
890	Nanocellulose Composite Biomaterials in Industry and Medicine. Biologically-inspired Systems, 2019, , 693-784.	0.4	5
891	Influence of Non-Thermal Atmospheric Pressure Plasma Treatment on Shear Bond Strength between Y-TZP and Self-Adhesive Resin Cement. Materials, 2019, 12, 3321.	1.3	22
892	Biological adhesion behavior of superhydrophobic polymer coating., 2019, , 161-177.		4
893	Structurally controlled cell growth on modified polymer surfaces. Vacuum, 2019, 169, 108956.	1.6	2
894	Control of charged particle dynamics in capacitively coupled plasmas driven by tailored voltage waveforms in mixtures of Ar and CF4. Plasma Sources Science and Technology, 2019, 28, 095021.	1.3	18
897	Decorating 3D Printed Scaffolds with Electrospun Nanofiber Segments for Tissue Engineering. Advanced Biology, 2019, 3, e1900137.	3.0	23
898	The Effect of the Ionizing Radiation on Hydroxyapatite–Polydimethylsiloxane Layers. Polymer Engineering and Science, 2019, 59, 2406-2412.	1.5	8
899	Functional protein to polymer surfaces: an attachment. , 2019, , 191-210.		1
900	Silk: A Promising Biomaterial Opening New Vistas Towards Affordable Healthcare Solutions. Journal of the Indian Institute of Science, 2019, 99, 445-487.	0.9	54
901	Chemical surface modification of polyethylene terephthalate (PET) films using extreme ultraviolet. AIP Conference Proceedings, 2019, , .	0.3	0
902	Improvement of PDMS surface biocompatibility is limited by the duration of oxygen plasma treatment. Journal of Biomedical Materials Research - Part A, 2019, 107, 2806-2813.	2.1	31
903	A surface-engineered multifunctional TiO2 based nano-layer simultaneously elevates the corrosion resistance, osteoconductivity and antimicrobial property of a magnesium alloy. Acta Biomaterialia, 2019, 99, 495-513.	4.1	38

#	Article	IF	CITATIONS
904	Charge Separating Microfiltration Membrane with pH-Dependent Selectivity. Polymers, 2019, 11, 3.	2.0	21
905	Bioapplication of TiN thin films deposited using high power impulse magnetron sputtering. Surface and Coatings Technology, 2019, 362, 167-175.	2.2	37
906	Surface and protein adsorption properties of 316L stainless steel modified by polyvinyl alcohol and plasma-treated polyvinyl alcohol films. Surface and Coatings Technology, 2019, 362, 208-212.	2.2	6
907	Sensor for ampicillin based on a microwave electrodynamic resonator. Biosensors and Bioelectronics, 2019, 130, 95-102.	5.3	16
908	Surface and rheological properties of egg white albumin/gelatin dispersions gelled on cold plasma-activated glass. Food Hydrocolloids, 2019, 96, 224-230.	5.6	13
909	Transcutaneous plasma stress: From soft-matter models to living tissues. Materials Science and Engineering Reports, 2019, 138, 36-59.	14.8	101
910	Plasma surface-modification of cellulose nanocrystals: a green alternative towards mechanical reinforcement of ABS. RSC Advances, 2019, 9, 17417-17424.	1.7	39
911	Microparticles for Suspension Culture of Mammalian Cells. ACS Applied Bio Materials, 2019, 2, 2791-2801.	2.3	16
912	Controlling Cell Behavior through the Design of Biomaterial Surfaces: A Focus on Surface Modification Techniques. Advanced Materials Interfaces, 2019, 6, 1900572.	1.9	276
913	Hemocompatibility of super-repellent surfaces: current and future. Materials Horizons, 2019, 6, 1596-1610.	6.4	30
914	Designing Nanostructured Ti ₆ Al ₄ V Bioactive Interfaces with Directed Irradiation Synthesis toward Cell Stimulation to Promote Host–Tissue-Implant Integration. ACS Biomaterials Science and Engineering, 2019, 5, 3325-3339.	2.6	13
915	Novel magneto-plasma processing for enhanced modification of electrospun biomaterials. Materials Letters, 2019, 250, 96-98.	1.3	5
916	Surface modification by deposition of IPA plasma and gellan gum/chitosan hybrid hydrogel onto thermoplastic polyurethane for controlled release of Nâ€acetylcysteine. Journal of the Chinese Chemical Society, 2019, 66, 691-697.	0.8	2
917	Functionalization of 3D Polylactic Acid Sponge Using Atmospheric Pressure Cold Plasma. International Journal of Polymer Science, 2019, 2019, 1-11.	1.2	1
918	"Green―polymeric electrospun fibers based on tree-gum hydrocolloids. , 2019, , 127-172.		6
919	Corrosion performance of cold deformed austenitic stainless steels for biomedical applications. Corrosion Reviews, 2019, 37, 283-306.	1.0	15
920	Analysis of <i>In Vitro</i> Osteoblast Culture on Scaffolds for Future Bone Regeneration Purposes in Dentistry. Advances in Pharmacological Sciences, 2019, 2019, 1-9.	3.7	6
921	Wear Behavior of Pure Titanium Coated With WC-Co by the Use of Electrospark Deposition Method. Journal of Tribology, 2019, 141, .	1.0	8

#	Article	IF	CITATIONS
922	Surface Modification Methods for Titanium and Its Alloys and Their Corrosion Behavior in Biological Environment: A Review. Journal of Bio- and Tribo-Corrosion, 2019, 5, 1.	1.2	74
924	Plasma technology as a tool to decrease the sensitivity to water of fish protein films for food packaging. Food Hydrocolloids, 2019, 94, 210-216.	5. 6	25
925	Surface Modification Techniques of PEEK, Including Plasma Surface Treatment., 2019, , 179-201.		8
926	Nitrogen plasma surface treatment for improving polar ink adhesion on micro/nanofibrillated cellulose films. Cellulose, 2019, 26, 3845-3857.	2.4	10
927	Effects of electron temperature on the ion extraction characteristics in a decaying plasma confined between two parallel plates. Plasma Science and Technology, 2019, 21, 045402.	0.7	7
928	Silver-Based Polymeric Nanocomposites as Antimicrobial Coatings for Biomedical Applications. , 2019, , 115-171.		4
929	Fundamentals and Applications of Plasma Cleaning. , 2019, , 289-353.		8
930	Plasma Irradiation of Polymers: Surface to Biological Mitigation. Springer Series on Polymer and Composite Materials, 2019, , 319-350.	0.5	0
931	Atomic force microscopy analysis of the effect of plasma treatment on gas permeable contact lens surface topography. Contact Lens and Anterior Eye, 2019, 42, 265-272.	0.8	4
932	Enhanced Osseointegration Ability of Poly(lactic acid) via Tantalum Sputtering-Based Plasma Immersion Ion Implantation. ACS Applied Materials & Emp; Interfaces, 2019, 11, 10492-10504.	4.0	43
933	Formation of plasma-polymerized superhydrophobic coating using an atmospheric-pressure plasma jet. Thin Solid Films, 2019, 675, 34-42.	0.8	19
934	The Effects of Atmospheric Pressure Argon Plasma Treated Bovine Bone Substitute on Bone Regeneration. Coatings, 2019, 9, 790.	1.2	1
935	Registration of an ICP Plasma CV Dependences under Various Pressures in the Plasma-Chemical Deep Etching System. Key Engineering Materials, 2019, 822, 587-593.	0.4	0
936	Lubricantâ€Infused PET Grafts with Builtâ€In Biofunctional Nanoprobes Attenuate Thrombin Generation and Promote Targeted Binding of Cells. Small, 2019, 15, e1905562.	5.2	31
937	Reactive ion etching for fabrication of biofunctional titanium nanostructures. Scientific Reports, 2019, 9, 18815.	1.6	34
938	The Influence of Microstructure on Nanomechanical and Diffusion Barrier Properties of Thin PECVD SiOx Films Deposited on Parylene C Substrates. Frontiers in Materials, 2019, 6, .	1.2	6
939	Improvement of fish protein films properties for food packaging through glow discharge plasma application. Food Hydrocolloids, 2019, 87, 970-976.	5.6	61
940	Effect of different times of nonthermal argon plasma treatment on the microtensile bond strength of self-adhesive resin cement to yttria-stabilized tetragonal zirconia polycrystal ceramic. Journal of Prosthetic Dentistry, 2019, 121, 485-491.	1.1	29

