Hydrolysis of lignocellulosic materials for ethanol prod

Bioresource Technology 83, 1-11 DOI: 10.1016/s0960-8524(01)00212-7

Citation Report

#	Article	IF	CITATIONS
2	Progress in energy and combustion science. Progress in Energy and Combustion Science, 1985, 11, i.	15.8	1
3	Formation of ethanol from carbon monoxide via a new microbial catalyst. Biomass and Bioenergy, 2002, 23, 487-493.	2.9	115
4	Effect of Lignocellulosic Degradation Compounds from Steam Explosion Pretreatment on Ethanol Fermentation by Thermotolerant Yeast Kluyveromyces marxianus. Applied Biochemistry and Biotechnology, 2003, 105, 141-154.	1.4	118
5	Hydrothermal Pretreatment Conditions to Enhance Ethanol Production from Poplar Biomass. Applied Biochemistry and Biotechnology, 2003, 105, 87-100.	1.4	152
6	Cloning of a gene encoding a thermo-stable endo-beta-1,4-glucanase from Thermoascus aurantiacus and its expression in yeast. Biotechnology Letters, 2003, 25, 657-661.	1.1	48
7	Hemicellulose bioconversion. Journal of Industrial Microbiology and Biotechnology, 2003, 30, 279-291.	1.4	1,574
8	Hydrolysis of Lignocellulosic Materials for Ethanol Production: A Review. ChemInform, 2003, 34, no-no.	0.1	7
9	Purification and characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888. Enzyme and Microbial Technology, 2003, 32, 851-861.	1.6	102
10	Influence of the carbon source on production of cellulases, hemicellulases and pectinases by Trichoderma reesei Rut C-30. Enzyme and Microbial Technology, 2003, 33, 612-619.	1.6	121
11	Thermostable and alkaline-tolerant microbial cellulase-free xylanases produced from agricultural wastes and the properties required for use in pulp bleaching bioprocesses: a review. Process Biochemistry, 2003, 38, 1327-1340.	1.8	161
12	Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiology Reviews, 2003, 27, 663-693.	3.9	409
13	Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. Journal of Biotechnology, 2003, 103, 273-280.	1.9	203
14	Quantitative Determination of Noncovalent Binding Interactions Using Automated Nanoelectrospray Mass Spectrometry. Analytical Chemistry, 2003, 75, 3010-3018.	3.2	157
15	Hydrothermal Pretreatment Conditions to Enhance Ethanol Production from Poplar Biomass. , 2003, , 87-100.		34
16	USE OF ANIMAL MANURE AS FEEDSTOCK FOR BIO-PRODUCTS. , 0, , .		3
17	ResÃduos agroindustriais para produção biotecnológica de xilitol. Semina:Ciencias Agrarias, 2004, 25, 315.	0.1	11
18	Fractionation and Saccharification of Cellulose and Hemicellulose in Rice Hull by Hot-Compressed-Water Treatment with Two-Step Heating. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2004, 83, 776-781.	0.2	35
19	ENZYMATIC HYDROLYSIS OF CORN STOVER PRETREATED BY COMBINED DILUTE ALKALINE TREATMENT AND HOMOGENIZATION. Transactions of the American Society of Agricultural Engineers, 2004, 47, 821-825.	0.9	63

ATION RED

#	Article	IF	CITATIONS
20	Effects of Sugar Inhibition on Cellulases and β-Glucosidase During Enzymatic Hydrolysis of Softwood Substrates. , 2004, , 1115-1126.		16
21	Dynamics of Cellulase Production by Glucose Grown Cultures of Trichoderma reesei Rut-C30 as a Response to Addition of Cellulose. , 2004, , 115-124.		1
22	Dynamics of Cellulase Production by Glucose Grown Cultures of <1>Trichoderma reesei 1 Rut-C30 as a Response to Addition of Cellulose. Applied Biochemistry and Biotechnology, 2004, 113, 115-124.	1.4	26
23	Optimization of Steam Pretreatment of Corn Stover to Enhance Enzymatic Digestibility. Applied Biochemistry and Biotechnology, 2004, 114, 509-524.	1.4	98
24	Ethanol Production in Immobilized-Cell Bioreactors from Mixed Sugar Syrups and Enzymatic Hydrolysates of Steam-Exploded Biomass. Applied Biochemistry and Biotechnology, 2004, 114, 539-558.	1.4	29
25	Combined Steam Pretreatment and Enzymatic Hydrolysis of Starch-Free Wheat Fibers. Applied Biochemistry and Biotechnology, 2004, 115, 0989-1002.	1.4	18
26	Effects of Sugar Inhibition on Cellulases and β-Glucosidase During Enzymatic Hydrolysis of Softwood Substrates. Applied Biochemistry and Biotechnology, 2004, 115, 1115-1126.	1.4	291
27	Production of Ethanol From Cellulosic Biomass by <i>Clostridium thermocellum</i> SS19 in Submerged Fermentation: Screening of Nutrients Using Plackett-Burman Design. Applied Biochemistry and Biotechnology, 2004, 117, 133-142.	1.4	21
28	Production of Electrical Energy from Carbohydrates using a Transition Metal-Catalysed Liquid Alkaline Fuel Cell. Biotechnology Letters, 2004, 26, 1771-1776.	1.1	35
29	Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates. Applied Microbiology and Biotechnology, 2004, 64, 125-131.	1.7	177
30	Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied Microbiology and Biotechnology, 2004, 66, 10-26.	1.7	1,257
31	Hydrolysis of animal manure lignocellulosics for reducing sugar production. Bioresource Technology, 2004, 91, 31-39.	4.8	154
32	Production of hemicellulosic sugars and glucose from residual corrugated cardboard. Process Biochemistry, 2004, 39, 1543-1551.	1.8	41
33	Fermentation of biomass-generated producer gas to ethanol. Biotechnology and Bioengineering, 2004, 86, 587-594.	1.7	203
34	Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnology and Bioengineering, 2004, 88, 797-824.	1.7	1,537
35	Microplate-based filter paper assay to measure total cellulase activity. Biotechnology and Bioengineering, 2004, 88, 832-837.	1.7	194
36	The Biodeterioration of Synthetic Resins Used in Conservation. Macromolecular Bioscience, 2004, 4, 399-406.	2.1	41
37	Solvent extraction and purification of sugars from hemicellulose hydrolysates using boronic acid carriers. Journal of Chemical Technology and Biotechnology, 2004, 79, 505-511.	1.6	42

#	ARTICLE	IF	CITATIONS
38	Prediction of cell wall polysaccharide and lignin concentrations of alfalfa stems from detergent fiber analysis. Biomass and Bioenergy, 2004, 27, 365-373.	2.9	27
39	Effect of stover fraction and storage method on glucose production during enzymatic hydrolysis. Bioresource Technology, 2004, 92, 269-274.	4.8	36
40	Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresource Technology, 2004, 93, 1-10.	4.8	666
41	Dilute-acid hydrolysis for fermentation of the Bolivian straw material Paja Brava. Bioresource Technology, 2004, 93, 249-256.	4.8	84
42	Static/Dynamic Bifurcation and Chaotic Behavior of an Ethanol Fermentor. Industrial & Engineering Chemistry Research, 2004, 43, 1260-1273.	1.8	30
43	Synergistic Saccharification, and Direct Fermentation to Ethanol, of Amorphous Cellulose by Use of an Engineered Yeast Strain Codisplaying Three Types of Cellulolytic Enzyme. Applied and Environmental Microbiology, 2004, 70, 1207-1212.	1.4	300
44	Nonequilibrium Pulsed Discharge:  A Novel Method for Steam Reforming of Hydrocarbons or Alcohols. Energy & Fuels, 2004, 18, 455-459.	2.5	45
45	Lignocellulose Biodegradation and Applications in Biotechnology. ACS Symposium Series, 2004, , 2-34.	0.5	59
46	Hydrolysis of Cellulose and Hemicellulose. , 2004, , .		56
47	Enzymes as Biocatalysts for Conversion of Lignocellulosic Biomass to Fermentable Sugars. , 2005, , 24-1-24-12.		5
48	Optimization of critical medium components using response surface methodology for ethanol production from cellulosic biomass by Clostridium thermocellum SS19. Process Biochemistry, 2005, 40, 3025-3030.	1.8	69
49	Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochemistry, 2005, 40, 3082-3086.	1.8	236
50	Simultaneous Saccharification and Fermentation of Microwave/Alkali Pre-treated Rice Straw to Ethanol. Biosystems Engineering, 2005, 92, 229-235.	1.9	59
51	Ethanol production from energy crops and wastes for use as a transport fuel in Ireland. Applied Energy, 2005, 82, 148-166.	5.1	86
52	New process of maize stalk amination treatment by steam explosion. Biomass and Bioenergy, 2005, 28, 411-417.	2.9	45
53	Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass and Bioenergy, 2005, 28, 384-410.	2.9	1,374
54	Production of Cellulase/β-Glucosidase by the Mixed Fungi Culture of <1> Trichoderma reesei and <1>Aspergillus phoenicis on Dairy Manure. Applied Biochemistry and Biotechnology, 2005, 121, 0093-0104.	1.4	19
55	Enzyme Pretreatment of Grass Lignocellulose for Potential High-Value Co-products and an Improved Fermentable Substrate. Applied Biochemistry and Biotechnology, 2005, 121, 0303-0310.	1.4	50

#	Article	IF	CITATIONS
56	Studies into Using Manure in a Biorefinery Concept. Applied Biochemistry and Biotechnology, 2005, 124, 0999-1016.	1.4	27
57	Effects of Hemicellulose and Lignin on Enzymatic Hydrolysis of Cellulose from Dairy Manure. Applied Biochemistry and Biotechnology, 2005, 124, 1017-1030.	1.4	44
58	Steam Pretreatment of <1>Salix with and without SO ₂ Impregnation for Production of Bioethanol. Applied Biochemistry and Biotechnology, 2005, 124, 1101-1118.	1.4	70
59	Structures of Phanerochaete chrysosporium Cel7D in complex with product and inhibitors. FEBS Journal, 2005, 272, 1952-1964.	2.2	44
60	Purification and Characterization of Two Endo-β-1,4-glucanases from Mollusca, Ampullaria crossean. Acta Biochimica Et Biophysica Sinica, 2005, 37, 702-708.	0.9	21
61	Pretreatment of barley husk for bioethanol production. Journal of Chemical Technology and Biotechnology, 2005, 80, 85-91.	1.6	47
62	Analysis of process integration and intensification of enzymatic cellulose hydrolysis in a membrane bioreactor. Journal of Chemical Technology and Biotechnology, 2005, 80, 688-698.	1.6	16
63	Saccharification of foodwastes using cellulolytic and amylolytic enzymes fromTrichoderma harzianum FJ1 and its kinetics. Biotechnology and Bioprocess Engineering, 2005, 10, 52-59.	1.4	15
64	Kinetic models for growth and product formation on multiple substrates. Biotechnology and Bioprocess Engineering, 2005, 10, 587-592.	1.4	11
65	Ethanolic fermentation of sucrose, sugarcane juice and molasses by Escherichia coli strain ko11 and Klebsiella oxytoca strain P2. Brazilian Journal of Microbiology, 2005, 36, 395-404.	0.8	36
66	Production of Value-Added Products from Meat Processing Cellulosic Waste. , 2005, , .		0
67	Biodegradable polymers from renewable forest resources. , 2005, , 219-250.		4
68	Microbial biomass production from rice straw hydrolysate in airlift bioreactors. Journal of Biotechnology, 2005, 118, 413-420.	1.9	26
69	Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. Journal of Biotechnology, 2005, 120, 284-295.	1.9	106
70	Acetate and ethanol production from H2 and CO2by Moorella sp. using a repeated batch culture. Journal of Bioscience and Bioengineering, 2005, 99, 252-258.	1.1	60
71	ENHANCING ENZYMATIC HYDROLYSIS OF RICE STRAW BY MICROWAVE PRETREATMENT. Chemical Engineering Communications, 2005, 192, 1559-1566.	1.5	48
72	Purification and Concentration of Xylose and Glucose from Neutralized Bagasse Hydrolysates Using 3,5â€Đimethylphenylboronic Acid and Modified Aliquat 336 as Coextractants. Separation Science and Technology, 2005, 40, 2337-2351.	1.3	11
73	Culture independent PCR: an alternative enzyme discovery strategy. Journal of Microbiological Methods, 2005, 60, 63-71.	0.7	19

#	Article	IF	CITATIONS
74	Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18089-18094.	3.3	238
75	Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chemistry, 2006, 8, 325.	4.6	1,119
76	Microbial Fuel Cells—Challenges and Applications. Environmental Science & Technology, 2006, 40, 5172-5180.	4.6	804
77	Conversion and Separation Pattern of Lignocellulosic Carbohydrates through the Phase-separation System. Polymer Journal, 2006, 38, 694-702.	1.3	11
78	Preparation of Crossâ€Linked Cellulases and their Application for the Enzymatic Production of Glucose from Municipal Paper Wastes. Preparative Biochemistry and Biotechnology, 2006, 36, 111-125.	1.0	10
79	Chemical and biochemical generation of carbohydrates from lignocellulose-feedstock (Lupinus) Tj ETQq1 1 0.784	4314.rgBT 4.2	/Oyerlock 10
80	Bioconversion of Lignocellulose Materials. Mycobiology, 2006, 34, 159.	0.6	48
81	Enzymatic hydrolysis of waste paper: process optimization using response surface methodology. Studies in Surface Science and Catalysis, 2006, , 121-124.	1.5	2
82	Review of existing and emerging technologies for the production of biofuels in developing countries. Energy for Sustainable Development, 2006, 10, 92-108.	2.0	55
83	Applications of ESI-MS in drug discovery: interrogation of noncovalent complexes. Nature Reviews Drug Discovery, 2006, 5, 585-595.	21.5	224
84	Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme and Microbial Technology, 2006, 40, 138-144.	1.6	292
85	Acid hydrolysis of fibers from dairy manure. Bioresource Technology, 2006, 97, 1687-1695.	4.8	64
86	Comparison of Three Microwave/Chemical Pretreatment Processes for Enzymatic Hydrolysis of Rice Straw. Biosystems Engineering, 2006, 93, 279-283.	1.9	136
87	An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catalysis Today, 2006, 111, 119-132.	2.2	612
88	Partitioning of β-glucosidase from Trichoderma reesei in poly(ethylene glycol) and potassium phosphate aqueous two-phase systems: Influence of pH and temperature. Biochemical Engineering Journal, 2006, 30, 104-108.	1.8	48
89	Superfine grinding of steam-exploded rice straw and its enzymatic hydrolysis. Biochemical Engineering Journal, 2006, 30, 225-230.	1.8	119
90	Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass and Bioenergy, 2006, 30, 880-891.	2.9	440
91	High-performance liquid chromatography method for simultaneous determination of aliphatic acid, aromatic acid and neutral degradation products in biomass pretreatment hydrolysates. Journal of Chromatography A, 2006, 1104, 54-61.	1.8	109

#	Article	IF	CITATIONS
92	Capillary electrophoresis fingerprinting, quantification and mass-identification of various 9-aminopyrene-1,4,6-trisulfonate-derivatized oligomers derived from plant polysaccharides. Journal of Chromatography A, 2006, 1137, 119-126.	1.8	41
93	The effect of microwave irradiation on enzymatic hydrolysis of rice straw. Bioresource Technology, 2006, 97, 1964-1968.	4.8	89
94	Microwave-assisted Alkali Pre-treatment of Wheat Straw and its Enzymatic Hydrolysis. Biosystems Engineering, 2006, 94, 437-442.	1.9	110
95	Esculin gel diffusion assay (EGDA): A simple and sensitive method for screening β-glucosidases. Enzyme and Microbial Technology, 2006, 39, 182-184.	1.6	14
96	Bioethanol production based on simultaneous saccharification and fermentation of steam-pretreated Salix at high dry-matter content. Enzyme and Microbial Technology, 2006, 39, 756-762.	1.6	121
97	Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzyme and Microbial Technology, 2006, 39, 897-902.	1.6	250
98	Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification. Process Biochemistry, 2006, 41, 423-429.	1.8	243
99	Production of ethanol from microwave-assisted alkali pretreated wheat straw. Process Biochemistry, 2006, 41, 869-873.	1.8	112
100	Carbohydrates for fermentation. Biotechnology Journal, 2006, 1, 806-814.	1.8	63
101	Corn Stover Fractions and Bioenergy. Applied Biochemistry and Biotechnology, 2006, 129, 104-116.	1.4	25
102	Steam Pretreatment of Acid-Sprayed and Acid-Soaked Barley Straw for Production of Ethanol. Applied Biochemistry and Biotechnology, 2006, 130, 546-562.	1.4	49
103	A novel thermoacidophilic endoglucanase, Ba-EGA, from a new cellulose-degrading bacterium, Bacillus sp.AC-1. Applied Microbiology and Biotechnology, 2006, 70, 430-436.	1.7	74
104	Ethanol fermentation from biomass resources: current state and prospects. Applied Microbiology and Biotechnology, 2006, 69, 627-642.	1.7	1,319
105	Enzymatic saccharification of hydrogen peroxide-treated solids from hydrothermal processing of rice husks. Process Biochemistry, 2006, 41, 1244-1252.	1.8	30
106	Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM] Cl. Science Bulletin, 2006, 51, 2432-2436.	1.7	138
108	Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnology and Bioengineering, 2006, 93, 1196-1206.	1.7	165
109	Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnology and Bioengineering, 2006, 95, 904-910.	1.7	526
110	Paenibacillus sp. Strain JDR-2 and XynA 1 : a Novel System for Methylglucuronoxylan Utilization. Applied and Environmental Microbiology, 2006, 72, 1496-1506.	1.4	57

#	Article	IF	CITATIONS
111	Characterization of XynC from Bacillus subtilis subsp. subtilis Strain 168 and Analysis of Its Role in Depolymerization of Glucuronoxylan. Journal of Bacteriology, 2006, 188, 8617-8626.	1.0	106
112	FED-BATCH SIMULTANEOUS SACCHARIFICATION AND FERMENTATION OF MICROWAVE/ACID/ALKALI/H2O2PRETREATED RICE STRAW FOR PRODUCTION OF ETHANOL. Chemical Engineering Communications, 2006, 193, 639-648.	1.5	29
113	Pretreatment and Enzymatic Hydrolysis of Sorghum Bran. Cereal Chemistry, 2007, 84, 61-66.	1.1	15
114	Raw Materials. , 2007, 105, 1-30.		30
115	Supercritical fluid extraction and other technologies for extraction of high-value food processing co-products. , 2007, , 217-257.		1
116	Liquid Hot Water Pretreatment of Olive Tree Pruning Residues. , 2007, , 379-394.		7
117	Utilization of Spent Sawdust Matrix after Cultivation of Grifola frondosa as Substrate for Ethanol Production by Simultaneous Saccharification and Fermentation. Food Science and Technology Research, 2007, 13, 111-117.	0.3	23
118	Cellulose-Derived Electricity Production in Microbial Fuel Cells. Proceedings of the Water Environment Federation, 2007, 2007, 7959-7965.	0.0	0
119	Energetic Efficiency and Environmental, Economic, Societal Benefits of Microdiesel from Biowastes. Energy Exploration and Exploitation, 2007, 25, 219-225.	1.1	6
120	Pretreatment of Lignocellulosic Materials for Efficient Bioethanol Production. , 2007, 108, 41-65.		408
121	Production of functional substances from black rice bran by its treatment in subcritical water. LWT - Food Science and Technology, 2007, 40, 1732-1740.	2.5	57
122	Bioethanol: role and production technologies. , 2007, , 209-251.		26
123	Observation of carbonaceous mesophase behaviors in phenolated sawdust using polarized light microscopy. Journal of Materials Science, 2007, 42, 6735-6741.	1.7	3
124	Acetylation of loofa (Luffa cylindrica) sponge as immobilization carrier for bioprocesses involving cellulase. Journal of Bioscience and Bioengineering, 2007, 103, 311-317.	1.1	27
125	Pretreatment of bamboo residues with Coriolus versicolor for enzymatic hydrolysis. Journal of Bioscience and Bioengineering, 2007, 104, 149-151.	1.1	102
126	Microbial Mannanases: An Overview of Production and Applications. Critical Reviews in Biotechnology, 2007, 27, 197-216.	5.1	361
127	Evaluation of the Kinetics of Xylose Formation from Dilute Sulfuric Acid Hydrolysis of Forest Residues ofEucalyptusgrandis. Industrial & Engineering Chemistry Research, 2007, 46, 1938-1944.	1.8	27
128	Liquid State Bioconversion of Domestic Wastewater Sludge for Bioethanol Production. IFMBE Proceedings, 2007, , 479-482.	0.2	7

ARTICLE IF CITATIONS Release of D-Xylose from Wheat Straw by Acid and Xylanase Hydrolysis and Purification of Xylitol. 129 2.4 23 Journal of Agricultural and Food Chemistry, 2007, 55, 7758-7766. Bioprocessing – from Biotechnology to Biorefinery. , 2007, , 1-24. 24 131 Value-Added Products from Animal Manure., 2007, , 629-651. 4 Properties of Extracts from Defatted Rice Bran by Its Subcritical Water Treatment. Journal of 2.4 84 Agricultural and Food Chemistry, 2007, 55, 8759-8765. SOSTENIBILIDAD DEL RECICLAJE DE RESIDUOS DE LA AGROINDUSTRIA AZUCARERA: UNA REVISIÃ"N 133 SUSTAINABLE RECYCLING OF WASTE FROM SUGARCANE AGROINDUSTRY: A REVIEW. Ciencia Y Tecnologia 0.4 17 Alimentaria, 2007, 5, 293-305. Producing and Using Bioethanol as an Automotive Fuel. Energy Sources, Part B: Economics, Planning and Policy, 2007, 2, 391-401. 1.8 135 Biomass Conversion., 2007, , 1449-1548. 10 Bioengineering for pollution prevention through development of biobased energy and materials state of the science report. Industrial Biotechnology, 2007, 3, 218-259. Dilute Sulfuric Acid Pretreatment of Agricultural and Agro-Industrial Residues for Ethanol 137 4 Production., 2007,, 339-352. Xylanase Contribution to the Efficiency of Cellulose Enzymatic Hydrolysis of Barley Straw., 2007,, 353-365. Ethanol Production from Wood: Comparison of Hydrolysis Fermentation and Gasification 139 1 Biosynthesis., 2007, , . Microwave Pretreatment of Switchgrass to Enhance Enzymatic Hydrolysis., 2007,,. 140 On-farm Pretreatment Technologies for Improving Enzymatic Degradability of Cellulose and 141 3 Hemicellulose Present in Perennial Grass., 2007, , . Influence of Ultrasonics in Ammonia Steeped Switchgrass for Enzymatic Hydrolysis., 2007, , . 142 Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. 143 1.9 894 Biofuels, Bioproducts and Biorefining, 2007, 1, 119-134. Pseudo reaction kinetics of organic degradation products in dilute-acid-catalyzed corn stover 144 34 pretreatment hydrolysates. Biotechnology and Bioengineering, 2007, 98, 1135-45. Effect of temperature on ethanol tolerance of a thermophilic anaerobic ethanol 145 producerThermoanaerobacter A10: Modeling and simulation. Biotechnology and Bioengineering, 2007, 1.7 33 98, 1161-1170. Pervaporation characteristics and structure of poly(vinyl alcohol)/poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50,62 Td 146

ARTICLE IF CITATIONS Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates bySaccharomyces 147 816 1.6 cerevisiae. Journal of Chemical Technology and Biotechnology, 2007, 82, 340-349. Bioethanol production from bio―organosolv pulps of <i>Pinus radiata</i> and <i>Acacia dealbata</i>. Journal of Chemical Technology and Biotechnology, 2007, 82, 767-774. 148 1.6 Evaluation of enzymatic hydrolysis of wheat straw pretreated by atmospheric glycerol autocatalysis. 149 1.6 87 Journal of Chemical Technology and Biotechnology, 2007, 82, 1039-1044. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metabolic Engineering, 2007, 9, 87-94. Cellobiose hydrolysis using organic–inorganic hybrid mesoporous silica catalysts. Applied Catalysis 151 2.2 89 A: General, 2007, 327, 44-51. Fermentation of olive tree pruning acid-hydrolysates by Pachysolen tannophilus. Biochemical Engineering Journal, 2007, 36, 108-115. 1.8 Kinetics of growth and ethanol production on different carbon substrates using genetically 153 4.8 74 engineered xylose-fermenting yeast. Bioresource Technology, 2007, 98, 677-685. Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. 154 4.8 474 Bioresource Technology, 2007, 98, 2503-2510. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. 155 4.8 678 Bioresource Technology, 2007, 98, 3000-3011. Isolation and attempts of biomolecular characterization of fungal strains associated to foxing on a 1.5 19th century book. Journal of Cultural Heritage, 2007, 8, 126-133. Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane 157 241 1.6 bagasse. Enzyme and Microbial Technology, 2007, 40, 426-432. Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. International 183 Biodeterioration and Biodegradation, 2007, 59, 85-89. Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo 159 1.9 203 culms. International Biodeterioration and Biodegradation, 2007, 60, 159-164. A review on reforming bio-ethanol for hydrogen production. International Journal of Hydrogen Energy, 2007, 32, 3238-3247. 3.8 1,061 High temperature enzymatic prehydrolysis prior to simultaneous saccharification and fermentation 161 of steam pretreated corn stover for ethanol production. Enzyme and Microbial Technology, 2007, 40, 1.6 134 607-613. Simultaneous saccharification and fermentation of steam-pretreated barley straw at low enzyme loadings and low yeast concentration. Enzyme and Microbial Technology, 2007, 40, 1100-1107. Synergism between corn stover protein and cellulase. Enzyme and Microbial Technology, 2007, 41, 163 1.6 49 638-645. Production of extracellular l²-glucosidase by Monascus purpureus on different growth substrates. 164 1.8 Process Biochemistry, 2007, 42, 904-908.

#	Article	IF	CITATIONS
165	Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resources, Conservation and Recycling, 2007, 50, 1-39.	5.3	554
166	Feasibility of producing bio-ethanol from waste residues: A Canadian perspective. Resources, Conservation and Recycling, 2007, 50, 211-230.	5.3	91
167	Optimization of Ammonia Fiber Expansion (AFEX) Pretreatment and Enzymatic Hydrolysis of Miscanthus x giganteus to Fermentable Sugars. Biotechnology Progress, 2007, 23, 846-850.	1.3	56
168	A technical, economic, and environmental analysis of energy production from newspaper in Ireland. Waste Management, 2007, 27, 177-192.	3.7	33
169	Effect of methylxanthines on production of cellulases by Penicillium echinulatum. Journal of Applied Microbiology, 2007, 102, 478-85.	1.4	26
170	Production of cellulases and hemicellulases by Penicillium echinulatum grown on pretreated sugar cane bagasse and wheat bran in solid-state fermentation. Journal of Applied Microbiology, 2007, 103, 2196-2204.	1.4	139
171	Feruloyl Esterases as Biotechnological Tools: Current and Future Perspectives. Acta Biochimica Et Biophysica Sinica, 2007, 39, 811-828.	0.9	122
172	Ethanolic fermentation of phosphoric acid hydrolysates from olive tree pruning. Industrial Crops and Products, 2007, 25, 160-168.	2.5	59
173	Acid impregnation and steam explosion of corn stover in batch processes. Industrial Crops and Products, 2007, 26, 195-206.	2.5	73
174	Lignocellulosic Biorefineries: Reality, Hype, or Something in Between?. ACS Symposium Series, 2007, , 31-47.	0.5	9
175	Potential of agroindustrial waste from olive oil industry for fuel ethanol production. Biotechnology Journal, 2007, 2, 1547-1555.	1.8	29
176	Pretreatment of Rice Hulls for Cellulase Production by Solid Substrate Fermentation. Journal of Wood Chemistry and Technology, 2007, 27, 65-71.	0.9	9
177	Substrate Pretreatment: The Key to Effective Enzymatic Hydrolysis of Lignocellulosics?. , 2007, 108, 67-93.		479
178	Development of a serial bioreactor system for direct ethanol production from starch usingAspergillus niger andSaccharomyces cerevisiae. Biotechnology and Bioprocess Engineering, 2007, 12, 566-573.	1.4	27
179	Biological Pretreatment with Two Bacterial Strains for Enzymatic Hydrolysis of Office Paper. Current Microbiology, 2007, 54, 424-428.	1.0	65
180	Biophotofuel cell (BPFC) generating electrical power directly from aqueous solutions of biomass and its related compounds while photodecomposing and cleaning. Journal of Applied Electrochemistry, 2007, 37, 1039-1046.	1.5	17
181	Ethanol production from hydrolysed agricultural wastes using mixed culture of Zymomonas mobilis and Candida tropicalis. Biotechnology Letters, 2007, 29, 1839-1843.	1.1	61
182	Bioconversion of municipal solid waste to glucose for bio-ethanol production. Bioprocess and Biosystems Engineering, 2007, 30, 189-196.	1.7	144

#	Article	IF	CITATIONS
183	Potential of Agricultural Residues and Hay for Bioethanol Production. Applied Biochemistry and Biotechnology, 2007, 142, 276-290.	1.4	143
184	Effects of Substrate Loading on Enzymatic Hydrolysis and Viscosity of Pretreated Barley Straw. Applied Biochemistry and Biotechnology, 2007, 143, 27-40.	1.4	171
185	Filter paper degrading ability of a Trichoderma strain with multinucleate conidia. Applied Biochemistry and Biotechnology, 2007, 137-140, 155-160.	1.4	0
186	Fractionation of Cynara cardunculus (cardoon) biomass by dilute-acid pretreatment. Applied Biochemistry and Biotechnology, 2007, 137-140, 239-252.	1.4	14
187	Heat extraction of corn fiber hemicellulose. Applied Biochemistry and Biotechnology, 2007, 137-140, 253-265.	1.4	22
188	Dilute sulfuric acid pretreatment of agricultural and agro-industrial residues for ethanol production. Applied Biochemistry and Biotechnology, 2007, 137-140, 339-352.	1.4	51
189	Xylanase contribution to the efficiency of cellulose enzymatic hydrolysis of barley straw. Applied Biochemistry and Biotechnology, 2007, 137-140, 353-365.	1.4	54
190	Liquid hot water pretreatment of olive tree pruning residues. Applied Biochemistry and Biotechnology, 2007, 137-140, 379-394.	1.4	41
191	Simultaneous saccharification and fermentation of steam exploded wheat straw pretreated with alkaline peroxide. Process Biochemistry, 2008, 43, 1462-1466.	1.8	124
192	Improving enzymatic hydrolysis of industrial hemp (Cannabis sativa L.) by electron beam irradiation. Radiation Physics and Chemistry, 2008, 77, 1034-1038.	1.4	47
193	Evaluation of dilute-acid pretreated bagasse, corn cob and rice straw for ethanol fermentation bySaccharomyces cerevisiae. Annals of Microbiology, 2008, 58, 219-225.	1.1	55
194	Hydrolysis of bamboo fiber cellulose in formic acid. Frontiers of Forestry in China: Selected Publications From Chinese Universities, 2008, 3, 480-486.	0.2	6
195	An Alternative Application to the Portuguese Agro-Industrial Residue: Wheat Straw. Applied Biochemistry and Biotechnology, 2008, 147, 85-96.	1.4	47
196	Optimization of Process Conditions Using Response Surface Methodology (RSM) for Ethanol Production from Pretreated Sugarcane Bagasse: Kinetics and Modeling. Bioenergy Research, 2008, 1, 239-247.	2.2	57
197	Fermentation of acid hydrolysates from olive-tree pruning debris by Pachysolen tannophilus. Bioprocess and Biosystems Engineering, 2008, 31, 611-617.	1.7	16
198	A spatially explicit whole-system model of the lignocellulosic bioethanol supply chain: an assessment of decentralised processing potential. Biotechnology for Biofuels, 2008, 1, 13.	6.2	110
199	Pilot-scale conversion of lime-treated wheat straw into bioethanol: quality assessment of bioethanol and valorization of side streams by anaerobic digestion and combustion. Biotechnology for Biofuels, 2008, 1, 14.	6.2	35
200	Combining hot-compressed water and ball milling pretreatments to improve the efficiency of the enzymatic hydrolysis of eucalyptus. Biotechnology for Biofuels, 2008, 1, 2.	6.2	157

#	Article	IF	CITATIONS
201	Integration options for high energy efficiency and improved economics in a wood-to-ethanol process. Biotechnology for Biofuels, 2008, 1, 4.	6.2	46
202	Integrated xylitol production by fermentation of hardwood wastes. Journal of Chemical Technology and Biotechnology, 2008, 83, 534-540.	1.6	34
203	Comparison of atmospheric aqueous glycerol and steam explosion pretreatments of wheat straw for enhanced enzymatic hydrolysis. Journal of Chemical Technology and Biotechnology, 2008, 83, 707-714.	1.6	48
204	Use of ionic liquids for the efficient utilization of lignocellulosic materials. Journal of Chemical Technology and Biotechnology, 2008, 83, 777-779.	1.6	89
205	Peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis: a continued work. Journal of Chemical Technology and Biotechnology, 2008, 83, 950-956.	1.6	159
206	Effects of Hot Water Extraction on Physical and Chemical Characteristics of Oriented Strand Board (OSB) Wood Flakes. Clean - Soil, Air, Water, 2008, 36, 674-681.	0.7	30
207	Feedstocks for the Future – Biorefinery Production of Chemicals from Renewable Carbon. Clean - Soil, Air, Water, 2008, 36, 641-647.	0.7	193
208	Bioethanol from agricultural waste residues. Environmental Progress, 2008, 27, 51-57.	0.8	31
209	Pretreatment of eucalyptus wood chips for enzymatic saccharification using combined sulfuric acid-free ethanol cooking and ball milling. Biotechnology and Bioengineering, 2008, 99, 75-85.	1.7	126
210	Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnology and Bioengineering, 2008, 99, 1320-1328.	1.7	281
211	Comparison of SHF and SSF processes from steamâ€exploded wheat straw for ethanol production by xyloseâ€fermenting and robust glucoseâ€fermenting <i>Saccharomyces cerevisiae</i> strains. Biotechnology and Bioengineering, 2008, 100, 1122-1131.	1.7	204
212	Kinetic modeling of enzymatic hydrolysis of cellulose in differently pretreated fibers from dairy manure. Biotechnology and Bioengineering, 2008, 101, 441-451.	1.7	56
213	Enzymatic hydrolysis of cellulose coupled with electricity generation in a microbial fuel cell. Biotechnology and Bioengineering, 2008, 101, 1163-1169.	1.7	82
214	Secondâ€generation biofuels and local bioenergy systems. Biofuels, Bioproducts and Biorefining, 2008, 2, 455-469.	1.9	201
215	Progress in bioethanol processing. Progress in Energy and Combustion Science, 2008, 34, 551-573.	15.8	1,126
216	Ethanol production from kitchen garbage using response surface methodology. Biochemical Engineering Journal, 2008, 39, 604-610.	1.8	103
217	Steam pretreatment of H2SO4-impregnated Salix for the production of bioethanol. Bioresource Technology, 2008, 99, 137-145.	4.8	175
218	Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Bioresource Technology, 2008, 99, 1869-1876.	4.8	274

#	Article	IF	CITATIONS
219	Ethanol production from candidate energy crops: Water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Bioresource Technology, 2008, 99, 2495-2500.	4.8	170
220	The performance of serial bioreactors in rapid continuous production of ethanol from dilute-acid hydrolyzates using immobilized cells. Bioresource Technology, 2008, 99, 2226-2233.	4.8	23
221	The degradation of lignocellulose in a chemically and biologically generated sulphidic environment. Bioresource Technology, 2008, 99, 2333-2339.	4.8	9
222	Production of ethanol from soybean hull hydrolysate by osmotolerant Candida guilliermondii NRRL Y-2075. Bioresource Technology, 2008, 99, 2898-2904.	4.8	89
223	Organosolv pretreatment by crude glycerol from oleochemicals industry for enzymatic hydrolysis of wheat straw. Bioresource Technology, 2008, 99, 5474-5479.	4.8	155
224	Effect and aftereffect of γ radiation pretreatment on enzymatic hydrolysis of wheat straw. Bioresource Technology, 2008, 99, 6240-6245.	4.8	135
225	Enhanced enzymatic hydrolysis of wheat straw by aqueous glycerol pretreatment. Bioresource Technology, 2008, 99, 6156-6161.	4.8	127
226	Characterization of β-glucosidase from corn stover and its application in simultaneous saccharification and fermentation. Bioresource Technology, 2008, 99, 6081-6087.	4.8	61
227	Wet oxidation pretreatment, enzymatic hydrolysis and simultaneous saccharification and fermentation of clover–ryegrass mixtures. Bioresource Technology, 2008, 99, 8777-8782.	4.8	82
228	Pretreatment of woody and herbaceous biomass for enzymatic saccharification using sulfuric acid-free ethanol cooking. Bioresource Technology, 2008, 99, 8856-8863.	4.8	104
229	Fine-crushing and subcritical water treatment of wood materials suitable for bioethanol production using image processing as intermediate indicators. Biosystems Engineering, 2008, 101, 436-444.	1.9	3
230	Evaluation of organosolv pretreatment for the conversion of Pinus radiata D. Don to ethanol. Enzyme and Microbial Technology, 2008, 43, 214-219.	1.6	146
231	Evaluation of steam explosion pre-treatment for enzymatic hydrolysis of sunflower stalks. Enzyme and Microbial Technology, 2008, 42, 160-166.	1.6	181
232	Optimized amylolytic enzymes production in Saccharomycopsis fibuligera DSM-70554. Enzyme and Microbial Technology, 2008, 42, 272-277.	1.6	34
233	From plant materials to ethanol by means of supercritical fluid technology. Journal of Supercritical Fluids, 2008, 46, 299-321.	1.6	167
234	Cost-effective xylanase production from free and immobilized Bacillus pumilus strain MK001 and its application in saccharification of Prosopis juliflora. Biochemical Engineering Journal, 2008, 38, 88-97.	1.8	127
235	Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass and Bioenergy, 2008, 32, 422-430.	2.9	377
236	Evaluation of waste mushroom logs as a potential biomass resource for the production of bioethanol. Bioresource Technology, 2008, 99, 2736-2741.	4.8	41

#	Article	IF	CITATIONS
237	Comparative study on chemical pretreatment methods for improving enzymatic digestibility of crofton weed stem. Bioresource Technology, 2008, 99, 3729-3736.	4.8	99
238	Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinant Saccharomyces cerevisiae expressing β-glucosidase. Bioresource Technology, 2008, 99, 5099-5103.	4.8	86
239	Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology, 2008, 99, 5270-5295.	4.8	1,450
240	Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. Bioresource Technology, 2008, 99, 6556-6564.	4.8	194
241	Identification and purification of the main components of cellulases from a mutant strain of Trichoderma viride T 100-14. Bioresource Technology, 2008, 99, 6826-6833.	4.8	94
242	Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydrate Polymers, 2008, 71, 411-415.	5.1	191
243	Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer's spent grain. Enzyme and Microbial Technology, 2008, 43, 124-129.	1.6	289
244	Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel, 2008, 87, 692-700.	3.4	203
245	Optimizing Liquid Hot Water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel, 2008, 87, 3640-3647.	3.4	236
246	Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. International Journal of Molecular Sciences, 2008, 9, 1621-1651.	1.8	2,011
247	Hydrolysis of Nonstarch Carbohydrates of Wheat-Starch Effluent for Ethanol Production. Biotechnology Progress, 2008, 20, 474-479.	1.3	15
248	Effects of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management, 2008, 49, 3498-3504.	4.4	316
249	Converting Municipal Waste into Automobile Fuel: Ethanol from Newspaper. Journal of Chemical Education, 2008, 85, 546.	1.1	10
250	Dilute Acid Hydrolysis of Loblolly Pine: A Comprehensive Approach. Industrial & Engineering Chemistry Research, 2008, 47, 7131-7140.	1.8	141
251	Physicochemical Characterization of Rice Straw Pretreated with Sodium Hydroxide in the Solid State for Enhancing Biogas Production. Energy & Fuels, 2008, 22, 2775-2781.	2.5	367
252	Microwave Heating of Tea Residue Yields Polysaccharides, Polyphenols, and Plant Biopolyester. Journal of Agricultural and Food Chemistry, 2008, 56, 11293-11299.	2.4	75
253	Degradations and Rearrangement Reactions. , 2008, , 375-426.		0
254	Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol. Canadian Journal of Microbiology, 2008, 54, 305-313.	0.8	112

#	Article	IF	CITATIONS
255	Some Recent Advances in Hydrolysis of Biomass in Hot-Compressed Water and Its Comparisons with Other Hydrolysis Methods. Energy & Fuels, 2008, 22, 46-60.	2.5	407
256	In Situ FT-IR Microscopic Study on Enzymatic Treatment of Poplar Wood Cross-Sections. Biomacromolecules, 2008, 9, 2194-2201.	2.6	165
257	Optimization of the Thermal Dry Treatment To Enhance the Enzymatic Hydrolysis of a Spent-Sawdust Matrix Used for Grifola frondosa Cultivation. Energy & Fuels, 2008, 22, 120-122.	2.5	6
258	Energy Product Options for Eucalyptus Species Grown as Short Rotation Woody Crops. International Journal of Molecular Sciences, 2008, 9, 1361-1378.	1.8	139
259	Bio-Product Recovery From Lignocellulosic Materials Derived From Poultry Manure. Bulletin of Science, Technology and Society, 2008, 28, 219-226.	1.1	2
260	Enhancing Ethanol Fermentability of an Artificial Acid Hydrolyzate with Anion Exchange Resin Treatment. Preparative Biochemistry and Biotechnology, 2008, 38, 191-200.	1.0	1
261	The kinetics of glucose production from rice straw by Aspergillus niger. African Journal of Biotechnology, 2008, 7, 1745-1752.	0.3	13
262	Lime Pretreatment of Switchgrass for Bioethanol Production. , 2008, , .		2
263	Alkaline Pretreatment of Coastal Bermudagrass for Bioethanol Production. , 2008, , .		0
264	A Comparative Study of Acid and Enzymatic Hydrolysis of Prairie Cord Grass Pretreated using High Shear Bioreactor. , 2008, , .		0
265	High Temperature Dilute Acid Pretreatment of Coastal Bermudagrass. , 2008, , .		0
266	Evaluation and Characterization of Sorghum Biomass as Feedstock for Ethanol Production. , 2009, , .		1
267	Impact of Dilute Acid Pretreatment Conditions and Enzyme System on Switchgrass Hydrolysis. , 2009, , .		0
268	Process Simulation of Dilute Acid Pretreatment of Coastal Bermudagrass for Bioethanol Production. , 2009, , .		0
269	Sodium Hydroxide Pretreatment of Switchgrass for Enzymatic Saccharification Improvement. , 2009, , .		2
270	Effect of Microwave Pretreatment on Sugar Recovery from Corn Stover. , 2009, , .		0
271	Lime Pretreatment of Coastal Bermudagrass for Bioethanol Production. , 2009, , .		0
272	Fungal Strain Improvement for Cellulase Production Using Repeated and Sequential Mutagenesis. Mycobiology, 2009, 37, 267.	0.6	31

		REPORT	
#	Article	IF	CITATIONS
273	Ethanol from lignocellulosic biomass. Ciencia E Investigacion Agraria, 2009, 36, .	0.2	21
274	Efficient Recovery of Glucose and Fructose <i>via</i> Enzymatic Saccharification of Rice Straw with Soft Carbohydrates. Bioscience, Biotechnology and Biochemistry, 2009, 73, 1072-1077.	0.6	56
275	Bioaugmentation for Electricity Generation from Corn Stover Biomass Using Microbial Fuel Cells. Environmental Science & Technology, 2009, 43, 6088-6093.	4.6	149
276	Influence of buffer systems on Trichoderma reesei Rut C-30 morphology and cellulase production. Electronic Journal of Biotechnology, 2009, 12, .	1.2	16
277	Energetic limits to metabolic flexibility: responses of Saccharomyces cerevisiae to glucose–galactose transitions. Microbiology (United Kingdom), 2009, 155, 1340-1350.	0.7	46
278	Bioenergy II: Biological Pretreatment with Fungi as a Tool for Improvement of the Enzymatic Saccharification of Eucalyptus globulus Labill to Obtain Bioethanol. International Journal of Chemical Reactor Engineering, 2009, 7, .	0.6	2
279	Prehydrolysis of <i>Eucalyptus globulus</i> Labill. hemicelluloses prior to pulping and fermentation of the hydrolysates with the yeast <i>Pichia stipitis</i> 10 th EWLP, Stockholm, Sweden, August 25–28, 2008. Holzforschung, 2009, 63, 737-743.	0.9	8
280	Carbohydrate Utilization Patterns for the Extremely Thermophilic Bacterium <i>Caldicellulosiruptor saccharolyticus</i> Reveal Broad Growth Substrate Preferences. Applied and Environmental Microbiology, 2009, 75, 7718-7724.	1.4	98
281	Ethanol. , 2009, , 295-304.		2
282	Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, 2009, 27, 185-194.	6.0	1,236
283	Clean conversion of cellulose into fermentable glucose. Biotechnology Advances, 2009, 27, 625-632.	6.0	48
284	Bioconversion of lignocellulosic biomass to hydrogen: Potential and challenges. Biotechnology Advances, 2009, 27, 1051-1060.	6.0	237
285	Modeling cellulase kinetics on lignocellulosic substrates. Biotechnology Advances, 2009, 27, 833-848.	6.0	347
286	Valorisation of hardwood hemicelluloses in the kraft pulping process by using an integrated biorefinery concept. Food and Bioproducts Processing, 2009, 87, 197-207.	1.8	64
287	Lignocellulose degradation and enzyme production by Irpex lacteus CD2 during solid-state fermentation of corn stover. Journal of Bioscience and Bioengineering, 2009, 108, 372-375.	1.1	79
288	Efficient and Comprehensive Utilization of Hemicellulose in the Corn Stover. Chinese Journal of Chemical Engineering, 2009, 17, 350-354.	1.7	7
289	Bereitstellung von Energie und Rohstoffen für eine den biogenen Stoffkreisläfen nachempfundene, nachhaltige Stoffwirtschaft – Eine neue Herausforderung fA¼r die Bioverfahrenstechnik?. Chemie-Ingenieur-Technik, 2009, 81, 1697-1709.	0.4	1
290	Model for Continual Depolymerization of Biomass Catalyzed by Dilute Sulfuric Acid. Chemical Engineering and Technology, 2009, 32, 534-540.	0.9	11

#	Article	IF	Citations
291	Acidâ€Catalyzed Conversion of Sugars and Furfurals in an Ionicâ€Liquid Phase. ChemSusChem, 2009, 2, 665-671.	3.6	226
292	Acid Hydrolysis of Cellulose as the Entry Point into Biorefinery Schemes. ChemSusChem, 2009, 2, 1096-1107.	3.6	604
293	Effect of oxygen transfer rates on alcohols production by <i>Candida guilliermondii</i> cultivated on soybean hull hydrolysate. Journal of Chemical Technology and Biotechnology, 2009, 84, 223-228.	1.6	13
294	Fermentation of enzymatic hydrolysates from olive stones by <i>Pachysolen tannophilus</i> . Journal of Chemical Technology and Biotechnology, 2009, 84, 461-467.	1.6	27
295	Experimental evaluation of alkaline treatment as a method for enhancing the enzymatic digestibility of autohydrolysed <i>Acacia dealbata</i> . Journal of Chemical Technology and Biotechnology, 2009, 84, 1070-1077.	1.6	24
296	Microalgal biomass as a fermentation feedstock for bioethanol production. Journal of Chemical Technology and Biotechnology, 2010, 85, 199-203.	1.6	226
297	Ionic liquidâ€mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnology and Bioengineering, 2009, 102, 1368-1376.	1.7	844
298	Fungal pretreatment of lignocellulose by <i>Phanerochaete chrysosporium</i> to produce ethanol from rice straw. Biotechnology and Bioengineering, 2009, 104, 471-482.	1.7	176
299	Coproduction of ethanol and power from switchgrass. Biofuels, Bioproducts and Biorefining, 2009, 3, 195-218.	1.9	87
300	Regulatory hurdles for transgenic biofuel crops. Biofuels, Bioproducts and Biorefining, 2009, 3, 468-480.	1.9	1
301	The role that lignocellulosic feedstocks and various biorefining technologies can play in meeting Ireland's biofuel targets. Biofuels, Bioproducts and Biorefining, 2009, 3, 500-520.	1.9	27
302	Fast enzymatic saccharification of switchgrass after pretreatment with ionic liquids. Biotechnology Progress, 2010, 26, 127-133.	1.3	73
303	Microwaveâ€based alkali pretreatment of switchgrass and coastal bermudagrass for bioethanol production. Biotechnology Progress, 2010, 26, 644-652.	1.3	98
304	Production of bioethanol by direct bioconversion of oil-palm industrial effluent in a stirred-tank bioreactor. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 801-808.	1.4	32
305	Cellulase production by solid state fermentation using bagasse withPenicillium decumbens L-06. Annals of Microbiology, 2009, 59, 517-523.	1.1	17
306	Mechanisms of the stimulatory effects of rhamnolipid biosurfactant on rice straw hydrolysis. Applied Energy, 2009, 86, S233-S237.	5.1	52
307	Cellulosic ethanol production in the United States: Conversion technologies, current production status, economics, and emerging developments. Energy for Sustainable Development, 2009, 13, 174-182.	2.0	102
308	Thermal behavior of corn fibers and corn fiber gums prepared in fiber processing to ethanol. Journal of Analytical and Applied Pyrolysis, 2009, 85, 11-18.	2.6	17

ARTICLE IF CITATIONS Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. 309 2.4 238 Cellulose, 2009, 16, 743-762. Production of Cellulolytic Enzymes by Aspergillus phoenicis in Grape Waste using Response Surface Methodology. Applied Biochemistry and Biotechnology, 2009, 152, 295-305. 1.4 Novel Isolates for Biological Detoxification of Lignocellulosic Hydrolysate. Applied Biochemistry and 311 1.4 32 Biotechnology, 2009, 152, 199-212. Protein Extraction and Enzymatic Hydrolysis of Ammonia-Treated Cassava Leaves (Manihot esculenta) Tj ETQq1 1 Q.784314 rgBT /Ov Characterization of Fast Pyrolysis Bio-oils Produced from Pretreated Pine Wood. Applied 313 1.4 121 Biochemistry and Biotechnology, 2009, 154, 3-13. Water Hyacinth as Carbon Source for the Production of Cellulase by Trichoderma reesei. Applied 1.4 Biochemistry and Biotechnology, 2009, 158, 552-560. Strain improvement of Trichoderma reesei Rut C-30 for increased cellulase production. Indian Journal 315 1.5 26 of Microbiology, 2009, 49, 188-195. Commercial cellulosic ethanol: The role of plant-expressed enzymes. In Vitro Cellular and 79 Developmental Biology - Plant, 2009, 45, 314-329. Bioethanol production from ammonia percolated wheat straw. Biotechnology and Bioprocess 317 1.4 35 Engineering, 2009, 14, 606-611. Pretreatment and saccharification of rice hulls for the production of fermentable sugars. 1.4 Biotechnology and Bioprocess Engineering, 2009, 14, 828-834. Dried leaves â€" Novel reductant for acid leaching of manganese ore. Transactions of the Indian 319 0.7 10 Institute of Metals, 2009, 62, 551-554. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae 79 engineered for xylose utilization. Applied Microbiology and Biotechnology, 2009, 82, 1037-1047. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology 321 1.7 964 and Biotechnology, 2009, 82, 815-827. Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against 6.2 three lignocellulosic materials. Biotechnology for Biofuels, 2009, 2, 24. Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnology for 323 6.2 283 Biofuels, 2009, 2, 26. A techno-economic comparison between two technologies for bioethanol production from 324 233 lignocellulose. Biomass and Bioenergy, 2009, 33, 478-491. Recovery of arabinan in acetic acid-catalyzed hydrothermal pretreatment on corn stover. Biomass and 325 2.9 9 Bioenergy, 2009, 33, 1660-1663. Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. 4.8 Bioresource Technology, 2009, 100, 1285-1290.

#	Article	IF	CITATIONS
327	Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresource Technology, 2009, 100, 1608-1613.	4.8	265
328	Pretreatment of empty palm fruit bunch for production of chemicals via catalytic pyrolysis. Bioresource Technology, 2009, 100, 2867-2873.	4.8	120
329	Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresource Technology, 2009, 100, 3948-3962.	4.8	749
330	Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis. Bioresource Technology, 2009, 100, 3914-3920.	4.8	133
331	Bioethanol production from wheat straw by the thermotolerant yeast Kluyveromyces marxianus CECT 10875 in a simultaneous saccharification and fermentation fed-batch process. Fuel, 2009, 88, 2142-2147.	3.4	110
332	Simultaneous saccharification and fermentation of alkaline-pretreated corn stover to ethanol using a recombinant yeast strain. Fuel Processing Technology, 2009, 90, 1193-1197.	3.7	59
333	Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. Journal of Biotechnology, 2009, 139, 47-54.	1.9	423
334	A chimeric NST repressor has the potential to improve glucose productivity from plant cell walls. Journal of Biotechnology, 2009, 142, 279-284.	1.9	18
335	Production of ethanol from cassava pulp via fermentation with a surface-engineered yeast strain displaying glucoamylase. Renewable Energy, 2009, 34, 1354-1358.	4.3	110
336	The utilization of acid-tolerant bacteria on ethanol production from kitchen garbage. Renewable Energy, 2009, 34, 1466-1470.	4.3	73
337	An examination of biorefining processes, catalysts and challenges. Catalysis Today, 2009, 145, 138-151.	2.2	292
338	Specific surface to evaluate the efficiencies of milling and pretreatment of wood for enzymatic saccharification. Chemical Engineering Science, 2009, 64, 474-485.	1.9	205
339	Modeling xylan solubilization during autohydrolysis of sugar maple and aspen wood chips: Reaction kinetics and mass transfer. Chemical Engineering Science, 2009, 64, 3031-3041.	1.9	93
340	Bioenergy: Sustainable fuels from biomass by yeast and fungal whole-cell biocatalysts. Biochemical Engineering Journal, 2009, 44, 2-12.	1.8	121
341	Response surface optimization of enzymatic hydrolysis of Cistus ladanifer and Cytisus striatus for bioethanol production. Biochemical Engineering Journal, 2009, 45, 192-200.	1.8	172
342	Optimization of synergistic parameters for thermostable cellulase activity of Aspergillus heteromorphus using response surface methodology. Biochemical Engineering Journal, 2009, 48, 28-35.	1.8	47
343	Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass and Bioenergy, 2009, 33, 88-96.	2.9	227
344	Process engineering evaluation of ethanol production from wood through bioprocessing and chemical catalysis. Biomass and Bioenergy, 2009, 33, 255-266.	2.9	65

ARTICLE IF CITATIONS Comparison of four different chemical pretreatments of corn stover for enhancing enzymatic 345 2.9 198 digestibility. Biomass and Bioenergy, 2009, 33, 1381-1385. Enhancement of the enzymatic digestibility of sugarcane bagasse by alkali–peracetic acid pretreatment. Enzyme and Microbial Technology, 2009, 44, 17-23. 346 1.6 118 Purification and characterisation of a xylanase from Thermomyces lanuginosus and its functional 347 1.6 29 expression by Pichia pastoris. Enzyme and Microbial Technology, 2009, 45, 348-354. Enzymatic saccharification of woody biomass micro/nanofibrillated by continuous extrusion process 348 4.8 I â€["] Effect of additives with cellulose affinity. Bioresource Technology, 2009, 100, 275-279. Sugarcane bagasse oxidation using a combination of hypochlorite and peroxide. Bioresource 349 4.8 34 Technology, 2009, 100, 935-941. Rheology of corn stover slurries at high solids concentrations $\hat{a} \in \hat{}$ Effects of saccharification and particle size. Bioresource Technology, 2009, 100, 925-934. 4.8 174 Enhanced enzymatic hydrolysis of sugarcane bagasse by N-methylmorpholine-N-oxide pretreatment. 351 4.8 144 Bioresource Technology, 2009, 100, 866-871. Effect of different cellulase dosages on cell viability and ethanol production by Kluyveromyces 4.8 56 marxianus in SSF processes. Bioresource Technology, 2009, 100, 890-895. Biodegradation of high molecular weight lignin under sulfate reducing conditions: Lignin 353 4.8 84 degradability and degradation by-products. Bioresource Technology, 2009, 100, 1622-1627. Switchgrass for bioethanol and other value-added applications: A review. Bioresource Technology, 354 4.8 2009, 100, 1515-1523. Microbial pretreatment of cotton stalks by submerged cultivation of Phanerochaete chrysosporium. 355 4.8 42 Bioresource Technology, 2009, 100, 4388-4395. Multiscale modelling of hydrothermal biomass pretreatment for chip size optimization. Bioresource 356 4.8 Technology, 2009, 100, 2621-2628. High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresource Technology, 357 4.8 632 2009, 100, 2580-2587. Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresource Technology, 2009, 100, 2706-2711. 4.8 229 Bioconversion of lignocellulosic fraction of water-hyacinth (Eichhornia crassipes) hemicellulose 359 153 4.8 acid hydrolysate to ethanol by Pichia stipitis. Bioresource Technology, 2009, 100, 3293-3297. Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Bioresource Technology, 2009, 100, 4.8 247 4374-4380. Cost reduction and feedstock diversity for sulfuric acid-free ethanol cooking of lignocellulosic 361 4.8 54 biomass as a pretreatment to enzymatic saccharification. Bioresource Technology, 2009, 100, 4783-4789. Enhancing anaerobic biogasification of corn stover through wet state NaOH pretreatment. 4.8 Bioresource Technology, 2009, 100, 5140-5145.

#	Article	IF	Citations
363	The effect of biological pretreatment with the selective white-rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods and hardwoods. Bioresource Technology, 2009, 100, 5170-5175.	4.8	134
364	Enzymatic hydrolysis of cellulosic municipal wastewater treatment process residuals as feedstocks for the recovery of simple sugars. Bioresource Technology, 2009, 100, 5700-5706.	4.8	40
365	Extraction and hydrolysis of levoglucosan from pyrolysis oil. Bioresource Technology, 2009, 100, 6059-6063.	4.8	173
366	High consistency enzymatic hydrolysis of hardwood substrates. Bioresource Technology, 2009, 100, 5890-5897.	4.8	107
367	Quantitative analysis of sugars in wood hydrolyzates with 1H NMR during the autohydrolysis of hardwoods. Bioresource Technology, 2009, 100, 6398-6406.	4.8	64
368	Cellulose whiskers extracted from mulberry: A novel biomass production. Carbohydrate Polymers, 2009, 76, 94-99.	5.1	432
369	Quo vadis biofuels?. Energy and Environmental Science, 2009, 2, 343.	15.6	123
370	Optimization of Xylanase Production by <i>Thermomyces lanuginosus</i> in Solid State Fermentation. Bioscience, Biotechnology and Biochemistry, 2009, 73, 2640-2644.	0.6	19
371	Dehydrogenation of Ethanol on a 2Ru/ZrO ₂ (111) Surface: Density Functional Computations. Journal of Physical Chemistry C, 2009, 113, 6132-6139.	1.5	9
372	Characteristics and Precipitation of Glucose Oligomers in the Fresh Liquid Products Obtained from the Hydrolysis of Cellulose in Hot-Compressed Water. Industrial & Engineering Chemistry Research, 2009, 48, 10682-10690.	1.8	69
373	Saccharification and Fermentation of Dilute-Acid-Pretreated Freeze-Dried Switchgrass ^{â€} . Energy & Fuels, 2009, 23, 5626-5635.	2.5	19
374	Ionic-Liquid-Phase Hydrolysis of Pine Wood. Industrial & Engineering Chemistry Research, 2009, 48, 1277-1286.	1.8	144
375	Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Industrial & Engineering Chemistry Research, 2009, 48, 3713-3729.	1.8	2,939
376	Determination of Glucose and Cellobiose Dissolved in the Ionic Liquid 1-Ethyl-3-Methylimidazolium Acetate Using Fourier Transform Infrared Spectroscopy. Applied Spectroscopy, 2009, 63, 1041-1049.	1.2	26
377	Investigation on the Changes of Main Compositions and Extractives of Rice Straw Pretreated with Sodium Hydroxide for Biogas Production. Energy & amp; Fuels, 2009, 23, 2220-2224.	2.5	58
378	Metabolic engineering of cyanobacteria for ethanol production. Energy and Environmental Science, 2009, 2, 857.	15.6	299
379	Optimization of Enzymatic Hydrolysis of Wheat Straw Pretreated by Alkaline Peroxide Using Response Surface Methodology. Industrial & amp; Engineering Chemistry Research, 2009, 48, 7346-7353.	1.8	154
380	Viologen Catalysts for a Direct Carbohydrate Fuel Cell. Journal of the Electrochemical Society, 2009, 156, B1201.	1.3	29

#	Article	IF	CITATIONS
382	Yeast Biotechnology: Diversity and Applications. , 2009, , .		67
383	Biotechnology for Agro-Industrial Residues Utilisation. , 2009, , .		120
384	Process Modeling and Integration of Fuel Ethanol Production from Lignocellulosic Biomass Based on Double Acid Hydrolysis. Energy & Fuels, 2009, 23, 1759-1765.	2.5	60
385	Pretreatment of lignocellulosic biomass associated with the autoxidation of ethanol to acetal. Green Chemistry, 2009, 11, 27-30.	4.6	5
386	Mathematical Modelling of Feed Pretreatment for Bioethanol Production. Computer Aided Chemical Engineering, 2009, , 1299-1304.	0.3	1
387	Characterization of cellulase under various intensities of static magnetic fields. Catalysis Communications, 2009, 11, 91-95.	1.6	18
388	Thermotolerant Yeasts for Bioethanol Production Using Lignocellulosic Substrates. , 2009, , 551-588.		2
389	Wine Industry Residues. , 2009, , 293-311.		12
390	Microwave Heating for Solubilization of Polysaccharide and Polyphenol from Soybean Residue (Okara). Food Science and Technology Research, 2009, 15, 307-314.	0.3	20
391	Feedstocks for Fuel Ethanol Production. Biotechnology and Bioprocessing Series, 2009, , 43-75.	0.0	0
392	Feedstock Conditioning and Pretreatment. Biotechnology and Bioprocessing Series, 2009, , 77-113.	0.0	0
393	Kinetics of xylose in hydrolysate using dilute sulphuric acid as catalyst. International Journal of Global Energy Issues, 2009, 31, 230.	0.2	0
394	Sugar cane bagasse as feedstock for second generation ethanol production. Part I: Diluted acid pretreatment optimization. Electronic Journal of Biotechnology, 2010, 13, .	1.2	26
396	Quantitative Trait Loci and Trait Correlations for Maize Stover Cell Wall Composition and Glucose Release for Cellulosic Ethanol. Crop Science, 2010, 50, 541-555.	0.8	53
397	Synthesis of the components of engine fuels on the basis of renewable raw materials: Trends and prospects. Petroleum Chemistry, 2010, 50, 325-331.	0.4	7
398	Biofuels from Lignocellulosic Biomass. , 2010, , 19-41.		24
400	Pretreatment of Siam weed stem by several chemical methods for increasing the enzymatic digestibility. Biotechnology Journal, 2010, 5, 493-504.	1.8	36
401	Exploring improved endoglucanase expression in Saccharomyces cerevisiae strains. Applied Microbiology and Biotechnology, 2010, 86, 1503-1511.	1.7	39

#	Article	IF	CITATIONS
402	Evaluation of the biocompatibile ionic liquid 1-methyl-3-methylimidazolium dimethylphosphite pretreatment of corn cob for improved saccharification. Applied Microbiology and Biotechnology, 2010, 87, 117-126.	1.7	86
403	Engineering cellulolytic ability into bioprocessing organisms. Applied Microbiology and Biotechnology, 2010, 87, 1195-1208.	1.7	131
404	Synergism between hydrophobic proteins of corn stover and cellulase in lignocellulose hydrolysis. Biochemical Engineering Journal, 2010, 48, 218-224.	1.8	29
405	Biomass upgrading through acid–base catalysis. Chemical Engineering Journal, 2010, 161, 314-322.	6.6	87
406	Enhanced ethanol production via fermentation of rice straw with hydrolysate-adapted Candida tropicalis ATCC 13803. Process Biochemistry, 2010, 45, 1299-1306.	1.8	93
407	Ethanol production from sorghum by a dilute ammonia pretreatment. Journal of Industrial Microbiology and Biotechnology, 2010, 37, 27-34.	1.4	60
408	Evaluation of a combined brown rot decay–chemical delignification process as a pretreatment for bioethanol production from Pinus radiata wood chips. Journal of Industrial Microbiology and Biotechnology, 2010, 37, 893-900.	1.4	32
409	Adaptation of the xylose fermenting yeast Saccharomyces cerevisiae F12 for improving ethanol production in different fed-batch SSF processes. Journal of Industrial Microbiology and Biotechnology, 2010, 37, 1211-1220.	1.4	70
410	Process optimization for the production of diosgenin with Trichoderma reesei. Bioprocess and Biosystems Engineering, 2010, 33, 647-655.	1.7	22
411	Molecular cloning, purification, and characterization of a novel, acidic, pH-stable endoglucanase from Martelella mediterranea. Journal of Microbiology, 2010, 48, 393-398.	1.3	30
412	Biohydrogen Production from Biomass and Wastes via Dark Fermentation: A Review. Waste and Biomass Valorization, 2010, 1, 21-39.	1.8	286
414	Microwave Pretreatment of Substrates for Cellulase Production by Solid-State Fermentation. Applied Biochemistry and Biotechnology, 2010, 160, 1557-1571.	1.4	42
415	Horticultural Waste as the Substrate for Cellulase and Hemicellulase Production by Trichoderma reesei Under Solid-State Fermentation. Applied Biochemistry and Biotechnology, 2010, 162, 295-306.	1.4	82
416	Structural Characterization and Comparison of Switchgrass Ball-milled Lignin Before and After Dilute Acid Pretreatment. Applied Biochemistry and Biotechnology, 2010, 162, 62-74.	1.4	227
417	Directed Evolution of a Thermophilic \hat{l}^2 -glucosidase for Cellulosic Bioethanol Production. Applied Biochemistry and Biotechnology, 2010, 161, 301-312.	1.4	77
418	Characterisation of Specific Activities and Hydrolytic Properties of Cell-Wall-Degrading Enzymes Produced by Trichoderma reesei Rut C30 on Different Carbon Sources. Applied Biochemistry and Biotechnology, 2010, 161, 347-364.	1.4	86
419	Enzymatic Hydrolysis of Sodium Dodecyl Sulphate (SDS)—Pretreated Newspaper for Cellulosic Ethanol Production by Saccharomyces cerevisiae and Pichia stipitis. Applied Biochemistry and Biotechnology, 2010, 162, 1052-1064.	1.4	31
420	Nitrogen Source Optimization for Cellulase Production by Penicillium funiculosum, using a Sequential Experimental Design Methodology and the Desirability Function. Applied Biochemistry and Biotechnology, 2010, 161, 411-422.	1.4	32

#	Article	IF	CITATIONS
421	Optimizing Dilute-Acid Pretreatment of Rapeseed Straw for Extraction of Hemicellulose. Applied Biochemistry and Biotechnology, 2010, 161, 22-33.	1.4	71
422	Kinetic Study on the Pretreatment and Enzymatic Saccharification of Rice Hull for the Production of Fermentable Sugars. Applied Biochemistry and Biotechnology, 2010, 162, 1471-1482.	1.4	27
423	Dilute Ammonia Pretreatment of Sorghum and Its Effectiveness on Enzyme Hydrolysis and Ethanol Fermentation. Applied Biochemistry and Biotechnology, 2010, 161, 67-74.	1.4	38
424	Deficiency of Cellulase Activity Measurements for Enzyme Evaluation. Applied Biochemistry and Biotechnology, 2010, 162, 1737-1750.	1.4	18
425	Evaluation of High Solids Alkaline Pretreatment of Rice Straw. Applied Biochemistry and Biotechnology, 2010, 162, 1768-1784.	1.4	210
426	Cellulases and Xylanases Production by Penicillium echinulatum Grown on Sugar Cane Bagasse in Solid-State Fermentation. Applied Biochemistry and Biotechnology, 2010, 162, 1889-1900.	1.4	60
427	Improved bioethanol production through simultaneous saccharification and fermentation of lignocellulosic agricultural wastes by Kluyveromyces marxianus 6556. World Journal of Microbiology and Biotechnology, 2010, 26, 1041-1046.	1.7	42
428	Automated assay for screening the enzymatic release of reducing sugars from micronized biomass. Microbial Cell Factories, 2010, 9, 58.	1.9	53
429	The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 2010, 51, 1412-1421.	4.4	1,631
430	Key technologies for bioethanol production from lignocellulose. Biotechnology Advances, 2010, 28, 556-562.	6.0	212
431	Evaluation of the effect of particle size, aeration rate and harvest time on the production of cellulase by Trichoderma reesei QM9414 using response surface methodology. Food and Bioproducts Processing, 2010, 88, 61-66.	1.8	28
432	Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis. Journal of Bioscience and Bioengineering, 2010, 110, 18-25.	1.1	112
433	Evaluation of white-rot fungi-assisted alkaline/oxidative pretreatment of corn straw undergoing enzymatic hydrolysis by cellulase. Journal of Bioscience and Bioengineering, 2010, 110, 660-664.	1.1	60
434	Residential Solid Oxide Fuel Cell Generator Fuelled by Ethanol: Cell, Stack and System Modelling with a Preliminary Experiment. Fuel Cells, 2010, 10, 654-675.	1.5	27
435	Which Controls the Depolymerization of Cellulose in Ionic Liquids: The Solid Acid Catalyst or Cellulose?. ChemSusChem, 2010, 3, 266-276.	3.6	190
436	Nextâ€Generation Biofuels: Survey of Emerging Technologies and Sustainability Issues. ChemSusChem, 2010, 3, 1106-1133.	3.6	270
438	Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels, Bioproducts and Biorefining, 2010, 4, 77-93.	1.9	295
439	Biomethane production from starch and lignocellulosic crops: a comparative review. Biofuels, Bioproducts and Biorefining, 2010, 4, 447-458.	1.9	190

#	Article	IF	Citations
440	Modeling changes in biomass composition during microwaveâ€based alkali pretreatment of switchgrass. Biotechnology and Bioengineering, 2010, 105, 88-97.	1.7	34
441	Correlation between anatomical characteristics of ethanol organosolv pretreated <i>Buddleja davidii</i> and its enzymatic conversion to glucose. Biotechnology and Bioengineering, 2010, 107, 795-801.	1.7	24
442	A comparative study of activity and apparent inhibition of fungal βâ€glucosidases. Biotechnology and Bioengineering, 2010, 107, 943-952.	1.7	50
443	An approach to optimization of enzymatic hydrolysis from sugarcane bagasse based on organosolv pretreatment. Journal of Chemical Technology and Biotechnology, 2010, 85, 1092-1098.	1.6	58
444	Application of a microassay method to study enzymatic hydrolysis of pretreated wheat straw. Journal of Chemical Technology and Biotechnology, 2010, 85, 1291-1297.	1.6	14
445	A review of catalytic hydrogen production processes from biomass. Renewable and Sustainable Energy Reviews, 2010, 14, 166-182.	8.2	319
446	Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and Sustainable Energy Reviews, 2010, 14, 1037-1047.	8.2	809
447	Commercialization potential of microalgae for biofuels production. Renewable and Sustainable Energy Reviews, 2010, 14, 2596-2610.	8.2	762
448	Reactions of C5 and C6-sugars, cellulose, and lignocellulose under hot compressed water (HCW) in the presence of heterogeneous acid catalysts. Fuel, 2010, 89, 2873-2880.	3.4	90
449	On the preparation and characterization of chars and activated carbons from orange skin. Fuel Processing Technology, 2010, 91, 1345-1354.	3.7	58
450	Bioconversion of corn stover hydrolysate to ethanol by a recombinant yeast strain. Fuel Processing Technology, 2010, 91, 1807-1811.	3.7	36
451	Enzymatic saccharification and fermentation of paper and pulp industry effluent for biohydrogen production. International Journal of Hydrogen Energy, 2010, 35, 3389-3400.	3.8	60
452	Biohydrogen production from poplar leaves pretreated by different methods using anaerobic mixed bacteria. International Journal of Hydrogen Energy, 2010, 35, 4041-4047.	3.8	105
453	CNT-based catalysts for H2 production by ethanol reforming. International Journal of Hydrogen Energy, 2010, 35, 12588-12595.	3.8	43
454	Biological pretreatment of rice straw by fermenting with Dichomitus squalens. New Biotechnology, 2010, 27, 424-434.	2.4	53
455	Lignocellulose pretreatment severity – relating pH to biomatrix opening. New Biotechnology, 2010, 27, 739-750.	2.4	299
456	Chemical compositions of four switchgrass populations. Biomass and Bioenergy, 2010, 34, 48-53.	2.9	63
457	Temperature dependence of cellulase hydrolysis of paper fiber. Biomass and Bioenergy, 2010, 34, 1973-1977.	2.9	9

ARTICLE IF CITATIONS Response surface optimization for ethanol production from Pennisetum Alopecoider by Klebsiella 458 2.9 21 oxytoca THLCO409. Biomass and Bioenergy, 2010, 34, 1922-1929. Bio-ethanol from lignocellulose: Status, perspectives and challenges in Malaysia. Bioresource 4.8 243 Technology, 2010, 101, 4834-4841. Cellulose pretreatment in subcritical water: Effect of temperature on molecular structure and 460 4.8 130 enzymatic reactivity. Bioresource Technology, 2010, 101, 1337-1347. Base-induced delignification of miscanthus x giganteus studied by three-dimensional confocal raman 4.8 imaging. Bioresource Technology, 2010, 101, 4919-4925. Production of bioethanol from lignocellulose: Status and perspectives in Korea. Bioresource 462 4.8 31 Technology, 2010, 101, 4801-4805. Biomass-derived syngas fermentation into biofuels: Opportunities and challenges. Bioresource Technology, 2010, 101, 5013-5022. 4.8 The roles of xylan and lignin in oxalic acid pretreated corncob during separate enzymatic hydrolysis 464 4.8 82 and ethanol fermentation. Bioresource Technology, 2010, 101, 4379-4385. Pretreatment of wheat straw by nonionic surfactant-assisted dilute acid for enhancing enzymatic 4.8 93 hydrolysis and ethanol production. Bioresource Technology, 2010, 101, 4875-4883. Pretreatment by ultra-high pressure explosion with homogenizer facilitates cellulase digestion of 466 4.8 43 sugarcane bagasses. Bioresource Technology, 2010, 101, 5592-5600. Dark fermentative hydrogen production from enzymatic hydrolysate of xylan and pretreated rice 4.8 straw by Clostridium butyricum CGS5. Bioresource Technology, 2010, 101, 5885-5891. Fungal treatment of cornstalks enhances the delignification and xylan loss during mild alkaline 468 4.8 80 pretreatment and enzymatic digestibility of glucan. Bioresource Technology, 2010, 101, 6728-6734. Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine 4.8 (Pinus rigida). Bioresource Technology, 2010, 101, 7046-7053. Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to 470 4.8 255 fermentable sugars. Bioresource Technology, 2010, 101, 7432-7438. Can the same steam pretreatment conditions be used for most softwoods to achieve good, enzymatic hydrolysis and sugar yields?. Bioresource Technology, 2010, 101, 7827-7833. 471 4.8 84 Bioethanol from the Portuguese forest residue Pterospartum tridentatum – An evaluation of 472 pretreatment strategy for enzymatic saccharification and sugars fermentation. Bioresource 4.8 16 Technology, 2010, 101, 7797-7803. Effects of pretreatment methods for hazelnut shell hydrolysate fermentation with Pichia Stipitis to 48 ethanol. Bioresource Technology, 2010, 101, 8664-8670. Bioethanol production from hydrothermally pretreated Eucalyptus globulus wood. Bioresource 474 4.8 168 Technology, 2010, 101, 8706-8712. Pretreatment of guayule biomass using supercritical carbon dioxide-based method. Bioresource 4.8 Technology, 2010, 101, 9785-9791.

#	Article	IF	Citations
476	Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. Bioresource Technology, 2010, 101, 9600-9604.	4.8	157
477	Acid hydrolysis of olive tree biomass. Chemical Engineering Research and Design, 2010, 88, 633-640.	2.7	70
478	Rapid determination of furfural in biomass hydrolysate by full evaporation headspace gas chromatography. Journal of Chromatography A, 2010, 1217, 7616-7619.	1.8	18
479	Restriction of the enzymatic hydrolysis of steam-pretreated spruce by lignin and hemicellulose. Enzyme and Microbial Technology, 2010, 46, 185-193.	1.6	157
480	Characterisation of the multi-enzyme complex xylanase activity from Bacillus licheniformis SVD1. Enzyme and Microbial Technology, 2010, 47, 174-177.	1.6	16
481	A systematic study of the kinetics of lignin pyrolysis. Thermochimica Acta, 2010, 498, 61-66.	1.2	290
482	A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: From biofuels and chemicals, to biocatalysis and bioremediation. Metabolic Engineering, 2010, 12, 307-331.	3.6	478
483	Synthesis of zeolite crystals with unusual morphology: Application in acid catalysis. Applied Catalysis A: General, 2010, 390, 102-109.	2.2	39
484	Crop residues as raw materials for biorefinery systems – A LCA case study. Applied Energy, 2010, 87, 47-57.	5.1	459
485	Recent advances of enzymatic reactions in ionic liquids. Biochemical Engineering Journal, 2010, 48, 295-314.	1.8	415
486	Utilization of agro-industrial waste for xylanase production by Aspergillus foetidus MTCC 4898 under solid state fermentation and its application in saccharification. Biochemical Engineering Journal, 2010, 49, 361-369.	1.8	91
487	Extrusion as a thermo-mechanical pre-treatment for lignocellulosic ethanol. Biomass and Bioenergy, 2010, 34, 1703-1710.	2.9	119
488	Steam pretreatment of dry and ensiled industrial hemp for ethanol production. Biomass and Bioenergy, 2010, 34, 1721-1731.	2.9	100
489	On-line desalting and carbohydrate analysis for immobilized enzyme hydrolysis of waste cellulosic biomass by column-switching high-performance liquid chromatography. Journal of Chromatography A, 2010, 1217, 2104-2110.	1.8	18
490	Bio-ethanol from water hyacinth biomass: An evaluation of enzymatic saccharification strategy. Bioresource Technology, 2010, 101, 925-930.	4.8	119
491	Enhancement of enzymatic accessibility by fibrillation of woody biomass using batch-type kneader with twin-screw elements. Bioresource Technology, 2010, 101, 769-774.	4.8	38
492	Acid hydrolysis of sugarcane bagasse for lactic acid production. Bioresource Technology, 2010, 101, 1036-1043.	4.8	182
493	Pretreatment of paper tube residuals for improved biogas production. Bioresource Technology, 2010, 101, 1206-1212.	4.8	116

#	Article	IF	CITATIONS
494	Three-stage hydrolysis to enhance enzymatic saccharification of steam-exploded corn stover. Bioresource Technology, 2010, 101, 4930-4935.	4.8	54
495	A novel microbial habitat of alkaline black liquor with very high pollution load: Microbial diversity and the key members in application potentials. Bioresource Technology, 2010, 101, 1737-1744.	4.8	26
496	Evaluation of elastic modulus and hardness of crop stalks cell walls by nano-indentation. Bioresource Technology, 2010, 101, 2867-2871.	4.8	90
497	Bioethanol production from rice straw: An overview. Bioresource Technology, 2010, 101, 4767-4774.	4.8	742
498	Hydrothermal pre-treatment of rapeseed straw. Bioresource Technology, 2010, 101, 2428-2435.	4.8	110
499	Production of bioethanol from sugarcane bagasse: Status and perspectives. Bioresource Technology, 2010, 101, 4754-4766.	4.8	577
500	Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment. Bioresource Technology, 2010, 101, 4959-4964.	4.8	174
501	Lignocellulosic ethanol in India: Prospects, challenges and feedstock availability. Bioresource Technology, 2010, 101, 4826-4833.	4.8	220
502	Status and prospect of lignocellulosic bioethanol production in China. Bioresource Technology, 2010, 101, 4814-4819.	4.8	133
503	Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresource Technology, 2010, 101, 4744-4753.	4.8	860
504	Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 2010, 101, 4851-4861.	4.8	3,203
505	Biorefining of lignocellulosic feedstock – Technical, economic and environmental considerations. Bioresource Technology, 2010, 101, 5023-5032.	4.8	193
506	Catalytic conversion of sugarcane bagasse, rice husk and corncob in the presence of TiO2, ZrO2 and mixed-oxide TiO2–ZrO2 under hot compressed water (HCW) condition. Bioresource Technology, 2010, 101, 4179-4186.	4.8	159
507	Optimization of enzymatic hydrolysis of steam-exploded corn stover by two approaches: Response surface methodology or using cellulase from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger NLO2. Bioresource Technology, 2010, 101, 4111-4119.	4.8	108
508	Cloning and expression of a novel, moderately thermostable xylanase-encoding gene (Cfl xyn11A) from Cellulomonas flavigena. Bioresource Technology, 2010, 101, 5539-5545.	4.8	28
509	Biochemical characterization of a maize stover Î ² -exoglucanase and its use in lignocellulose conversion. Bioresource Technology, 2010, 101, 6111-6117.	4.8	10
510	Impact of hemicellulose pre-extraction for bioconversion on birch Kraft pulp properties. Bioresource Technology, 2010, 101, 5996-6005.	4.8	88
511	A novel lime pretreatment for subsequent bioethanol production from rice straw – Calcium capturing by carbonation (CaCCO) process. Bioresource Technology, 2010, 101, 6805-6811.	4.8	133

#	Article	IF	CITATIONS
512	An analysis of feasibility of bioethanol production from Taiwan sorghum liquor waste. Bioresource Technology, 2010, 101, 6669-6675.	4.8	28
513	Xylose and cellulose fractionation from corncob with three different strategies and separate fermentation of them to bioethanol. Bioresource Technology, 2010, 101, 6994-6999.	4.8	85
514	Expression of thermostable bacterial β-glucosidase (BglB) in transgenic tobacco plants. Bioresource Technology, 2010, 101, 7144-7150.	4.8	39
515	Effect of harvesting date on the composition and saccharification of Miscanthus x giganteus. Bioresource Technology, 2010, 101, 8224-8231.	4.8	95
516	Cellulase deactivation based kinetic modeling of enzymatic hydrolysis of steam-exploded wheat straw. Bioresource Technology, 2010, 101, 8261-8266.	4.8	54
517	Conversion of woody biomass into fermentable sugars by cellulase from Agaricus arvensis. Bioresource Technology, 2010, 101, 8742-8749.	4.8	45
518	Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. Bioresource Technology, 2010, 101, 8750-8754.	4.8	234
519	Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production. Bioresource Technology, 2010, 101, 8713-8717.	4.8	161
520	A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products. Bioresource Technology, 2010, 101, 8915-8922.	4.8	694
521	Pretreatment of wheat straw using steam, steam/acetic acid and steam/ethanol and its enzymatic hydrolysis for sugar production. Biosystems Engineering, 2010, 105, 288-297.	1.9	44
522	Microwave-assisted organic acid pretreatment for enzymatic hydrolysis of rice straw. Biosystems Engineering, 2010, 107, 67-73.	1.9	100
523	Optimal location of lignocellulosic ethanol refineries with polygeneration in Sweden. Energy, 2010, 35, 2709-2716.	4.5	112
524	Bioorganosolv pretreatments of P. radiata by a brown rot fungus (Gloephyllum trabeum) and ethanolysis. Enzyme and Microbial Technology, 2010, 47, 11-16.	1.6	35
525	Hydrolysis efficiency and enzyme adsorption on steam-pretreated spruce in the presence of poly(ethylene glycol). Enzyme and Microbial Technology, 2010, 47, 84-90.	1.6	56
526	Impact of dual temperature profile in dilute acid hydrolysis of spruce for ethanol production. Biotechnology for Biofuels, 2010, 3, 15.	6.2	18
527	Production, purification and characterisation of a novel halostable xylanase from <i>Bacillus</i> sp. NTUâ€06. Annals of Applied Biology, 2010, 156, 187-197.	1.3	40
528	Methods for discovery and characterization of cellulolytic enzymes from insects. Insect Science, 2010, 17, 184-198.	1.5	64
529	Production of minicellulosomes from Clostridium cellulovorans for the fermentation of cellulosic ethanol using engineered recombinant Saccharomyces cerevisiae. FEMS Microbiology Letters, 2010, 310, 39-47	0.7	35

#	Article	IF	CITATIONS
530	Relevance of microbial coculture fermentations in biotechnology. Journal of Applied Microbiology, 2010, 109, 371-387.	1.4	207
531	Kinetics of endoglucanase and cellobiohydrolase production by parent and mutant derivative of moderately thermotolerant Bacillus subtilis GQ 301542 on optimized medium. African Journal of Biotechnology, 2010, 9, 7531-7538.	0.3	3
532	Effect of Composition and Pretreatment Processes on Hydrolysis Yield from Grass Straws in Pacific Northwest US. , 2010, , .		0
533	Screening Of Kluyveromyces marxianus IMB Strains At Microaerophilic Conditions For Xylitol Production. , 2010, , .		0
534	Evaluation and Characterization of Sorghum Biomass as Feedstock for Sugar Production. Transactions of the ASABE, 2010, 53, 509-525.	1.1	20
535	Implications of organic acids in wet storage and bioconversion of corn stover to ethanol. , 2010, , .		0
536	Growing Duckweed for Bioethanol Production. , 2010, , .		0
537	Temperature Optimization for Bioethanol Production from Corn Cobs Using Mixed Yeast Strains. OnLine Journal of Biological Sciences, 2010, 10, 103-108.	0.2	15
538	Simultaneous Saccharification and Fermentation (SSF) of pretreated sugarcane bagasse using cellulase and Saccharomyces cerevisiae - Kinetics and modeling. Chemical Engineering Research Bulletin, 2010, 14, .	0.2	12
539	Coculture fermentation of banana agro-waste to ethanol by cellulolytic thermophilic Clostridium thermocellum CT2. African Journal of Biotechnology, 2010, 9, 1926-1934.	0.3	71
540	Pilot-Scale On-Farm Pretreatment of Perennial Grasses with Dilute Acid and Alkali for Fuel Ethanol Production. Transactions of the ASABE, 2010, 53, 1007-1014.	1.1	18
541	Grain quality: the consumer, the scientist, the technologist and the future. , 2010, , 458-483.		0
542	Sustainability of ruminant agriculture in the new context: feeding strategies and features of animal adaptability into the necessary holistic approach. Animal, 2010, 4, 1258-1273.	1.3	51
543	Sugar cane bagasse as feedstock for second generation ethanol production. Part II: Hemicellulose hydrolysate fermentability. Electronic Journal of Biotechnology, 2010, 13, 0-0.	1.2	5
544	Rye and triticale: characteristics and quality requirements. , 2010, , 112-140.		5
545	Analytical monitoring of pretreatment and hydrolysis processes in lignocellulose-to-bioalcohol production. , 2010, , 281-314.		3
546	Switchgrass. RSC Energy and Environment Series, 2010, , 341-380.	0.2	19
547	Enhanced Production of Ligninolytic Enzymes by Ganoderma lucidum IBL-06 Using Lignocellulosic Agricultural Wastes. International Journal of Chemical Reactor Engineering, 2010, 8, .	0.6	8

#		IF	CITATIONS
# 548	Pretreatment Technologies for the Conversion of Lignocellulosic Materials to Bioethanol. ACS	0.5	26
549	Modelling hydrolysis and fermentation processes in lignocelluloses-to-bioalcohol production. , 2010, , 340-362.		6
550	Engineering bacterial processes for cellulosic ethanol production. Biofuels, 2010, 1, 729-743.	1.4	9
551	Key features of pretreated lignocelluloses biomass solids and their impact on hydrolysis. , 2010, , 73-121.		10
552	Enzymatic Hydrolysis of Lignocellulosic Biomass. , 2010, , 201-224.		2
553	Microbial Ethanol, Its Polymer Polyethylene, and Applications. Microbiology Monographs, 2010, , 389-404.	0.3	7
554	Tow steps biohydrogen production: biomass pretreatment and fermentation. AIP Conference Proceedings, 2010, , .	0.3	1
555	Applications of Yeast Cell-Surface Display in Bio-Refinery. Recent Patents on Biotechnology, 2010, 4, 226-234.	0.4	12
556	Research on Biodiesel and Ethanol Production from Food Waste. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	5
557	A Microscale Platform for Integrated Cell-Free Expression and Activity Screening of Cellulases. Journal of Proteome Research, 2010, 9, 5677-5683.	1.8	10
558	Past, Present, and Future Industrial Biotechnology in China. Advances in Biochemical Engineering/Biotechnology, 2010, 122, 1-42.	0.6	7
559	Solid-state NMR characterization of switchgrass cellulose after dilute acid pretreatment. Biofuels, 2010, 1, 85-90.	1.4	65
560	<i>Ab Initio</i> Molecular Dynamics Investigation of Xylan Hydrolysis. ACS Symposium Series, 2010, , 1-15.	0.5	3
561	Sodium Hydroxide Pretreatment of Switchgrass for Ethanol Production. Energy & Fuels, 2010, 24, 2113-2119.	2.5	205
562	Biotechnological Applications of Hemicellulosic Derived Sugars: State-of-the-Art. , 2010, , 63-81.		22
563	Heat and Mass Transport in Processing of Lignocellulosic Biomass for Fuels and Chemicals. , 2010, , 1-18.		16
564	Purification and Characterization of Novel Glucanases from Trichoderma harzianum ETS 323. Journal of Agricultural and Food Chemistry, 2010, 58, 10309-10314.	2.4	30
565	Biorefinery Straw for Bioethanol. , 2010, , 267-287.		3

		CITATION REPORT		
#	Article		IF	Citations
566	Conversion of Carbohydrates to Liquid Fuels. RSC Energy and Environment Series, 2010), , 365-381.	0.2	3
567	Molecular characterisation of UV and chemically induced mutants of <i>Trichoderma reesei</i> FCBP-364. Natural Product Research, 2010, 24, 1438-1448.		1.0	5
568	Thermostable Enzymes as Biocatalysts in the Biofuel Industry. Advances in Applied Micr 70, 1-55.	obiology, 2010,	1.3	235
570	The Influence of Inoculum Sources on Anaerobic Biogasification of NaOH-treated Corn S Sources, Part A: Recovery, Utilization and Environmental Effects, 2010, 33, 138-144.	Stover. Energy	1.2	28
571	Kinetic Modeling of Hemicellulose Hydrolysis from Triticale Straw in a Pressurized Low F Water Flow-Through Reactor. Industrial & Engineering Chemistry Research, 2010, 4	olarity 19, 6367-6375.	1.8	48
572	Key drivers influencing the commercialization of ethanol-based biorefineries. Journal of Biotechnology, 2010, 16, 239-257.	Commercial	0.2	52
573	Experimental Assessment on the Enzymatic Hydrolysis of Hydrothermally Pretreated Eu globulus Wood. Industrial & Engineering Chemistry Research, 2010, 49, 4653-466	calyptus 3.	1.8	47
574	Perspectives for the Production of Bioethanol from Lignocellulosic Materials. Biotechno Biotechnological Equipment, 2010, 24, 529-546.	logy and	0.5	16
575	Evolution of Primary Liquid Products and Evidence of in Situ Structural Changes in Cellu Conversion during Hydrolysis in Hot-Compressed Water. Industrial & Engineering C Research, 2010, 49, 3919-3925.	lose with Chemistry	1.8	26
576	Density Functional Theory Study of Ethanol Decomposition on 3Ni/α-Al ₂ O ₃ (0001) Surface. Langmuir, 2010, 26, 15845-158	51.	1.6	13
577	Biological Pretreatment of Corn Stover by Irpex lacteus for Enzymatic Hydrolysis. Journa Agricultural and Food Chemistry, 2010, 58, 10893-10898.	l of	2.4	99
578	Forest resources for second generation biofuel production. Scandinavian Journal of Fore Research, 2010, 25, 126-133.	est	0.5	9
579	Catalytic Conversion of Renewable Biomass Resources to Fuels and Chemicals. Annual I Chemical and Biomolecular Engineering, 2010, 1, 79-100.	Review of	3.3	318
580	Production of amorphous silica nanoparticles from rice straw with microbial hydrolysis pretreatment. Journal of Non-Crystalline Solids, 2010, 356, 1228-1232.		1.5	41
581	Prospecting for cellulolytic activity in insect digestive fluids. Comparative Biochemistry Physiology - B Biochemistry and Molecular Biology, 2010, 155, 145-154.	and	0.7	65
582	Green Liquor Pretreatment of Mixed Hardwood for Ethanol Production in a Repurposed Mill. Journal of Wood Chemistry and Technology, 2010, 30, 86-104.	Kraft Pulp	0.9	106
583	Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreat Bioresource Technology, 2010, 101, 6718-6727.	ment.	4.8	224
584	Biological pretreatment of lignocellulosics: potential, progress and challenges. Biofuels, 177-199.	2010, 1,	1.4	108

ARTICLE IF CITATIONS Sustainable Biotechnology., 2010,,. 9 585 Cellodextrin Transport in Yeast for Improved Biofuel Production. Science, 2010, 330, 84-86. 6.0 295 Production of Biofuels from Synthesis Gas Using Microbial Catalysts. Advances in Applied 587 1.3 42 Microbiology, 2010, 70, 57-92. Bioenergy II: Bio-Ethanol from Municipal Solid Waste (MSW): The Role of Biomass Properties and Structures During the Ethanol Conversion Process. International Journal of Chemical Reactor Engineering, 2010, 8, . Lingnin Recovery and Utilization., 2010, , 247-274. 590 8 Effect of the ionic liquid [bmim]Cl and high pressure on the activity of cellulase. Green Chemistry, 4.6 2010, 12, 632. Optimization of a Fed-Batch Simultaneous Saccharification and Cofermentation Process from 593 1.8 18 Lignocellulose to Ethanol. Industrial & amp; Engineering Chemistry Research, 2010, 49, 5775-5785. Culm in Rice Straw as a New Source for Sugar RecoveryviaEnzymatic Saccharification. Bioscience, 594 0.6 Biotechnology and Biochemistry, 2010, 74, 50-55. Production of Biodiesel with Acid Hydrolysate of <i>Populus Euramevicana CV</i>Leaves 595 2.1 25 by <i>Rhodotorula Glutinis </i>. International Journal of Green Energy, 2010, 7, 387-396. Thermochemical pretreatment of lignocellulosic biomass., 2010, , 24-72. Enhancement of fermentative bioenergy (ethanol/hydrogen) production using ultrasonication of 597 Scenedesmus obliquus YSW15 cultivated in swine wastewater effluent. Energy and Environmental 15.6 82 Science, 2011, 4, 3513. High pressure pre-treatments promote higher rate and degree of enzymatic hydrolysis of cellulose. 4.6 Green Chemistry, 2011, 13, 2764. Vegetable-based feedstocks for biofuels production., 2011, , 61-94. 599 5 Green electrochemical approach for delignification of wheat straw in second-generation bioethanol production. Energy and Environmental Science, 2011, 4, 551-557. 15.6 601 Anaerobic technology harnessed fully by using different techniques: Review., 2011, , . 10 Leaf photosynthetic properties and biomass accumulation of selected western Canadian spring wheat cultivars. Canadian Journal of Plant Science, 2011, 91, 305-314. Next-generation cellulosic ethanol technologies and their contribution to a sustainable Africa. 603 1.544 Interface Focus, 2011, 1, 196-211. Optimization of Water Consumption in Second Generation Bioethanol Plants. Industrial & amp; 604 1.8 44 Engineering Chemistry Research, 2011, 50, 3705-3721.

#	Article	IF	CITATIONS
605	Energy Resources and Systems. , 2011, , .		46
606	Pretreatment and Fractionation of Wheat Straw with Acetic Acid to Enhance Enzymatic Hydrolysis and Ethanol Fermentation. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2011, 33, 1230-1238.	1.2	17
608	Genetic Variation in Biomass Traits among 20 Diverse Rice Varieties Â. Plant Physiology, 2011, 155, 157-168.	2.3	96
610	Application of White-Rot Fungi in Transformation, Detoxification, or Revalorization of Agriculture Wastes. , 2011, , 595-603.		17
611	Molecular-Level Consequences of Biomass Pretreatment by Dilute Sulfuric Acid at Various Temperatures. Energy & Fuels, 2011, 25, 1790-1797.	2.5	37
612	Sulfite-Driven, Oxorhenium-Catalyzed Deoxydehydration of Glycols. Organometallics, 2011, 30, 2810-2818.	1.1	122
613	In situ Study of Dilute H ₂ SO ₄ Pretreatment of ¹³ C-Enriched Poplar Wood, Using ¹³ C NMR. Energy & Fuels, 2011, 25, 2301-2313.	2.5	9
615	Pulsed Electric Field Pretreatment of Switchgrass and Wood Chip Species for Biofuel Production. Industrial & Engineering Chemistry Research, 2011, 50, 10996-11001.	1.8	66
616	Biochemical Suitability of Crop Residues for Cellulosic Ethanol: Disincentives to Nitrogen Fertilization in Corn Agriculture. Environmental Science & Technology, 2011, 45, 2013-2020.	4.6	24
617	Pretreatment Technologies for Lignocellulose-to-Bioethanol Conversion. , 2011, , 149-176.		61
618	Ethanol. , 2011, , 419-493.		1
619	Bioenergy. , 2011, , 327-418.		2
620	Pretreatment of Corn Stover for Sugar Production with Combined Alkaline Reagents. Energy & Fuels, 2011, 25, 4796-4802.	2.5	36
621	Advances on biomass pretreatment using ionic liquids: An overview. Energy and Environmental Science, 2011, 4, 3913.	15.6	378
622	Build Your Own Second-Generation Bioethanol Plant in the Classroom!. Journal of Chemical Education, 2011, 88, 195-196.	1.1	9
623	Bioethanol from Lignocellulosic Biomass. Advances in Biochemical Engineering/Biotechnology, 2011, 128, 25-51.	0.6	38
624	Evaluation of preservation methods for improving biogas production and enzymatic conversion yields of annual crops. Biotechnology for Biofuels, 2011, 4, 20.	6.2	69
625	Lignocellulosic Bioethanol. , 2011, , 101-122.		30

	CITATION I	LEPUKI	
#	Article	IF	Citations
627	Phenylboronic Acid Functionalized SBA-15 for Sugar Capture. Langmuir, 2011, 27, 14554-14562.	1.6	28
629	Effect of Acid, Alkali, and Steam Explosion Pretreatments on Characteristics of Bio-Oil Produced from Pinewood. Energy & Fuels, 2011, 25, 3758-3764.	2.5	83
630	Fine-crushing of Wood-cellulosic Material Modified for its Hydrolysis for Bioethanol Production. Engineering in Agriculture, Environment and Food, 2011, 4, 62-65.	0.2	0
631	Alkali Pretreatment of Cereal Crop Residues for Second-Generation Biofuels. Energy & Fuels, 2011, 25, 2754-2763.	2.5	45
632	Principles of Biorefining. , 2011, , 3-24.		22
633	Hydrogenolysis of sugar beet fiber by supported metal catalyst. Catalysis Communications, 2011, 12, 980-983.	1.6	36
634	Mechanism of the positive effect of poly(ethylene glycol) addition in enzymatic hydrolysis of steam pretreated lignocelluloses. Comptes Rendus - Biologies, 2011, 334, 812-823.	0.1	52
635	Development of Acetone Butanol Ethanol (ABE) Production from Palm Pressed Fiber by Mixed Culture of Clostridium sp. and Bacillus sp Energy Procedia, 2011, 9, 459-467.	1.8	12
636	Synthesis of sugar alcohols by hydrolytic hydrogenation of cellulose over supported metal catalysts. Green Chemistry, 2011, 13, 326-333.	4.6	251
637	Topochemistry, Porosity and Chemical Composition Affecting Enzymatic Hydrolysis of Lignocellulosic Materials. , 2011, , 53-72.		8
638	Optimization of enzymatic hydrolysis for ethanol production by simultaneous saccharification and fermentation of wastepaper. Waste Management and Research, 2011, 29, 1134-1144.	2.2	22
639	Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Critical Reviews in Biotechnology, 2011, 31, 20-31.	5.1	359
640	Hydrolysis of biomass by magnetic solid acid. Energy and Environmental Science, 2011, 4, 3552.	15.6	195
641	Sugarcane Breeding and Selection for more Efficient Biomass Conversion in Cellulosic Ethanol. , 2011, , 199-239.		16
642	A study on the enzymatic hydrolysis of steam exploded napiergrass with alkaline treatment using artificial neural networks and regression analysis. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42, 889-894.	2.7	18
643	Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: Overview and limits. Journal of Biotechnology, 2011, 156, 286-301.	1.9	447
644	Effects of biopretreatment of corn stover with white-rot fungus on low-temperature pyrolysis products. Bioresource Technology, 2011, 102, 3498-3503.	4.8	42
645	Effect of Alkali and Laccase Pretreatment of Brassica Campestris Straw: Architecture, Crystallisation, and Saccharification. Polymers From Renewable Resources, 2011, 2, 21-34.	0.8	7
#	Article	IF	CITATIONS
-----	--	-----	-----------
646	Combined Microwave-Acid Pretreatment of the Biomass. , 2011, , .		5
647	Pretreatments and Enzymatic Hydrolysis of Grass Straws for Ethanol Production in the Pacific Northwest U.S Biological Engineering, 2011, 3, 97-110.	1.6	18
648	Microwave Enhanced Advanced Oxidation Process Application to Treatment of Dairy Manure. , 2011, , .		9
649	Dilute Sulfuric Acid Pretreatment of Genetically-Engineered Switchgrass for Ethanol Production. , 2011, , .		0
650	Developing Organisms for Consolidated Bioprocessing of Biomass to Ethanol. , 2011, , .		8
651	Optimizing Energy Requirement for Fine-Crushing Wood-Cellulosic Material and its Glucose Yield for Bioethanol Production. , 2011, , .		0
652	Ball Milling Pretreatment of Bagasse for Ethanol Production by Enzymatic Saccharification and Fermentation. Bangladesh Journal of Scientific and Industrial Research, 2011, 46, 353-358.	0.1	4
653	A comparative study on the production of ethanol from lignocellulosic biomass by chemical and biological method. Nature Precedings, 2011, , .	0.1	0
654	Latest Frontiers in the Biotechnologies for Ethanol Production from Lignocellulosic Biomass. , 0, , .		3
657	Innovative Biological Solutions to Challenges in Sustainable Biofuels Production. , 0, , .		1
658	Distributed, Integrated Production of Second and Third Generation Biofuels. , 2011, , .		0
659	Agroindustrial Wastes as Substrates for Microbial Enzymes Production and Source of Sugar for Bioethanol Production. , 0, , .		6
660	Direct Saccharification of Rice Straw Using a Solid Acid Catalyst. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2011, 90, 1065-1071.	0.2	11
661	Biomass Feedstock Pre-Processing – Part 1: Pre-Treatment. , 0, , .		16
662	Seasonal nutrient dynamics and biomass quality of giant reed (Arundo donax L.) and miscanthus (Miscanthus x giganteus Greef et Deuter) as energy crops. Italian Journal of Agronomy, 2011, 6, 24.	0.4	25
663	Analysis of process configurations for bioethanol production from microalgal biomass. , 2011, , .		12
664	Composition of Native Warm‣eason Grasses for Bioenergy Production in Response to Nitrogen Fertilization Rate and Harvest Date. Agronomy Journal, 2011, 103, 655-662.	0.9	78
665	Advances in the Development of Bioethanol: A Review. , 2011, , .		1

#	Article	IF	CITATIONS
666	Delignification Process of Agro-Industrial Wastes an Alternative to Obtain Fermentable Carbohydrates for Producing Fuel. , 0, , .		21
667	Starch Accumulation in Duckweed for Bioethanol Production. Biological Engineering, 2011, 3, 187-197.	1.6	31
668	â€~Omics' technologies and systems biology for engineeringSaccharomyces cerevisiaestrains for lignocellulosic bioethanol production. Biofuels, 2011, 2, 659-675.	1.4	2
669	Novelties of the cellulolytic system of a marine bacterium applicable to cellulosic sugar production. Biofuels, 2011, 2, 59-70.	1.4	17
670	Surface Energy Characterization of Three Partially Hydrolyzed Hardwood Species Determined by Dynamic Contact Angle Analysis. Journal of Adhesion, 2011, 87, 353-365.	1.8	8
671	A Two-Stage GIS-Based Suitability Model for Siting Biomass-to-Biofuel Plants and its Application in West Virginia, USA. International Journal of Forest Engineering, 2011, 22, 28-38.	0.4	7
672	Utilization of Agro-Industrial Residues and Municipal Waste of Plant Origin for Cellulosic Ethanol Production. Journal of Environmental Protection, 2011, 02, 1303-1309.	0.3	10
673	Ozone Pretreatment of Wheat Straw and its Effect on Reducing Sugars in Hydrolyzate. Research Papers Faculty of Materials Science and Technology Slovak University of Technology in Trnava, 2011, 19, .	0.4	0
675	Accumulation of recombinant cellobiohydrolase and endoglucanase in the leaves of mature transgenic sugar cane. Plant Biotechnology Journal, 2011, 9, 884-896.	4.1	84
676	C4 Plants as Biofuel Feedstocks: Optimising Biomass Production and Feedstock Quality from a Lignocellulosic PerspectiveFree Access. Journal of Integrative Plant Biology, 2011, 53, 120-135.	4.1	141
677	Kinetic study of partially purified cellulase enzyme produced by Trichoderma viride FCBP-142 and its hyperactive mutants. Microbiology, 2011, 80, 363-371.	0.5	1
678	Enzymatic hydrolysis of biomass with recyclable use of cellobiase enzyme immobilized in sol–gel routed mesoporous silica. Journal of Molecular Catalysis B: Enzymatic, 2011, 70, 49-54.	1.8	36
679	Probing a family GH11 endo-β-1,4-xylanase inhibition mechanism by phenolic compounds: Role of functional phenolic groups. Journal of Molecular Catalysis B: Enzymatic, 2011, 72, 130-138.	1.8	53
680	Co-cultivation of mutant Penicillium oxalicum SAUE-3.510 and Pleurotus ostreatus for simultaneous biosynthesis of xylanase and laccase under solid-state fermentation. New Biotechnology, 2011, 28, 616-626.	2.4	47
681	Structural changes in switchgrass lignin and hemicelluloses during pretreatments by NMR analysis. Polymer Degradation and Stability, 2011, 96, 2002-2009.	2.7	88
682	Comprehensive utilization of the hydrolyzed productions from rice hull. Industrial Crops and Products, 2011, 33, 403-408.	2.5	18
683	Physical properties of pellets made from sorghum stalk, corn stover, wheat straw, and big bluestem. Industrial Crops and Products, 2011, 33, 325-332.	2.5	170
684	Structural characterization and isolation of lignin and hemicelluloses from barley straw. Industrial Crops and Products, 2011, 33, 588-598.	2.5	105

# 685	ARTICLE Effects of washing, milling and loading enzymes on the enzymatic hydrolysis of a steam pretreated sugarcane bagasse. Industrial Crops and Products, 2011, 33, 670-675.	IF 2.5	CITATIONS
686	Bioethanol production from sweet sorghum bagasse by Mucor hiemalis. Industrial Crops and Products, 2011, 34, 1219-1225.	2.5	127
687	Ethanol production from ensiled rice straw and whole-crop silage by the simultaneous enzymatic saccharification and fermentation process. Journal of Bioscience and Bioengineering, 2011, 111, 320-325.	1.1	36
688	Efficient removal of nitrate using electrochemical-ion exchange method and pretreatment of straw with by-products for biological fermentation. Desalination, 2011, 278, 275-280.	4.0	6
689	Biowastes-to-biofuels. Energy Conversion and Management, 2011, 52, 1815-1828.	4.4	263
690	Catalysis and characterization of carbon-supported ruthenium for cellulose hydrolysis. Applied Catalysis A: General, 2011, 407, 188-194.	2.2	107
691	Conversion of cellulose into renewable chemicals by supported metal catalysis. Applied Catalysis A: General, 2011, 409-410, 13-20.	2.2	120
692	Effect of biological pretreatment with Trametes hirsuta yj9 on enzymatic hydrolysis of corn stover. International Biodeterioration and Biodegradation, 2011, 65, 931-938.	1.9	88
693	Hydrogen production by the anaerobic fermentation from acid hydrolyzed rice straw hydrolysate. International Journal of Hydrogen Energy, 2011, 36, 14280-14288.	3.8	72
694	Hydrogen production from mushroom farm waste with a two-step acid hydrolysis process. International Journal of Hydrogen Energy, 2011, 36, 14245-14251.	3.8	36
695	A study on bioethanol production from cashew apple pulp and coffee pulp waste. Biomass and Bioenergy, 2011, 35, 4107-4111.	2.9	52
696	Kinetic characterization for hemicellulose hydrolysis of corn stover in a dilute acid cycle spray flow-through reactor at moderate conditions. Biomass and Bioenergy, 2011, 35, 4158-4164.	2.9	56
697	Differential behaviour of the dinitrosalicylic acid (DNS) reagent towards mono- and di-saccharide sugars. Biomass and Bioenergy, 2011, 35, 4748-4750.	2.9	175
698	Genotypic variation in cell wall composition in a diverse set of 244 accessions of Miscanthus. Biomass and Bioenergy, 2011, 35, 4740-4747.	2.9	74
699	Investigation of enzyme formulation on pretreated switchgrass. Bioresource Technology, 2011, 102, 11072-11079.	4.8	21
700	Ethanol production from the enzymatic hydrolysis of non-detoxified steam-exploded corn stalk. Bioresource Technology, 2011, 102, 7840-7844.	4.8	22
701	Production of spent mushroom substrate hydrolysates useful for cultivation of Lactococcus lactis by dilute sulfuric acid, cellulase and xylanase treatment. Bioresource Technology, 2011, 102, 8046-8051.	4.8	22
702	Microscopic structure and properties changes of cassava stillage residue pretreated by mechanical activation. Bioresource Technology, 2011, 102, 7953-7958.	4.8	79

#	Article	IF	CITATIONS
703	Bermuda grass as feedstock for biofuel production: A review. Bioresource Technology, 2011, 102, 7613-7620.	4.8	54
704	Two-stage fungal biopulping for improved enzymatic hydrolysis of wood. Bioresource Technology, 2011, 102, 8011-8016.	4.8	24
705	Two-stage pretreatment of rice straw using aqueous ammonia and dilute acid. Bioresource Technology, 2011, 102, 8992-8999.	4.8	108
706	Evaluation of hemicellulose removal by xylanase and delignification on SHF and SSF for bioethanol production with steam-pretreated substrates. Bioresource Technology, 2011, 102, 8945-8951.	4.8	17
707	High titer ethanol production from simultaneous enzymatic saccharification and fermentation of aspen at high solids: A comparison between SPORL and dilute acid pretreatments. Bioresource Technology, 2011, 102, 8921-8929.	4.8	73
708	A mesophilic Clostridium species that produces butanol from monosaccharides and hydrogen from polysaccharides. Bioresource Technology, 2011, 102, 9558-9563.	4.8	50
709	Delignification of sugarcane bagasse using glycerol–water mixtures to produce pulps for saccharification. Bioresource Technology, 2011, 102, 10040-10046.	4.8	112
710	Hydrolysis of Chlorella biomass for fermentable sugars in the presence of HCl and MgCl2. Bioresource Technology, 2011, 102, 10158-10161.	4.8	76
711	Optimization of CO2 laser-based pretreatment of corn stover using response surface methodology. Bioresource Technology, 2011, 102, 10493-10497.	4.8	18
712	Simultaneous saccharification and fermentation of Kanlow switchgrass by thermotolerant Kluyveromyces marxianus IMB3: The effect of enzyme loading, temperature and higher solid loadings. Bioresource Technology, 2011, 102, 10618-10624.	4.8	96
713	Significant factors selection in the chemical and enzymatic hydrolysis of lignocellulosic residues by a genetic algorithm analysis and comparison with the standard Plackett–Burman methodology. Bioresource Technology, 2011, 102, 10602-10610.	4.8	12
714	Continuous acetone–butanol–ethanol fermentation using SO2–ethanol–water spent liquor from spruce. Bioresource Technology, 2011, 102, 10996-11002.	4.8	62
715	Enzyme activity in dialkyl phosphate ionic liquids. Bioresource Technology, 2011, 102, 11200-11203.	4.8	34
716	Effect of biological pretreatments in enhancing corn straw biogas production. Bioresource Technology, 2011, 102, 11177-11182.	4.8	235
717	Production of high-starch duckweed and its conversion to bioethanol. Biosystems Engineering, 2011, 110, 67-72.	1.9	184
718	Biomass pretreatment: Fundamentals toward application. Biotechnology Advances, 2011, 29, 675-685.	6.0	1,544
719	Biorefining of perennial grasses: A potential sustainable option for Northern Ireland grassland production. Chemical Engineering Research and Design, 2011, 89, 2309-2321.	2.7	26
720	125th Anniversary Review: Fuel Alcohol: Current Production and Future Challenges. Journal of the Institute of Brewing, 2011, 117, 3-22.	0.8	76

ARTICLE IF CITATIONS # Cellulase immobilized mesoporous silica nanocatalysts for efficient cellulose-to-glucose conversion. 721 140 4.6 Green Chemistry, 2011, 13, 2844. Biomass deconstruction to sugars. Biotechnology Journal, 2011, 6, 1086-1102. 1.8 140 723 Recent Advances in the Catalytic Conversion of Cellulose. ChemCatChem, 2011, 3, 82-94. 1.8 517 Routes to Cellulosic Ethanol., 2011,,. 724 The promoting effect of byproducts from Irpex lacteus on subsequent enzymatic hydrolysis of 725 6.2 72 bio-pretreated cornstalks. Biotechnology for Biofuels, 2011, 4, 37. From biomass to feedstock: one-step fractionation of lignocellulose components by the selective organic acid-catalyzed depolymerization of hemicellulose in a biphasic system. Green Chemistry, 2011, 4.6 13, 1772. Biohydrogen Production from Anaerobic Fermentation. Advances in Biochemical 727 0.6 4 Engineering/Biotechnology, 2011, 128, 143-163. Improved catalytic hydrolysis of carboxy methyl cellulose using cellulase immobilized on 728 1.3 19 functionalized meso cellular foam. Journal of Porous Materials, 2011, 18, 409-416. Evaluation of different lignocellulosic substrates for the production of cellulases and xylanases by 729 the basidiomycete fungi Bjerkandera adusta and Pycnoporus sanguineus. Biodegradation, 2011, 22, 32 1.5 565-572. Thermal transformation of micro-crystalline cellulose in phosphoric acid. Cellulose, 2011, 18, 2.4 1499-1507. Efficient chemical and enzymatic saccharification of the lignocellulosic residue from Agave tequilana bagasse to produce ethanol by Pichia caribbica. Journal of Industrial Microbiology and 731 1.4 80 Biotechnology, 2011, 38, 725-732. Nocardiopsis yanglingensis sp. nov., a thermophilic strain isolated from a compost of button mushrooms. Ántonie Van Leeuwenhoek, 2011, 100, 415-419. Co-expression of a cellobiose phosphorylase and lactose permease enables intracellular cellobiose 733 1.7 63 utilisation by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2011, 90, 1373-1380. Characterization of a bifunctional xylanase/endoglucanase from yak rumen microorganisms. Applied Microbiology and Biotechnology, 2011, 90, 1933-1942. 734 1.7 65 Characterization of by-products from organosolv pretreatments of yellow poplar wood 735 (Liriodendron tulipifera) in the presence of acid and alkali catalysts. Journal of Industrial and 2.9 44 Engineering Chemistry, 2011, 17, 18-24. Conditioning of dilute-acid pretreated corn stover hydrolysate liquors by treatment with lime or ammonium hydroxide to improve conversion of sugars to ethanol. Bioresource Technology, 2011, 102, 4.8 43 1240-1245. High temperature dilute acid pretreatment of coastal Bermuda grass for enzymatic hydrolysis. 737 4.8 101 Bioresource Technology, 2011, 102, 1415-1424. Microwave-assisted pretreatment of woody biomass with ammonium molybdate activated by H2O2. 4.8 Bioresource Technology, 2011, 102, 3941-3945.

#	ARTICLE	IF	CITATIONS
739	RT-CaCCO process: An improved CaCCO process for rice straw by its incorporation with a step of lime pretreatment at room temperature. Bioresource Technology, 2011, 102, 2943-2949.	4.8	38
740	An evaluation of the potential of Acacia dealbata as raw material for bioethanol production. Bioresource Technology, 2011, 102, 4766-4773.	4.8	33
741	Optimisation of a microwave pretreatment of wheat straw for methane production. Bioresource Technology, 2011, 102, 6750-6756.	4.8	115
742	Thermo-mechanical extrusion pretreatment for conversion of soybean hulls to fermentable sugars. Bioresource Technology, 2011, 102, 7583-7590.	4.8	167
743	Comparison of alkaline pulping with steam explosion for glucose production from rice straw. Carbohydrate Polymers, 2011, 83, 720-726.	5.1	103
744	Acid and enzyme hydrolysis to convert pretreated lignocellulosic materials into glucose for ethanol production. Carbohydrate Polymers, 2011, 84, 865-871.	5.1	110
745	Enzymatic hydrolysis of pretreated sugar cane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases. Process Biochemistry, 2011, 46, 1196-1201.	1.8	148
746	Recent Advances in Citric Acid Bio-production and Recovery. Food and Bioprocess Technology, 2011, 4, 505-529.	2.6	180
747	Characterization of a Defined Cellulolytic and Xylanolytic Bacterial Consortium for Bioprocessing of Cellulose and Hemicelluloses. Applied Biochemistry and Biotechnology, 2011, 163, 869-881.	1.4	71
748	Ethanol Production from Residual Wood Chips of Cellulose Industry: Acid Pretreatment Investigation, Hemicellulosic Hydrolysate Fermentation, and Remaining Solid Fraction Fermentation by SSF Process. Applied Biochemistry and Biotechnology, 2011, 163, 928-936.	1.4	32
749	Cellulase Production by Streptomyces viridobrunneus SCPE-09 Using Lignocellulosic Biomass as Inducer Substrate. Applied Biochemistry and Biotechnology, 2011, 164, 256-267.	1.4	63
750	Catalytic Performance of Corn Stover Hydrolysis by a New Isolate Penicillium sp. ECU0913 Producing both Cellulase and Xylanase. Applied Biochemistry and Biotechnology, 2011, 164, 819-830.	1.4	27
751	Ethanol Production from Cashew Apple Bagasse: Improvement of Enzymatic Hydrolysis by Microwave-Assisted Alkali Pretreatment. Applied Biochemistry and Biotechnology, 2011, 164, 929-943.	1.4	61
752	Oxidative Lime Pretreatment of Dacotah Switchgrass. Applied Biochemistry and Biotechnology, 2011, 165, 243-259.	1.4	15
753	Oxidative Lime Pretreatment of Alamo Switchgrass. Applied Biochemistry and Biotechnology, 2011, 165, 506-522.	1.4	22
754	Cellulases and Hemicellulases from Endophytic Acremonium Species and Its Application on Sugarcane Bagasse Hydrolysis. Applied Biochemistry and Biotechnology, 2011, 165, 594-610.	1.4	65
755	Reduction of Enzyme Dosage by Oxygen Delignification and Mechanical Refining for Enzymatic Hydrolysis of Green Liquor-Pretreated Hardwood. Applied Biochemistry and Biotechnology, 2011, 165, 832-844.	1.4	50
756	Inhibition Effects of Dilute-Acid Prehydrolysate of Corn Stover on Enzymatic Hydrolysis of Solka Floc. Applied Biochemistry and Biotechnology, 2011, 165, 1391-1405.	1.4	17

#	Article	IF	CITATIONS
757	Enhanced saccharification of rice straw using hypochlorite-hydrogen peroxide. Biotechnology and Bioprocess Engineering, 2011, 16, 273-281.	1.4	16
758	Sweet Sorghum as Feedstock for Biofuel Production: A Review. Sugar Tech, 2011, 13, 399-407.	0.9	88
759	Ethanol Production from Lignocelluloses by Native Strain Klebsiella oxytoca THLC0409. Waste and Biomass Valorization, 2011, 2, 389-396.	1.8	18
760	Synergy between EngE, XynA and ManA from Clostridium cellulovorans on corn stalk, grass and pineapple pulp substrates. 3 Biotech, 2011, 1, 187-192.	1.1	16
761	Lime pretreatment of sugar beet pulp and evaluation of synergy between ArfA, ManA and XynA from Clostridium cellulovorans on the pretreated substrate. 3 Biotech, 2011, 1, 151-159.	1.1	18
762	Enzymatic hydrolysis of sorghum straw using native cellulase produced by T. reesei NCIM 992 under solid state fermentation using rice straw. 3 Biotech, 2011, 1, 207-215.	1.1	27
763	Using microorganisms to brew biofuels. In Vitro Cellular and Developmental Biology - Plant, 2011, 47, 637-649.	0.9	6
764	Kinetic studies of xylan hydrolysis of corn stover in a dilute acid cycle spray flow-through reactor. Frontiers of Chemical Science and Engineering, 2011, 5, 252-257.	2.3	3
765	Bioethanol production from optimized pretreatment of cassava stem. Korean Journal of Chemical Engineering, 2011, 28, 119-125.	1.2	60
766	Efficient production of glutathione using hydrolyzate of banana peel as novel substrate. Korean Journal of Chemical Engineering, 2011, 28, 1566-1572.	1.2	8
767	Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential. BMC Biotechnology, 2011, 11, 94.	1.7	176
768	Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnology for Biofuels, 2011, 4, 27.	6.2	264
769	Celluloseâ€Based Sustainable Polymers: State of the Art and Future Trends. Macromolecular Rapid Communications, 2011, 32, 1299-1311.	2.0	153
770	Enzymatic hydrolysis of autohydrolyzed barley husks. Journal of Chemical Technology and Biotechnology, 2011, 86, 251-260.	1.6	15
771	Evaluation of a hydrothermal process for pretreatment of wheat straw—effect of particle size and process conditions. Journal of Chemical Technology and Biotechnology, 2011, 86, 88-94.	1.6	43
772	Different process configurations for bioethanol production from pretreated olive pruning biomass. Journal of Chemical Technology and Biotechnology, 2011, 86, 881-887.	1.6	74
773	High efficiency bioethanol production from OPEFB using pilot pretreatment reactor. Journal of Chemical Technology and Biotechnology, 2011, 86, 1527-1534.	1.6	51
774	Solution combustion synthesis of metal nanopowders: Copper and copper/nickel alloys. AICHE Journal, 2011, 57, 3473-3479.	1.8	80

#	Article	IF	CITATIONS
775	Electrochemical Oxidation of Carbon ontaining Fuels and Their Dynamics in Lowâ€Temperature Fuel Cells. ChemPhysChem, 2011, 12, 2518-2544.	1.0	52
776	Hydrolysis of Cellulose into Glucose by Magnetic Solid Acid. ChemSusChem, 2011, 4, 55-58.	3.6	176
777	Compatible Ionic liquid ellulases system for hydrolysis of lignocellulosic biomass. Biotechnology and Bioengineering, 2011, 108, 1042-1048.	1.7	113
778	Enzymatic transformations of cellulose assessed by quantitative highâ€throughput fourier transform infrared spectroscopy (QHTâ€FTIR). Biotechnology and Bioengineering, 2011, 108, 1509-1520.	1.7	54
779	Chemicals from lignocellulosic biomass: opportunities, perspectives, and potential of biorefinery systems. Biofuels, Bioproducts and Biorefining, 2011, 5, 548-561.	1.9	147
780	Largeâ€scale, highâ€solids enzymatic hydrolysis of steamâ€exploded poplar. Biofuels, Bioproducts and Biorefining, 2011, 5, 609-620.	1.9	41
781	Kinetic Study of Dilute Nitric acid Treatment of Corn Stover at Relatively High Temperature. Chemical Engineering and Technology, 2011, 34, 409-414.	0.9	18
782	Biomass Size Reduction Machines for Enhancing Biogas Production. Chemical Engineering and Technology, 2011, 34, 391-399.	0.9	209
783	The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chemical Engineering Journal, 2011, 168, 1157-1162.	6.6	183
784	Improving the remaining activity of lignocellulolytic enzymes by membrane entrapment. Bioresource Technology, 2011, 102, 519-523.	4.8	17
785	Optimization of processing conditions for the fractionation of triticale straw using pressurized low polarity water. Bioresource Technology, 2011, 102, 2016-2025.	4.8	40
786	Assessing solid digestate from anaerobic digestion as feedstock for ethanol production. Bioresource Technology, 2011, 102, 1856-1862.	4.8	84
787	Bioconversion of industrial hemp to ethanol and methane: The benefits of steam pretreatment and co-production. Bioresource Technology, 2011, 102, 3457-3465.	4.8	114
788	Three amino acid changes contribute markedly to the thermostability of β-glucosidase BglC from Thermobifida fusca. Bioresource Technology, 2011, 102, 3337-3342.	4.8	46
789	Enhancing solubilisation and methane production kinetic of switchgrass by microwave pretreatment. Bioresource Technology, 2011, 102, 3535-3540.	4.8	76
790	A pilot study on lignocelluloses to ethanol and fish feed using NMMO pretreatment and cultivation with zygomycetes in an air-lift reactor. Bioresource Technology, 2011, 102, 4425-4432.	4.8	54
791	Enzyme hydrolysis and ethanol fermentation of dilute ammonia pretreated energy cane. Bioresource Technology, 2011, 102, 4444-4448.	4.8	77
792	Dioxin-like polychlorinated biphenyl adsorbent obtained from enzymatic saccharification residue of lignocellulose. Bioresource Technology, 2011, 102, 4682-4687.	4.8	2

ARTICLE IF CITATIONS # Effect of alkaline pre-treatment on enzyme synergy for efficient hemicellulose hydrolysis in 793 4.8 49 sugarcane bagasse. Bioresource Technology, 2011, 102, 5207-5213. Effect of physical pretreatment on dilute acid hydrolysis of water hyacinth (Eichhornia crassipes). 794 4.8 Bioresource Technology, 2011, 102, 5193-5199. Enhanced enzymatic hydrolysis of rapeseed straw by popping pretreatment for bioethanol production. 795 4.8 64 Bioresource Technology, 2011, 102, 5788-5793. Eucalyptus globulus wood fractionation by autohydrolysis and organosolv delignification. 796 4.8 Bioresource Technology, 2011, 102, 5896-5904. Selective production of hemicellulose-derived carbohydrates from wheat straw using dilute HCl or 797 FeCl3 solutions under mild conditions. X-ray and thermo-gravimetric analysis of the solid residues. 4.8 59 Bioresource Technology, 2011, 102, 5917-5923. Effects of rhamnolipid on the cellulase and xylanase in hydrolysis of wheat straw. Bioresource Technology, 2011, 102, 6515-6521. 798 4.8 Adsorptive removal of fermentation inhibitors from concentrated acid hydrolyzates of 799 4.8 76 lignocellulosic biomass. Bioresource Technology, 2011, 102, 6048-6057. Utilization of sugarcane bagasse for bioethanol production: Sono-assisted acid hydrolysis approach. 800 4.8 Bioresource Technology, 2011, 102, 7119-7123. Analysis of soluble and insoluble fractions of alkali and subcritical water treated sugarcane bagasse. 801 5.1 49 Carbohydrate Polymers, 2011, 83, 591-599. Study on structure and thermal stability properties of cellulose fibers from rice straw. Carbohydrate 5.1 224 Polymers, 2011, 85, 245-250. Acetylation of corn distillers dried grains. Applied Energy, 2011, 88, 1664-1670. 803 5.116 Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production. Biomass and 804 138 Bioenergy, 2011, 35, 146-152. Enhanced enzymatic conversion with freeze pretreatment of rice straw. Biomass and Bioenergy, 2011, 805 2.9 74 35,90-95. Bioethanol production using genetically modified and mutant wheat and barley straws. Biomass and Bioenergy, 2011, 35, 542-548. 806 Effects of furfural and acetic acid on growth and lipid production from glucose and xylose by 807 2.9 72 Rhodotorula glutinis. Biomass and Bioenergy, 2011, 35, 734-740. Biogenic hydrogen and methane production from reed canary grass. Biomass and Bioenergy, 2011, 35, 808 773-780. Anaerobic digestion of industrial hempâ€"Effect of harvest time on methane energy yield per hectare. 809 2.9 71 Biomass and Bioenergy, 2011, 35, 893-900. Preliminary study on enzymatic hydrolysis of treated oil palm (Elaeis) empty fruit bunches fibre (EFB) 99 by using combination of cellulase and l2 1-4 glucosidase. Biomass and Bioenergy, 2011, 35, 1055-1059.

#	Article	IF	CITATIONS
811	Hydrothermal pretreatment of switchgrass and corn stover for production of ethanol and carbon microspheres. Biomass and Bioenergy, 2011, 35, 956-968.	2.9	158
812	Biodegradation of cassava starch factory residue using a combination of cellulases, xylanases and hemicellulases. Biomass and Bioenergy, 2011, 35, 1211-1218.	2.9	32
813	Organosolv pretreatment of Liriodendron tulipifera and simultaneous saccharification and fermentation for bioethanol production. Biomass and Bioenergy, 2011, 35, 1833-1840.	2.9	85
814	Pretreatment and hydrolysis of cellulosic agricultural wastes with a cellulase-producing Streptomyces for bioethanol production. Biomass and Bioenergy, 2011, 35, 1878-1884.	2.9	41
815	Development of a new bioethanol feedstock – Anaerobically digested fiber from confined dairy operations using different digestion configurations. Biomass and Bioenergy, 2011, 35, 1946-1953.	2.9	52
816	Waste biomass to liquids: Low temperature conversion of sugarcane bagasse to bio-oil. The effect of combined hydrolysis treatments. Biomass and Bioenergy, 2011, 35, 2106-2116.	2.9	36
817	Production of pulp, ethanol and lignin from sugarcane bagasse by alkali-peracetic acid delignification. Biomass and Bioenergy, 2011, 35, 2874-2882.	2.9	49
818	Evaluation of annual bioenergy crops in the boreal zone for biogas and ethanol production. Biomass and Bioenergy, 2011, 35, 3071-3078.	2.9	57
819	The role of Ru atoms toward the dehydrogenation of ethanol on Ru/ZrO2(111) surface. Chemical Physics Letters, 2011, 501, 315-318.	1.2	2
820	Phosphoric acid activation of recalcitrant biomass originated in ethanol production from banana plants. Biomass and Bioenergy, 2011, 35, 1196-1204.	2.9	21
821	Halophytes: Potential source of ligno-cellulosic biomass for ethanol production. Biomass and Bioenergy, 2011, 35, 1818-1822.	2.9	114
822	Optimisation of dilute alkaline pretreatment for enzymatic saccharification of wheat straw. Biomass and Bioenergy, 2011, 35, 3094-3103.	2.9	187
823	Comparison of pretreatment protocols for cellulase-mediated saccharification of wood derived from transgenic low-xylan lines of cottonwood (P. trichocarpa). Biomass and Bioenergy, 2011, 35, 3514-3521.	2.9	26
824	Contents of various sources of glucose and fructose in rice straw, a potential feedstock for ethanol production in Japan. Biomass and Bioenergy, 2011, 35, 3733-3735.	2.9	29
825	Statistical optimization of sulfite pretreatment of corncob residues for high concentration ethanol production. Bioresource Technology, 2011, 102, 3014-3019.	4.8	35
826	Conversion of biomass into 5-hydroxymethylfurfural using solid acid catalyst. Bioresource Technology, 2011, 102, 3424-3429.	4.8	214
827	Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management, 2011, 52, 858-875.	4.4	1,054
828	Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 2011, 36, 2328-2342.	4.5	1,409

#	Article	IF	CITATIONS
829	Chrysosporium lucknowense C1 arabinofuranosidases are selective in releasing arabinose from either single or double substituted xylose residues in arabinoxylans. Enzyme and Microbial Technology, 2011, 48, 397-403.	1.6	24
830	Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 2011, 37, 52-68.	15.8	1,660
831	HSQC (heteronuclear single quantum coherence) 13C–1H correlation spectra of whole biomass in perdeuterated pyridinium chloride–DMSO system: An effective tool for evaluating pretreatment. Fuel, 2011, 90, 2836-2842.	3.4	91
832	Kinetics of cotton cellulose hydrolysis using concentrated acid and fermentative hydrogen production from hydrolysate. International Journal of Hydrogen Energy, 2011, 36, 8743-8750.	3.8	44
833	Hydrogen production by aqueous-phase biomass reforming over carbon textile supported Pt–Ru bimetallic catalysts. International Journal of Hydrogen Energy, 2011, 36, 8794-8799.	3.8	34
834	Sustainable hydrogen production from steam reforming ofÂbio-oil model compound based on carbon deposition/elimination. International Journal of Hydrogen Energy, 2011, 36, 2860-2868.	3.8	30
835	Biomass to fuels: The role of zeolite and mesoporous materials. Microporous and Mesoporous Materials, 2011, 144, 28-39.	2.2	164
836	Combustion synthesis of Ni, Fe and Cu multi-component catalysts for hydrogen production from ethanol reforming. Applied Catalysis A: General, 2011, 401, 20-28.	2.2	66
837	Cellulose reactivity and glycosidic bond cleavage in aqueous phase by catalytic and non catalytic transformations. Applied Catalysis A: General, 2011, 402, 1-10.	2.2	82
838	Modified Anoporeâ"¢ hybrid membranes for the microfiltration of cellulose acid hydrolysis mixtures. Journal of Membrane Science, 2011, 377, 99-109.	4.1	5
839	Recombinant multi-functional cellulase activity in submerged fermentation of lignocellulosic wastes. Renewable Energy, 2011, 36, 3268-3272.	4.3	16
840	Status and barriers of advanced biofuel technologies: A review. Renewable Energy, 2011, 36, 3541-3549.	4.3	358
841	The potential of lignocellulosic ethanol production in the Mediterranean Basin. Renewable and Sustainable Energy Reviews, 2011, 15, 252-266.	8.2	42
842	Challenges in biobutanol production: How to improve the efficiency?. Renewable and Sustainable Energy Reviews, 2011, 15, 964-980.	8.2	391
843	Successive centrifugal grinding and sieving of wheat straw. Powder Technology, 2011, 208, 266-270.	2.1	62
844	Elucidating acetate tolerance in E. coli using a genome-wide approach. Metabolic Engineering, 2011, 13, 214-224.	3.6	60
845	Enzymatic saccharification of lignocellulosic materials after treatment with supercritical carbon dioxide. Journal of Supercritical Fluids, 2011, 56, 277-282.	1.6	53
846	Nanometrology of delignified <i>Populus</i> using mode synthesizing atomic force microscopy. Nanotechnology, 2011, 22, 465702.	1.3	19

#	Article	IF	CITATIONS
847	Gasification and synthesis gas fermentation: an alternative route to biofuel production. Biofuels, 2011, 2, 405-419.	1.4	21
848	Effect of fermentation conditions on activity of cellulase produced by Trichoderma viride CE-1. , 2011, , \cdot		0
849	The Research on Solid-State Fermentation Technology of Fuel Ethanol Using in Straw. Advanced Materials Research, 0, 347-353, 1228-1232.	0.3	1
850	Microbiological processes for waste conversion to bioenergy products: Approaches and directions. Environmental Reviews, 2011, 19, 214-237.	2.1	8
851	Membranes for advanced biofuels production. , 2011, , 361-410.		2
852	Research on TG-DTG Analysis and Combustion Kinetics Characteristic of Biomass Fly Ash and Ash. Applied Mechanics and Materials, 0, 130-134, 396-400.	0.2	1
853	Effect of Two Mild Alkaline Oxidative Pretreaments of Rice Straw on Enzymatic Hydrolysis. Advanced Materials Research, 0, 396-398, 1636-1639.	0.3	0
854	Method of Pretreatment for Biodegradation of Rice Straw. Advanced Materials Research, 2011, 361-363, 813-819.	0.3	0
855	Cellulose Saccharification after Ultrasonic- Assisted Ionic Liquid [Amim][HCOO] Pretreatment. Advanced Materials Research, 2011, 236-238, 169-172.	0.3	0
856	New Bipolar Green Host Materials Containing Benzimidazole-Carbazole Moiety in Phosphorescent OLEDs. Bulletin of the Korean Chemical Society, 2011, 32, 841-846.	1.0	12
857	Commercial Cellulosic Ethanol: The Role of Plant-Expressed Enzymes. , 2011, , 237-264.		4
858	Ethanol Production from Non-Detoxified Steam-Exploded Corn Stover Subsequent Enzymatic Hydrolysis by Two Toxin-Tolerant Yeast Strains. Advanced Materials Research, 2011, 365, 145-149.	0.3	0
859	Synergistic Effect between Cellulase and Xylanase Acting on Alkaline Pretreated Rice Straw. Advanced Materials Research, 2011, 396-398, 1406-1412.	0.3	2
860	Invasive plant species as potential bioenergy producers and carbon contributors. Journal of Soils and Water Conservation, 2011, 66, 45A-50A.	0.8	16
861	Xylanolytic enzymes production by Aspergillus niger GS1 from solid-state fermentation on corn stover and their effect on ruminal digestibility. Electronic Journal of Biotechnology, 2011, 14, .	1.2	5
862	The Effect of Alkali Pretreatment of Rice Straw for Anaerobic Digestion. Advanced Materials Research, 0, 347-353, 2555-2558.	0.3	0
863	Microbial Cellulases and Their Industrial Applications. Enzyme Research, 2011, 2011, 1-10.	1.8	638
864	Role of Microbial Enzymes in the Bioremediation of Pollutants: A Review. Enzyme Research, 2011, 2011, 1-11.	1.8	516

ARTICLE IF CITATIONS # Improvement of Fungal Cellulase Production by Mutation and Optimization of Solid State 865 0.6 66 Fermentation. Mycobiology, 2011, 39, 20. Inorganic nanofibers with tailored placement of nanocatalysts for hydrogen production via alkaline 1.3 hydrolysis of glucose. Nanotechnology, 2011, 22, 325302. 867 Bio-Feedstocks., 2011, , 93-101. 0 Biochemical production of bioethanol., 2011, , 199-220. Separation of Lignocellulosic Hydrolyzate Components Using Ceramic Microfilters. Journal of Wood 869 0.9 14 Chemistry and Technology, 2011, 31, 357-383. Potential for ethanol production from conservation reserve program lands in Oregon. Journal of 0.8 Renewable and Sustainable Energy, 2011, 3, . Cellulose Isolation Methodology for NMR Analysis of Cellulose Ultrastructure. Materials, 2011, 4, 871 1.3 65 1985-2002. Optimization of the Dilute Acid Hydrolyzator for Cellulose-to-Bioethanol Saccharification. Energies, 1.6 2011, 4, 1601-1623. Chemical and Physicochemical Pretreatment of Lignocellulosic Biomass: A Review. Enzyme Research, 873 634 1.8 2011, 2011, 1-17. New technologies in the production of motor fuels from renewable materials. Thermal Science, 2012, 874 16, 87-95. Fungiculture or Termite Husbandry? The Ruminant Hypothesis. Insects, 2012, 3, 307-323. 875 1.0 48 Bm Lignin Structure and Chemical Compositional Characteristics of Switchgrass. Advanced Materials Research, 2012, 455-456, 1257-1260. Optimizing Alkali Pretreatment of Oil Palm Empty Fruit Bunch for Ethanol Production by Application 877 0.3 7 of Response Surface Methodology. Advanced Materials Research, 0, 622-623, 117-121. Fermentative Production of Value-Added Products from Lignocellulosic Biomass. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-2. Madera, un Potencial Material LignocelulÃ³sico para la ProducciÃ³n de Biocombustibles en Colombia. 879 0.1 13 Informacion Tecnologica (discontinued), 2012, 23, 73-86. Inhibitory Compounds in Lignocellulosic Biomass Hydrolysates during Hydrolysate Fermentation 880 50 Processés. Journal of Bioprocessing & Biotechniques, 2012, 02, . Comparison of Ultrasonic and CO2 Laser Pretreatment Methods on Enzyme Digestibility of Corn 881 1.8 15 Stover. International Journal of Molecular Sciences, 2012, 13, 4141-4152. Fuel Ethanol Production from Lignocellulosic Biomass Using a Recombinant Yeast Strain. Advanced Materials Research, 0, 608-609, 281-285.

#	Article	IF	CITATIONS
883	Bioconversion of Sugarcane Biomass into Ethanol: An Overview about Composition, Pretreatment Methods, Detoxification of Hydrolysates, Enzymatic Saccharification, and Ethanol Fermentation. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-15.	3.0	372
884	The Potential of Cellulosic Ethanol Production from Grasses in Thailand. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-10.	3.0	50
885	5 Biomass pretreatment: separation of cellulose , hemicellulose, and lignin – existing technologies and perspectives. , 2012, , 101-122.		7
886	9 Process development and metabolic engineering for bioethanol production from lignocellulosic biomass. , 2012, , 207-230.		0
887	Dilute H ₂ SO ₄ and SO ₂ pretreatments of Loblolly pine wood residue for bioethanol production. Industrial Biotechnology, 2012, 8, 22-30.	0.5	17
888	Chemical composition and bioethanol potential of different plant species found in Pacific Northwest conservation buffers. Journal of Renewable and Sustainable Energy, 2012, 4, 063114.	0.8	8
889	Bioconversion of Hemicellulosic Fraction of Perennial Kans Grass (<i>Saccharum spontaneum</i>) Biomass to Ethanol by <i>Pichia stipitis</i> : A Kinetic Study. International Journal of Green Energy, 2012, 9, 409-420.	2.1	7
890	Research on the Adoption of Lactic Acid Bacteria in Food Waste Storage and Ethanol Production. International Journal of Green Energy, 2012, 9, 456-466.	2.1	7
891	Industrial Enzymes and Biocatalysis. , 2012, , 1183-1227.		6
892	Microwave enhanced advanced oxidation process for treating dairy manure at low pH. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2012, 47, 362-367.	0.7	10
893	Sustainable Bioenergy and Bioproducts. Green Energy and Technology, 2012, , .	0.4	11
894	Optimization of Dilute Acid Pretreatment of Paulownia for the Production of Bioethanol by Respond Surface Methodology. Advanced Materials Research, 2012, 550-553, 1066-1070.	0.3	4
895	Quantitative Secretomic Analysis of Trichoderma reesei Strains Reveals Enzymatic Composition for Lignocellulosic Biomass Degradation. Molecular and Cellular Proteomics, 2012, 11, M111.012419-1-M111.012419-15.	2.5	126
896	Cellulase and xylanase production by co-culture of Aspergillus niger and Fusarium oxysporum utilizing forest waste. Biyokimya Dergisi, 2012, 37, 35-41.	0.1	21
897	The Bioethanol Industry in Sub-Saharan Africa: History, Challenges, and Prospects. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-11.	3.0	39
898	Eighty Years of Studies on Industrial Hemp in the Po Valley (19302010). Journal of Natural Fibers, 2012, 9, 180-196.	1.7	30
899	Simultaneous Saccharification and Fermentation (SSF) of Cellulose from Lignocellulise for 2 nd Bioethanol Production: A Review. Advanced Materials Research, 0, 512-515, 464-467.	0.3	0
900	Environmental Protection Strategies: An Overview. , 2012, , 1-34.		4

#	ARTICLE	IF	CITATIONS
901	Preparation of Sulfo-Group-Bearing Mesoporous-Silica-Based Solid Acid Catalyst and Its Application to Direct Saccharification. Journal of Chemical Engineering of Japan, 2012, 45, 484-492.	0.3	8
902	Dynamic behavior analysis of carboxymethylcellulose hydrolysis in a chemostat. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 132-136.	0.4	3
903	On the pre-treatment of municipal organic waste towards fuel production: a review. International Journal of Environment and Pollution, 2012, 49, 226.	0.2	12
904	Forest Biorefinery Supply Chain Design and Process Flexibility. , 2012, , 306-347.		1
905	Lignocellulosic Biomass: A Raw Material for the Future. , 2012, , 484-491.		1
906	Separation of Hemicellulose by Hot-Water Extraction from Woody Biomass. , 2012, , 674-729.		Ο
907	- Product Portfolio Selection and Process Design for the Forest Biorefinery. , 2012, , 26-59.		0
908	Genetic Engineering for Bioenergy Crops. , 2012, , 31-53.		2
909	Sustainable Solutions for Agro Processing Waste Management: An Overview. , 2012, , 65-109.		24
910	Pretreatment: The key to efficient utilization of lignocellulosic materials. Biomass and Bioenergy, 2012, 46, 70-78.	2.9	353
911	Acid–base bi-functionalized, large-pored mesoporous silica nanoparticles for cooperative catalysis of one-pot cellulose-to-HMF conversion. Journal of Materials Chemistry, 2012, 22, 23181.	6.7	123
912	Synthesis of mesoporous titania thin films (MTTFs) with two different structures as photocatalysts for generating hydrogen from water splitting. Applied Energy, 2012, 100, 75-80.	5.1	52
913	Production of medium-chain-length polyhydroxyalkanoates by sequential feeding of xylose and octanoic acid in engineered Pseudomonas putida KT2440. BMC Biotechnology, 2012, 12, 53.	1.7	85
914	From plant biomass to bio-based chemicals: Latest developments in xylan research. Biotechnology Advances, 2012, 30, 1627-1640.	6.0	230
915	Energy-efficient extraction of fuel and chemical feedstocks from algae. Green Chemistry, 2012, 14, 419.	4.6	91
916	Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass and Bioenergy, 2012, 46, 25-35.	2.9	278
917	A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—Factors affecting enzymes, conversion and synergy. Biotechnology Advances, 2012, 30, 1458-1480.	6.0	831
918	An Indian scenario on renewable and sustainable energy sources with emphasis on algae. Applied Microbiology and Biotechnology, 2012, 96, 1125-1135.	1.7	36

#	Article	IF	CITATIONS
919	The use of pretreated palm oil mill effluent for acetone–butanol–ethanol fermentation by Clostridium saccharoperbutylacetonicum N1-4. Clean Technologies and Environmental Policy, 2012, 14, 879-887.	2.1	22
920	Pretreatment of Populus tomentosa with Trametes velutina supplemented with inorganic salts enhances enzymatic hydrolysis for ethanol production. Biotechnology Letters, 2012, 34, 2241-2246.	1.1	14
921	Synthesis, characterization and activity of Co and Ni catalysts supported on AlMe (MeÂ=ÂZn, Zr, Ti) mixed oxides. Journal of Sol-Gel Science and Technology, 2012, 64, 619-626.	1.1	5
922	Influence of alkaline pre-treatment conditions on structural features and methane production from ensiled sorghum forage. Chemical Engineering Journal, 2012, 211-212, 488-492.	6.6	38
923	Development and testing of a novel lab-scale direct steam-injection apparatus to hydrolyse model and saline crop slurries. Journal of Biotechnology, 2012, 157, 590-597.	1.9	5
924	Study of the delignification of hardwood chips in a pulping process for sugar production. Journal of Biotechnology, 2012, 162, 422-429.	1.9	19
925	Quantitative proteomic analysis of secretome of microbial consortium during saw dust utilization. Journal of Proteomics, 2012, 75, 5590-5603.	1.2	23
926	Secretome analysis of Ganoderma lucidum cultivated in sugarcane bagasse. Journal of Proteomics, 2012, 77, 298-309.	1.2	70
927	Biodiesel from lignocellulosic biomass – Prospects and challenges. Waste Management, 2012, 32, 2061-2067.	3.7	121
928	Pretreatment of pressed pericarp fibers (PPF) using alcohols as solvent to increase the accessibility of cellulose for cellulase production. Journal of the Korean Society for Applied Biological Chemistry, 2012, 55, 507-514.	0.9	5
929	Production of Cellulosic Fuels. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2012, 82, 59-69.	0.8	3
930	Citrobacter werkmanii, a new candidate for the production of 1,3-propanediol: strain selection and carbon source optimization. Green Chemistry, 2012, 14, 2168.	4.6	30
931	Statistical optimization of operating conditions for supercritical carbon dioxide-based pretreatment of guayule bagasse. Biomass and Bioenergy, 2012, 47, 451-458.	2.9	30
932	Screening of selective lignin-degrading basidiomycetes and biological pretreatment for enzymatic hydrolysis of bamboo culms. International Biodeterioration and Biodegradation, 2012, 75, 176-180.	1.9	86
933	Fuzzy optimization for a batch simultaneous saccharification and co-fermentation process by hybrid differential evolution. , 2012, , .		0
934	The place of halophytes in Pakistan's biofuel industry. Biofuels, 2012, 3, 211-220.	1.4	43
935	Alkali Pretreatment of Wheat Straw (<i>Triticum aestivum</i>) at Boiling Temperature for Producing a Bioethanol Precursor. Bioscience, Biotechnology and Biochemistry, 2012, 76, 2201-2207.	0.6	26
936	Opportunities for improvement of process technology for biomethanation processes. Green Processing and Synthesis, 2012, 1, .	1.3	2

#	Article	IF	CITATIONS
937	Chemical transformations of Populus trichocarpa during dilute acid pretreatment. RSC Advances, 2012, 2, 10925.	1.7	138
938	Improve the Recovery of Fermentable Sugar from Rice Straw by Sonication and Its Mathematical Modeling. Journal of the Institution of Engineers (India): Series E, 2012, 93, 37-43.	0.5	1
939	Susceptibility of pretreated wood sections of Norway spruce (Picea abies) clones to enzymatic hydrolysis. Canadian Journal of Forest Research, 2012, 42, 38-46.	0.8	3
940	Production of High-Grade Carbonaceous Materials and Fuel Having Similar Chemical and Physical Properties from Various Types of Biomass by Degradative Solvent Extraction. Energy & Fuels, 2012, 26, 4521-4531.	2.5	44
941	Biofuel Residues/Wastes: Ban or Boon?. Critical Reviews in Environmental Science and Technology, 2012, 42, 1-43.	6.6	13
942	Utilization of Waste Newspaper Using Oyster Mushroom Mycelium. Industrial & Engineering Chemistry Research, 2012, 51, 4440-4444.	1.8	1
943	Improvement of Sugar Production from Transgenic Switchgrass with Low-Temperature Alkali Pretreatment. Energy & Fuels, 2012, 26, 3054-3061.	2.5	11
944	Spruce Pretreatment for Thermal Application: Water, Alkaline, and Diluted Acid Hydrolysis. Energy & Fuels, 2012, 26, 6426-6431.	2.5	20
945	Sequential Combination of Acid and Base for Conversion of Cellulose. Energy & Fuels, 2012, 26, 2376-2385.	2.5	9
946	Efficient Conversion of Rice Straw to Bioethanol Using Sodium Carbonate Pretreatment. Energy & Fuels, 2012, 26, 7354-7361.	2.5	61
947	CELLULOSE DEGRADATION BY OXIDATIVE ENZYMES. Computational and Structural Biotechnology Journal, 2012, 2, e201209015.	1.9	76
948	Enzymatic pretreatment of lignocellulosic wastes to improve biogas production. Waste Management, 2012, 32, 1131-1137.	3.7	114
949	Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnology for Biofuels, 2012, 5, 32.	6.2	133
950	Effect of enzyme addition on fermentative hydrogen production from wheat straw. International Journal of Hydrogen Energy, 2012, 37, 10639-10647.	3.8	82
951	Producing bioethanol from cellulosic hydrolyzate via co-immobilized cultivation strategy. Journal of Bioscience and Bioengineering, 2012, 114, 198-203.	1.1	12
952	Ethanol production from non-pretreated napiergrass through a simultaneous saccharification and fermentation process followed by a pentose fermentation with Escherichia coli KO11. Journal of Bioscience and Bioengineering, 2012, 114, 188-192.	1.1	30
953	Label free quantitative proteomic analysis of secretome by Thermobifida fusca on different lignocellulosic biomass. Journal of Proteomics, 2012, 75, 3694-3706.	1.2	31
954	Pilot-scale ethanol production from rice straw hydrolysates using xylose-fermenting Pichia stipitis. Bioresource Technology, 2012, 116, 314-319.	4.8	72

#	Article	IF	CITATIONS
955	Readily-milled fraction of wet sugarcane bagasse as an advanced feedstock for monosaccharide production via the RT-CaCCO process. Bioresource Technology, 2012, 116, 529-532.	4.8	4
956	Optimization of liquid fermentation of microbial consortium WSD-5 followed by saccharification and acidification of wheat straw. Bioresource Technology, 2012, 118, 141-149.	4.8	12
957	Pretreatment of sugarcane bagasse with NH4OH–H2O2 and ionic liquid for efficient hydrolysis and bioethanol production. Bioresource Technology, 2012, 119, 199-207.	4.8	86
958	Effective catalytic conversion of cellulose into high yields of methyl glucosides over sulfonated catalyst. Bioresource Technology, 2012, 120, 318-321.	4.8	90
959	Bioethanol production from raffinate phase of supercritical CO2 extracted Stevia rebaudiana leaves. Bioresource Technology, 2012, 120, 52-59.	4.8	24
960	Mild pretreatment and enzymatic saccharification of cellulose with recycled ionic liquids towards one-batch process. Carbohydrate Polymers, 2012, 90, 805-813.	5.1	57
961	Effect of mechanical activation pretreatment on the properties of sugarcane bagasse/poly(vinyl) Tj ETQq0 0 0 rgE	BT /Qverloc	28 10 Tf 50 5
962	Pretreatment of straw for bioethanol production. Energy Procedia, 2012, 14, 542-551.	1.8	31
963	Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy, 2012, 43, 273-282.	4.5	258
964	Direct production of glucose from glycogen under microwave irradiation. RSC Advances, 2012, 2, 7262.	1.7	18
965	Bioconversion of lignocellulose-derived sugars to ethanol by engineered <i>Saccharomyces cerevisiae</i> . Critical Reviews in Biotechnology, 2012, 32, 22-48.	5.1	78
966	Biomass to biofuel: a review on production technology. Asia-Pacific Journal of Chemical Engineering, 2012, 7, S254.	0.8	46
967	Cellobiose Hydrolysis and Decomposition by Electrochemical Generation of Acid and Hydroxyl Radicals. ChemSusChem, 2012, 5, 1935-1943.	3.6	16
968	Pyrolytic Sugars from Cellulosic Biomass. ChemSusChem, 2012, 5, 2228-2236.	3.6	155
969	Valueâ€∎dded bioconversion of biomass by solidâ€state fermentation. Journal of Chemical Technology and Biotechnology, 2012, 87, 1619-1625.	1.6	53
970	Biogas production from cellulose-containing substrates: A review. Applied Biochemistry and Microbiology, 2012, 48, 421-433.	0.3	51
971	Elucidation of the effect of ionic liquid pretreatment on rice husk via structural analyses. Biotechnology for Biofuels, 2012, 5, 67.	6.2	82
972	An economic and ecological perspective of ethanol production from renewable agro waste: a review. AMB Express, 2012, 2, 65.	1.4	115

#	Article	IF	CITATIONS
973	Dilute H2SO4-catalyzed hydrothermal pretreatment to enhance enzymatic digestibility of Jatropha curcas fruit hull for ethanol fermentation. International Journal of Energy and Environmental Engineering, 2012, 3, 15.	1.3	24
974	Quantification of Sugar Compounds and Uronic Acids in Enzymatic Hydrolysates of Lignocellulose Using High-Performance Anion Exchange Chromatography with Pulsed Amperometric Detection. Energy & Fuels, 2012, 26, 2942-2947.	2.5	7
975	Surface plasmon resonance imaging of the enzymatic degradation of cellulose microfibrils. Analytical Methods, 2012, 4, 3238.	1.3	11
976	Molecular cloning and characterization of an endogenous digestive βâ€glucosidase from the midgut of the fungusâ€growing termite <i><scp>M</scp>acrotermes barneyi</i> . Insect Molecular Biology, 2012, 21, 604-614.	1.0	24
977	Biofuels from Waste Materials. , 2012, , 217-261.		28
980	Biohydrogen from cellulosic feedstock: Dilution-to-stimulation approach. International Journal of Hydrogen Energy, 2012, 37, 15582-15587.	3.8	26
981	Biohydrogen from lignocellulosic feedstock via one-step process. International Journal of Hydrogen Energy, 2012, 37, 15569-15574.	3.8	34
982	Simultaneous bio-hydrogen and reducing sugar formation by the aqueous phase biomass reforming. International Journal of Hydrogen Energy, 2012, 37, 15691-15695.	3.8	4
983	Techno-economic evaluation of biohydrogen production from wastewater and agricultural waste. International Journal of Hydrogen Energy, 2012, 37, 15704-15710.	3.8	91
984	Photofermentative hydrogen production using Rhodobium marinum from bagasse and soy sauce wastewater. International Journal of Hydrogen Energy, 2012, 37, 15436-15442.	3.8	50
985	Improving digestive utilization of fiber-rich feedstuffs in pigs and poultry by processing and enzyme technologies: A review. Animal Feed Science and Technology, 2012, 178, 123-138.	1.1	107
986	Production of bioethanol from carrot discards. Bioresource Technology, 2012, 123, 727-732.	4.8	31
987	Effects of sodium carbonate pretreatment on the chemical compositions and enzymatic saccharification of rice straw. Bioresource Technology, 2012, 124, 283-291.	4.8	84
988	Alkaline pretreatment methods followed by acid hydrolysis of Saccharum spontaneum for bioethanol production. Bioresource Technology, 2012, 124, 111-118.	4.8	78
989	Comparison of different alkali-based pretreatments of corn stover for improving enzymatic saccharification. Bioresource Technology, 2012, 125, 193-199.	4.8	87
990	Enhancement of enzymatic digestibility of oil palm empty fruit bunch by ionic-liquid pretreatment. Energy, 2012, 47, 11-16.	4.5	27
991	Comparison of various alkaline pretreatment methods of lignocellulosic biomass. Energy, 2012, 47, 31-35.	4.5	158
992	Solid acid mediated hydrolysis of biomass for producing biofuels. Progress in Energy and Combustion Science, 2012, 38, 672-690.	15.8	226

ARTICLE IF CITATIONS Control of Stress Tolerance in Bacterial Host Organisms for Bioproduction of Fuels. Microbiology 993 0.3 1 Monographs, 2012, , 209-238. Anaerobic Digestion as an Effective Biofuel Production Technology., 2012, 143-161. 994 998 Microbial Technologies in Advanced Biofuels Production., 2012,,. 20 Complete conversion of cellulose to water soluble substances by pretreatment with ionic liquids. 999 Korean Journal of Chemical Engineering, 2012, 29, 1403-1408. Prospects of reusable endogenous hydrolyzing enzymes in bioethanol production by simultaneous 1000 1.2 17 saccharification and fermentation. Korean Journal of Chemical Engineering, 2012, 29, 1467-1482. An Evaluation of Chemical Pretreatment Methods for Improving Enzymatic Saccharification of Chili Postharvest Residue. Applied Biochemistry and Biotechnology, 2012, 167, 1489-1500. 1.4 An Improved Process of Ethanol Production from Hemicellulose: Bioconversion of Undetoxified 1002 Hemicellulosic Hydrolyzate from Steam-Exploded Corn Stover with a Domesticated Pichia stipitis. 1.4 12 Applied Biochemistry and Biotechnology, 2012, 167, 2330-2340. Production of XynX, a Large Multimodular Protein of Clostridium thermocellum, by 1.4 Protease-Deficient Bacillus subtilis Strains. Applied Biochemistry and Biotechnology, 2012, 168, 375-382. The Cellulase-Mediated Saccharification on Wood Derived from Transgenic Low-Lignin Lines of Black 1004 1.4 31 Cottonwood (Populus trichocarpa). Applied Biochemistry and Biotechnology, 2012, 168, 947-955. Effect of Acetic Acid on Saccharomyces Carlsbergensis ATCC 6269 Batch Ethanol Production 1.4 Monitored by Flow Cytometry. Applied Biochemistry and Biotechnology, 2012, 168, 1501-1515. Detoxification and Fermentation of Pyrolytic Sugar for Ethanol Production. Applied Biochemistry and 1006 28 1.4 Biotechnology, 2012, 168, 1568-1583. Effects of External Enzymes on the Fermentation of Soybean Hulls to Generate Lipids by Mortierella isabellina. Applied Biochemistry and Biotechnology, 2012, 168, 1896-1906. 1.4 An Extremely Alkaline Novel Xylanase from a Newly Isolated Streptomyces Strain Cultivated in 1009 1.4 20 Corncob Medium. Applied Biochemistry and Biotechnology, 2012, 168, 2017-2027. Pretreatment and Lignocellulosic Chemistry. Bioenergy Research, 2012, 5, 1043-1066. 2.2 366 Degradation of Chrysanthemum (Dendranthema grandiflora) wastes by Pleurotus ostreatus for the 1011 10 1.4 production of reducing sugars. Biotechnology and Bioprocess Engineering, 2012, 17, 1103-1112. Characterization of cellulases of fungal endophytes isolated from Espeletia spp.. Journal of Microbiology, 2012, 50, 1009-1013. Cellulosic materials as biopolymers and supercritical CO2as a green process: chemistry and 1013 1.9 32 applications. International Journal of Sustainable Engineering, 2012, 5, 47-65. Homogeneous Degradation of Cotton Cellulose into Furan Derivatives in ZnCl2Solution by 1014 Integration Technology of Reaction and Extraction. Industrial & amp; Engineering Chemistry Research, 1.8 2012, , 121227134733005.