#	Article	IF	CITATIONS
941	Cereal straw and their physical modifications with hydrophilic and hydrophobic silica $\hat{a} \in \text{``Ihe}$ influence of functional hybrid material on natural rubber biocomposites. European Polymer Journal, 2019, 112, 176-185.	2.6	8
942	Surface modification of core-shell silk/PVA nanofibers by oxygen dielectric barrier discharge plasma: Studies of physico-chemical properties and drug release behavior. Applied Surface Science, 2019, 475, 219-229.	3.1	51
943	Functionalization of PLLA with Polymer Brushes to Trigger the Assembly of Fibronectin into Nanonetworks. Advanced Healthcare Materials, 2019, 8, e1801469.	3.9	15
944	Surface modification of cellulose/polyvinyl alcohol biocomposites by non-thermal argon plasma: applications towards biological relevance. Cellulose, 2019, 26, 2437-2451.	2.4	9
945	Hydroxyapatite Nanoparticle Coating on Polymer for Constructing Effective Biointeractive Interfaces. Journal of Nanomaterials, 2019, 2019, 1-23.	1.5	179
946	Perspective on Plasma Polymers for Applied Biomaterials Nanoengineering and the Recent Rise of Oxazolines. Materials, 2019, 12, 191.	1.3	52
947	Microscopic Analysis of Plasma-Activated Polymeric Materials. , 2019, , 287-317.		2
948	Plasma Modified Polymeric Materials for Implant Applications. , 2019, , 367-407.		10
949	Plasma Modified Polymeric Materials for Scaffolding of Bone Tissue Engineering., 2019,, 439-458.		12
950	The future for plasma science and technology. Plasma Processes and Polymers, 2019, 16, 1800118.	1.6	160
951	Grafting of acrylic acid onto microwave plasma-treated polytetrafluoroethylene (PTFE) substrates. Japanese Journal of Applied Physics, 2019, 58, SAACO2.	0.8	10
952	Surface properties of different natural precious decorative veneers by plasma modification. European Journal of Wood and Wood Products, 2019, 77, 125-137.	1.3	8
953	Prevention of Adhesion and Surface Growth of Orthopedic Implant Microbial Infection by Surface Modification Using Antibiotics and Irradiated Hydroxyapatite. Silicon, 2019, 11, 2333-2343.	1.8	3
954	Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects. Materials Science and Engineering C, 2020, 106, 110154.	3.8	147
955	Cu phthalocyanine, Cu and Fe@Au nanoparticles grafted polyethylene: From structural to magnetic properties. Materials Chemistry and Physics, 2020, 239, 122104.	2.0	1
956	Evaluation of the protective performance of hydrophobic coatings applied on carbon-fibre epoxy composites. Journal of Composite Materials, 2020, 54, 1327-1338.	1.2	6
957	Effect of fluorination/oxidation level of nano-structured titanium on the behaviors of bacteria and osteoblasts. Applied Surface Science, 2020, 502, 144077.	3.1	10
958	Lowâ€pressure plasma activation enables enhanced adiposeâ€derived stem cell adhesion. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1527-1535.	1.6	2

#	Article	IF	Citations
959	Surface modification of \hat{l}^2 -type titanium with multi-walled CNTs/ \hat{l}^1 /4-HAp powder mixed Electro Discharge Treatment process. Materials Chemistry and Physics, 2020, 239, 122005.	2.0	25
960	Polysiloxanes as polymer matrices in biomedical engineering: their interesting properties as the reason for the use in medical sciences. Polymer Bulletin, 2020, 77, 2749-2817.	1.7	27
961	Self-bonding of semi-crystalline PEEK by nano thin film polymer coatings facilitated by multiple plasma depositions. International Journal of Adhesion and Adhesives, 2020, 96, 102455.	1.4	1
962	Tissue engineering of small-diameter vascular grafts. , 2020, , 79-100.		5
963	Deicing and self-cleaning of plasma-treated superhydrophobic coatings on the surface of aluminum alloy sheets. Surfaces and Interfaces, 2020, 18, 100429.	1.5	23
964	Key advances in development of straw fibre bio-composite boards: An overview. Materials Research Express, 2020, 7, 012005.	0.8	18
965	Formation of an oxide layer on a biomaterial Co-Cr-Mo alloy by using a hollow-cathode glow discharge plasma with argon-oxygen and neon-oxygen mixed gases. Surfaces and Interfaces, 2020, 18, 100402.	1.5	2
966	Surface modification of UHMWPE using ECR plasma for osteoblast and osteoclast differentiation. Applied Surface Science, 2020, 506, 144665.	3.1	16
967	Tuning the surface immunomodulatory functions of polyetheretherketone for enhanced osseointegration. Biomaterials, 2020, 230, 119642.	5.7	100
968	Surface Modification of Titanium and Titanium Alloys: Technologies, Developments, and Future Interests. Advanced Engineering Materials, 2020, 22, 1901258.	1.6	243
969	Microplasma Cross-Linked Graphene Oxide-Gelatin Hydrogel for Cartilage Reconstructive Surgery. ACS Applied Materials & Diterfaces, 2020, 12, 86-95.	4.0	39
970	Ultrafast thermomechanical effects in aerosol deposition of hydroxyapatite nanoparticles on a titanium substrate. Surface and Coatings Technology, 2020, 382, 125173.	2.2	26
971	Surface modification of albumin/gelatin films gelled on lowâ€temperature plasmaâ€treated polyethylene terephthalate plates. Plasma Processes and Polymers, 2020, 17, 1900171.	1.6	6
972	Surface Modification Strategies to Improve the Osseointegration of Poly(etheretherketone) and Its Composites. Macromolecular Bioscience, 2020, 20, e1900271.	2.1	73
973	Effects of Plasma Treatment on the Bioactivity of Alkali-Treated Ceria-Stabilised Zirconia/Alumina Nanocomposite (NANOZR). International Journal of Molecular Sciences, 2020, 21, 7476.	1.8	6
974	Effect of argon plasma and Er:YAG laser on tensile bond strength between denture liner and acrylic resin. Journal of Prosthetic Dentistry, 2020, 124, 799.e1-799.e5.	1.1	3
975	Enhancing biocompatibility of PCL/PU nano-structures to control the water wettability by NaOH hydrolysis treatment for tissue engineering applications. Journal of Industrial Textiles, 2022, 51, 3278S-3296S.	1.1	9
976	Controlled drug release performance of plasma modified slab and mat matrices: A model study with "Ampicillin― International Journal of Pharmaceutics, 2020, 587, 119586.	2.6	3

#	Article	IF	CITATIONS
977	Hierarchical Structures, with Submillimeter Patterns, Micrometer Wrinkles, and Nanoscale Decorations, Suppress Biofouling and Enable Rapid Droplet Digitization. Small, 2020, 16, e2004886.	5.2	15
978	Single and multi-functional coating strategies for enhancing the biocompatibility and tissue integration of blood-contacting medical implants. Biomaterials, 2020, 258, 120291.	5.7	72
979	Formation of self-layered hydrothermal coating on magnesium aided by titanium ion implantation: Synergistic control of corrosion resistance and cytocompatibility. Surface and Coatings Technology, 2020, 401, 126251.	2.2	21
980	The effect of macrophages on an atmospheric pressure plasma-treated titanium membrane with bone marrow stem cells in a model of guided bone regeneration. Journal of Materials Science: Materials in Medicine, 2020, 31, 70.	1.7	3
981	Changes in enamel after bleaching pre-treatment with non-thermal atmospheric plasma. Clinical Plasma Medicine, 2020, 19-20, 100106.	3.2	0
982	In-situ thin coating of silica micro/nano-particles on polymeric films and their anti-fogging application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125444.	2.3	21
983	Biofouling Removal from Membranes Using Nonthermal Plasma. Energies, 2020, 13, 4318.	1.6	2
984	Effect of Non-Thermal Atmospheric Pressure Plasma (NTP) and Zirconia Primer Treatment on Shear Bond Strength between Y-TZP and Resin Cement. Materials, 2020, 13, 3934.	1.3	20
985	Influence of plasma treatment on the dissolution of cellulose in lithium chloride–dimethylacetamide. Cellulose, 2020, 27, 9801-9811.	2.4	16
986	Clinical Applications and Limitations of Vascular Grafts. , 2020, , 3-34.		2
987	Corrosion Behavior and Mechanism of Carbon Ion-Implanted Magnesium Alloy. Coatings, 2020, 10, 734.	1.2	7
988	Functional Polylactide Blend Films for Controlling Mesenchymal Stem Cell Behaviour. Polymers, 2020, 12, 1969.	2.0	6
989	Multifunctional layered black phosphorene-based nanoplatform for disease diagnosis and treatment: a review. Frontiers of Optoelectronics, 2020, 13, 327-351.	1.9	9
990	Effect of barium sulfate surface treatments on the mechanical properties of acrylic bone cements. Polymer Bulletin, 2021, 78, 5997-6010.	1.7	7
991	Enhancement of strength of adhesive bond between wood and metal using atmospheric plasma treatment. Cellulose, 2020, 27, 6411-6424.	2.4	22
992	Nanodecoration of electrospun polymeric fibers with nanostructured silver coatings by ionized jet deposition for antibacterial tissues. Materials Science and Engineering C, 2020, 113, 110998.	3.8	28
993	Fabrication of Structural-Coloured Carbon Fabrics by Thermal Assisted Gravity Sedimentation Method. Nanomaterials, 2020, 10, 1133.	1.9	18
994	Interfaces and surfaces., 2020,, 51-87.		11

#	Article	IF	CITATIONS
995	Physicochemical Surface Modification of Materials Used in Medicine., 2020, , 487-505.		4
996	Investigation on fiber laser irradiation of transparent polycarbonate. Journal of Laser Applications, 2020, 32, 032009.	0.8	1
997	Functionality and applications of non-thermal plasma activated textiles: A review. Materials Today: Proceedings, 2021, 47, S74-S82.	0.9	10
998	Non-thermal plasma: An advanced technology for food industry. Food Science and Technology International, 2020, 26, 727-740.	1.1	34
999	Electrochemical modification of the Ti-15Mo alloy surface in solutions containing ZnO and Zn3(PO4)2 particles. Materials Science and Engineering C, 2020, 115, 111098.	3.8	29
1000	Biofabrication of Diatom Surface by Tyrosineâ€Metal Complexes:Smart Microcontainers to Inhibit Bacterial Growth. ChemistrySelect, 2020, 5, 3091-3097.	0.7	9
1001	Antibacterial Property and Biocompatibility of Polypyrrole Films Treated by Oxygen Plasma Immersion Implantation. Advanced Materials Interfaces, 2020, 7, 2000057.	1.9	9
1002	Plasma treatment of zinc oxideâ€nanoparticles:polyaniline blend as an active layer for the hybrid bulk heterojunction solar cell applications. International Journal of Energy Research, 2020, 44, 5223-5230.	2.2	1
1003	Surface Engineering of Organic Polymers by Photoâ€induced Free Radical Coupling with <i>p</i> å€Dimethylaminophenyl Group as A Synthesis Block. ChemistrySelect, 2020, 5, 3365-3373.	0.7	2
1004	Polylactic is a Sustainable, Low Absorption, Low Autofluorescence Alternative to Other Plastics for Microfluidic and Organ-on-Chip Applications. Analytical Chemistry, 2020, 92, 6693-6701.	3.2	50
1005	Immobilization of Microbial Cells on Polymeric Matrices Modified by Plasma Treatment. Applied Biochemistry and Microbiology, 2020, 56, 237-243.	0.3	2
1006	FE-CLIP: A tool for the calculation of the solid–liquid interfacial free energy. Computer Physics Communications, 2020, 254, 107252.	3.0	1
1007	Preparation of graphene-based nanomaterials by pulsed RF discharges on liquid organic compounds. Journal Physics D: Applied Physics, 2020, 53, 435202.	1.3	3
1008	Reduction of Biofouling of a Microfiltration Membrane Using Amide Functionalities—Hydrophilization without Changes in Morphology. Polymers, 2020, 12, 1379.	2.0	5
1009	Plasma treatment as an effective tool for crosslinking of electrospun fibers. Journal of Molecular Liquids, 2020, 303, 112628.	2.3	14
1010	Enhancement of sensitivity of Pd-based hydrogen-gas sensor by plasma exposure studied by wireless quartz resonator. Japanese Journal of Applied Physics, 2020, 59, SKKB02.	0.8	9
1011	Non-equilibrium organosilane plasma polymerization for modulating the surface of PTFE towards potential blood contact applications. Journal of Materials Chemistry B, 2020, 8, 2814-2825.	2.9	16
1012	Controlled Release of 5â€Fluorouracil from Alginate Hydrogels by Cold HMDSOâ^'Plasma Surface Engineering. ChemistrySelect, 2020, 5, 2168-2178.	0.7	13

#	Article	IF	CITATIONS
1013	The role of self-assembled monolayers in electronic devices. Journal of Materials Chemistry C, 2020, 8, 3938-3955.	2.7	127
1014	Striation phenomena in a low temperature atmospheric pressure neon plasma jet by optical emission spectroscopy. Physics of Plasmas, 2020, 27, .	0.7	9
1015	Atmospheric pressure cold plasma versus wet-chemical surface treatments for carboxyl functionalization of polylactic acid: A first step toward covalent immobilization of bioactive molecules. Colloids and Surfaces B: Biointerfaces, 2020, 189, 110847.	2.5	24
1016	Application of dielectric barrier discharge plasma to hydrophobically modification of gum arabic with enhanced surface properties. Food Hydrocolloids, 2020, 104, 105724.	5.6	39
1017	Effect of Low-Temperature Plasma Treatment on Surface Modification of Polycaprolactone Pellets and Thermal Properties of Extruded Filaments. Jom, 2020, 72, 1523-1532.	0.9	12
1018	Fabrication and Plasma Modification of Nanofibrous Tissue Engineering Scaffolds. Nanomaterials, 2020, 10, 119.	1.9	77
1019	2D Layered Double Hydroxide Nanosheets and Their Derivatives Toward Efficient Oxygen Evolution Reaction. Nano-Micro Letters, 2020, 12, 86.	14.4	124
1020	Materials testing. , 2020, , 77-96.		1
1021	How the dynamics of subsurface hydration regulates protein-surface interactions. Colloids and Surfaces B: Biointerfaces, 2020, 190, 110908.	2.5	9
1022	Spatiotemporal Control over Cell Proliferation and Differentiation for Tissue Engineering and Regenerative Medicine Applications Using Silk Fibroin Scaffolds. ACS Applied Bio Materials, 2020, 3, 3476-3493.	2.3	13
1023	Plasma modification of heparinised CNT/PU nanocomposite and measuring of mechanical, calcification and platelet adhesion properties for application in heart valve. Plastics, Rubber and Composites, 2020, 49, 289-299.	0.9	14
1024	Plasma-assisted surface alteration of industrial polymers for improved adhesive bonding. International Journal of Adhesion and Adhesives, 2020, 101, 102626.	1.4	66
1025	Plasma polymerised nanoscale coatings of controlled thickness for efficient solid-phase presentation of growth factors. Materials Science and Engineering C, 2020, 113, 110966.	3.8	17
1026	Development of laminated bamboo lumber with high bond strength for structural uses by O2 plasma. Construction and Building Materials, 2021, 269, 121269.	3.2	6
1027	Defective Structures in Metal Compounds for Energyâ€Related Electrocatalysis. Small Structures, 2021, 2, 2000067.	6.9	97
1028	Various Properties of Silicone Breast Implant Surfaces and Multimodal Techniques for the Functional Surface Modification. Clinics in Plastic Surgery, 2021, 48, 87-99.	0.7	4
1029	Nonthermal plasma treatment of polymers modulates biological fouling but can cause material embrittlement. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 113, 104126.	1.5	5
1030	Polyether ether ketone surface modification with plasma and gelatin for enhancing cell attachment. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 622-629.	1.6	19