#	Article	IF	CITATIONS
1015	Reengineering CelA2 cellulase for hydrolysis in aqueous solutions of deep eutectic solvents and concentrated seawater. Green Chemistry, 2012, 14, 2719.	4.6	120
1016	Bioconversion of Cellulo-Starch Waste from Cassava Starch Industries for Ethanol Production: Pretreatment Techniques and Improved Enzyme Systems. Industrial Biotechnology, 2012, 8, 300-308.	0.5	6
1017	Ultrasonic and high-temperature pretreatment, enzymatic hydrolysis and fermentation of lignocellulosic sweet sorghum to bio-ethanol. International Journal of Ambient Energy, 2012, 33, 152-160.	1.4	10
1018	Experimental methods for laboratory-scale ensilage ofÂlignocellulosic biomass. Biomass and Bioenergy, 2012, 47, 125-133.	2.9	16
1019	Microbial Stress Tolerance for Biofuels. Microbiology Monographs, 2012, , .	0.3	8
1021	Systems Metabolic Engineering. , 2012, , .		11
1022	A Novel Biochemical Route for Fuels and Chemicals Production from Cellulosic Biomass. PLoS ONE, 2012, 7, e31693.	1.1	61
1023	Evidence for Lignin Oxidation by the Giant Panda Fecal Microbiome. PLoS ONE, 2012, 7, e50312.	1.1	107
1024	Effect of acid hydrolysis and fungal biotreatment on agro-industrial wastes for obtainment of free sugars for bioethanol production. Brazilian Journal of Microbiology, 2012, 43, 1523-1535.	0.8	75
1025	BIOMASS CHAR SULFONIC ACIDS (BC-SO3H)-CATALYZED HYDROLYSIS OF BAMBOO UNDER MICROWAVE IRRADIATION. BioResources, 2012, 7, .	0.5	12
1026	Oil Palm as Bioenergy Feedstock. , 2012, , 653-692.		4
1027	Lignocellulosics to ethanol: The future of the chemical and energy industry. African Journal of Biotechnology, 2012, 11, .	0.3	8
1028	Comparative Study between Neural Network Model and Mathematical Models for Prediction of Glucose Concentration during Enzymatic Hydrolysis. International Journal of Computer Applications, 2012, 56, 43-48.	0.2	8
1029	Hydrolysis of Lignocellulosic Biomass: Current Status of Processes and Technologies and Future Perspectives. , 0, , .		53
1030	Pretreatment of Corn Stover for Enzymatic Saccharification Improvement by Using the Combination of Alkaline Reagents at Mild Temperatures. , 2012, , .		0
1031	CONVERSION OF LIGNOCELLULOSIC BIOMASS FROM GRASS TO BIOETHANOL USING MATERIALS PRETREATED WITH ALKALI AND THE WHITE ROT FUNGUS, PHANEROCHAETE CHRYSOSPORIUM. BioResources, 2012, 7, .	0.5	19
1032	A simple rapid gas-chromatography flame-ionization-detector (GC-FID) method for the determination of ethanol from fermentation processes. African Journal of Biotechnology, 2012, 11, .	0.3	2
1033	Low Cost Medium for Ethanol Production Using Novel Moderately Alkaliphilic Alkalibaculum bacchi CP15. , 2012, , .		0

#	Article	IF	CITATIONS
1034	In Vitro selection of High Starch Duckweed Growing Around Taihu Lake Basin. , 2012, , .		0
1035	Effect of Dilute Alkali Pretreatment on Sugar Release from Transgenic Switchgrass. , 2012, , .		0
1036	Steer Performance, Intake, Digesta Kinetics, and Pasture Productivity of Flaccidgrass at Each of Three Forage Masses. Agronomy Journal, 2012, 104, 26-35.	0.9	0
1037	SINTESA GULA DARI SAMPAH ORGANIK DENGAN PROSES HIDROLISIS MENGGUNAKAN KATALIS ASAM. Reaktor, 2012, 14, 118.	0.2	0
1038	Sugar cane bagasse prehydrolysis using hot water. Brazilian Journal of Chemical Engineering, 2012, 29, 31-38.	0.7	14
1039	Alkali pretreated of wheat straw and its enzymatic hydrolysis. Brazilian Journal of Microbiology, 2012, 43, 53-61.	0.8	83
1040	PRETREATMENT OF CELLULOSIC WASTE SAWDUST INTO REDUCING SUGARS USING MERCERIZATION AND ETHERIFICATION. BioResources, 2012, 7, .	0.5	10
1041	DEGRADATION AND STABILITY OF PULP TREATED IN HETEROGENEOUS AND HOMOGENEOUS PHASES. BioResources, 2012, 7, .	0.5	0
1042	Cellulase Production from Treated Oil Palm Empty Fruit Bunch Degradation by Locally Isolated Thermobifida fusca. BioResources, 2012, 8, .	0.5	6
1043	Hydrolysis of various thai agricultural biomasses using the crude enzyme from Aspergillus aculeatus iizuka FR60 isolated from soil. Brazilian Journal of Microbiology, 2012, 43, 456-466.	0.8	17
1044	Vehicular Quality Biomethane Production from Biogas by Using an Automated Water Scrubbing System. , 2012, 2012, 1-6.		12
1045	Bioethanol Production from Steam Explosion Pretreated Straw. , 2012, , .		5
1046	PPRODUCTION OF 2ND GENERATION BIOETHANOL FROM LUCERNE – OPTIMIZATION OF HYDROTHERMAL PRETREATMENT. BioResources, 2012, 7, .	0.5	13
1047	Catalytic Hydrothermal Saccharification of Rice Straw Using Mesoporous Silica-based Solid Acid Catalysts. Journal of the Japan Petroleum Institute, 2012, 55, 250-260.	0.4	17
1048	Benchmarking of nextâ€generation biofuels from a process perspective. Biofuels, Bioproducts and Biorefining, 2012, 6, 292-301.	1.9	41
1049	Conversion of lignocellulose into renewable chemicals by heterogeneous catalysis. Catalysis Science and Technology, 2012, 2, 869.	2.1	182
1050	Dietary Roles of Non-Starch Polysachharides in Human Nutrition: A Review. Critical Reviews in Food Science and Nutrition, 2012, 52, 899-935.	5.4	244
1051	Pectin-rich biomass as feedstock for fuel ethanol production. Applied Microbiology and Biotechnology, 2012, 95, 565-575.	1.7	124

#	Article	IF	CITATIONS
1052	Bioethanol Production Involving Recombinant C. thermocellum Hydrolytic Hemicellulase and Fermentative Microbes. Applied Biochemistry and Biotechnology, 2012, 167, 1475-1488.	1.4	35
1053	Design of Superior Cell Factories for a Sustainable Biorefinery By Synthetic Bioengineering. , 2012, , 329-348.		0
1054	Enhanced biogas yield from energy crops with rumen anaerobic fungi. Engineering in Life Sciences, 2012, 12, 343-351.	2.0	51
1055	Recent Trends in Valorization of Lignocellulose to Biofuel. , 2012, , 381-409.		8
1056	Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chemical Society Reviews, 2012, 41, 8075.	18.7	1,167
1057	Energy optimization of bioethanol production via hydrolysis of switchgrass. AICHE Journal, 2012, 58, 1538-1549.	1.8	70
1058	Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioproducts and Biorefining, 2012, 6, 465-482.	1.9	707
1059	Biomass recalcitrance. Part <scp>II</scp> : Fundamentals of different preâ€ŧreatments to increase the enzymatic digestibility of lignocellulose. Biofuels, Bioproducts and Biorefining, 2012, 6, 561-579.	1.9	228
1060	An evaluation of cellulose saccharification and fermentation with an engineered <i>Saccharomyces cerevisiae</i> capable of cellobiose and xylose utilization. Biotechnology Journal, 2012, 7, 361-373.	1.8	10
1061	Global regulator engineering significantly improved <i>Escherichia coli</i> tolerances toward inhibitors of lignocellulosic hydrolysates. Biotechnology and Bioengineering, 2012, 109, 3133-3142.	1.7	43
1063	Fast and facile dissolution of cellulose with tetrabutylphosphonium hydroxide containing 40 wt% water. Chemical Communications, 2012, 48, 1808.	2.2	146
1064	Dilute acid pretreatment for cellulosic alcohol production. Biomass Conversion and Biorefinery, 2012, 2, 169-177.	2.9	4
1065	Adding value to the Brazilian sisal: acid hydrolysis of its pulp seeking production of sugars and materials. Cellulose, 2012, 19, 975-992.	2.4	18
1066	Life cycle assessment of energy and GHG emissions during ethanol production from grass straws using various pretreatment processes. International Journal of Life Cycle Assessment, 2012, 17, 388-401.	2.2	58
1067	Advances and Developments in Strategies to Improve Strains of Saccharomyces cerevisiae and Processes to Obtain the Lignocellulosic Ethanolâ^'A Review. Applied Biochemistry and Biotechnology, 2012, 166, 1908-1926.	1.4	97
1068	One Step Conversion of Wheat Straw to Sugars by Simultaneous Ball Milling, Mild Acid, and Fungus Penicillium simplicissimum Treatment. Applied Biochemistry and Biotechnology, 2012, 167, 39-51.	1.4	12
1069	Extrusion Pretreatment of Pine Wood Chips. Applied Biochemistry and Biotechnology, 2012, 167, 81-99.	1.4	58
1070	Biological Pretreatment of Lignocellulosic Substrates for Enhanced Delignification and Enzymatic Digestibility. Indian Journal of Microbiology, 2012, 52, 122-130.	1.5	200

# 1071	ARTICLE Scanning Electron Microscopy and Fermentation Studies on Selected Known Maize Starch Mutants Using STARGENâ"¢ Enzyme Blends. Bioenergy Research, 2012, 5, 330-340.	IF 2.2	CITATIONS
1072	Production of bioethanol from sugarcane bagasse using NH4OH-H2O2 pretreatment and simultaneous saccharification and co-fermentation. Biotechnology and Bioprocess Engineering, 2012, 17, 316-325.	1.4	15
1073	Pretreatment of switchgrass with electrolyzed water and a two-stage method for bioethanol production. Biotechnology and Bioprocess Engineering, 2012, 17, 624-633.	1.4	8
1074	Ethanol Production Through Saccharomyces Based Fermentation Using Apple Pomace Amended with Molasses. Sugar Tech, 2012, 14, 304-311.	0.9	11
1075	Sonication Boost the Total Reducing Sugar (TRS) Extraction from Sugarcane Bagasse After Dilute Acid Hydrolysis. Waste and Biomass Valorization, 2012, 3, 81-87.	1.8	11
1076	Mild Photocatalysed and Catalysed Green Oxidation of Lignin: A Useful Pathway to Low-Molecular-Weight Derivatives. Waste and Biomass Valorization, 2012, 3, 165-174.	1.8	34
1077	Improvement of tolerance of Saccharomyces cerevisiae to hot-compressed water-treated cellulose by expression of ADH1. Applied Microbiology and Biotechnology, 2012, 94, 273-283.	1.7	16
1078	Production of xylanase under solid-state fermentation by Aspergillus tubingensis JP-1 and its application. Bioprocess and Biosystems Engineering, 2012, 35, 769-779.	1.7	44
1079	Purification and characterization of an acidothermophilic cellulase enzyme produced by Bacillus subtilis strain LFS3. Extremophiles, 2012, 16, 637-644.	0.9	58
1080	Enzymatic saccharification of spent wood-meal media made of 5 different tree species after cultivation of edible mushroom Auricularia polytricha. Journal of Wood Science, 2012, 58, 180-183.	0.9	9
1081	Ethanol production from alkali-treated rice straw via simultaneous saccharification and fermentation using newly isolated thermotolerant <i>Pichia kudriavzevii</i> HOP-1. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 557-566.	1.4	92
1082	Novel endophytic yeast <i>Rhodotorula mucilaginosa</i> strain PTD3 I: production of xylitol and ethanol. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 1003-1011.	1.4	29
1083	Characteristics of bifunctional acidic endoglucanase (Cel5B) from Gloeophyllum trabeum. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 1081-1089.	1.4	18
1084	Xylose production from giant reed (Arundo donax L.): Modeling and optimization of dilute acid hydrolysis. Carbohydrate Polymers, 2012, 87, 210-217.	5.1	64
1085	Kinetic model of enzymatic hydrolysis of steam-exploded wheat straw. Carbohydrate Polymers, 2012, 87, 1280-1285.	5.1	19
1086	Process intensification in the future production of base chemicals from biomass. Chemical Engineering and Processing: Process Intensification, 2012, 51, 117-136.	1.8	115
1087	Production of fermentable sugars from enzymatic hydrolysis of pretreated municipal solid waste after autoclave process. Fuel, 2012, 92, 84-88.	3.4	41
1088	Comparison of batch and fed-batch fermentations using corncob hydrolysate for bioethanol production. Fuel, 2012, 97, 166-173.	3.4	31

#	Article	IF	CITATIONS
1089	Fungal growth necessary but not sufficient for effective biopulping of wood for lignocellulosic ethanol applications. International Biodeterioration and Biodegradation, 2012, 67, 1-7.	1.9	7
1090	Screening of fungi capable of highly selective degradation of lignin in rice straw. International Biodeterioration and Biodegradation, 2012, 72, 26-30.	1.9	77
1091	Generation of hydrogen from NADPH using an [FeFe] hydrogenase. International Journal of Hydrogen Energy, 2012, 37, 2977-2983.	3.8	27
1092	Aqueous-phase furfural-acetone aldol condensation over basic mixed oxides. Applied Catalysis B: Environmental, 2012, 113-114, 201-211.	10.8	184
1093	Mild acid pretreatment and enzyme saccharification of Sorghum bicolor straw. Applied Energy, 2012, 92, 421-428.	5.1	51
1094	Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production. Applied Energy, 2012, 93, 648-654.	5.1	156
1095	Hydrothermal pretreatment of rice straw biomass: A potential and promising method for enhanced methane production. Applied Energy, 2012, 94, 129-140.	5.1	242
1096	Optimization of formic/acetic acid delignification of Miscanthus×giganteus for enzymatic hydrolysis using response surface methodology. Industrial Crops and Products, 2012, 35, 280-286.	2.5	72
1097	Optimization of ethanol production by Saccharomyces cerevisiae UFPEDA 1238 in simultaneous saccharification and fermentation of delignified sugarcane bagasse. Industrial Crops and Products, 2012, 36, 584-588.	2.5	39
1098	Ethanol production from alkali- and ozone-treated cotton stalks using thermotolerant Pichia kudriavzevii HOP-1. Industrial Crops and Products, 2012, 37, 219-226.	2.5	82
1099	Potential of apple pomace as a solid substrate for fungal cellulase and hemicellulase bioproduction through solid-state fermentation. Industrial Crops and Products, 2012, 38, 6-13.	2.5	123
1100	The adsorption and enzyme activity profiles of specific Trichoderma reesei cellulase/xylanase components when hydrolyzing steam pretreated corn stover. Enzyme and Microbial Technology, 2012, 50, 195-203.	1.6	77
1101	Impact of mechanical, chemical and enzymatic pre-treatments on the methane yield from the anaerobic digestion of switchgrass. Biomass and Bioenergy, 2012, 36, 1-11.	2.9	129
1102	Effects of acid and alkali treated lignocellulosic materials on cellulase/xylanase production by Trichoderma reesei Rut C-30 and corresponding enzymatic hydrolysis. Biomass and Bioenergy, 2012, 37, 16-24.	2.9	43
1103	Structural changes in lignin during organosolv pretreatment of Liriodendron tulipifera and the effect on enzymatic hydrolysis. Biomass and Bioenergy, 2012, 42, 24-32.	2.9	101
1104	Biomass characteristics and ethanol production of yellow poplar (Liriodendron tulipifera) treated with slurry composting and biofiltration liquid as fertilizer. Biomass and Bioenergy, 2012, 42, 10-17.	2.9	9
1105	Effects of grinding processes on enzymatic degradation of wheat straw. Bioresource Technology, 2012, 103, 192-200.	4.8	207
1106	Effect of alkaline and autohydrolysis processes on the purity of obtained hemicelluloses from corn stalks. Bioresource Technology, 2012, 103, 239-248.	4.8	101

#	Article	IF	CITATIONS
1107	The delignification effects of white-rot fungal pretreatment on thermal characteristics of moso bamboo. Bioresource Technology, 2012, 114, 437-442.	4.8	59
1108	Effect of steam explosion and microbial fermentation on cellulose and lignin degradation of corn stover. Bioresource Technology, 2012, 104, 587-592.	4.8	57
1109	Ethanol production from horticultural waste treated by a modified organosolv method. Bioresource Technology, 2012, 104, 715-721.	4.8	61
1110	Modification of cellulose for high glucose generation. Bioresource Technology, 2012, 104, 473-479.	4.8	19
1111	Combination of hot compressed water treatment and wet disk milling for high sugar recovery yield in enzymatic hydrolysis of rice straw. Bioresource Technology, 2012, 104, 743-748.	4.8	52
1112	Dilute sulfuric acid pretreatment of transgenic switchgrass for sugar production. Bioresource Technology, 2012, 104, 823-827.	4.8	22
1113	Fractionation of triticale, wheat, barley, oats, canola, and mustard straws for the production of carbohydrates and lignins. Bioresource Technology, 2012, 106, 117-124.	4.8	55
1114	Kinetic model for glycan hydrolysis and formation of monosaccharides during dilute acid hydrolysis of sugarcane bagasse. Bioresource Technology, 2012, 105, 160-168.	4.8	57
1115	Different laccase detoxification strategies for ethanol production from lignocellulosic biomass by the thermotolerant yeast Kluyveromyces marxianus CECT 10875. Bioresource Technology, 2012, 106, 101-109.	4.8	89
1116	Ultrasound-assisted compatible in situ hydrolysis of sugarcane bagasse in cellulase-aqueous–N-methylmorpholine-N-oxide system for improved saccharification. Bioresource Technology, 2012, 107, 251-257.	4.8	52
1117	Autohydrolysis and organosolv process for recovery of hemicelluloses, phenolic compounds and lignin from grape stalks. Bioresource Technology, 2012, 107, 267-274.	4.8	82
1118	Combination of biological pretreatment with liquid hot water pretreatment to enhance enzymatic hydrolysis of Populus tomentosa. Bioresource Technology, 2012, 107, 282-286.	4.8	96
1119	Efficient saccharification of ammonia soaked rice straw by combination of Clostridium thermocellum cellulosome and Thermoanaerobacter brockii β-glucosidase. Bioresource Technology, 2012, 107, 352-357.	4.8	40
1120	Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. Bioresource Technology, 2012, 108, 128-133.	4.8	99
1121	Enzymatic saccharification of dilute acid pretreated eucalyptus chips for fermentable sugar production. Bioresource Technology, 2012, 110, 302-307.	4.8	70
1122	Ethanol production from sorghum by a microwave-assisted dilute ammonia pretreatment. Bioresource Technology, 2012, 110, 190-197.	4.8	91
1123	The influence of presaccharification, fermentation temperature and yeast strain on ethanol production from sugarcane bagasse. Bioresource Technology, 2012, 109, 63-69.	4.8	73
1124	Optimization of furfural and 5-hydroxymethylfurfural production from wheat straw by a microwave-assisted process. Bioresource Technology, 2012, 109, 215-223.	4.8	114

# 1125	ARTICLE Fractional pretreatment of hybrid poplar for accelerated enzymatic hydrolysis: Characterization of cellulose-enriched fraction. Bioresource Technology, 2012, 110, 308-313.	IF 4.8	CITATIONS
1126	Application of a continuous twin screw-driven process for dilute acid pretreatment of rape straw. Bioresource Technology, 2012, 110, 349-354.	4.8	36
1127	Pretreatment of oil palm frond using hot compressed water: An evaluation of compositional changes and pulp digestibility using severity factors. Bioresource Technology, 2012, 110, 662-669.	4.8	41
1128	Sodium hydroxide pretreatment of genetically modified switchgrass for improved enzymatic release of sugars. Bioresource Technology, 2012, 110, 364-370.	4.8	40
1129	Pretreatment of corn stover for sugar production with switchgrass-derived black liquor. Bioresource Technology, 2012, 111, 255-260.	4.8	56
1130	Steam refining as an alternative to steam explosion. Bioresource Technology, 2012, 111, 476-481.	4.8	23
1131	Thermochemical pre- and biological co-treatments to improve hydrolysis and methane production from poultry litter. Bioresource Technology, 2012, 111, 141-147.	4.8	86
1132	Process technology for multi-enzymatic reaction systems. Bioresource Technology, 2012, 115, 183-195.	4.8	124
1133	Saccharification of woody biomass using glycoside hydrolases from Stereum hirsutum. Bioresource Technology, 2012, 117, 310-316.	4.8	13
1134	Utilisation of microwave-NaOH pretreatment technology to improve performance and l-lactic acid yield from vinasse. Biosystems Engineering, 2012, 112, 6-13.	1.9	19
1135	Study on binding modes between cellobiose and β-glucosidases from glycoside hydrolase family 1. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 837-843.	1.0	9
1136	Lipid production from sweet sorghum bagasse through yeast fermentation. Renewable Energy, 2012, 40, 130-136.	4.3	76
1137	Use of ionic liquids in converting lignocellulosic material to biofuels. Renewable Energy, 2012, 45, 1-6.	4.3	154
1138	Studies on ethanol production from water hyacinth—A review. Renewable and Sustainable Energy Reviews, 2012, 16, 966-972.	8.2	99
1139	Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renewable and Sustainable Energy Reviews, 2012, 16, 1462-1476.	8.2	650
1140	A review on utilisation of biomass from rice industry as a source of renewable energy. Renewable and Sustainable Energy Reviews, 2012, 16, 3084-3094.	8.2	480
1141	Quantitative proteomic analysis of lignocellulolytic enzymes by Phanerochaete chrysosporium on different lignocellulosic biomass. Journal of Proteomics, 2012, 75, 1493-1504.	1.2	73
1142	The processive endoglucanase EngZ is active in crystalline cellulose degradation as a cellulosomal subunit of Clostridium cellulovorans. New Biotechnology, 2012, 29, 365-371.	2.4	28

#	Article	IF	CITATIONS
1143	Reactive high pressure carbonated water pretreatment prior to enzymatic saccharification of biomass substrates. Journal of Supercritical Fluids, 2012, 66, 221-231.	1.6	40
1144	Applications and perspectives of multi-parameter flow cytometry to microbial biofuels production processes. Trends in Biotechnology, 2012, 30, 225-232.	4.9	43
1145	Fermentation of rice hull by Aspergillus japonicus under ultrasonic pretreatment. Ultrasonics Sonochemistry, 2012, 19, 687-691.	3.8	30
1146	New opportunities for the exploitation of energy crops by thermochemical conversion in Northern Europe and the UK. Progress in Energy and Combustion Science, 2012, 38, 138-155.	15.8	114
1147	Trends in bioconversion of lignocellulose: Biofuels, platform chemicals &Âbiorefinery concept. Progress in Energy and Combustion Science, 2012, 38, 522-550.	15.8	1,258
1148	Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 2012, 38, 449-467.	15.8	1,043
1149	Conceptual net energy output for biofuel production from lignocellulosic biomass through biorefining. Progress in Energy and Combustion Science, 2012, 38, 583-598.	15.8	140
1150	Waste as alternative fuel – Minimising emissions and effluents by advanced design. Chemical Engineering Research and Design, 2012, 90, 263-284.	2.7	91
1151	Optimization of a synthetic mixture composed of major Trichoderma reesei enzymes for the hydrolysis of steam-exploded wheat straw. Biotechnology for Biofuels, 2012, 5, 9.	6.2	68
1152	Design of Nanocatalysts for Green Hydrogen Production from Bioethanol. ChemSusChem, 2012, 5, 76-84.	3.6	89
1153	Furfural—A Promising Platform for Lignocellulosic Biofuels. ChemSusChem, 2012, 5, 150-166.	3.6	1,129
1154	A new process developed for separation of lignin from ammonium hydroxide pretreatment solutions. Environmental Progress and Sustainable Energy, 2012, 31, 130-138.	1.3	9
1155	Valorization of residual woody biomass (<i>Olea europaea</i> trimmings) based on aqueous fractionation. Journal of Chemical Technology and Biotechnology, 2012, 87, 87-94.	1.6	19
1156	Comparison of common lignin methods and modifications on forage and lignocellulosic biomass materials. Journal of the Science of Food and Agriculture, 2012, 92, 751-758.	1.7	19
1157	Enhancing the enzymatic digestibility of sugarcane bagasse through the application of an ionic liquid in combination with an acid catalyst. Biotechnology Progress, 2012, 28, 76-84.	1.3	33
1158	Use of laccase in pulp and paper industry. Biotechnology Progress, 2012, 28, 21-32.	1.3	116
1159	Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques. Biotechnology and Bioengineering, 2012, 109, 381-389.	1.7	128
1160	The Effect of Different Ethoxylations for Sorbitan Monolaurate on Enhancing Simultaneous Saccharification and Fermentation (SSF) of Wheat Straw to Ethanol. Applied Biochemistry and Biotechnology, 2012, 166, 22-35.	1.4	5

#	Article	IF	CITATIONS
1161	Pretreatment of Corn Stover with Twin-Screw Extrusion Followed by Enzymatic Saccharification. Applied Biochemistry and Biotechnology, 2012, 166, 458-469.	1.4	43
1162	Chemometric Analysis with Near-Infrared Spectroscopy for Chemically Pretreated Erianthus toward Efficient Bioethanol Production. Applied Biochemistry and Biotechnology, 2012, 166, 711-721.	1.4	15
1163	Process Evaluation of Enzymatic Hydrolysis with Filtrate Recycle for the Production of High Concentration Sugars. Applied Biochemistry and Biotechnology, 2012, 166, 839-855.	1.4	5
1164	Enzymatic Hydrolysis of Recovered Office Printing Paper with Low Enzyme Dosages to Produce Fermentable Sugars. Applied Biochemistry and Biotechnology, 2012, 166, 1121-1136.	1.4	33
1165	Characterization of Xyn10J, a Novel Family 10 Xylanase from a Compost Metagenomic Library. Applied Biochemistry and Biotechnology, 2012, 166, 1328-1339.	1.4	38
1166	Assessment of the Brazilian potential for the production of enzymes for biofuels from agroindustrial materials. Biomass Conversion and Biorefinery, 2012, 2, 87-107.	2.9	17
1167	The Fibrobacteres: an Important Phylum of Cellulose-Degrading Bacteria. Microbial Ecology, 2012, 63, 267-281.	1.4	255
1168	Ionic liquid—a future solvent for the enhanced uses of wood biomass. European Journal of Wood and Wood Products, 2012, 70, 125-133.	1.3	72
1169	Production of alkaliphilic, halotolerent, thermostable cellulase free xylanase by Bacillus halodurans PPKS-2 using agro waste: single step purification and characterization. World Journal of Microbiology and Biotechnology, 2012, 28, 183-192.	1.7	28
1170	Organosolvent pretreatment and enzymatic hydrolysis of rice straw for the production of bioethanol. World Journal of Microbiology and Biotechnology, 2012, 28, 473-483.	1.7	77
1171	Isolation and characterization of a new cellulosome-producing Clostridium thermocellum strain. Biodegradation, 2012, 23, 57-68.	1.5	32
1172	Anaerobic co-digestion of dairy manure with mulched switchgrass for improvement of the methane yield. Bioprocess and Biosystems Engineering, 2012, 35, 341-349.	1.7	25
1173	Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess and Biosystems Engineering, 2012, 35, 11-18.	1.7	175
1174	Cellulosic ethanol production on temperature-shift simultaneous saccharification and fermentation using the thermostable yeast Kluyveromyces marxianus CHY1612. Bioprocess and Biosystems Engineering, 2012, 35, 115-122.	1.7	33
1175	Process and utility water requirements for cellulosic ethanol production processes via fermentation pathway. Environmental Progress and Sustainable Energy, 2013, 32, 396-405.	1.3	4
1176	Optimization of the enzymatic hydrolysis conditions of steamâ€exploded wheat straw for maximum glucose and xylose recovery. Journal of Chemical Technology and Biotechnology, 2013, 88, 237-246.	1.6	31
1177	Value-added bioethanol from spent ginger obtained after oleoresin extraction. Industrial Crops and Products, 2013, 42, 299-307.	2.5	14
1178	Alkaline twin-screw extrusion pretreatment for fermentable sugar production. Biotechnology for Biofuels, 2013, 6, 97.	6.2	76

#	Article	IF	CITATIONS
1179	Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production. Biotechnology for Biofuels, 2013, 6, 63.	6.2	83
1180	Performance of AFEXâ"¢ pretreated rice straw as source of fermentable sugars: the influence of particle size. Biotechnology for Biofuels, 2013, 6, 40.	6.2	69
1181	Integration of pulp and paper technology with bioethanol production. Biotechnology for Biofuels, 2013, 6, 13.	6.2	56
1182	Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification. Cellulose, 2013, 20, 807-818.	2.4	148
1183	Developing co-culture system of dominant cellulolytic Bacillus sp. THLA0409 and dominant ethanolic Klebsiella oxytoca THLC0409 for enhancing ethanol production from lignocellulosic materials. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 762-769.	2.7	25
1184	Expression and characterization of GH3 β-Glucosidase from Aspergillus niger NL-1 with high specific activity, glucose inhibition and solvent tolerance. Microbiology, 2013, 82, 356-363.	0.5	18
1185	A review of wood thermal pretreatments to improve wood composite properties. Wood Science and Technology, 2013, 47, 1285-1319.	1.4	161
1186	Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review. Reviews in Environmental Science and Biotechnology, 2013, 12, 257-284.	3.9	294
1187	Hydrothermal Reactions of Agricultural and Food Processing Wastes in Sub- and Supercritical Water: A Review of Fundamentals, Mechanisms, and State of Research. Journal of Agricultural and Food Chemistry, 2013, 61, 8003-8025.	2.4	199
1188	Production of Bioethanol from Fermented Sugars of Sugarcane Bagasse Produced by Lignocellulolytic Enzymes of Exiguobacterium sp. VSG-1. Applied Biochemistry and Biotechnology, 2013, 171, 246-260.	1.4	34
1189	Autohydrolysis of Tropical Agricultural Residues by Compressed Liquid Hot Water Pretreatment. Applied Biochemistry and Biotechnology, 2013, 170, 1982-1995.	1.4	40
1190	In situ XAS and FTIR studies of a multi-component Ni/Fe/Cu catalyst for hydrogen production from ethanol. Applied Catalysis A: General, 2013, 467, 593-603.	2.2	42
1191	Simultaneous saccharification and fermentation by engineered Saccharomyces cerevisiae without supplementing extracellular β-glucosidase. Journal of Biotechnology, 2013, 167, 316-322.	1.9	49
1192	Biohydrogen Production from Organic Wastes by Dark Fermentation. , 2013, , 103-144.		35
1193	Fermentative Biohydrogen Production from Solid Wastes. , 2013, , 259-283.		14
1194	Microbial diversity of hydrogen-producing bacteria in batch reactors fed with cellulose using leachate as inoculum. International Journal of Hydrogen Energy, 2013, 38, 9707-9717.	3.8	38
1195	Pretreatment Techniques for Biofuels and Biorefineries. Green Energy and Technology, 2013, , .	0.4	32
1196	Effect of Pretreatment of Sweet Sorghum Biomass on Methane Generation. Waste and Biomass Valorization, 2013, 4, 583-591.	1.8	32

#	Article	IF	CITATIONS
1197	The Essentialness of Delignification on Enzymatic Hydrolysis of Sugar Cane Bagasse Cellulignin for Second Generation Ethanol Production. Waste and Biomass Valorization, 2013, 4, 341-346.	1.8	25
1198	Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews, 2013, 27, 77-93.	8.2	999
1199	Biological pretreatment of corn stover with ligninolytic enzyme for high efficient enzymatic hydrolysis. Bioresource Technology, 2013, 144, 572-578.	4.8	89
1200	The promoting effects of manganese on biological pretreatment with Irpex lacteus and enzymatic hydrolysis of corn stover. Bioresource Technology, 2013, 135, 89-92.	4.8	48
1201	Modern Solid State Fermentation. , 2013, , .		55
1202	Integrating White Biotechnology in Lignocellulosic Biomass Transformations. , 2013, , 445-466.		5
1203	Biomass Composition and Its Relevance to Biorefining. , 2013, , 27-65.		10
1204	Current Catalytic Processes for Biomass Conversion. , 2013, , 29-52.		9
1205	Atmospheric Pressure Plasma Pretreatment of Sugarcane Bagasse: The Influence of Moisture in the Ozonation Process. Applied Biochemistry and Biotechnology, 2013, 171, 104-116.	1.4	29
1206	Chestnut Shell as Unexploited Source of Fermentable Sugars: Effect of Different Pretreatment Methods on Enzymatic Saccharification. Applied Biochemistry and Biotechnology, 2013, 170, 1104-1118.	1.4	39
1207	Effect of organic acids found in cottonseed hull hydrolysate on the xylitol fermentation by Candida tropicalis. Bioprocess and Biosystems Engineering, 2013, 36, 1053-1061.	1.7	15
1208	Detoxification of rice straw and olive tree pruning hemicellulosic hydrolysates employing Saccharomyces cerevisiae and its effect on the ethanol production by Pichia stipitis. Journal of Agricultural and Food Chemistry, 2013, 61, 130830142034008.	2.4	10
1209	Bioethanol Production from Horticultural Waste Using Crude Fungal Enzyme Mixtures Produced by Solid State Fermentation. Bioenergy Research, 2013, 6, 1030-1037.	2.2	14
1210	Conversion of Sweet Sorghum Straw to Sugars by Dilute Acid Saccharification. Sugar Tech, 2013, 15, 322-327.	0.9	7
1211	Effects of lignin on the ionic-liquid assisted catalytic hydrolysis of cellulose: chemical inhibition by lignin. Cellulose, 2013, 20, 2349-2358.	2.4	12
1212	Ozone treatment of spent medium from Auricularia polytricha cultivation for enzymatic saccharification and subsequent ethanol production. Journal of Wood Science, 2013, 59, 522-527.	0.9	7
1213	Cellulosic ethanol production from agricultural residues in Nigeria. Energy Policy, 2013, 63, 207-214.	4.2	20
1214	Effect of ozone pretreatment on hydrogen production from barley straw. Bioresource Technology, 2013, 144, 344-349.	4.8	36

#	Article	IF	CITATIONS
1215	Using high pressure processing (HPP) to pretreat sugarcane bagasse. Carbohydrate Polymers, 2013, 98, 1018-1024.	5.1	26
1216	A novel anaerobic co-culture system for bio-hydrogen production from sugarcane bagasse. Bioresource Technology, 2013, 144, 623-631.	4.8	85
1217	Ozone pretreatment of wheat straw for enhanced biohydrogen production. International Journal of Hydrogen Energy, 2013, 38, 10270-10276.	3.8	64
1218	Effects of hydrothermal pre-treatments on Giant reed (Arundo donax) methane yield. Bioresource Technology, 2013, 147, 152-159.	4.8	72
1219	Structural changes in wood during ozonation. Russian Journal of Physical Chemistry A, 2013, 87, 1097-1101.	0.1	9
1220	Effect of ozonation on the reactivity of lignocellulose substrates in enzymatic hydrolyses to sugars. Russian Journal of Physical Chemistry A, 2013, 87, 1108-1113.	0.1	34
1221	Parametric analysis of total costs and energy efficiency of 2G enzymatic ethanol production. Fuel, 2013, 113, 165-179.	3.4	37
1222	Characterization of Cellulolytic Activities of Environmental Bacterial Consortia from an Argentinian Native Forest. Current Microbiology, 2013, 67, 138-147.	1.0	21
1223	Chlorocuprate Ionic Liquid Functionalized Biochar Sulfonic Acid as an Efficiently Biomimetic Catalyst for Direct Hydrolysis of Bamboo under Microwave Irradiation. Industrial & Engineering Chemistry Research, 2013, 52, 11537-11543.	1.8	15
1224	Effects of bulking agents, load size or starter cultures in kitchen-waste composting. International Journal of Recycling of Organic Waste in Agriculture, 2013, 2, 1.	2.0	27
1225	Advances in Bioethanol. SpringerBriefs in Applied Sciences and Technology, 2013, , .	0.2	14
1226	Recalcitrant polysaccharide degradation by novel oxidative biocatalysts. Applied Microbiology and Biotechnology, 2013, 97, 8455-8465.	1.7	51
1227	Processing Technologies and Cell Wall Degrading Enzymes To Improve Nutritional Value of Dried Distillers Grain with Solubles for Animal Feed: an in Vitro Digestion Study. Journal of Agricultural and Food Chemistry, 2013, 61, 8821-8828.	2.4	32
1228	Innovative and intensified technology for the biological pretreatment of agro waste for ethanol production. Korean Journal of Chemical Engineering, 2013, 30, 1051-1057.	1.2	13
1229	Effects of solvents and catalysts in liquefaction of pinewood sawdust for the production of bio-oils. Biomass and Bioenergy, 2013, 59, 158-167.	2.9	123
1230	Comparison of homogeneous and heterogeneous acid promoters in single-step aqueous-organosolv fractionation of eucalyptus wood chips. Bioresource Technology, 2013, 147, 276-284.	4.8	22
1231	Development of an efficient pretreatment process for enzymatic saccharification of Eastern redcedar. Bioresource Technology, 2013, 136, 131-139.	4.8	15
1232	Effect of alkaline pretreatment on chemical composition of lignocellulosic biomass using radio frequency heating. Biosystems Engineering, 2013, 116, 385-398.	1.9	29

#	Article	IF	CITATIONS
1233	Evaluation of a classification method for biodegradable solid wastes using anaerobic degradation parameters. Waste Management, 2013, 33, 2632-2640.	3.7	84
1234	Screening pretreatment methods to enhance thermophilic anaerobic digestion of pulp and paper mill wastewater treatment secondary sludge. Chemical Engineering Journal, 2013, 223, 479-486.	6.6	76
1235	Efficient pretreatment for bioethanol production from water hyacinth (<i>eichhornia crassipes</i>) involving naturally isolated and recombinant enzymes and its recovery. Environmental Progress and Sustainable Energy, 2014, 33, 1396-1404.	1.3	6
1241	Review on Parthenium hysterphorus as a potential energy source. Renewable and Sustainable Energy Reviews, 2013, 20, 420-429.	8.2	18
1242	Effects of enzymatic hydrolysis on lipid extraction from Chlorella vulgaris. Renewable Energy, 2013, 54, 156-160.	4.3	106
1243	Isolation and characterization of lignin from Moroccan sugar cane bagasse: Production of lignin–phenol-formaldehyde wood adhesive. Industrial Crops and Products, 2013, 45, 296-302.	2.5	113
1244	Zeolite topology effects in the alkylation of phenol with propylene. Applied Catalysis A: General, 2013, 459, 114-120.	2.2	36
1245	The proteomes of feedstocks used for the production of secondâ€generation ethanol: a lacuna in the biofuel era. Annals of Applied Biology, 2013, 163, 12-22.	1.3	13
1246	Promising Unconventional Pretreatments for Lignocellulosic Biomass. Critical Reviews in Environmental Science and Technology, 2013, 43, 2140-2211.	6.6	25
1247	Evaluation of next generation biomass derived fuels for the transport sector. Energy Policy, 2013, 62, 443-455.	4.2	34
1248	Engineering strategies for improving the CO2 fixation and carbohydrate productivity of Scenedesmus obliquus CNW-N used for bioethanol fermentation. Bioresource Technology, 2013, 143, 163-171.	4.8	108
1249	Enzymatic Saccharification of Lignocellulosic Biomass. , 2013, , 475-481.		23
1250	Characterizing the Catalyzed Hydrolysis of β-1,4 Glycosidic Bonds Using Density Functional Theory. Journal of Physical Chemistry A, 2013, 117, 14200-14208.	1.1	21
1251	Green Biomass Pretreatment for Biofuels Production. Springer Briefs in Molecular Science, 2013, , .	0.1	12
1252	Nanocrystalline cellulose extraction process and utilization of the byproduct for biofuels production. Carbohydrate Polymers, 2013, 93, 357-363.	5.1	44
1253	Food processing waste: Problems, current management and prospects for utilisation of the lignocellulose component through enzyme synergistic degradation. Renewable and Sustainable Energy Reviews, 2013, 26, 521-531.	8.2	147
1254	Enzymatic hydrolysis of aspen biomass into fermentable sugars by using lignocellulases from Armillaria gemina. Bioresource Technology, 2013, 133, 307-314.	4.8	32
1255	lonic liquid pretreatment to enhance the anaerobic digestion of lignocellulosic biomass. Bioresource Technology, 2013, 150, 352-358.	4.8	90

#	Article	IF	CITATIONS
1256	Acid Pre-treatment Technologies and SEM Analysis of Treated Grass Biomass in Biofuel Processing. , 2013, , 97-118.		5
1258	Characterization of uridine diphosphate-sugar pyrophosphorylase from Populus deltoids. Journal of the Korean Society for Applied Biological Chemistry, 2013, 56, 525-531.	0.9	2
1259	Novel perspectives for evolving enzyme cocktails for lignocellulose hydrolysis in biorefineries. Sustainable Chemical Processes, 2013, 1, .	2.3	126
1260	An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech, 2013, 3, 415-431.	1.1	280
1261	Thermophilic biohydrogen production: how far are we?. Applied Microbiology and Biotechnology, 2013, 97, 7999-8009.	1.7	106
1262	Poly(4-hydroxybutyrate) (P4HB) production in recombinant Escherichia coli: P4HB synthesis is uncoupled with cell growth. Microbial Cell Factories, 2013, 12, 123.	1.9	29
1263	Biomass digestibility is predominantly affected by three factors of wall polymer features distinctive in wheat accessions and rice mutants. Biotechnology for Biofuels, 2013, 6, 183.	6.2	106
1264	A novel cost-effective technology to convert sucrose and homocelluloses in sweet sorghum stalks into ethanol. Biotechnology for Biofuels, 2013, 6, 174.	6.2	70
1265	Techno-economic potential of bioethanol from bamboo in China. Biotechnology for Biofuels, 2013, 6, 173.	6.2	83
1266	Analysis of pectin mutants and natural accessions of Arabidopsis highlights the impact of de-methyl-esterified homogalacturonan on tissue saccharification. Biotechnology for Biofuels, 2013, 6, 163.	6.2	44
1268	Effect of Pretreatment Process by Using Diluted Acid to Characteristic of oil Palm's Frond. Energy Procedia, 2013, 32, 183-189.	1.8	42
1269	High pressure assist-alkali pretreatment of cotton stalk and physiochemical characterization of biomass. Bioresource Technology, 2013, 148, 494-500.	4.8	53
1270	Evaluation of bagasse from different varieties of sugarcane by dilute acid pretreatment and enzymatic hydrolysis. Industrial Crops and Products, 2013, 51, 7-18.	2.5	63
1271	Application of new expansion pretreatment method on agricultural waste. Part I: Influence of pretreatment on the properties of lignin. Industrial Crops and Products, 2013, 50, 887-895.	2.5	36
1272	Experimental study and neural network modeling of sugarcane bagasse pretreatment with H2SO4 and O3 for cellulosic material conversion to sugar. Bioresource Technology, 2013, 148, 47-52.	4.8	27
1273	A novel non-hydrolytic protein from Pseudomonas oryzihabitans enhances the enzymatic hydrolysis of cellulose. Journal of Biotechnology, 2013, 168, 24-31.	1.9	20
1274	Cell recycle batch fermentation of high-solid lignocellulose using a recombinant cellulase-displaying yeast strain for high yield ethanol production in consolidated bioprocessing. Bioresource Technology, 2013, 135, 403-409.	4.8	86
1275	Mapping biofuel field: A bibliometric evaluation of research output. Renewable and Sustainable Energy Reviews, 2013, 28, 82-91.	8.2	65

#	Article	IF	CITATIONS
1276	Biological nutrients removal via nitrite from the supernatant of anaerobic co-digestion using a pilot-scale sequencing batch reactor operating under transient conditions. Chemical Engineering Journal, 2013, 230, 595-604.	6.6	33
1277	Ethanol from laccase-detoxified lignocellulose by the thermotolerant yeast Kluyveromyces marxianus—Effects of steam pretreatment conditions, process configurations and substrate loadings. Biochemical Engineering Journal, 2013, 79, 94-103.	1.8	34
1278	Analysis of different techniques used for improvement of biomethanation process: A review. Fuel, 2013, 106, 1-9.	3.4	83
1279	Supercritical ethanol extraction of bio-oils from German beech wood: Design of experiments. Industrial Crops and Products, 2013, 49, 720-729.	2.5	35
1280	In situ visualization of the change in lignocellulose biodegradability during extended anaerobic bacterial degradation. RSC Advances, 2013, 3, 11759.	1.7	17
1281	Biorefineries: increased value from biomass conversion. , 2013, , 278-295.		0
1282	Effect of methanol and sulfuric acid on hydrolysis of coconut dregs for glucose recovery. , 2013, , .		1
1283	Effects of chemical and thermochemical pretreatments on sunflower oil cake inÂbiochemical methane potential assays. Journal of Chemical Technology and Biotechnology, 2013, 88, 924-929.	1.6	15
1284	Characterization of cellulase producing <i>Bacillus</i> sp. for effective degradation of leaf litter biomass. Environmental Progress and Sustainable Energy, 2013, 32, 1195-1201.	1.3	16
1285	Alkaline Pretreatment Improves Saccharification and Ethanol Yield from Waste Money Bills. Bioscience, Biotechnology and Biochemistry, 2013, 77, 1397-1402.	0.6	6
1286	Production of polyhydroxyalkanoates from Ralstonia eutropha using paddy straw as cheap substrate. International Journal of Environmental Science and Technology, 2013, 10, 47-54.	1.8	56
1287	High-grade sulfur-free cellulose fibers by pre-hydrolysis and ethanol-alkali delignification of giant reed (Arundo donax L.) stems. Industrial Crops and Products, 2013, 43, 623-630.	2.5	40
1288	Sodium carbonate–sodium sulfite pretreatment for improving the enzymatic hydrolysis of rice straw. Industrial Crops and Products, 2013, 43, 711-717.	2.5	64
1289	Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation. Journal of Biotechnology, 2013, 163, 38-44.	1.9	106
1290	Carbohydrate derivedâ€pseudoâ€lignin can retard cellulose biological conversion. Biotechnology and Bioengineering, 2013, 110, 737-753.	1.7	174
1291	Chromatographic Fractionation of Lignocellulosic Hydrolysates. Advances in Chemical Engineering, 2013, 42, 261-349.	0.5	4
1292	Increase in ethanol production from sugarcane bagasse based on combined pretreatments and fed-batch enzymatic hydrolysis. Bioresource Technology, 2013, 128, 448-453.	4.8	110
1293	Kinetics of growth and ethanol formation from a mix of glucose/xylose substrate by Kluyveromyces marxianus UFV-3. Antonie Van Leeuwenhoek, 2013, 103, 153-161.	0.7	16

# 1294	ARTICLE Cell-type-dependent enzymatic hydrolysis of palm residues: chemical and surface characterization of fibers and parenchyma cells. Biotechnology Letters, 2013, 35, 213-218.	lF 1.1	CITATIONS 3
1295	Pretreatment of microcrystalline cellulose by ultrasounds: effect of particle size in the heterogeneously-catalyzed hydrolysis of cellulose to glucose. Green Chemistry, 2013, 15, 963.	4.6	88
1296	Bioethanol production from bamboo (Dendrocalamus sp.) process waste. Biomass and Bioenergy, 2013, 59, 142-150.	2.9	61
1297	Characterization of oxalic acid pretreatment on lignocellulosic biomass using oxalic acid recovered by electrodialysis. Bioresource Technology, 2013, 133, 87-91.	4.8	25
1298	Evaluation of pretreatment methods for enzymatic saccharification of wheat straw for bioethanol production. Carbohydrate Polymers, 2013, 91, 646-650.	5.1	126
1299	Development of an acetylation reaction of switchgrass hemicellulose in ionic liquid without catalyst. Industrial Crops and Products, 2013, 44, 306-314.	2.5	58
1300	Heterologous expression and characterization of a novel thermo-halotolerant endoglucanase Cel5H from Dictyoglomus thermophilum. Bioresource Technology, 2013, 142, 338-344.	4.8	49
1301	Catalyst activity comparison of alcohols over zeolites. Journal of Energy Chemistry, 2013, 22, 65-71.	7.1	37
1302	Use of artificial neural network (ANN) for the development of bioprocess using Pinus roxburghii fallen foliages for the release of polyphenols and reducing sugars. Bioresource Technology, 2013, 140, 392-398.	4.8	28
1303	Cellobiohydrolase secretion by yeast: Current state and prospects for improvement. Process Biochemistry, 2013, 48, 1-12.	1.8	49
1304	Comparative decomposition kinetics of neutral monosaccharides by microwave and induction heating treatments. Carbohydrate Research, 2013, 375, 1-4.	1.1	23
1305	Effect of pretreatment on saccharification of sugarcane bagasse by complex and simple enzyme mixtures. Bioresource Technology, 2013, 148, 105-113.	4.8	41
1306	Direct saccharification and ethanol fermentation of cello-oligosaccharides with recombinant yeast. Carbohydrate Polymers, 2013, 91, 157-161.	5.1	9
1307	Differential metabolite profiles and salinity tolerance between two genetically related brown-seeded and yellow-seeded Brassica carinata lines. Plant Science, 2013, 198, 17-26.	1.7	13
1308	Processes for the Production of Xylitolâ \in "A Review. Food Reviews International, 2013, 29, 127-156.	4.3	134
1310	Hydrolysis of insoluble cellulose to glucose catalyzed by cellulaseâ€containing liposomes in an aqueous solution of 1â€butylâ€3â€methylimidazolium chloride. Biotechnology Progress, 2013, 29, 1190-1196.	1.3	9
1311	Bioethanol production by mangrove-derived marine yeast, Sacchromyces cerevisiae. Journal of King Saud University - Science, 2013, 25, 121-127.	1.6	24
1312	Investigating lignin and hemicellulose in white rot fungus-pretreated wood that affect enzymatic hydrolysis. Bioresource Technology, 2013, 134, 381-385.	4.8	46
#	Article	IF	CITATIONS
------	--	-----	-----------
1313	Anaerobic digestion of poplar processing residues for methane production after alkaline treatment. Bioresource Technology, 2013, 134, 347-352.	4.8	53
1314	Combination of liquid hot water pretreatment and wet disk milling to improve the efficiency of the enzymatic hydrolysis of eucalyptus. Bioresource Technology, 2013, 128, 725-730.	4.8	54
1315	Evaluation energy efficiency of bioconversion knot rejects to ethanol in comparison to other ther ther ther ther thermochemically pretreated biomass. Bioresource Technology, 2013, 130, 783-788.	4.8	22
1316	Surface characterization of corn stalk superfine powder studied by FTIR and XRD. Colloids and Surfaces B: Biointerfaces, 2013, 104, 207-212.	2.5	148
1317	Investigations on the kinetics and thermodynamics of dilute acid hydrolysis of Parthenium hysterophorus L. substrate. Chemical Engineering Journal, 2013, 229, 111-117.	6.6	19
1318	Effect of the combined physical and chemical treatments with microbial fermentation on corn straw degradation. Bioresource Technology, 2013, 148, 361-365.	4.8	22
1319	Improved bioconversion of poplar by synergistic treatments with white-rot fungus Trametes velutina D10149 pretreatment and alkaline fractionation. Bioresource Technology, 2013, 130, 578-583.	4.8	24
1320	Integration of a phenolic-acid recovery step in the CaCCO process for efficient fermentable-sugar recovery from rice straw. Bioresource Technology, 2013, 148, 422-427.	4.8	13
1321	Combined alkali and acid pretreatment of spent mushroom substrate for reducing sugar and biofertilizer production. Bioresource Technology, 2013, 136, 257-266.	4.8	51
1322	Efficient butanol production without carbon catabolite repression from mixed sugars with Clostridium saccharoperbutylacetonicum N1-4. Journal of Bioscience and Bioengineering, 2013, 116, 716-721.	1.1	45
1323	A Comparison of Low Temperature Alkali and High Temperature Acid Pretreatments for Improving Saccharification of Spent Mushroom Substrate. IERI Procedia, 2013, 5, 184-188.	0.3	0
1324	Penicillium sp. strain that efficiently adsorbs lignosulfonate in the presence of sulfate ion. Journal of Bioscience and Bioengineering, 2013, 115, 279-283.	1.1	3
1325	Decanter cake waste as a renewable substrate for biobutanol production by Clostridium beijerinckii. Process Biochemistry, 2013, 48, 1933-1941.	1.8	16
1326	Solvent extraction of antioxidants from steam exploded sugarcane bagasse and enzymatic convertibility of the solid fraction. Bioresource Technology, 2013, 130, 8-15.	4.8	30
1327	Prediction of acid hydrolysis of lignocellulosic materials in batch and plug flow reactors. Bioresource Technology, 2013, 142, 570-578.	4.8	2
1328	Ethanol-based organosolv treatment with trace hydrochloric acid improves the enzymatic digestibility of Japanese cypress (Chamaecyparis obtusa) by exposing nanofibers on the surface. Bioresource Technology, 2013, 132, 64-70.	4.8	38
1329	Developing Cellulolytic Organisms for Consolidated Bioprocessing of Lignocellulosics. , 2013, , 189-220.		8
1330	Optimisation of the biological pretreatment of wheat straw with white-rot fungi for ethanol production. Bioprocess and Biosystems Engineering, 2013, 36, 1251-1260.	1.7	66

#	Article	IF	CITATIONS
1331	Effect of alcohol-based organosolv treatment combined with short-time ball milling on the enzymatic hydrolysis of Japanese cypress (Chamaecyparis obtusa). Wood Science and Technology, 2013, 47, 381-393.	1.4	6
1332	Fermentable Sugars from Lignocellulosic Biomass: Technical Challenges. , 2013, , 3-27.		6
1333	Sub- and Supercritical Water Technology for Biofuels. , 2013, , 147-183.		16
1334	Bioconversion of rice straw to sugar using multizyme complex of fungal origin and subsequent production of bioethanol by mixed fermentation of Saccharomyces cerevisiae MTCC 173 and Zymomonas mobilis MTCC 2428. Industrial Crops and Products, 2013, 46, 217-225.	2.5	30
1335	Association of wet disk milling and ozonolysis as pretreatment for enzymatic saccharification of sugarcane bagasse and straw. Bioresource Technology, 2013, 136, 288-294.	4.8	80
1336	Sugarcane as an energy source. Biomass Conversion and Biorefinery, 2013, 3, 17-26.	2.9	57
1337	Hydrothermal Pretreatment of Lignocellulosic Biomass. Springer Briefs in Molecular Science, 2013, , 87-106.	0.1	13
1338	X-ray scattering studies of lignocellulosic biomass: A review. Carbohydrate Polymers, 2013, 94, 904-917.	5.1	81
1339	Efficient enzymatic hydrolysis of the bagasse pulp prepared with active oxygen and MgO-based solid alkali. Carbohydrate Polymers, 2013, 94, 807-813.	5.1	16
1340	Chemicals effect on the enzymatic digestibility of rape straw over the thermo-mechanical pretreatment using a continuous twin screw-driven reactor (CTSR). Bioresource Technology, 2013, 130, 38-44.	4.8	15
1341	Selection of the best chemical pretreatment for lignocellulosic substrate Prosopis juliflora. Bioresource Technology, 2013, 136, 542-549.	4.8	55
1342	Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 2013, 78, 1-10.	1.8	563
1343	Advances in biomass transformation to 5-hydroxymethylfurfural and mechanistic aspects. Biomass and Bioenergy, 2013, 55, 355-369.	2.9	106
1344	Comparison of sodium carbonate pretreatment for enzymatic hydrolysis of wheat straw stem and leaf to produce fermentable sugars. Bioresource Technology, 2013, 137, 294-301.	4.8	65
1345	"Plant Cell Wall Structure-Pretreatment―the Critical Relationship in Biomass Conversion to Fermentable Sugars. Springer Briefs in Molecular Science, 2013, , 1-30.	0.1	12
1346	Microorganisms and Enzymes Involved in Lignin Degradation Vis-Ã-vis Production of Nutritionally Rich Animal Feed: An Overview. , 2013, , 3-44.		9
1347	Degradation and selective ligninolysis of wheat straw and banana stem for an efficient bioethanol production using fungal and chemical pretreatment. 3 Biotech, 2013, 3, 365-372.	1.1	37
1348	Bioethanol production from the macroalgae Sargassum spp Bioresource Technology, 2013, 138, 22-29.	4.8	199

#	ARTICLE	IF	Citations
1349	Alkaline hydrogen peroxide pretreatment of cashew apple bagasse for ethanol production: Study of parameters. Bioresource Technology, 2013, 139, 249-256.	4.8	126
1350	Impact of the lignin structure of three lignocellulosic feedstocks on their organosolv delignification. Effect ofÂcarbonium ion scavengers. Biomass and Bioenergy, 2013, 52, 151-158.	2.9	24
1351	Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresource Technology, 2013, 128, 751-759.	4.8	291
1352	Survey of renewable chemicals produced from lignocellulosic biomass during ionic liquid pretreatment. Biotechnology for Biofuels, 2013, 6, 14.	6.2	151
1353	Pretreatment of Sugarcane Bagasse and Leaves: Unlocking the Treasury of "Green Currency― Green Energy and Technology, 2013, , 369-391.	0.4	2
1354	Cellulose-to-HMF conversion using crystalline mesoporous titania and zirconia nanocatalysts in ionic liquid systems. RSC Advances, 2013, 3, 2028-2034.	1.7	119
1355	Influence of acidic and alkaline aqueous regeneration on enzymatic digestibility of the cellulose fraction recovered from [amim]Cl-treated rice husk. Bioresource Technology, 2013, 128, 330-336.	4.8	7
1356	Simultaneous pretreatment and sacchariffication of rice husk by Phanerochete chrysosporium for improved production of reducing sugars. Bioresource Technology, 2013, 128, 113-117.	4.8	107
1357	Engineering <i>Saccharomyces cerevisiae</i> for next generation ethanol production. Journal of Chemical Technology and Biotechnology, 2013, 88, 983-991.	1.6	46
1358	Optimization of thermo-chemical hydrolysis of kitchen wastes. Waste Management, 2013, 33, 740-745.	3.7	98
1360	Production of Bioethanol from Biomass: An Overview. , 2013, , 397-441.		14
1361	Organosolv Pretreatment of Pine Sawdust for Bio-ethanol Production. Green Energy and Technology, 2013, , 435-457.	0.4	9
1362	Optimization of alkali pretreatment for bioconversion of poplar (Populus deltoides) biomass into fermentable sugars using response surface methodology. Industrial Crops and Products, 2013, 44, 220-226.	2.5	58
1363	Simultaneous Saccharification and Fermentation of Rice Straw Pretreated by a Sequence of Dilute Acid and Dilute Alkali at High Dry Matter Content. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2013, 35, 741-752.	1.2	10
1364	From Hazardous Waste to Valuable Raw Material: Hydrolysis of CCAâ€ŧreated Wood for the Production of Chemicals. ChemSusChem, 2013, 6, 813-815.	3.6	1
1365	Status and Perspective of Organic Solvent Based Pretreatment of Lignocellulosic Biomass for Enzymatic Saccharification. Green Energy and Technology, 2013, , 309-337.	0.4	0
1366	Comparative performance of commercial and laboratory enzymatic complexes from submerged or solid-state fermentation in lignocellulosic biomass hydrolysis. Bioresource Technology, 2013, 129, 690-693.	4.8	23
1368	Solid- and Nano-Catalysts Pretreatment and Hydrolysis Techniques. Green Energy and Technology, 2013, , 339-366.	0.4	4

#	Article	IF	CITATIONS
1369	Simultaneous saccharification and fermentation process for ethanol production from steam-pretreated softwood: Recirculation of condensate streams. Chemical Engineering Journal, 2013, 225, 574-579.	6.6	20
1370	Lignocellulosic Materials Into Biohydrogen and Biomethane: Impact of Structural Features and Pretreatment. Critical Reviews in Environmental Science and Technology, 2013, 43, 260-322.	6.6	318
1371	Biochemical and thermochemical conversion of wood to ethanol—simulation and analysis of different processes. Biomass Conversion and Biorefinery, 2013, 3, 87-102.	2.9	10
1372	N-terminal PEGylated cellulase: a high stability enzyme in 1-butyl-3-methylimidazolium chloride. Green Chemistry, 2013, 15, 1624.	4.6	19
1375	The Role of Catalytic Pretreatment in Biomass Valorization Toward Fuels and Chemicals. , 2013, , 217-260.		6
1376	Consolidated Bioprocessing of Lignocellulosic Feedstocks for Ethanol Fuel Production. Bioenergy Research, 2013, 6, 416-435.	2.2	64
1377	Temperature sensitivity of cellulase adsorption on lignin and its impact on enzymatic hydrolysis of lignocellulosic biomass. Journal of Biotechnology, 2013, 166, 135-143.	1.9	69
1378	Effect of lignocellulosic composition and structure on the bioethanol production from different poplar lines. Bioresource Technology, 2013, 140, 363-367.	4.8	15
1379	Mass and compositional changes, relevant to biorefining, in Miscanthus x giganteus plants over the harvest window. Bioresource Technology, 2013, 142, 591-602.	4.8	22
1380	A novel alkaline oxidation pretreatment for spruce, birch and sugar cane bagasse. Bioresource Technology, 2013, 140, 414-420.	4.8	41
1381	Design of Heterogeneous Catalysts for Fuels and Chemicals Processing: An Overview. ACS Symposium Series, 2013, , 3-68.	0.5	36
1382	The Pretreatment Step in Lignocellulosic Biomass Conversion: Current Systems and New Biological Systems. , 2013, , 39-64.		10
1384	Hydrothermal liquefaction of cellulose in subcritical water—the role of crystallinity on the cellulose reactivity. RSC Advances, 2013, 3, 11035.	1.7	63
1385	Structural Modification of Lignin and Characterization of Pretreated Wheat Straw by Ozonation. Journal of Agricultural and Food Chemistry, 2013, 61, 3916-3925.	2.4	82
1386	On the Systematic Synthesis of Sustainable Biorefineries. Industrial & Engineering Chemistry Research, 2013, 52, 3044-3064.	1.8	92
1387	Progress in Physical and Chemical Pretreatment of Lignocellulosic Biomass. , 2013, , 53-96.		67
1388	Evaluation of Biological Pretreatment of Rubberwood with White Rot Fungi for Enzymatic Hydrolysis. Materials, 2013, 6, 2059-2073.	1.3	79
1389	Xylitol production from non-detoxified corncob hemicellulose acid hydrolysate by Candida tropicalis. Biochemical Engineering Journal, 2013, 75, 86-91.	1.8	99

# 1390	ARTICLE Statistical optimization of enzymatic degradation process for oil palm empty fruit bunch (OPEFB) in rotary drum bioreactor using crude cellulase produced from Aspergillus niger EFB1. Biochemical Engineering Journal, 2013, 75, 8-20.	IF 1.8	Citations
1391	A wild and tolerant yeast suitable for ethanol fermentation from lignocellulose. Journal of Bioscience and Bioengineering, 2013, 115, 557-561.	1.1	5
1392	Biotechnology Principles of Solid State Fermentation. , 2013, , 23-74.		8
1393	Development Trends and Application Prospects for Modern Solid-State Fermentation. , 2013, , 307-324.		0
1394	PURIFICATION AND CHARACTERIZATION OF AN ALKALINE CELLULASE PRODUCED BYBacillus subtilis(AS3). Preparative Biochemistry and Biotechnology, 2013, 43, 256-270.	1.0	19
1395	Production of monosaccharides from napier grass by hydrothermal process with phosphoric acid. Bioresource Technology, 2013, 143, 53-58.	4.8	25
1396	Molecular Dynamics Simulation of Free Energy of Desorption of Cellohexaose from a Cellulose Crystal Surface. ACS Symposium Series, 2013, , 1-17.	0.5	3
1397	Functionalized Polymers from Lignocellulosic Biomass: State of the Art. Polymers, 2013, 5, 600-642.	2.0	64
1398	Critical analysis of techno-economic estimates for the production cost of lignocellulosic bio-ethanol. Renewable and Sustainable Energy Reviews, 2013, 26, 307-321.	8.2	139
1399	A review of cellulosic microbial fuel cells: Performance and challenges. Biomass and Bioenergy, 2013, 56, 179-188.	2.9	61
1400	Response surface optimization of enzymatic hydrolysis of narrow-leaf cattail for bioethanol production. Energy Conversion and Management, 2013, 73, 381-388.	4.4	37
1401	Microbial Volatile Emissions as Insect Semiochemicals. Journal of Chemical Ecology, 2013, 39, 840-859.	0.9	386
1402	Evolutionary engineering of <i>Saccharomyces cerevisiae</i> for enhanced tolerance to hydrolysates of lignocellulosic biomass. Biotechnology and Bioengineering, 2013, 110, 2616-2623.	1.7	121
1403	Pretreatment of Rice Straw by Hydrogen Peroxide for Enhanced Methane Yield. Journal of Integrative Agriculture, 2013, 12, 1258-1266.	1.7	45
1404	Optimal Pretreatment of Eucalyptus globulus by Hydrothermolysis and Alkaline Extraction for Microbial Production of Ethanol and Xylitol. Industrial & Engineering Chemistry Research, 2013, 52, 5713-5720.	1.8	22
1405	Progress on Enzymatic Saccharification Technologies for Biofuels Production. , 2013, , 145-169.		11
1406	Potential Bioresources as Future Sources of Biofuels Production: An Overview. , 2013, , 223-258.		31
1407	Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresource Technology, 2013, 135, 191-198.	4.8	538

# 1409	ARTICLE Biomass Sources for Hydrogen Production. , 2013, , 87-110.	IF	CITATIONS
1410	Simultaneous saccharification and co-fermentation for bioethanol production using corncobs at lab, PDU and demo scales. Biotechnology for Biofuels, 2013, 6, 2.	6.2	91
1411	Enhancement of enzymatic saccharification of sugarcane bagasse by liquid hot water pretreatment. Bioresource Technology, 2013, 143, 391-396.	4.8	101
1412	Decomposition of Lignin from Sugar Cane Bagasse during Ozonation Process Monitored by Optical and Mass Spectrometries. Journal of Physical Chemistry B, 2013, 117, 3110-3119.	1.2	46
1413	Biological Pretreatment of Lignocellulosic Biomass for Enzymatic Saccharification. Green Energy and Technology, 2013, , 3-34.	0.4	29
1414	Lignocellulosic Biomass—Thermal Pre-treatment with Steam. Green Energy and Technology, 2013, , 59-75.	0.4	3
1415	Pre-treatment of Malaysian Agricultural Wastes Toward Biofuel Production. Green Energy and Technology, 2013, , 393-416.	0.4	0
1416	Bioprocess Engineering Aspects of Biodiesel and Bioethanol Production from Microalgae. , 2013, , 601-628.		7
1417	Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chemistry, 2013, 15, 1740.	4.6	419
1418	Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresource Technology, 2013, 135, 339-349.	4.8	171
1419	Oxidative upgrade of lignin – Recent routes reviewed. European Polymer Journal, 2013, 49, 1151-1173.	2.6	390
1420	Sugarcane and Woody Biomass Pretreatments for Ethanol Production. , 0, , .		12
1421	Alternative fuel production by catalytic hydroliquefaction of solid municipal wastes, primary sludges and microalgae. Bioresource Technology, 2013, 142, 1-8.	4.8	45
1422	Thin Film of Lignocellulosic Nanofibrils with Different Chemical Composition for QCM-D Study. Biomacromolecules, 2013, 14, 2420-2426.	2.6	38
1423	Comparative study of various pretreatment techniques for rice straw saccharification for the production of alcoholic biofuels. Fuel, 2013, 112, 567-571.	3.4	93
1424	Feasibility of simultaneous saccharification and juice co-fermentation on hydrothermal pretreated sweet sorghum bagasse for ethanol production. Applied Energy, 2013, 102, 211-219.	5.1	64
1425	Enhancement of ethanol production from spruce wood chips by ionic liquid pretreatment. Applied Energy, 2013, 102, 163-169.	5.1	78
1426	Recent advances in liquid biofuel production from algal feedstocks. Applied Energy, 2013, 102, 1371-1381.	5.1	324

#	Article	IF	CITATIONS
1427	Synergistic effect of pretreatment and hydrolysis enzymes on the production of fermentable sugars from date palm lignocellulosic waste. Journal of Industrial and Engineering Chemistry, 2013, 19, 413-415.	2.9	26
1428	Upgrading of Anisole in a Catalytic Pulsed Dielectric Barrier Discharge Plasma Reactor. Energy & Fuels, 2013, 27, 7424-7431.	2.5	26
1429	Enhanced Cellulase Hydrolysis of Eucalyptus Waste Fibers from Pulp Mill by Tween80-Assisted Ferric Chloride Pretreatment. Journal of Agricultural and Food Chemistry, 2013, 61, 3293-3300.	2.4	23
1430	Analysis of acetic acid, furfural and 5â€hydroxymethylfurfural affecting 2, 3â€butanediol production using <i>Klebsiella oxytoca</i> . Journal of Chemical Technology and Biotechnology, 2013, 88, 2239-2243.	1.6	10
1431	From first- to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity. Animal Frontiers, 2013, 3, 6-11.	0.8	364
1432	Ionic liquid pretreatment allows utilization of high substrate loadings in enzymatic hydrolysis of biomass to produce ethanol from cotton stalks. Industrial Crops and Products, 2013, 51, 408-414.	2.5	45
1433	The shrinking core model applied on anaerobic digestion. Chemical Engineering and Processing: Process Intensification, 2013, 70, 294-300.	1.8	8
1435	Recycled aqueous ammonia expansion (RAAE) pretreatment to improve enzymatic digestibility of corn stalks. Bioresource Technology, 2013, 138, 314-320.	4.8	37
1436	Total fractionation of green tea residue by microwave-assisted alkaline pretreatment and enzymatic hydrolysis. Bioresource Technology, 2013, 131, 485-491.	4.8	31
1437	Amides in Bio-oil by Hydrothermal Liquefaction of Organic Wastes: A Mass Spectrometric Study of the Thermochemical Reaction Products of Binary Mixtures of Amino Acids and Fatty Acids. Energy & Fuels, 2013, 27, 5287-5297.	2.5	58
1438	Catalytic Conversion of Concentrated Glucose to Ethylene Glycol with Semicontinuous Reaction System. Industrial & amp; Engineering Chemistry Research, 2013, 52, 9566-9572.	1.8	103
1439	Hydrolysis of birch wood by simultaneous ball milling, dilute citric acid, and fungus <i>Penicillium simplicissimum</i> treatment at room temperature. Journal of Applied Polymer Science, 2013, 128, 3338-3345.	1.3	7
1440	Fuel ethanol production from corncob using dilute acid pretreatment and separated saccharification and fermentation by fed-batch strategy. , 2013, , .		1
1441	Effect of mixed solvent on extremely low acid hydrolysis of lignocellulose. , 2013, , .		0
1442	Prospects for Biofuels: A Review. Journal of Thermal Science and Engineering Applications, 2013, 5, .	0.8	14
1443	Optimizing hammer mill performance through screen selection and hammer design. Biofuels, 2013, 4, 85-94.	1.4	40
1444	Lignocellulosic Fermentation of Wild Grass Employing Recombinant Hydrolytic Enzymes and Fermentative Microbes with Effective Bioethanol Recovery. BioMed Research International, 2013, 2013, 1-14.	0.9	19
1445	Production of Bioethanol. SpringerBriefs in Applied Sciences and Technology, 2013, , 21-53.	0.2	3

# 1446	ARTICLE Chemical Pretreatment Methods for the Production of Cellulosic Ethanol: Technologies and Innovations. International Journal of Chemical Engineering, 2013, 2013, 1-21.	IF 1.4	Citations 245
1447	Cellulases and Xylanases Production by Penicillium Echinulatum in Submerged Cultivation: Statistical Optimization of Process Parameters. Journal of Biocatalysis & Biotransformation, 2013, 02, .	0.4	0
1448	Ionic Liquids: Green Solvent for Pretreatment of Lingnocellulosic Biomass. Advanced Materials Research, 0, 701, 399-402.	0.3	15
1449	Bioethanol Production by Carbohydrate-Enriched Biomass of Arthrospira (Spirulina) platensis. Energies, 2013, 6, 3937-3950.	1.6	160
1450	Efecto del Pretratamiento de Biomasa Maderera en el Rendimiento a Etanol. Informacion Tecnologica (discontinued), 2013, 24, 113-122.	0.1	5
1451	Physical and Mechanical Properties of Wood-Plastics Composites: Effect of Types and Contents of Wood Flour. Advanced Materials Research, 2013, 747, 379-382.	0.3	5
1452	Protein Extraction of the Long-Term Room Temperature Storage Wheat Straw. Advanced Materials Research, 0, 690-693, 1252-1255.	0.3	1
1453	Distinct Actions by Paenibacillus sp. Strain E18 α- <scp>l</scp> -Arabinofuranosidases and Xylanase in Xylan Degradation. Applied and Environmental Microbiology, 2013, 79, 1990-1995.	1.4	28
1454	Biomass in a petrochemical world. Interface Focus, 2013, 3, 20120038.	1.5	30
1455	Chemical Pretreatment Techniques for Biofuels and Biorefineries from Softwood. Green Energy and Technology, 2013, , 151-179.	0.4	9
1456	Effect of Alkaline Pretreatment on Cellulosic Structural Changes of Paulownia. Advanced Materials Research, 2013, 781-784, 947-951.	0.3	1
1457	Immobilization of cellulase on modified mesoporous silica shows improved thermal stability and reusability. African Journal of Microbiology Research, 2013, 7, 3248-3253.	0.4	13
1458	Optimization of Sulfide/Sulfite Pretreatment of Lignocellulosic Biomass for Lactic Acid Production. BioMed Research International, 2013, 2013, 1-11.	0.9	22
1459	Biological Pretreatment of Rubberwood with <i>Ceriporiopsis subvermispora</i> for Enzymatic Hydrolysis and Bioethanol Production. BioMed Research International, 2013, 2013, 1-9.	0.9	19
1460	Pretratamiento Alcalino de Pasto Elefante (Pennisetum sp) y King Grass (Pennisetum hybridum) Cultivados en Colombia para la Producción de Bioetanol. Informacion Tecnologica (discontinued), 2013, 24, 69-80.	0.1	9
1461	Fungal Beta-Glucosidases: A Bottleneck in Industrial Use of Lignocellulosic Materials. Biomolecules, 2013, 3, 612-631.	1.8	200
1462	Isolation, Identification, and Characterization of a Cellulolytic <i>Bacillus amyloliquefaciens</i> Strain SS35 from Rhinoceros Dung. , 2013, 2013, 1-7.		56
1463	Analysis of the Effect of Cellulose Particle Size on the Rate of Microbial Hydrolysis for Bioethanol Production. Energy Technology, 2013, 1, 675-684.	1.8	3

		CITATION REPORT		
#	Article		IF	Citations
1464	Biomass properties from different <i>Miscanthus</i> species. Food and Energy Security	ı, 2013, 2, 12-19.	2.0	26
1465	Performance of woodâ€rotting fungiâ€based enzymes on enzymic saccharification of r of the Science of Food and Agriculture, 2013, 93, 2841-2848.	ice straw. Journal	1.7	22
1466	Optimization of Sugarcane Bagasse Hydrolysis by Microwaveâ€Assisted Pretreatment f Production. Chemical Engineering and Technology, 2013, 36, 1997-2005.	or Bioethanol	0.9	10
1467	Economic feasibility and environmental life cycle assessment of ethanol production from lignocellulosic feedstock in Pacific Northwest U.S Journal of Renewable and Sustainabl 2013, 5, .	n e Energy,	0.8	30
1468	Optimization of enzymatic hydrolysis of kitchen waste using response surface methodo reducing sugar production. , 2013, , .	ology (RSM) for		1
1469	Xylitol fermentation using hemicellulose hydrolysate prepared by acid preâ€impregnate explosion of corncob. Journal of Chemical Technology and Biotechnology, 2013, 88, 20	d steam 67-2074.	1.6	15
1470	Production of total reducing sugar (TRS) from acid hydrolysed potato peels by sonication optimization. Environmental Technology (United Kingdom), 2013, 34, 1077-1084.	on and its	1.2	11
1471	Insertion of Endocellulase Catalytic Domains into Thermostable Consensus Ankyrin Sca Effects on Stability and Cellulolytic Activity. Applied and Environmental Microbiology, 2 6684-6696.	ffolds: 013, 79,	1.4	16
1472	Modeling the minimum enzymatic requirements for optimal cellulose conversion. Enviro Research Letters, 2013, 8, 025013.	onmental	2.2	24
1473	Chemical preconversion: application of low-severity pretreatment chemistries for comm lignocellulosic feedstock. Biofuels, 2013, 4, 323-340.	oditization of	1.4	33
1474	Characterization of the hydrolysis of corn stover catalyzed by inorganic Fe salt for biog production. , 2013, , .	35		0
1475	The effect of aqueous ammonia soaking on enzymatic hydrolysis of wheat straw. Journa and Sustainable Energy, 2013, 5, .	al of Renewable	0.8	4
1477	Biochemical Conversion of Biomass. , 2013, , 351-418.			0
1478	Near Infrared Calibration Models for Pretreated Corn Stover Slurry Solids, Isolated and i Journal of Near Infrared Spectroscopy, 2013, 21, 249-257.	n situ.	0.8	14
1479	Adsorption of Cellulase Isolated from <i>Aspergillus Niger</i> on Chitosan/Alginate Parti Functionalized with Epichlorohydrin. Adsorption Science and Technology, 2013, 31, 17	cles -34.	1.5	7
1480	Application of Lignocelulosic Residues in the Production of Cellulase and Hemicellulase , 2013, , .	s from Fungi.		3
1481	Molecular Cloning and Expression of Cellulase and Polygalacturonase Genes in E. coli as Application for Biofuel Production. Journal of Petroleum & Environmental Biotechnology	a Promising , 2013, 04, .	0.3	11
1482	Pretreatment strategies for delignification of sugarcane bagasse: a review. Brazilian Arc Biology and Technology, 2013, 56, 679-689.	hives of	0.5	115

#	Article	IF	CITATIONS
1483	Lignosulfonate-mediated cellulase adsorption: enhanced enzymatic saccharification of lignocellulose through weakening nonproductive binding to lignin. Biotechnology for Biofuels, 2013, 6, 156.	6.2	107
1484	Biofuels Get in the Fast Lane: Developments in Plant Feedstock Production and Processing. Advances in Crop Science and Technology, 2013, 01, .	0.4	0
1485	Molecular Adaptation Mechanisms Employed by Ethanologenic Bacteria in Response to Lignocellulose-derived Inhibitory Compounds. International Journal of Biological Sciences, 2013, 9, 598-612.	2.6	101
1486	Bioconversion of Hemicellulose from Sugarcane Biomass Into Sustainable Products. , 2013, , .		19
1487	Effect of Biological Pretreatment with White-rot Fungus Trametes hirsuta C7784 on Lignin Structure in Carex meyeriana Kunth. BioResources, 2013, 8, .	0.5	6
1488	Fungal Biodegradation of Agro-Industrial Waste. , 0, , .		3
1489	Production and characterization of cellulolytic activities produced by Trichoderma longibrachiatum (GHL). African Journal of Biotechnology, 2013, 12, 465-475.	0.3	20
1490	Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial Considerations. Oil and Gas Science and Technology, 2013, 68, 841-860.	1.4	41
1491	Biomass Extraction Methods. , 0, , .		23
1492	Pretreatment of Cocoa Waste for Bioethanol Production Using Ionic Liquid. Jurnal Teknologi (Sciences and Engineering), 2013, 59, .	0.3	0
1493	Evaluation of Fermentation Conditions by Candida tropicalis for Xylitol Production from Sago Trunk Cortex. BioResources, 2013, 8, .	0.5	5
1494	Alkaline pretreatment of Mexican pine residues for bioethanol production. African Journal of Biotechnology, 2013, 12, 4956-4965.	0.3	14
1495	Hydrolysis of Biomass Mediated by Cellulases for the Production of Sugars. , 0, , .		18
1496	Expression of manganese peroxidase by Lentinula edodes and Lentinula boryana in solid state and submerged system fermentation. Anais Da Academia Brasileira De Ciencias, 2013, 85, 965-973.	0.3	7
1498	Effects of Chemical and Thermal Pretreatments on the Enzymatic Saccharification of Rice Straw for Sugars Production. BioResources, 2013, 9, .	0.5	9
1499	Comparison of the Delignifiability and Hydrolysability of Wheat Straw and Corn Stover in Aqueous Ammonia Pretreatment. BioResources, 2013, 8, .	0.5	11
1500	Enhance volatile fatty acid (VFA) and bio-methane productivity by pretreatment of lawn grass. , 2013, , .		0
1501	Ethanol Precipitation of Hetero-Polysaccharide Material from Hardwood by Alkaline Extraction Prior	0.5	5

#	ADTICLE	IF	CITATIONS
#	Genomic Evaluation of Thermoanaerobacter spp. for the Construction of Designer Co-Cultures to	11	CHAHONS
1502	Improve Lignocellulosic Biofuel Production. PLoS ONE, 2013, 8, e59362.	1.1	39
1503	Optimization of CDT-1 and XYL1 Expression for Balanced Co-Production of Ethanol and Xylitol from Cellobiose and Xylose by Engineered Saccharomyces cerevisiae. PLoS ONE, 2013, 8, e68317.	1.1	34
1504	Production of Ligninolytic Enzymes by Newly Isolated Bacteria from Palm Oil Plantation Soils. BioResources, 2013, 8, .	0.5	5
1505	Effects of fungal (Lachnocladium spp.) pretreatment on nutrient and antinutrient composition of corn cobs. African Journal of Biochemistry Research, 2013, 7, 210-214.	0.2	7
1506	Statistical Screening of Factors Affecting Production of Fermentable Sugars from Sugarcane Bagasse under Solid-state Conditions. BioResources, 2013, 8, .	0.5	4
1507	Exometabolomics Approaches in Studying the Application of Lignocellulosic Biomass as Fermentation Feedstock. Metabolites, 2013, 3, 119-143.	1.3	10
1508	The Production of Bioethanol from Cashew Apple Juice by Batch Fermentation Using Saccharomyces cerevisiae Y2084 and Vin13. , 2013, 2013, 1-11.		13
1509	Enhanced Production of Cellulase from Pineapple Waste by Response Surface Methodology. Journal of Engineering (United States), 2013, 2013, 1-8.	0.5	27
1510	Physicochemical and Structural Characterization of Hemicelluloses Isolated by Different Alcohols from Rice Straw. BioResources, 2013, 8, .	0.5	11
1511	Biological Pretreatment under Non-sterile Conditions for Enzymatic Hydrolysis of Corn Stover. BioResources, 2013, 8, .	0.5	50
1512	Lignocelluloses Feedstock Biorefinery as Petrorefinery Substitutes. , 0, , .		30
1513	Enhanced Cellulase Production from <i>Bacillus subtilis</i> by Optimizing Physical Parameters for Bioethanol Production. ISRN Biotechnology, 2013, 2013, 1-11.	1.9	38
1514	Process design and sustainability in the production of bioethanol from lignocellulosic materials. Electronic Journal of Biotechnology, 2013, 16, .	1.2	12
1515	High Level of Cellulase and β-Glucosidase Production by T.reesei and T.koningii Combinations on Corn Straws of Alkali Pretreatment. Polymers From Renewable Resources, 2013, 4, 109-122.	0.8	0
1516	High Solid-Loading Pretreatment/Saccharification Tests with CaCCO (Calcium Capturing by) Tj ETQq0 0 0 rgBT /C Applied Glycoscience (1999), 2013, 60, 177-185.	Overlock 1 0.3	0 Tf 50 187 10
1519	Production of 2nd Generation of Liquid Biofuels. , 0, , .		8
1520	Optimization of alkali pretreatment of wheat straw to be used as substrate for biofuels production. Plant, Soil and Environment, 2013, 59, 537-542.	1.0	25
1521	Oil Production by the Oleaginous Yeast Lipomyces starkeyi using Diverse Carbon Sources. BioResources, 2014, 9, .	0.5	26

#	Article	IF	CITATIONS
1522	Ionic Liquids and Organic Solvents for Recovering Lignin from Lignocellulosic Biomass. BioResources, 2014, 9, .	0.5	69
1523	Bioethanol from Lignocellulosic Biomass: Current Findings Determine Research Priorities. Scientific World Journal, The, 2014, 2014, 1-13.	0.8	176
1524	Statistical Optimization of Fermentation Process Parameters by Taguchi Orthogonal Array Design for Improved Bioethanol Production. Journal of Fuels, 2014, 2014, 1-11.	0.2	16
1525	Community Structure and Succession Regulation of Fungal Consortia in the Lignocellulose-Degrading Process on Natural Biomass. Scientific World Journal, The, 2014, 2014, 1-9.	0.8	8
1526	Microwave Assisted Alkali Pretreatment of Rice Straw for Enhancing Enzymatic Digestibility. Journal of Energy, 2014, 2014, 1-7.	1.4	35
1527	Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process. Scientific World Journal, The, 2014, 2014, 1-20.	0.8	361
1528	Experimental Study on Combustion and Emissions of Duel Fuel Sequential Combustion with n-Heptane/Gasoline-Like Fuels. , 0, , .		4
1529	Bioethanol Production From Pineapple Wastes. Journal of Food Research, 2014, 3, 60.	0.1	27
1530	Structural Characterization of Lignin in Wild-Type versus COMT Down-Regulated Switchgrass. Frontiers in Energy Research, 2014, 1, .	1.2	22
1531	Optimization of pretreatment and fermentation conditions for production of extracellular cellulase complex using sugarcane bagasse. Bioinformation, 2014, 10, 606-610.	0.2	6
1532	Integrated Production of Butanol from Glycerol. , 2014, , 225-233.		3
1533	Enhancement of Enzymatic Saccharification of Poplar by Green Liquor Pretreatment. BioResources, 2014, 9, .	0.5	8
1534	Production of lignocellulolytic enzymes from floriculture residues using Pleurotus ostreatus. Universitas Scientiarum, 2014, 20, 117.	0.2	6
1535	Optimization of Saccharification Conditions of Acid-pretreated Sweet Sorghum Straw Using Response Surface Methodology. Journal of Agricultural Science, 2014, 6, .	0.1	3
1536	Optimization of Alkaline Pretreatment for Enzymatic Saccharification of Poppy Stalks. BioResources, 2014, 9, .	0.5	13
1538	Producing Ethanol from Water Hyacinth through Simultaneous Saccharification and Fermentation with Acclimatized Yeasts. BioResources, 2014, 9, .	0.5	6
1539	The characteristic changes of betung bamboo (Dendrocalamus asper) pretreated by fungal pretreatment. International Journal of Renewable Energy Development, 2014, 3, 133-143.	1.2	18
1540	Enhancing Enzymatic Digestibility of Alkaline Pretreated Banana Pseudostem for Sugar Production. BioResources, 2014, 10, .	0.5	6

# 1541	ARTICLE Application of Fourier transform infrared-photoacoustic spectroscopy for the compositional analysis of radio frequency alkaline pretreated and non-treated barley straw 2014	IF	CITATIONS
1542	Conversion of Cellulosic waste into fermentable sugar: Process optimization. Journal of Chemical Engineering, 2014, 28, 27-31.	0.1	9
1543	The Enzymatic Hydrolysis of Oil Palm Empty Fruit Bunches to Xylose. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2014, 93, 973-978.	0.2	34
1544	Influence of reaction conditions on heterogeneous hydrolysis of cellulose over phenolic residue-derived solid acid. Fuel, 2014, 134, 573-578.	3.4	20
1545	Cellulose from Lignocellulosic Waste. , 2014, , 1-33.		6
1546	Lipid Production for Microbial Biodiesel by the Oleagenious Yeast Rhodotorula glutinis Using Hydrolysates of Wheat Straw and Miscanthus as Carbon Sources. Waste and Biomass Valorization, 2014, 5, 955-962.	1.8	36
1547	Sorghum biomass: a novel renewable carbon source for industrial bioproducts. Biofuels, 2014, 5, 159-174.	1.4	38
1548	Comparison of SHF and SSF of wet exploded corn stover and loblolly pine using in-house enzymes produced from T. reesei RUT C30 and A. saccharolyticus. SpringerPlus, 2014, 3, 516.	1.2	30
1549	Opuntia ficus-indica cladodes as feedstock for ethanol production by Kluyveromyces marxianus and Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology, 2014, 30, 3173-3183.	1.7	40
1550	The combination of plant-expressed cellobiohydrolase and low dosages of cellulases for the hydrolysis of sugar cane bagasse. Biotechnology for Biofuels, 2014, 7, 131.	6.2	29
1551	Behavior of Cellulose and Xylan in Aqueous Ammonia Pretreatment. Applied Biochemistry and Biotechnology, 2014, 174, 2626-2638.	1.4	8
1552	Biofuels from Biomass. , 2014, , 25-44.		2
1553	Catalytic Pretreatments of Palm Tree Biomass for the Extraction of Lignin, Cellulose and Hemicelluloses. Advanced Materials Research, 0, 925, 67-71.	0.3	0
1554	Hydrogen Production by Anaerobic Digestion of Biomass with High Lignocellulose Content - References Selection Procedure. Applied Mechanics and Materials, 0, 659, 475-480.	0.2	0
1555	Extrusion Pretreatment of Lignocellulosic Biomass: A Review. International Journal of Molecular Sciences, 2014, 15, 18967-18984.	1.8	150
1556	Trichoderma in Bioenergy Research. , 2014, , 325-336.		2
1557	Microwave-Assisted Organic Acid Hydrolysis of Corncob in Bioethanol Production. Advanced Materials Research, 0, 1033-1034, 151-154.	0.3	1
1558	Enhanced Alkali Pretreatment of Narrow Leaves Cattail by Response Surface Methodology. Advanced Materials Research, 2014, 875-877, 1637-1641.	0.3	0

#	Article	IF	CITATIONS
1559	Life cycle assessment of ethanol production from tropical banagrass (Pennisetum purpureum) using green and dry processing technologies in Hawaii. Journal of Renewable and Sustainable Energy, 2014, 6, 043128.	0.8	3
1560	Potential Cellulosic Ethanol Production from Organic Residues of Agro-Based Industries in Nepal. , 2014, 2014, 1-6.		0
1561	Enzymatic hydrolysis of sugarcane bagasse and straw mixtures pretreated with diluted acid. Biocatalysis and Biotransformation, 2014, 32, 93-100.	1.1	31
1562	Combustion and Emissions Characteristics of Valeric Biofuels in a Compression Ignition Engine. Journal of Energy Engineering - ASCE, 2014, 140, .	1.0	27
1563	Kinetics and genetic algorithm study of acid catalysed hydrolysis of water hyacinth biomass. Journal of Renewable and Sustainable Energy, 2014, 6, 063115.	0.8	1
1564	Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass. ISRN Biotechnology, 2014, 2014, 1-31.	1.9	355
1565	CHAPTER 6: ENZYMATIC DECONSTRUCTION OF LIGNOCELLULOSE TO FERMENTABLE SUGARS. Materials and Energy, 2014, , 127-153.	2.5	0
1566	An Overview of Existing Individual Unit Operations. , 2014, , 3-36.		23
1567	Technologies for Separation of Cellulose Nanofibers. Materials and Energy, 2014, , 53-71.	2.5	4
1568	Noble-Metal Catalysts for Conversion of Lignocellulose under Hydrogen Pressure. RSC Energy and Environment Series, 2014, , 52-73.	0.2	2
1569	Effect of mild alkali pretreatment on structural changes of reed (<i>Phragmites communis</i> Trinius) straw. Environmental Technology (United Kingdom), 2014, 35, 232-241.	1.2	34
1570	Valorization of an invasive woody species, <i>Acacia dealbata</i> , by means of Ionic liquid pretreatment and enzymatic hydrolysis. Journal of Chemical Technology and Biotechnology, 2014, 89, 1337-1343.	1.6	18
1571	Hierarchically porous nitrogen-rich carbon derived from wheat straw as an ultra-high-rate anode for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 9684-9690.	5.2	216
1572	Temperatureâ€dependent changes in the microbial storage flora of birch and spruce sawdust. Biotechnology and Applied Biochemistry, 2014, 61, 58-64.	1.4	3
1573	Integrated Farm-Based Biorefinery. , 2014, , 255-270.		6
1574	Preliminary exploration on pretreatment with metal chlorides and enzymatic hydrolysis of bagasse. Biomass and Bioenergy, 2014, 71, 311-317.	2.9	30
1575	Mild alkaline pre-treatments loosen fibre structure enhancing methane production from biomass crops and residues. Biomass and Bioenergy, 2014, 71, 318-329.	2.9	44
1576	Effect of Saccharomyces cerevisiae and Zymomonas mobilis on the co-fermentation of sweet sorghum bagasse hydrolysates pretreated under varying conditions. Biomass and Bioenergy, 2014, 71, 350-356.	2.9	19

#	Article	IF	CITATIONS
1577	Amino Acid Production from Rice Straw Hydrolyzates. , 2014, , 493-505.		7
1578	Effects of acid extrusion on the degradability of maize distillers dried grain with solubles in pigs1,2. Journal of Animal Science, 2014, 92, 5496-5506.	0.2	14
1579	Fungal Pretreatment by Phanerochaete chrysosporium for Enhancement of Biogas Production from Corn Stover Silage. Applied Biochemistry and Biotechnology, 2014, 174, 1907-1918.	1.4	54
1580	Screening and optimization of pretreatments for Parthenium hysterophorus as feedstock for alcoholic biofuels. Applied Energy, 2014, 129, 195-206.	5.1	67
1581	Lignin extraction – Reassessment of the severity factor with respect to hydroxide concentration. Bioresource Technology, 2014, 169, 707-712.	4.8	8
1582	Biofuels and Bioproducts Produced through Microbial Conversion of Biomass. , 2014, , 71-93.		16
1583	STEP ENZYMATIC HYDROLYSIS OF SODIUM HYDROXIDE-PRETREATED CHINESE LIQUOR DISTILLERS' GRAINS FOR ETHANOL PRODUCTION. Preparative Biochemistry and Biotechnology, 2014, 44, 464-479.	1.0	6
1584	Conversion of Lignocellulose into Fermentable Sugars Using Solid Acid Catalysis – A Review. Applied Mechanics and Materials, 0, 625, 341-344.	0.2	1
1585	The Autohydrolysis ofAlbies AlbaWood Using Adaptive Neural Fuzzy Interference System Mathematical Modeling. International Journal of Green Energy, 2014, 11, 611-624.	2.1	5
1586	Lignocellulosic feedstock conversion, inhibitor detoxification and cellulosic hydrolysis – a review. Biofuels, 2014, 5, 633-649.	1.4	39
1587	Enhanced production of xylanase by solid state fermentation using Trichoderma koeningi isolate: effect of pretreated agro-residues. 3 Biotech, 2014, 4, 655-664.	1.1	27
1588	Process evaluation of electron beam irradiation-based biodegradation relevant to lignocellulose bioconversion. SpringerPlus, 2014, 3, 487.	1.2	14
1589	Valorisation of food waste to biofuel: current trends and technological challenges. Sustainable Chemical Processes, 2014, 2, .	2.3	72
1590	Development of Thermochemical and Biochemical Technologies for Biorefineries. , 2014, , 457-488.		6
1591	<i>Sesbania aegyptiaca</i> as promising biomass for manufacturing of MDF. Wood Material Science and Engineering, 2014, 9, 49-57.	1.1	0
1592	Butanol Production from Soybean Hull and Soy Molasses by Acetone-Butanol-Ethanol Fermentation. ACS Symposium Series, 2014, , 25-41.	0.5	13
1593	Consolidated Bioprocessing for Ethanol Production. , 2014, , 141-160.		17
1594	Enzymatic hydrolysis of steam exploded corncob residues after pretreatment in a twin-screw extruder. Biotechnology Reports (Amsterdam, Netherlands), 2014, 3, 99-107.	2.1	52

# 1595	ARTICLE Pretreatment Strategies to Enhance Value Addition of Agro-industrial Wastes. , 2014, , 29-49.	IF	CITATIONS
1596	Biological Fundamentals for the Biotechnology of Lignocellulose. , 2014, , 73-141.		8
1597	Fermentative Itaconic Acid Production. Journal of Biodiversity Bioprospecting and Development, 2014, 01, .	0.4	12
1598	Improving paddy straw digestibility and biogas production through different chemical-microwave pretreatments. Agricultural Science Digest, 2014, 34, 8.	0.0	3
1599	Sustainable biofuel production from non-food sources ? An overview. Emirates Journal of Food and Agriculture, 2014, 26, 1057.	1.0	26
1600	Enhanced enzymatic xylose/cellulose fractionation from alkaline liquor-pretreated corn cob by surfactant addition and separate fermentation to bioethanol. Turkish Journal of Biology, 2014, 38, 478-484.	2.1	3
1601	Formation and the effect of resulting volatile fatty acids in food waste on bioethanol production. Journal of Renewable and Sustainable Energy, 2014, 6, 042007.	0.8	0
1602	THE OPTIMIZATION OF SACCHARIFICATION OF DESULFURATED RED SEAWEED-DERIVED POLYSACCHARIDES AND ANALYSIS OF THEIR COMPOSITION. Preparative Biochemistry and Biotechnology, 2014, 44, 40-55.	1.0	2
1603	A modeling framework for design of nonlinear renewable energy systems through integrated simulation modeling and metaheuristic optimization: Applications to biorefineries. Computers and Chemical Engineering, 2014, 61, 102-117.	2.0	45
1604	Enhanced enzymatic cellulose hydrolysis by subcritical carbon dioxide pretreatment of sugarcane bagasse. Bioresource Technology, 2014, 158, 161-165.	4.8	45
1605	Synergistic action of co-expressed xylanase/laccase mixtures against milled sugar cane bagasse. Process Biochemistry, 2014, 49, 1152-1161.	1.8	15
1606	Comparison of chemical composition and calculated ethanol yields of sugarcane varieties harvested for two growing seasons. Industrial Crops and Products, 2014, 58, 133-141.	2.5	10
1607	Optimal simultaneous production of i-butene and ethanol from switchgrass. Biomass and Bioenergy, 2014, 61, 93-103.	2.9	31
1608	Xanthan from sulphuric acid treated tapioca pulp: Influence of acid concentration on xanthan fermentation. Carbohydrate Polymers, 2014, 102, 669-673.	5.1	43
1609	Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass. Journal of Chemical Technology and Biotechnology, 2014, 89, 2-10.	1.6	389
1610	Cloning and Characterizing the Thermophilic and Detergent Stable Cellulase CelMytB from Saccharophagus sp. Myt-1. Indian Journal of Microbiology, 2014, 54, 20-26.	1.5	5
1611	Pervaporation behavior and integrated process for concentrating lignocellulosic ethanol through polydimethylsiloxane (PDMS) membrane. Bioprocess and Biosystems Engineering, 2014, 37, 183-191.	1.7	23
1612	Impact of Pretreatment with Dilute Sulfuric Acid Under Moderate Temperature on Hydrolysis of Corn Stover with Two Enzyme Systems. Applied Biochemistry and Biotechnology, 2014, 172, 2628-2639.	1.4	12

#	Article	IF	CITATIONS
1613	Comparative potentiality of Kans grass (Saccharum spontaneum) and Giant reed (Arundo donax) as lignocellulosic feedstocks for the release of monomeric sugars by microwave/chemical pretreatment. Cellulose, 2014, 21, 1327-1340.	2.4	55
1614	Mechanism of increasing the reducing sugar yield in cellulose hydrolysis via modification with 2,4-dianilino-6-chloro-s-triazine. Iranian Polymer Journal (English Edition), 2014, 23, 79-86.	1.3	0
1615	Study of chemical pretreatment and enzymatic saccharification for producing fermentable sugars from rice straw. Bioprocess and Biosystems Engineering, 2014, 37, 1337-1344.	1.7	9
1616	Comprehensive Analysis of Monomeric Phenolics in Dilute Acid Plant Hydrolysates. Bioenergy Research, 2014, 7, 654-669.	2.2	61
1617	Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in Energy and Combustion Science, 2014, 42, 35-53.	15.8	1,023
1619	Enhanced cellulase producing mutants developed from heterokaryotic Aspergillus strain. Bioresource Technology, 2014, 156, 100-107.	4.8	40
1620	A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renewable and Sustainable Energy Reviews, 2014, 32, 713-728.	8.2	296
1621	Optimization of corn stover biorefinery for coproduction of oligomers and second generation bioethanol using non-isothermal autohydrolysis. Industrial Crops and Products, 2014, 54, 32-39.	2.5	47
1622	Effects of residual lignin and heteropolysaccharides on the bioconversion of softwood lignocellulose nanofibrils obtained by SO2–ethanol–water fractionation. Bioresource Technology, 2014, 161, 55-62.	4.8	30
1623	Biomimetic metalloporphines and metalloporphyrins as potential tools for delignification: Molecular mechanisms and application perspectives. Journal of Molecular Catalysis A, 2014, 388-389, 2-34.	4.8	42
1624	Effect of fermentation on the antioxidant activity in plant-based foods. Food Chemistry, 2014, 160, 346-356.	4.2	550
1625	Applications of nanoparticles in biomass conversion to chemicals and fuels. Green Chemistry, 2014, 16, 573-584.	4.6	96
1626	Wheat bran-based biorefinery 2: Valorization of products. LWT - Food Science and Technology, 2014, 56, 222-231.	2.5	198
1627	Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation. Bioresource Technology, 2014, 153, 47-54.	4.8	205
1628	Rational design of a culture medium for the intensification of lipid storage in Chlorella sp. Performance evaluation in air-lift bioreactor. Bioresource Technology, 2014, 158, 269-277.	4.8	10
1629	Acid-catalyzed hot-water extraction of lipids from Chlorella vulgaris. Bioresource Technology, 2014, 153, 408-412.	4.8	79
1630	Investigation of a novel acid-catalyzed ionic liquid pretreatment method to improve biomass enzymatic hydrolysis conversion. Applied Microbiology and Biotechnology, 2014, 98, 5275-5286.	1.7	41
1631	Atmospheric Pressure Plasma Pretreatment of Sugarcane Bagasse: the Influence of Biomass Particle Size in the Ozonation Process. Applied Biochemistry and Biotechnology, 2014, 172, 1663-1672.	1.4	35

#	Article	IF	CITATIONS
1632	Point mutation of the xylose reductase (XR) gene reduces xylitol accumulation and increases citric acid production in <i>Aspergillus carbonarius</i> . Journal of Industrial Microbiology and Biotechnology, 2014, 41, 733-739.	1.4	22
1633	Production of bioethanol from empty fruit bunches cellulosic biomass and Avicel PH-101 cellulose. Biomass Conversion and Biorefinery, 2014, 4, 333-340.	2.9	7
1634	Statistical optimization of alkaline hydrogen peroxide pretreatment of sugarcane bagasse for enzymatic saccharification with Tween 80 using response surface methodology. Biomass Conversion and Biorefinery, 2014, 4, 15-23.	2.9	21
1635	Exploring Thermophilic Cellulolytic Enzyme Production Potential of Aspergillus fumigatus by the Solid-State Fermentation of Wheat Straw. Applied Biochemistry and Biotechnology, 2014, 172, 3646-3655.	1.4	16
1636	Exploration of a Cheaper Carbon Source for Extracellular β-glucosidase Synthesis from Debaryomyces pseudopolymorphus NRRL YB-4229. Applied Biochemistry and Biotechnology, 2014, 172, 3606-3620.	1.4	2
1637	Physiological characterization of thermotolerant yeast for cellulosic ethanol production. Applied Microbiology and Biotechnology, 2014, 98, 3829-3840.	1.7	65
1638	Bioconversion of lignocellulosic waste to bioethanol by Trichoderma and yeast fermentation. 3 Biotech, 2014, 4, 493-499.	1.1	19
1639	Utilization of Groundnut Husk as a Solid Substrate for Cellulase Production by Aspergillus niger Using Response Surface Methodology. Waste and Biomass Valorization, 2014, 5, 585-593.	1.8	9
1640	Integral Management of Lignocellulosic Biomass by Biorefining. , 2014, , 235-252.		0
1642	Synthesis and bioactivity of lignin related high-added-value 2H,4H-dihydro-pyrano[2,3-c]pyrazoles and 1H,4H-dihydro-pyrano[2,3-c]pyrazoles. Industrial Crops and Products, 2014, 52, 413-419.	2.5	24
1643	A universal route towards thermoplastic lignin composites with improved mechanical properties. Polymer, 2014, 55, 995-1003.	1.8	157
1644	Bio-Oil from Waste: A Comprehensive Analytical Study by Soft-Ionization FTICR Mass Spectrometry. Energy & Fuels, 2014, 28, 2019-2026.	2.5	49
1645	Ionic liquid-based green processes for energy production. Chemical Society Reviews, 2014, 43, 7838-7869.	18.7	399
1646	Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conversion and Biorefinery, 2014, 4, 157-191.	2.9	290
1647	Improvement of Sugar Production From Potato Pulp with Microwave Radiation and Ultrasonic Wave Pretreatments. Journal of Food Process Engineering, 2014, 37, 86-90.	1.5	3
1648	Optimization of alkaline pretreatment of coffee pulp for production of bioethanol. Biotechnology Progress, 2014, 30, 451-462.	1.3	44
1649	Isobutanol production at elevated temperatures in thermophilic Geobacillus thermoglucosidasius. Metabolic Engineering, 2014, 24, 1-8.	3.6	107
1650	Identification and characterisation of xylanolytic yeasts isolated from decaying wood and sugarcane bagasse in Brazil. Antonie Van Leeuwenhoek, 2014, 105, 1107-1119.	0.7	33

ARTICLE IF CITATIONS Pretreatment methods to improve anaerobic biodegradability of organic municipal solid waste 225 1651 6.6 fractions. Chemical Engineering Journal, 2014, 240, 24-37. Biofuels in Brazil., 2014, , . 14 The Essential Role of Plant Cell Wall Degrading Enzymes in the Success of Biorefineries: Current 1653 2 Status and Future Challenges. , 2014, , 151-172. Scale-up Pretreatment Studies on Sugarcane Bagasse and Straw for Second-Generation Ethanol 1654 Production. , 2014, , 225-254. Biotechnology of Lignocellulose., 2014, , . 1655 127 Delignification of disposable wooden chopsticks waste for fermentative hydrogen production by an 3.2 enriched culture from a hot spring. Journal of Environmental Sciences, 2014, 26, 1361-1368. Efficient process for ethanol production from Thai Mission grass (Pennisetum polystachion). 1657 4.8 29 Bioresource Technology, 2014, 163, 152-159. Stability of endoglucanases from mesophilic fungus and thermophilic bacterium in acidified polyols. 1.6 Enzyme and Microbial Technology, 2014, 61-62, 55-60. Comparison of strategies to overcome the inhibitory effects in high-gravity fermentation of 1659 2.9 36 lignocellulosic hydrolysates. Biomass and Bioenergy, 2014, 65, 79-90. Strategies for the consolidation of biologically mediated events in the conversion of pre-treated 1.7 lignocellulose into ethanol. RSC Advances, 2014, 4, 3392-3412. Laccase applications in biofuels production: current status and future prospects. Applied 1661 1.7 130 Microbiology and Biotechnology, 2014, 98, 6525-6542. Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit 1662 6.0 363 anaerobic mixed cultures? A comprehensive review. Biotechnology Advancés, 2014, 32, 934-951. Enhancing the anaerobic digestion of lignocellulose of municipal solid waste using a microbial 1663 4.8 98 pretreatment method. Bioresource Technology, 2014, 154, 1-9. Screw extrude steam explosion: A promising pretreatment of corn stover to enhance enzymatic hydrolysis. Bioresource Technology, 2014, 161, 230-235. 4.8 1664 Direct conversion of corn cob to formic and acetic acids over nano oxide catalysts. Journal of 1665 7.1 20 Energy Chemistry, 2014, 23, 43-49. Preparation of Magnetic Chitosan Nanoparticles As Support for Cellulase Immobilization. Industrial 1.8 & Engineering Chemistry Research, 2014, 53, 3448-3454. Bioethanol production from alkaline-pretreated sugarcane bagasse by consolidated bioprocessing 1667 1.9 65 using Phlebia sp. MG-60. International Biodeterioration and Biodegradation, 2014, 88, 62-68. Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and 5.1 on enzymatic hydrolysis. Applied Energy, 2014, 122, 189-195.

#	Article	IF	CITATIONS
1669	One-pot simultaneous saccharification and fermentation: A preliminary study of a novel configuration for cellulosic ethanol production. Bioresource Technology, 2014, 161, 171-178.	4.8	20
1670	Pyrolysis based bio-refinery for the production of bioethanol from demineralized ligno-cellulosic biomass. Bioresource Technology, 2014, 161, 20-28.	4.8	68
1671	Simultaneous saccharification and fermentation of Eastern redcedar heartwood and sapwood using a novel size reduction technique. Bioresource Technology, 2014, 161, 1-9.	4.8	9
1672	An integrated detoxification process with electrodialysis and adsorption from the hemicellulose hydrolysates of yellow poplars. Bioresource Technology, 2014, 161, 280-287.	4.8	22
1673	The use of thermochemical pretreatments to improve the anaerobic biodegradability and biochemical methane potential of the sugarcane bagasse. Chemical Engineering Journal, 2014, 248, 363-372.	6.6	56
1674	Single-step fermentation of agricultural hemp residues for hydrogen and ethanol production. Biomass and Bioenergy, 2014, 64, 62-69.	2.9	27
1675	Hydrolysis of dilute acid-pretreated cellulose under mild hydrothermal conditions. Carbohydrate Polymers, 2014, 111, 116-124.	5.1	48
1676	Production of Bioethanol in a Second Generation Prototype from Pine Wood Chips. Energy Procedia, 2014, 45, 42-51.	1.8	66
1677	Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 2014, 36, 91-106.	8.2	700
1678	Enhanced fermentability of poplar by combination of alkaline peroxide pretreatment and semi-simultaneous saccharification and fermentation. Bioresource Technology, 2014, 164, 292-298.	4.8	42
1679	Comparative study on two-step concentrated acid hydrolysis for the extraction of sugars from lignocellulosic biomass. Bioresource Technology, 2014, 164, 221-231.	4.8	90
1680	Integrated biorefinery based on hydrothermal and alkaline treatments: Investigation of sorghum hemicelluloses. Carbohydrate Polymers, 2014, 111, 663-669.	5.1	23
1681	An overview of algae bioethanol production. International Journal of Energy Research, 2014, 38, 965-977.	2.2	103
1682	Algal biomass conversion to bioethanol – a stepâ€byâ€step assessment. Biotechnology Journal, 2014, 9, 73-86.	1.8	105
1683	Lignin extraction from biomass with protic ionic liquids. Green Chemistry, 2014, 16, 1114-1119.	4.6	205
1684	Production of Biofuels and Chemicals with Ionic Liquids. Biofuels and Biorefineries, 2014, , .	0.5	30
1685	Efficient synthesis of ethylene glycol from cellulose over Ni–WO3/SBA-15 catalysts. Journal of Molecular Catalysis A, 2014, 381, 46-53.	4.8	84
1686	Fungal Cellulase/Xylanase Production and Corresponding Hydrolysis Using Pretreated Corn Stover as Substrates. Applied Biochemistry and Biotechnology, 2014, 172, 1045-1054.	1.4	6

#	Article	IF	CITATIONS
1687	Niobium oxide catalyst for delignification of switchgrass for fermentable sugar production. Industrial Crops and Products, 2014, 52, 790-795.	2.5	12
1688	The effect of 1-ethyl-3-methylimidazolium acetate on the enzymatic degradation of cellulose. Journal of Molecular Catalysis B: Enzymatic, 2014, 99, 121-129.	1.8	30
1689	Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material. Ultrasonics Sonochemistry, 2014, 21, 216-225.	3.8	209
1690	Bioethanol production: Feedstock and current technologies. Journal of Environmental Chemical Engineering, 2014, 2, 573-584.	3.3	325
1691	Structure and thermal property of alkaline hemicelluloses from steam exploded Phyllostachys pubescens. Carbohydrate Polymers, 2014, 101, 1191-1197.	5.1	48
1693	Degraded konjac glucomannan by \hat{i}^3 -ray irradiation assisted with ethanol: Preparation and characterization. Food Hydrocolloids, 2014, 36, 85-92.	5.6	44
1694	Review of evolution, technology and sustainability assessments ofÂbiofuel production. Journal of Cleaner Production, 2014, 71, 11-29.	4.6	222
1695	Novel cold temperature active β-glucosidase from Pseudomonas lutea BG8 suitable for simultaneous saccharification and fermentation. RSC Advances, 2014, 4, 58108-58115.	1.7	25
1696	Biomethane and biohydrogen production via anaerobic digestion/fermentation. , 2014, , 476-524.		10
1697	Improved enzymatic hydrolysis of lignocellulosic biomass through pretreatment with plasma electrolysis. Bioresource Technology, 2014, 171, 469-471.	4.8	22
1698	Biomass and Bioenergy. , 2014, , .		20
1699	Towards optimal selective fractionation for Nordic woody biomass using novel amine–organic superbase derived switchable ionic liquids (SILs). Biomass and Bioenergy, 2014, 70, 373-381.	2.9	19
1700	Enhanced biomass delignification and enzymatic saccharification of canola straw by steamâ€explosion pretreatment. Journal of the Science of Food and Agriculture, 2014, 94, 1607-1613.	1.7	23
1701	By-products resulting from lignocellulose pretreatment and their inhibitory effect on fermentations for (bio)chemicals and fuels. Applied Microbiology and Biotechnology, 2014, 98, 9579-9593.	1.7	109
1702	A dual-chamber reactor to assess the saccharification capability of the cellulytic microflora from straw waste. RSC Advances, 2014, 4, 9617.	1.7	0
1703	Towards efficient synthesis of sugar alcohols from mono- and poly-saccharides: role of metals, supports & promoters. Green Chemistry, 2014, 16, 4944-4954.	4.6	30
1704	Acid–chromic chloride functionalized natural clay-particles for enhanced conversion of one-pot cellulose to 5-hydroxymethylfurfural in ionic liquids. RSC Advances, 2014, 4, 11664.	1.7	46
1705	Extracellular endoglucanase activity from Paenibacillus polymyxa BEb-40: production, optimization and enzymatic characterization. World Journal of Microbiology and Biotechnology, 2014, 30, 2953-2965.	1.7	20

#	Article	IF	CITATIONS
1706	Enhanced enzymatic digestibility of bamboo by a combined system of multiple steam explosion and alkaline treatments. Applied Energy, 2014, 136, 519-526.	5.1	61
1707	Peculiar behavior of MWW materials in aldol condensation of furfural and acetone. Dalton Transactions, 2014, 43, 10628.	1.6	52
1708	Solid acid catalyzed depolymerization of lignin into value added aromatic monomers. RSC Advances, 2014, 4, 12625.	1.7	89
1709	Switchable Ionic Liquids as Delignification Solvents for Lignocellulosic Materials. ChemSusChem, 2014, 7, 1170-1176.	3.6	72
1710	Comparative Study on Four Chemical Pretreatment Methods for an Efficient Saccharification of Corn Stover. Energy & Fuels, 2014, 28, 4282-4287.	2.5	27
1711	Effects of Î ³ -valerolactone in hydrolysis of lignocellulosic biomass to monosaccharides. Green Chemistry, 2014, 16, 4659-4662.	4.6	149
1712	A multiscale three-zone reactive mixing model for engineering a scale separation in enzymatic hydrolysis of cellulose. Bioresource Technology, 2014, 173, 140-147.	4.8	15
1713	Integrated conversion of agroindustrial residue with high pressure CO ₂ within the biorefinery concept. Green Chemistry, 2014, 16, 4312-4322.	4.6	95
1714	Lignocellulosic Biomass: As Future Alternative for Bioethanol Production. , 2014, , 145-163.		5
1715	The pros and cons of lignin valorisation in an integrated biorefinery. RSC Advances, 2014, 4, 25310-25318.	1.7	273
1716	Study on the Kinetics of Plant Oil Asphalt Pyrolysis Using Thermogravimetry and the Distributed Activation Energy Model. Energy & Fuels, 2014, 28, 2035-2040.	2.5	11
1717	Larch Biorefinery: Technical and Economic Evaluation. Industrial & Engineering Chemistry Research, 2014, 53, 1206-1213.	1.8	13
1718	Quantitative characterization of the impact of pulp refining on enzymatic saccharification of the alkaline pretreated corn stover. Bioresource Technology, 2014, 169, 19-26.	4.8	33
1719	Hydrophobic treatment of corn cob by acetylation: Kinetics and thermodynamics studies. Journal of Environmental Chemical Engineering, 2014, 2, 1699-1704.	3.3	24
1720	A new future for carbohydrate fuel cells. Renewable Energy, 2014, 72, 99-104.	4.3	40
1721	Exploring Metabolic Pathways in Vivo by a Combined Approach of Mixed Stable Isotope-Labeled Raman Microspectroscopy and Multivariate Curve Resolution Analysis. Analytical Chemistry, 2014, 86, 7828-7834.	3.2	39
1722	Enzyme Adsorption and Cellulose Conversion during Hydrolysis of Dilute-Acid-Pretreated Corn Stover. Energy & Fuels, 2014, 28, 1956-1961.	2.5	10
1723	Biomass and Bioenergy. , 2014, , .		19

#	ARTICLE	IF	CITATIONS
1724	Cellulolytic and Xylanolytic Potential of High \hat{l}^2 -Glucosidase-Producing Trichoderma from Decaying	1.4	11
1725	Characteristics of destarched corn fiber extrudates for ethanol production. Journal of Cereal Science, 2014, 60, 289-296.	1.8	14
1726	Investigations on a wheat bran biorefinery involving organosolv fractionation and enzymatic treatment. Bioresource Technology, 2014, 170, 53-61.	4.8	27
1727	Electron beam irradiation enhances the digestibility and fermentation yield of water-soaked lignocellulosic biomass. Biotechnology Reports (Amsterdam, Netherlands), 2014, 4, 30-33.	2.1	36
1728	Improvement of Aspergillus oryzae NRRL 3484 by mutagenesis and optimization of culture conditions in solid-state fermentation for the hyper-production of extracellular cellulase. Antonie Van	0.7	21
1729	New Headspace Gas Chromatographic Method for Analyzing Five-Carbon Sugars in Biomass Hydrolysate. Energy & amp; Fuels, 2014, 28, 4247-4250.	2.5	4
1730	Sequential proteolysis and cellulolytic hydrolysis of soybean hulls for oligopeptides and ethanol production. Industrial Crops and Products, 2014, 61, 202-210.	2.5	52
1731	Technology analysis of integrated biorefineries through process simulation and hybrid optimization. Energy, 2014, 73, 145-159.	4.5	25
1732	Polybenzoxazines: new players in the bio-based polymer arena. Polymer Chemistry, 2014, 5, 6636-6644.	1.9	124
1733	Suitable Technological Conditions for Enzymatic Hydrolysis of Waste Paper by Novozymes® Enzymes NS50013 and NS50010. Applied Biochemistry and Biotechnology, 2014, 174, 1299-1308.	1.4	17
1734	Structural Features and Antioxidant Activities of Lignins from Steam-Exploded Bamboo (<i>Phyllostachys pubescens</i>). Journal of Agricultural and Food Chemistry, 2014, 62, 5939-5947.	2.4	34
1735	Biomass pretreatment for consolidated bioprocessing (CBP). , 2014, , 234-258.		16
1736	Hydrothermal production and gel filtration purification of xylo-oligosaccharides from rice straw. Industrial Crops and Products, 2014, 62, 460-465.	2.5	68
1737	Microbial production of biopolymers from the renewable resource wheat straw. Journal of Applied Microbiology, 2014, 117, 1035-1044.	1.4	32
1738	Current Bioenergy Researches. , 2014, , 1-21.		12
1739	Denitrification on internal carbon sources in RAS is limited by fibers in fecal waste of rainbow trout. Aquaculture, 2014, 434, 264-271.	1.7	13
1740	Effects of metal ions on the hydrolysis of bamboo biomass in 1-butyl-3-methylimidazolium chloride with dilute acid as catalyst. Bioresource Technology, 2014, 173, 399-405.	4.8	40
1741	Microbial Lipid Production from Corn Stover via Mortierella isabellina. Applied Biochemistry and Biotechnology, 2014, 174, 574-586.	1.4	13

#	Article	IF	CITATIONS
1742	Identification of novel glycosyl hydrolases with cellulolytic activity against crystalline cellulose from metagenomic libraries constructed from bacterial enrichment cultures. SpringerPlus, 2014, 3, 365.	1.2	34
1743	Improving the enzymatic hydrolysis of thermo-mechanical fiber from Eucalyptus urophylla by a combination of hydrothermal pretreatment and alkali fractionation. Biotechnology for Biofuels, 2014, 7, 116.	6.2	23
1744	Bioenergy Research. , 2014, , 23-47.		34
1745	Conversion of wheat straw to furfural and levulinic acid in a concentrated aqueous solution of betaĀ⁻ne hydrochloride. RSC Advances, 2014, 4, 28836.	1.7	20
1746	Simulating the impact of new industries on the economy: The case of biorefining in Australia. Ecological Economics, 2014, 107, 84-93.	2.9	58
1747	Methods for Improving Anaerobic Lignocellulosic Substrates Degradation for Enhanced Biogas Production. Springer Science Reviews, 2014, 2, 51-61.	1.3	46
1748	Ionic liquid and deep eutectic solvent-activated CelA2 variants generated by directed evolution. Applied Microbiology and Biotechnology, 2014, 98, 5775-5785.	1.7	47
1749	New concept of urban green management. Clean Technologies and Environmental Policy, 2014, 16, 1835-1838.	2.1	44
1750	Optimization of the process of chemical hydrolysis of cellulose to glucose. Cellulose, 2014, 21, 2397-2407.	2.4	42
1751	Production of reducing sugars from corn stover by electrolysis. Journal of Applied Electrochemistry, 2014, 44, 797-806.	1.5	7
1752	Combined sodium hydroxide and ammonium hydroxide pretreatment of post-biogas digestion dairy manure fiber for cost effective cellulosic bioethanol production. Sustainable Chemical Processes, 2014, 2, .	2.3	19
1753	Microalgal Feedstock for Bioenergy: Opportunities and Challenges. , 2014, , 367-392.		4
1754	Wet explosion pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis. Biomass and Bioenergy, 2014, 61, 104-113.	2.9	65
1755	Aldol condensation of furfural and acetone on zeolites. Catalysis Today, 2014, 227, 154-162.	2.2	125
1756	Comparison of sodium carbonate–oxygen and sodium hydroxide–oxygen pretreatments on the chemical composition and enzymatic saccharification of wheat straw. Bioresource Technology, 2014, 161, 63-68.	4.8	46
1757	Retention of hemicellulose during delignification of oil palm empty fruit bunch (EFB) fiber with peracetic acid and alkaline peroxide. Biomass and Bioenergy, 2014, 66, 240-248.	2.9	54
1758	Biofilm production by Zymomonas mobilis enhances ethanol production and tolerance to toxic inhibitors from rice bran hydrolysate. New Biotechnology, 2014, 31, 451-459.	2.4	50
1759	A highly-active endo-1,3-1,4-β-glucanase from thermophilic Talaromyces emersonii CBS394.64 with application potential in the brewing and feed industries. Process Biochemistry, 2014, 49, 1448-1456.	1.8	20

#	Article	IF	CITATIONS
1760	Improving the reactivity of kraft-based dissolving pulp for viscose rayon production by mechanical treatments. Cellulose, 2014, 21, 3647-3654.	2.4	74
1761	Optimization of Dilute Sulfuric Acid Pretreatment to Maximize Combined Sugar Yield from Sugarcane Bagasse for Ethanol Production. Applied Biochemistry and Biotechnology, 2014, 172, 610-630.	1.4	29
1762	Direct Conversion of Pretreated Straw Cellulose into Citric Acid by Co-cultures of Yarrowia lipolytica SWJ-1b and Immobilized Trichoderma reesei Mycelium. Applied Biochemistry and Biotechnology, 2014, 173, 501-509.	1.4	17
1763	Evaluation of Selected White-Rot Fungal Isolates for Improving the Sugar Yield from Wheat Straw. Applied Biochemistry and Biotechnology, 2014, 173, 609-23.	1.4	74
1764	Modeling the Kinetics of Complex Systems: Enzymatic Hydrolysis of Lignocellulosic Substrates. Applied Biochemistry and Biotechnology, 2014, 173, 1083-1096.	1.4	10
1765	Improvements of Tolerance to Stress Conditions by Genetic Engineering in Saccharomyces Cerevisiae during Ethanol Production. Applied Biochemistry and Biotechnology, 2014, 174, 28-42.	1.4	47
1766	Microwave-assisted thermochemical and primary hydrolytic conversions of lignocellulosic resources: a review. Biomass Conversion and Biorefinery, 2015, 5, 115.	2.9	3
1767	Identifying inhibitory compounds in lignocellulosic biomass hydrolysates using an exometabolomics approach. BMC Biotechnology, 2014, 14, 22.	1.7	55
1768	Solid fermentation of wheat bran for hydrolytic enzymes production and saccharification content by a local isolate Bacillus megatherium. BMC Biotechnology, 2014, 14, 29.	1.7	61
1769	Saccharification and liquefaction of cassava starch: an alternative source for the production of bioethanol using amylolytic enzymes by double fermentation process. BMC Biotechnology, 2014, 14, 49.	1.7	65
1770	Cost-effective lignocellulolytic enzyme production by Trichoderma reesei on a cane molasses medium. Biotechnology for Biofuels, 2014, 7, 43.	6.2	27
1771	Impact of cultivar selection and process optimization on ethanol yield from different varieties of sugarcane. Biotechnology for Biofuels, 2014, 7, 60.	6.2	29
1772	Perspectives of microalgal biofuels as a renewable source of energy. Energy Conversion and Management, 2014, 88, 1228-1244.	4.4	144
1773	Pretreatment Methods for Bioethanol Production. Applied Biochemistry and Biotechnology, 2014, 174, 43-62.	1.4	100
1774	Saccharomyces cerevisiae: a potential host for carboxylic acid production from lignocellulosic feedstock?. Applied Microbiology and Biotechnology, 2014, 98, 7299-7318.	1.7	20
1775	Bioethanol G2: Production Process and Recent Studies. , 2014, , 345-364.		4
1776	Enhanced Accumulation of Carbohydrate and Starch in Chlorella zofingiensis Induced by Nitrogen Starvation. Applied Biochemistry and Biotechnology, 2014, 174, 2435-2445.	1.4	76
1777	Hydrolytic Cleavage of C–O Linkages in Lignin Model Compounds Catalyzed by Water-Tolerant Lewis Acids. Industrial & Engineering Chemistry Research, 2014, 53, 2633-2639.	1.8	75

#	Article	IF	Citations
1778	Bio-ethanol production through simultaneous saccharification and fermentation using an encapsulated reconstituted cell-free enzyme system. Biochemical Engineering Journal, 2014, 91, 110-119.	1.8	43
1779	Enzymatic hydrolysis of pretreated waste paper – Source of raw material for production of liquid biofuels. Bioresource Technology, 2014, 152, 543-547.	4.8	55
1780	Acid hydrolysis of Curcuma longa residue for ethanol and lactic acid fermentation. Bioresource Technology, 2014, 151, 227-235.	4.8	29
1783	Pre-treatments for enhanced biochemical methane potential of bamboo waste. Chemical Engineering Journal, 2014, 240, 253-259.	6.6	47
1784	Simultaneous saccharification and fermentation of cellulose for bio-hydrogen production by anaerobic mixed cultures in elephant dung. International Journal of Hydrogen Energy, 2014, 39, 9028-9035.	3.8	28
1785	Biohydrogen production from algal biomass (Anabaena sp. PCC 7120) cultivated in airlift photobioreactor. International Journal of Hydrogen Energy, 2014, 39, 7553-7560.	3.8	58
1786	A novel kinetic model for polysaccharide dissolution during atmospheric acetic acid pretreatment of sugarcane bagasse. Bioresource Technology, 2014, 151, 128-136.	4.8	45
1787	Increase in energy and land use by a bio-based chemical industry. Chemical Engineering Research and Design, 2014, 92, 2006-2015.	2.7	9
1788	Effect of different impact events in fine grinding mills on the development of the physical properties of dried Norway spruce (Picea abies) wood in pulverisation. Powder Technology, 2014, 253, 352-359.	2.1	13
1789	Application of the Cereal Unit in a new allocation procedure for agricultural life cycle assessments. Journal of Cleaner Production, 2014, 73, 72-79.	4.6	68
1790	Physical–chemical characteristics of lignins separated from biomasses for second-generation ethanol. Biomass and Bioenergy, 2014, 62, 58-67.	2.9	54
1791	Hydrodynamic cavitation as a novel approach for delignification of wheat straw for paper manufacturing. Ultrasonics Sonochemistry, 2014, 21, 162-168.	3.8	96
1792	Optimization of hot-compressed water pretreatment of bagasse and characterization of extracted hemicelluloses. Carbohydrate Polymers, 2014, 101, 196-202.	5.1	38
1793	Bamboo: A new source of carbohydrate for biorefinery. Carbohydrate Polymers, 2014, 111, 645-654.	5.1	109
1794	Potential of a Penicillium echinulatum enzymatic complex produced in either submerged or solid-state cultures for enzymatic hydrolysis of elephant grass. Fuel, 2014, 133, 232-240.	3.4	37
1795	Molecular dynamics simulation study of xyloglucan adsorption on cellulose surfaces: effects of surface hydrophobicity and side-chain variation. Cellulose, 2014, 21, 1025-1039.	2.4	86
1796	Chemo-selective high yield microwave assisted reaction turns cellulose to green chemicals. Carbohydrate Polymers, 2014, 112, 448-457.	5.1	45
1797	Validation of lignocellulosic biomass carbohydrates determination via acid hydrolysis. Carbohydrate Polymers, 2014, 112, 179-185.	5.1	31

#		IE	CITATIONS
π	Improvement of the enzymatic hydrolysis of furfural residues by pretreatment with combined green		CHAHONS
1798	liquor and ethanol organosolv. Bioresource Technology, 2014, 167, 46-52.	4.8	40
1799	Effect of chemical factors on integrated fungal fermentation of sugarcane bagasse for ethanol production by a white-rot fungus, Phlebia sp. MG-60. Bioresource Technology, 2014, 167, 33-40.	4.8	32
1800	Model compound approach to design process and select catalysts for in-situ bio-oil upgrading. Renewable and Sustainable Energy Reviews, 2014, 36, 286-303.	8.2	32
1801	Pretreating lignocellulosic biomass by the concentrated phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis: Evaluating the pretreatment flexibility on feedstocks and particle sizes. Bioresource Technology, 2014, 166, 420-428.	4.8	56
1802	Zr/P/O catalyst for the direct acid chemo-hydrolysis of non-pretreated microcrystalline cellulose and softwood sawdust. Applied Catalysis B: Environmental, 2014, 145, 24-33.	10.8	57
1803	Effect of antioxidant extraction on the enzymatic hydrolysis and bioethanol production of the extracted steam-exploded sugarcane bagasse. Biochemical Engineering Journal, 2014, 82, 91-96.	1.8	20
1804	Steam pretreatment of spruce forest residues: Optimal conditions for biogas production and enzymatic hydrolysis. Carbohydrate Polymers, 2014, 100, 202-210.	5.1	29
1805	Utilization of palm pressed pericarp fiber: Pretreatment, optimization and characterization. Environmental Progress and Sustainable Energy, 2014, 33, 238-249.	1.3	7
1806	Dual Use Switchgrass: Managing Switchgrass for Biomass Production and Summer Forage. Agronomy Journal, 2014, 106, 1438-1444.	0.9	20
1807	Fermentation in Transportation Alcohols. , 2014, , 323-340.		0
1808	Green Biorefinery. , 2014, , 535-564.		2
1809	- HIGH THROUGHPUT EVALUATION OF GENE EXPRESSION FROM FORMALIN-FIXED PARAFFIN-EMBEDDED TISSUES. , 2014, , 150-169.		0
1811	Effects of Thermomechanical Extrusion and Particle Size Reduction on Bioconversion Rate of Corn Fiber for Ethanol Production. Cereal Chemistry, 2014, 91, 366-373.	1.1	6
1812	Innovative studies on lactic acid bacteria for the new industries . Japanese Journal of Lactic Acid Bacteria, 2014, 25, 155-165.	0.1	0
1813	Low-cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resources. Biotechnology for Biofuels, 2014, 7, 34.	6.2	127
1814	Radiofrequency oxidation treatment of separated dairy manure. Process Biochemistry, 2015, 50, 1429-1433.	1.8	6
1815	Hydrophilic compounds in liquids of enzymatic hydrolyzed spruce and pine biomass. Data in Brief, 2015, 5, 194-202.	0.5	5
1816	Influence of thermal and alkali pretreatment to solubilisation and biomethane production of garden waste. International Journal of Global Warming, 2015, 7, 242.	0.2	3

#	Article	IF	CITATIONS
1818	Isolation and characterization of straw saccharification bacteria. , 2015, , 367-370.		0
1820	Biogas from Wastes: Processes and Applications. Green Chemistry and Chemical Engineering, 2015, , 107-140.	0.0	1
1821	Furfurals As Chemical Platform For Biofuels Production. , 2015, , 103-144.		6
1822	Natural Cellulose Fibers: Sources, Isolation, Properties and Applications. , 2015, , 25-59.		1
1823	Facile and Efficient Transformation of Lignocellulose into Levulinic Acid Using an AlCl3·6H2O/H3PO4 Hybrid Acid Catalyst. Bulletin of the Chemical Society of Japan, 2015, 88, 1752-1754.	2.0	9
1824	Biosurfactants and Bioemulsifiers for Treatment of Industrial Wastes. , 2015, , 141-168.		2
1825	Discovery and Characterization of Ionic Liquid-Tolerant Thermophilic Cellulases from a Switchgrass-Adapted Microbial Community. , 2015, , 207-226.		0
1826	Influence of pretreatment processes onto bio-methanation of wheat straw. Journal of Renewable and Sustainable Energy, 2015, 7, 053109.	0.8	1
1827	The effect of yeast weight and temperature on ethanol production from sorghum and iles-iles flour. AIP Conference Proceedings, 2015, , .	0.3	0
1828	Performance evaluation of a recycle-integrated process for the production and purification of monosaccharides from lignocellulosic biomass. Separation and Purification Technology, 2015, 156, 561-571.	3.9	2
1830	Kinetic study of enzymatic hydrolysis of acid-pretreated coconut coir. AIP Conference Proceedings, 2015, , .	0.3	8
1831	Physicochemical characterization of oil palm mesocarp fibre treated with glycerol. AIP Conference Proceedings, 2015, , .	0.3	0
1832	A novel low-molecular weight alkaline mannanase from Streptomyces tendae. Biotechnology and Bioprocess Engineering, 2015, 20, 453-461.	1.4	11
1833	Pretreatment of rice straw by hot-compressed water for enzymatic saccharification. Korean Journal of Chemical Engineering, 2015, 32, 2007-2013.	1.2	3
1834	Autohydrolysis pretreatment of Arundo donax: a comparison between microwave-assisted batch and fast heating rate flow-through reaction systems. Biotechnology for Biofuels, 2015, 8, 218.	6.2	41
1835	A multiobjective optimization framework for design of integrated biorefineries under uncertainty. AICHE Journal, 2015, 61, 3208-3222.	1.8	37
1836	Microalgal lipid production using the hydrolysates of rice straw pretreated with gamma irradiation and alkali solution. Biotechnology for Biofuels, 2015, 8, 125.	6.2	33
1837	Bioflocculant production from untreated corn stover using Cellulosimicrobium cellulans L804 isolate and its application to harvesting microalgae. Biotechnology for Biofuels, 2015, 8, 170.	6.2	52

#	Article	IF	CITATIONS
1838	Enhancement of the enzymatic hydrolysis of fines from recycled paper mill waste rejects. Bioresources and Bioprocessing, 2015, 2, .	2.0	22
1839	Model-based optimization of Scheffersomyces stipitis and Saccharomyces cerevisiae co-culture for efficient lignocellulosic ethanol production. Bioresources and Bioprocessing, 2015, 2, .	2.0	21
1840	<i>Miscanthus</i> as cellulosic biomass for bioethanol production. Biotechnology Journal, 2015, 10, 840-854.	1.8	107
1841	Current Pretreatment Technologies for the Development of Cellulosic Ethanol and Biorefineries. ChemSusChem, 2015, 8, 3366-3390.	3.6	321
1842	Unveiling the optimal parameters for cellulolytic characteristics of <i>Talaromyces verruculosus </i> SGMNPf3 and its secretory enzymes. Journal of Applied Microbiology, 2015, 119, 88-98.	1.4	10
1843	Thermoâ€mechanical extrusion and sodium hydroxide pretreatments for ethanol production from destarched corn fiber. Environmental Progress and Sustainable Energy, 2015, 34, 823-831.	1.3	2
1844	P. vortex-mediated strategies for polysaccharides decomposition. Technology, 2015, 03, 80-83.	1.4	1
1845	Dissolution and Separation of Wood Biopolymers Using Ionic Liquids. ChemBioEng Reviews, 2015, 2, 257-278.	2.6	43
1846	Furfural and hydroxymethylfurfural tolerance in <i>Escherichia coli</i> Δ <i>acrR</i> regulatory mutants. Biotechnology and Applied Biochemistry, 2015, 62, 32-36.	1.4	8
1847	Pretreatment of lignocellulosic biomass from animal manure as a means of enhancing biogas production. Engineering in Life Sciences, 2015, 15, 733-742.	2.0	29
1848	Bioethanol: Feedstock Alternatives, Pretreatments, Lignin Chemistry, and the Potential for Green Value-Added Lignin Co-Products. Journal of Environmental Analytical Chemistry, 2015, 02, .	0.3	6
1849	Overview on Mechanical-Chemical Ionic Liquid Pretreatment Study on Bioethanol–Based Lignocellulosics Biomass. Advanced Materials Research, 0, 1125, 260-265.	0.3	3
1850	Detoxification of Steam-Exploded Corn Stover Prehydrolyzate with Organobentonite Enhances Ethanol Fermentation by Pichia stipitis. BioResources, 2015, 11, .	0.5	5
1851	Investigating Lignocellulose in Cornstalk Pretreated with Trametes pubescens Cui 7571 to Improve Enzymatic Saccharification. BioResources, 2015, 11, .	0.5	3
1852	Utilization of Ionic Liquids in Wood and Wood-Related Applications $\hat{a} \in \rakeppi $ A Review. , 2015, , .		1
1853	An overview of the applications of furfural and its derivatives. International Journal of Advanced Chemistry, 2015, 3, 42-47.	0.1	127
1854	Degradation and Redeposition of the Chemical Components of Aspen Wood during Hot Water Extraction. BioResources, 2015, 10, .	0.5	8
1855	Development of Bioelectrochemical Systems to Promote Sustainable Agriculture. Agriculture	1.4	24

#	Article	IF	CITATIONS
1856	Bioprospecting of yeasts for amylase production in solid state fermentation and evaluation of the catalytic properties of enzymatic extracts. African Journal of Biotechnology, 2015, 14, 1215-1223.	0.3	20
1857	A Comparative Study of Bioethanol Production from Aquatic Weeds. International Journal of Applied Sciences and Biotechnology, 2015, 3, 446-451.	0.4	3
1858	Sustainable Ethanol Production from Common Reed (Phragmites australis) through Simultaneuos Saccharification and Fermentation. Sustainability, 2015, 7, 12149-12163.	1.6	36
1859	Production of Xylitol from Oil Palm Empty Friuts Bunch: A Case Study on Bioefinery Concept. Modern Applied Science, 2015, 9, 206.	0.4	22
1860	Fermentative hydrogen production from agroindustrial lignocellulosic substrates. Brazilian Journal of Microbiology, 2015, 46, 323-335.	0.8	44
1861	Purification and Characterisation of Extracellular Cellulase Main Components from Aspergillus terreus. BioResources, 2015, 10, .	0.5	4
1862	Improved Sugar Production by Optimizing Planetary Mill Pretreatment and Enzyme Hydrolysis Process. BioMed Research International, 2015, 2015, 1-5.	0.9	0
1863	Two Bacillus Species Isolated from Rotting Wood Samples are Good Candidates for the Production of Bioethanol using Agave Biomass. Journal of Microbial & Biochemical Technology, 2015, 07, .	0.2	1
1864	Beta-Glucosidase: Key Enzyme in Determining Efficiency of Cellulase and Biomass Hydrolysis. Journal of Bioprocessing & Biotechniques, 2015, 05, .	0.2	22
1865	Evaluation of Myceliopthora thermophila as an Enzyme Factory for the Production of Thermophilic Cellulolytic Enzymes. BioResources, 2015, 10, .	0.5	6
1866	Subprodutos Gerados na Produção de Bioetanol: Bagaço, Torta de Filtro, água de Lavagem e Palhagem¹. Revista Brasileira De Energias Renováveis, 2015, 4, .	0.1	7
1867	Efficient Eucalypt Cell Wall Deconstruction and Conversion for Sustainable Lignocellulosic Biofuels. Frontiers in Bioengineering and Biotechnology, 2015, 3, 190.	2.0	18
1868	Improved Anaerobic Fermentation of Wheat Straw by Alkaline Pre-Treatment and Addition of Alkali-Tolerant Microorganisms. Bioengineering, 2015, 2, 66-93.	1.6	40
1869	In Silico Comparison of the Hemicelluloses Xyloglucan and Glucuronoarabinoxylan in Protecting Cellulose from Degradation. Computation, 2015, 3, 336-353.	1.0	0
1870	Investigation of Marine-Derived Fungal Diversity and Their Exploitable Biological Activities. Marine Drugs, 2015, 13, 4137-4155.	2.2	77
1871	Consolidated bioprocessing for biofuel production: recent advances. Energy and Emission Control Technologies, 0, , 23.	0.5	11
1872	Feedstock for Bioethanol Production from a Technological Paradigm Perspective. BioResources, 2015, 10, .	0.5	11
1873	Analysis of a Modern Hybrid and an Ancient Sugarcane Implicates a Complex Interplay of Factors in Affecting Recalcitrance to Cellulosic Ethanol Production. PLoS ONE, 2015, 10, e0134964.	1.1	12

#	Article	IF	CITATIONS
1874	Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System. PLoS ONE, 2015, 10, e0144870.	1.1	6
1875	Optimization of Experimental Variables to Modify Lignin from Eucalyptus globulus under Alkaline Catalysis. BioResources, 2015, 11, .	0.5	5
1876	Enzymatic Hydrolysis of Pretreated Newspaper Having High Lignin Content for Bioethanol Production. BioResources, 2015, 10, .	0.5	13
1877	EVALUATION OF COMPOSITION, CHARACTERIZATION AND ENZYMATIC HYDROLYSIS OF PRETREATED SUGAR CANE BAGASSE. Brazilian Journal of Chemical Engineering, 2015, 32, 23-33.	0.7	128
1878	Biomass-derived Platform Molecules Upgrading through Catalytic Processes: Yielding Chemicals and Fuels. Journal of the Japan Petroleum Institute, 2015, 58, 257-273.	0.4	29
1879	Prospects for Irradiation in Cellulosic Ethanol Production. Biotechnology Research International, 2015, 2015, 1-13.	1.4	43
1880	Alkali Pretreatment and Enzymatic Hydrolysis of Australian Timber Mill Sawdust for Biofuel Production. Journal of Renewable Energy, 2015, 2015, 1-9.	2.1	12
1881	Enzymatic Saccharification of Lignocellulosic Residues by Cellulases Obtained from Solid State Fermentation Using <i>Trichoderma viride </i> . BioMed Research International, 2015, 2015, 1-9.	0.9	22
1882	Effects of Extrusion Pretreatment Parameters on Sweet Sorghum Bagasse Enzymatic Hydrolysis and Its Subsequent Conversion into Bioethanol. BioMed Research International, 2015, 2015, 1-10.	0.9	21
1883	Improvement in Saccharification Yield of Mixed Rumen Enzymes by Identification of Recalcitrant Cell Wall Constituents Using Enzyme Fingerprinting. BioMed Research International, 2015, 2015, 1-13.	0.9	6
1884	Influence of Strong Acid Hydrolysis Processing on the Thermal Stability and Crystallinity of Cellulose Isolated from Wheat Straw. International Journal of Chemical Engineering, 2015, 2015, 1-11.	1.4	41
1885	Transformation of Starchy Lignocellulosic Biomass to Ethanol using Ragi Tapai Synergized with Microwave Irradiation Pretreatment. BioResources, 2015, 11, .	0.5	2
1887	Role of Microbial Enzymes in the Biodegradation of Rice Straw via Biotechnological Techniques. Rice Research Open Access, 2015, 03, .	0.4	1
1888	Citric waste saccharification under different chemical treatments. Acta Scientiarum - Technology, 2015, 37, 387.	0.4	13
1889	STRUCTURAL CHARACTERISTICS AND DISTRIBUTION OF LIGNIN IN EUCALYPTUS GLOBULUS PULPS OBTAINED BY A COMBINED AUTOHYDROLSIS/ALKALINE EXTRACTION PROCESS FOR ENZYMATIC SACCHARIFICATION OF CELLULOSE. Journal of the Chilean Chemical Society, 2015, 60, 2954-2960.	0.5	12
1890	Sugarcane Bagasse Ash as a Seedling Growth Media Component. Journal of Agricultural Science, 2015, 8, 1.	0.1	6
1892	Michaelis-Menten Kinetic Parameters of Coconut Coir Enzymatic Hydrolysis. Modern Applied Science, 2015, 9, 30.	0.4	1
1893	Effect of pretreatment of soy insoluble fiber and SSCF with <i>Saccharomyces cerevisiae</i> and <i>Escherichia coli</i> KO11 on ethanol production in an integrated corn-soy biorefinery. , 2015, , .		0

#	Article	IF	CITATIONS
1894	Photoacoustic Spectroscopy in the Assessment of the Quantitative Composition of the Biomass $\hat{a} \in \rakebox{"}$ Barley Straw. , 0, , .		3
1895	A flow cytometer-based whole cell screening toolbox for directed hydrolase evolution through fluorescent hydrogels. Chemical Communications, 2015, 51, 8679-8682.	2.2	18
1896	Pretreatment of Lignocellulosic Biomass. Biofuel and Biorefinery Technologies, 2015, , 85-154.	0.1	35
1897	Agricultural residues for cellulolytic enzyme production by Aspergillus niger: effects of pretreatment. 3 Biotech, 2015, 5, 1101-1106.	1.1	40
1898	Silica Extraction from Rice Husk by Warm Water Pretreatment. Advanced Materials Research, 2015, 1087, 309-315.	0.3	1
1899	H ₂ O ₂ -Mediated Kraft Lignin Oxidation with Readily Available Metal Salts: What about the Effect of Ultrasound?. Industrial & Engineering Chemistry Research, 2015, 54, 6046-6051.	1.8	27
1900	Functional guild classification predicts the enzymatic role of fungi inÂlitter and soil biogeochemistry. Soil Biology and Biochemistry, 2015, 88, 441-456.	4.2	121
1901	Microbial Research in High-Value Biofuels. Microbiology Monographs, 2015, , 105-156.	0.3	3
1902	Production of ethanol from alkali-pretreated sugarcane bagasse under the influence of different process parameters. Frontiers in Life Science: Frontiers of Interdisciplinary Research in the Life Sciences, 2015, 8, 358-362.	1,1	10
1903	From the Ancient Tribes to Modern Societies, Microalgae Evolution from a Simple Food to an Alternative Fuel Source. , 2015, , 127-144.		6
1904	Evaluation of Amberlyst15 for hydrolysis of alkali pretreated rice straw and fermentation to ethanol. Biochemical Engineering Journal, 2015, 102, 49-53.	1.8	22
1905	Alkali-stable cellulase from a halophilic isolate, Gracilibacillus sp. SK1 and its application in lignocellulosic saccharification for ethanol production. Biomass and Bioenergy, 2015, 81, 19-25.	2.9	40
1906	Chapter 3. Sugarcane as an Alternative Source of Sustainable Energy. , 2015, , 59-86.		0
1907	Utilization of recombinant Trichoderma reesei expressing Aspergillus aculeatus β-glucosidase I (JN11) for a more economical production of ethanol from lignocellulosic biomass. Journal of Bioscience and Bioengineering, 2015, 120, 657-665.	1.1	36
1908	Ligninolytic Enzymes for Water Depollution, Coal Breakdown, and Paper Industry. Environmental Chemistry for A Sustainable World, 2015, , 359-386.	0.3	4
1909	Fast Pyrolysis of Spent Coffee Waste and Oak Wood Chips in a Micro-tubular Reactor. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2015, 37, 1186-1194.	1.2	8
1910	Expression of Fungal Hydrolases in Saccharomyces cerevisiae. , 2015, , 153-175.		2
1911	The Effect of Substrate Loading On Simultaneous Saccharification And Fermentation Process For Bioethanol Production from Oil Palm Empty Fruit Bunches. Energy Procedia, 2015, 68, 138-146.	1.8	54

#	Article	IF	CITATIONS
1912	Modeling the Effect of pH and Temperature for Cellulases Immobilized on Enzymogel Nanoparticles. Applied Biochemistry and Biotechnology, 2015, 176, 1114-1130.	1.4	15
1913	Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech, 2015, 5, 337-353.	1.1	701
1914	Ozonolysis. , 2015, , 105-135.		15
1915	Effects of four types of dilute acid washing on moso bamboo pyrolysis using Py–GC/MS. Bioresource Technology, 2015, 185, 62-69.	4.8	88
1916	Comparison of SHF and SSF Processes Using Enzyme and Dry Yeast for Optimization of Bioethanol Production from Empty Fruit Bunch. Energy Procedia, 2015, 68, 107-116.	1.8	135
1917	Bio-catalytic action of twin-screw extruder enzymatic hydrolysis on the deconstruction of annual plant material: Case of sweet corn co-products. Industrial Crops and Products, 2015, 67, 239-248.	2.5	14
1918	Hydrogen biorefinery: Potential utilization of the liquid waste from fermentative hydrogen production. Renewable and Sustainable Energy Reviews, 2015, 50, 942-951.	8.2	64
1919	A novel population balance model for the dilute acid hydrolysis of hemicellulose. Biotechnology for Biofuels, 2015, 8, 26.	6.2	3
1920	Hydrogen production by ethanol steam reforming over Ni/SBA-15 mesoporous catalysts: Effect of Au addition. Catalysis Today, 2015, 258, 162-168.	2.2	65
1921	Hydrogen Production from Biowaste. Green Energy and Technology, 2015, , 107-135.	0.4	2
1922	Biological pre-treatment: Enhancing biogas production using the highly cellulolytic fungus Trichoderma viride. Waste Management, 2015, 43, 98-107.	3.7	58
1923	Experimental and theoretical study of atmospheric-pressure argon microplasma jets. Plasma Physics and Controlled Fusion, 2015, 57, 074001.	0.9	11
1924	Study on the Fermentation of Fuel Ethanol from Corn Stover Pretreated by Propionic Acid. Advanced Materials Research, 2015, 1090, 205-210.	0.3	0
1925	Sugar- and Starch-Based Biorefineries. , 2015, , 157-235.		11
1926	Optimization Models for Process Water Networks and Their Application toÂBiofuel Processes. Computer Aided Chemical Engineering, 2015, , 3-35.	0.3	0
1927	Biorefinery strategies for upgrading Distillers' Dried Grains with Solubles (DDGS). Process Biochemistry, 2015, 50, 2194-2207.	1.8	46
1929	Improvement of ultrafiltration performance by oxidation treatment in the recovery of galactoglucomannan from wood autohydrolyzate. Separation and Purification Technology, 2015, 149, 428-436.	3.9	7
1930	Optimization of Enzyme Hydrolysis of Seafood Waste for Microwave Hydrothermal Carbonization. Energy & Fuels, 2015, 29, 8006-8016.	2.5	23

#	
TE	

CITATIONS

IF

1931	Bioenergy: Biofuels Process Technology. , 2015, , 165-207.		1
1932	Structural and Thermal Investigation of Three Agricultural Biomasses Following Mild-NaOH Pretreatment to Increase Anaerobic Biodegradability. Waste and Biomass Valorization, 2015, 6, 1135-1148.	1.8	9
1933	Alkaline Delignification of Oil Palm Empty Fruit Bunch Using Black Liquor from Pretreatment. Procedia Chemistry, 2015, 16, 99-105.	0.7	20
1934	Delignification of Elephant Grass for Production of Cellulosic Intermediate. Energy Procedia, 2015, 79, 220-225.	1.8	26
1935	Effects of Pre-Treatment on Lignocellulosic Butanol as a Bio-Fuel Produced from Bamboo Using <i>Clostridium acetobutylicum</i> . Advanced Materials Research, 0, 1132, 295-312.	0.3	6
1936	Ethanol Production from Lignocellulosic Biomass Using Xylotrophic Basidiomycetes. Chemistry and Technology of Fuels and Oils, 2015, 51, 516-525.	0.2	3
1937	Covalent immobilization of laccase in green coconut fiber and use in clarification of apple juice. Process Biochemistry, 2015, 50, 417-423.	1.8	97
1938	Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: A comprehensive review. Renewable and Sustainable Energy Reviews, 2015, 44, 20-36.	8.2	230
1939	Enhanced enzymatic hydrolysis and ethanol production from cashew apple bagasse pretreated with alkaline hydrogen peroxide. Bioresource Technology, 2015, 179, 249-259.	4.8	39
1940	Combined pretreatment using ozonolysis and ball milling to improve enzymatic saccharification of corn straw. Bioresource Technology, 2015, 179, 444-451.	4.8	49
1941	Biomethane production and physicochemical characterization of anaerobically digested teff (Eragrostis tef) straw pretreated by sodium hydroxide. Bioresource Technology, 2015, 181, 214-219.	4.8	45
1942	Three-phasic fermentation systems for enzyme production with sugarcane bagasse in stirred tank bioreactors: Effects of operational variables and cultivation method. Biochemical Engineering Journal, 2015, 97, 32-39.	1.8	27
1943	Enzymatic Delignification of Biomass for Enhanced Fermentable Sugars Production. Energy Technology, 2015, 3, 121-127.	1.8	11
1945	CO2 Sequestration, Biofuels and Depollution. Environmental Chemistry for A Sustainable World, 2015, , .	0.3	14
1946	A synergistic effect of pretreatment on cell wall structural changes in barley straw (<i>Hordeum) Tj ETQq0 0 0 rgE 2015, 95, 843-850.</i>	3T /Overloo 1.7	ck 10 Tf 50 1 22
1947	BioH2 & BioCH4 Through Anaerobic Digestion. Green Energy and Technology, 2015, , .	0.4	36
1948	Optimization of Ethanol Production From Microfluidized Wheat Straw by Response Surface Methodology. Preparative Biochemistry and Biotechnology, 2015, 45, 785-795.	1.0	14

	Alkaline xylanolytic–cellulolytic multienzyme complex from the novel anaerobic alkalithermophilic		
1949	bacterium Cellulosibacter alkálithermophilús and its hydrolysis of insoluble polysaccharides under	1.8	13
	neutral and alkaline conditions. Process Biochemistry, 2015, 50, 643-650.		