#	ARTICLE	IF	CITATIONS
1031	Low-pressure nitrogen and ammonia plasma treatment on carboxymethyl guar gum/PVA hydrogels: impact on drug delivery, biocompatibility and biodegradability. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 75-89.	1.8	13
1032	Influence of different cleaning procedures on the shear bond strength of 10-methacryloyloxydecyl dihydrogen phosphate-containing self-adhesive resin cement to saliva contaminated zirconia. Journal of Prosthodontic Research, 2021, 65, 443-448.	1.1	10
1033	Drug release studies of titanium-based polyethylene glycol coating as a multifunctional substrate. Materials Today: Proceedings, 2021, 47, 257-260.	0.9	7
1034	Trends in Functional Biomaterials in Tissue Engineering and Regenerative Medicine., 2021,, 215-269.		0
1035	Argon and Argon–Oxygen Plasma Surface Modification of Gelatin Nanofibers for Tissue Engineering Applications. Membranes, 2021, 11, 31.	1.4	34
1036	Improved Chemosensitization Activity of Carboxymethyl Chitosan/PVA Hydrogels by Plasma Surface Modification. Journal of Polymers and the Environment, 2021, 29, 1663-1679.	2.4	6
1037	The sources of heavy metals, its impact on human life and the progress in electrochemical sensor. , 2021, , 349-378.		1
1038	Strategies for Enhancing Polyester-Based Materials for Bone Fixation Applications. Molecules, 2021, 26, 992.	1.7	19
1039	Functionalization Strategies and Fabrication of Solvent-Cast PLLA for Bioresorbable Stents. Applied Sciences (Switzerland), 2021, 11, 1478.	1.3	13
1040	A pH-responsive polyelectrolyte multilayer film with tunable interfacial properties. Polymer, 2021, 214, 123367.	1.8	8
1041	Effect of different surface treatments on the shear bond strength of PAEKs to composite resin. Journal of Adhesion Science and Technology, 2021, 35, 2438-2451.	1.4	3
1042	Shelf-Life Optimisation of Plasma Polymerised (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPOpp) Coatings; A New Possible Approach to Tackle Infections in Chronic Wounds. Antibiotics, 2021, 10, 362.	1.5	0
1043	Effect of different cleaning methods on resin bond strength of contaminated monolithic zirconia. Journal of Adhesion Science and Technology, 0, , 1-11.	1.4	1
1044	Cost effective optimised synthetic surface modification strategies for enhanced control of neuronal cell differentiation and supporting neuronal and Schwann cell viability. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 1713-1723.	1.6	4
1045	Evaluation of Porosity and Water Sorption in Conventionally Cured Modified Polymethyl Methacrylate Resin - An In Vitro Study. Journal of Evolution of Medical and Dental Sciences, 2021, 10, 930-934.	0.1	1
1046	Utilizing Radio Frequency Plasma Treatment to Modify Polymeric Materials for Biomedical Applications. ACS Biomaterials Science and Engineering, 2023, 9, 3760-3777.	2.6	11
1047	Benchtop plasma treatment of titanium surfaces enhances cell response. Dental Materials, 2021, 37, 690-700.	1.6	12
1048	Effect of cementation delay on bonding of self-adhesive resin cement to yttria-stabilized tetragonal zirconia polycrystal ceramic treated with nonthermal argon plasma. Journal of Prosthetic Dentistry, 2021, 125, 693.e1-693.e7.	1.1	8

#	ARTICLE	IF	CITATIONS
1049	Effect of radio frequency glowâ€discharge treatment of titanium on human gingival fibroblasts as a function of distance. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 1866-1875.	1.6	0
1050	A Versatile Surface Modification Method via Vapor-phase Deposited Functional Polymer Films for Biomedical Device Applications. Biotechnology and Bioprocess Engineering, 2021, 26, 165-178.	1.4	16
1051	Innovative Coatings of Metallic Alloys Used as Bioactive Surfaces in Implantology: A Review. Coatings, 2021, 11, 649.	1.2	16
1052	Influence of Non-Thermal Atmospheric Pressure Plasma Treatment on Retentive Strength between Zirconia Crown and Titanium Implant Abutment. Materials, 2021, 14, 2352.	1.3	4
1053	Development of plasma functionalized polypropylene wound dressing for betaine hydrochloride controlled drug delivery on diabetic wounds. Scientific Reports, 2021, 11, 9641.	1.6	13
1054	Effect of Argon Plasma on the Shear Bond Strength of Y-TZP Zirconia Ceramic Resin Interface. ECS Journal of Solid State Science and Technology, 2021, 10, 051005.	0.9	2
1055	On the Effectiveness of Oxygen Plasma and Alkali Surface Treatments to Modify the Properties of Polylactic Acid Scaffolds. Polymers, 2021, 13, 1643.	2.0	9
1056	Recent Advances in Lipid Derived Bioâ€Based Materials for Food Packaging Applications. Macromolecular Materials and Engineering, 2021, 306, 2000799.	1.7	29
1057	Fabrication of Photoactive Electrospun Cellulose Acetate Nanofibers for Antibacterial Applications. Energies, 2021, 14, 2598.	1.6	14
1058	Influence of Small Doses of Electron Beam Radiation on Relaxation Microheterogeneity of Segmental Mobility in Polyvinyl Alcohol. High Energy Chemistry, 2021, 55, 216-221.	0.2	1
1059	Spectroscopic evaluation of vibrational temperature and electron density in reduced pressure radio frequency nitrogen plasma. SN Applied Sciences, 2021, 3, 1.	1.5	12
1060	Synergistic Effect of Surface Chemistry and Surface Topography Gradient on Osteogenic/Adipogenic Differentiation of hMSCs. ACS Applied Materials & Differentiation of hMSCs. ACS Applied Materials & Differentiation of hMSCs.	4.0	14
1061	Iso- and Anisotropic Etching of Micro Nanofibrillated Cellulose Films by Sequential Oxygen and Nitrogen Gas Plasma Exposure for Tunable Wettability on Crystalline and Amorphous Regions. Materials, 2021, 14, 3571.	1.3	6
1062	A Nanoporous Mixed Oxide Coatings Over 316L SS for Orthopaedic Implant Applications. Journal of Bio- and Tribo-Corrosion, 2021, 7, 1.	1.2	0
1063	Direct surface modification of mesoporous silica nanoparticles by DBD plasma as a green approach to prepare dual-responsive drug delivery system. Journal of the Taiwan Institute of Chemical Engineers, 2021, 123, 47-58.	2.7	18
1064	Effect of Atmospheric-Pressure Plasma Treatments on Fracture Toughness of Carbon Fibers-Reinforced Composites. Molecules, 2021, 26, 3698.	1.7	6
1065	Sprayâ€Pyrolyzed Highâ€k Zirconiumâ€Aluminumâ€Oxide Dielectric for High Performance Metalâ€Oxide Thinâ€F Transistors for Low Power Displays. Advanced Materials Interfaces, 2021, 8, 2100600.	ilm 1.9	29
1066	Plasma-activated interfaces for biomedical engineering. Bioactive Materials, 2021, 6, 2134-2143.	8.6	17

#	Article	IF	CITATIONS
1067	Influence of Drying Method and Argon Plasma Modification of Bacterial Nanocellulose on Keratinocyte Adhesion and Growth. Nanomaterials, 2021, 11, 1916.	1.9	13
1068	Novel Plasma Diagnostic Measurement of Electron Temperature and Electron Density Using Tone Burst Wave. IEEE Transactions on Plasma Science, 2021, 49, 2133-2140.	0.6	1
1069	Enhanced culturing of adipose derived mesenchymal stem cells on surface modified polystyrene Petri dishes fabricated by plasma enhanced chemical vapor deposition system. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 358-366.	1.6	2
1070	Al ₂ O ₃ and HfO ₂ Atomic Layers Deposited in Single and Multilayer Configurations on Titanium and on Stainless Steel for Biomedical Applications. Journal of the Electrochemical Society, 2021, 168, 071510.	1.3	3
1071	Slippery-Liquid-Infused Electrostatic Flocking Surfaces for Marine Antifouling Application. Langmuir, 2021, 37, 10020-10028.	1.6	9
1072	Efficacy of Bacterial Nanocellulose in Hard Tissue Regeneration: A Review. Materials, 2021, 14, 4777.	1.3	23
1073	Surface engineering and the application of laser-based processes to stents - A review of the latest development. Bioactive Materials, 2022, 10, 159-184.	8.6	23
1074	Antibacterial ability and biocompatibility of fluorinated titanium by plasma-based surface modification. Rare Metals, 2022, 41, 689-699.	3.6	11
1075	Electrophoresis on a polyester thread coupled with an endâ€channel pencil electrode detector. Electrophoresis, 2021, 42, 1974-1982.	1.3	1
1076	Radio frequency plasma assisted surface modification of Fe3O4 nanoparticles using polyaniline/polypyrrole for bioimaging and magnetic hyperthermia applications. Journal of Materials Science: Materials in Medicine, 2021, 32, 108.	1.7	6
1077	Amine-Rich Coatings to Potentially Promote Cell Adhesion, Proliferation and Differentiation, and Reduce Microbial Colonization: Strategies for Generation and Characterization. Coatings, 2021 , 11 , 983 .	1,2	9
1078	Classification and Properties of Dental Zirconia as Implant Fixtures and Superstructures. Materials, 2021, 14, 4879.	1.3	32
1079	Direct-Deposited Graphene Oxide on Dental Implants for Antimicrobial Activities and Osteogenesis. International Journal of Nanomedicine, 2021, Volume 16, 5745-5754.	3.3	22
1080	The Development of Design and Manufacture Techniques for Bioresorbable Coronary Artery Stents. Micromachines, 2021, 12, 990.	1.4	12
1081	Plasma-assisted multiscale topographic scaffolds for soft and hard tissue regeneration. Npj Regenerative Medicine, 2021, 6, 52.	2.5	12
1082	Enhanced antioxidant capability and osteogenic property of medical titanium by cerium plasma immersion ion implantation. Surfaces and Interfaces, 2021, 26, 101402.	1.5	5
1083	N2 plasma treatment TiO2 nanosheets for enhanced visible light-driven photocatalysis. Journal of Alloys and Compounds, 2021, 881, 160509.	2.8	13
1084	Electrophoretic deposition of collagen/chitosan films with copper-doped phosphate glasses for orthopaedic implants. Journal of Colloid and Interface Science, 2022, 607, 869-880.	5.0	17

#	Article	IF	CITATIONS
1085	Plasma-Assisted Combination Processes. , 2021, , 667-681.		1
1086	Impact of Short Time Atmospheric Plasma Treatment on Onion Seeds. Plasma Chemistry and Plasma Processing, 2021, 41, 559-571.	1.1	9
1087	Bioinspired dopamine and zwitterionic polymers for non-fouling surface engineering. Chemical Society Reviews, 2021, 50, 11668-11683.	18.7	120
1090	Surface Modification and Application of Functionalized Polymer Nanofibers., 2007,, 72-91.		16
1091	Spectroscopic Characterization of Plasma $\hat{a}\in$ Chemically Functionalized and Fluorophore-Labeled Polymer Surfaces. Reviews in Fluorescence, 2010, , 139-160.	0.5	4
1092	Emerging Trends in Polymers, Composites, and Nano Biomaterial Applications. , 2021, , 19-34.		7
1093	Various Techniques to Functionalize Nanofibers. , 2019, , 347-372.		5
1094	Functionalization Methods for Membrane Surfaces. Advanced Topics in Science and Technology in China, 2009, , 64-79.	0.0	7
1095	Enhanced Keratinocyte Cell Attachment to Atelocollagen Thin Films Through Air and Nitrogen Plasma Treatment., 2011,, 89-94.		4
1096	Biofabrication Strategies for Tissue Engineering. Computational Methods in Applied Sciences (Springer), 2011, , 137-176.	0.1	24
1097	Engineering of new durable cross-linked poly(styryl bisphosphonate) thin coatings onto polypropylene films for biomedical applications. Applied Surface Science, 2020, 508, 145171.	3.1	6
1098	In vitro and in vivo biocompatibility study of surface modified TiN deposited on Ti6Al4V using high-power impulse magnetron sputtering technique. Surface and Coatings Technology, 2020, 394, 125814.	2.2	11
1100	Essential materials science. , 0, , 29-128.		1
1101	Resonant magnetoelastic microstructures for wireless actuation of liquid flow on 3D surfaces and use in glaucoma drainage implants. Microsystems and Nanoengineering, 2015, 1 , .	3.4	13
1102	Alternative Energy Forms in Manufacturing, Processing and Applications of Biopolymers and Biomaterials. RSC Green Chemistry, 2018, , 488-506.	0.0	1
1103	Modeling characterisation of a bipolar pulsed discharge. Plasma Sources Science and Technology, 2020, 29, 104001.	1.3	6
1105	Application of Oxygen-argon Plasma as a Potential Approach of Improving the Nutrition Value of Pre-germinated Brown Rice. Journal of Food and Nutrition Research (Newark, Del), 2014, 2, 946-951.	0.1	18
1106	Bacterial nanocellulose as a plastic material for closure of defects of the dura mater: literature review. Hirurgia Pozvonochnika, 2019, 16, 62-73.	0.1	3

#	Article	IF	CITATIONS
1108	Effect of Atmospheric Plasma on the Surface Area of Powdered Whey Protein Isolate. Matters, 0, , .	1.0	3
1109	Behavior of osteoblast-like cells on fibronectin or BMP-2 immobilized surface. Biomedical Research, 2004, 25, 263-268.	0.3	8
1110	Controlling cell morphology on ion beam textured polymeric surfaces. Anatomy, 2015, 9, 135-141.	0.2	3
1112	Articulating Biomaterials. Advances in Chemical and Materials Engineering Book Series, 2015, , 218-267.	0.2	2
1113	Preparation and Characteristic of Antibacterial Facemasks with Chinese Herbal Microcapsules. Aerosol and Air Quality Research, 2017, 17, 2119-2128.	0.9	5
1114	Tribo-Mechanical and Electrochemical Properties of Carbonitrided 316 Austenitic Stainless Steel by rf Plasma for Biomedical Applications. Advances in Materials Physics and Chemistry, 2018, 08, 358-377.	0.3	2
1115	Surface Perfluoroalkyl Chains Segregation: A Tool for Reducing Calcium Deposits in Medical Grade Poly(Methyl Methacrylate). Journal of Biomaterials and Nanobiotechnology, 2017, 08, 176-187.	1.0	1
1116	Plasma Surface Treatment of BOPP Film by Dielectric Barrier Glow Discharge in Argon/Air. Journal of Modern Physics, 2015, 06, 1991-1999.	0.3	1
1117	Plasma-Etching of the Organic Layer in Nacre. Soft Nanoscience Letters, 2014, 04, 63-68.	0.8	2
1118	Atmospheric Plasma Treatment on Copper for Organic Cleaning in Copper Electroplating Process: Towards Microelectronic Packaging Industry. Transactions on Electrical and Electronic Materials, 2009, 10, 71-74.	1.0	4
1119	Surface Modification Of Nanocomposite Polymer Membranes By Ion Plasma Irradiation For Improving Biocompatibility Of Polymer. Advanced Materials Letters, 2014, 5, 645-651.	0.3	8
1120	Direct Condensation Reaction for Grafting of Polyethylene Glycol Monomethyl Ether on Poly(Methacrylic Acid-co-Methyl Methacrylate) for Application in Biomedical Engineering. American Journal of Biomedical Engineering, 2012, 1, 13-19.	0.9	3
1121	Improvement of Wettability and Removal of Skin Layer on Ar-Plasma-Treated Polypropylene Blend Surface. Porrime, 2012, 36, 461-469.	0.0	2
1122	Effect of Plasma on Adhesion Characteristics of High Performance Polymers. Reviews of Adhesion and Adhesives, 2013, 1, 397-412.	3.3	9
1123	Cytocompatibility of Polymethyl Methacrylate Honeycomb-like Pattern on Perfluorinated Polymer. Polymers, 2021, 13, 3663.	2.0	4
1124	Fibroblast cell adhesion on a magnesia partially stabilised zirconia following CO2 laser radiation. , 2004, , .		0
1125	Surface Activation and Modification â€" A Way for Improving the Biocompatibility of Degradable Biomaterials. , 2004, , 449-474.		0
1126	Surface Activation and Modification â€" A Way for Improving the Biocompatibility of Degradable Biomaterials. , 2004, , .		1