	Сітаті	on Report	
#	Article	IF	CITATIONS
1950	Evaluation of industrial <scp><i>S</i></scp> <i>accharomyces cerevisiae</i> strains as the chassis cell for secondâ€generation bioethanol production. Microbial Biotechnology, 2015, 8, 266-274.	2.0	38
1951	Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: Challenges and perspectives. Renewable and Sustainable Energy Reviews, 2015, 44, 888-903.	8.2	319
1952	Hydrothermal and wet disk milling pretreatment for high conversion of biosugars from oil palm mesocarp fiber. Bioresource Technology, 2015, 181, 263-269.	4.8	74
1953	Combustion synthesis of copper–nickel catalysts for hydrogen production from ethanol. Chemical Engineering Journal, 2015, 278, 46-54.	6.6	62
1954	Hydrothermal Carbonization ofÂBiomass. , 2015, , 325-352.		22
1955	Hydrothermal Liquefaction of Biomass. , 2015, , 269-291.		23
1956	Optimal Simultaneous Production of Biodiesel (FAEE) and Bioethanol from Switchgrass. Industrial & Engineering Chemistry Research, 2015, 54, 4337-4346.	1.8	7
1957	Heterologous expression of cellobiohydrolases in filamentous fungi – An update on the current challenges, achievements and perspectives. Process Biochemistry, 2015, 50, 211-220.	1.8	25
1958	Proteomic analysis of <i>Streptomyces</i> sp. ssrâ€198 grown on paddy straw. Journal of Basic Microbiology, 2015, 55, 790-797.	1.8	13
1959	Hierarchy in Pentose Sugar Metabolism in Clostridium acetobutylicum. Applied and Environmental Microbiology, 2015, 81, 1452-1462.	1.4	38
1960	Enhancing methane production of corn stover through a novel way: Sequent pretreatment of potassium hydroxide and steam explosion. Bioresource Technology, 2015, 181, 345-350.	4.8	68
1961	Acidic Pretreatment. , 2015, , 27-50.		44
1962	Population balance approach for the modelling of enzymatic hydrolysis of cellulose. Canadian Journal of Chemical Engineering, 2015, 93, 276-284.	0.9	15
1963	Lignocellulose-Based Bioproducts. Biofuel and Biorefinery Technologies, 2015, , .	0.1	17
1964	Customized optimization of cellulase mixtures for differently pretreated rice straw. Bioprocess and Biosystems Engineering, 2015, 38, 929-937.	1.7	24
1965	Thermophilic fungi as new sources for production of cellulases and xylanases with potential use in sugarcane bagasse saccharification. Journal of Applied Microbiology, 2015, 118, 928-939.	1.4	87
1966	Simultaneous Utilization of Cellobiose, Xylose, and Acetic Acid from Lignocellulosic Biomass for Biofuel Production by an Engineered Yeast Platform. ACS Synthetic Biology, 2015, 4, 707-713.	1.9	69
1967	Purification and Characterization of a GH11 Xylanase from Biobutanol-Producing Clostridium beijerinckii G117. Applied Biochemistry and Biotechnology, 2015, 175, 2832-2844.	1.4	6

#	Article	IF	CITATIONS
1968	Newly isolated Penicillium oxalicum A592-4B secretes enzymes that degrade milled rice straw with high efficiency. Bioscience, Biotechnology and Biochemistry, 2015, 79, 820-829.	0.6	3
1969	Steam Explosion. , 2015, , 75-104.		21
1970	An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech, 2015, 5, 597-609.	1.1	323
1971	Bioethanol production from Miscanthus using thermotolerant Saccharomyces cerevisiae mbc 2 isolated from the respiration-deficient mutants. Renewable Energy, 2015, 80, 259-265.	4.3	24
1972	Membrane reactors for bioethanol production and processing. , 2015, , 313-343.		2
1973	Organic fraction of municipal solid waste as a suitable feedstock for the production of lipid by oleaginous yeast Cryptococcus aerius. Waste Management, 2015, 38, 141-148.	3.7	50
1974	Fermentation of Platycodi radix and bioconversion of platycosides using co-cultures of Saccharomyces cerevisiae KCTC 7928 and Aspergillus awamori FMB S900. Food Science and Biotechnology, 2015, 24, 183-189.	1.2	1
1975	Genotype contribution to the chemical composition of banana rachis and implications for thermo/biochemical conversion. Biomass Conversion and Biorefinery, 2015, 5, 409-416.	2.9	6
1976	Sequential pretreatment strategies under mild conditions for efficient enzymatic hydrolysis of wheat straw. Bioprocess and Biosystems Engineering, 2015, 38, 1127-1141.	1.7	13
1977	Acidic Ionic Liquids as Sustainable Approach of Cellulose and Lignocellulosic Biomass Conversion without Additional Catalysts. ChemSusChem, 2015, 8, 947-965.	3.6	189
1978	New Insights into the Role of Chemical Components on Metal Ions Sorption by Grape Stalks Waste. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	2
1979	A potential cellulose microfibril swelling enzyme isolated from Bacillus sp. AY8 enhances cellulose hydrolysis. Process Biochemistry, 2015, 50, 807-815.	1.8	19
1980	Plant-derived antifungal agent poacic acid targets β-1,3-glucan. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1490-7.	3.3	91
1981	InÂvitro -propagated Miscanthus Â× giganteus plants can be a source of diversity in terms of their chemical composition. Biomass and Bioenergy, 2015, 75, 142-149.	2.9	12
1982	Application of X-ray and neutron small angle scattering techniques to study the hierarchical structure of plant cell walls: A review. Carbohydrate Polymers, 2015, 125, 120-134.	5.1	80
1983	Ozone oxidation pretreatment for enzymatic saccharification of spent culture media after Lentinula edodes cultivation. Journal of Wood Science, 2015, 61, 65-69.	0.9	4
1984	Second Generation Ethanol Production from Brewers' Spent Grain. Energies, 2015, 8, 2575-2586.	1.6	69
1985	Process intensification effect of ball milling on the hydrothermal pretreatment for corn straw enzymolysis. Energy Conversion and Management, 2015, 101, 481-488.	4.4	66
#	Article	IF	CITATIONS
------	--	-------------------	-------------------
1986	Advances in ethanol autothermal reforming. Renewable and Sustainable Energy Reviews, 2015, 51, 1345-1353.	8.2	50
1987	Optimization of DIC technology as a pretreatment stage for enzymatic saccharification of Retama raetam. Fuel Processing Technology, 2015, 138, 344-354.	3.7	6
1988	Simulation of the ozone pretreatment of wheat straw. Bioresource Technology, 2015, 196, 78-87.	4.8	41
1989	Experimental studies on combustion and emissions of RCCI (reactivity controlled compression) Tj ETQq1 1 0.784	314 rgBT , 4.5	Overlock 1 104
1990	Silica distinctively affects cell wall features and lignocellulosic saccharification with large enhancement on biomass production in rice. Plant Science, 2015, 239, 84-91.	1.7	51
1991	A new paradigm for waste management of organic materials. Waste Management, 2015, 42, 1-2.	3.7	18
1992	Intensification of Enzymatic Hydrolysis of Cellulose Using High-Frequency Ultrasound: An Investigation of the Effects of Process Parameters on Glucose Yield. Energy & Fuels, 2015, 29, 4998-5006.	2.5	29
1993	Enzymatic hydrolysis of polyethylene terephthalate films in an ultrafiltration membrane reactor. Journal of Membrane Science, 2015, 494, 182-187.	4.1	71
1994	Catalysis for the Production of Sustainable Chemicals and Fuels from Biomass. , 2015, , 99-123.		5
1995	Integrated Bio- and Chemocatalytic Processing for Biorenewable Chemicals and Fuels. , 2015, , 157-177.		11
1996	Chaterization of Jatropha Curcas Linn. Capsule Husk as Feedstock for Anaerobic Digestion. Energy Procedia, 2015, 65, 264-273.	1.8	11
1997	Breeding Strategy To Generate Robust Yeast Starter Cultures for Cocoa Pulp Fermentations. Applied and Environmental Microbiology, 2015, 81, 6166-6176.	1.4	36
1998	Effect of co-products of enzyme-assisted aqueous extraction of soybeans on ethanol production in dry-grind corn fermentation. Bioresource Technology, 2015, 192, 451-460.	4.8	24
1999	Biorenewable chemicals: Feedstocks, technologies and the conflict with food production. Renewable and Sustainable Energy Reviews, 2015, 51, 506-520.	8.2	89
2000	Evaluation of biological pretreatments to increase the efficiency of the saccharification process using Spartina argentinensis as a biomass resource. Bioresource Technology, 2015, 194, 320-325.	4.8	31
2001	FeCl ₃ Pretreatment of Three Lignocellulosic Biomass for Ethanol Production. ACS Sustainable Chemistry and Engineering, 2015, 3, 1794-1800.	3.2	59
2002	Methodologies and Perspectives of Proteomics Applied to Filamentous Fungi: From Sample Preparation to Secretome Analysis. International Journal of Molecular Sciences, 2015, 16, 5803-5829.	1.8	54
2003	Isolation of barley hulls and straw constituents and study of emulsifying properties of their arabinoxylans. Carbohydrate Polymers, 2015, 132, 529-536.	5.1	25

#	Article	IF	CITATIONS
2004	Recent Advances in Second Generation Ethanol Production by Thermophilic Bacteria. Energies, 2015, 8, 1-30.	1.6	110
2005	Recombinant Trichoderma harzianum endoglucanase I (Cel7B) is a highly acidic and promiscuous carbohydrate-active enzyme. Applied Microbiology and Biotechnology, 2015, 99, 9591-9604.	1.7	25
2006	Bioprospecting thermophilic/thermotolerant microbes for production of lignocellulosic ethanol: A future perspective. Renewable and Sustainable Energy Reviews, 2015, 51, 699-717.	8.2	92
2007	Enzymatic Hydrolysis of Lignocellulosic Oil Palm Empty Fruit Bunch (EFB). Advanced Materials Research, 0, 1113, 305-310.	0.3	0
2008	Sequential bioethanol and biogas production from sugarcane bagasse based on high solids fed-batch SSF. Energy, 2015, 90, 1199-1205.	4.5	63
2009	Kinetic modeling for enzymatic hydrolysis of pretreated sugarcane straw. Biochemical Engineering Journal, 2015, 104, 10-19.	1.8	28
2010	The effect of a combined biological and thermo-mechanical pretreatment of wheat straw on energy yields in coupled ethanol and methane generation. Bioresource Technology, 2015, 194, 7-13.	4.8	28
2011	Steam explosion pretreatment of corn straw on xylose recovery and xylitol production using hydrolysate without detoxification. Process Biochemistry, 2015, 50, 1623-1628.	1.8	33
2012	Generation of bioethanol and VFA through anaerobic acidogenic fermentation route with press mud obtained from sugar mill as a feedstock. Bioresource Technology, 2015, 192, 646-653.	4.8	24
2013	The influence of pretreatment methods on saccharification of sugarcane bagasse by an enzyme extract from Chrysoporthe cubensis and commercial cocktails: A comparative study. Bioresource Technology, 2015, 192, 670-676.	4.8	49
2014	Mechanistic Investigation of Isopropanol Conversion on Alumina Catalysts: Location of Active Sites for Alkene/Ether Production. ACS Catalysis, 2015, 5, 4423-4437.	5.5	92
2015	Microbial rhamnolipid production in wheat straw hydrolysate supplemented with basic salts. RSC Advances, 2015, 5, 51642-51649.	1.7	15
2016	Presence and Role of Anaerobic Hydrolytic Microbes in Conversion of Lignocellulosic Biomass for Biogas Production. Critical Reviews in Environmental Science and Technology, 2015, 45, 2523-2564.	6.6	156
2017	Production of β-glucosidase on solid-state fermentation by Lichtheimia ramosa in agroindustrial residues: Characterization and catalytic properties of the enzymatic extract. Electronic Journal of Biotechnology, 2015, 18, 314-319.	1.2	57
2018	Epigenetics as an emerging tool for improvement of fungal strains used in biotechnology. Applied Microbiology and Biotechnology, 2015, 99, 6167-6181.	1.7	38
2019	Low-Temperature Dilute Acid Hydrolysis of Oil Palm Frond. Chemical Engineering Communications, 2015, 202, 1235-1244.	1.5	10
2020	Purification and Characterization of Thermostable Cellulase from Consortium XM70 in Terrestrial Hot Spring with Sugarcane Bagasse. Tropical Journal of Pharmaceutical Research, 2015, 14, 591.	0.2	3
2021	Potential for energy production from reed biomass in the Vojvodina region (north Serbia). Renewable and Sustainable Energy Reviews, 2015, 48, 670-680.	8.2	16

#	Article	IF	CITATIONS
2022	A comparison of several organosolv pretreatments for improving the enzymatic hydrolysis of wheat straw: Substrate digestibility, fermentability and structural features. Applied Energy, 2015, 150, 224-232.	5.1	128
2023	Underlying factors to consider in improving energy yield from biomass source through yeast use on high-pressure homogenizer (hph). Energy, 2015, 81, 74-83.	4.5	31
2024	Optimization of alkaline pretreatment on corn stover for enhanced production of 1.3-propanediol and 2,3-butanediol by Klebsiella pneumoniae AJ4. Biomass and Bioenergy, 2015, 77, 177-185.	2.9	24
2025	Comparing the hydrolysis and biogas production performance of alkali and acid pretreatments of rice straw using two-stage anaerobic fermentation. Biosystems Engineering, 2015, 132, 47-55.	1.9	45
2026	Effects of Surfactants and Microwave-assisted Pretreatment of Orange Peel on Extracellular Enzymes Production by Aspergillus japonicus PJ01. Applied Biochemistry and Biotechnology, 2015, 176, 758-771.	1.4	29
2027	Comparison of choline acetate ionic liquid pretreatment with various pretreatments for enhancing the enzymatic saccharification of sugarcane bagasse. Industrial Crops and Products, 2015, 71, 147-152.	2.5	40
2028	An irradiation-alkaline pretreatment of kenaf core for improving the sugar yield. Renewable Energy, 2015, 79, 51-55.	4.3	19
2029	Biorefining strategy for maximal monosaccharide recovery from three different feedstocks: Eucalyptus residues, wheat straw and olive tree pruning. Bioresource Technology, 2015, 183, 203-212.	4.8	54
2030	Thermophilic hydrogen production from sugarcane bagasse pretreated by steam explosion and alkaline delignification. International Journal of Hydrogen Energy, 2015, 40, 6296-6306.	3.8	50
2031	Detoxification of biomass hydrolysates with nucleophilic amino acids enhances alcoholic fermentation. Bioresource Technology, 2015, 186, 106-113.	4.8	15
2032	Recovery of phosphorus from dairy manure: a pilot-scale study. Environmental Technology (United) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
2033	Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bioâ€based products. Biotechnology Journal, 2015, 10, 866-885.	1.8	117
2034	Pyroligneous acid—the smoky acidic liquid from plant biomass. Applied Microbiology and Biotechnology, 2015, 99, 611-622.	1.7	91
2035	Cellulase recycling in biorefineries—is it possible?. Applied Microbiology and Biotechnology, 2015, 99, 4131-4143.	1.7	64
2036	Minimizing inhibitors during pretreatment while maximizing sugar production in enzymatic hydrolysis through a two-stage hydrothermal pretreatment. Cellulose, 2015, 22, 1253-1261.	2.4	34
2037	Collaborative Networks as a measure of the Innovation Systems in second-generation ethanol. Scientometrics, 2015, 103, 355-372.	1.6	17
2038	Study of the rice straw biodegradation in mixed culture of Trichoderma viride and Aspergillus niger by GC-MS and FTIR. Environmental Science and Pollution Research, 2015, 22, 9807-9815.	2.7	29
2039	An Extracellular Chitinase from Streptomyces sp. CS147 Releases N-acetyl-d-glucosamine (GlcNAc) as Principal Product. Applied Biochemistry and Biotechnology, 2015, 175, 372-386.	1.4	11

#	Article	IF	CITATIONS
2040	Combination of Sodium Hydroxide and Lime as a Pretreatment for Conversion of Date Palm Leaves into a Promising Ruminant Feed: An Optimization Approach. Waste and Biomass Valorization, 2015, 6, 243-252.	1.8	9
2041	Enhancing the Enzymatic Saccharification of Agricultural and Processing Residues of Cassava through Pretreatment Techniques. Waste and Biomass Valorization, 2015, 6, 303-315.	1.8	32
2042	The Effect of Aqueous Ammonia Soaking Pretreatment on Methane Generation Using Different Lignocellulosic Biomasses. Waste and Biomass Valorization, 2015, 6, 281-291.	1.8	27
2043	Enhanced biomethane potential from wheat straw by low temperature alkaline calcium hydroxide pre-treatment. Bioresource Technology, 2015, 189, 258-265.	4.8	38
2044	Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnology, 2015, 15, 19.	1.7	155
2045	2G ethanol from the whole sugarcane lignocellulosic biomass. Biotechnology for Biofuels, 2015, 8, 44.	6.2	154
2046	Cellobiohydrolase and endoglucanase respond differently to surfactants during the hydrolysis of cellulose. Biotechnology for Biofuels, 2015, 8, 52.	6.2	41
2047	Propanol formation from CO2 and C2H4 with H2 over Au/TiO2: Effect of support and K doping. Catalysis Today, 2015, 258, 684-690.	2.2	12
2048	Bioethanol Production from Microalgae. , 2015, , 197-208.		15
2049	Fungus against the wall. Nature, 2015, 521, 168-169.	13.7	8
2050	Bioethanol from Lignocellulosic Wastes: Current Status and Future Prospects. Biofuel and Biorefinery Technologies, 2015, , 175-206.	0.1	5
2051	Conversion of sugar beet leaf polysaccharides into single cell protein. RSC Advances, 2015, 5, 20961-20965.	1.7	2
2052	Development and physiological characterization of cellobiose onsuming <i>Yarrowia lipolytica</i> . Biotechnology and Bioengineering, 2015, 112, 1012-1022.	1.7	40
2053	Ethanol production from steam exploded rapeseed straw and the process simulation using artificial neural networks. Biotechnology and Bioprocess Engineering, 2015, 20, 139-147.	1.4	18
2054	Reactors for High Solid Loading Pretreatment of Lignocellulosic Biomass. Advances in Biochemical Engineering/Biotechnology, 2015, 152, 75-90.	0.6	10
2055	Bacterial biodegradation and bioconversion of industrial lignocellulosic streams. Applied Microbiology and Biotechnology, 2015, 99, 2939-2954.	1.7	93
2056	Enhancement of fungal delignification of rice straw by Trichoderma viride sp. to improve its saccharification. Biochemical Engineering Journal, 2015, 101, 77-84.	1.8	54
2057	Efficient acetone–butanol–ethanol production by Clostridium beijerinckii from sugar beet pulp. Bioresource Technology, 2015, 190, 332-338.	4.8	61

#	Article	IF	CITATIONS
2058	Fermentation of swine wastewater-derived duckweed for biohydrogen production. International Journal of Hydrogen Energy, 2015, 40, 7028-7036.	3.8	48
2059	Influence of high pressure processing and alkaline treatment on sugarcane bagasse hydrolysis. CYTA - Journal of Food, 0, , 1-8.	0.9	7
2060	Influence of alkaline catalyst addition on compressed liquid hot water pretreatment of rice straw. Chemical Engineering Journal, 2015, 278, 85-91.	6.6	47
2061	Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 2015, 6, 4497-4559.	1.9	1,917
2062	Current perspectives in enzymatic saccharification of lignocellulosic biomass. Biochemical Engineering Journal, 2015, 102, 38-44.	1.8	113
2063	Ultrahigh molecular weight, lignosulfonate-based polymers: preparation, self-assembly behaviours and dispersion property in coal–water slurry. RSC Advances, 2015, 5, 21588-21595.	1.7	50
2064	Enhancing fermentable sugar yield from cassava pulp for bioethanol production: microwave-coupled enzymatic hydrolysis approach. Bioprocess and Biosystems Engineering, 2015, 38, 1509-1515.	1.7	8
2065	Biorefineries: An Overview on Bioethanol Production. Handbook of Environmental Chemistry, 2015, , 153-173.	0.2	0
2066	Effects of pre-treatment technologies on dark fermentative biohydrogen production: A review. Journal of Environmental Management, 2015, 157, 20-48.	3.8	118
2067	Enzymatic saccharification of cellulose: a study of mixing and agitation in an oscillatory baffled reactor and a stirred tank reactor. Biofuels, 2015, 6, 203-208.	1.4	4
2068	Cellulosic ethanol production: Landscape scale net carbon strongly affected by forest decision making. Biomass and Bioenergy, 2015, 83, 32-41.	2.9	10
2069	Theoretical Insights into the Role of Water in the Dissolution of Cellulose Using IL/Water Mixed Solvent Systems. Journal of Physical Chemistry B, 2015, 119, 14339-14349.	1.2	46
2070	Handbook of Bioenergy. Energy Systems, 2015, , .	0.5	3
2071	Evaluation of Synthetic and Semi- synthetic Culture Media for Endo-1,4-β- Glucanases Secretion by Trichoderma koningiopsis. , 2015, 8, 786-792.		7
2072	5. Microbial strain selection and development for the production of second-generation bioethanol. , 2015, , 109-140.		1
2073	11. Lignin biorefinery: structure, pretreatment and use. , 2015, , 257-282.		0
2074	Feasibility of bioethanol production from tubers of Dioscorea sansibarensis and Pyrenacantha kaurabassana. Bioresource Technology, 2015, 196, 613-620.	4.8	6
2075	The Effects of Gas Flow Rate and the Interval Time of Water Supplement on Ethanol Production of Rice Straw by Simultaneous Saccharification and Fermentation. International Journal of Green Energy, 2015, 12, 1031-1036.	2.1	1

#	Article	IF	Citations
2076	Microbial conversion of pyrolytic products to biofuels: a novel and sustainable approach toward second-generation biofuels. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 1557-1579.	1.4	36
2077	Recent advances in development of biomass pretreatment technologies used in biorefinery for the production of bio-based fuels, chemicals and polymers. Korean Journal of Chemical Engineering, 2015, 32, 1945-1959.	1.2	104
2078	Effect of instant controlled pressure drop pretreatment of lignocellulosic wastes on enzymatic saccharification and ethanol production. Industrial Crops and Products, 2015, 77, 910-919.	2.5	18
2079	The Role of Exhausted Coffee Compounds on Metal Ions Sorption. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	22
2080	Experimental studies on combustion and emissions of RCCI fueled with n-heptane/alcohols fuels. Fuel, 2015, 162, 239-250.	3.4	64
2081	Creation of an ultra scaleâ€down bioreactor mimic for rapid development of lignocellulosic enzymatic hydrolysis processes. Journal of Chemical Technology and Biotechnology, 2015, 90, 1983-1990.	1.6	3
2082	Heterogeneous Expression and Functional Characterization of Cellulose-Degrading Enzymes from Aspergillus niger for Enzymatic Hydrolysis of Alkali Pretreated Bamboo Biomass. Molecular Biotechnology, 2015, 57, 859-867.	1.3	16
2083	Investigation on lignocellulosic saccharification and characterization of haloalkaline solvent tolerant endo-1,412-d-xylanase from Halomonas meridiana APCMST-KS4. Biocatalysis and Agricultural Biotechnology, 2015, 4, 761-766.	1.5	10
2084	Combination of biological pretreatment with NaOH/Urea pretreatment at cold temperature to enhance enzymatic hydrolysis of rice straw. Bioresource Technology, 2015, 198, 725-731.	4.8	66
2085	Big bluestem as a bioenergy crop: A review. Renewable and Sustainable Energy Reviews, 2015, 52, 740-756.	8.2	25
2086	Microwave assisted chemical pretreatment of Miscanthus under different temperature regimes. Sustainable Chemical Processes, 2015, 3, .	2.3	43
2087	Development of cellobiose-degrading ability in Yarrowia lipolytica strain by overexpression of endogenous genes. Biotechnology for Biofuels, 2015, 8, 109.	6.2	57
2088	Rethinking sustainable biofuel marketing to titivate commercial interests. Renewable and Sustainable Energy Reviews, 2015, 52, 781-792.	8.2	9
2089	Advances in Bioprocess Technology. , 2015, , .		6
2090	Microbial surface displayed enzymes based biofuel cell utilizing degradation products of lignocellulosic biomass for direct electrical energy. Bioresource Technology, 2015, 192, 821-825.	4.8	18
2091	In situ high-valued utilization and transformation of sugars from Dioscorea zingiberensis C.H. Wright for clean production of diosgenin. Bioresource Technology, 2015, 196, 642-647.	4.8	19
2092	An overview: Energy saving and pollution reduction by using green fuel blends in diesel engines. Applied Energy, 2015, 159, 214-236.	5.1	197
2093	Selective hydrolysis of wheat straw hemicellulose using high-pressure CO ₂ as catalyst. RSC Advances, 2015, 5, 73935-73944.	1.7	45

#	Article	IF	CITATIONS
2094	Metatranscriptomic discovery of plant biomass-degrading capacity from grass carp intestinal microbiomes. FEMS Microbiology Ecology, 2015, 91, fiv107.	1.3	51
2095	Effects of direct injection timing and premixed ratio on combustion and emissions characteristics of RCCI (Reactivity Controlled Compression Ignition) with N-heptane/gasoline-like fuels. Energy, 2015, 93, 383-392.	4.5	50
2096	Saccharification of fermented residues as integral part in a conceptual hydrogen-producing biorefinery. International Journal of Hydrogen Energy, 2015, 40, 17200-17211.	3.8	14
2097	Hydrophilic compounds in liquids of enzymatic hydrolyzed spruce and pine biomass. Analytical Biochemistry, 2015, 485, 86-96.	1.1	6
2098	Chemical and Isotopic Thresholds in Charring: Implications for the Interpretation of Charcoal Mass and Isotopic Data. Environmental Science & amp; Technology, 2015, 49, 14057-14064.	4.6	28
2099	Soybean waste (okara) as a valorization biomass for the bioethanol production. Energy, 2015, 93, 1742-1747.	4.5	45
2100	Production of Hydrogen from Renewable Resources. Biofuels and Biorefineries, 2015, , .	0.5	8
2101	Lipid extracted algae as a source for protein and reduced sugar: A step closer to the biorefinery. Bioresource Technology, 2015, 179, 559-564.	4.8	79
2102	Coffee extract residue for production of ethanol and activated carbons. Journal of Cleaner Production, 2015, 91, 64-70.	4.6	58
2103	Heterologous expression and characterization of a novel halotolerant, thermostable, and alkali-stable GH6 endoglucanase from Thermobifida halotolerans. Biotechnology Letters, 2015, 37, 857-862.	1.1	32
2104	Microwave-Assisted Recycling of Waste Paper to Green Platform Chemicals and Carbon Nanospheres. ACS Sustainable Chemistry and Engineering, 2015, 3, 177-185.	3.2	53
2105	Challenges and opportunities in improving the production of bio-ethanol. Progress in Energy and Combustion Science, 2015, 47, 60-88.	15.8	446
2106	Combustion and Agglomeration Characteristics of the Residue from Corn Stalkâ€Based Cellulosic Ethanol. Chemical Engineering and Technology, 2015, 38, 253-258.	0.9	3
2107	A low-energy, cost-effective approach to fruit and citrus peel waste processing for bioethanol production. Applied Energy, 2015, 140, 65-74.	5.1	160
2108	Alkaline extraction of xylan from wood using microwave and conventional heating. Journal of Applied Polymer Science, 2015, 132, .	1.3	16
2109	Growth of oleaginous Rhodotorula glutinis in an internal-loop airlift bioreactor by using lignocellulosic biomass hydrolysate as the carbon source. Journal of Bioscience and Bioengineering, 2015, 119, 580-584.	1.1	31
2110	Physiological response of Clostridium ljungdahlii DSM 13528 of ethanol production under different fermentation conditions. Bioresource Technology, 2015, 177, 302-307.	4.8	35
2111	Transitions in biofuel technologies: An appraisal of the social impacts of cellulosic ethanol using the Delphi method. Technological Forecasting and Social Change, 2015, 92, 53-68.	6.2	41

#	Article	IF	CITATIONS
2112	Controlling Porosity in Ligninâ€Derived Nanoporous Carbon for Supercapacitor Applications. ChemSusChem, 2015, 8, 428-432.	3.6	196
2113	Importance of acid or alkali concentration on the removal of xylan and lignin for enzymatic cellulose hydrolysis. Industrial Crops and Products, 2015, 64, 88-96.	2.5	59
2114	Liquid hot water pretreatment on different parts of cotton stalk to facilitate ethanol production. Bioresource Technology, 2015, 176, 175-180.	4.8	56
2115	Improved ethanol tolerance and ethanol production from glycerol in a streptomycin-resistant Klebsiella variicola mutant obtained by ribosome engineering. Bioresource Technology, 2015, 176, 156-162.	4.8	25
2116	Microorganisms in Biorefineries. Microbiology Monographs, 2015, , .	0.3	3
2117	Triticale crop residue: a cheap material for high performance nanofibrillated cellulose. RSC Advances, 2015, 5, 3141-3151.	1.7	44
2118	Lignin Depolymerization into Aromatic Monomers over Solid Acid Catalysts. ACS Catalysis, 2015, 5, 365-379.	5.5	271
2119	Efficient Pretreatment of Vietnamese Rice Straw by Soda and Sulfate Cooking Methods for Enzymatic Saccharification. Applied Biochemistry and Biotechnology, 2015, 175, 1536-1547.	1.4	22
2120	Carbon Dioxide in Biomass Processing: Contributions to the Green Biorefinery Concept. Chemical Reviews, 2015, 115, 3-27.	23.0	238
2121	Humin based by-products from biomass processing as a potential carbonaceous source for synthesis gas production. Green Chemistry, 2015, 17, 959-972.	4.6	153
2123	Recent trends in ionic liquid (IL) tolerant enzymes and microorganisms for biomass conversion. Critical Reviews in Biotechnology, 2015, 35, 294-301.	5.1	17
2124	Subcritical and supercritical technology for the production of second generation bioethanol. Critical Reviews in Biotechnology, 2015, 35, 302-312.	5.1	29
2125	Experimental and economical evaluation of bioconversion of forest residues to biogas using organosolv pretreatment. Bioresource Technology, 2015, 178, 201-208.	4.8	78
2126	Factors governing dissolution process of lignocellulosic biomass in ionic liquid: Current status, overview and challenges. Bioresource Technology, 2015, 178, 2-18.	4.8	212
2127	Optimal Temperature and pH Control for a Batch Simultaneous Saccharification and Co-Fermentation Process. Chemical Engineering Communications, 2015, 202, 899-910.	1.5	4
2128	Conversion of wheat straw into formic acid in NaVO ₃ –H ₂ SO ₄ aqueous solution with molecular oxygen. Green Chemistry, 2015, 17, 453-459.	4.6	71
2129	Co-digestion, pretreatment and digester design for enhanced methanogenesis. Renewable and Sustainable Energy Reviews, 2015, 42, 627-642.	8.2	160
2130	Utilization of Grasses for Potential Biofuel Production and Phytoremediation of Heavy Metal Contaminated Soils. International Journal of Phytoremediation, 2015, 17, 448-455.	1.7	55

			0
#	ARTICLE	IF	CITATIONS
2131	adhesives. International Journal of Biological Macromolecules, 2015, 72, 1056-1062.	3.6	35
2132	Study on the decomposition of lignocellulosic biomass and subjecting it to alcoholic fermentation. Renewable Energy, 2015, 75, 389-394.	4.3	26
2133	Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: A review. Carbohydrate Polymers, 2015, 117, 624-631.	5.1	369
2134	Rapid and accurate determination of the lignin content of lignocellulosic biomass by solid-state NMR. Fuel, 2015, 141, 39-45.	3.4	74
2135	A Review on Fuel Ethanol Production From Lignocellulosic Biomass. International Journal of Green Energy, 2015, 12, 949-960.	2.1	87
2136	Recent Developments and Future Perspectives of Anaerobic Baffled Bioreactor for Wastewater Treatment and Energy Recovery. Critical Reviews in Environmental Science and Technology, 2015, 45, 1243-1276.	6.6	45
2137	Xylitol: A Review on Bioproduction, Application, Health Benefits, and Related Safety Issues. Critical Reviews in Food Science and Nutrition, 2015, 55, 1514-1528.	5.4	165
2138	Simultaneous saccharification and fermentation of solid household waste following mild pretreatment using a mix of hydrolytic enzymes in combination with Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2015, 99, 929-938.	1.7	20
2139	Enhanced enzyme saccharification of Sawtooth Oak shell using dilute alkali pretreatment. Fuel, 2015, 139, 102-106.	3.4	17
2140	An effective twoâ€step ionic liquids method for cornstalk pretreatment. Journal of Chemical Technology and Biotechnology, 2015, 90, 2057-2065.	1.6	6
2141	Multifunctional cellulolytic auxiliary activity protein HcAA10-2 from Hahella chejuensis enhances enzymatic hydrolysis of crystalline cellulose. Applied Microbiology and Biotechnology, 2015, 99, 3041-3055.	1.7	29
2142	Effects of Temperature on Steam Explosion Pretreatment of Poplar Hybrids with Different Lignin Contents in Bioethanol Production. International Journal of Green Energy, 2015, 12, 832-842.	2.1	13
2143	High pressure water reforming of biomass for energy and chemicals: A short review. Journal of Supercritical Fluids, 2015, 96, 46-52.	1.6	66
2144	Hydrothermal carbonization of various lignocellulosic biomass. Biomass Conversion and Biorefinery, 2015, 5, 173-181.	2.9	104
2145	Reducing the cost, environmental impact and energy consumption of biofuel processes through heat integration. Chemical Engineering Research and Design, 2015, 93, 203-212.	2.7	20
2146	Increase in stability of cellulase immobilized on functionalized magnetic nanospheres. Journal of Magnetism and Magnetic Materials, 2015, 375, 117-123.	1.0	66
2147	Competitive inhibition of cellobiohydrolase I by manno-oligosaccharides. Enzyme and Microbial Technology, 2015, 68, 62-68.	1.6	11
2148	Fractionation of oil palm frond hemicelluloses by water or alkaline impregnation and steam explosion. Carbohydrate Polymers, 2015, 115, 533-539.	5.1	33

#	Article	IF	CITATIONS
2149	The potential of microbial processes for lignocellulosic biomass conversion to ethanol: a review. Journal of Chemical Technology and Biotechnology, 2015, 90, 366-383.	1.6	72
2150	Mannan biotechnology: from biofuels to health. Critical Reviews in Biotechnology, 2016, 36, 32-42.	5.1	96
2151	11. Microbial biofuel production: An overview on recent developments. , 2016, , .		0
2152	Hydrogen Peroxide and Carbon Dioxide Effect on Biomass Hydrothermal Treatment. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2016, 95, 639-644.	0.2	1
2154	Emerging Technologies for the Production of Renewable Liquid Transport Fuels from Biomass Sources Enriched in Plant Cell Walls. Frontiers in Plant Science, 2016, 7, 1854.	1.7	55
2155	Hydrothermal liquefaction limbah distilasi bietanol generasi-2. Reaktor, 2016, 16, 49.	0.2	0
2156	Evaluation of Unstructured Kinetic Models for the Production of Bioethanol from Banana and Pineapple Wastes. BioResources, 2016, 11, .	0.5	8
2157	Biomass Pretreatment With Carbon Dioxide. , 2016, , 385-407.		5
2158	Application of semi-quantitative and quantitative methods for the selection of cellulolytic filamentous fungi isolated from pulp mill materials. Biotechnologia, 2016, 3, 169-178.	0.3	1
2159	Alkaline Pretreatment of Sweet Sorghum Bagasse for Bioethanol Production. International Journal of Renewable Energy Development, 2016, 5, 113-118.	1.2	9
2160	An Overview on Fungal Cellulases with an Industrial Perspective. Journal of Nutrition & Food Sciences, 2016, 06, .	1.0	47
2161	Exergy and CO2 Analyses as Key Tools for the Evaluation of Bio-Ethanol Production. Sustainability, 2016, 8, 76.	1.6	13
2162	Microwave-Induced Biomass Fractionation. , 2016, , 103-126.		7
2163	Chemical Oxidation With Ozone as an Efficient Pretreatment of Lignocellulosic Materials. , 2016, , 409-429.		7
2164	Enzymatic Hydrolysis of Pretreated Kenaf using a Recombinant Xylanase: Effects of Reaction Conditions for Optimum Hemicellulose Hydrolysis. American Journal of Agricultural and Biological Science, 2016, 11, 54-66.	0.9	4
2165	Comparison of the Thermal Degradation Properties of Crystalline and Amorphous Cellulose, as well as Treated Lignocellulosic Biomass. BioResources, 2016, 11, .	0.5	23
2166	Thermostable and Alkaline Cellulases from Marine Sources. , 2016, , 91-98.		7
2167	Cloning and Recombinant Expression of a Cellulase. , 2016, , 99-106.		0

#	Article	IF	CITATIONS
2168	Conversion of Cellulose to 5-Hydroxymethylfurfural using Inorganic Acidic Catalysts in the Presence of Pressurized Water Steam. BioResources, 2016, 12, .	0.5	6
2169	Biological Treatment of Poplar Wood with White-rot Fungus Trametes hirsuta C7784: Structural Elucidation of the Whole Lignin in Treated Wood. BioResources, 2016, 11, .	0.5	1
2170	Production of bioethanol from agricultural waste. Journal of Fundamental and Applied Sciences, 2016, 8, 372.	0.2	32
2171	Alternative Uses of Warm-Season Forage Grasses. Agronomy, 0, , 389-416.	0.2	9
2172	Comparing the Bio-Hydrogen Production Potential of Pretreated Rice Straw Co-Digested with Seeded Sludge Using an Anaerobic Bioreactor under Mesophilic Thermophilic Conditions. Energies, 2016, 9, 198.	1.6	18
2173	Statistical Modeling and Optimization of Enzymatic Pretreatment of Empty Fruit Bunches with Laccase Enzyme. BioResources, 2016, 11, .	0.5	9
2174	A Novel Approach to Delignify Lignocellulosic Materials by Using Ligninolytic Enzyme Consortium. BioResources, 2016, 11, .	0.5	7
2175	Industrial Applications of Endoglucanase Obtained from Novel and Native Trichoderma atroviride. Chemical and Biochemical Engineering Quarterly, 2016, 30, 265-278.	0.5	11
2176	Production and characterization of -glucosidase from Gongronella butleri by solid-state fermentation. African Journal of Biotechnology, 2016, 15, 633-641.	0.3	25
2177	Progress towards Sustainable Utilisation and Management of Food Wastes in the Global Economy. International Journal of Food Science, 2016, 2016, 1-22.	0.9	73
2178	Advances in Cultivation Strategies of Aspergillus for Production of Enzymes Involved in the Saccharification of Lignocellulosic Feedstocks. , 2016, , 141-154.		1
2179	Biomass Pretreatment With Acids. , 2016, , 169-185.		10
2180	Production of fuels from microbial oil using oleaginous microorganisms. , 2016, , 201-236.		9
2181	Secondary Xylem forÂBioconversion. , 2016, , 213-231.		6
2182	Cellulase in Biomedical Research. , 2016, , 267-275.		3
2183	Biomass Utilization. , 2016, , 291-324.		27
2184	Steam Explosion as Lignocellulosic Biomass Pretreatment. , 2016, , 349-368.		47
2185	Molecular Characterization of Nanoimmobilized Cellulase in Facilitating Pretreatment of Lignocellulosic Biomass. , 2016, , 141-149.		2

ARTICLE

Hydrogen Production by Ethanol Steam Reforming (ESR) over CeO2 Supported Transition Metal (Fe, Co,) Tj ETQq0 0.0 rgBT /Overlock 1

2187	Identifying Potential Cationic Surfactant – Cellulase and Computational Approaches. , 2016, , 223-235.		1
2188	Biomass Pretreatment Strategies (Technologies, Environmental Performance, Economic) Tj ETQq0 0 0 rgBT /Ove	erlock 10 T	f 50 662 Td 18
2189	Recent Updates on Immobilization of Microbial Cellulase. , 2016, , 107-139.		9
2190	Development of Thermophilic Tailor-Made Enzyme Mixtures for the Bioconversion of Agricultural and Forest Residues. Frontiers in Microbiology, 2016, 7, 177.	1.5	29
2191	Microbial Consortium with High Cellulolytic Activity (MCHCA) for Enhanced Biogas Production. Frontiers in Microbiology, 2016, 7, 324.	1.5	92
2192	Gas Fermentation—A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and Chemicals from Waste and Renewable Feedstocks. Frontiers in Microbiology, 2016, 7, 694.	1.5	343
2193	Optimization of Xylanase Production through Response Surface Methodology by Fusarium sp. BVKT R2 Isolated from Forest Soil and Its Application in Saccharification. Frontiers in Microbiology, 2016, 7, 1450.	1.5	24
2194	Lignocellulose-Adapted Endo-Cellulase Producing Streptomyces Strains for Bioconversion of Cellulose-Based Materials. Frontiers in Microbiology, 2016, 7, 2061.	1.5	67
2195	An Investigation into Spent Coffee Waste as a Renewable Source of Bioactive Compounds and Industrially Important Sugars. Bioengineering, 2016, 3, 33.	1.6	57
2196	Lignocellulosic Ethanol Production from the Recovery of Stranded Driftwood Residues. Energies, 2016, 9, 634.	1.6	12
2197	Carbon Sources for Polyhydroxyalkanoates and an Integrated Biorefinery. International Journal of Molecular Sciences, 2016, 17, 1157.	1.8	162
2198	Insoluble-Bound Phenolics in Food. Molecules, 2016, 21, 1216.	1.7	345
2199	A novel film–pore–surface diffusion model to explain the enhanced enzyme adsorption of corn stover pretreated by ultrafine grinding. Biotechnology for Biofuels, 2016, 9, 181.	6.2	31
2200	Effect of Different Pretreatment Methods on Birch Outer Bark: New Biorefinery Routes. Molecules, 2016, 21, 427.	1.7	21
2201	Ethanol Production from Various Sugars and Cellulosic Biomass by White Rot Fungus Lenzites betulinus. Mycobiology, 2016, 44, 48-53.	0.6	10
2202	β-Glucosidase From Aspergillus. , 2016, , 155-169.		14
2203	Low-Cost Enzymes and Their Applications in Bioenergy Sector $\hat{a} - \hat{a} \in_i$., 2016, , 111-131.		1

#	Article	IF	CITATIONS
2204	Extraction of Lignocellulosic Materials From Waste Products. , 2016, , 1-38.		10
2205	Membranes for the removal of fermentation inhibitors from biofuel production. , 2016, , 219-240.		5
2206	First Harvest Timing and Nitrogen Application Rate Effects on Chemical Composition and Ethanol Yield of Switchgrass. Crop, Forage and Turfgrass Management, 2016, 2, 1-16.	0.2	2
2207	Pretreatment With Ammonia. , 2016, , 461-481.		2
2208	Molecularly Imprinted Catalysts. , 2016, , 35-53.		5
2209	Lignocellulosic bioethanol: A review and design conceptualization study of production from cassava peels. Renewable and Sustainable Energy Reviews, 2016, 64, 518-530.	8.2	65
2210	Enzymatic hydrolysis of lignocellulosic materials in aqueous media and the subsequent microbiological synthesis of bioethanol. Catalysis in Industry, 2016, 8, 168-175.	0.3	13
2212	Lignin Degradation in the Production of Bioethanol – A Review. ChemBioEng Reviews, 2016, 3, 86-96.	2.6	17
2213	Enhancement of bioethanol production from Ulva fasciata by biological and chemical saccharification. Rendiconti Lincei, 2016, 27, 665-672.	1.0	22
2214	Air Oxidation of Activated Carbon to Synthesize a Biomimetic Catalyst for Hydrolysis of Cellulose. ChemSusChem, 2016, 9, 1299-1303.	3.6	61
2215	Kinetics and equilibria of 5â€hydroxymethylfurfural (5â€ <scp>HMF</scp>) sequestration from algal hydrolyzate using granular activated carbon. Journal of Chemical Technology and Biotechnology, 2016, 91, 1157-1163.	1.6	25
2216	The effect of storage time and moisture content on grindability of loblolly pine (Pinus taeda L.). European Journal of Wood and Wood Products, 2016, 74, 857-866.	1.3	10
2217	Enzymatic saccharification of sugar cane bagasse by continuous xylanase and cellulase production from <i>cellulomonas flavigena</i> PRâ€22. Biotechnology Progress, 2016, 32, 321-326.	1.3	1
2218	Biotechnological production of ethanol: Biochemistry, processes and technologies. Engineering in Life Sciences, 2016, 16, 307-329.	2.0	115
2219	Synergistic enhancement of cellulase pairs linked by consensus ankyrin repeats: Determination of the roles of spacing, orientation, and enzyme identity. Proteins: Structure, Function and Bioinformatics, 2016, 84, 1043-1054.	1.5	4
2220	New methods for the one-pot processing of polysaccharide components (cellulose and) Tj ETQq1 1 0.784314 rgB activation. Catalysis in Industry, 2016, 8, 176-186.	T /Overloo 0.3	ck 10 Tf 50 20
2221	Effects of Soluble Lignin on the Formic Acid atalyzed Formation of Furfural: A Case Study for the Upgrading of Hemicellulose. ChemSusChem, 2016, 9, 492-504.	3.6	16
2222	Chapter 1 Bio-Based New Materials for Packaging Applications. , 2016, , 1-18.		0

# 2223	ARTICLE Catalytic Microwave Pyrolysis of Lignocellulosic Biomass for Fuels and Chemicals. Advances in Bioenergy, 2016, 1, 69-123.	IF 0.5	CITATIONS
2224	Bioethanol fermentation from sugarcane bagasse using ragi tape. AIP Conference Proceedings, 2016, , .	0.3	0
2225	A review on thermochemical treatment of biomass: Pyrolysis of olive mill wastes in comparison with other types of biomass. Progress in Agricultural Engineering Sciences, 2016, 12, 1-23.	0.5	9
2227	Trends and Sustainability Criteria for Liquid Biofuels. , 2016, , 77-114.		Ο
2228	Biobutanol Production from Lignocellulosics. , 2016, , 283-305.		0
2229	Corrosive components of nutshells and their chars. E3S Web of Conferences, 2016, 10, 00113.	0.2	2
2230	Leading pretreatments for enhancing the degradability of lignocellulosic wastes and the final products. Environmental Technology Reviews, 2016, 5, 103-111.	2.1	3
2231	Research on anaerobic digestion of corn stover enhanced by dilute acid pretreatment: Mechanism study and potential utilization in practical application. Journal of Renewable and Sustainable Energy, 2016, 8, .	0.8	19
2232	Effectiveness of cationically modified cellulose polymers for dewatering algae. Separation Science and Technology, 2016, 51, 892-898.	1.3	8
2233	Effects of Thermo-chemical Pre-treatment on Bamboo for Biogas Production. Indian Chemical Engineer, 2016, 58, 79-88.	0.9	7
2234	Enzymatic hydrolysis of biomass from wood. Microbial Biotechnology, 2016, 9, 149-156.	2.0	179
2235	Technoâ€economic analysis of cellulose dissolving ionic liquid pretreatment of lignocellulosic biomass for fermentable sugars production. Biofuels, Bioproducts and Biorefining, 2016, 10, 70-88.	1.9	79
2236	Efficient and repeated production of succinic acid by turning sugarcane bagasse into sugar and support. Bioresource Technology, 2016, 211, 406-413.	4.8	55
2237	Inhibition of dark fermentative bio-hydrogen production: A review. International Journal of Hydrogen Energy, 2016, 41, 6713-6733.	3.8	250
2238	Effect of <scp>N</scp> a <scp>OH</scp> on delignification of <scp><i>S</i></scp> <i>accharum spontaneum</i> . Environmental Progress and Sustainable Energy, 2016, 35, 284-288.	1.3	5
2240	Deconstruction of lignin linked p -coumarates, ferulates and xylan by NaOH enhances the enzymatic conversion of glucan. Bioresource Technology, 2016, 216, 44-51.	4.8	34
2241	The addition of hydrolyzed rice straw in xylose fermentation by Pichia stipitis to increase bioethanol production at the pilot-scale. Biomass and Bioenergy, 2016, 91, 204-209.	2.9	26
2242	Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of various non-edible lignocellulosic biomasses. Renewable and Sustainable Energy Reviews, 2016, 62, 836-855.	8.2	180

#	Article	IF	CITATIONS
2243	Combination of decentralized waste drying and SSF techniques for household biowaste minimization and ethanol production. Waste Management, 2016, 52, 353-359.	3.7	22
2244	Optimization of prehydrolysis time and substrate feeding to improve ethanol production by simultaneous saccharification and fermentation of furfural process residue. Journal of Bioscience and Bioengineering, 2016, 122, 563-569.	1.1	18
2245	Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Progress in Energy and Combustion Science, 2016, 55, 98-194.	15.8	234
2246	Soybean carbohydrate as fermentation feedstock for production of biofuels and value-added chemicals. Process Biochemistry, 2016, 51, 1046-1057.	1.8	66
2247	The effect of temperature and hemicellulose-lignin, cellulose-lignin, and cellulose-hemicellulose on char yield from the slow pyrolysis of rice husk. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 1428-1434.	1.2	22
2248	Economic and environmental aspects of steam-explosion pretreatment. Waste and Biomass Valorization, 2016, 7, 1549-1554.	1.8	14
2249	Preparation of halogenated furfurals as intermediates in the carbohydrates to biofuel process. RSC Advances, 2016, 6, 36069-36076.	1.7	5
2250	The Renaissance of Neurospora crassa: How a Classical Model System is Used for Applied Research. Fungal Biology, 2016, , 59-96.	0.3	11
2251	Molecular strategies for enhancing microbial production of xylitol. Process Biochemistry, 2016, 51, 809-819.	1.8	29
2252	Extraction and Purification of Phenolic Compounds from Lignocellulosic Biomass Assisted by Ionic Liquid, Polymeric Resins, and Supercritical CO ₂ . ACS Sustainable Chemistry and Engineering, 2016, 4, 3357-3367.	3.2	81
2253	Application of the Direct Quadrature Method of Moments for the modelling of the enzymatic hydrolysis of cellulose: I. Case of soluble substrate. Chemical Engineering Science, 2016, 149, 306-321.	1.9	13
2254	Catalytic production of biofuels (butene oligomers) and biochemicals (tetrahydrofurfuryl alcohol) from corn stover. Bioresource Technology, 2016, 211, 360-366.	4.8	21
2255	Cellulosic bioethanol production from Jerusalem artichoke (Helianthus tuberosus L.) using hydrogen peroxide-acetic acid (HPAC) pretreatment. Bioresource Technology, 2016, 214, 30-36.	4.8	50
2256	Hydrothermal liquefaction of wood: a critical review. Reviews in Chemical Engineering, 2016, 32, .	2.3	50
2257	A biorefinery concept using the green macroalgae Chaetomorpha linum for the coproduction of bioethanol and biogas. Energy Conversion and Management, 2016, 119, 257-265.	4.4	87
2258	A review on the production of fermentable sugars from lignocellulosic biomass through conventional and enzymatic route—a comparison. International Journal of Green Energy, 2016, 13, 1232-1253.	2.1	54
2259	Technical Developments for Vegetable Waste Biomass Degradation by Thermophiles. Grand Challenges in Biology and Biotechnology, 2016, , 539-579.	2.4	0
2260	Biodegradation of Cellulose-Containing Substrates by Micromycetes Followed by Bioconversion into Biogas. Applied Biochemistry and Microbiology, 2016, 52, 190-198.	0.3	6

#	Article	IF	CITATIONS
2261	High-titer-ethanol production from cellulosic hydrolysate by an engineered strain of Saccharomyces cerevisiae during an in situ removal process reducing the inhibition of ethanol on xylose metabolism. Process Biochemistry, 2016, 51, 967-972.	1.8	12
2262	Oxo-rhenium catalyzed reductive coupling and deoxygenation of alcohols. Chemical Communications, 2016, 52, 7257-7260.	2.2	20
2263	Harnessing the potential of ligninolytic enzymes for lignocellulosic biomass pretreatment. Applied Microbiology and Biotechnology, 2016, 100, 5231-5246.	1.7	83
2264	Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches. Renewable and Sustainable Energy Reviews, 2016, 66, 751-774.	8.2	552
2265	Cellulase and Xylanase Production by the Mexican Strain Talaromyces stollii LV186 and Its Application in the Saccharification of Pretreated Corn and Sorghum Stover. Bioenergy Research, 2016, 9, 1034-1045.	2.2	16
2266	Mathematical analysis of compound release during microwave assisted retting of flax stems. Biosystems Engineering, 2016, 150, 214-221.	1.9	8
2267	Potential methane production of spent sawdust used in the cultivation of Gymnopilus pampeanus. Journal of Environmental Chemical Engineering, 2016, 4, 4418-4425.	3.3	14
2268	A "Fourier Transformed Infrared―Compound Study of Lignin Recovered from a Formic Acid Process. Procedia Engineering, 2016, 148, 1312-1319.	1.2	74
2269	Chlorine-Free Biomass Processing: Enzymatic Alternatives for Bleaching and Hydrolysis of Lignocellulosic Materials. , 2016, , 241-268.		0
2270	Heterogeneously Catalyzed Hydrothermal Processing of C ₅ –C ₆ Sugars. Chemical Reviews, 2016, 116, 12328-12368.	23.0	253
2271	Furfural: A Promising Platform Compound for Sustainable Production of C ₄ and C ₅ Chemicals. ACS Catalysis, 2016, 6, 7621-7640.	5.5	607
2272	The synergism of hot water pretreatment and enzymatic hydrolysis in depolymerization of lignocellulosic content of palm kernel cake. Journal of Molecular Catalysis B: Enzymatic, 2016, 134, 37-42.	1.8	5
2273	Regional Renewable Energy India: Bioethanol From Rice Straw. Current Sustainable/Renewable Energy Reports, 2016, 3, 53-57.	1.2	2
2274	Assessing the Performance of Bacterial Cellulases: the Use of Bacillus and Paenibacillus Strains as Enzyme Sources for Lignocellulose Saccharification. Bioenergy Research, 2016, 9, 1023-1033.	2.2	21
2275	Xylan and xylan derivatives—Their performance in bio-based films and effect of glycerol addition. Industrial Crops and Products, 2016, 94, 682-689.	2.5	34
2276	Green methods of lignocellulose pretreatment for biorefinery development. Applied Microbiology and Biotechnology, 2016, 100, 9451-9467.	1.7	225
2277	Optimization of olive pomace enzymatic hydrolysis for fermentable sugar production. Nutrition and Food Science, 2016, 46, 778-790.	0.4	3
2278	Hydrothermal Decomposition of Carbohydrates to Levulinic Acid with Catalysis by Ionic Liquids. Industrial & Engineering Chemistry Research, 2016, 55, 11044-11051.	1.8	37

#	Article	IF	CITATIONS
2279	Recalcitrant carbohydrates after enzymatic hydrolysis of pretreated lignocellulosic biomass. Biotechnology for Biofuels, 2016, 9, 207.	6.2	23
2280	Process Pathways Optimization for a Lignocellulosic Biorefinery Producing Levulinic Acid, Succinic Acid, and Ethanol. Industrial & amp; Engineering Chemistry Research, 2016, 55, 10699-10717.	1.8	40
2281	Ozonolysis of alkaline lignin and sugarcane bagasse: Structural changes and their effect on saccharification. Biomass and Bioenergy, 2016, 94, 167-172.	2.9	23
2282	Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning. Lab on A Chip, 2016, 16, 4350-4358.	3.1	59
2283	Efficient sugar production from sugarcane bagasse by microwave assisted acid and alkali pretreatment. Biomass and Bioenergy, 2016, 93, 269-278.	2.9	115
2284	Biotechnology is storming the heights of petrochemistry. Kinetics and Catalysis, 2016, 57, 405-421.	0.3	12
2285	Thermal hydrolysis for sewage treatment: A critical review. Water Research, 2016, 104, 53-71.	5.3	313
2286	Effect of Mixed Acid Catalysis on Pretreatment and Enzymatic Digestibility of Sugar Cane Bagasse. Energy & Fuels, 2016, 30, 7310-7318.	2.5	21
2287	Improved fermentation of lignocellulosic hydrolysates to 2,3-butanediol through investigation of effects of inhibitory compounds by Enterobacter aerogenes. Chemical Engineering Journal, 2016, 306, 916-924.	6.6	24
2288	Promising bioethanol processes for developing a biorefinery in the Moroccan sugar industry. International Journal of Hydrogen Energy, 2016, 41, 20880-20896.	3.8	41
2289	Prewashing enhances the liquid hot water pretreatment efficiency of waste wheat straw with high free ash content. Bioresource Technology, 2016, 219, 583-588.	4.8	51
2290	Bridging the Gap between Pyrolysis and Fermentation: Improving Anhydrosugar Production from Fast Pyrolysis of Agriculture and Forest Residues by Microwave-Assisted Organosolv Pretreatment. ACS Sustainable Chemistry and Engineering, 2016, 4, 5033-5040.	3.2	23
2291	Kinetics of the enzymatic hydrolysis of lignocellulosic materials at different concentrations of the substrate. Catalysis in Industry, 2016, 8, 81-87.	0.3	6
2292	Improving bioethanol production from olive pruning biomass by deacetylation step prior acid hydrolysis and fermentation processes. Bioresource Technology, 2016, 220, 239-245.	4.8	11
2293	Changes on structural properties of biomass pretreated by combined deacetylation with liquid hot water and its effect on enzymatic hydrolysis. Bioresource Technology, 2016, 220, 448-456.	4.8	23
2294	Consolidated briefing of biochemical ethanol production from lignocellulosic biomass. Electronic Journal of Biotechnology, 2016, 23, 44-53.	1.2	121
2295	Local Phase Separation of Co-solvents Enhances Pretreatment of Biomass for Bioenergy Applications. Journal of the American Chemical Society, 2016, 138, 10869-10878.	6.6	89
2296	Production of Bioethanol from Waste Newspaper. Procedia Environmental Sciences, 2016, 35, 555-562.	1.3	84

#	Article	IF	CITATIONS
2297	From Barley Straw to Valuable Polyols: A Sustainable Process Using Ethanol/Water Mixtures and Hydrogenolysis over Rutheniumâ€Tungsten Catalyst. ChemSusChem, 2016, 9, 2804-2815.	3.6	16
2298	A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations. Biotechnology for Biofuels, 2016, 9, 173.	6.2	109
2299	The effects of hydrothermal processing on feed hygiene, nutrient availability, intestinal microbiota and morphology in poultry—A review. Animal Feed Science and Technology, 2016, 220, 187-215.	1.1	56
2300	Cellulolytic enzyme expression and simultaneous conversion of lignocellulosic sugars into ethanol and xylitol by a new Candida tropicalis strain. Biotechnology for Biofuels, 2016, 9, 157.	6.2	36
2301	Principles and Challenges Involved in the Enzymatic Hydrolysis of Cellulosic Materials at High Total Solids. Green Energy and Technology, 2016, , 147-173.	0.4	8
2302	Recycling of Solid Waste for Biofuels and Bio-chemicals. Environmental Footprints and Eco-design of Products and Processes, 2016, , .	0.7	9
2303	Second Generation Bioethanol. Green Energy and Technology, 2016, , 213-239.	0.4	5
2304	Biofuel Production Technology and Engineering. Environmental Footprints and Eco-design of Products and Processes, 2016, , 275-299.	0.7	0
2305	Recent Advances of Anaerobic Digestion for Energy Recovery. Environmental Footprints and Eco-design of Products and Processes, 2016, , 87-126.	0.7	3
2306	Thermodynamic investigation of hydrogen enrichment and carbon suppression using chemical additives in ethanol dry reforming. International Journal of Hydrogen Energy, 2016, 41, 15149-15157.	3.8	23
2307	Biorefinery and Possible Deforestation. , 2016, , 307-322.		0
2308	<i>Zymomonas mobilis</i> as a model system for production of biofuels and biochemicals. Microbial Biotechnology, 2016, 9, 699-717.	2.0	169
2309	Enzyme Immobilization. , 2016, , .		28
2310	Artificial neural network modelling of xylose yield from water hyacinth by dilute sulphuric acid hydrolysis for ethanol production. International Journal of Environmental Technology and Management, 2016, 19, 150.	0.1	2
2311	Surface properties of xylan and xylan derivatives measured by inverse gas chromatography. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506, 600-606.	2.3	7
2313	Microwaves as a pretreatment for enhancing enzymatic hydrolysis of pineapple industrial waste for bioethanol production. Food and Bioproducts Processing, 2016, 100, 203-213.	1.8	35
2314	Leveraging Genetic-Background Effects in Saccharomyces cerevisiae To Improve Lignocellulosic Hydrolysate Tolerance. Applied and Environmental Microbiology, 2016, 82, 5838-5849.	1.4	30
2315	Ethanol Production Technologies in the US: Status and Future Developments. , 2016, , 163-180.		7

#	Article	IF	CITATIONS
2316	Transcriptional analysis and adaptive evolution of Escherichia coli strains growing on acetate. Applied Microbiology and Biotechnology, 2016, 100, 7777-7785.	1.7	38
2317	Xylose utilization in ethanol production: a patent landscape. Biofuels, Bioproducts and Biorefining, 2016, 10, 534-541.	1.9	3
2318	Pretreatment of rice husk in a pilot scale mill for further enzymatic hydrolysis. Catalysis in Industry, 2016, 8, 274-279.	0.3	8
2319	Direct hydrodeoxygenation of raw woody biomass into liquid alkanes. Nature Communications, 2016, 7, 11162.	5.8	359
2320	Nanocellulose Production Using Cellulose Degrading Fungi. Fungal Biology, 2016, , 321-331.	0.3	5
2321	Comparison of ethanol production from corn cobs and switchgrass following a pyrolysis-based biorefinery approach. Biotechnology for Biofuels, 2016, 9, 242.	6.2	37
2322	Conversion of Biomass to Chemicals. , 2016, , 371-431.		7
2323	Detoxification of furanic and phenolic lignocellulose derived inhibitors of yeast using laccase immobilized on bacterial cellulosic nanofibers. Journal of Molecular Catalysis B: Enzymatic, 2016, 134, 196-205.	1.8	33
2324	Palladium catalyzed hydrogenation of biomass derived halogenated furfurals. RSC Advances, 2016, 6, 103149-103159.	1.7	5
2325	King Grass: A very promising material for the production of second generation ethanol in tropical countries. Biomass and Bioenergy, 2016, 95, 206-213.	2.9	22
2326	Microbial Enzymes in Bioconversions of Biomass. Biofuel and Biorefinery Technologies, 2016, , .	0.1	8
2327	Microbial Enzymes for Conversion of Biomass to Bioenergy. Biofuel and Biorefinery Technologies, 2016, , 1-26.	0.1	4
2328	Role and Application of Versatile Peroxidase (VP) for Utilizing Lignocellulose in Biorefineries. Biofuel and Biorefinery Technologies, 2016, , 271-300.	0.1	1
2329	Comparison Tools for Parametric Identification of Kinetic Model for Ethanol Production using Evolutionary Optimization Approach. International Journal of Chemical Reactor Engineering, 2016, 14, 1201-1209.	0.6	8
2330	Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification. Scientific Reports, 2016, 6, 20361.	1.6	26
2331	Unleashing the potential of ligninolytic bacterial contributions towards pulp and paper industry: key challenges and new insights. Environmental Science and Pollution Research, 2016, 23, 23349-23368.	2.7	16
2332	Mannanase. Biofuel and Biorefinery Technologies, 2016, , 215-229.	0.1	2
2333	Energy recovery and economy aspects of steam-explosion pretreatment in waste phytomass management. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 3332-3337.	1.2	0

#	Article	IF	CITATIONS
2334	Optimierung von bekannten Vorbehandlungen für die Weizenkaff-Hydrolyse. Chemie-Ingenieur-Technik, 2016, 88, 1238-1238.	0.4	0
2335	Effect of particle size, moisture content, and supplements on selective pretreatment of cotton stalks by Daedalea flavida and enzymatic saccharification. 3 Biotech, 2016, 6, 235.	1.1	39
2336	Effects of hot-washing process on structure and enzymatic hydrolysis of treated steam explosion corn stover. Bioresources and Bioprocessing, 2016, 3, .	2.0	3
2337	Effects of Die Size on Pellet Quality for Cellulosic Ethanol Manufacturing. , 2016, , .		Ο
2339	Interaction and quantification of thymol in active <scp>PLA</scp> â€based materials containing natural fibers. Journal of Applied Polymer Science, 2016, 133, .	1.3	28
2340	Effect of steam explosionâ€assisted extraction on phenolic acid profiles and antioxidant properties of wheat bran. Journal of the Science of Food and Agriculture, 2016, 96, 3484-3491.	1.7	47
2341	The influence of dilute sulfuric acid pretreatment on biogas production from wheat plant. International Journal of Green Energy, 2016, 13, 1129-1134.	2.1	58
2342	Improvement of radio frequency (RF) heating-assisted alkaline pretreatment on four categories of lignocellulosic biomass. Bioprocess and Biosystems Engineering, 2016, 39, 1539-1551.	1.7	9
2343	Valorizing recycled paper sludge by a bioethanol production process with cellulase recycling. Bioresource Technology, 2016, 216, 637-644.	4.8	36
2344	Exploring tomato Solanum pennellii introgression lines for residual biomass and enzymatic digestibility traits. BMC Genetics, 2016, 17, 56.	2.7	19
2345	Biohydrogen production from pretreated lignocellulose by Clostridium thermocellum. Biotechnology and Bioprocess Engineering, 2016, 21, 87-94.	1.4	26
2346	Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnology Advances, 2016, 34, 997-1017.	6.0	175
2347	Activating Intrinsic Carbohydrate-Active Enzymes of the Smut Fungus Ustilago maydis for the Degradation of Plant Cell Wall Components. Applied and Environmental Microbiology, 2016, 82, 5174-5185.	1.4	45
2349	From Algae to Liquid Fuels. , 2016, , 123-180.		3
2350	Acidogenesis of cellulosic hydrolysates for new generation biofuels. Biomass and Bioenergy, 2016, 91, 210-216.	2.9	33
2351	Sustainable production of bioethanol from renewable brown algae biomass. Biomass and Bioenergy, 2016, 92, 70-75.	2.9	101
2352	Evaluation of highly efficient monomeric sugar yield from Thai Tiger grass (Thysanolaena maxima). Materials Research Innovations, 2016, 20, 259-267.	1.0	3
2353	Solid-state fermentation for the production of biomass valorizing feruloyl esterase. Biocatalysis and Agricultural Biotechnology, 2016, 7, 7-13.	1.5	7