#	Article	IF	CITATIONS
1127	Evaluaci \tilde{A}^3 n electrofisiol \tilde{A}^3 gica del efecto de tres implantes polim \tilde{A} ©ricos en la funci \tilde{A}^3 n nerviosa en un modelo de lesi \tilde{A}^3 n por secci \tilde{A}^3 n completa de la m \tilde{A} ©dula espinal en ratas. IFMBE Proceedings, 2007, , 654-658.	0.2	0
1128	Influencia del campo magnético e implantes de polÃmero semiconductor sobre la regeneración axonal en un modelo de lesión traumática de médula espinal. IFMBE Proceedings, 2007, , 646-649.	0.2	0
1129	Biomaterials Using Plasma Immersion Ion Implantation and Deposition Surface Modification of. , 2008, , 573-631.		0
1131	Plasma Surface Modification of Nickel Titanium Shape Memory Alloys. , 2012, , 45-68.		0
1132	Surface and Thin Film Analysis. , 2012, , 269-298.		0
1135	Classes of Materials Used in Medicine. , 1996, , 67-l.		1
1137	Effect of oxygen and nitrogen plasma surface modification on preosteoblast cell proliferation on e-polytetrafluoroethylene (e-PTFE). Ci'gwa Gi'jae Haghoeji - Daehan Ci'gwa Gi'jae Haghoe, 2015, 42, 45.	0.3	0
1138	Modified Polymer Surfaces: Biocompatibility and Cell Interactions. , 0, , 4777-4785.		0
1139	Prevention of adhesion and surface growth of orthopedic implant microbialinfection by surface modification using antibiotics and irradiated hydroxyapatite. Journal of Scientific Research in Science, 2016, 33, 46-64.	0.0	0
1140	Polymeric Microfluidics: Fabricated and Modified Using Plasmas. , 2016, , 1112-1124.		0
1141	Dielectric Barrier Discharge: Biomaterials. , 2016, , 367-380.		0
1142	Plasma Chemistry as a Tool for Eco-Friendly Processing of Cotton Textile. , 2017, , 137-167.		0
1143	The effect of oxygen plasma treatment on the hydrophobicity of polyaniline surface., 2018,,.		0
1144	Articulating Biomaterials. , 2018, , 859-910.		0
1145	The Effect of Different Surface Treatments on Light Transmittance and Fracture Resistance of Fiber Posts. Al-Azhar Dental Journal for Girls, 2018, 5, 267-275.	0.1	1
1146	Modification of Polyetheretherketone Surface by Argon, Oxygen and Nitrogen Plasma for Dentistry Application. Lecture Notes in Networks and Systems, 2019, , 160-164.	0.5	1
1147	Plasma Processes for Functionalization and Control of Materials Surface., 2019,, 219-229.		0
1148	Assessment of resin -ceramic bond strength under various pH conditions for different ceramic materials subjected to two surface treatment protocols. Egyptian Dental Journal, 2019, 65, 667-679.	0.1	0

#	Article	IF	CITATIONS
1150	Clinical Applications and Limitations of Vascular Grafts. , 2020, , 1-32.		0
1151	Biomaterials and Scaffolds for Repair of the Peripheral Nervous System., 2020, , 1-35.		1
1152	Surface Functionalization of Polymers. , 2020, , 5-34.		1
1153	Analysis of the Surface Treatments Effect on the Creep Behavior of Ti-6Al-4V Alloy. Materials Research, 2020, 23, .	0.6	1
1154	Microbial Sensor for Determination of Amoxicillin Activity. Antibiotiki I Khimioterapiya, 2020, 65, 3-9.	0.1	1
1155	Natural edible films and coatings applied in food: a bibliographic review. Research, Society and Development, 2020, 9, e578997613.	0.0	5
1156	Graphene Oxide—Plant Gum Nanocomposites for Sustainable Applications. Composites Science and Technology, 2021, , 149-171.	0.4	3
1158	FABRICATION AND SURFACE MODIFICATION OF BIOMATERIALS FOR ORTHOPEDIC IMPLANT: A REVIEW. Surface Review and Letters, 2023, 30, .	0.5	0
1159	Processing of polyethylene in the beam-plasma generated by a ribbon electron beam at forevacuum pressure range. Vacuum, 2021, , 110722.	1.6	3
1160	Ultrananocrystalline Diamond/Amorhous Carbon Nanocomposite Films For Biotechnological Applications. NATO Science for Peace and Security Series B: Physics and Biophysics, 2009, , 479-500.	0.2	0
1161	Immobilization of Biomolecules on Plasma-Functionalized Surfaces for Biomedical Applications. Gels Horizons: From Science To Smart Materials, 2021, , 305-333.	0.3	1
1162	Modeling of the charged particle transport process in a decaying plasma with a Î-type electrode configuration. Japanese Journal of Applied Physics, 2021, 60, SAAB05.	0.8	7
1163	The effect of modulated electric field on characteristic of <scp>SDBD</scp> â€ike plasma jet for surface modification. Contributions To Plasma Physics, 2021, 61, e202000155.	0.5	2
1164	Plasma polymerization in the design of new materials: looking through the lens of maleic anhydride plasma polymers. Materials Today Chemistry, 2022, 23, 100646.	1.7	6
1166	Evaluation of Helium Plasma Surface Modification on Tensile Bond Strength of Denture Base Materials: A Scanning Electron Microscope Study. ECS Journal of Solid State Science and Technology, 2021, 10, 124002.	0.9	1
1167	Plasma for biomedical decontamination: from plasma-engineered to plasma-active antimicrobial surfaces. Current Opinion in Chemical Engineering, 2022, 36, 100764.	3.8	20
1168	Catalytic effect of laser-combined atmospheric pressure plasma in lowering the reduction temperature of hematite. RSC Advances, 2021, 11, 35489-35493.	1.7	0
1169	Progress in Functionalized Polymeric Membranes for Application in Waste Water Treatment. Energy, Environment, and Sustainability, 2022, , 205-226.	0.6	1