#	Article	IF	CITATIONS
2354	Enzymatic saccharification of high pressure assist-alkali pretreated cotton stalk and structural characterization. Carbohydrate Polymers, 2016, 140, 279-286.	5.1	44
2355	Physico-chemical pretreatment technologies of bioconversion efficiency of Paulownia tomentosa (Thunb.) Steud Industrial Crops and Products, 2016, 87, 280-286.	2.5	22
2356	Compositional differences among upland and lowland switchgrass ecotypes grown as a bioenergy feedstock crop. Biomass and Bioenergy, 2016, 87, 169-177.	2.9	16
2357	Structure and Functional Roles of Surface Binding Sites in Amylolytic Enzymes. , 2016, , 291-320.		0
2358	Enhancement of hydrolysis of Chlorella vulgaris by hydrochloric acid. Bioprocess and Biosystems Engineering, 2016, 39, 1015-1021.	1.7	30
2359	Enabling dual fuel sequential combustion using port fuel injection of high reactivity fuel combined with direct injection of low reactivity fuels. Applied Thermal Engineering, 2016, 103, 399-410.	3.0	22
2360	Application of the Direct Quadrature Method of Moments for the modelling of the enzymatic hydrolysis of cellulose: II. Case of insoluble substrate. Chemical Engineering Science, 2016, 149, 322-333.	1.9	3
2361	Fiber modifications by organosolv catalyzed with H2SO4 improves the SSF of Pinus radiata. Industrial Crops and Products, 2016, 86, 79-86.	2.5	17
2362	Efficiency of some types of bacteria on producing biofuels from wastes of writing paper. Journal of Environmental Chemical Engineering, 2016, 4, 2816-2819.	3.3	6
2363	Influence of steam explosion pretreatment on the anaerobic digestion of vinegar residue. Waste Management and Research, 2016, 34, 630-637.	2.2	16
2364	In-Depth Insight into the Chemical Composition of Bio-oil from Hydroliquefaction of Lignocellulosic Biomass in Supercritical Ethanol with a Dispersed Ni-Based Catalyst. Energy & Fuels, 2016, 30, 5269-5276.	2.5	10
2365	Organosolv pretreatment of sorghum bagasse using a low concentration of hydrophobic solvents such as 1-butanol or 1-pentanol. Biotechnology for Biofuels, 2016, 9, 27.	6.2	68
2366	Bioprocess modelling for the design and optimization of lignocellulosic biomass fermentation. Bioresources and Bioprocessing, 2016, 3, .	2.0	45
2367	Difference analysis of the enzymatic hydrolysis performance of acid-catalyzed steam-exploded corn stover before and after washing with water. Bioprocess and Biosystems Engineering, 2016, 39, 1619-1626.	1.7	13
2368	Degradation of wheat straw and oak sawdust by Ganoderma applanatum. International Biodeterioration and Biodegradation, 2016, 114, 39-44.	1.9	28
2369	Microbial surface displaying formate dehydrogenase and its application in optical detection of formate. Enzyme and Microbial Technology, 2016, 91, 59-65.	1.6	16
2370	Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. Environmental Progress and Sustainable Energy, 2016, 35, 489-511.	1.3	200
2371	Polyvinyl alcoholâ€modified <scp>P</scp> ithecellobium <scp>C</scp> lypearia <scp>B</scp> enth herbal residue fiber/polypropylene composites. Polymer Composites, 2016, 37, 915-924.	2.3	61

#	Article	IF	CITATIONS
2372	Enhanced mannan-derived fermentable sugars of palm kernel cake by mannanase-catalyzed hydrolysis for production of biobutanol. Bioresource Technology, 2016, 218, 257-264.	4.8	38
2373	Applying functional metagenomics to search for novel lignocellulosic enzymes in a microbial consortium derived from a thermophilic composting phase of sugarcane bagasse and cow manure. Antonie Van Leeuwenhoek, 2016, 109, 1217-1233.	0.7	16
2375	Incorporation effect of enzymatic hydrolysis lignin on the mechanical and rheological properties of the resulting wood flour/highâ€density polyethylene composites. Polymer Composites, 2016, 37, 379-384.	2.3	5
2376	From models to lignin: Transition metal catalysis for selective bond cleavage reactions. Coordination Chemistry Reviews, 2016, 306, 510-532.	9.5	221
2377	Towards complete hydrolysis of soy flour carbohydrates by enzyme mixtures for protein enrichment: A modeling approach. Enzyme and Microbial Technology, 2016, 86, 25-33.	1.6	29
2378	Feasibility of a facile butanol bioproduction using planetary mill pretreatment. Bioresource Technology, 2016, 199, 283-287.	4.8	15
2379	A perspective on bioethanol production from biomass as alternative fuel for spark ignition engine. RSC Advances, 2016, 6, 14964-14992.	1.7	70
2380	Use of VSB to Plan Research Programs and Public Policies. Green Energy and Technology, 2016, , 257-282.	0.4	4
2381	Mixing behavior of a model cellulosic biomass slurry during settling and resuspension. Chemical Engineering Science, 2016, 144, 310-320.	1.9	5
2382	Recent progress in bioethanol production from lignocellulosic materials: A review. International Journal of Green Energy, 2016, 13, 1413-1441.	2.1	30
2383	Use of synthetic fusion gene to produce biodiesel from lignocellulosic biomass. Biofuels, 2016, 7, 191-200.	1.4	0
2384	Selection of suitable mineral acid and its concentration for biphasic dilute acid hydrolysis of the sodium dithionite delignified Prosopis juliflora to hydrolyze maximum holocellulose. Bioresource Technology, 2016, 202, 231-237.	4.8	9
2385	Sources of Biomass Feedstock Variability and the Potential Impact on Biofuels Production. Bioenergy Research, 2016, 9, 1-14.	2.2	229
2386	Hydrolysis of olive mill waste to enhance rhamnolipids and surfactin production. Bioresource Technology, 2016, 205, 1-6.	4.8	64
2387	EndoG: A novel multifunctional halotolerant glucanase and xylanase isolated from cow rumen. Journal of Molecular Catalysis B: Enzymatic, 2016, 126, 1-9.	1.8	12
2388	Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil: A review. Renewable and Sustainable Energy Reviews, 2016, 58, 1293-1307.	8.2	221
2389	Developing database criteria for the assessment of biomass supply chains for biorefinery development. Chemical Engineering Research and Design, 2016, 107, 253-262.	2.7	27
2390	Effects of ionic conduction on hydrothermal hydrolysis of corn starch and crystalline cellulose induced by microwave irradiation. Carbohydrate Polymers, 2016, 137, 594-599.	5.1	19

#	Article	IF	CITATIONS
2391	Modelling of amorphous cellulose depolymerisation by cellulases, parametric studies and optimisation. Biochemical Engineering Journal, 2016, 105, 455-472.	1.8	18
2392	Saccharification of polysaccharide content of palm kernel cake using enzymatic catalysis for production of biobutanol in acetone–butanol–ethanol fermentation. Bioresource Technology, 2016, 202, 206-213.	4.8	34
2393	Impact of delignification on the morphology and the reactivity of steam exploded wheat straw. Industrial Crops and Products, 2016, 79, 104-109.	2.5	13
2394	Catalytic transformation of carbohydrates into 5-hydroxymethyl furfural over tin phosphate in a water-containing system. Catalysis Today, 2016, 264, 131-135.	2.2	18
2395	Reducing Sugar Production from Agricultural Wastes by Acid Hydrolysis. Key Engineering Materials, 0, 675-676, 31-34.	0.4	2
2396	Glucose production from potato peel waste under microwave irradiation. Journal of Molecular Catalysis A, 2016, 417, 163-167.	4.8	22
2397	Application of plant carbon source for denitrification by constructed wetland and bioreactor: review of recent development. Environmental Science and Pollution Research, 2016, 23, 8260-8274.	2.7	98
2398	Spent mushroom substrate of Pleurotus pulmonarius: a source of easily hydrolyzable lignocellulose. Folia Microbiologica, 2016, 61, 439-448.	1.1	34
2399	Photooxidation of Guaiacol to Organic Acids with Hydrogen Peroxide by Microwave Discharge Electrodeless Lamps. Chemical Engineering and Technology, 2016, 39, 97-101.	0.9	4
2400	Enhancement of enzymatic hydrolysis of wheat straw by gamma irradiation–alkaline pretreatment. Radiation Physics and Chemistry, 2016, 123, 63-67.	1.4	24
2401	Progress in the production of biomass-to-liquid biofuels to decarbonize the transport sector – prospects and challenges. RSC Advances, 2016, 6, 32140-32170.	1.7	62
2402	Second-generation ethanol production from elephant grass at high total solids. Bioresource Technology, 2016, 211, 280-290.	4.8	26
2403	Steam Explosion for Wheat Straw Pretreatment for Sugars Production. Bioethanol, 2016, 2, .	1.2	65
2404	Evaluation of Sugars and Bio-oil Production Using Lead Contaminated Switchgrass Feedstock. Waste and Biomass Valorization, 2016, 7, 1091-1104.	1.8	5
2405	Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Current Opinion in Biotechnology, 2016, 38, 190-197.	3.3	163
2406	Synthesis, characterization and electrospinning of corn cob cellulose-graft-polyacrylonitrile and their clay nanocomposites. Carbohydrate Polymers, 2016, 147, 37-44.	5.1	14
2407	In situ DRIFTS Studies on Cu, Ni and CuNi catalysts for Ethanol Decomposition Reaction. Catalysis Letters, 2016, 146, 778-787.	1.4	54
2408	Enzymatic hydrolyses of pretreated eucalyptus residues, wheat straw or olive tree pruning, and their mixtures towards flexible sugar-based biorefineries. Biomass Conversion and Biorefinery, 2016, 6, 385-396.	2.9	5

# 2409	ARTICLE Light olefins from renewable resources: Selective catalytic dehydration of bioethanol to propylene over zeolite and transition metal oxide catalysts. Catalysis Today, 2016, 276, 62-77.	IF 2.2	CITATIONS
2410	Isolation of cellulolytic microcosms from bagasse compost in co-digested fibrous substrates. Biomass Conversion and Biorefinery, 2016, 6, 421-426.	2.9	2
2411	Enhanced enzymatic delignification of oil palm biomass with ionic liquid pretreatment. Biochemical Engineering Journal, 2016, 110, 1-7.	1.8	89
2412	Environmental performance of biomass refining into high-added value compounds. Journal of Cleaner Production, 2016, 120, 170-180.	4.6	42
2413	Application of Natural Polymers in Engineering. , 2016, , 185-218.		4
2414	Dissolution of kraft lignin using Protic Ionic Liquids and characterization. Industrial Crops and Products, 2016, 84, 284-293.	2.5	120
2415	Process options for conversion of Agave tequilana leaves into bioethanol. Industrial Crops and Products, 2016, 84, 263-272.	2.5	21
2416	Batch-based enzymatic saccharification of sweet sorghum bagasse. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 264-269.	1.2	1
2417	Influence of Acidic (H ₃ PO ₄) and Alkaline (NaOH) Additives on the Catalytic Reductive Fractionation of Lignocellulose. ACS Catalysis, 2016, 6, 2055-2066.	5.5	191
2418	Electricity generation from rapeseed straw hydrolysates using microbial fuel cells. Bioresource Technology, 2016, 208, 117-122.	4.8	27
2419	Pretreatment of Miscanthus by NaOH/Urea Solution at Room Temperature for Enhancing Enzymatic Hydrolysis. Bioenergy Research, 2016, 9, 335-343.	2.2	14
2420	Efficient hydrolysis of cellulose into glucose over sulfonated polynaphthalene (SPN) and rapid determination of glucose using positive corona discharge ion mobility spectrometry. RSC Advances, 2016, 6, 7879-7885.	1.7	7
2421	Pretreatment of Sugar Beet Pulp with Dilute Sulfurous Acid is Effective for Multipurpose Usage of Carbohydrates. Applied Biochemistry and Biotechnology, 2016, 179, 307-320.	1.4	9
2422	Photocatalytic production of hydrogen from biomass-derived feedstocks. Coordination Chemistry Reviews, 2016, 315, 1-66.	9.5	334
2423	Enzymatic hydrolysis of chemically pretreated mango stem bark residues at high solid loading. Industrial Crops and Products, 2016, 83, 500-508.	2.5	23
2424	Enzymatic saccharification and fermentation of cellulosic date palm wastes to glucose and lactic acid. Brazilian Journal of Microbiology, 2016, 47, 110-119.	0.8	92
2425	Simulation Studies on Ethanol Production from Sugar Cane Residues. Industrial & Engineering Chemistry Research, 2016, 55, 5173-5179.	1.8	14
2426	Xylan-specific carbohydrate-binding module belonging to family 6 enhances the catalytic performance of a GH11 endo-xylanase. New Biotechnology, 2016, 33, 467-472.	2.4	26

#	Article	IF	CITATIONS
2427	Density and rheology of acid suspensions of peanut waste in different conditions: An engineering basis for bioethanol production. Powder Technology, 2016, 294, 168-176.	2.1	15
2428	Two-steps Utilization of Shorea Wood Waste Biomass for the Production of Oyster Mushroom and Biogas – A Zero Waste Approach. Agriculture and Agricultural Science Procedia, 2016, 9, 202-208.	0.6	9
2429	Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating <i>Rhodococcus opacus</i> PD630. Nucleic Acids Research, 2016, 44, 2240-2254.	6.5	105
2430	The Effect of Lignin Content and Freeness of Pulp on the Bioethanol Productivity of Jabon Wood. Waste and Biomass Valorization, 2016, 7, 1141-1146.	1.8	22
2431	Preparation of a novel carboxylate-rich wheat straw through surface graft modification for efficient separation of Ce(III) from wastewater. Materials and Design, 2016, 97, 195-203.	3.3	33
2432	Enhanced enzymatic hydrolysis of mild alkali pre-treated rice straw at high-solid loadings using in-house cellulases in a bench scale system. Bioprocess and Biosystems Engineering, 2016, 39, 993-1003.	1.7	13
2433	Evaluation of the Potential of <i>Chlorella vulgaris</i> for Bioethanol Production. Energy & Fuels, 2016, 30, 3161-3166.	2.5	26
2434	Integration of Organosolv Process for Biomass Pretreatment in a Biorefinery. , 2016, , 229-254.		10
2435	Pretreatment of Lignocellulosic Biomass. Springer Briefs in Molecular Science, 2016, , 17-70.	0.1	45
2436	Combinatorial application of two aldehyde oxidoreductases on isobutanol production in the presence of furfural. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 37-44.	1.4	25
2437	Simultaneous glucose and xylose uptake by an acetone/butanol/ethanol producing laboratory Clostridium beijerinckii strain SE-2. Biotechnology Letters, 2016, 38, 611-617.	1.1	8
2438	Comparison of submerged and solid state pretreatment of sugarcane bagasse by Pandoraea sp. ISTKB: Enzymatic and structural analysis. Bioresource Technology, 2016, 203, 18-25.	4.8	36
2439	Alkaline-sulfite pretreatment and use of surfactants during enzymatic hydrolysis to enhance ethanol production from sugarcane bagasse. Bioprocess and Biosystems Engineering, 2016, 39, 441-448.	1.7	41
2440	An environmentally friendly xylanase-assisted pretreatment for cellulose nanofibrils isolation from sugarcane bagasse by high-pressure homogenization. Industrial Crops and Products, 2016, 82, 149-160.	2.5	139
2441	Analysis of the extrusion as a pretreatment for the anaerobic digestion process. Industrial Crops and Products, 2016, 83, 206-212.	2.5	38
2442	Isolation and characterization of a non-specific endoglucanase from a metagenomic library of goat rumen. World Journal of Microbiology and Biotechnology, 2016, 32, 12.	1.7	29
2443	Synergistic growth in bacteria depends on substrate complexity. Journal of Microbiology, 2016, 54, 23-30.	1.3	70
2444	Enzymatic Hydrolysis of Pretreated Sugarcane Straw: Kinetic Study and Semi-Mechanistic Modeling. Applied Biochemistry and Biotechnology, 2016, 178, 1430-1444.	1.4	33

#	Article	IF	CITATIONS
2445	Synthesis, Design, and Rigorous Simulation of the Bioethanol Recovery and Dehydration from an Actual Lignocellulosic Fermentation Broth. Industrial & Engineering Chemistry Research, 2016, 55, 210-225.	1.8	10
2446	Aqueous phase hydrodeoxygenation of polyols over Pd/WO3-ZrO2: Role of Pd-WO3 interaction and hydrodeoxygenation pathway. Catalysis Today, 2016, 269, 103-109.	2.2	20
2447	Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel. Biotechnology Advances, 2016, 34, 451-472.	6.0	178
2448	Valorization of organic residues for the production of added value chemicals: A contribution to the bio-based economy. Biochemical Engineering Journal, 2016, 116, 3-16.	1.8	84
2449	Subcritical hydrothermal pretreatment of olive mill solid waste for biofuel production. Bioresource Technology, 2016, 199, 164-172.	4.8	25
2450	Liquid biofuels from food waste: Current trends, prospect and limitation. Renewable and Sustainable Energy Reviews, 2016, 53, 945-953.	8.2	209
2451	Bacterial community structure and predicted alginate metabolic pathway in an alginate-degrading bacterial consortium. Journal of Bioscience and Bioengineering, 2016, 121, 286-292.	1.1	19
2452	Steam explosion pretreatment of triticale (× Triticosecale Wittmack) straw for sugar production. New Biotechnology, 2016, 33, 153-163.	2.4	33
2453	Advances on the processing of Jatropha curcas towards a whole-crop biorefinery. Renewable and Sustainable Energy Reviews, 2016, 54, 247-269.	8.2	41
2454	A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment. Renewable and Sustainable Energy Reviews, 2016, 54, 1148-1171.	8.2	177
2455	Life Cycle Assessment of Catechols from Lignin Depolymerization. ACS Sustainable Chemistry and Engineering, 2016, 4, 708-718.	3.2	62
2456	Optimal Production of Furfural and DMF from Algae and Switchgrass. Industrial & Engineering Chemistry Research, 2016, 55, 3192-3202.	1.8	23
2457	Bioreactor Engineering Research and Industrial Applications II. Advances in Biochemical Engineering/Biotechnology, 2016, , .	0.6	1
2458	Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment – A review. Renewable and Sustainable Energy Reviews, 2016, 54, 217-234.	8.2	255
2459	Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction. Renewable and Sustainable Energy Reviews, 2016, 54, 665-677.	8.2	311
2460	Optimization of delignification of two <i>Pennisetum</i> grass species by NaOH pretreatment using Taguchi and ANN statistical approach. Environmental Technology (United Kingdom), 2016, 37, 940-951.	1.2	12
2461	Effect of ethanol organosolv pretreatment factors on enzymatic digestibility and ethanol organosolv lignin structure from Liriodendron tulipifera in specific combined severity factors. Renewable Energy, 2016, 87, 599-606.	4.3	47
2462	Environmental sustainability of bioethanol production from rice straw in India: A review. Renewable and Sustainable Energy Reviews, 2016, 54, 202-216.	8.2	170

#	Article	IF	CITATIONS
2463	Lignocellulose degrading extremozymes produced by Pichia pastoris: current status and future prospects. Bioprocess and Biosystems Engineering, 2016, 39, 1-36.	1.7	59
2464	Optimization of pretreatment condition for ethanol production from oxalic acid pretreated biomass by response surface methodology. Industrial Crops and Products, 2016, 79, 1-6.	2.5	31
2465	Alternative Monomers Based on Lignocellulose and Their Use for Polymer Production. Chemical Reviews, 2016, 116, 1540-1599.	23.0	580
2466	Technical and economical evaluation of bioethanol production from lignocellulosic residues in Mexico: Case of sugarcane and blue agave bagasses. Chemical Engineering Research and Design, 2016, 107, 91-101.	2.7	73
2467	Polemics on Ethical Aspects in the Compost Business. Science and Engineering Ethics, 2016, 22, 581-590.	1.7	59
2468	Resolution of galactose, glucose, xylose and mannose in sugarcane bagasse employing a voltammetric electronic tongue formed by metals oxy-hydroxide/MWCNT modified electrodes. Sensors and Actuators B: Chemical, 2016, 222, 645-653.	4.0	34
2469	Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review. Bioresource Technology, 2016, 199, 21-33.	4.8	578
2470	Acetone-butanol-ethanol (ABE) fermentation using the root hydrolysate after extraction of forskolin from Coleus forskohlii. Renewable Energy, 2016, 86, 594-601.	4.3	20
2471	Comparative study of different waste biomass for energy application. Waste Management, 2016, 47, 40-45.	3.7	107
2472	Environment, Energy and Climate Change II. Handbook of Environmental Chemistry, 2016, , .	0.2	2
2473	Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion I. Green Chemistry and Sustainable Technology, 2016, , .	0.4	6
2474	Mechanism and Kinetic Analysis of the Hydrogenolysis of Cellulose to Polyols. Green Chemistry and Sustainable Technology, 2016, , 227-260.	0.4	5
2475	Cosolvent pretreatment in cellulosic biofuel production: effect of tetrahydrofuran-water on lignin structure and dynamics. Green Chemistry, 2016, 18, 1268-1277.	4.6	122
2476	Biological pretreatment of lignocellulosic biomass – An overview. Bioresource Technology, 2016, 199, 76-82.	4.8	868
2477	The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresource Technology, 2016, 199, 49-58.	4.8	708
2478	Pretreatment and saccharification of red macroalgae to produce fermentable sugars. Bioresource Technology, 2016, 199, 311-318.	4.8	87
2479	Producing carbohydrate-rich microalgal biomass grown under mixotrophic conditions as feedstock for biohydrogen production. International Journal of Hydrogen Energy, 2016, 41, 4413-4420.	3.8	52
2480	A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: Challenges and opportunities. Bioresource Technology, 2016, 199, 92-102.	4.8	425

#	Article	IF	CITATIONS
2481	Ethanol production from halophyte Juncus maritimus using freezing and thawing biomass pretreatment. Renewable Energy, 2016, 85, 1357-1361.	4.3	33
2482	Heterologously expressed Aspergillus aculeatus Î ² -glucosidase in Saccharomyces cerevisiae is a cost-effective alternative to commercial supplementation of Î ² -glucosidase in industrial ethanol production using Trichoderma reesei cellulases. Journal of Bioscience and Bioengineering, 2016, 121, 27-35.	1.1	32
2483	Sodium carbonate pretreatment: an approach towards desilication of paddy straw and enhancement in biogas production. Paddy and Water Environment, 2016, 14, 113-121.	1.0	18
2484	Bioethanol production from tuber crops using fermentation technology: a review. International Journal of Sustainable Energy, 2016, 35, 443-468.	1.3	42
2485	Pretreatment techniques used in biogas production from grass. Renewable and Sustainable Energy Reviews, 2017, 68, 1193-1204.	8.2	191
2486	Identification and detoxification of glycolaldehyde, an unattended bioethanol fermentation inhibitor. Critical Reviews in Biotechnology, 2017, 37, 177-189.	5.1	24
2487	Microwave Assisted Acid Pretreatment of Oil Palm Empty Fruit Bunches (EFB) to Enhance Its Fermentable Sugar Production. Waste and Biomass Valorization, 2017, 8, 379-391.	1.8	24
2488	On-Site Production of Enzymatic Cocktails Using a Non-conventional Fermentation Method with Agro-Industrial Residues as Renewable Feedstocks. Waste and Biomass Valorization, 2017, 8, 517-526.	1.8	22
2489	Valorization of Potato Peels Residues on Cellulase Production Using a Mixed Culture of Aspergillus niger ATCC 16404 and Trichoderma reesei DSMZ 970. Waste and Biomass Valorization, 2017, 8, 183-192.	1.8	26
2490	Hydrogenolysis/hydrogenation of diphenyl ether as a model decomposition reaction of lignin from biomass in pressurized CO2/water condition. Catalysis Today, 2017, 281, 402-409.	2.2	19
2491	Current Pretreatments of Lignocellulosic Residues in the Production of Bioethanol. Waste and Biomass Valorization, 2017, 8, 161-181.	1.8	53
2492	Hydrothermal pretreatment of palm oil empty fruit bunch. , 2017, , .		3
2493	Determination of kinetics and heat of hydrolysis for non-homogenous substrate by isothermal calorimetry. Bioprocess and Biosystems Engineering, 2017, 40, 643-650.	1.7	2
2494	Technoeconomic Study of Biobutanol AB Production. 1. Biomass Pretreatment and Hydrolysis. Industrial & Engineering Chemistry Research, 2017, 56, 1518-1524.	1.8	11
2495	Characterization of Cellulose Nanocrystals Extracted from Sugarcane Bagasse for Potential Biomedical Materials. Sugar Tech, 2017, 19, 539-552.	0.9	45
2496	Analysis of ground rice straw with a hydro-textural approach. Powder Technology, 2017, 310, 74-79.	2.1	16
2497	Insight into progress in pre-treatment of lignocellulosic biomass. Energy, 2017, 122, 724-745.	4.5	252
2498	Sustainable design of biorefinery processes: existing practices and new methodology. Biofuels, Bioproducts and Biorefining, 2017, 11, 373-395.	1.9	36

#	Article	IF	CITATIONS
2499	Lignocellulosic butanol production from Napier grass using semi-simultaneous saccharification fermentation. Bioresource Technology, 2017, 231, 101-108.	4.8	68
2500	Multi-objective regulation in autohydrolysis process of corn stover by liquid hot water pretreatment. Chinese Journal of Chemical Engineering, 2017, 25, 499-506.	1.7	16
2501	Improved ethanol production by engineered Saccharomyces cerevisiae expressing a mutated cellobiose transporter during simultaneous saccharification and fermentation. Journal of Biotechnology, 2017, 245, 1-8.	1.9	18
2502	Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresources and Bioprocessing, 2017, 4, 7.	2.0	877
2504	Utilization of lignocellulosic biomass by oleaginous yeast and bacteria for production of biodiesel and renewable diesel. Renewable and Sustainable Energy Reviews, 2017, 73, 654-671.	8.2	102
2505	Biotransformation of lignocellulosic materials into value-added products—A review. International Journal of Biological Macromolecules, 2017, 98, 447-458.	3.6	183
2506	Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 387-395.	1.4	13
2507	Status of Canada's lignocellulosic ethanol: Part I: Pretreatment technologies. Renewable and Sustainable Energy Reviews, 2017, 72, 178-190.	8.2	46
2508	Pressurized liquid extraction of macauba pulp oil. Canadian Journal of Chemical Engineering, 2017, 95, 1579-1584.	0.9	20
2509	Co-production of chitin-glucan complex and xylitol by Komagataella pastoris using glucose and xylose mixtures as carbon source. Carbohydrate Polymers, 2017, 166, 24-30.	5.1	18
2510	An overview of effect of process parameters on hydrothermal carbonization of biomass. Renewable and Sustainable Energy Reviews, 2017, 73, 1289-1299.	8.2	354
2511	Biomass processing into ethanol: pretreatment, enzymatic hydrolysis, fermentation, rheology, and mixing. Green Processing and Synthesis, 2017, 6, 1-22.	1.3	66
2512	Cellulose based grafted biosorbents - Journey from lignocellulose biomass to toxic metal ions sorption applications - A review. Journal of Molecular Liquids, 2017, 232, 62-93.	2.3	162
2513	Direct liquefaction of pistachio nut shells—Effects of parameters on product yields. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2017, 39, 361-368.	1.2	4
2514	A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Processing Technology, 2017, 160, 196-206.	3.7	507
2515	Organosolv Processes. Advances in Biochemical Engineering/Biotechnology, 2017, 166, 153-176.	0.6	39
2516	Enhanced levofloxacin removal from water using zirconium (IV) loaded corn bracts. Environmental Science and Pollution Research, 2017, 24, 10685-10694.	2.7	45
2517	Sustainability assessment of glucose production technologies from highly recalcitrant softwood including scavengers. Biofuels, Bioproducts and Biorefining, 2017, 11, 441-453.	1.9	13

#	Article	IF	CITATIONS
2518	Cellulosic Biocomposites: Potential Materials for Future. Green Energy and Technology, 2017, , 69-100.	0.4	16
2519	A Comparative Assessment of Autoclave and Microwave-Assisted Peroxometal Complex in Delignification of Wood Biomass for Enhanced Sugar Production. , 2017, , 383-390.		2
2520	Study of ethanol dehydrogenation reaction mechanism for hydrogen production on combustion synthesized cobalt catalyst. International Journal of Hydrogen Energy, 2017, 42, 23464-23473.	3.8	49
2521	Surface modification of peanut shell by UV-induced graft polymerization for enriching and recycling rare earth metals (Ce(â¢)) from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74, 105-112.	2.7	12
2522	Immobilization of Saccharomyces cerevisiae using Ca-alginate for bioethanol production from empty fruit bunch of oil palm. AIP Conference Proceedings, 2017, , .	0.3	4
2523	Expression of a codon-optimized β-glucosidase from Cellulomonas flavigena PR-22 in Saccharomyces cerevisiae for bioethanol production from cellobiose. Archives of Microbiology, 2017, 199, 605-611.	1.0	12
2524	Monosaccharide separation from ZnCl2 molten salt hydrates by zeolite beta. Adsorption, 2017, 23, 563-568.	1.4	4
2525	Association of amphipathic lignin derivatives with cellobiohydrolase groups improves enzymatic saccharification of lignocellulosics. Cellulose, 2017, 24, 1849-1862.	2.4	5
2526	Effect of steam explosion treatment on chemical composition and characteristic of organosolv fescue lignin. Industrial Crops and Products, 2017, 99, 79-85.	2.5	42
2527	Optimization of simultaneous saccharification and fermentation conditions with amphipathic lignin derivatives for concentrated bioethanol production. Bioresource Technology, 2017, 232, 126-132.	4.8	40
2530	Sustainable Production of Chemicals and Energy Fuel Precursors from Lignocellulosic Fractions. Green Energy and Technology, 2017, , 7-33.	0.4	13
2531	Enhanced Bio-ethanol Production from Old Newspapers Waste Through Alkali and Enzymatic Delignification. Waste and Biomass Valorization, 2017, 8, 2271-2281.	1.8	42
2532	Cellulase-mediated saccharification of lignocellulosic-rich pseudostem of Musa cavendish for bio-ethanol production by Saccharomyces cerevisiae MTCC 4779. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2017, 39, 570-575.	1.2	5
2534	Microwave-assisted hydrolysis of biomass over activated carbon supported polyoxometalates. RSC Advances, 2017, 7, 12346-12350.	1.7	13
2535	Biological pretreatment and bioconversion of agricultural wastes, using ligninolytic and cellulolytic fungal consortia. Bioremediation Journal, 2017, 21, 89-99.	1.0	22
2536	Production of rice straw hydrolysis enzymes by the fungi Trichoderma reesei and Humicola insolens using rice straw as a carbon source. Bioresource Technology, 2017, 233, 67-73.	4.8	92
2537	Comprehensive utilization of dairy manure to produce glucose and hierarchical porous carbon for supercapacitors. Cellulose, 2017, 24, 2571-2579.	2.4	15
2538	Cellulose II as bioethanol feedstock and its advantages over native cellulose. Renewable and Sustainable Energy Reviews, 2017, 77, 182-192.	8.2	72

#	Article	IF	Citations
2539	Organosolv fractionating preâ€treatment of lignocellulosic biomass for efficient enzymatic saccharification: chemistry, kinetics, and substrate structures. Biofuels, Bioproducts and Biorefining, 2017, 11, 567-590	1.9	181
2540	A Sustainable Bioeconomy. , 2017, , .		31
2541	Pectin, Hemicellulose, or Lignin? Impact of the Biowaste Source on the Performance of Hard Carbons for Sodiumâ€ion Batteries. ChemSusChem, 2017, 10, 2668-2676.	3.6	125
2542	Accumulation of sugar from pulp and xylitol from xylose by pyruvate decarboxylase-negative white-rot fungus Phlebia sp. MG-60. Bioresource Technology, 2017, 238, 241-247.	4.8	13
2543	Xylanases: From Paper to Fuel. , 2017, , 153-164.		3
2544	Biomass: The Sustainable Core of Bioeconomy. , 2017, , 55-78.		0
2545	Biofuels and Bioenergy. , 2017, , 79-139.		4
2546	Effects of minimal media vs. complex media on the metabolite profiles of Escherichia coli and Saccharomyces cerevisiae. Process Biochemistry, 2017, 57, 64-71.	1.8	31
2547	Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass – A review. Renewable and Sustainable Energy Reviews, 2017, 78, 1007-1032.	8.2	121
2548	Characterization of cellulolytic enzyme system of Schizophyllum commune mutant and evaluation of its efficiency on biomass hydrolysis. Bioscience, Biotechnology and Biochemistry, 2017, 81, 1289-1299.	0.6	12
2549	Effect of steam treatments on the availability of various families of secondary metabolites extracted from green sweet sorghum. Industrial Crops and Products, 2017, 104, 120-128.	2.5	5
2550	Study of the influence of dilute acid pre-treatment conditions on glucose recovery from <i>Moringa oleifera</i> Lam for fuel-ethanol production. International Journal of Green Energy, 2017, 14, 613-623.	2.1	1
2551	Bioethanol production from sugarcane bagasse by simultaneous sacarification and fermentation using Saccharomyces cerevisiae. AIP Conference Proceedings, 2017, , .	0.3	11
2552	Water-soluble cellulose oligomer production by chemical and enzymatic synthesis: a mini-review. Polymer International, 2017, 66, 1227-1236.	1.6	24
2553	Response of sorghum stalk pathogens to brown midrib plants and soluble phenolic extracts from near isogenic lines. European Journal of Plant Pathology, 2017, 148, 941-953.	0.8	13
2554	Limits and perspectives of pulp and paper industry wastewater treatment – A review. Renewable and Sustainable Energy Reviews, 2017, 78, 764-772.	8.2	177
2555	One-Pot Microwave-Assisted Hydrolysis of Cellulose and Hemicellulose in Selected Tropical Plant Wastes by NaOH-Freeze Pretreatment. ACS Sustainable Chemistry and Engineering, 2017, 5, 5166-5174.	3.2	11
2556	Regularity and mechanism of wheat straw properties change in ball milling process at cellular scale. Bioresource Technology, 2017, 241, 214-219.	4.8	63

#	Article	IF	CITATIONS
2557	Assessment of hydrothermal pretreatment of various lignocellulosic biomass with CO 2 catalyst for enhanced methane and hydrogen production. Water Research, 2017, 120, 32-42.	5.3	79
2558	Process alternatives for bioethanol production from mango stem bark residues. Bioresource Technology, 2017, 239, 430-436.	4.8	34
2559	Lactic acid production from sugarcane bagasse by an integrated system of lignocellulose fractionation, saccharification, fermentation, and ex-situ nanofiltration. Journal of Environmental Chemical Engineering, 2017, 5, 2533-2541.	3.3	44
2560	An econometric analysis of major Chinese food crops: An empirical study. Cogent Economics and Finance, 2017, 5, 1323372.	0.8	7
2562	Production and characteristics of the recombinant extracellular bifunctional endoglucanase of the polyextremophilic bacterium Bacillus halodurans and its applicability in saccharifying agro-residues. Bioprocess and Biosystems Engineering, 2017, 40, 651-662.	1.7	6
2563	Multivariate data analysis applied in alkali-based pretreatment of corn stover. Resources, Conservation and Recycling, 2017, 122, 307-318.	5.3	17
2564	Near-infrared-activated NaYF ₄ :Yb ³⁺ , Er ³⁺ /Au/CdS for H ₂ production via photoreforming of bio-ethanol: plasmonic Au as light nanoantenna, energy relay, electron sink and co-catalyst. Journal of Materials Chemistry A, 2017, 5, 10311-10320.	5.2	65
2565	Synergistic effect of thermostable β-glucosidase TN0602 and cellulase on cellulose hydrolysis. 3 Biotech, 2017, 7, 54.	1.1	22
2566	A review on thermal chemical reactions of lignin model compounds. Catalysis Today, 2017, 298, 276-297.	2.2	67
2567	The use of ionic liquid pretreatment of rye straw for bioethanol production. Fuel, 2017, 191, 266-274.	3.4	50
2568	Meat processing waste as a potential feedstock for biochemicals and biofuels – A review of possible conversion technologies. Journal of Cleaner Production, 2017, 142, 1583-1608.	4.6	62
2569	Estimation of cellulose crystallinity of sugarcane biomass using near infrared spectroscopy and multivariate analysis methods. Carbohydrate Polymers, 2017, 158, 20-28.	5.1	44
2570	Characterization of aerogels from chemo-enzymatically oxidized galactomannans as novel polymeric biomaterials. European Polymer Journal, 2017, 93, 347-357.	2.6	11
2571	Extraction of bamboo micron fibers by optimized mechano-chemical process using a central composite design and their surface modification. Materials Chemistry and Physics, 2017, 199, 23-33.	2.0	16
2572	Rapid production of organic fertilizer from degradable waste by thermochemical processing. International Journal of Recycling of Organic Waste in Agriculture, 2017, 6, 1-11.	2.0	26
2573	Heterogeneous Diels–Alder catalysis for biomass-derived aromatic compounds. Green Chemistry, 2017, 19, 3468-3492.	4.6	201
2574	Valorization of untreated rice bran towards bioflocculant using a lignocellulose-degrading strain and its use in microalgal biomass harvest. Biotechnology for Biofuels, 2017, 10, 90.	6.2	41
2575	A review on the potential of citrus waste for <scp>D</scp> -Limonene, pectin, and bioethanol production. International Journal of Green Energy, 2017, 14, 599-612.	2.1	98

ARTICLE IF CITATIONS Establishment of Perennial Groundcovers for Maize-Based Bioenergy Production Systems. Agronomy 2576 0.9 13 Journal, 2017, 109, 822-835. Biosurfactant rhamnolipid enhanced modification of corn stalk and its application for sorption of 1.2 phenanthrene. Water Science and Technology, 2017, 76, 1167-1176. 2578 Hydrothermal Processing in Biorefineries., 2017,,. 41 Biodegradable alternative for removing toxic compounds from sugarcane bagasse hemicellulosic 2579 4.8 hydrolysates for valorization in biorefineries. Bioresource Technology, 2017, 243, 384-392. Effect of surface modified rice husk (RH) on the flexural properties of recycled HDPE/RH composite. 2580 0.8 10 Advances in Materials and Processing Technologies, 2017, 3, 482-489. In vitro and in silico characterization of metagenomic soil-derived cellulases capable of hydrolyzing 2.1 oil palm empty fruit bunch. Biotechnology Reports (Amsterdam, Netherlands), 2017, 15, 55-62. Enzymatic Activity of Some Industrially-Applied Cellulolytic Enzyme Preparations. Ecological 2582 0.3 4 Chemistry and Engineering S, 2017, 24, 9-18. Production of Ethanol from Lignocellulosic Biomass. Biofuels and Biorefineries, 2017, , 375-410. 2583 0.5 20 Fenton pre-treatment of rice straw with citric acid as an iron chelate reagent for enhancing 2584 1.7 17 saccharification. RSC Advances, 2017, 7, 32076-32086. Processing of Bioethanol from Lignocellulosic Biomass., 2017, , 1-24. Valorization of Lignocellulosic Materials to Polyhydroxyalkanoates (PHAs)., 2017, , 1-25. 2587 1 Hydrothermal Pretreatment of Lignocellulosic Biomass for Bioethanol Production., 2017, , 181-205. 2590 Increase in furfural tolerance by combinatorial overexpression of NAD salvage pathway enzymes in 2591 4.8 40 engineered isobutanol-producing E. coli. Bioresource Technology, 2017, 245, 1430-1435. Insight on mechanism of Sn modification in alumina supported RhSn catalysts for acetic acid hydrogenation to fuel-grade ethanol. Fuel, 2017, 203, 774-780. 2592 3.4 Aerobic Oxidation of Glucose to Glucaric Acid under Alkaline-Free Conditions: Au-Based Bimetallic 2593 Catalysts and the Effect of Residues in a Hemicellulose Hydrolysate. Industrial & Amp; Engineering 1.8 57 Chemistry Research, 2017, 56, 13175-13189. Enzymatic hydrolysis of pretreated Alfa fibers (Stipa tenacissima) using Î²- d -glucosidase and xylanase of Talaromyces thermophilus from solid-state fermentation. International Journal of Biological 2594 Macromolecules, 2017, 103, 543-553. Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for 2595 8.2 363 sustainable biogas production. Renewable and Sustainable Energy Reviews, 2017, 79, 308-322. Chemical and Biological Pretreatments on Sugarcane Bagasse to Enhance its Enzymatic Hydrolysis.. 2596 ChemistrySelect, 2017, 2, 4213-4218.

#	Article	IF	CITATIONS
2597	Ultrasound-assisted alkaline pretreatment for enhancing the enzymatic hydrolysis of rice straw by using the heat energy dissipated from ultrasonication. Bioresource Technology, 2017, 241, 70-74.	4.8	96
2598	Microbial Resources for Global Sustainability. , 2017, , 77-101.		1
2599	Potential of fecal waste for the production of biomethane, bioethanol and biodiesel. Journal of Biotechnology, 2017, 253, 14-22.	1.9	21
2600	Global challenges in the sustainable development of biomass gasification: An overview. Renewable and Sustainable Energy Reviews, 2017, 80, 23-43.	8.2	258
2602	Production of Monosugars from Lignocellulosic Biomass in Molten Salt Hydrates: Process Design and Techno-Economic Analysis. Industrial & Engineering Chemistry Research, 2017, 56, 13423-13433.	1.8	25
2603	Benchmarking of density functionals for the kinetics and thermodynamics of the hydrolysis of glycosidic bonds catalyzed by glycosidases. International Journal of Quantum Chemistry, 2017, 117, e25409.	1.0	37
2604	Direct production of cellulose nanocrystals from old newspapers and recycled newsprint. Carbohydrate Polymers, 2017, 173, 489-496.	5.1	44
2605	Production of Platform Chemicals from Sustainable Resources. Biofuels and Biorefineries, 2017, , .	0.5	30
2606	Microreactor-based mixing strategy suppresses product inhibition to enhance sugar yields in enzymatic hydrolysis for cellulosic biofuel production. Bioresource Technology, 2017, 237, 99-107.	4.8	13
2607	Lignocellulosic sugar management for xylitol and ethanol fermentation with multiple cell recycling by Kluyveromyces marxianus IIPE453. Microbiological Research, 2017, 200, 64-72.	2.5	36
2608	Evaluation of an integrated process to fully utilize bamboo biomass during the production of bioethanol. Bioresource Technology, 2017, 236, 202-211.	4.8	19
2609	Understanding effect of molecular structure of imidazole-based ionic liquids on catalytic performance for biomass inulin hydrolysis. Molecular Catalysis, 2017, 435, 24-32.	1.0	13
2611	Introduction: Climate Overview. , 2017, , 1-25.		4
2612	Catalytic Dehydration of Biomass Derived 1-Propanol to Propene over M-ZSM-5 (M = H, V, Cu, or Zn). Industrial & Engineering Chemistry Research, 2017, 56, 4302-4308.	1.8	15
2613	Bioethylene Production from Ethanol: A Review and Technoâ€economical Evaluation. ChemBioEng Reviews, 2017, 4, 75-91.	2.6	202
2614	Microplate-Based Evaluation of the Sugar Yield from Giant Reed, Giant Miscanthus and Switchgrass after Mild Chemical Pre-Treatments and Hydrolysis with Tailored Trichoderma Enzymatic Blends. Applied Biochemistry and Biotechnology, 2017, 183, 876-892.	1.4	12
2615	Beech wood Fagus sylvatica dilute-acid hydrolysate as a feedstock to support Chlorella sorokiniana biomass, fatty acid and pigment production. Bioresource Technology, 2017, 230, 122-131.	4.8	24
2616	Prospecting soil bacteria from subtropical Brazil for hydrolases production. Biologia (Poland), 2017, 72, 130-139.	0.8	4

#	Article	IF	CITATIONS
2617	Using Pretreatment and Enzymatic Saccharification Technologies to Produce Fermentable Sugars from Agricultural Wastes. , 2017, , 15-38.		3
2618	Dielectric barrier discharge plasma pretreatment on hydrolysis of microcrystalline cellulose. Plasma Science and Technology, 2017, 19, 045504.	0.7	4
2619	Corncob Mild Alkaline Pretreatment for High 2,3-Butanediol Production by Spent Liquor Recycle Process. Bioenergy Research, 2017, 10, 566-574.	2.2	21
2620	A co-production of sugars, lignosulfonates, cellulose, and cellulose nanocrystals from ball-milled woods. Bioresource Technology, 2017, 238, 254-262.	4.8	29
2621	The middle lamella—more than a glue. Physical Biology, 2017, 14, 015004.	0.8	85
2622	Nanomaterials for biofuel production using lignocellulosic waste. Environmental Chemistry Letters, 2017, 15, 179-184.	8.3	46
2623	Optimal Planning of Feedstock for Butanol Production Considering Economic and Environmental Aspects. ACS Sustainable Chemistry and Engineering, 2017, 5, 4018-4030.	3.2	39
2624	Lignin-enzyme interaction: Mechanism, mitigation approach, modeling, and research prospects. Biotechnology Advances, 2017, 35, 466-489.	6.0	198
2625	Synthesis and characterization of lignosulfonate- graft -poly (acrylic acid)/hydroxyethyl cellulose semi-interpenetrating hydrogels. Reactive and Functional Polymers, 2017, 115, 28-35.	2.0	31
2626	Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express, 2017, 7, 72.	1.4	314
2627	Forest biomass waste as a potential innovative source for rearing edible insects for food and feed – A review. Innovative Food Science and Emerging Technologies, 2017, 41, 193-205.	2.7	45
2628	Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst. Nature Energy, 2017, 2, .	19.8	451
2629	Process yield and economic trade-offs for enzymatic hydrolysis of alkaline pretreated corn stover. Biomass and Bioenergy, 2017, 99, 97-105.	2.9	9
2630	Dynamic changes in antioxidant activity and biochemical composition of tartary buckwheat leaves during Aspergillus niger fermentation. Journal of Functional Foods, 2017, 32, 375-381.	1.6	46
2631	Ala258Phe substitution in Bacillus sp. YX-1 glucose dehydrogenase improves its substrate preference for xylose. Process Biochemistry, 2017, 56, 124-131.	1.8	4
2632	Experimental investigation on combustion, performance, and emissions characteristics of butanol as an oxygenate in a spark ignition engine. Advances in Mechanical Engineering, 2017, 9, 168781401668884.	0.8	11
2633	Bioethanol production from sodium hydroxide – dilute sulfuric acid pretreatment of rice husk via simultaneous saccharification and fermentation. MATEC Web of Conferences, 2017, 101, 02013.	0.1	2
2634	Autohydrolysis processing as an alternative to enhance cellulose solubility and preparation of its regenerated bio-based materials. Materials Chemistry and Physics, 2017, 192, 181-189.	2.0	16

#	Article	IF	CITATIONS
2635	Waste Biomass Management $\hat{a} \in A$ Holistic Approach. , 2017, , .		16
2636	Intensified Synthesis of Bioethanol from Sustainable Biomass. , 2017, , 251-287.		2
2637	Hydrothermal treatment followed by enzymatic hydrolysis and hydrothermal carbonization as means to valorise agro- and forest-based biomass residues. Bioresource Technology, 2017, 235, 70-78.	4.8	28
2638	Pretreatment of radiata pine using two white rot fungal strains Stereum hirsutum and Trametes versicolor. Energy Conversion and Management, 2017, 142, 13-19.	4.4	55
2639	Unconventional Pretreatment of Lignocellulose with Lowâ€Temperature Plasma. ChemSusChem, 2017, 10, 14-31.	3.6	63
2640	Role of Nanoparticles in Enzymatic Hydrolysis of Lignocellulose in Ethanol. Green Chemistry and Sustainable Technology, 2017, , 153-171.	0.4	5
2641	Assessment of preâ€treatment technologies for bioethanol production from sugarcane bagasse considering economics and environmental impact. Asia-Pacific Journal of Chemical Engineering, 2017, 12, 212-229.	0.8	3
2642	Chemical input reduction in the arabinoxylan and lignocellulose alkaline extraction and xylooligosaccharides production. Bioresource Technology, 2017, 228, 164-170.	4.8	70
2643	A Review of Waterâ€Resistant Hemicelluloseâ€Based Materials: Processing and Applications. ChemSusChem, 2017, 10, 305-323.	3.6	146
2644	Impact of pre-treatments on properties of lignocelluloses and their accessibility for a subsequent carboxymethylation. Carbohydrate Polymers, 2017, 161, 82-89.	5.1	16
2645	Algal bioethanol production technology: A trend towards sustainable development. Renewable and Sustainable Energy Reviews, 2017, 71, 976-985.	8.2	118
2646	Disruption of non-anchored cell wall protein NCW-1 promotes cellulase production by increasing cellobiose uptake in Neurospora crassa. Biotechnology Letters, 2017, 39, 545-551.	1.1	10
2647	Mixing regime simulation and cellulose particle tracing in a stacked frame photocatalytic reactor. Chemical Engineering Journal, 2017, 313, 301-308.	6.6	8
2648	Simultaneous delignification and saccharification of rice straw as a lignocellulosic biomass by immobilized Thrichoderma viride sp. to enhance enzymatic sugar production. Renewable Energy, 2017, 104, 88-95.	4.3	19
2649	Use of membrane separation in enzymatic hydrolysis of waste paper. Korean Journal of Chemical Engineering, 2017, 34, 768-772.	1.2	2
2650	Nanotechnology for Bioenergy and Biofuel Production. Green Chemistry and Sustainable Technology, 2017, , .	0.4	23
2651	Efficient Catalytic Conversion of Ethanol to 1-Butanol via the Guerbet Reaction over Copper- and Nickel-Doped Porous. ACS Sustainable Chemistry and Engineering, 2017, 5, 1738-1746.	3.2	90
2652	Effective fractionation of lignocellulose in herbaceous biomass and hardwood using a mild acetone organosolv process. Green Chemistry, 2017, 19, 5505-5514.	4.6	102
#	Article	IF	CITATIONS
------	---	-----	-----------
2653	Soaking assisted thermal pretreatment of cassava peels wastes for fermentable sugar production: Process modelling and optimization. Energy Conversion and Management, 2017, 150, 558-566.	4.4	30
2654	Enzymatic Hydrolysis of Pretreated Fibre Pressed Oil Palm Frond by using Sacchariseb C6. IOP Conference Series: Materials Science and Engineering, 2017, 206, 012008.	0.3	Ο
2655	Assessment of hazelnut husk as a lignocellulosic feedstock for the production of fermentable sugars and lignocellulolytic enzymes. 3 Biotech, 2017, 7, 367.	1.1	9
2656	Construction of fibrous bed bioreactor for enhanced succinic acid production using wastewater of dextran fermentation. Bioprocess and Biosystems Engineering, 2017, 40, 1859-1866.	1.7	3
2657	Modeling of thermally-coupled monolithic membrane reformer for vehicular hydrogen production. International Journal of Hydrogen Energy, 2017, 42, 26308-26319.	3.8	4
2658	Cellulases: Industrial Workhorse in Bioenergy Sector. , 2017, , 143-153.		Ο
2659	An aerobic detoxification photofermentation by Rhodospirillum rubrum for converting soy sauce residue into feed with moderate pretreatment. World Journal of Microbiology and Biotechnology, 2017, 33, 184.	1.7	1
2660	Efficient crude multi-enzyme produced by Trichoderma reesei using corncob for hydrolysis of lignocellulose. 3 Biotech, 2017, 7, 339.	1.1	6
2661	Effect of bioethanol on combustion and emissions in advanced CI engines: HCCI, PPC and GCI mode – A review. Applied Energy, 2017, 208, 782-802.	5.1	97
2663	Chemically synthesized biofuels from agricultural waste: Optimization operating parameters with surface response methodology (CCD). MethodsX, 2017, 4, 391-403.	0.7	9
2665	Use of <i>Kappaphycus alvarezii</i> Biomass for the Production of Carbohydrate Isopropylidene-Ketal-Based Biocrude. Energy & Fuels, 2017, 31, 9422-9428.	2.5	5
2666	Biological strategies for enhanced hydrolysis of lignocellulosic biomass during anaerobic digestion: Current status and future perspectives. Bioresource Technology, 2017, 245, 1245-1257.	4.8	206
2667	Study on the effects of several operational variables on the enzymatic batch saccharification of orange solid waste. Bioresource Technology, 2017, 245, 906-915.	4.8	32
2668	Industrial hemp as a potential bioenergy crop in comparison with kenaf, switchgrass and biomass sorghum. Bioresource Technology, 2017, 244, 641-649.	4.8	83
2669	Transporter engineering in biomass utilization by yeast. FEMS Yeast Research, 2017, 17, .	1.1	35
2670	Exergy analysis of a new lignocellulosic biomass-based polygeneration system. Energy, 2017, 140, 1087-1095.	4.5	38
2671	A novel and efficient fungal delignification strategy based on versatile peroxidase for lignocellulose bioconversion. Biotechnology for Biofuels, 2017, 10, 218.	6.2	70
2673	Effect of KOH Pretreatment on Lignocellulosic Waste to be Used as Substrate for Ethanol Production. Iranian Journal of Science and Technology, Transaction A: Science, 2017, 41, 659-663.	0.7	8

ARTICLE IF CITATIONS Evaluation of Different Pretreatment Processes of Lignocellulosic Biomass for Enhanced Biomethane 2.5 66 2674 Production. Energy & amp; Fuels, 2017, 31, 10335-10347. Enzymatic saccharification of seaweeds into fermentable sugars by xylanase from marine Bacillus sp. 1.1 strain BT21. 3 Biotech, 2017, 7, 296. Celluloseâ€Based Nanomaterials for Energy Applications. Small, 2017, 13, 1702240. 5.22676 189 Effects of fermentation by Ganoderma lucidum and Saccharomyces cerevisiae on rape pollen morphology and its wall. Journal of Food Science and Technology, 2017, 54, 4026-4034. CO₂-looping in biomass pyrolysis or gasification. Sustainable Energy and Fuels, 2017, 1, 2679 2.5 98 1700-1729. Development of natural cellulase inhibitor mediated intensified biological pretreatment technology using Pleurotus florida for maximum recovery of cellulose from paddy straw under solid state 4.8 condition. Bioresource Technology, 2017, 244, 353-361. Exploiting ozonolysis-microbe synergy for biomass processing: Application in lignocellulosic biomass 2681 2.9 26 pretreatment. Biomass and Bioenergy, 2017, 105, 147-154. Biomass saccharification is largely enhanced by altering wall polymer features and reducing silicon accumulation in rice cultivars harvested from nitrogen fertilizer supply. Bioresource Technology, 2682 4.8 2017, 243, 957-965. Ethanol production from chitosan by the nematophagous fungus Pochonia chlamydosporia and the 2683 entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Microbiological Research, 2.5 21 2017, 204, 30-39. Cellulase Adsorption during the Hydrolysis of Organosolv- and Organocat-Pretreated Beech Wood. 2684 2.5 Energy & amp; Fuels, 2017, 31, 9507-9516. Bamboo as Fuel., 2017, , 149-178. 2685 2 Biobutanol production from brewer's spent grain hydrolysates by Clostridium beijerinckii. 2686 4.8 Bioresource Technology, 2017, 244, 166-174. Enhanced enzymatic saccharification of corn stover by in situ modification of lignin with poly 2687 (ethylene glycol) ether during low temperature alkali pretreatment. Bioresource Technology, 2017, 4.8 42 244, 92-99. Daphnia magna demonstrated sufficient sensitivity in techno-economic optimization of lignocellulose 2688 1.1 bioethanol production. 3 Biotech, 2017, 7, 162. Pretreatment conditions of palm oil mill effluent (POME) for thermophilic biohydrogen production 2689 3.8 54 by mixed culture. International Journal of Hydrogen Energy, 2017, 42, 27512-27522. Efficient bioconversion of whole sweet sorghum plant to acetone, butanol, and ethanol improved by acetone delignification. Journal of Cleaner Production, 2017, 166, 1428-1437. Pretreatments for Enhanced Enzymatic Hydrolysis of Pinewood: a Review. Bioenergy Research, 2017, 10, 2691 2.228 1138-1154. Recent Trends in Sustainable Textile Waste Recycling Methods: Current Situation and Future 2692 Prospects. Topics in Current Chemistry, 2017, 375, 76.

#	Article	IF	Citations
2694	Degradation of lignin in birch sawdust treated by a novel Myrothecium verrucaria coupled with ultrasound assistance. Bioresource Technology, 2017, 244, 969-974.	4.8	23
2695	Strategies for enzyme saving during saccharification of pretreated lignocellulo-starch biomass: effect of enzyme dosage and detoxification chemicals. Heliyon, 2017, 3, e00384.	1.4	13
2696	Characterization of Municipal Solid Waste (MSW): Global Trends. , 2017, , 101-110.		1
2697	Silica Removal from Rice Straw To Improve its Hydrolysis and Ethanol Production. Industrial & Engineering Chemistry Research, 2017, 56, 9793-9798.	1.8	77
2698	Development of an integrated process to produce d-mannose and bioethanol from coffee residue waste. Bioresource Technology, 2017, 244, 1039-1048.	4.8	45
2699	Biohydrogen production by locally isolated facultative bacterial species using the biomass of Eichhornia crassipes: effect of acid and alkali treatment. Energy, Ecology and Environment, 2017, 2, 350-359.	1.9	9
2700	Industrial Enzymes and Biocatalysis. , 2017, , 1571-1638.		5
2701	Biomass Conversion. , 2017, , 285-419.		7
2702	Optimization of pretreatment conditions for enhanced sugar release. International Journal of Green Energy, 2017, 14, 1110-1118.	2.1	7
2704	Analysis of graphene-like activated carbon derived from rice straw for application in supercapacitor. Chinese Chemical Letters, 2017, 28, 2290-2294.	4.8	51
2705	Biodiesel synthesis from Saussurea heteromalla (D.Don) Hand-Mazz integrating ethanol production using biorefinery approach. Energy, 2017, 141, 1810-1818.	4.5	30
2706	Organosolv-Water Cosolvent Phase Separation on Cellulose and its Influence on the Physical Deconstruction of Cellulose: A Molecular Dynamics Analysis. Scientific Reports, 2017, 7, 14494.	1.6	29
2707	Biorefinery-Based Lactic Acid Fermentation: Microbial Production of Pure Monomer Product. Advances in Polymer Science, 2017, , 27-66.	0.4	21
2708	7. Integrated biofuels process synthesis: integration between bioethanol and biodiesel processes. , 2017, , 241-289.		1
2711	Enzymatic breakdown of lignocellulosic biomass: the role of glycosyl hydrolases and lytic polysaccharide monooxygenases. Biotechnology and Biotechnological Equipment, 0, , 1-16.	0.5	32
2712	Evaluation of the use of protic ionic liquids on biomass fractionation. Fuel, 2017, 206, 145-154.	3.4	72
2713	Sorghum husk biomass as a potential substrate for production of cellulolytic and xylanolytic enzymes by Nocardiopsis sp. KNU. 3 Biotech, 2017, 7, 163.	1.1	3
2714	Sugar, acid and furfural quantification in a sulphite pulp mill: Feedstock, product and hydrolysate analysis by HPLC/RID. Biotechnology Reports (Amsterdam, Netherlands), 2017, 15, 75-83.	2.1	21

#	Article	IF	CITATIONS
2715	Improvement in ethanol productivity of engineered <i>E. coli</i> strain SSY13 in defined medium via adaptive evolution. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 1375-1384.	1.4	13
2716	Production of bioalcohol and biomethane. , 2017, , 61-86.		7
2717	Thermodynamic analysis of ethanol reforming for hydrogen production. , 2017, , 187-216.		0
2718	Algae biomass as a precursor for synthesis of nitrogen-and sulfur-co-doped carbon dots: A better probe in Arabidopsis guard cells and root tissues. Journal of Photochemistry and Photobiology B: Biology, 2017, 174, 315-322.	1.7	36
2719	Effect of Different Sugar Beet Pulp Pretreatments on Biogas Production Efficiency. Applied Biochemistry and Biotechnology, 2017, 181, 1211-1227.	1.4	40
2720	Integrated analysis of transcriptome and metabolites reveals an essential role of metabolic flux in starch accumulation under nitrogen starvation in duckweed. Biotechnology for Biofuels, 2017, 10, 167.	6.2	42
2721	Isolation, characterization and transcriptome analysis of a novel Antarctic Aspergillus sydowii strain MS-19 as a potential lignocellulosic enzyme source. BMC Microbiology, 2017, 17, 129.	1.3	52
2722	Thermus thermophilus as source of thermozymes for biotechnological applications: homologous expression and biochemical characterization of an α-galactosidase. Microbial Cell Factories, 2017, 16, 28.	1.9	38
2723	Bioenergy production from second- and third-generation feedstocks. , 2017, , 559-599.		13
2724	Hydrothermal co-carbonization of sewage sludge and pinewood sawdust for nutrient-rich hydrochar production: Synergistic effects and products characterization. Journal of Environmental Management, 2017, 201, 52-62.	3.8	122
2725	Co-fermentation using Recombinant Saccharomyces cerevisiae Yeast Strains Hyper-secreting Different Cellulases for the Production of Cellulosic Bioethanol. Scientific Reports, 2017, 7, 4428.	1.6	46
2726	Comparison of autohydrolysis and ionic liquid 1-butyl-3-methylimidazolium acetate pretreatment to enhance enzymatic hydrolysis of sugarcane bagasse. Bioresource Technology, 2017, 224, 714-720.	4.8	55
2727	Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques. Renewable and Sustainable Energy Reviews, 2017, 68, 788-807.	8.2	173
2728	Enhanced saccharification of wheat straw with the application of ultrasonic-assisted quaternary ammonium hydroxide pretreatment. Process Biochemistry, 2017, 53, 180-187.	1.8	28
2729	Characterization of Clostridium thermocellum (B8) secretome and purified cellulosomes for lignocellulosic biomass degradation. Enzyme and Microbial Technology, 2017, 97, 43-54.	1.6	32
2730	Efficient Enzymatic Digestion of Alkali Treated Maize Stover Holocellulose by Developing Balanced Cocktail of Cellulolytic and Hemicellulolytic Enzymes. Waste and Biomass Valorization, 2017, 8, 1969-1979.	1.8	1
2731	Effects of microwave and ultrasound irradiations on dark fermentative bio-hydrogen production from food and yard wastes. International Journal of Hydrogen Energy, 2017, 42, 4040-4050.	3.8	55
2732	Pilot-scale pretreatments of sugarcane bagasse with steam explosion and mineral acid, organic acid, and mixed acids: synergies, enzymatic hydrolysis efficiencies, and structure-morphology correlations. Biomass Conversion and Biorefinery, 2017, 7, 179-189.	2.9	10

#	Article	IF	CITATIONS
2733	Pilot-scale investigation on the treatment of cellulosic ethanol biorefinery wastewater. Chemical Engineering Journal, 2017, 309, 409-416.	6.6	18
2734	Aqueous enzymatic process for cell wall degradation and lipid extraction from Nannochloropsis sp Bioresource Technology, 2017, 223, 312-316.	4.8	60
2735	Selective single-stage xylan-to-xylose hydrolysis and its effect on enzymatic digestibility of energy crops giant reed and cardoon for bioethanol production. Industrial Crops and Products, 2017, 95, 104-112.	2.5	11
2736	Metal nanoparticles supported on WO ₃ nanosheets for highly selective hydrogenolysis of cellulose to ethylene glycol. Green Chemistry, 2017, 19, 682-691.	4.6	107
2737	Use of Swine Wastewater as Alternative Substrate for Mycelial Bioconversion of White Rot Fungi. Applied Biochemistry and Biotechnology, 2017, 181, 844-859.	1.4	3
2738	Ethanol production from lignocellulosic substrate Prosopis juliflora. Renewable Energy, 2017, 103, 701-707.	4.3	26
2739	Chemicals from biomass: technological <i>versus</i> environmental feasibility. A review. Biofuels, Bioproducts and Biorefining, 2017, 11, 195-214.	1.9	126
2740	Waste Bread as a Biomass Source: Optimization of Enzymatic Hydrolysis and Relation between Rheological Behavior and Glucose Yield. Waste and Biomass Valorization, 2017, 8, 775-782.	1.8	22
2741	Comparison of different pretreatment methods for efficient conversion of bagasse into ethanol. Biofuels, 2017, 8, 135-141.	1.4	4
2742	Improvement and Characterization in Enzymatic Hydrolysis of Regenerated Wheat Straw Dissolved by LiCl/DMAc Solvent System. Applied Biochemistry and Biotechnology, 2017, 181, 177-191.	1.4	10
2743	Recent Advances in Sugarcane Industry Solid By-Products Valorization. Waste and Biomass Valorization, 2017, 8, 241-266.	1.8	45
2744	Kinetic modeling and dynamic analysis of simultaneous saccharification and fermentation of cellulose to bioethanol. Energy Conversion and Management, 2017, 141, 236-243.	4.4	21
2745	Performance of basic mixed oxides for aqueous-phase 5-hydroxymethylfurfural-acetone aldol condensation. Applied Catalysis B: Environmental, 2017, 201, 221-231.	10.8	68
2746	An overview of the enzyme potential in bioenergy-producing biorefineries. Journal of Chemical Technology and Biotechnology, 2017, 92, 906-924.	1.6	48
2747	Dilute nitric-acid pretreatment of oat hulls for ethanol production. Biochemical Engineering Journal, 2017, 126, 118-125.	1.8	42
2748	Environmental impact and sustainability study on biofuels for transportation applications. Renewable and Sustainable Energy Reviews, 2017, 67, 277-288.	8.2	115
2749	Pyrolysis of wastes generated through saccharification of oak tree by using CO2 as reaction medium. Applied Thermal Engineering, 2017, 110, 335-345.	3.0	45
2750	Microwave-Assisted Pretreatment of Sago Palm Bark. Journal of Wood Chemistry and Technology, 2017, 37, 26-42.	0.9	22

ARTICLE

IF CITATIONS

2751	Biomass as Feedstock. , 2017, , 1723-1775.		1
2752	The role of nanosized nickel particles in microwave-assisted dry reforming of lignin. Chemical Engineering Journal, 2017, 309, 628-637.	6.6	37
2753	A review of the potential of pretreated solids to improve gas biofuels production in the context of an OFMSW biorefinery. Journal of Chemical Technology and Biotechnology, 2017, 92, 937-958.	1.6	20
2754	Impact of co-pretreatment of calcium hydroxide and steam explosion on anaerobic digestion efficiency with corn stover. Environmental Technology (United Kingdom), 2017, 38, 1465-1473.	1.2	23
2755	Insulation material production from onion skin and peanut shell fibres, fly ash, pumice, perlite, barite, cement and gypsum. Materials Today Communications, 2017, 10, 14-24.	0.9	26
2756	Characterization of microwave-alkali-acid pre-treated rice straw for optimization of ethanol production via simultaneous saccharification and fermentation (SSF). Energy Conversion and Management, 2017, 141, 133-144.	4.4	105
2757	Effect of Drying Temperature on <i>Agave tequilana</i> Leaves: A Pretreatment for Releasing Reducing Sugars for Biofuel Production. Journal of Food Process Engineering, 2017, 40, e12455.	1.5	13
2758	Innovative pretreatment strategies for biogas production. Bioresource Technology, 2017, 224, 13-24.	4.8	172
2759	Effect of emulsification and blending on the oxygenation and substitution of diesel fuel for compression ignition engine. Renewable and Sustainable Energy Reviews, 2017, 75, 1281-1294.	8.2	60
2760	Conversion of CCA-treated wood to ethanol: a method to reduce leaching of metals from disposed treated wood prior to disposal. Journal of Material Cycles and Waste Management, 2017, 19, 1008-1016.	1.6	1
2761	Improving cellulase productivity of Penicillium oxalicum RE-10 by repeated fed-batch fermentation strategy. Bioresource Technology, 2017, 227, 155-163.	4.8	57
2762	Tunable polyesterification of xylitol: from linear to crosslinked structures. Polymer International, 2017, 66, 532-539.	1.6	5
2763	Optimization of Cellulase Production from Isolated Cellulolytic Bacterium: Comparison between Genetic Algorithms, Simulated Annealing, and Response Surface Methodology. Chemical Engineering Communications, 2017, 204, 28-38.	1.5	9
2764	Isolation and Characterization of Cellulase Producing Bacteria from Tropical Mangrove Soil. , 2017, , .		0
2765	Biomass to Liquid (BTL) Fuels. Springer Handbooks, 2017, , 1117-1132.	0.3	1
2766	Introduction to Characterization Methods for Heterogeneous Catalysts and Their Application to Cellulose Conversion Mechanisms. Biofuels and Biorefineries, 2017, , 31-96.	0.5	0
2767	Production of second-generation ethanol from saccharine sorghum bagasse. Molecular Crystals and Liquid Crystals, 2017, 655, 236-242.	0.4	2
2768	Fermentable sugars production from lignocellulosic materials hydrolysis by thermophilic enzymes from Bacillus subtilis J12. Energy Procedia, 2017, 138, 151-156.	1.8	6

	Сітат	CITATION REPORT	
#	Article	IF	CITATIONS
2769	Characterization of the pre-treated biomass of <i>Eichhornia crassipes</i> (water hyacinth) for the second generation ethanol production. Molecular Crystals and Liquid Crystals, 2017, 655, 224-235.	0.4	10
2770	Optimization of laccase production and its application in delignification of biomass. International Journal of Recycling of Organic Waste in Agriculture, 2017, 6, 351-365.	2.0	57
2771	Evaluation of the effects of operational parameters in the pretreatment of sugarcane bagasse with diluted sulfuric acid using analysis of variance. Chemical Engineering Communications, 2017, 204, 1369-1390.	1.5	15
2772	Oxygen-radical pretreatment promotes cellulose degradation by cellulolytic enzymes. Biotechnology for Biofuels, 2017, 10, 290.	6.2	15
2773	Kvasci za proizvodnju bioetanola iz hidrolizata lignoceluloznih sirovina. Glasnik ZaÅ _i tite Bilja, 2017, 40, 24-33.	0.1	0
2775	Biomass Compositional Analysis for Conversion to Renewable Fuels and Chemicals. , 0, , .		26
2776	Living Mulch for Sustainable Maize Stover Biomass Harvest. Crop Science, 2017, 57, 3273-3290.	0.8	11
2777	Developing nanocelluloses from prairie cordgrass by combination of homogenizing and chemical pretreatments. , 2017, , .		0
2778	Comparative Performance of Sugarcane Bagasse and Black Polyethylene as Mulch for Squash (Cucurbita pepo L.) Production. Journal of Agricultural Science, 2017, 9, 1.	0.1	4
2780	Pretreatments and enzymatic hydrolysis of sugarcane bagasse aiming at the enhancement of the yield of glucose and xylose. Brazilian Journal of Chemical Engineering, 2017, 34, 937-947.	0.7	35
2781	Soybean Straw, Corn Stover and Sunflower Stalk as Possible Substrates for Biogas Production in Croatia: A Review. Chemical and Biochemical Engineering Quarterly, 2017, 31, 187-198.	0.5	30
2782	Clean and Sustainable Energy Technologies. , 2017, , 73-89.		13
2783	Influence of In-Cylinder Air Flow on Spray Propagation. SAE International Journal of Engines, 0, 10, 1398-1410.	0.4	6
2784	Immobilization of Cellulase on a Functional Inorganic–Organic Hybrid Support: Stability and Kinetic Study. Catalysts, 2017, 7, 374.	1.6	46
2785	Potency of <i>Trichoderma aureoviride</i> UPM 09 and <i>Fusarium equiseti UPM 09 in the pretreatment and hydrolysis of lignocelluolosic biomass. Bayero Journal of Pure and Applied Sciences, 2017, 9, 51.</i>	0.1	0
2786	Rye: Grain-Quality Characteristics and Management of Quality Requirements. , 2017, , 153-178.		11
2787	Biomass Valorization: Agricultural Waste in Environmental Protection, Phytomedicine and Biofuel Production. , 0, , .		6
2788	Synthesis and Characteristic of Xylan-grafted-polyacrylamide and Application for Improving Pulp Properties. Materials, 2017, 10, 971.	1.3	9

ARTICLE IF CITATIONS # Valorization of Lignin by Partial Wet Oxidation Using Sustainable Heteropoly Acid Catalysts. 2789 1.7 30 Molecules, 2017, 22, 1625. Preparation and Characterization of Cellulose Nanocrystals from the Bio-ethanol Residuals. 2790 1.9 Nanomaterials, 2017, 7, 51. Mycotoxin Biotransformation by Native and Commercial Enzymes: Present and Future Perspectives. 2791 1.5 148 Toxins, 2017, 9, 111. Industrial Bioprocesses and the Biorefinery Concept., 2017, , 3-27. 2792 Effect of xylanase, urea, Tween and Triton additives on bioethanol production of corn stover. IOP 2793 0.2 0 Conference Series: Earth and Environmental Science, 2017, 59, 012055. 2794 Biotechnology for Agricultural Waste Recycling., 2017, , 223-240. Effect of Enzymatic Beech Fagus Sylvatica Wood Hydrolysate on Chlorella Biomass, Fatty Acid and 2795 1.3 1 Pigment Production. Applied Sciences (Switzerland), 2017, 7, 871. Microwave-Assisted Alkali Pre-Treatment, Densification and Enzymatic Saccharification of Canola 2796 1.6 Straw and Oat Hull. Bioengineering, 2017, 4, 25. Enzymatically-Mediated Co-Production of Cellulose Nanocrystals and Fermentable Sugars. Catalysts, 2797 1.6 19 2017, 7, 322. 2798 High-Titer Methane from Organosolv-Pretreated Spruce and Birch. Energies, 2017, 10, 263. 1.6 Effects of Pretreatments on Yields, Selectivity and Properties of Products from Pyrolysis of 2799 1.5 12 Phragmites australis (Common Reeds). Environments - MDPI, 2017, 4, 96. Classification of Biorefineries Taking into Account Sustainability Potentials and Flexibility., 2017,, 2800 1-39. Lignocellulosic Biomass Valorization: Production of Ethanol., 2017, , 601-604. 2801 9 Synthetic Microbial Ecology: Engineering Habitats for Modular Consortia. Frontiers in Microbiology, 1.5 84 2017, 8, 1125. Adaptation of Methanogenic Inocula to Anaerobic Digestion of Maize Silage. Frontiers in 2803 1.5 45 Microbiology, 2017, 8, 1881. Enhancement of Methane Concentration by Removing Contaminants from Biogas Mixtures Using Combined Method of Absorption and Adsorption. International Journal of Chemical Engineering, 2017, 2804 44 2017, 1-9. Expression, Docking, and Molecular Dynamics of Endo-<i>Î²</i>-1,4-xylanase | Gene of<i>Trichoderma 2805 0.9 4 virens</i>in<i>Pichia stipitis</i>. BioMed Research International, 2017, 2017, 1-11. The Protagonism of Biocatalysis in Green Chemistry and Its Environmental Benefits. Catalysts, 2017, 7, 1.6 64 9

#	Article	IF	CITATIONS
2807	Impact of Sugarcane Bagasse Ash as an Amendment on the Physical Properties, Nutrient Content and Seedling Growth of a Certified Organic Greenhouse Growing Media. Journal of Agricultural Science, 2017, 9, 1.	0.1	11
2808	Recent Trends in Sustainable Textile Waste Recycling Methods: Current Situation and Future Prospects. Topics in Current Chemistry Collections, 2017, , 189-228.	0.2	27
2809	Strategies to Increase Energy Recovery From Phase-Separated Anaerobic Digestion of Organic Solid Waste. , 2017, , 113-134.		2
2810	Characterization of a thermophilic cellulase from Geobacillus sp. HTA426, an efficient cellulase-producer on alkali pretreated of lignocellulosic biomass. PLoS ONE, 2017, 12, e0175004.	1.1	56
2811	Methods for Extractions of Value-Added Nutraceuticals From Lignocellulosic Wastes and Their Health Application. , 2017, , 1-64.		7
2812	A Biorefinery Processing Perspective for the Production of Polymers. , 2017, , 335-370.		0
2813	Principles and Development of Lignocellulosic Biomass Pretreatment for Biofuels. Advances in Bioenergy, 2017, , 1-68.	0.5	44
2814	Improving cellulase production in submerged fermentation by the expression of a Vitreoscilla hemoglobin in Trichoderma reesei. AMB Express, 2017, 7, 203.	1.4	9
2815	How does cellulosome composition influence deconstruction of lignocellulosic substrates in Clostridium (Ruminiclostridium) thermocellum DSM 1313?. Biotechnology for Biofuels, 2017, 10, 222.	6.2	47
2816	A novel, highly efficient β-glucosidase with a cellulose-binding domain: characterization and properties of native and recombinant proteins. Biotechnology for Biofuels, 2017, 10, 256.	6.2	22
2817	How does technology pathway choice influence economic viability and environmental impacts of lignocellulosic biorefineries?. Biotechnology for Biofuels, 2017, 10, 268.	6.2	29
2818	Production of the versatile cellulase for cellulose bioconversion and cellulase inducer synthesis by genetic improvement of Trichoderma reesei. Biotechnology for Biofuels, 2017, 10, 272.	6.2	48
2819	Predicting the most appropriate wood biomass for selected industrial applications: comparison of wood, pulping, and enzymatic treatments using fluorescent-tagged carbohydrate-binding modules. Biotechnology for Biofuels, 2017, 10, 293.	6.2	20
2820	Lignocellulose binding of a Cel5A-RtCBM11 chimera with enhanced β-glucanase activity monitored by electron paramagnetic resonance. Biotechnology for Biofuels, 2017, 10, 269.	6.2	8
2821	Biomass as Raw Material for Production of Highâ€Value Products. , 0, , .		26
2822	Sugar Strategies for Biomass Biochemical Conversion. , 2017, , 137-164.		5
2823	Lignin Extraction from Lignocellulosic Biomass Using Sub- and Supercritical Fluid Technology as Precursor for Carbon Fiber Production. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2017, 96, 255-260.	0.2	15
2824	Lignin Extraction from Coconut Shell Using Aprotic Ionic Liquids. BioResources, 2017, 12, .	0.5	17