#	Article	IF	CITATIONS
1170	Amine Plasma-Polymerization of 3D Polycaprolactone $\hat{\mathbb{I}}^2$ -Tricalcium Phosphate Scaffold to Improving Osteogenic Differentiation In Vitro. Materials, 2022, 15, 366.	1.3	6
1171	PIII Treatment of SS Samples Using a Current-Controlled High-Voltage Pulser. IEEE Transactions on Plasma Science, 2020, 48, 3800-3806.	0.6	0
1172	Influence of Air Plasma Pretreatments on Mechanical Properties in Metal-Reinforced Laminated Wood. Frontiers in Materials, 2022, 8, .	1.2	1
1173	Functionalizing nanofibrous platforms for neural tissue engineering applications. Drug Discovery Today, 2022, 27, 1381-1403.	3.2	7
1174	Biodegradable Packaging Materials and Techniques to Improve Their Performance., 2022,, 61-105.		2
1175	Amine-Functionalized Membrane Adsorbers to Purify Copper from Acidic Solutions. ACS Applied Polymer Materials, 2022, 4, 3034-3044.	2.0	6
1176	Reactive Magnetron Plasma Modification of Electrospun PLLA Scaffolds with Incorporated Chloramphenicol for Controlled Drug Release. Polymers, 2022, 14, 373.	2.0	4
1177	Plasma functionalized MoSe ₂ for efficient nonenzymatic sensing of hydrogen peroxide in ultraâ€wide pH range. SmartMat, 2022, 3, 491-502.	6.4	14
1178	Does Plasma Treatment Effective for Surface Modification of Polymer? An Overview of Treatment Effect on Adhesive and Tribological Properties. Materials Science Forum, 0, 1051, 160-166.	0.3	0
1179	Optical Emission Spectra Characterization of Plasma Discharge During the Processing of Milk and Evaluation of its Quality Attributes. IEEE Transactions on Plasma Science, 2022, 50, 1128-1136.	0.6	4
1180	Active-screen plasma surface multi-functionalisation of biopolymers and carbon-based materials – An overview. Surface and Coatings Technology, 2022, 442, 128188.	2.2	10
1181	Physicochemical process of non-thermal plasma at gas-liquid interface and synergistic effect of plasma with catalyst. Current Applied Physics, 2022, 36, 16-26.	1.1	5
1182	A state-of-the-art review on the multifunctional self-cleaning nanostructured coatings for PV panels, CSP mirrors and related solar devices. Renewable and Sustainable Energy Reviews, 2022, 159, 112145.	8.2	46
1183	Bioactive surface modifications through thermally sprayed hydroxyapatite composite coatings: a review of selective reinforcements. Biomaterials Science, 2022, 10, 2484-2523.	2.6	22
1184	An effective method to optimise plasma immersion ion implantation: Sensitivity analysis and design based on lowâ€density polyethylene. Plasma Processes and Polymers, 0, , .	1.6	3
1185	The Effect of High Voltage Electrical Discharge on the Physicochemical Properties and the Microbiological Safety of Rose Hip Nectars. Foods, 2022, 11, 651.	1.9	1
1186	Enhanced adhesion of copper plating to polyether ether ketone based on active oxygen species generated under ultraviolet irradiation. Surface and Interface Analysis, 2022, 54, 759-766.	0.8	3
1187	Air Plasma Functionalization of Electrospun Nanofibers for Skin Tissue Engineering. Biomedicines, 2022, 10, 617.	1.4	13

#	Article	IF	Citations
1188	The Hydrophilization and Subsequent Hydrophobic Recovery Mechanism of Cold Plasma (CP) Treated Bambara Groundnuts. Materials Science Forum, 0, 1055, 161-169.	0.3	4
1189	Modification of the Chemical Structure, Morphology, and Cytocompatibility of Chitosan Films via Low-Frequency Plasma Treatment. Applied Biochemistry and Microbiology, 2022, 58, 118-125.	0.3	0
1190	Plasma-controlled surface wettability: recent advances and future applications. International Materials Reviews, 2023, 68, 82-119.	9.4	29
1191	Tuning Surface Properties via Plasma Treatments for the Improved Capture of MicroRNA Biomarkers. Materials, 2022, 15, 2641.	1.3	0
1192	Can Plasma Surface Treatment Replace Traditional Wood Modification Methods?. Coatings, 2022, 12, 487.	1.2	8
1193	Dynamic active sites on plasma engraved Ni hydroxide for enhanced electro-catalytic urea oxidation. Journal of Energy Chemistry, 2022, 71, 150-158.	7.1	23
1194	Surface modification of polypropylene non-woven filter by O2 plasma/acrylic acid enhancing Prussian blue immobilization for aqueous cesium adsorption. Applied Surface Science, 2022, 590, 153101.	3.1	12
1195	Surface modifications of cellulose nanocrystals: Processes, properties, and applications. Food Hydrocolloids, 2022, 130, 107689.	5. 6	46
1197	APATITIC NANOPOWDERS AND COATINGS: A COMPREHENSIVE REVIEW. Surface Review and Letters, 0, , .	0.5	1
1198	Cold plasma surface treatments to prevent biofilm formation in food industries and medical sectors. Applied Microbiology and Biotechnology, 2022, 106, 81-100.	1.7	13
1199	Trends in Chemical Wood Surface Improvements and Modifications: A Review of the Last Five Years. Coatings, 2021, 11, 1514.	1,2	18
1200	Biomedical Alloys and Physical Surface Modifications: A Mini-Review. Materials, 2022, 15, 66.	1.3	16
1201	Precise morphology control of in-plane silicon nanowires via a simple plasma pre-treatment. Applied Surface Science, 2022, 593, 153435.	3.1	4
1204	Surface Engineering of Nanomaterials with Polymers, Biomolecules, and Small Ligands for Nanomedicine. Materials, 2022, 15, 3251.	1.3	32
1205	Review on recent advances in cold plasma technology. EPJ Applied Physics, 2022, 97, 39.	0.3	6
1206	Plasma-induced surface cooling. Nature Communications, 2022, 13, 2623.	5.8	6
1207	Atmospheric pressure plasma functionalization of polystyrene. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	0.9	5
1208	Recent Advances in Plasma-Engineered Polymers for Biomarker-Based Viral Detection and Highly Multiplexed Analysis. Biosensors, 2022, 12, 286.	2.3	24

#	Article	IF	CITATIONS
1209	In vitro study of the antibacterial effect of plasma surface treatment using Argon gas on orthodontic stainless steel brackets against Streptococcus mutans and Lactobacillus acidophilus. Revista Bionatura, 2022, 7, 1-8.	0.1	1
1210	Biomaterials and Scaffolds for Repair of the Peripheral Nervous System. Reference Series in Biomedical Engineering, 2022, , 245-279.	0.1	2
1211	Chondrogenic Differentiation of Human Mesenchymal Stem Cells and Macrophage Polarization on 3D-Printed Poly(ε-caprolactone)/Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyvalerate) Blended Scaffolds with Different Secondary Porous Structures. ACS Applied Bio Materials, 2022, 5, 2689-2702.	2.3	2
1212	Particle in cell simulations of the pulsed plasma sheath: Dependence on pulse parameters. Journal of Electrostatics, 2022, 117, 103723.	1.0	3
1213	Surface Modification of Biomedical Scaffolds by Plasma Treatment. Crystallography Reports, 2022, 67, 421-427.	0.1	6
1214	THE EFFECT OF AMMONIA AND SULPHUR DIOXIDE GAS PLASMA TREATMENTS ON POLYMER SURFACES. , 0, , 491-498.		0
1215	Micropatterning of cells via adjusting surface wettability using plasma treatment and graphene oxide deposition. PLoS ONE, 2022, 17, e0269914.	1.1	32
1219	Focused electron beam transport through a long narrow metal tube at elevated pressures in the forevacuum range. Plasma Science and Technology, 2022, 25, 015507.	0.7	2
1220	Fluorogenic toolbox for facile detecting of hydroxyl radicals: From designing principles to diagnostics applications. TrAC - Trends in Analytical Chemistry, 2022, 157, 116734.	5.8	15
1221	Developing green and sustainable concrete in integrating with different urban wastes. Journal of Cleaner Production, 2022, 368, 133057.	4.6	20
1222	Race for Applicable Antimicrobial Dental Implant Surfaces to Fight Biofilm-Related Disease: Advancing in Laboratorial Studies vs Stagnation in Clinical Application. ACS Biomaterials Science and Engineering, 2022, 8, 3187-3198.	2.6	4
1224	Effect of Non-Thermal Plasma Treatment on Shear Bond Strength Between Monolithic Zirconia and Resin Cement. Selcuk Dental Journal, 0, , .	0.1	0
1225	Enhancing Resin Cement Adhesion to Zirconia by Oxygen Plasma-Aided Silicatization. Materials, 2022, 15, 5568.	1.3	4
1226	Some Mechanical Properties of Composite Materials with Chopped Wheat Straw Reinforcer and Hybrid Matrix. Polymers, 2022, 14, 3175.	2.0	0
1227	Surface Bio-Functionalization of Anti-Bacterial Titanium Implants: A Review. Coatings, 2022, 12, 1125.	1.2	7
1228	Plasma treatment for enhanced microbe-electrode interfaces: A bio-electronic sink. Journal of Power Sources, 2022, 544, 231834.	4.0	1
1229	A Biocompatibility Study of Plasma Nanocoatings onto Cobalt Chromium L605 Alloy for Cardiovascular Stent Applications. Materials, 2022, 15, 5968.	1.3	4
1230	The laser–plasma interaction: A bibliometric study. International Journal of Modern Physics B, 2023, 37, .	1.0	2