#	Article	IF	CITATIONS
2825	Eggshells assisted hydrolysis of banana pulp for biogas production. African Journal of Environmental Science and Technology, 2017, 11, 71-78.	0.2	1
2826	Optimization of Pretreatment and Alkaline Cooking of Wheat Straw on its Pulpability Using Response Surface Methodology. BioResources, 2017, 13, .	0.5	2
2827	Thermal Hydrolysis of Orange Peel and its Fermentation with Alginate Beads to Produce Ethanol. BioResources, 2017, 12, .	0.5	0
2828	Switchgrass Biomass Quality as Affected by Nitrogen Rate, Harvest Time, and Storage. Agronomy Journal, 2017, 109, 86-96.	0.9	10
2829	Characterization and Influence of a Multi-enzymatic Biopreparation for Biogas Yield Enhancement. BioResources, 2017, 12, .	0.5	10
2830	Influence of size reduction treatments on sugar recovery from Norway spruce for butanol production. Bioresource Technology, 2018, 257, 113-120.	4.8	19
2831	A biorefinery approach for fractionation of Miscanthus lignocellulose using subcritical water extraction and a modified organosolv process. Biomass and Bioenergy, 2018, 111, 52-59.	2.9	13
2832	Temperature-dependent phase behaviour of tetrahydrofuran–water alters solubilization of xylan to improve co-production of furfurals from lignocellulosic biomass. Green Chemistry, 2018, 20, 1612-1620.	4.6	39
2833	Microbe-Mediated Bioremediation: An Eco-friendly Sustainable Approach for Environmental Clean-Up. Microorganisms for Sustainability, 2018, , 145-163.	0.4	13
2834	Designing a novel dual bed reactor to realize efficient ethanol synthesis from dimethyl ether and syngas. Catalysis Science and Technology, 2018, 8, 2087-2097.	2.1	28
2835	Advances in Soil Microbiology: Recent Trends and Future Prospects. Microorganisms for Sustainability, 2018, , .	0.4	11
2836	Cellulose recovery from Quercus sp. sawdust using Ethanosolv pretreatment. Biomass and Bioenergy, 2018, 111, 114-124.	2.9	16
2837	Enhancement of colloidal particle and lignin removal from pre-hydrolysis liquor of aspen by a combination of pectinase and cationic polymer treatment. Separation and Purification Technology, 2018, 199, 78-83.	3.9	11
2838	Bioethanol production from rice hull and evaluation of the final solid residue. Chemical Engineering Communications, 2018, 205, 833-845.	1.5	6
2839	Enhanced lignin extraction from different species of oil palm biomass: Kinetics and optimization of extraction conditions. Industrial Crops and Products, 2018, 116, 122-136.	2.5	60
2840	Microbial Fuel Cell (MFC) Development from Anaerobic Digestion System. Green Energy and Technology, 2018, , 9-31.	0.4	4
2841	Comparison of liquid hot water, very dilute acid and alkali treatments for enhancing enzymatic digestibility of hazelnut tree pruning residues. Bioresource Technology, 2018, 261, 158-165.	4.8	43
2842	Selective Hydrogenation of CO ₂ to Ethanol over Cobalt Catalysts. Angewandte Chemie - International Edition, 2018, 57, 6104-6108.	7.2	241

#	Article	IF	CITATIONS
2843	Selective Hydrogenation of CO ₂ to Ethanol over Cobalt Catalysts. Angewandte Chemie, 2018, 130, 6212-6216.	1.6	34
2844	Combined bioaugmentation with anaerobic ruminal fungi and fermentative bacteria to enhance biogas production from wheat straw and mushroom spent straw. Bioresource Technology, 2018, 260, 364-373.	4.8	57
2845	Improvement of bagasse become lignosulfonate surfactant for oil industry. IOP Conference Series: Earth and Environmental Science, 2018, 106, 012105.	0.2	2
2846	Comparison of the structural characterization of lignophenols and alkaline lignins before and after methylolation. Wood Science and Technology, 2018, 52, 1133-1151.	1.4	7
2847	Hydrochars from bamboo sawdust through acid assisted and two-stage hydrothermal carbonization for removal of two organics from aqueous solution. Bioresource Technology, 2018, 261, 257-264.	4.8	74
2848	Value-added biotransformation of cellulosic sugars by engineered Saccharomyces cerevisiae. Bioresource Technology, 2018, 260, 380-394.	4.8	42
2849	Assessment of the adequacy of different Mediterranean waste biomass types for fermentative hydrogen production and the particular advantage of carob (Ceratonia siliqua L.) pulp. International Journal of Hydrogen Energy, 2018, 43, 7773-7783.	3.8	6
2850	Potassium and soot interaction in fast biomass pyrolysis at high temperatures. Fuel, 2018, 225, 89-94.	3.4	34
2851	Wet torrefaction of biomass for high quality solid fuel production: A review. Renewable and Sustainable Energy Reviews, 2018, 91, 259-271.	8.2	163
2852	Comparative analysis of strong and weak acid pretreatment methods under pressurized and non-pressurized conditions for agro-industrial waste of apple pulp. Energy and Environment, 2018, 29, 1038-1052.	2.7	2
2853	Key aspects in the strategic development of synthetic natural gas (BioSNG) supply chains. Biomass and Bioenergy, 2018, 110, 80-97.	2.9	11
2854	Comparative study of two different alkali-mechanical pretreatments of corn stover for bioethanol production. Fuel, 2018, 221, 21-27.	3.4	61
2855	Importance of Agricultural and Industrial Waste in the Field of Nanocellulose and Recent Industrial Developments of Wood Based Nanocellulose: A Review. ACS Sustainable Chemistry and Engineering, 2018, 6, 2807-2828.	3.2	347
2856	Strategies to modify physicochemical properties of hemicelluloses from biorefinery and paper industry for packaging material. Reviews in Environmental Science and Biotechnology, 2018, 17, 47-69.	3.9	47
2857	Î ['] cidogenic fermentation of wheat straw after chemical and microbial pretreatment for biofuel applications. Energy Conversion and Management, 2018, 160, 509-517.	4.4	19
2858	Concentrated Levulinic Acid Production from Sugar Cane Molasses. Energy & Fuels, 2018, 32, 3526-3531.	2.5	19
2859	Xylitol as Sweetener. Reference Series in Phytochemistry, 2018, , 129-149.	0.2	0
2860	Solventâ€Free Enzyme Activity: Quick, High‥ielding Mechanoenzymatic Hydrolysis of Cellulose into Glucose. Angewandte Chemie - International Edition, 2018, 57, 2621-2624.	7.2	72

#	Article	IF	Citations
2861	Biomass for water defluoridation and current understanding on biosorption mechanisms: A review. Environmental Progress and Sustainable Energy, 2018, 37, 1560-1572.	1.3	20
2862	Solventâ€Free Enzyme Activity: Quick, Highâ€Yielding Mechanoenzymatic Hydrolysis of Cellulose into Glucose. Angewandte Chemie, 2018, 130, 2651-2654.	1.6	34
2863	Screening of a microbial consortium for selective degradation of lignin from tree trimmings. Bioresource Technology, 2018, 254, 247-255.	4.8	48
2864	Subcritical water hydrolysis of sugar beet pulp towards production of monosaccharide fraction. Industrial Crops and Products, 2018, 115, 32-39.	2.5	16
2865	Historical Development of Biofuels. , 2018, , 17-45.		3
2866	Biofuels: Production of fungal-mediated ligninolytic enzymes and the modes of bioprocesses utilizing agro-based residues. Biocatalysis and Agricultural Biotechnology, 2018, 14, 57-71.	1.5	37
2867	Two-stage processing of Miscanthus giganteus using anhydrous ammonia and hot water for effective xylan recovery and improved enzymatic saccharification. Bioresource Technology, 2018, 255, 163-170.	4.8	22
2868	Cellulose–hemicellulose interactions at elevated temperatures increase cellulose recalcitrance to biological conversion. Green Chemistry, 2018, 20, 921-934.	4.6	49
2869	Pyrolysis Products from Residues of Palm Oil Industry. , 2018, , 7-24.		1
2870	Retting Process as a Pretreatment of Natural Fibers for the Development of Polymer Composites. Springer Series on Polymer and Composite Materials, 2018, , 97-135.	0.5	34
2871	High yielding tropical energy crops for bioenergy production: Effects of plant components, harvest years and locations on biomass composition. Bioresource Technology, 2018, 251, 218-229.	4.8	35
2872	Silylation and characterization of microcrystalline cellulose isolated from indonesian native oil palm empty fruit bunch. Carbohydrate Polymers, 2018, 184, 74-81.	5.1	39
2873	Assessment of biomass alterations during hydrothermal pretreatment by in-situ dynamic mechanical analysis. Biomass and Bioenergy, 2018, 108, 330-337.	2.9	6
2874	Enzymatic Recycling of High-Value Phosphor Flame-Retardant Pigment and Glucose from Rayon Fibers. ACS Sustainable Chemistry and Engineering, 2018, 6, 2386-2394.	3.2	25
2875	Application of Fenton pretreatment on the degradation of rice straw by mixed culture of Phanerochaete chrysosporium and Aspergillus niger. Industrial Crops and Products, 2018, 112, 290-295.	2.5	43
2876	The structure of the anaerobic thermophilic microbial community for the bioconversion of the cellulose-containing substrates into biogas. Process Biochemistry, 2018, 66, 183-196.	1.8	24
2877	Bioethanol production from microwave-assisted acid or alkali-pretreated agricultural residues of cassava using separate hydrolysis and fermentation (SHF). 3 Biotech, 2018, 8, 69.	1.1	29
2878	Treatments to improve obtention of reducing sugars from agave leaves powder. Industrial Crops and Products, 2018, 112, 577-583.	2.5	11

#	Article	IF	CITATIONS
2879	Minimum cocktail of cellulolytic multi-enzyme complexes obtained from white rot fungi via solid-state fermentation. 3 Biotech, 2018, 8, 46.	1.1	4
2880	Towards speciation of organically bound tritium and deuterium: Quantification of non-exchangeable forms in carbohydrate molecules. Chemosphere, 2018, 196, 120-128.	4.2	9
2881	Microwave assisted pretreatment of eucalyptus sawdust enhances enzymatic saccharification and maximizes fermentable sugar yield. Renewable Energy, 2018, 127, 653-660.	4.3	42
2882	Transcriptome and secretome analysis of Aspergillus fumigatus in the presence of sugarcane bagasse. BMC Genomics, 2018, 19, 232.	1.2	60
2883	Quantitative trait loci for cell wall composition traits measured using near-infrared spectroscopy in the model C4 perennial grass Panicum hallii. Biotechnology for Biofuels, 2018, 11, 25.	6.2	8
2884	The β-glucosidase secreted by Talaromyces amestolkiae under carbon starvation: a versatile catalyst for biofuel production from plant and algal biomass. Biotechnology for Biofuels, 2018, 11, 123.	6.2	32
2885	Progress and perspective on lignocellulosic hydrolysate inhibitor tolerance improvement in Zymomonas mobilis. Bioresources and Bioprocessing, 2018, 5, .	2.0	42
2886	Purification and characterizations of a novel recombinant Bacillus velezensis endoglucanase by aqueous two-phase system. Bioresources and Bioprocessing, 2018, 5, .	2.0	3
2887	The effect of organosolv pretreatment on optimization of hydrolysis process to produce the reducing sugar. MATEC Web of Conferences, 2018, 154, 01022.	0.1	7
2888	The unique GH5 cellulase member in the extreme halotolerant fungus Aspergillus glaucus CCHA is an endoglucanase with multiple tolerance to salt, alkali and heat: prospects for straw degradation applications. Extremophiles, 2018, 22, 675-685.	0.9	24
2889	Deep eutectic solvent as an efficient molecular liquid for lignin solubilization and wood delignification. Journal of Molecular Liquids, 2018, 263, 193-199.	2.3	122
2890	Nanoreactors: Strategies to encapsulate enzyme biocatalysts in virus-like particles. New Biotechnology, 2018, 44, 59-63.	2.4	42
2891	Using remote sensing to estimate forage biomass and nutrient contents at different growth stages. Biomass and Bioenergy, 2018, 115, 74-81.	2.9	29
2892	Fed-batch strategies for saccharification of pilot-scale mild-acid and alkali pretreated sugarcane bagasse: Effects of solid loading and surfactant addition. Industrial Crops and Products, 2018, 119, 283-289.	2.5	31
2893	Biogas production from different lignocellulosic biomass sources: advances and perspectives. 3 Biotech, 2018, 8, 233.	1.1	54
2894	Production of Lactic Acid from Empty Fruit Bunch of Palm Oil Using Catalyst of Barium Hydroxide. MATEC Web of Conferences, 2018, 156, 06004.	0.1	3
2895	Reduction of Organic Load and Biodegradation of Palm Oil Mill Effluent by Aerobic Indigenous Mixed Microbial Consortium Isolated from Palm Oil Mill Effluent (POME). Water Conservation Science and Engineering, 2018, 3, 139-156.	0.9	13
2896	The effect of inlet temperature and spark timing on thermo-mechanical, chemical and the total exergy of an SI engine using bioethanol-gasoline blends. Energy Conversion and Management, 2018, 165, 344-353.	4.4	25

CITATION REPORT ARTICLE IF CITATIONS Enhanced H 2 generation from NaBH 4 hydrolysis and methanolysis by cellulose micro-fibrous 50 3.8 cottons as metal templated catalyst. International Journal of Hydrogen Energy, 2018, 43, 6539-6550. Gas-Phase Fructose Conversion to Furfural in a Microfluidized Bed Reactor. ACS Sustainable 3.2 Chemistry and Engineering, 2018, 6, 5580-5587. Anaerobic Digestion of Lignocellulosic Materials Using Ethanol-Organosolv Pretreatment. 0.8 20 Environmental Engineering Science, 2018, 35, 953-960. 1-Butyl-3-methylimidazolium chloride pretreatment of cotton stalk and structure characterization. Renewable Energy, 2018, 125, 668-674. Nanotechnology Applied for Cellulase Improvements. Biofuel and Biorefinery Technologies, 2018, , 0.1 1 93-114. Hydrothermal alkaline sulfite pretreatment in the delivery of fermentable sugars from sugarcane bagasse. New Journal of Chemistry, 2018, 42, 4474-4484. 1.4 Integrated bioethanol production from triticale grain and lignocellulosic straw in Western Canada. 2.525 Industrial Crops and Products, 2018, 117, 75-87. Evaluation of the saccharification and fermentation process of two different seaweeds for an 1.5 ecofriendly bioethanol production. Biocatalysis and Agricultural Biotechnology, 2018, 14, 444-449. Pretreatment of Starch-Free Sugar Palm Trunk (Arenga pinnata) to Enhance Saccharification in 0.1 4 Bioethanol Production. MATEC Web of Conferences, 2018, 156, 01003. Facile dissolution of wood pulp in aqueous NaOH/urea solution by ball milling pretreatment. 2.5 28 Industrial Crops and Products, 2018, 118, 48-52. Pretreatment of Guinea grass (Panicum maximum) with the ionic liquid 1-ethyl-3-methyl imidazolium 2.4 29 acetate for efficient hydrolysis and bioethanol production. Cellulose, 2018, 25, 2997-3009. Study of heavy metals biosorption on native and alkali-treated apricot shells and its application in 2.3 wastewater treatment. Journal of Molecular Liquids, 2018, 259, 340-349. Effects of Green Liquor (GL) and Sodium Carbonate (SC) Pretreatment on Structural Characteristics 0.9 7 of Wheat Stem Lignin. Journal of Wood Chemistry and Technology, 2018, 38, 159-169. Production of Cellulase for Ethanol Fermentation from Pretreated Wheat Straw. Iranian Journal of Science and Technology, Transaction A: Science, 2018, 42, 321-329. Hydrolytic Performance of Aspergillus niger and Trichoderma reesei Cellulases on Lignocellulosic Industrial Pineapple Waste Intended for Bioethanol Production. Waste and Biomass Valorization, 2018, 1.8 17 9, 1359-1368. Crop diversity for mixed first and second generation ethanol production. Biofuels, 2018, 9, 291-303. 1.4

2913	Evaluation of the robustness of the enzymatic hydrolysis in batch and continuous mode by a central composite design. Journal of Food Processing and Preservation, 2018, 42, e13330.	0.9	2
2914	Greenhouse gas assessment of palm oil mill biorefinery in Thailand from a life cycle perspective. Biomass Conversion and Biorefinery, 2018, 8, 43-58.	2.9	22

2897

2898

2899

2900

2901

2902

2903

2904

2905

2907

2908

2909

2910

2911

#	Article	IF	CITATIONS
2915	Intensification of delignification and subsequent hydrolysis for the fermentable sugar production from lignocellulosic biomass using ultrasonic irradiation. Ultrasonics Sonochemistry, 2018, 40, 140-150.	3.8	95
2916	Effects of urea-fertilization rates on the environmental performance of giant reed lignocellulosic feedstock produced for biorefinery purpose. Journal of Cleaner Production, 2018, 172, 4200-4211.	4.6	8
2917	An Ecofriendly and Efficient Strategy for Cost Effective Production of Lignocellulotic Enzymes. Waste and Biomass Valorization, 2018, 9, 891-898.	1.8	13
2918	The effects of different heating periods and exclusion of some fermentation conditions on bioethanol production from plantain pseudo-stem waste using the digestive juice of Archachatina marginata, garlic and Saccharomyces cerevisiae. Biofuels, 2018, 9, 531-539.	1.4	11
2919	Economic, Environmental and Moral Acceptance of Renewable Energy: A Case Study—The Agricultural Biogas Plant at PÄ>ÄÄn. Science and Engineering Ethics, 2018, 24, 299-305.	1.7	15
2920	Synergistic action between extracellular products from white-rot fungus and cellulase significantly improves enzymatic hydrolysis. Bioengineered, 2018, 9, 178-185.	1.4	12
2921	Laccase Validation as Pretreatment of Agave Waste Prior to Saccharification: Free and Immobilized in Superparamagnetic Nanoparticles Enzyme Preparations. Waste and Biomass Valorization, 2018, 9, 223-234.	1.8	14
2922	Wet Air Oxidation of Industrial Lignin Case Study: Influence of the Dissolution Pretreatment and Perovskite-type Oxides. Waste and Biomass Valorization, 2018, 9, 2165-2179.	1.8	17
2923	Effect of Steam Explosion Pretreatment Catalysed by Organic Acid and Alkali on Chemical and Structural Properties and Enzymatic Hydrolysis of Sugarcane Bagasse. Waste and Biomass Valorization, 2018, 9, 2191-2201.	1.8	50
2924	An investigation of raw and torrefied lignocellulosic biomasses with CaO during combustion. Journal of the Energy Institute, 2018, 91, 584-594.	2.7	9
2925	Pre-treatment technologies for dark fermentative hydrogen production: Current advances and future directions. Waste Management, 2018, 71, 734-748.	3.7	77
2926	Oxidative depolymerization of lignin improved by enzymolysis pretreatment with laccase. Journal of Energy Chemistry, 2018, 27, 801-805.	7.1	14
2927	Lignin Sulfonation and SO2 Addition Enhance the Hydrolyzability of Deacetylated and Then Steam-Pretreated Poplar with Reduced Inhibitor Formation. Applied Biochemistry and Biotechnology, 2018, 184, 264-277.	1.4	6
2928	Delignification of Bana Grass Using Sodium hydroxide and Ozone. Waste and Biomass Valorization, 2018, 9, 2099-2105.	1.8	9
2929	Alkaline hydrogen peroxide pretreatment of lignocellulosic biomass: status and perspectives. Biomass Conversion and Biorefinery, 2018, 8, 225-234.	2.9	94
2930	Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production–a review. Biomass Conversion and Biorefinery, 2018, 8, 471-483.	2.9	126
2931	Techno-economic analysis of organosolv pretreatment process from lignocellulosic biomass. Clean Technologies and Environmental Policy, 2018, 20, 1401-1412.	2.1	33
2932	Highâ€performance of <i>Agaricus blazei</i> fungus for the biological pretreatment of elephant grass. Biotechnology Progress, 2018, 34, 42-50.	1.3	4

#	Article	IF	CITATIONS
2933	Ultrasound-assisted biological conversion of biomass and waste materials to biofuels: A review. Ultrasonics Sonochemistry, 2018, 40, 298-313.	3.8	132
2934	High-performance ceramic parts with complex shape prepared by selective laser sintering: a review. Advances in Applied Ceramics, 2018, 117, 100-117.	0.6	124
2935	Furfural and 5-hydroxymethyl-furfural degradation using recombinant manganese peroxidase. Enzyme and Microbial Technology, 2018, 108, 59-65.	1.6	36
2936	Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresource Technology, 2018, 247, 1144-1154.	4.8	346
2937	Production of biodiesel and bioethanol using algal biomass harvested from fresh water river. Renewable Energy, 2018, 116, 606-612.	4.3	83
2938	Microwave-assisted conversion of biomass and waste materials to biofuels. Renewable and Sustainable Energy Reviews, 2018, 82, 1149-1177.	8.2	167
2939	Simultaneously separation of xylo-oligosaccharide and lignosulfonate from wheat straw magnesium bisulfite pretreatment spent liquor using ion exchange resin. Bioresource Technology, 2018, 249, 189-195.	4.8	10
2940	Determination of major biogeochemical processes in a denitrifying woodchip bioreactor for treating mine drainage. Ecological Engineering, 2018, 110, 54-66.	1.6	24
2941	Metabolic engineering and enzyme-mediated processing: A biotechnological venture towards biofuel production – A review. Renewable and Sustainable Energy Reviews, 2018, 82, 436-447.	8.2	73
2942	Prospects for pretreatment methods of lignocellulosic waste biomass for biogas enhancement: opportunities and challenges. Biofuels, 2018, 9, 575-594.	1.4	40
2943	Overexpression of <i>SbMyb60</i> in <i>Sorghum bicolor</i> impacts both primary and secondary metabolism. New Phytologist, 2018, 217, 82-104.	3.5	42
2944	A novel quasi plugâ€flow reactor design for enzymatic hydrolysis of cellulose using rheology experiment and CFD simulation. Canadian Journal of Chemical Engineering, 2018, 96, 770-778.	0.9	11
2945	Interactions of mixing and reaction kinetics of depolymerization of cellulose to renewable fuels. Chemical Engineering Communications, 2018, 205, 47-81.	1.5	4
2946	Preparation of alumina tubular membranes for treating sugarcane vinasse obtained in ethanol production. Separation and Purification Technology, 2018, 190, 195-201.	3.9	12
2947	Inhibition analysis of inhibitors derived from lignocellulose pretreatment on the metabolic activity of <i>Zymomonas mobilis</i> biofilm and planktonic cells and the proteomic responses. Biotechnology and Bioengineering, 2018, 115, 70-81.	1.7	16
2948	Toward the lowest energy consumption and emission in biofuel production: combination of ideal reactors and robust hosts. Current Opinion in Biotechnology, 2018, 50, 19-24.	3.3	38
2949	Growth kinetic and fuel quality parameters as selective criterion for screening biodiesel producing cyanobacterial strains. Bioresource Technology, 2018, 247, 453-462.	4.8	10
2950	Chemical pretreatment of Arundo donax L. for second-generation ethanol production. Electronic Journal of Biotechnology, 2018, 31, 67-74.	1.2	28

#	Article	IF	CITATIONS
2951	Surfactant-mediated hydrothermal pretreatment of Ryegrass followed by enzymatic saccharification for polyhydroxyalkanoate production. Industrial Crops and Products, 2018, 111, 625-632.	2.5	29
2952	Solid-State Treatment of Castor Cake Employing the Enzymatic Cocktail Produced from Pleurotus djamor Fungi. Applied Biochemistry and Biotechnology, 2018, 185, 434-449.	1.4	9
2953	Expression of catalytically efficient xylanases from thermophilic fungus Malbranchea cinnamomea for synergistically enhancing hydrolysis of lignocellulosics. International Journal of Biological Macromolecules, 2018, 108, 185-192.	3.6	27
2954	Cellulose transformation into methyl glucosides catalyzed by H ₃ PW ₁₂ O ₄₀ : Enhancement of ionic liquid pretreatment. Canadian Journal of Chemical Engineering, 2018, 96, 1250-1255.	0.9	10
2955	Methanogenesis of organic wastes and their blend in batch anaerobic digester: Experimental and kinetic study. Chemical Engineering Research and Design, 2018, 113, 413-423.	2.7	14
2956	Waste to Wealth. Energy, Environment, and Sustainability, 2018, , .	0.6	15
2957	Anaerobic detoxification fermentation by Rhodospirillum rubrum for rice straw as feed with moderate pretreatment. Preparative Biochemistry and Biotechnology, 2018, 48, 75-83.	1.0	2
2958	Assessment of the detoxification of palm kernel cake hydrolysate for butanol production by Clostridium acetobutylicum YM1. Biocatalysis and Agricultural Biotechnology, 2018, 13, 105-109.	1.5	4
2959	Increased sugar yield from pre-milled Douglas-fir forest residuals with lower energy consumption by using planetary ball milling. Bioresource Technology, 2018, 251, 93-98.	4.8	60
2960	Bioeconomy and Biorefinery: Valorization of Hemicellulose from Lignocellulosic Biomass and Potential Use of Avocado Residues as a Promising Resource of Bioproducts. Energy, Environment, and Sustainability, 2018, , 141-170.	0.6	14
2961	Operational Strategies for Enzymatic Hydrolysis in a Biorefinery. Biofuel and Biorefinery Technologies, 2018, , 223-248.	0.1	17
2962	Simultaneous Saccharification and Fermentation of Lignocellulosic Biomass. Biofuel and Biorefinery Technologies, 2018, , 265-285.	0.1	13
2963	Evaluation of organosolv pretreatment for bioethanol production from lignocellulosic biomass: solvent recycle and process integration. Biomass Conversion and Biorefinery, 2018, 8, 397-411.	2.9	27
2964	Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chemical Reviews, 2018, 118, 505-613.	23.0	898
2965	Anaerobic coâ€digestion of rice straw and soybean straw to increase biogas production by pretreatment with <i>trichoderma reesei</i> RUT C30. Environmental Progress and Sustainable Energy, 2018, 37, 1050-1057.	1.3	14
2966	Advances in Transformation of Lignocellulosic Biomass to Carbohydrate-Derived Fuel Precursors. Biofuel and Biorefinery Technologies, 2018, , 87-116.	0.1	14
2967	Platform Study on the Development of a Nondetoxified Rice Straw Hydrolysate to Its Application in Lipid Production from <i>Mortierella alpina</i> . ACS Sustainable Chemistry and Engineering, 2018, 6, 1225-1234.	3.2	28
2968	The Efficiency of Using Oil Palm Frond Hydrolysate from Enzymatic Hydrolysis in Bioethanol Production. Waste and Biomass Valorization, 2018, 9, 539-548.	1.8	9

#	Article	IF	CITATIONS
2969	Methane recovery from anaerobic digestion of urea-pretreated wheat straw. Renewable Energy, 2018, 115, 139-148.	4.3	84
2970	The usage of enzyme in ultrasound-assisted enzymatic extraction method and its effect on yield extract from Keji Beling (<i>Strobilanthes crispus.</i>) leaves. E3S Web of Conferences, 2018, 67, 03002.	0.2	5
2971	Bioethanol Production from Renewable Raw Materials and its Separation and Purification: a Review. Food Technology and Biotechnology, 2018, 56, 289-311.	0.9	297
2973	Analysis of biological pretreatment of rapeseed straw with white rot fungi for enzymatic hydrolysis. Maderas: Ciencia Y Tecnologia, 2018, , 0-0.	0.7	1
2974	Enzymatic Hydrolysis of Sugarcane Biomass and Heat Integration as Enhancers of Ethanol Production. Journal of Renewable Materials, 2018, 6, 183-194.	1.1	12
2975	Comparative of Lignocellulosic Ethanol Production by Kluyveromyces marxianus and Saccharomyces cerevisiae. , 0, , .		5
2976	Linking lignin source with structural and electrochemical properties of lignin-derived carbon materials. RSC Advances, 2018, 8, 38721-38732.	1.7	42
2977	Natural Fibers for Sustainable Bio-Composites. , 0, , .		31
2978	Assessment of a Mechanical Pretreatment to Enhance Biogas Production from the Noxious Weed Eichhornia Crassipes on Industrial Scale. , 2018, , .		0
2979	Synergistic Treatment Strategy for Efficient Release of Reducing Sugar from Orange Peel during Acid and Enzymatic Treatment Process. , 2018, , .		Ο
2980	To Study the Effect of Mechanical Comminution on Lignin Percentage and Calorific Value of Dry Sugar Cane Leaves. Materials Today: Proceedings, 2018, 5, 18135-18141.	0.9	1
2981	Research on the Cellulase Hydrolysis of Colocasia Antiquorumin in Producing Ethyl Alcohol. IOP Conference Series: Earth and Environmental Science, 0, 192, 012057.	0.2	1
2982	9. Green Chemistry And Chemical Processes For Biomass Utilization. , 2018, , 237-292.		0
2983	Biorefineries for wheat bran. , 2018, , 87-124.		6
2984	Comparison of ethanol yield from pretreated lignocellulo-starch biomass under fed-batch SHF or SSF modes. Heliyon, 2018, 4, e00885.	1.4	40
2985	Hydrogen Production from Energy Poplar Preceded by MEA Pre-Treatment and Enzymatic Hydrolysis. Molecules, 2018, 23, 3029.	1.7	26
2986	Effects of pH on steam explosion extraction of acetylated galactoglucomannan from Norway spruce. Biotechnology for Biofuels, 2018, 11, 311.	6.2	15
2987	Pretreatment of Lignocellulosic Materials as Substrates for Fermentation Processes. Molecules, 2018, 23, 2937.	1.7	345

#	Article	IF	CITATIONS
2988	Effective reduction of antinutritional factors in soybean meal by acetic acid-catalyzed processing. Journal of Food Processing and Preservation, 2018, 42, e13775.	0.9	5
2989	Fermentable Sugar Production from a Coffee Processing By-product after Deep Eutectic Solvent Pretreatment. Bioresource Technology Reports, 2018, 4, 174-180.	1.5	17
2990	Wet Corn Stover Storage: Correlating Fiber Reactivity With Storage Acids Over a Wide Moisture Range. Frontiers in Energy Research, 2018, 6, .	1.2	4
2991	Combined Ball Milling and Ethanol Organosolv Pretreatment to Improve the Enzymatic Digestibility of Three Types of Herbaceous Biomass. Energies, 2018, 11, 2457.	1.6	22
2992	A Pilot Plant Study on the Autoclaving of Food Wastes for Resource Recovery and Reutilization. Sustainability, 2018, 10, 3566.	1.6	8
2993	Sugarcane and Pine Biochar as Amendments for Greenhouse Growing Media for the Production of Bean (Phaseolus vulgaris L.) Seedlings. Journal of Agricultural Science, 2018, 10, 58.	0.1	7
2994	Evaluation of oil palm fronds using fiber cracking technology combined with Indigofera sp. in ruminant ration by Rusitec. AIP Conference Proceedings, 2018, , .	0.3	5
2995	Physical chemical characterization of alkali pretreatment for oil palm empty fruit bunch. AIP Conference Proceedings, 2018, , .	0.3	4
2996	Aminopeptidase Modified Hydrolytic Enzymes to Improve the Efficiency of Sugar Production from Alkaline Pretreated Switchgrass. BioResources, 2018, 13, .	0.5	0
2997	Simultaneous enzymatic saccharification and comminution for the valorization of lignocellulosic biomass toward natural products. BMC Biotechnology, 2018, 18, 79.	1.7	21
2998	Investigation of fast hot compressed water pretreatment of oil palm fronds for fermentable sugar production. AIP Conference Proceedings, 2018, , .	0.3	0
2999	Cellulose-specific Type B carbohydrate binding modules: understanding oligomeric and non-crystalline substrate recognition mechanisms. Biotechnology for Biofuels, 2018, 11, 319.	6.2	4
3000	Investigation of PEG-6000 bridged \$\$hbox {-N-SO}_{3}hbox {H}\$\$ -N-SO 3 H functionalized geminal dicationic ionic liquids for catalytic conversion of fructose to 5-hydroxymethylfurfural. Journal of Chemical Sciences, 2018, 130, 1.	0.7	5
3001	Controlled Depolymerization of Cellulose Fibres Isolated from Lignocellulosic Biomass Wastes. International Journal of Polymer Science, 2018, 2018, 1-11.	1.2	7
3002	Elucidating the Energetics and Effects of Solvents on Cellulose Hydrolysis Using a Polymeric Acid Catalyst. Applied Sciences (Switzerland), 2018, 8, 1767.	1.3	1
3003	Understanding biomass recalcitrance in grasses for their efficient utilization as biorefinery feedstock. Reviews in Environmental Science and Biotechnology, 2018, 17, 707-748.	3.9	58
3004	Chromatographic Recovery of Monosaccharides and Lignin from Lignocellulosic Hydrolysates. Chemical Engineering and Technology, 2018, 41, 2402-2410.	0.9	5
3005	Production and characterization of hybrid coal using sugar impurities extracted from pitch pine. Applied Thermal Engineering, 2018, 145, 174-183.	3.0	4

#	Article	IF	CITATIONS
3006	Role of Natural Deep Eutectic Solvents (NADES) in the Pretreatment of Lignocellulosic Biomass for an Integrated Biorefinery and Bioprocessing Concept. , 2018, , 73-109.		3
3007	Effect of chemical pretreatment on pulp and paper characteristics of bamboo gigantochloa scorthechinii kraft fibers. IOP Conference Series: Materials Science and Engineering, 2018, 368, 012044.	0.3	5
3009	Furfural, 5-HMF, acid-soluble lignin and sugar contents in C. ladanifer and E. arborea lignocellulosic biomass hydrolysates obtained from microwave-assisted treatments in different solvents. Biomass and Bioenergy, 2018, 119, 135-143.	2.9	16
3010	Densification of Agricultural Wastes and Forest Residues: A Review on Influential Parameters and Treatments. , 2018, , 27-51.		11
3011	Application of cassava harvest residues (Manihot esculenta Crantz) in biochemical and thermochemical conversion process for bioenergy purposes: A literature review. African Journal of Biotechnology, 2018, 17, 37-50.	0.3	8
3012	Sustainable Biotechnology- Enzymatic Resources of Renewable Energy. , 2018, , .		18
3013	Arabinoxylans from cereal by-products. , 2018, , 227-251.		12
3014	Enzymatic Hydrolysis of Liquid Hot Water Pre-treated Macro-alga (<i>Ulva lactuca</i>) for Fermentable Sugar Production. MATEC Web of Conferences, 2018, 156, 01015.	0.1	3
3015	Catalytic and thermodynamic properties of β-glucosidases produced by <i>Lichtheimia corymbifera</i> and <i>Byssochlamys spectabilis</i> . Preparative Biochemistry and Biotechnology, 2018, 48, 777-786.	1.0	12
3016	Potential raw materials for biorefineries to ensure food security: The Cocoyam case. Industrial Crops and Products, 2018, 126, 92-102.	2.5	36
3017	Techno-Economic Analysis of Forest Residue Conversion to Sugar Using Three-Stage Milling as Pretreatment. Frontiers in Energy Research, 2018, 6, .	1.2	27
3018	Second-Generation Bioethanol from Coconut Husk. BioMed Research International, 2018, 2018, 1-20.	0.9	30
3019	Pretreatment Empty Fruit Bunch of Oil Palm Tree for Improving Enzymatic Saccharification. , 0, , .		4
3020	Continuous Production of 5â€Hydroxymethylfurfural from Monosaccharide over Zirconium Phosphates. ChemistrySelect, 2018, 3, 10983-10990.	0.7	9
3021	Evaluation of ozonolysis pre-treatment for xylose production through enzymatic hydrolysis. AIP Conference Proceedings, 2018, , .	0.3	1
3022	Quantification of accessible hydroxyl groups in cellulosic pulps by dynamic vapor sorption with deuterium exchange. Cellulose, 2018, 25, 6923-6934.	2.4	26
3023	Production of Bioethanol from Fruit Wastes (Banana, Papaya, Pineapple and Mango Peels) Under Milder Conditions. Journal of Bioprocessing & Biotechniques, 2018, 08, .	0.2	45
3024	Dramatic Simplification of Lignin Heteronuclear Single Quantum Coherence Spectra from Ring-and-Puck Milling Followed by Oxidation. Energy & Fuels, 2018, 32, 11632-11638.	2.5	5

#	Article	IF	CITATIONS
3025	Lignin: Applications and Ways of Utilization (Review). Russian Journal of Applied Chemistry, 2018, 91, 1129-1136.	0.1	17
3026	Efficient pretreatment of lignocellulosic biomass with high recovery of solid lignin and fermentable sugars using Fenton reaction in a mixed solvent. Biotechnology for Biofuels, 2018, 11, 287.	6.2	40
3027	Microbial pretreatment of lignocellulosic biomass for enhanced biomethanation and waste management. 3 Biotech, 2018, 8, 458.	1.1	38
3028	Effect of pretreatment solutions and conditions on decomposition and anaerobic digestion of lignocellulosic biomass in rice straw. Biochemical Engineering Journal, 2018, 140, 108-114.	1.8	44
3029	Zymomonas mobilis immobilization in polymeric membranes for improved resistance to lignocellulose-derived inhibitors in bioethanol fermentation. Biochemical Engineering Journal, 2018, 140, 29-37.	1.8	22
3030	Release of simple sugars from lignocellulosic biomass of Agave salmiana leaves subject to sequential pretreatment and enzymatic saccharification. Biomass and Bioenergy, 2018, 118, 133-140.	2.9	34
3031	Application of Enzymes in Sustainable Liquid Transportation Fuels Production. , 2018, , 219-246.		0
3032	Industrial Applications of Cellulases and Hemicellulases. , 2018, , 267-282.		6
3033	Highly Active and Selective NiFe/SiO ₂ Bimetallic Catalyst with Optimized Solvent Effect for the Liquid-Phase Hydrogenation of Furfural to Furfuryl Alcohol. ACS Sustainable Chemistry and Engineering, 2018, 6, 13287-13295.	3.2	71
3034	Microbial Bioprospecting for Sustainable Development. , 2018, , .		13
3035	Microbial Cellulases: Role in Second-Generation Ethanol Production. , 2018, , 167-187.		3
3036	Lignin Degradation Processes and the Purification of Valuable Products. , 0, , .		18
3037	Systematic procedure and framework for synthesis and evaluation of bioethanol production processes from lignocellulosic biomass. Bioresource Technology Reports, 2018, 4, 29-39.	1.5	14
3038	A review of bioreactor technology used for enzymatic hydrolysis of cellulosic materials. Cellulose, 2018, 25, 6279-6304.	2.4	32
3039	Synthesis and Physicochemical Characterization of Anion Exchanger Based on Green Modified Bottle Gourd Shell. Journal of Spectroscopy, 2018, 2018, 1-16.	0.6	9
3040	Salinity improves growth, photosynthesis and bioenergy characteristics of Phragmites karka. Crop and Pasture Science, 2018, 69, 944.	0.7	11
3040 3041	Salinity improves growth, photosynthesis and bioenergy characteristics of Phragmites karka. Crop and Pasture Science, 2018, 69, 944. Effects of using green waste compost as a biological pre-treatment of lignocellulosic biomass to produce bioenergy. , 2018, , .	0.7	11

#	Article	IF	CITATIONS
3043	Protective Bleaching of Camel Hair in a Neutral Ethanol–Water System. Polymers, 2018, 10, 730.	2.0	5
3044	Fungal Cellulolytic Enzymes. , 2018, , .		7
3045	Pretreatment with lower feed moisture and lower extrusion temperatures aids in the increase in the fermentable sugar yields from fine-milled Douglas-fir. Bioresource Technology, 2018, 269, 262-268.	4.8	16
3046	Potential Applications of Enzymes in Sericulture. , 2018, , 463-472.		1
3047	Sustainable Production of Biofuels from Weedy Biomass and Other Unconventional Lignocellulose Wastes. , 2018, , 83-116.		0
3048	Photoreforming of Lignocellulose into H ₂ Using Nanoengineered Carbon Nitride under Benign Conditions. Journal of the American Chemical Society, 2018, 140, 11604-11607.	6.6	148
3049	Pretreatment Process and Its Synergistic Effects on Enzymatic Digestion of Lignocellulosic Material. , 2018, , 1-25.		4
3050	Preparation of lignocellulose/graphene composite conductive paper. Cellulose, 2018, 25, 6139-6149.	2.4	13
3051	Optimization of dilute acid pretreatment of barley husk and oat husk and determination of their chemical composition. Cellulose, 2018, 25, 6377-6393.	2.4	23
3052	Sugarcane Biochar as an Amendment for Greenhouse Growing Media for the Production of Cucurbit Seedlings. Journal of Agricultural Science, 2018, 10, 104.	0.1	7
3053	Investigation of a Full Scale, Mechanical Pretreatment for Enhanced Biomethane Production from Giant Reed (Arundo Donax). , 2018, , .		0
3054	Inhibition and kinetic studies of lignin degrading enzymes of <i>Ganoderma boninense</i> by naturally occurring phenolic compounds. Journal of Applied Microbiology, 2018, 125, 876-887.	1.4	19
3055	GH43 endo-arabinanase from Bacillus licheniformis: Structure, activity and unexpected synergistic effect on cellulose enzymatic hydrolysis. International Journal of Biological Macromolecules, 2018, 117, 7-16.	3.6	10
3056	Effect of co-products of enzyme-assisted aqueous extraction of soybeans, enzymes, and surfactant on oil recovery from integrated corn-soy fermentation. Industrial Crops and Products, 2018, 121, 441-451.	2.5	17
3057	Evaluation of six ionic liquids and application in pretreatment of sweet sorghum bagasse for bacterial nanocellulose production. Journal of Chemical Technology and Biotechnology, 2018, 93, 3452-3461.	1.6	6
3058	Gas Turbine Fuels and Fuel Systems. Green Energy and Technology, 2018, , 27-49.	0.4	3
3059	Solvent processing of cellulose for effective bioresource utilization. Current Opinion in Green and Sustainable Chemistry, 2018, 14, 40-52.	3.2	31
3060	Recovery of glucose from dried distiller's grain with solubles, using combinations of solid-state fermentation and insect culture. Canadian Journal of Microbiology, 2018, 64, 706-715.	0.8	7

#	Article	IF	CITATIONS
3061	Synthesis of magnetic gold mesoporous silica nanoparticles core shell for cellulase enzyme immobilization: Improvement of enzymatic activity and thermal stability. Process Biochemistry, 2018, 71, 92-100.	1.8	110
3062	Identification of a New 1,4-beta-D-xylosidase Pae1263 from the Whole Genome Sequence of Paenibacillus terrae HPL-003. Biotechnology and Bioprocess Engineering, 2018, 23, 168-175.	1.4	3
3063	Catalytic properties of cellulases and hemicellulases produced by Lichtheimia ramosa: Potential for sugarcane bagasse saccharification. Industrial Crops and Products, 2018, 122, 49-56.	2.5	33
3064	Selective Coupling of Bioderived Aliphatic Alcohols with Acetone Using Hydrotalcite Derived Mg–Al Porous Metal Oxide and Raney Nickel. ACS Sustainable Chemistry and Engineering, 2018, 6, 8468-8475.	3.2	16
3065	Characterization of a novel thermostable GH7 endoglucanase from Chaetomium thermophilum capable of xylan hydrolysis. International Journal of Biological Macromolecules, 2018, 117, 342-349.	3.6	36
3066	Second Generation Ethanol Production. , 2018, , 135-152.		8
3067	Production of biogas (methane and hydrogen) from anaerobic digestion of hemicellulosic hydrolysate generated in the oxidative pretreatment of coffee husks. Bioresource Technology, 2018, 263, 601-612.	4.8	45
3068	Co-production of ethanol, xylo -oligosaccharides and magnesium lignosulfonate from wheat straw by a controlled magnesium bisulfite pretreatment (MBSP). Industrial Crops and Products, 2018, 113, 128-134.	2.5	19
3069	Cellulases and xylanases production by endophytic fungi by solid state fermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse. Industrial Crops and Products, 2018, 122, 66-75.	2.5	91
3070	Effects of organosolv pretreatment conditions for lignocellulosic biomass in biorefinery applications: A review. Journal of Renewable and Sustainable Energy, 2018, 10, .	0.8	127
3071	Co-fermentation of cellobiose and xylose by mixed culture of recombinant Saccharomyces cerevisiae and kinetic modeling. PLoS ONE, 2018, 13, e0199104.	1.1	17
3072	Logistics of Lignocellulosic Feedstocks: Preprocessing as a Preferable Option. Advances in Biochemical Engineering/Biotechnology, 2018, 166, 43-68.	0.6	1
3073	Synthesis of Bioethanol From Invasive Weeds: Process Design, Optimization, and Intensification With Ultrasound. , 2018, , 445-485.		3
3074	Thermochemical Valorization of Paper Deinking Residue through Microwave-Assisted Pyrolysis. , 2018, , 671-692.		4
3075	Transportation fuels from biomass fast pyrolysis, catalytic hydrodeoxygenation, and catalytic fast hydropyrolysis. Progress in Energy and Combustion Science, 2018, 68, 268-309.	15.8	194
3076	Impact of the Acid Treatment on Lignocellulosic Biomass Hard Carbon for Sodiumâ€lon Battery Anodes. ChemSusChem, 2018, 11, 3276-3285.	3.6	49
3077	Penicillium Enzymes for the Saccharification of Lignocellulosic Feedstocks. , 2018, , 121-136.		6
3078	Conversion of Lignocellulosic Feedstocks into Biogas. , 2018, , 111-143.		1

#	Article	IF	CITATIONS
3079	Evaluation of a combined lignocellulosic / waste water bioâ€refinery for the simultaneous production of valuable biochemical products and the remediation of acid mine drainage. Biofuels, Bioproducts and Biorefining, 2018, 12, 649-664.	1.9	8
3080	Recent advances in production and upgrading of bio-oil from biomass: A critical overview. Journal of Environmental Chemical Engineering, 2018, 6, 5101-5118.	3.3	158
3081	Multi-omic elucidation of aromatic catabolism in adaptively evolved Rhodococcus opacus. Metabolic Engineering, 2018, 49, 69-83.	3.6	50
3082	Optimization of biomass pretreatments using fractional factorial experimental design. Biotechnology for Biofuels, 2018, 11, 206.	6.2	37
3083	Extraction and refinement of agricultural plant fibers for composites manufacturing. Comptes Rendus Chimie, 2018, 21, 897-906.	0.2	28
3084	Characterization and analysis of the molecular weight of corn corbs microcrystalline cellulose (MCC) fiber using mass-spectrometry methods. Journal of Physics: Conference Series, 2018, 1040, 012015.	0.3	0
3085	Incorporation of Filler/Additives in Polymer Gel for Advanced Application. Gels Horizons: From Science To Smart Materials, 2018, , 445-492.	0.3	2
3086	Intensification of bioethanol production by using Tween 80 to enhance dilute acid pretreatment and enzymatic saccharification of corncob. Industrial Crops and Products, 2018, 124, 166-176.	2.5	30
3087	One-step process of hydrothermal and alkaline treatment of wheat straw for improving the enzymatic saccharification. Biotechnology for Biofuels, 2018, 11, 137.	6.2	18
3088	Overview: Comparison of pretreatment technologies and fermentation processes of bioethanol from microalgae. Energy Conversion and Management, 2018, 173, 81-94.	4.4	134
3089	Statistical modeling and optimization of pretreatment of <i><i>Bombax ceiba</i></i> with KOH through Box– Behnken design of response surface methodology. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 1114-1124.	1.2	9
3090	Ammonium sulfite pretreatment of wheat straw for efficient enzymatic saccharification. Sustainable Energy Technologies and Assessments, 2018, 29, 12-18.	1.7	14
3091	Functional Genomics in Medicago truncatula. Methods in Molecular Biology, 2018, , .	0.4	2
3092	Gallic Acid Content and an Antioxidant Mechanism Are Responsible for the Antiproliferative Activity of â€~Ataulfo' Mango Peel on LS180 Cells. Molecules, 2018, 23, 695.	1.7	94
3093	Functional Genomics in the Study of Metabolic Pathways in Medicago truncatula: An Overview. Methods in Molecular Biology, 2018, 1822, 315-337.	0.4	9
3094	Industrial potato peel as a feedstock for biobutanol production. New Biotechnology, 2018, 46, 54-60.	2.4	51
3098	Advanced Pretreatment Strategies for Bioenergy Production from Biomass and Biowaste. , 2018, , 1-19.		4
3099	Screening of new oleaginous yeasts for single cell oil production, hydrolytic potential exploitation and agro-industrial by-products valorization. Chemical Engineering Research and Design, 2018, 119,	2.7	40

#	ARTICLE	IF	CITATIONS
3100	Biomass Production and Composition of Temperate and Tropical Maize in Central Iowa. Agronomy, 2018, 8, 88.	1.3	6
3102	Co-Digestion of Napier Grass and Its Silage with Cow Dung for Bio-Hydrogen and Methane Production by Two-Stage Anaerobic Digestion Process. Energies, 2018, 11, 47.	1.6	22
3103	Comparison and Optimization of Saccharification Conditions of Alkaline Pre-Treated Triticale Straw for Acid and Enzymatic Hydrolysis Followed by Ethanol Fermentation. Energies, 2018, 11, 639.	1.6	34
3104	Enhanced biosorption of Cr(VI) using cotton fibers coated with chitosan – role of ester bonds. Water Science and Technology, 2018, 78, 476-486.	1.2	6
3106	Biobutanol Production Using Recombinant Microorganisms. , 2018, , 47-62.		1
3107	Fungal Biorefineries. Fungal Biology, 2018, , .	0.3	3
3108	Physico-Chemical Conversion of Lignocellulose: Inhibitor Effects and Detoxification Strategies: A Mini Review. Molecules, 2018, 23, 309.	1.7	301
3109	Pre-treatment of Oil Palm Biomass for Fermentable Sugars Production. Molecules, 2018, 23, 1381.	1.7	43
3110	Production of Biofuels from Biomass by Fungi. Fungal Biology, 2018, , 21-45.	0.3	1
3111	Persulfate oxidizing system for biomass pretreatment and process optimization. Biomass and Bioenergy, 2018, 116, 249-258.	2.9	30
3112	Fungal Enzymes Applied to Industrial Processes for Bioethanol Production. Fungal Biology, 2018, , 65-83.	0.3	1
3113	Production of ethanol fuel from enzyme-treated sugarcane bagasse hydrolysate using d-xylose-fermenting wild yeast isolated from Brazilian biomes. 3 Biotech, 2018, 8, 312.	1.1	13
3114	A comparative study for the organic byproducts from hydrothermal carbonizations of sugarcane bagasse and its bio-refined components cellulose and lignin. PLoS ONE, 2018, 13, e0197188.	1.1	19
3115	Depolymerizating enzymes—cellulases. , 2018, , 107-132.		6
3116	Enzymes as direct decontaminating agents—mycotoxins. , 2018, , 313-330.		7
3117	Biochemical Modification of Lignocellulosic Biomass. , 2018, , 315-350.		10
3118	Optimizing the route for production of activated carbon from <i>Casuarina equisetifolia</i> fruit waste. Royal Society Open Science, 2018, 5, 171578.	1.1	37

#	Article	IF	CITATIONS
3119	Two-Step Thermochemical Cellulose Hydrolysis With Partial Neutralization for Glucose Production. Frontiers in Chemistry, 2018, 6, 117.	1.8	40
3120	Lignocellulosic Biomass Transformations via Greener Oxidative Pretreatment Processes: Access to Energy and Value-Added Chemicals. Frontiers in Chemistry, 2018, 6, 141.	1.8	208
3121	Silylated Zeolites With Enhanced Hydrothermal Stability for the Aqueous-Phase Hydrogenation of Levulinic Acid to Î ³ -Valerolactone. Frontiers in Chemistry, 2018, 6, 143.	1.8	24
3122	Synergistic effects of pH and organosolv lignin addition on the enzymatic hydrolysis of organosolv-pretreated loblolly pine. RSC Advances, 2018, 8, 13835-13841.	1.7	16
3123	A comparative thermodynamic evaluation of bioethanol processing from wheat straw. Applied Energy, 2018, 224, 136-146.	5.1	18
3124	Kinetic modeling of the simultaneous production of ethanol and fructose by Saccharomyces cerevisiae. Electronic Journal of Biotechnology, 2018, 34, 1-8.	1.2	14
3125	Efficient conversion of municipal solid waste to biofuel by simultaneous dilute-acid hydrolysis of starch and pretreatment of lignocelluloses. Energy Conversion and Management, 2018, 166, 569-578.	4.4	79
3126	Caesalpinia ferrea Fruits as a Biosorbent for the Removal of Methylene Blue Dye from an Aqueous Medium. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	25
3127	Hydrazine hydrate and organosolv synergetic pretreatment of corn stover to enhance enzymatic saccharification and co-production of high-quality antioxidant lignin. Bioresource Technology, 2018, 268, 677-683.	4.8	17
3128	Liquefaction of lignocellulosic materials and its applications in wood adhesives—A review. Industrial Crops and Products, 2018, 124, 325-342.	2.5	93
3129	LiCl/HCl ionic solution for efficient conversion of lignocellulose into glucose under mild conditions. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 193-200.	2.7	10
3130	Beyond Ethanol: Contribution of Various Bioproducts to Enhance the Viability of Biorefineries. , 2018, , 155-176.		0
3131	Waste office paper: A potential feedstock for cellulase production by a novel strain Bacillus velezensis ASN1. Waste Management, 2018, 79, 491-500.	3.7	44
3132	Evaluation of selected physical and mechanical properties of briquettes produced from cones of three coniferous tree species. Biomass and Bioenergy, 2018, 117, 173-179.	2.9	57
3133	Role of the Potassium Chemical State in the Global Exothermicity of Wood Pyrolysis. Industrial & Engineering Chemistry Research, 2018, 57, 11561-11571.	1.8	18
3134	Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels. Renewable Energy, 2018, 129, 384-408.	4.3	81
3135	Glycoside hydrolases from a thermophilic microbial consortium and their implication in the saccharification of agroresidues. Biocatalysis and Agricultural Biotechnology, 2018, 15, 160-166.	1.5	4
3136	Biochemical characterization of an ulvan lyase from the marine flavobacterium Formosa agariphila KMM 3901T. Applied Microbiology and Biotechnology, 2018, 102, 6987-6996.	1.7	41

#	Article	IF	CITATIONS
3137	UV/O3 treatment as a surface modification of rice husk towards preparation of novel biocomposites. PLoS ONE, 2018, 13, e0197345.	1.1	20
3138	Enzymatic hydrolysis and detoxification of lignocellulosic biomass are not always necessary for ABE fermentation: The case of Panicum virgatum. Biomass and Bioenergy, 2018, 116, 131-139.	2.9	29
3139	From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis. Renewable and Sustainable Energy Reviews, 2018, 94, 340-362.	8.2	407
3140	Bioconversion of Hemicellulose Into Ethanol and Value-Added Products. , 2018, , 97-134.		24
3141	Modified α,α′-trehalose and <scp>d</scp> -glucose: green monomers for the synthesis of vinyl copolymers. Royal Society Open Science, 2018, 5, 171313.	1.1	4
3142	Effect of iron salt type and dosing mode on Fenton-based pretreatment of rice straw for enzymatic hydrolysis. Bioresource Technology, 2018, 265, 394-398.	4.8	17
3143	Cleave and couple: toward fully sustainable catalytic conversion of lignocellulose to value added building blocks and fuels. Chemical Communications, 2018, 54, 7725-7745.	2.2	58
3144	Biomass Morphology Subjected to Different Chemical Treatment. E3S Web of Conferences, 2018, 34, 02051.	0.2	1
3145	Leveraging pH profiles to direct enzyme production (cellulase, xylanase, polygalacturonase, pectinase,) Tj ETQq0 247-254.	0 0 rgBT / 1.8	Overlock 10 21
3146	Lignocellulosic Materials and Their Use in Bio-based Packaging. Springer Briefs in Molecular Science, 2018, , .	0.1	10
3147	Lignocellulosic Materials: Sources and Processing Technologies. Springer Briefs in Molecular Science, 2018, , 13-33.	0.1	5
3148	Ethanol Production from NaOH Pretreated Rice Straw: a Cost Effective Option to Manage Rice Crop Residue. Waste and Biomass Valorization, 2019, 10, 3427-3434.	1.8	45
3149	Response surface optimization of bioethanol production from third generation feedstock - Eucheuma cottonii. Renewable Energy, 2019, 132, 1-10.	4.3	34
3150	Isolation, growth, enzyme assay and identification via 16S rRNA full sequencing of cellulolytic microbes from Nepal for biofuel production. Renewable Energy, 2019, 132, 515-526.	4.3	3
3151	Optimizing the combination of conventional carbonaceous additives of culture media to produce lignocellulose-degrading enzymes by Trichoderma reesei in solid state fermentation of agricultural residues. Renewable Energy, 2019, 131, 946-955.	4.3	27
3152	The Biorefinery Approach. , 2019, , 1383-1412.		1
3153	Biomass as Renewable Source of Energy: Possible Conversion Routes. , 2019, , 353-389.		3
3154	A Statistical Optimization Study on Dilute Sulfuric Acid Pretreatment of Distillers Dried Grains with Solubles (DDGS) As a Potential Feedstock for Fermentation Applications. Waste and Biomass Valorization, 2019, 10, 3243-3249.	1.8	9

#	Article	IF	CITATIONS
3155	Enzymatic Application in Anaerobic Digestion (AD) of Organic Fraction of the Municipal Solid Waste (OFMSW). , 2019, , 289-301.		2
3156	Biofuel Production Using Thermochemical Conversion of Heavy Metal-Contaminated Biomass (HMCB) Harvested from Phytoextraction Process. Chemical Engineering Journal, 2019, 358, 759-785.	6.6	91
3157	Technological interventions for utilization of crop residues and weedy biomass for second generation bio-ethanol production. Renewable Energy, 2019, 132, 723-741.	4.3	122
3158	Sustainable Approaches for Biofuels Production Technologies. Biofuel and Biorefinery Technologies, 2019, , .	0.1	6
3159	The production of furfural directly from hemicellulose in lignocellulosic biomass: A review. Catalysis Today, 2019, 319, 14-24.	2.2	281
3160	Efficient and Supplementary Enzyme Cocktail from Actinobacteria and Plant Biomass Induction. Biotechnology Journal, 2019, 14, 1700744.	1.8	3
3161	Nanoparticleâ€induced enzyme pretreatment method for increased glucose production from lignocellulosic biomass under cold conditions. Journal of the Science of Food and Agriculture, 2019, 99, 767-780.	1.7	23
3162	Combination of Superheated Steam Explosion and Alkaline Autoclaving Pretreatment for Improvement of Enzymatic Digestibility of the Oil Palm Tree Residues as Alternative Sugar Sources. Waste and Biomass Valorization, 2019, 10, 3009-3023.	1.8	13
3163	Enhancement of saccharification and ethanol conversion from tobacco stalks by chemical pretreatment. Biomass Conversion and Biorefinery, 2021, 11, 1085-1092.	2.9	12
3164	Effective treatments of jojoba and jatropha hulls to obtain phytochemical compounds for industrial, nutritional, and pharmaceutical uses. Bulletin of the National Research Centre, 2019, 43, .	0.7	5
3165	Lignocellulosic bioethanol production from grasses pre-treated with acid mine drainage: Modeling and comparison of SHF and SSF. Bioresource Technology Reports, 2019, 7, 100299.	1.5	13
3166	Zymomonas mobilis Biofilm Reactor for Ethanol Production Using Rice Straw Hydrolysate Under Continuous and Repeated Batch Processes. Frontiers in Microbiology, 2019, 10, 1777.	1.5	20
3167	Effect of Time and Concentration of Sulfuric Acid on Yield Bioethanol Produced In Making Bioethanol from Peat Soil. Journal of Physics: Conference Series, 2019, 1167, 012056.	0.3	4
3168	Pretreatment of Lignocellulosic Biomass Using Vortex-Based Devices for Cavitation: Influence on Biomethane Potential. Industrial & Engineering Chemistry Research, 2019, 58, 15975-15988.	1.8	34
3169	Effect of the Method of Synthesizing a Nickel-Containing Catalyst on Lignin Conversion in Liquid-Phase Hydrodepolymerization. Petroleum Chemistry, 2019, 59, 111-119.	0.4	5
3170	Pretreatment of Crop Residues by Application of Microwave Heating and Alkaline Solution for Biofuel Processing: A Review. , 0, , .		7
3172	Aeration, Agitation and Cell Immobilization on Corncobs and Oak Wood Chips Effects on Balsamic-Styled Vinegar Production. Foods, 2019, 8, 303.	1.9	5
3173	Clean and effective catalytic hydrolysis of bagasse waste to small-molecular compounds over a hydrothermally stable Ru/La(OH)3. Journal of Cleaner Production, 2019, 238, 117909.	4.6	5

#	Article	IF	CITATIONS
3174	A review on characteristics of food waste and their use in butanol production. Reviews on Environmental Health, 2019, 34, 447-457.	1.1	13
3175	Optimization of wheat straw co-composting for carrier material development. Waste Management, 2019, 98, 37-49.	3.7	26
3176	Highly Selective Hydrogenation of Furfural to Cyclopentanone over a NiFe Bimetallic Catalyst in a Methanol/Water Solution with a Solvent Effect. ACS Sustainable Chemistry and Engineering, 2019, 7, 15221-15229.	3.2	66
3177	A comprehensive review of life cycle assessment (LCA) of microalgal and lignocellulosic bioenergy products from thermochemical processes. Bioresource Technology, 2019, 291, 121837.	4.8	113
3178	Microbial delignification and hydrolysis of lignocellulosic biomass to enhance biofuel production: an overview and future prospect. Bulletin of the National Research Centre, 2019, 43, .	0.7	79
3179	Combining Ability of Biomass Sorghum Lines for Agroindustrial Characters and Multitrait Selection of Photosensitive Hybrids for Energy Cogeneration. Crop Science, 2019, 59, 1554-1566.	0.8	19
3180	Carrots. , 2019, , 297-330.		6
3181	Choosing Physical, Physicochemical and Chemical Methods of Pre-Treating Lignocellulosic Wastes to Repurpose into Solid Fuels. Sustainability, 2019, 11, 3604.	1.6	43
3182	Optimization of Particle Size, Moisture Content and Reaction Time of Oil Palm Empty Fruit Bunch Through Ozonolysis Pretreatment. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2019, 98, 132-138.	0.2	5
3183	Lignocellulosic Bioethanol: Current Status and Future Perspectives. , 2019, , 331-354.		20
3184	Pretreatment Technologies for Lignocellulosic Biomass Deconstruction Within a Biorefinery Perspective. , 2019, , 379-399.		16
3185	Optimization of photo fermentation in corn stalk through phosphate additive. Bioresource Technology Reports, 2019, 7, 100278.	1.5	10
3186	Production of cellulases by <i>Thermomucor indicae-seudaticae</i> : characterization of a thermophilic β-glucosidase. Preparative Biochemistry and Biotechnology, 2019, 49, 830-836.	1.0	7
3188	Catalytic partial oxidation (CPOX) of natural gas and renewable hydrocarbons/oxygenated hydrocarbons—A review. Catalysis Today, 2019, 338, 18-30.	2.2	48
3189	Pre-treatments to enhance biogas yield and quality from anaerobic digestion of whiskey distillery and brewery wastes: A review. Renewable and Sustainable Energy Reviews, 2019, 113, 109281.	8.2	78
3190	Anaerobic Codigestion of Alkali-Pretreated <i>Prosopis juliflora</i> Biomass with Sewage Sludge for Biomethane Production. Energy & Fuels, 2019, 33, 7357-7365.	2.5	12
3191	Effect of Particulate Disintegration on Biomethane Potential of Particle-Rich Substrates in Batch Anaerobic Reactor. Applied Sciences (Switzerland), 2019, 9, 2880.	1.3	4
3192	Source-Sink Relationship of Sugarcane Energy Production at the Sugar Mills. , 2019, , 349-388.		2

#	Article	IF	CITATIONS
3193	Intensification of delignification of sawdust and subsequent enzymatic hydrolysis using ultrasound. Ultrasonics Sonochemistry, 2019, 58, 104656.	3.8	11
3196	Investigating the endothermic nature of the reactions of hybrid hydroxideperoxide with lignin in corn stover and napier grass for simple sugar production. IOP Conference Series: Earth and Environmental Science, 2019, 331, 012005.	0.2	0
3198	Effect of combined dilute-alkaline and green pretreatments on corncob fractionation: Pretreated biomass characterization and regenerated cellulose film production. Industrial Crops and Products, 2019, 141, 111785.	2.5	38
3199	A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. Biotechnology for Biofuels, 2019, 12, 240.	6.2	343
3200	Effect of combined pretreatment of lignocellulose and the kinetics of its subsequent bioconversion by Aspergillus niger. Biocatalysis and Agricultural Biotechnology, 2019, 21, 101292.	1.5	11
3201	Alcoholic fermentation of thermochemical and biological hydrolysates derived from Miscanthus biomass by Clostridium acetobutylicum ATCC 824. Biomass and Bioenergy, 2019, 130, 105382.	2.9	7
3202	Graphene two-dimensional crystal prepared from cellulose two-dimensional crystal hydrolysed from sustainable biomass sugarcane bagasse. Journal of Cleaner Production, 2019, 241, 118209.	4.6	24
3203	Novel green route towards polyesters-based resin by photopolymerization of star polymers. EXPRESS Polymer Letters, 2019, 13, 1104-1115.	1.1	5
3205	Recent progress in theoretical and computational studies on the utilization of lignocellulosic materials. Green Chemistry, 2019, 21, 9-35.	4.6	96
3206	Co-expression of cellulase and xylanase genes in <i>Saccharomyces cerevisiae</i> toward enhanced bioethanol production from corn stover. Bioengineered, 2019, 10, 513-521.	1.4	21
3207	Regeneration of Washing Effluents for Remediation of Petroleum-Hydrocarbons-Contaminated Soil by Corncob-Based Biomass Materials. ACS Omega, 2019, 4, 18711-18717.	1.6	2
3208	Biofuel: An Environmental Friendly Fuel. , O, , .		3
3210	Cobalt–Nickel Catalysts for Selective Hydrogenation of Carbon Dioxide into Ethanol. ACS Catalysis, 2019, 9, 11335-11340.	5.5	85
3211	Heterogeneous Catalyzed Thermochemical Conversion of Lignin Model Compounds: An Overview. Topics in Current Chemistry, 2019, 377, 36.	3.0	13
3212	The quest for fungal strains and their co-culture potential to improve enzymatic degradation of Chinese distillers' grain and other agricultural wastes. International Biodeterioration and Biodegradation, 2019, 144, 104765.	1.9	16
3213	Microwave-Assisted One-Step Conversion of Wood Wastes into Levulinic Acid. Catalysts, 2019, 9, 753.	1.6	8
3214	Economic Analysis of Cellulosic Ethanol Production from Sugarcane Bagasse Using a Sequential Deacetylation, Hot Water and Disk-Refining Pretreatment. Processes, 2019, 7, 642.	1.3	37
3215	Extraction of Cellulose Nano-Whiskers Using Ionic Liquid-Assisted Ultra-Sonication: Optimization and Mathematical Modelling Using Box–Behnken Design. Symmetry, 2019, 11, 1148.	1.1	22

#	Article	IF	CITATIONS
3216	Effects of Ionic Liquid-Assisted Pretreatment of Heavy Metal-Contaminated Biomass on the Yield and Composition of Syngas Production Using Noncatalytic and Catalytic Pyrolysis and Gasification Processes. ACS Sustainable Chemistry and Engineering, 2019, 7, 18303-18312.	3.2	7
3217	Potential of biotechnological conversion of lignocellulose hydrolyzates by Pseudomonas putida KT2440 as a model organism for a bioâ€based economy. GCB Bioenergy, 2019, 11, 1421-1434.	2.5	17
3218	Effect of one-step and two-step H3PO4 activation on activated carbon characteristics. Bioresource Technology Reports, 2019, 8, 100307.	1.5	58
3219	Slow Pyrolysis Temperature and Duration Effects on Fuel Properties of Food Rice Waste Bio-Char. Key Engineering Materials, 0, 797, 319-326.	0.4	1
3220	A comparison of methods of ethanol production from sweet sorghum bagasse. Biochemical Engineering Journal, 2019, 151, 107352.	1.8	17
3221	Formation of Five-Membered Carbocycles from <scp>d</scp> -Glucose: A Concise Synthesis of 4-Hydroxy-2-(hydroxymethyl)cyclopentenone. Bulletin of the Chemical Society of Japan, 2019, 92, 1324-1328.	2.0	4
3222	Understanding Acidity of Molten Salt Hydrate Media for Cellulose Hydrolysis by Combining Kinetic Studies, Electrolyte Solution Modeling, Molecular Dynamics Simulations, and ¹³ C NMR Experiments. ACS Catalysis, 2019, 9, 10551-10561.	5.5	44
3223	Optimization of enzymatic hydrolysis of cellulosic fraction obtained from stranded driftwood feedstocks for lipid production by Solicoccozyma terricola. Biotechnology Reports (Amsterdam,) Tj ETQq1 1 0.78	4 311 4 rgB1	- /® verlock
3224	Valorization of energy crops as a source for nanocellulose production – Current knowledge and future prospects. Industrial Crops and Products, 2019, 140, 111642.	2.5	69
3225	Biocatalysis explained: from pharmaceutical to bulk chemical production. Reaction Chemistry and Engineering, 2019, 4, 1878-1894.	1.9	117
3226	Myceliophthora thermophila Xyr1 is predominantly involved in xylan degradation and xylose catabolism. Biotechnology for Biofuels, 2019, 12, 220.	6.2	14
3227	Carbamation of Starch with Amine Using Dimethyl Carbonate as Coupling Agent. ACS Omega, 2019, 4, 15702-15710.	1.6	7
3228	Enhancement of biogas generation in up-flow sludge blanket (UASB) bioreactor from palm oil mill effluent (POME). Energy Procedia, 2019, 160, 670-676.	1.8	8
3229	Interaction Between Cobalt Ferrite Nanoparticles and \$Aspergillus~niger\$ Spores. IEEE Transactions on Nanobioscience, 2019, 18, 542-548.	2.2	5
3230	Optimization of the medium composition for the improvement of hydrogen and butanol production using Clostridium saccharoperbutylacetonicum DSM 14923. International Journal of Hydrogen Energy, 2019, 44, 26905-26919.	3.8	18
3232	Enhanced cellulase accessibility using acid-based deep eutectic solvent in pretreatment of empty fruit bunches. Cellulose, 2019, 26, 9517-9528.	2.4	43
3233	Antarctic tundra soil metagenome as useful natural resources of cold-active lignocelluolytic enzymes. Journal of Microbiology, 2019, 57, 865-873.	1.3	18
3234	Influence of double-cut harvest system on biomass yield, quality and biogas production from C4 perennial grasses. Biomass and Bioenergy, 2019, 130, 105376.	2.9	9

#	Article	IF	Citations
3235	Factors Influencing Cellulosic Sugar Production during Acid-Catalyzed Solvent Liquefaction in 1,4-Dioxane. ACS Sustainable Chemistry and Engineering, 2019, 7, 18076-18084.	3.2	13
3236	The effect of temperature and moisture on the chosen parameters of briquettes made of shredded logging residues. Biomass and Bioenergy, 2019, 130, 105368.	2.9	30
3237	Energy harnessing from banana plant wastes: A review. Bioresource Technology Reports, 2019, 7, 100212.	1.5	18
3238	Potential of acetone-butanol-ethanol (ABE) as a biofuel. Fuel, 2019, 242, 673-686.	3.4	223
3239	Fast prediction of the replacement process of oil vapor in horizontal tank and its improved safety evaluation method. Chemical Engineering Research and Design, 2019, 122, 298-306.	2.7	4
3240	Growth of engineered <i>Pseudomonas putida</i> KT2440 on glucose, xylose, and arabinose: Hemicellulose hydrolysates and their major sugars as sustainable carbon sources. GCB Bioenergy, 2019, 11, 249-259.	2.5	35
3241	Enhanced bioconversion of hemicellulosic biomass by microbial consortium for biobutanol production with bioaugmentation strategy. Bioresource Technology, 2019, 279, 149-155.	4.8	52
3242	Lignocellulosic biomass for bioethanol: an overview on pretreatment, hydrolysis and fermentation processes. Reviews on Environmental Health, 2019, 34, 57-68.	1.1	102
3243	Transgenic Energy Plants for Phytoremediation of Toxic Metals and Metalloids. , 2019, , 319-340.		6
3244	Effective and reusable T. reesei immobilized on SBA-15 for monomeric sugar production from cellulose hydrolysis. Bioresource Technology Reports, 2019, 5, 199-205.	1.5	6
3245	Bio-catalytic hydrolysis of paper pulp using in- and ex-situ multi-physical approaches: Focus on semidilute conditions to progress towards concentrated suspensions. Biomass and Bioenergy, 2019, 122, 28-36.	2.9	5
3246	Comprehensive studies on optimization of cellulase and xylanase production by a local indigenous fungus strain via solid state fermentation using oil palm frond as substrate. Biotechnology Progress, 2019, 35, e2781.	1.3	29
3247	Ethanol production from molasses: Environmental and socioeconomic prospects in Pakistan: Feasibility and economic analysis. Environmental Technology and Innovation, 2019, 14, 100317.	3.0	20
3248	Waste Valorisation and Recycling. , 2019, , .		5
3249	Dark-Fermentative Biohydrogen Production. , 2019, , 79-122.		24
3250	Cellulose solvent-based pretreatment for enhanced second-generation biofuel production: a review. Sustainable Energy and Fuels, 2019, 3, 11-62.	2.5	164
3251	Combining bioenergy and nature conservation: An example in wetlands. Renewable and Sustainable Energy Reviews, 2019, 111, 293-302.	8.2	20
3252	Role of Bioprocess Parameters to Improve Cellulase Production: Part II. , 2019, , 77-97.		5

#	ARTICLE Role of Solid-State Fermentation to Enhance Cellulase Production 2019 127-153	IF	CITATIONS
3254	Effective Pretreatment of Heavy Metal-Contaminated Biomass Using a Low-Cost Ionic Liquid (Triethylammonium Hydrogen Sulfate): Optimization by Response Surface Methodology–Box Behnken Design. ACS Sustainable Chemistry and Engineering, 2019, 7, 11571-11581.	3.2	38
3255	Industrial Wastewater-Based Microalgal Biorefinery: A Dual Strategy to Remediate Waste and Produce Microalgal Biorefinery.		10
3256	Fractionation of Wheat Straw Catalyzed by Recyclable Terephthalic Acid. ChemistrySelect, 2019, 4, 6060-6065.	0.7	3
3257	Progress in the production of biogas from Virginia mallow after alkaline-heat pretreatment. Biomass and Bioenergy, 2019, 126, 174-180.	2.9	11
3258	Sustainable Lignin for Carbon Fibers: Principles, Techniques, and Applications. , 2019, , .		16
3259	Lignin Conversion to Carbon Fibre. , 2019, , 51-64.		1
3260	Bio-sourced Lignin: Recovery Techniques and Principles. , 2019, , 65-150.		0
3261	Influence of one-step and two-step KOH activation on activated carbon characteristics. Bioresource Technology Reports, 2019, 7, 100266.	1.5	87
3262	Biodiesel facilities: What can we address to make biorefineries commercially competitive?. Renewable and Sustainable Energy Reviews, 2019, 112, 686-705.	8.2	60
3263	Liquefaction of Biomass and Upgrading of Bio-Oil: A Review. Molecules, 2019, 24, 2250.	1.7	84
3264	Effects of ammonia fiber expansion (AFEX) treated corn stover on anaerobic microbes and corresponding digestion performance. Biomass and Bioenergy, 2019, 127, 105263.	2.9	12
3265	Renewable bio-jet fuel production for aviation: A review. Fuel, 2019, 254, 115599.	3.4	209
3266	Evaluation of properties and specific energy consumption of spinifex-derived lignocellulose fibers produced using different mechanical processes. Cellulose, 2019, 26, 6555-6569.	2.4	21
3267	Exploring industrial and natural <i>Saccharomyces cerevisiae</i> strains for the bio-based economy from biomass: the case of bioethanol. Critical Reviews in Biotechnology, 2019, 39, 800-816.	5.1	86
3268	Effect of Ni-Ferrite and Ni-Co-Ferrite nanostructures on biogas production from anaerobic digestion. Fuel, 2019, 254, 115673.	3.4	36
3269	Carbon Materials as Phaseâ€Transfer Promoters for Obtaining 5â€Hydroxymethylfurfural from Cellulose in a Biphasic System. ChemSusChem, 2019, 12, 3769-3777.	3.6	13
3270	Production of biojet fuels from biomass. , 2019, , 127-165.		4

ARTICLE IF CITATIONS Effect of cultivar variation and Pichia stipitis NCIM 3498 on cellulosic ethanol production from rice 3271 2.9 12 straw. Biomass and Bioenergy, 2019, 127, 105253. Fungi (Mold)-Based Lipid Production. Methods in Molecular Biology, 2019, 1995, 51-89. 0.4 3273 Sustainable Agriculture Reviews 35. Sustainable Agriculture Reviews, 2019, , . 0.6 15 Anaerobic digestion of extracts from steam exploded Agave tequilana bagasse. Journal of 3274 3.8 Environmental Management, 2019, 245, 489-495. Enzyme Immobilization on Chitin and Chitosan-Based Supports for Biotechnological Applications. 3275 19 0.6 Sustainable Agriculture Reviews, 2019, , 147-173. A kinetic model considering the heterogeneous nature of the enzyme hydrolysis of lignocellulosic materials. Biofuels, Bioproducts and Biorefining, 2019, 13, 1044-1056. Fungal co-cultures in the lignocellulosic biorefinery context: A review. International 3277 1.9 49 Biodeterioration and Biodegradation, 2019, 142, 109-123. A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by 3278 1.8 171 different enhancement techniques. Process Biochemistry, 2019, 84, 81-90. Ethanol production from date wastes: Adapted technologies, challenges, and global potential. 3279 4.3 53 Renewable Energy, 2019, 143, 1094-1110. A review of sweet sorghum as a viable renewable bioenergy crop and its techno-economic analysis. 4.3 Renewable Energy, 2019, 143, 1121-1132. Bio-butanol production from rice straw – Recent trends, possibilities, and challenges. Bioresource 3281 49 1.5 Technology Reports, 2019, 7, 100224. Recent advances in algae biodiesel production: From upstream cultivation to downstream processing. 1.5 69 Bioresource Technology Reports, 2019, 7, 100227. Bioethanol production from waste lignocelluloses: A review on microbial degradation potential. 3283 4.2 120 Chemosphere, 2019, 231, 588-606. Mechanistic study on direct synthesis of carbon nanotubes from cellulose by means of microwave 3284 4.4 pyrolysis. Energy Conversion and Management, 2019, 192, 88-99. Thermal decomposition of Nephelium lappaceum L. peel. Journal of Thermal Analysis and Calorimetry, 3285 2.0 9 2019, 138, 3541-3549. Genetic Engineering Applications to Improve Cellulase Production and Efficiency: Part II., 2019, 3286 227-260. Ethanol production by simultaneous saccharification and cofermentation of pretreated corn stalk. 3287 1.8 26 Journal of Basic Microbiology, 2019, 59, 744-753. Lignocellulosic ethanol production: Evaluation of new approaches, cell immobilization and reactor 3288 4.3 74 configurations. Renewable Energy, 2019, 143, 741-752.