#	Article	IF	CITATIONS
1231	Recent Advancements in Surface Modification, Characterization and Functionalization for Enhancing the Biocompatibility and Corrosion Resistance of Biomedical Implants. Coatings, 2022, 12, 1459.	1.2	50
1232	Surface modification of polycarbonate urethane by grafting polyethylene glycol and bivalirudin drug for improving hemocompatibility. Polymers for Advanced Technologies, 2023, 34, 531-538.	1.6	2
1233	Improved In Vitro and In Vivo Corrosion Resistance of Mg and Mg Alloys by Plasma Ion Implantation and Deposition Techniques—A Mini-Review. Lubricants, 2022, 10, 255.	1,2	3
1234	Recent Advances and Challenges in Developing Technological Methods Assisting Oxidative Desulfurization of Liquid Fuels: A Review. Energy & Energy & 2022, 36, 12961-12985.	2.5	16
1235	Experimental investigation into the effects of electric discharge surface modification process parameters on the biocompatibility of Ti6Al4V. Biomedical Engineering Advances, 2022, 4, 100063.	2.2	2
1236	Optimization strategies and emerging application of functionalized 3D-printed materials in water treatment: A review. Journal of Water Process Engineering, 2023, 51, 103410.	2.6	12
1237	Design strategies for composite matrix and multifunctional polymeric scaffolds with enhanced bioactivity for bone tissue engineering. Frontiers in Chemistry, $0,10,10$	1.8	3
1238	Atmospheric Pressure Cold Plasma Modification of Basil Seed Gum for Fabrication of Edible Film Incorporated with Nanophytosomes of Vitamin D3 and Tannic Acid. Foods, 2023, 12, 71.	1.9	2
1239	Numerical simulation of the bifurcation-remerging process and intermittency in an undriven direct current glow discharge. Physical Review E, 2022, 106, .	0.8	2
1240	Osseointegration Properties of Titanium Implants Treated by Nonthermal Atmospheric-Pressure Nitrogen Plasma. International Journal of Molecular Sciences, 2022, 23, 15420.	1.8	3
1241	Study of the surface properties of polypropylene by enzyme treatment. Textile Reseach Journal, 0, , 004051752211430 .	1.1	0
1242	Long-Term In Vivo Response of a Polyurethane Gastric Implant for Treating Gastro-Oesophageal Reflux Diseases: A Comparison of Different Surface Treatments. , 2023, 1, 805-824.		2
1243	Surface modification technologies for enhancing the tribological properties of cemented carbides: A review. Tribology International, 2023, 180, 108257.	3.0	14
1244	Research progress on surface modification of three-dimensional printing porous titanium alloys. Digital Medicine, 2023, 9, 1.	0.1	0
1245	Superhydrophobic/Superhydrophilic Polymeric Membranes for Oil/Water Separation. ACS Symposium Series, 0, , 119-184.	0.5	1
1246	Water - Based Polyurethanes for Antibacterial Coatings: an Overview. , 2022, 2, 213-242.		0
1247	Piezoresistive Fibers with Large Working Factors for Strain Sensing Applications. ACS Applied Materials & Samp; Interfaces, 2023, 15, 2277-2288.	4.0	2
1248	Recent advances in surface endothelialization of the magnesium alloy stent materials. Journal of Magnesium and Alloys, 2023, 11, 48-77.	5.5	5

#	Article	IF	CITATIONS
1249	Post-Polymerization Modification of Fluoropolymers via UV Irradiation in the Presence of a Photoacid Generator. Polymers, 2023, 15, 493.	2.0	0
1250	Arâ∈H ₂ Oâ€NH ₃ plasma grafting and polymerization of dopamine onto polytetrafluoroethylene to promote heparin immobilization. Plasma Processes and Polymers, 2023, 20, .	1.6	1
1251	Low temperature plasma-assisted synthesis and modification of water splitting electrocatalysts. Electrochimica Acta, 2023, 449, 142179.	2.6	6
1252	Ti6Al4V coatings on titanium samples by sputtering techniques: Microstructural and mechanical characterization. Journal of Alloys and Compounds, 2023, 952, 170018.	2.8	3
1253	Effect of shape and asymmetry of the voltage pulse on plasma sheath dynamics. Journal of Electrostatics, 2023, 122, 103797.	1.0	1
1254	Specific features of focused electron beam transport through a narrow metal tube at negative potential in the forevacuum pressure range. Vacuum, 2023, 210, 111874.	1.6	2
1255	Surface-Specific Modification of Graphitic Carbon Nitride by Plasma for Enhanced Durability and Selectivity of Photocatalytic CO ₂ Reduction with a Supramolecular Photocatalyst. ACS Applied Materials & Diterfaces, 2023, 15, 13205-13218.	4.0	7
1256	Effect of non-thermal oxygen-DBD plasma treatment on reducing the phthalate leach and in improving the mechanical strength properties of polymethyl methacrylate denture base and denture liner. Materials Today: Proceedings, 2023, , .	0.9	0
1257	Different methods of hydroxyapatiteâ€based coatings on external fixator pin with high adhesion approach. Plasma Processes and Polymers, 2023, 20, .	1.6	7
1258	Optimization of Parylene C and Parylene N thin films for use in cellular co-culture and tissue barrier models. Scientific Reports, 2023, 13, .	1.6	4
1259	Biofunctionalized 3D printed structures for biomedical applications: A critical review of recent advances and future prospects. Progress in Materials Science, 2023, 137, 101124.	16.0	6
1260	Reactive etching of gallium oxide on eutectic gallium indium (eGaln) with chlorosilane vapor to induce differential wetting. Soft Matter, 2023, 19, 3199-3206.	1.2	4
1261	High Strength Titanium with Fibrous Grain for Advanced Bone Regeneration. Advanced Science, 2023, 10, .	5.6	2
1262	Surface Modification of Silicone by Dielectric Barrier Discharge Plasma. Materials, 2023, 16, 2973.	1.3	1
1263	Functionalized nanofibers for antimicrobial applications. , 2023, , 167-209.		0
1264	Functionalized nanofibers for gas and volatile organic compound sensing. , 2023, , 531-577.		1
1269	Plasma Techniques for the Fabrication of Hydrophobic Substrates. Lecture Notes in Mechanical Engineering, 2023, , 831-846.	0.3	0
1270	Graphene oxide-based nanocomposite hydrogels for biosensor applications. , 2023, , 149-180.		1

#	Article	IF	CITATIONS
1280	Surface modifications of biomaterials in different applied fields. RSC Advances, 2023, 13, 20495-20511.	1.7	11
1281	Fluoropolymer nanocomposite membranes for gas separation applications. , 2023, , 485-528.		O
1285	Plasma Based Approaches to Achieve Self-Cleaning Surfaces. , 0, , .		0
1291	Protein adsorption on polymeric surfaces. , 2023, , 57-85.		0
1301	A review on surface modification of materials for 3D printed diagnostic devices. Analytical Methods, 0, , .	1.3	0
1306	Cold plasma treatment in food packaging: effects on material properties, sterilization, and safety considerations., 2024,, 215-234.		0
1307	Potentialities of nanosilver-based thin film coatings for medical device and implants. , 2024, , 101-123.		0
1308	Modifications and characterization of nanocellulose. , 2024, , 41-65.		0
1312	Frontiers in the Stability of Titanium Implants. Springer Series in Materials Science, 2024, , 13-52.	0.4	0