#	Article	IF	CITATIONS
3289	Potentials and challenges in lignocellulosic biofuel production technology. Renewable and Sustainable Energy Reviews, 2019, 111, 44-56.	8.2	210
3290	A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste. Renewable Energy, 2019, 143, 779-797.	4.3	198
3291	Selectivity for ethanol partial oxidation: the unique chemistry of single-atom alloy catalysts on Au, Ag, and Cu(111). Journal of Materials Chemistry A, 2019, 7, 23868-23877.	5.2	80
3292	Bio-ethanol production from Jatropha curcus. Bangladesh Journal of Scientific and Industrial Research, 2019, 54, 39-46.	0.1	3
3294	Role of Compositional Analysis of Lignocellulosic Biomass for Efficient Biofuel Production. , 2019, , 29-43.		4
3295	Application of green extraction to increase the yield extract from Keji Beling (Strobilanthes crispus.) leaves as hypercholesterolemia medicine. AIP Conference Proceedings, 2019, , .	0.3	1
3296	Process intensification of cellulase and bioethanol production from sugarcane bagasse via an integrated saccharification and fermentation process. Chemical Engineering and Processing: Process Intensification, 2019, 142, 107528.	1.8	22
3297	Evaluation and comparison between simultaneous saccharification and fermentation and separated hydrolysis and fermentation process. , 2019, , 273-290.		1
3298	Study of the effect of enzymatic deconstruction on natural cellulose by NMR measurements. Chemical Physics Letters, 2019, 727, 105-115.	1.2	21
3299	Enrichment and Characterisation of a Mixed-Source Ethanologenic Community Degrading the Organic Fraction of Municipal Solid Waste Under Minimal Environmental Control. Frontiers in Microbiology, 2019, 10, 722.	1.5	6
3300	Nitrogen explosive decompression pre-treatment: An alternative to steam explosion. Energy, 2019, 177, 175-182.	4.5	20
3301	Lignocellulosic Thermochemical Pretreatment Processes. , 2019, , 153-165.		7
3302	Subcritical Hydrolysis Contribution in the Holistic Biorefinery Concept: Obtaining Bioproducts and Biofuels From Renewable Natural Resources for a Novel Bioeconomy. , 2019, , 35-57.		3
3303	A comprehensive review on thermochemical, biological, biochemical and hybrid conversion methods of bio-derived lignocellulosic molecules into renewable fuels. Fuel, 2019, 251, 352-367.	3.4	111
3304	Alkali pretreatment of cotton stalk for bioethanol. Bangladesh Journal of Scientific and Industrial Research, 2019, 54, 73-82.	0.1	6
3305	Valorization of sugarcane waste: Prospects of a biorefinery. , 2019, , 47-60.		14
3306	The outlook of the production of advanced fuels and chemicals from integrated oil palm biomass biorefinery. Renewable and Sustainable Energy Reviews, 2019, 109, 386-411.	8.2	128
3307	Biodiesel, Bioethanol, and Biobutanol Production from Microalgae. , 2019, , 293-321.		17

		CITATION RE	PORT	
#	Article		IF	CITATIONS
3308	Bioremediation and Biofuel Production from Chlorella sp.: A Comprehensive Review. , 2	2019,,635-655.		3
3309	Synthesis of functionalized tetrahydrofuran derivatives from 2,5-dimethylfuran throug reactions. Green Chemistry, 2019, 21, 2601-2609.	h cascade	4.6	4
3310	Lignocellulose-Based Nanoparticles and Nanocomposites: Preparation, Properties, and 2019, , 41-69.	Applications. ,		11
3311	Oligosaccharide From Hemicellulose. , 2019, , 135-152.			15
3312	Approaches for More Efficient Biological Conversion of Lignocellulosic Feedstocks to B Bioproducts. ACS Sustainable Chemistry and Engineering, 2019, 7, 9062-9079.	iofuels and	3.2	89
3313	Effects of de-polymerized lignin content on thermo-oxidative and thermal stability of p Journal of Analytical and Applied Pyrolysis, 2019, 140, 413-422.	olyethylene.	2.6	9
3314	Efficient Fractionation of Lignin- and Ash-Rich Agricultural Residues Following Treatmer Low-Cost Protic Ionic Liquid. Frontiers in Chemistry, 2019, 7, 246.	nt With a	1.8	35
3315	Sugarcane bagasse as a novel low/no cost organic carbon source for growth of <i>Chlo BR2. Biofuels, 2021, 12, 1067-1073.</i>	prella sp.	1.4	13
3316	Fungal Cellulases: New Avenues in Biofuel Production. Fungal Biology, 2019, , 1-18.		0.3	2
3317	Current Advancements in Recombinant Technology for Industrial Cellulases: Part-I. Fun 2019, , 153-176.	gal Biology,	0.3	0
3318	Comparative Study of Cellulase Production Using Submerged and Solid-State Fermenta Biology, 2019, , 37-52.	ation. Fungal	0.3	1
3319	Cellulose as a Potential Feedstock for Cellulose Enzyme Production. Fungal Biology, 20)19, , 89-116.	0.3	1
3320	Lignocellulose Structure and the Effect on Nanocellulose Production. , 2019, , 17-30.			10
3321	Pretreatment Processes of Biomass for Biorefineries: Current Status and Prospects. An Chemical and Biomolecular Engineering, 2019, 10, 289-310.	nual Review of	3.3	38
3322	Characterization of <i>Miscanthus</i> cell wall polymers. GCB Bioenergy, 2019, 11, 19	<i>∢</i> 1-205.	2.5	38
3324	Influence of temperature and soda concentration in a thermo-mechano-chemical pretro bioethanol production from sweet corn co-products. Industrial Crops and Products, 20	eatment for 19, 133, 317-324.	2.5	11
3325	Rapid anaerobic digestion of organic solid residuals for biogas production using floccul bacteria and membrane bioreactors $\hat{a} \in $ a critical review. Biofuels, Bioproducts and Bio 1119-1132.	lating refining, 2019, 13,	1.9	17
3326	The simultaneous saccharification and fermentation of malt dust and use in the acidific Journal of the Institute of Brewing, 2019, 125, 230-234.	cation of mash.	0.8	2
ARTICLE IF CITATIONS A consolidated road map for economically gainful efficient utilization of agroâ€wastes for ecoâ€friendly 3327 1.9 9 products. Biofuels, Bioproducts and Biorefining, 2019, 13, 899-911. Prediction of Cellulose Crystallinity in Liquid Phase Using CBM-GFP Probe. Macromolecular Research, 3328 1.0 2019, 27, 377-385. Analytical studies on carbohydrates of two cyanobacterial species for enhanced bioethanol production along with poly-Ĩ²-hydroxybutyrate, C-phycocyanin, sodium copper chlorophyllin, and 3329 4.6 21 exopolysaccharides as co-products. Journal of Cleaner Production, 2019, 221, 695-709. A Single Step Fractionation of Lignocellulose in Aqueous Solutions of a Carboxylic Acidã€Functionalized Ionic Liquid. ChemistrySelect, 2019, 4, 2774-2779. Growth enhancement of bioethanol-producing microbe Clostridium autoethanogenum by changing 3331 1.514 culture medium composition. Bioresource Technology Reports, 2019, 6, 237-240. Techno-economic analysis of product biorefineries utilizing sugarcane lignocelluloses: Xylitol, citric acid and glutamic acid scenarios annexed to sugar mills with electricity co-production. Industrial 2.5 Crops and Products, 2019, 133, 259-268. One-pot chemocatalytic transformation of cellulose to ethanol over Ru-WO_x/HZSM-5. 3333 4.6 51 Green Chemistry, 2019, 21, 2234-2239. Conversion of paper waste to bioethanol using selected enzyme combination (cellulase and) Tj ETQq1 1 0.784314 rgBT /Overlock 10 3334 0.3 2019,,. Enzymatic hydrolysis of corn crop residues with high solid loadings: New insights into the impact of 3335 bioextrusion on biomass deconstruction using carbohydrate-binding modules. Bioresource 25 4.8 Technology, 2019, 282, 398-406. Characterization of physicochemical properties of cellulose from potato pulp and their effects on enzymatic hydrolysis by cellulase. International Journal of Biological Macromolecules, 2019, 131, 3.6 564-571. Cellulosic ethanol production from highland bamboo (Yushania alpina) grown in Ethiopia. Biofuels, 3337 1 1.4 2019, , 1-10. Production of biofuel intermediates from furfural via aldol condensation over K2O clusters containing N-doped porous carbon materials with shape selectivity. Microporous and Mesoporous 2.2 Materials, 2019, 281, 101-109. Different effects of ozone and aqueous ammonia in a combined pretreatment method on rice straw 3339 and dairy manure fiber for enhancing biomethane production. Bioresource Technology, 2019, 282, 4.8 43 275-284. Waste paper to bioethanol: Current and future prospective. Biofuels, Bioproducts and Biorefining, 3340 1.9 Bioenergy and Climate Change: Greenhouse Gas Mitigation. Biofuel and Biorefinery Technologies, 2019, 3341 0.1 3 , 269-289. Fermentation of Oil Extraction: Bioethanol, Acetone and Butanol Production. Biofuel and Biorefinery 3342 0.1 Technologies, 2019, , 219-249. Development of Lignin-Based Antioxidants for Polymers. Biofuels and Biorefineries, 2019, , 39-59. 3343 0.5 5 3344 From sugars to ethanolâ \in "from agricultural wastes to algal sources: An overview., 2019, 3-34.

# 3345	ARTICLE Biofuels from agricultural wastes. , 2019, , 103-142.	IF	Citations 37
3346	New strategy to elucidate the positive effects of extractable lignin on enzymatic hydrolysis by quartz crystal microbalance with dissipation. Biotechnology for Biofuels, 2019, 12, 57.	6.2	43
3347	Integrated Renewable Production of ETBE from Switchgrass. ACS Sustainable Chemistry and Engineering, 2019, 7, 8943-8953.	3.2	12
3348	Kluyveromyces marxianus developing ethanol tolerance during adaptive evolution with significant improvements of multiple pathways. Biotechnology for Biofuels, 2019, 12, 63.	6.2	66
3349	Sugarcane Bagasse Pretreatment Methods for Ethanol Production. , 2019, , .		8
3350	Lignocellulosic Biomass for Bioethanol Production Through Microbes: Strategies to Improve Process Efficiency. Biofuel and Biorefinery Technologies, 2019, , 357-386.	0.1	5
3351	Biochemical Strategies for Enhanced Biofuel Production. Biofuel and Biorefinery Technologies, 2019, , 51-87.	0.1	5
3352	Production of Materials from Sustainable Biomass Resources. Biofuels and Biorefineries, 2019, , .	0.5	3
3353	Prospects of Renewable Bioprocessing in Future Energy Systems. Biofuel and Biorefinery Technologies, 2019, , .	0.1	39
3354	Microwave-Assisted Alkali-Peroxide Treated Sawdust for Delignification and Its Characterisation. , 2019, , 527-537.		3
3355	Draft Genome Analysis Offers Insights Into the Mechanism by Which Streptomyces chartreusis WZS021 Increases Drought Tolerance in Sugarcane. Frontiers in Microbiology, 2018, 9, 3262.	1.5	39
3356	Efficacy of a novel sequential enzymatic hydrolysis of lignocellulosic biomass and inhibition characteristics of monosugars. International Journal of Biological Macromolecules, 2019, 129, 634-644.	3.6	22
3357	The costs of sugar production from different feedstocks and processing technologies. Biofuels, Bioproducts and Biorefining, 2019, 13, 723-739.	1.9	48
3358	Hydrolysis and interactions of d-cellobiose with polycarboxylic acids. Carbohydrate Research, 2019, 475, 34-38.	1.1	7
3359	Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids. Renewable and Sustainable Energy Reviews, 2019, 105, 268-292.	8.2	154
3360	Enzymes in Green Chemistry: The State of the Art in Chemical Transformations. , 2019, , 137-151.		10
3361	Green solvents for the dissolution and processing of biopolymers. Current Opinion in Green and Sustainable Chemistry, 2019, 18, 72-78.	3.2	25
3362	Wastewater remediation via combo-technology. , 2019, , 91-126.		1

#	Article	IF	CITATIONS
3363	Effects of zinc chloride–silicone oil treatment on wood dimensional stability, chemical components, thermal decomposition and its mechanism. Scientific Reports, 2019, 9, 1601.	1.6	17
3364	Competition between Second-Generation Ethanol and Bioelectricity using the Residual Biomass of Sugarcane: Effects of Uncertainty on the Production Mix. Molecules, 2019, 24, 369.	1.7	17
3365	Wood Powder as a New Natural Sunscreen Ingredient. Biotechnology and Bioprocess Engineering, 2019, 24, 258-263.	1.4	10
3366	The potential of biotechnology for mitigation of greenhouse gasses effects: solutions, challenges, and future perspectives. Arabian Journal of Geosciences, 2019, 12, 1.	0.6	7
3367	Sustainable Green Technologies for Environmental Management. , 2019, , .		20
3368	Biofuels: A Clean Technology for Environment Management. , 2019, , 219-240.		12
3369	Physical and chemical assays of maize stalk fractions for ethanol production. Energy, Ecology and Environment, 2019, 4, 49-55.	1.9	2
3370	Liquor re-use strategy in lignocellulosic biomass fractionation with ethanol-water mixtures. Bioresource Technology, 2019, 280, 396-403.	4.8	13
3372	Repeated cultures of Saccharomyces cerevisiae SC90 to tolerate inhibitors generated during cassava processing waste hydrolysis for bioethanol production. 3 Biotech, 2019, 9, 76.	1.1	4
3373	Chapter 15 Challenges and constraints in analysis of oligosaccharides and other fibre components. , 2019, , 257-277.		4
3374	Production of Reducing Sugar from Coffee Pulp Waste Using Mixture of Microorganisms, Enzymes, and Surfactants. IOP Conference Series: Materials Science and Engineering, 2019, 543, 012003.	0.3	2
3375	To Study the Effect of Pretreatment on Dry Sugarcane Leaves. IOP Conference Series: Materials Science and Engineering, 2019, 577, 012017.	0.3	3
3376	Modeling of Pretreatment Process of Lignocellulosic Biomass by Dilute Acid Hydrolysis. , 2019, , .		0
3377	A detailed overview of xylanases: an emerging biomolecule for current and future prospective. Bioresources and Bioprocessing, 2019, 6, .	2.0	225
3379	Challenges of Biomass Utilization for Biofuels. , 0, , .		11
3380	Sugar concentration of Gracilaria sp. following hydrolysis using cellulase and sulphuric acid and several pretreatment methods. IOP Conference Series: Earth and Environmental Science, 2019, 339, 012052.	0.2	0
3381	Agro-Industrial Waste Revalorization: The Growing Biorefinery. , 0, , .		26
3382	A promising microbial use on cocoa: decomposing cocoa waste and controlling Lasiodiplodia theobromae in-vitro. IOP Conference Series: Earth and Environmental Science, 2019, 343, 012256.	0.2	4

#	Article	IF	CITATIONS
3383	Lignocellulosic Biorefineries: Adding compost improves the biogenic catalysis of wheat straw. , 2019, ,		0
3384	High Yielding Acid atalysed Hydrolysis of Cellulosic Polysaccharides and Native Biomass into Low Molecular Weight Sugars in Mixed Ionic Liquid Systems. ChemistryOpen, 2019, 8, 1316-1324.	0.9	19
3385	Valorization of Industrial Vegetable Waste Using Dilute HCl Pretreatment. Processes, 2019, 7, 853.	1.3	6
3386	Screening of fungal strains with potentiality to hydrolyze microalgal biomass by Fourier Transform Infrared Spectroscopy (FTIR). Acta Scientiarum - Technology, 2019, 41, 39693.	0.4	4
3387	Fermentative Conversion of Two-Step Pre-Treated Lignocellulosic Biomass to Hydrogen. Catalysts, 2019, 9, 858.	1.6	16
3388	Alkali delignification and Bacillus sp. BMP01 hydrolysis of rice straw for enhancing biofuel yields. Bulletin of the National Research Centre, 2019, 43, .	0.7	21
3389	Enzymatic sugar production from elephant grass and reed straw through pretreatments and hydrolysis with addition of thioredoxin-His-S. Biotechnology for Biofuels, 2019, 12, 297.	6.2	15
3390	Clostridium sp. as Bio-Catalyst for Fuels and Chemicals Production in a Biorefinery Context. Catalysts, 2019, 9, 962.	1.6	46
3391	Biomass and Bioenergy Potential of Brown Midrib Sweet Sorghum Germplasm. Frontiers in Plant Science, 2019, 10, 1142.	1.7	13
3392	Pretreatments of Non-Woody Cellulosic Feedstocks for Bacterial Cellulose Synthesis. Polymers, 2019, 11, 1645.	2.0	36
3393	A Review on the Feedstocks for the Sustainable Production of Bioactive Compounds in Biorefineries. Sustainability, 2019, 11, 6765.	1.6	22
3394	Comparative study of different thermal pretreatment techniques for accelerated methane production from rice straw. Biomass Conversion and Biorefinery, 2021, 11, 1145-1154.	2.9	10
3395	Effects of reduced severity of ammonium sulfite pretreatment on bamboo for high cellulose recovery. RSC Advances, 2019, 9, 30489-30495.	1.7	6
3396	A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresource Technology, 2019, 271, 462-472.	4.8	386
3397	Aqueous acidified ionic liquid pretreatment for bioethanol production and concentration of produced ethanol by pervaporation. Journal of Industrial and Engineering Chemistry, 2019, 69, 57-65.	2.9	42
3398	Ethanol From Biomass. , 2019, , 25-59.		18
3399	Ethanol Economy. , 2019, , 451-504.		0
3400	Scaling up the production of sugars from agricultural biomass by ultrafast hydrolysis in supercritical water. Journal of Supercritical Fluids, 2019, 143, 242-250.	1.6	17

#	Article	IF	Citations
3401	Biorefinery Approach for Ethanol Production From Bagasse. , 2019, , 319-342.		6
3402	Application of Fungal Pretreatment in the Production of Ethanol From Crop Residues. , 2019, , 267-292.		1
3403	Status and Perspectives in Bioethanol Production From Sugar Beet. , 2019, , 61-79.		22
3404	Lignocellulosic Ethanol: Feedstocks and Bioprocessing. , 2019, , 165-185.		10
3405	Bioethanol Production From Rice- and Wheat Straw: An Overview. , 2019, , 213-231.		44
3406	Currently Used Microbes and Advantages of Using Genetically Modified Microbes for Ethanol Production. , 2019, , 293-316.		6
3407	Recent advances for sustainable production of levulinic acid in ionic liquids from biomass: Current scenario, opportunities and challenges. Renewable and Sustainable Energy Reviews, 2019, 102, 266-284.	8.2	69
3408	Structural modification of fiber and starch in turmeric residue by chemical and mechanical treatment for production of biodegradable films. International Journal of Biological Macromolecules, 2019, 126, 507-516.	3.6	22
3409	Advances in Biofueling of Micro Gas Turbines for Power Generation. Energy Technology, 2019, 7, 1800689.	1.8	7
3410	The synergistic effect of lignin peroxidase and cellulase in Aspergillus oryzae solidâ€state fermentation substrate on enzyme atalyzed oxidative degradation of lignin. Journal of Chemical Technology and Biotechnology, 2019, 94, 1480-1487.	1.6	2
3411	Economic value and environmental impact analysis of lignocellulosic ethanol production: assessment of different pretreatment processes. Clean Technologies and Environmental Policy, 2019, 21, 637-654.	2.1	58
3412	Inhibition of the amylolytic hydrolysis of starch by ethanol. Food Hydrocolloids, 2019, 90, 285-290.	5.6	6
3413	Recent developments in non-biodegradable biopolymers: Precursors, production processes, and future perspectives. Applied Microbiology and Biotechnology, 2019, 103, 143-157.	1.7	95
3414	Industrial and Nonfood Applications. , 2019, , 393-420.		4
3415	Carbon and nitrogen availability in paddy soil affects rice photosynthate allocation, microbial community composition, and priming: combining continuous 13C labeling with PLFA analysis. Plant and Soil, 2019, 445, 137-152.	1.8	47
3416	Microbial β-mannosidases and their industrial applications. Applied Microbiology and Biotechnology, 2019, 103, 535-547.	1.7	8
3417	Influence of Different Acid Treatments on the Radiocarbon Content Spectrum of Sedimentary Organic Matter Determined by RPO/Accelerator Mass Spectrometry. Radiocarbon, 2019, 61, 395-413.	0.8	24
3418	Production of xylanolytic enzymes by Moesziomyces spp. using xylose, xylan and brewery's spent grain as substrates. New Biotechnology, 2019, 49, 137-143.	2.4	20

#	Article	IF	CITATIONS
3419	Key Factors Affecting the Recalcitrance and Conversion Process of Biomass. Bioenergy Research, 2019, 12, 1-20.	2.2	71
3420	Recovery of proteins from biomass grown in pig manure microalgae-based treatment plants by alkaline hydrolysis and acidic precipitation. Bioresource Technology, 2019, 273, 599-607.	4.8	35
3421	Cellulose nanostructures from wood waste with low input consumption. Journal of Cleaner Production, 2019, 211, 408-416.	4.6	50
3422	Conversion of sunflower seed hulls, waste from edible oil production, into valuable products. Journal of Environmental Chemical Engineering, 2019, 7, 102893.	3.3	27
3423	Wood-lignin: Supply, extraction processes and use as bio-based material. European Polymer Journal, 2019, 112, 228-240.	2.6	216
3424	Microwave-assisted Organosolv pretreatment of a sawmill mixed feedstock for bioethanol production in a wood biorefinery. Bioresource Technology, 2019, 276, 170-176.	4.8	45
3425	Maximization of fermentable sugar production from sweet sorghum bagasse (dry and wet bases) using response surface methodology (RSM). Biomass Conversion and Biorefinery, 2019, 9, 633-639.	2.9	12
3426	High titer ethanol production from rice straw via solid-state simultaneous saccharification and fermentation by Mucor indicus at low enzyme loading. Energy Conversion and Management, 2019, 182, 520-529.	4.4	46
3427	Waste Biomass and Blended Bioresources in Biogas Production. Biofuel and Biorefinery Technologies, 2019, , 1-23.	0.1	4
3428	Physical, Chemical, and Biological Substrate Pretreatments to Enhance Biogas Yield. Biofuel and Biorefinery Technologies, 2019, , 25-44.	0.1	8
3429	Production of mannosylerythritol lipids from lignocellulose hydrolysates: tolerance thresholds of <i>Moesziomyces antarcticus</i> to inhibitors. Journal of Chemical Technology and Biotechnology, 2019, 94, 1064-1072.	1.6	15
3430	Enzyme Applications in Food Processing: Traditional Uses to New Developments. , 2019, , 85-95.		2
3431	Production of liquid fuel intermediates from furfural via aldol condensation over potassium-promoted Sn-MFI catalyst. Fuel, 2019, 237, 1281-1290.	3.4	33
3432	Current situation of biofuel production and its enhancement by CRISPR/Cas9-mediated genome engineering of microbial cells. Microbiological Research, 2019, 219, 1-11.	2.5	40
3433	Effect of xylanase-assisted pretreatment on the properties of cellulose and regenerated cellulose films from sugarcane bagasse. International Journal of Biological Macromolecules, 2019, 122, 503-516.	3.6	67
3434	Synthetic Biology Strategy for Microbial Cellulases. , 2019, , 229-238.		8
3435	Highly efficient hydrolysis of plant hemicelluloses by mixed-addenda Keggin-type (Mo-V-P)-heteropolyacids in diluted aqueous solution. Carbohydrate Polymers, 2019, 206, 80-85.	5.1	16
3436	Gold Catalysts for the Selective Oxidation of Biomassâ€Derived Products. ChemCatChem, 2019, 11, 309-323.	1.8	47

#	Article	IF	Citations
3437	Harnessing the potential of bioâ€ethanol production from lignocellulosic biomass in Nigeria – a review. Biofuels, Bioproducts and Biorefining, 2019, 13, 192-207.	1.9	19
3438	Cellulose porosity improves its dissolution by facilitating solvent diffusion. International Journal of Biological Macromolecules, 2019, 123, 1289-1296.	3.6	19
3439	Structural characterization of aerogels derived from enzymatically oxidized galactomannans of fenugreek, sesbania and guar gums. Carbohydrate Polymers, 2019, 207, 510-520.	5.1	22
3440	Disruption of lignocellulosic biomass along the length of the screws with different screw elements in a twin-screw extruder. Bioresource Technology, 2019, 275, 266-271.	4.8	17
3441	Natural deep eutectic solvents (DES) for fractionation of waste lignocellulosic biomass and its cascade conversion to value-added bio-based chemicals. Biomass and Bioenergy, 2019, 120, 417-425.	2.9	170
3442	Potential of bio-hydrogen production from dark fermentation of crop residues: A review. International Journal of Hydrogen Energy, 2019, 44, 17346-17362.	3.8	95
3443	Evolutionary engineered Candida intermedia exhibits improved xylose utilization and robustness to lignocellulose-derived inhibitors and ethanol. Applied Microbiology and Biotechnology, 2019, 103, 1405-1416.	1.7	49
3444	Bioenergy for Sustainability and Security. , 2019, , .		4
3445	Gasoline-Like Biofuel. , 2019, , 79-158.		0
3446	High capacity natural fiber coated conductive and electroactive composite papers electrode for energy storage applications. Journal of Applied Polymer Science, 2019, 136, 47282.	1.3	10
3447	Valorization of waste Indigofera tinctoria L. biomass generated from indigo dye extraction process—potential towards biofuels and compost. Biomass Conversion and Biorefinery, 2019, 9, 445-457.	2.9	16
3448	Mixing effects on the kinetics of enzymatic hydrolysis of lignocellulosic Sunn hemp fibres for bioethanol production. Chemical Engineering Journal, 2019, 377, 120103.	6.6	25
3449	Effects of the ultrasound-assisted pretreatments using borax and sodium hydroxide on the physicochemical properties of Chinese fir. Ultrasonics Sonochemistry, 2019, 50, 200-207.	3.8	31
3450	Ethanol production from xylose is highly increased by the Kluyveromyces marxianus mutant 17694-DH1. Bioprocess and Biosystems Engineering, 2019, 42, 63-70.	1.7	12
3451	Characterization and reactivity of charcoal from high temperature pyrolysis (800–1600â€ [~] °C). Fuel, 2019, 235, 1544-1554.	3.4	46
3452	Accelerated testing methodology for long-term life prediction of cellulose-based polymeric composite materials. , 2019, , 149-171.		2
3453	Capturing CO2 to reversible ionic liquids for dissolution pretreatment of cellulose towards enhanced enzymatic hydrolysis. Carbohydrate Polymers, 2019, 204, 50-58.	5.1	28
3454	Production of Bioethanol From Sugarcane Bagasse: Current Approaches and Perspectives. , 2019, , 21-42.		18

# 3455	ARTICLE Optimization of hydrothermal pretreatment for co-utilization of xylose and glucose of cassava anaerobic residue for producing ethanol. Chinese Journal of Chemical Engineering, 2019, 27, 920-927.	IF 1.7	Citations 3
3456	Zero-waste algal biorefinery for bioenergy and biochar: A green leap towards achieving energy and environmental sustainability. Science of the Total Environment, 2019, 650, 2467-2482.	3.9	157
3457	Hydrogen Production by Clostridium cellulolyticum a Cellulolytic and Hydrogen-Producing Bacteria Using Sugarcane Bagasse. Waste and Biomass Valorization, 2019, 10, 827-837.	1.8	11
3458	Fractionation and Biotransformation of Lignocelluloses-Based Wastes for Bioethanol, Xylose and Vanillin Production. Waste and Biomass Valorization, 2019, 10, 357-367.	1.8	14
3459	Biological Pretreatment of Lignocellulosic Biomass for Biofuels and Bioproducts: An Overview. Waste and Biomass Valorization, 2019, 10, 235-251.	1.8	361
3460	Glucose and Valuable Chemicals Production from Cotton Waste Using Hydrothermal Method. Waste and Biomass Valorization, 2019, 10, 599-607.	1.8	17
3461	Effects of different extraction methods on some properties of water hyacinth fiber. Journal of Natural Fibers, 2019, 16, 1015-1025.	1.7	27
3462	Bioconversion of Sugarcane Bagasse into Value-Added Products by Bioaugmentation of Endogenous Cellulolytic and Fermentative Communities. Waste and Biomass Valorization, 2019, 10, 1899-1912.	1.8	15
3463	Valorization of Lignocellulosic Waste (Crotalaria <i>juncea</i>) Using Alkaline Peroxide Pretreatment under Different Process Conditions: An Optimization Study on Separation of Lignin, Cellulose, and Hemicellulose. Journal of Natural Fibers, 2019, 16, 662-676.	1.7	20
3464	Choice of Pretreatment Technology for Sustainable Production of Bioethanol from Lignocellulosic Biomass: Bottle Necks and Recommendations. Waste and Biomass Valorization, 2019, 10, 1693-1709.	1.8	58
3465	Water hyacinth second-generation ethanol production: a mitigation alternative for an environmental problem. Journal of Natural Fibers, 2019, 16, 1201-1208.	1.7	7
3466	Recent trends in biobutanol production. Reviews in Chemical Engineering, 2019, 35, 475-504.	2.3	49
3467	Alkali pretreatment of wheat straw followed by microbial hydrolysis for bioethanol production. Environmental Technology (United Kingdom), 2019, 40, 1203-1211.	1.2	40
3468	An overview of simultaneous saccharification and fermentation of starchy and lignocellulosic biomass for bio-ethanol production. Biofuels, 2019, 10, 287-299.	1.4	16
3469	Lignocellulosic bioethanol production: prospects of emerging membrane technologies to improve the process – a critical review. Reviews in Chemical Engineering, 2020, 36, 333-367.	2.3	67
3470	Dry/Solid-State Fermentative Ethanol Production. , 2020, , 60-67.		0
3471	Evaluation of Various Lipid Extraction Techniques for Microalgae and Their Effect on Biochemical Components. Waste and Biomass Valorization, 2020, 11, 2603-2612.	1.8	7
3472	Conversion of Renewable and Food Wastes Into Useful Products With Environmental Perspectives. , 2020, , 413-424.		0

#	Article	IF	CITATIONS
3473	Lignin – An underutilized, renewable and valuable material for food industry. Critical Reviews in Food Science and Nutrition, 2020, 60, 2011-2033.	5.4	43
3474	Pretreatment of cotton spinning residues for optimal enzymatic hydrolysis: A case study using green solvents. Renewable Energy, 2020, 145, 490-499.	4.3	27
3475	Conversion of residues from agro-food industry into bioethanol in Iran: An under-valued biofuel additive to phase out MTBE in gasoline. Renewable Energy, 2020, 145, 699-710.	4.3	94
3476	Effect of Different Types of Thermochemical Pretreatment on the Enzymatic Hydrolysis and the Composition of Hazelnut Shells. Waste and Biomass Valorization, 2020, 11, 3739-3748.	1.8	17
3477	Utilization of lignin: A sustainable and eco-friendly approach. Journal of the Energy Institute, 2020, 93, 235-271.	2.7	148
3478	Lignin extraction from oil palm empty fruit bunch fiber (OPEFBF) via different alkaline treatments. Biomass Conversion and Biorefinery, 2020, 10, 125-138.	2.9	31
3479	Enzymatic Hydrolysis of Instant Controlled Pressure Drop Pretreated Retama raetam for Bioethanol Production. Waste and Biomass Valorization, 2020, 11, 187-200.	1.8	6
3480	Enzyme-Assisted Aqueous Oil Extraction from High Oleic Sunflower Seeds in a Scalable Prototype Reactor. Waste and Biomass Valorization, 2020, 11, 899-908.	1.8	9
3481	Preparation, Properties, and Applications of Natural Cellulosic Aerogels: A Review. Energy and Built Environment, 2020, 1, 60-76.	2.9	108
3482	A review on catalytic synthesis of energy rich fuel additive levulinate compounds from biomass derived levulinic acid. Fuel Processing Technology, 2020, 197, 106213.	3.7	89
3483	Treatment and resource recovery options for first and second generation bioethanol spentwash – A review. Chemosphere, 2020, 241, 124975.	4.2	25
3484	Utilising Biomass in Biotechnology. Green Energy and Technology, 2020, , .	0.4	6
3485	An overview on bioethanol production from lignocellulosic feedstocks. Chemosphere, 2020, 242, 125080.	4.2	133
3486	Energy and water optimization of an integrated bioethanol production process from molasses and sugarcane bagasse: A Colombian case. Fuel, 2020, 260, 116314.	3.4	21
3487	Review: Bio-polyethylene from Wood Wastes. Journal of Polymers and the Environment, 2020, 28, 1-16.	2.4	35
3487 3488	Review: Bio-polyethylene from Wood Wastes. Journal of Polymers and the Environment, 2020, 28, 1-16. Crystalline Cellulose under Pyrolysis Conditions: The Structure–Property Evolution via Reactive Molecular Dynamics Simulations. Journal of Chemical & Engineering Data, 2020, 65, 360-372.	2.4	35 15
3487 3488 3489	Review: Bio-polyethylene from Wood Wastes. Journal of Polymers and the Environment, 2020, 28, 1-16. Crystalline Cellulose under Pyrolysis Conditions: The Structure–Property Evolution via Reactive Molecular Dynamics Simulations. Journal of Chemical & amp; Engineering Data, 2020, 65, 360-372. Towards Controlling the Reactivity of Enzymes in Mechanochemistry: Inert Surfaces Protect βâ€Glucosidase Activity During Ball Milling. ChemSusChem, 2020, 13, 106-110.	2.4 1.0 3.6	35 15 29

#	Article	IF	CITATIONS
3491	Bioethanol production from oil palm empty fruit bunch with SSF and SHF processes using Kluyveromyces marxianus yeast. Cellulose, 2020, 27, 301-314.	2.4	32
3492	Biochemical conversion of sweet sorghum bagasse to succinic acid. Journal of Bioscience and Bioengineering, 2020, 129, 104-109.	1.1	33
3493	Enzymatic reactions in the production of biomethane from organic waste. Enzyme and Microbial Technology, 2020, 132, 109410.	1.6	15
3494	A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies. Renewable Energy, 2020, 146, 1204-1220.	4.3	185
3495	Utilization of coconut meal, a waste product of milk processing, as a novel substrate for biodiesel and bioethanol production. Biomass Conversion and Biorefinery, 2020, 10, 651-662.	2.9	15
3496	Production of organic carboxylic acids by hydrothermal conversion of electron beam irradiation pretreated wheat straw. Biomass Conversion and Biorefinery, 2020, 10, 997-1006.	2.9	6
3497	Microwave-Assisted Hydrolysis of Cotton Waste to Glucose in Combination with the Concentrated Sulfuric Acid Impregnation Method. Waste and Biomass Valorization, 2020, 11, 4279-4287.	1.8	11
3498	Bioenergy generation from agricultural wastes and enrichment of end products. , 2020, , 337-356.		11
3499	Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Processing Technology, 2020, 199, 106244.	3.7	386
3500	Characterization of a novel Clostridium sp. SP17–B1 and its application for succinic acid production from hevea wood waste hydrolysate. Anaerobe, 2020, 61, 102096.	1.0	2
3501	Bioconversion of biomass waste into high value chemicals. Bioresource Technology, 2020, 298, 122386.	4.8	228
3502	Kinetics of methane production during anaerobic fermentation of chicken manure with sawdust and fungi pre-treated wheat straw. Waste Management, 2020, 102, 170-178.	3.7	31
3503	Advantageous conditions of saccharification of lignocellulosic biomass for biofuels generation via fermentation processes. Chemical Papers, 2020, 74, 1199-1209.	1.0	33
3504	Valorization of sugarcane bagasse for bioethanol production through simultaneous saccharification and fermentation: Optimization and kinetic studies. Fuel, 2020, 262, 116552.	3.4	94
3505	Effective Substrate Loading for Saccharification of Corn Cob and Concurrent Production of Lignocellulolytic Enzymes by Fusarium oxysporum and Sporothrix carnis. Current Biotechnology, 2020, 8, 109-115.	0.2	1
3506	A compressive review on the effects of alcohols and nanoparticles as an oxygenated enhancer in compression ignition engine. Energy Conversion and Management, 2020, 203, 112244.	4.4	150
3507	Screening and evaluation of cellulytic fungal strains for saccharification and bioethanol production from rice residue. Energy, 2020, 190, 116422.	4.5	41
3508	Impact of pretreatment on food waste for biohydrogen production: A review. International Journal of Hydrogen Energy, 2020, 45, 18211-18225.	3.8	69

		CITATION RE	PORT	
#	Article		IF	CITATIONS
3509	Production of bioethanol from biodegraded alkali pretreated rice straw. Vegetos, 2020,	33, 128-134.	0.8	6
3510	Ligninolytic Enzymes Mediated Ligninolysis: An Untapped Biocatalytic Potential to Deco Lignocellulosic Molecules in a Sustainable Manner. Catalysis Letters, 2020, 150, 524-54	onstruct ·3.	1.4	43
3511	Successive Organic Solvent Fractionation and Characterization of Heterogeneous Ligni <i>p-</i> Toluenesulfonic Acid from Hybrid Poplar. Energy & Fuels, 2020, 34, 557-5	n Extracted by 67.	2.5	14
3512	Water Hyacinth: A Potential Lignocellulosic Biomass for Bioethanol. , 2020, , .			7
3513	Enzymatic pretreatment to enhance anaerobic bioconversion of high strength wastewa A review. Science of the Total Environment, 2020, 713, 136373.	ter to biogas:	3.9	61
3514	Optimization of key factors affecting hydrogen production from coffee waste using fac and metagenomic analysis of the microbial community. International Journal of Hydrog 2020, 45, 4205-4222.	torial design en Energy,	3.8	34
3515	Low concentration of NaOH/Urea pretreated rice straw at low temperature for enhance production. International Journal of Hydrogen Energy, 2020, 45, 1578-1587.	d hydrogen	3.8	16
3516	Economic viability and environmental impact investigation for the biofuel supply chain i co-fermentation technology. Applied Energy, 2020, 259, 114235.	using	5.1	22
3517	A review about GVL production from lignocellulose: Focusing on the full components ut Industrial Crops and Products, 2020, 144, 112031.	ilization.	2.5	57
3518	Bioethanol production from sesame (Sesamum indicum L.) plant residue by combined p microbial and chemical pretreatments. Bioresource Technology, 2020, 297, 122484.	hysical,	4.8	52
3519	Sustainable Rice Straw Management. , 2020, , .			41
3520	Production of second-generation ethanol from sugarcane. , 2020, , 195-228.			6
3521	Pretreatment of lignocellulosic biomass for efficient enzymatic saccharification of cellul , 17-65.	ose. , 2020,		40
3522	Lignocellulosic biomass to biodiesel. , 2020, , 127-167.			10
3523	Constraints, impacts and benefits of lignocellulose conversion pathways to liquid biofuc biochemicals. , 2020, , 249-282.	els and		3
3524	Deep eutectic solvent for lignocellulosic biomass fractionation and the subsequent con bio-based products – A review. Bioresource Technology, 2020, 297, 122522.	version to	4.8	155
3525	Comparison of the electrochemical properties of engineered switchgrass biomass-derive carbon-based EDLCs. Colloids and Surfaces A: Physicochemical and Engineering Aspects 124150.	ed activated s, 2020, 586,	2.3	35
3526	Cellulose fast pyrolysis for platform chemicals: assessment of potential targets and suit technology. Biofuels, Bioproducts and Biorefining, 2020, 14, 446-468.	able reactor	1.9	17

#	Article	IF	CITATIONS
3527	HMF and furfural: Promising platform molecules in rhodium-catalyzed carbonylation reactions for the synthesis of furfuryl esters and tertiary amides. Journal of Catalysis, 2020, 381, 215-221.	3.1	20
3528	Fundamentals of lignocellulosic biomass. , 2020, , 1-15.		23
3529	Integrated wood biorefinery: Improvements and tailor-made two-step strategies on hydrolysis techniques. Bioresource Technology, 2020, 299, 122632.	4.8	12
3530	Cellulose obtained from banana plant waste for catalytic production of 5-HMF: Effect of grinding on the cellulose properties. Fuel, 2020, 265, 116857.	3.4	39
3531	Implementation of Auto-Hydrolysis Process for the Recovery of Antioxidants and Cellulose from Wheat Straw. Applied Sciences (Switzerland), 2020, 10, 6112.	1.3	14
3532	Corncob PRB for on-site nitrate removal in groundwater. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	9
3533	Cellulose extraction from methyltrioctylammonium chloride pretreated sugarcane bagasse and its application. International Journal of Biological Macromolecules, 2020, 165, 11-17.	3.6	29
3534	Robust, remeltable and remarkably simple to prepare biomass–sulfur composites. Materials Advances, 2020, 1, 2271-2278.	2.6	23
3535	Macroscale Control of Reactivity using 3D Printed Materials with Intrinsic Catalytic Properties. Applied Catalysis A: General, 2020, 605, 117794.	2.2	5
3536	A novel hybrid organosolv-steam explosion pretreatment and fractionation method delivers solids with superior thermophilic digestibility to methane. Bioresource Technology, 2020, 316, 123973.	4.8	20
3537	The Role of Ionic Liquids in the Lignin Separation from Lignocellulosic Biomass. Energies, 2020, 13, 4864.	1.6	42
3538	Optimization of Chemical Pretreatments Using Response Surface Methodology for Second-Generation Ethanol Production from Coffee Husk Waste. Bioenergy Research, 2021, 14, 815-827.	2.2	18
3539	Effect of pretreatments on cellulosic composition and morphology of pine needle for possible utilization as substrate for anaerobic digestion. Biomass and Bioenergy, 2020, 141, 105705.	2.9	20
3540	Wildflower mixtures for bioethanol production - Pretreatment and enzymatic hydrolysis. Biomass and Bioenergy, 2020, 141, 105727.	2.9	6
3541	Interaction of enzymes with lignocellulosic materials: causes, mechanism and influencing factors. Bioresources and Bioprocessing, 2020, 7, .	2.0	34
3542	Industrial Applications of Glycoside Hydrolases. , 2020, , .		4
3543	Development and optimization of hemicellulose extraction bioprocess from poppy (Papaver) Tj ETQq0 0 0 rgBT /G and Agricultural Biotechnology, 2020, 29, 101793.	Overlock 1 1.5	0 Tf 50 107 7
3544	The rational design of biomass-derived carbon materials towards next-generation energy storage: A review. Renewable and Sustainable Energy Reviews, 2020, 134, 110308.	8.2	141

#	Article	IF	CITATIONS
3545	Lignocellulose materials for supercapacitor and battery electrodes: A review. Renewable and Sustainable Energy Reviews, 2020, 134, 110345.	8.2	73
3546	Highly Efficient Reductive Catalytic Fractionation of Lignocellulosic Biomass over Extremely Low-Loaded Pd Catalysts. ACS Catalysis, 2020, 10, 12487-12506.	5.5	36
3547	Adsorption behavior of two glucanases on three lignins and the effect by adding sulfonated lignin. Journal of Biotechnology, 2020, 323, 1-8.	1.9	9
3548	Clean energy production from lignocellulose-based agricultural crops: importance and necessity from environmental prospects. , 2020, , 181-193.		1
3549	The effect of MnSO4 and unrefined sea salt on bioethanol production by lignocellulose degradation of oil palm empty fruit bunches (OPEFB) using Phlebia sp. MG-60. IOP Conference Series: Earth and Environmental Science, 2020, 475, 012065.	0.2	0
3550	Lignocellulosic Ethanol Production from a Biorefinery Perspective. , 2020, , .		4
3551	Rapid fractionation of various lignocellulosic biomass using gamma-valerolactone. Bioresource Technology Reports, 2020, 11, 100497.	1.5	5
3552	Change in the Crystallinity of Wheat Straw during Ozone Treatment. Russian Journal of Physical Chemistry A, 2020, 94, 1149-1152.	0.1	3
3553	Optimization of peroxide-alkaline pretreatment and enzymatic hydrolysis of barley straw (Hordeum) Tj ETQq0 0 C Biorefinery, 2022, 12, 2389-2398.) rgBT /Ove 2.9	erlock 10 Tf 5 23
3554	Delignification and Enzyme-Diffusion Kinetics of Radical Systems Treating Wheat Straw. Industrial & Engineering Chemistry Research, 2020, 59, 20656-20666.	1.8	1
3555	Optimization and kinetics of glucose production via enzymatic hydrolysis of mixed peels. Journal of Bioresources and Bioproducts, 2020, 5, 283-290.	11.8	18
3556	Mechanistic Aspects of the Role of K Promotion on Cu–Fe-Based Catalysts for Higher Alcohol Synthesis from CO ₂ Hydrogenation. ACS Catalysis, 2020, 10, 14516-14526.	5.5	89
3557	Liquid Hot Water Pretreatment and Enzymatic Hydrolysis as a Valorization Route of Italian Green Pepper Waste to Delivery Free Sugars. Foods, 2020, 9, 1640.	1.9	13
3558	Purification of Kraft cellulose under mild conditions using choline acetate based deep eutectic solvents. Green Chemistry, 2020, 22, 8680-8691.	4.6	43
3559	2-Hydroxy-1,4-naphthoquinone (Lawsone) as a Redox Catalyst for the Improvement of the Alkaline Pretreatment of Sugarcane Bagasse. Energy & Fuels, 2020, 34, 16228-16239.	2.5	7
3561	Process optimisation for saccharification and fermentation of wheat straw for the production of single cell protein. International Journal of Environment and Waste Management, 2020, 25, 176.	0.2	0
3562	Nanocellulose: From an agricultural waste to a valuable pharmaceutical ingredient. International Journal of Biological Macromolecules, 2020, 163, 1579-1590.	3.6	91
3563	Deletion of pgi gene in E. coli increases tolerance to furfural and 5-hydroxymethyl furfural in media containing glucose–xylose mixture. Microbial Cell Factories, 2020, 19, 153.	1.9	17

		CITATION R	EPORT	
#	Article		IF	CITATIONS
3564	Effective and facile solvent-free synthesis route to novel biobased monomers from van Structure–thermal property relationships of sustainable polyesters. Polymer Degrada Stability, 2020, 181, 109315.	illic acid: ation and	2.7	15
3565	Acid hydrolysis of the waste newspaper: Comparison of process variables for finding th condition to produce quality fermentable sugars. Journal of Environmental Chemical Er 2020, 8, 104345.	e best hgineering,	3.3	5
3566	Biovolarization: a microbial miracle. , 2020, , 147-160.			0
3567	Pretreatment of Animal Manure Biomass to Improve Biogas Production: A Review. Ener 3573.	rgies, 2020, 13,	1.6	54
3568	Trichoderma potential in biofuel production and biorefinery. , 2020, , 221-239.			0
3569	The effect of temperature on lignin purification from bioethanol production waste base empty fruit bunch. IOP Conference Series: Materials Science and Engineering, 2020, 85	ed on palm oil 58, 012024.	0.3	0
3570	Use of Biofuel Industry Wastes as Alternative Nutrient Sources for DHA-Yielding Schizo limacinum Production. Applied Sciences (Switzerland), 2020, 10, 4398.	ochytrium	1.3	9
3571	Characterization of an exocellular ethanol-tolerant β-glucosidase from Quambalaria cy isolates from unripened grapes. European Food Research and Technology, 2020, 246, 2	anescens 2349-2357.	1.6	1
3572	Saccharification and fermentation of pretreated banana leaf waste for ethanol product Applied Sciences, 2020, 2, 1.	cion. SN	1.5	15
3573	Comparison of Glucose, Acetate and Ethanol as Carbon Resource for Production of Poly(3-Hydroxybutyrate) and Other Acetyl-CoA Derivatives. Frontiers in Bioengineering Biotechnology, 2020, 8, 833.	and	2.0	30
3574	Enzyme interactions on lignocellulosic biomass structure. , 2020, , 33-59.			1
3575	Enzymes and biomass pretreatment. , 2020, , 61-100.			5
3576	Understanding the role of the substrate and the metal triflate acidic catalyst in sugar p biorefineries: A comprehensive systematic approach to catalytic transformations of (poly)carbohydrates in ethanol. Chemical Engineering Journal, 2020, 399, 125816.	latform	6.6	6
3577	Energy saving in the process of bioethanol production from renewable paper mill sludg 2020, 196, 117085.	re. Energy,	4.5	37
3578	Novel sterilization method combining food preservative use and low temperature stear treatment of lignocellulosic biomass with white rot fungi. Industrial Crops and Product 112765.	ming for :s, 2020, 155,	2.5	8
3579	Microalgal biofuels in China: The past, progress and prospects. GCB Bioenergy, 2020, 1	12, 1044-1065.	2.5	25
3580	Biorefining of lignocellulosic feedstock and waste materials using ionic liquid. Materials Engineering B: Solid-State Materials for Advanced Technology, 2020, 262, 114741.	s Science and	1.7	8
3582	Fungi in Fuel Biotechnology. Fungal Biology, 2020, , .		0.3	4

#	Article	IF	CITATIONS
3583	Enzyme Kinetics by Isothermal Titration Calorimetry: Allostery, Inhibition, and Dynamics. Frontiers in Molecular Biosciences, 2020, 7, 583826.	1.6	40
3584	Influence of Chemical and Enzymatic TEMPO-Mediated Oxidation on Chemical Structure and Nanofibrillation of Lignocellulose. ACS Sustainable Chemistry and Engineering, 2020, 8, 14198-14206.	3.2	25
3586	Physical and Chemical Characteristics of Rice Straw. Research Journal of Applied Sciences, Engineering and Technology, 2020, 17, 115-121.	0.1	2
3588	Two‧tep Autohydrolysis Pretreatment: Towards High Selective Full Fractionation of Wheat Straw. Chemie-Ingenieur-Technik, 2020, 92, 1723-1732.	0.4	2
3592	Cellulosic Ethanol from Sugarcane Straw: a Discussion Based on Industrial Experience in the Northeast of Brazil. Bioenergy Research, 2021, 14, 761-773.	2.2	10
3593	UV-protection from chitosan derivatized lignin multilayer thin film. RSC Advances, 2020, 10, 32959-32965.	1.7	9
3594	Thermophilic Co-Fermentation of Wood Wastes and High in Nitrogen Animal Manures into Bio-Methane with the Aid of Fungi and its Potential in the USA. Energies, 2020, 13, 4257.	1.6	5
3595	Catalyst Performance Studies on the Guerbet Reaction in a Continuous Flow Reactor Using Mono- and Bi-Metallic Cu-Ni Porous Metal Oxides. Catalysts, 2020, 10, 996.	1.6	12
3597	Towards continuous industrial bioprocessing with solventogenic and acetogenic clostridia: challenges, progress and perspectives. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 753-787.	1.4	47
3598	Lignocellulosic biomass and industrial bioprocesses for the production of second generation bio-ethanol, does it have a future in Algeria?. SN Applied Sciences, 2020, 2, 1.	1.5	5
3599	Biomass-degrading glycoside hydrolases of archaeal origin. Biotechnology for Biofuels, 2020, 13, 153.	6.2	24
3600	Ligninolysis Potential of Ligninolytic Enzymes: A Green and Sustainable Approach to Bio-transform Lignocellulosic Biomass into High-Value Entities. Handbook of Environmental Chemistry, 2020, , 151-171.	0.2	7
3601	Reaction Kinetics of One-Pot Xylan Conversion to Xylitol via Precious Metal Catalyst. Frontiers in Chemical Engineering, 2020, 2, .	1.3	4
3602	Maize Silage Pretreatment via Steam Refining and Subsequent Enzymatic Hydrolysis for the Production of Fermentable Carbohydrates. Molecules, 2020, 25, 6022.	1.7	4
3603	A Review of Process Systems Engineering (PSE) Tools for the Design of Ionic Liquids and Integrated Biorefineries. Processes, 2020, 8, 1678.	1.3	13
3604	Biomass Productivity, Developmental Morphology, and Nutrient Removal Rate of Hybrid Napier Grass (Pennisetum purpureum x Pennisetum americanum) in Response to Potassium and Nitrogen Fertilization in a Multiple-Harvest System. Bioenergy Research, 2021, 14, 1106-1117.	2.2	3
3605	Insight into chemical pretreatment of hardwood (Arundo donax) for improvement of pyrolysis. Bioresource Technology Reports, 2020, 11, 100545.	1.5	7
3606	Black Liquor Pretreatment of Concorb and Enzymatic Hydrolysis for Lignocellulosic Bioethanol. IOP Conference Series: Materials Science and Engineering, 2020, 854, 012006.	0.3	5

#	Article	IF	CITATIONS
3607	Lignocellulose Pretreatment Combining Continuous Alkaline Single-Screw Extrusion and Ultrasonication to Enhance Biosugar Production. Energies, 2020, 13, 5636.	1.6	14
3608	Reusability of Immobilized Cells for Subsequent Balsamic-Styled Vinegar Fermentations. Fermentation, 2020, 6, 103.	1.4	3
3609	Pretreatment of yard waste using advanced oxidation processes for enhanced biogas production. Biomass and Bioenergy, 2020, 142, 105780.	2.9	14
3610	Current Approaches to Alkyl Levulinates via Efficient Valorization of Biomass Derivatives. Frontiers in Chemistry, 2020, 8, 794.	1.8	14
3611	Process Strategies for the Transition of 1G to Advanced Bioethanol Production. Processes, 2020, 8, 1310.	1.3	55
3612	Catalytic cracking of Etek lignin with zirconia supported metal-oxides for alkyl and alkoxy phenols recovery. Bioresource Technology, 2020, 317, 124008.	4.8	15
3613	Recent advances of greener pretreatment technologies of lignocellulose. Current Research in Green and Sustainable Chemistry, 2020, 3, 100035.	2.9	122
3614	Wheat straw biorefinery for agricultural waste valorisation. Green Materials, 2020, 8, 60-67.	1.1	9
3615	Investigation of Balanced Feedstocks of Lipids and Proteins To Synthesize Highly Effective Rejuvenators for Oxidized Asphalt. ACS Sustainable Chemistry and Engineering, 2020, 8, 7656-7667.	3.2	41
3616	Impact of coâ€product selection on technoâ€economic analyses of alternative jet fuel produced with forest harvest residuals. Biofuels, Bioproducts and Biorefining, 2020, 14, 764-775.	1.9	12
3617	Effects of Combined Acid-alkali and Heat Treatment on the Physiochemical Structure of Moso Bamboo. Scientific Reports, 2020, 10, 6760.	1.6	17
3618	Energetic Valorisation of Olive Biomass: Olive-Tree Pruning, Olive Stones and Pomaces. Processes, 2020, 8, 511.	1.3	56
3619	Crystal Structure of α-Galactosidase from <i>Thermus thermophilus</i> : Insight into Hexamer Assembly and Substrate Specificity. Journal of Agricultural and Food Chemistry, 2020, 68, 6161-6169.	2.4	5
3620	Production of hydrogen and methane from lignocellulose waste by fermentation. A review of chemical pretreatment for enhancing the efficiency of the digestion process. Journal of Cleaner Production, 2020, 267, 121721.	4.6	87
3621	Chemoinformatic Investigation of the Chemistry of Cellulose and Lignin Derivatives in Hydrous Pyrolysis. Industrial & Engineering Chemistry Research, 2020, 59, 11582-11595.	1.8	10
3622	Modeling of Pretreatment and Acid/Alkaline Hydrolyses of Lignocellulosic Biomasses in Twin-Screw Extruders. Industrial & amp; Engineering Chemistry Research, 2020, 59, 11389-11401.	1.8	5
3623	Oil palm empty fruit bunch (OPEFB) (Elaeis guineensis Jacq.) cellulose conversion into levulinic acid using hierarchical Mn/ZSM-5 heterogeneous catalyst. IOP Conference Series: Materials Science and Engineering, 2020, 763, 012034.	0.3	1
3624	Microbial cellulolytic enzymes: diversity and biotechnology with reference to lignocellulosic biomass degradation. Reviews in Environmental Science and Biotechnology, 2020, 19, 621-648.	3.9	95

#	Article	IF	CITATIONS
3625	Mechanical pretreatment of lignocellulosic biomass to improve biogas production: Comparison of results for giant reed and wheat straw. Energy, 2020, 203, 117798.	4.5	29
3626	Biogenic Catalysis by Adding Compost when Using Wheat Straw in a Biorefinery Concept. Chemical Engineering and Technology, 2020, 43, 1485-1492.	0.9	1
3627	Furfuryl alcohol—a promising platform chemical. , 2020, , 323-353.		6
3628	Inhibition of hyperthermostable xylanases by superbase ionic liquids. Process Biochemistry, 2020, 95, 148-156.	1.8	10
3629	Role of cultural variables in augmenting carbohydrate accumulation in the green microalga Scenedesmus acuminatus for bioethanol production. Biocatalysis and Agricultural Biotechnology, 2020, 26, 101632.	1.5	28
3630	Lignocellulosic biomass for bioethanol: Recent advances, technology trends, and barriers to industrial development. Current Opinion in Green and Sustainable Chemistry, 2020, 24, 56-60.	3.2	69
3633	Response surface methodology for enzymatic hydrolysis optimization of jabon alkaline pulp with Tween 80 surfactant addition. Biomass Conversion and Biorefinery, 2022, 12, 2165-2174.	2.9	11
3635	Transformation of pulp and paper mill sludge (PPMS) into a glucose-rich hydrolysate using green chemistry: Assessing pretreatment methods for enhanced hydrolysis. Journal of Environmental Management, 2020, 270, 110914.	3.8	17
3636	Electronic excitation of ethanol by low-energy electron impact. Journal of Chemical Physics, 2020, 152, 244302.	1.2	8
3637	Recent advances in removal of lignin from paper industry wastewater and its industrial applications – A review. Bioresource Technology, 2020, 312, 123636.	4.8	126
3638	Thermostable endoglucanase gene derived by amplification from the genomic DNA of a cellulose-enriched mixed culture from mudspring water of Mt. Makiling, Laguna, Philippines. World Journal of Microbiology and Biotechnology, 2020, 36, 51.	1.7	2
3639	Nanomaterials in Biofuels Research. Clean Energy Production Technologies, 2020, , .	0.3	9
3640	Explosive property and combustion kinetics of grain dust with different particle sizes. Heliyon, 2020, 6, e03457.	1.4	13
3641	Methods for the Evaluation of Industrial Mechanical Pretreatments before Anaerobic Digesters. Molecules, 2020, 25, 860.	1.7	7
3642	Simultaneous and Efficient Production of Furfural and Subsequent Glucose in MTHF/H2O Biphasic System via Parameter Regulation. Polymers, 2020, 12, 557.	2.0	7
3643	Recent developments in the application of kraft pulping alkaline chemicals for lignocellulosic pretreatment: Potential beneficiation of green liquor dregs waste. Bioresource Technology, 2020, 306, 123225.	4.8	38
3644	Development of sustainable approaches for converting the organic waste to bioenergy. Science of the Total Environment, 2020, 723, 138109.	3.9	103
3645	Biofuel Production Technologies: Critical Analysis for Sustainability. Clean Energy Production Technologies, 2020, , .	0.3	6

#	Article	IF	CITATIONS
3646	Composition of Synthesized Cellulolytic Enzymes Varied with the Usage of Agricultural Substrates and Microorganisms. Applied Biochemistry and Biotechnology, 2020, 191, 1695-1710.	1.4	8
3647	Production of Xylose from Pre-treated Husk of Areca Nut. Journal of Natural Fibers, 2022, 19, 131-144.	1.7	4
3648	Bioreactor design for efficient biofuels production from lignocellulosic biomass. , 2020, , 193-206.		0
3649	Feasibility study of on-site solid-state enzyme production by Aspergillus oryzae. Biotechnology for Biofuels, 2020, 13, 31.	6.2	12
3650	Circular economy aspects of lignin: Towards a lignocellulose biorefinery. Renewable and Sustainable Energy Reviews, 2020, 130, 109977.	8.2	135
3651	1. Furfural derivatives from agricultural and agri-food wastes by heterogeneous catalysis. , 2020, , 1-30.		0
3652	Steam Refining with Subsequent Alkaline Lignin Extraction as an Alternative Pretreatment Method to Enhance the Enzymatic Digestibility of Corn Stover. Agronomy, 2020, 10, 811.	1.3	8
3653	Microwave-Assisted Degradation of Biomass with the Use of Acid Catalysis. Catalysts, 2020, 10, 641.	1.6	7
3654	Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation. Energies, 2020, 13, 2937.	1.6	55
3655	Cultivation of Mushrooms and Their Lignocellulolytic Enzyme Production Through the Utilization of Agro-Industrial Waste. Molecules, 2020, 25, 2811.	1.7	121
3656	Investigation of hemicellulosic hydrolysate inhibitor resistance and fermentation strategies to overcome inhibition in non-saccharomyces species. Biomass and Bioenergy, 2020, 137, 105549.	2.9	37
3657	Enhancement of hydrolysis with Trichoderma harzianum for bioethanol production of sonicated pineapple fruit peel. Fuel, 2020, 279, 118437.	3.4	23
3658	Technical lignin and its potential modification routes: A mini-review. Industrial Crops and Products, 2020, 154, 112732.	2.5	88
3659	Novel Routes in Transformation of Lignocellulosic Biomass to Furan Platform Chemicals: From Pretreatment to Enzyme Catalysis. Catalysts, 2020, 10, 743.	1.6	31
3660	Two-step optimization process for grass hydrolysate application as biodiesel feedstock with novel quality characteristics. Environmental Science and Pollution Research, 2020, 27, 39354-39364.	2.7	5
3661	Sustainable bioethanol production from microalgae through ionic liquid as a potential catalyst: Review. AIP Conference Proceedings, 2020, , .	0.3	2
3662	Acacia Xylan as a Substitute for Commercially Available Xylan and Its Application in the Production of Xylooligosaccharides. ACS Omega, 2020, 5, 13729-13738.	1.6	25
3663	Current advancement on the isolation, characterization and application of lignin. International Journal of Biological Macromolecules, 2020, 162, 985-1024.	3.6	223

#	Article	IF	CITATIONS
3664	Polymer synthesis in water and supercritical water. , 2020, , 1-29.		1
3665	d-lactic acid production from orange waste enzymatic hydrolysates with L. delbrueckii cells in growing and resting state. Industrial Crops and Products, 2020, 146, 112176.	2.5	22
3666	Comparison of enzymatic saccharification and lignin structure of masson pine and poplar pretreated by p-Toluenesulfonic acid. International Journal of Biological Macromolecules, 2020, 151, 861-869.	3.6	18
3667	Silica removal by alkaline hydrogen peroxide treatment to enhance the conversion of rice straw to sugars. Materials Today: Proceedings, 2020, 31, 145-149.	0.9	2
3668	Advances in nanomaterials induced biohydrogen production using waste biomass. Bioresource Technology, 2020, 307, 123094.	4.8	99
3669	Biological pretreatment of corn straw for enhancing degradation efficiency and biogas production. Bioengineered, 2020, 11, 251-260.	1.4	68
3670	Enhancement the added value of sengon wood waste pulp as bioenergy raw material for bioethanol production. IOP Conference Series: Earth and Environmental Science, 2020, 415, 012012.	0.2	2
3671	Cultivation Strategies of <i>Clostridium autoethanogenum</i> on Xylose and Carbon Monoxide Combination. ACS Sustainable Chemistry and Engineering, 2020, 8, 2632-2639.	3.2	9
3672	Microbial sources of polyunsaturated fatty acids (PUFAs) and the prospect of organic residues and wastes as growth media for PUFA-producing microorganisms. FEMS Microbiology Letters, 2020, 367, .	0.7	70
3673	Modeling Biowaste Biorefineries: A Review. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	43
3674	Application of enzyme cocktails from Indonesian isolates to corncob (Zea mays) waste saccharification. Biocatalysis and Agricultural Biotechnology, 2020, 24, 101537.	1.5	7
3675	Nanocelluloseâ€Enabled Membranes for Water Purification: Perspectives. Advanced Sustainable Systems, 2020, 4, 1900114.	2.7	118
3676	Food waste valorization opportunities for different food industries. , 2020, , 341-422.		20
3677	Effects of ethanol injection strategies on mixture formation and combustion process in an ethanol direct injection (EDI) plus gasoline port injection (GPI) spark-ignition engine. Fuel, 2020, 268, 117346.	3.4	14
3678	Experimental Design to Improve Cell Growth and Ethanol Production in Syngas Fermentation by Clostridium carboxidivorans. Catalysts, 2020, 10, 59.	1.6	17
3679	Hydrothermal carbonization of renewable waste biomass for solid biofuel production: A discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar. Renewable and Sustainable Energy Reviews, 2020, 123, 109761.	8.2	280
3680	Material Characterization-Based Wear Mechanism Investigation for Biomass Hammer Mills. ACS Sustainable Chemistry and Engineering, 2020, 8, 3541-3546.	3.2	10
3681	Microwave-assisted pretreatment using alkali metal salt in combination with orthophosphoric acid for generation of enhanced sugar and bioethanol. Biomass Conversion and Biorefinery, 2022, 12, 1069-1076	2.9	17

#	Article	IF	CITATIONS
3682	Protein engineering approaches for lignocellulosic ethanol biorefinery. , 2020, , 243-260.		2
3683	The effect of using different acids to catalyze the prehydrolysis stage on the organosolv delignification of beech wood in two-stage process. Renewable Energy, 2020, 153, 1479-1487.	4.3	8
3684	Effect of ground wood particle size on biomass fractionation using p-toluenesulfonic acid treatment. Cellulose, 2020, 27, 4043-4052.	2.4	6
3685	Pressurised disc refining of wheat straw as a pre-treatment approach for agricultural residues: A preliminary assessment of energy consumption and fibre composition. Bioresource Technology, 2020, 304, 122976.	4.8	12
3686	Experimental study of the combustion and emission characteristics of oxygenated fuels on a heavy-duty diesel engine. Fuel, 2020, 268, 117219.	3.4	42
3688	Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review. Renewable and Sustainable Energy Reviews, 2020, 121, 109669.	8.2	116
3689	Enhancement of biogas production from organic fraction of municipal solid waste using alkali pretreatment. Journal of Material Cycles and Waste Management, 2020, 22, 757-767.	1.6	18
3690	Evaluation of pre-treatment methods for Lantana camara stem for enhanced enzymatic saccharification. 3 Biotech, 2020, 10, 37.	1.1	6
3692	Value-added chemicals and materials from lignocellulosic biomass. , 2020, , 367-436.		6
3693	Understanding the Impact of Lignocellulosic Biomass Variability on the Size Reduction Process: A Review. ACS Sustainable Chemistry and Engineering, 2020, 8, 2327-2343.	3.2	60
3694	Valorization of humin as a glucose derivative to fabricate a porous carbon catalyst for esterification and hydroxyalkylation/alkylation. Waste Management, 2020, 103, 407-415.	3.7	16
3695	Substrate Analysis for Effective Biofuels Production. Clean Energy Production Technologies, 2020, , .	0.3	3
3696	Electricity generation using membraneâ€less microbial fuel cell powered by sludge supplemented with lignocellulosic waste. International Journal of Energy Research, 2020, 44, 3260-3265.	2.2	42
3697	A stepwise pretreatment of sugarcane bagasse by alkaline and hydroxymethyl reagent for bioethanol production. Industrial Crops and Products, 2020, 145, 112136.	2.5	26
3698	Incorporating Lignin into Polyethylene Glycol Enhanced Its Performance for Promoting Enzymatic Hydrolysis of Hardwood. ACS Sustainable Chemistry and Engineering, 2020, 8, 1797-1804.	3.2	29
3699	Amineâ€functionalized ordered mesoporous silicas as model materials for liquid phase acid capture. AICHE Journal, 2020, 66, e16918.	1.8	4
3700	Quantitative visualization of subcellular lignocellulose revealing the mechanism of alkali pretreatment to promote methane production of rice straw. Biotechnology for Biofuels, 2020, 13, 8.	6.2	13
3701	Nanobiotechnological advancements in lignocellulosic biomass pretreatment. Materials Science for Energy Technologies, 2020, 3, 308-318.	1.0	51

#	Article	IF	CITATIONS
3702	Current approaches and trends in the production of microbial cellulases using residual lignocellulosic biomass: a bibliometric analysis of the last 10Âyears. Archives of Microbiology, 2020, 202, 935-951.	1.0	22
3703	Statistical optimization of a cellulase from Aspergillus glaucus CCHA for hydrolyzing corn and rice straw by RSM to enhance yield of reducing sugar. Biotechnology Letters, 2020, 42, 583-595.	1.1	22
3704	Steam explosion (SE) and instant controlled pressure drop (DIC) as thermo-hydro-mechanical pretreatment methods for bioethanol production. Bioprocess and Biosystems Engineering, 2020, 43, 945-957.	1.7	23
3705	One-step utilization of non-detoxified pretreated lignocellulose for enhanced cellulolytic enzyme production using recombinant Trichoderma reesei RUT C30 carrying alcohol dehydrogenase and nicotinate phosphoribosyltransferase. Bioresource Technology, 2020, 310, 123458.	4.8	13
3706	Agave Leaves as a Substrate for the Production of Cellulases by Penicillium sp. and the Obtainment of Reducing Sugars. Journal of Chemistry, 2020, 2020, 1-7.	0.9	6
3707	Improvement of Anaerobic Digestion of Hydrolysed Corncob Waste by Organosolv Pretreatment for Biogas Production. Applied Sciences (Switzerland), 2020, 10, 2785.	1.3	12
3708	Isolation, characterization, and application of thermotolerant Streptomyces sp. K5 for efficient conversion of cellobiose to chitinase using pulse- feeding strategy. Process Biochemistry, 2020, 94, 58-65.	1.8	5
3709	Optimization by response surface methodology of the enzymatic hydrolysis of non-pretreated agave bagasse with binary mixtures of commercial enzymatic preparations. Biomass Conversion and Biorefinery, 2021, 11, 2923-2935.	2.9	11
3710	Biobutanol production from hydrolysates of cyanobacteria Lyngbya limnetica and Oscillatoria obscura. Fuel, 2020, 271, 117583.	3.4	28
3711	Bioconversion of hazelnut shell using near critical water pretreatment for second generation biofuel production. Fuel, 2020, 273, 117641.	3.4	23
3712	The role of pretreatment in the catalytic valorization of cellulose. Molecular Catalysis, 2020, 487, 110883.	1.0	43
3713	Effects of Different Environmental Factors on the Growth and Bioactive Substance Accumulation of Porphyridium purpureum. International Journal of Environmental Research and Public Health, 2020, 17, 2221.	1.2	15
3714	The production of fermentable sugar and bioethanol from acacia wood by optimizing dilute sulfuric acid pretreatment and post treatment. Fuel, 2020, 275, 117943.	3.4	42
3715	Cu-Pd pair facilitated simultaneous activation of ethanol and CO. Journal of Catalysis, 2020, 386, 81-93.	3.1	2
3716	The effect of Palm Oil Mill Effluent Final Discharge on the Characteristics of Pennisetum purpureum. Scientific Reports, 2020, 10, 6613.	1.6	18
3718	Pretreatment methods of lignocellulosic wastes into value-added products: recent advances and possibilities. Biomass Conversion and Biorefinery, 2022, 12, 547-564.	2.9	39
3719	Biomass properties and characterization. , 2020, , 21-29.		2
3720	Biomass composition. , 2020, , 31-40.		3

ARTICLE IF CITATIONS # Polyoxometalate-catalyzed hydrolysis of the hemicelluloses by (Mo-V-P)-heteropolyacidsâ€"Statistical 3721 5.1 7 modeling using response surfaces. Carbohydrate Polymers, 2020, 236, 116091. Rheological behavior of bio-asphalts and effect of rejuvenators. Construction and Building 3.2 Materials, 2020, 251, 118137 Bioconversion of sago effluent and oil cakes for bio-butanol production using environmental 3723 1.4 6 isolates. Biofuels, 2021, 12, 35-42. Review on anaerobic digestion of rice straw for biogas production. Environmental Science and 3724 Pollution Research, 2021, 28, 24455-24469. Enhanced xylan conversion to xylitol in a bio- and chemocatalytic one-pot process. Catalysis Today, 3725 2.2 6 2021, 367, 137-144. Contemporary Pretreatment Strategies for Bioethanol Production from Corncobs: A Comprehensive 1.8 Review. Waste and Biomass Valorization, 2021, 12, 577-612. Catalytic hydrothermal liquefaction of contaminated construction wood waste for biocrude 3727 3.7 18 production and investigation of fate of heavy metals. Fuel Processing Technology, 2021, 212, 106621. Production of levulinic acid and biocarbon electrode material from corn stover through an 3728 3.7 26 integrated biorefinery process. Fuel Processing Technology, 2021, 213, 106644. Hydrogen: Current advances and patented technologies of its renewable production. Journal of 3729 4.6 83 Cleaner Production, 2021, 286, 124970. Role of microbial enzymes for biodegradation and bioremediation of environmental pollutants: challenges and future prospects., 2021, , 325-346. Optimization of two-stage pretreatment for maximizing ethanol production in 1.5G technology. 3731 4.8 11 Bioresource Technology, 2021, 320, 124380. Recycled utilization of Iris pseudacorus in constructed wetlands: Litters self-consumption and 4.2 nitrogen removal improvement. Chemosphere, 2021, 262, 127863. 3733 Oleaginous Fungi in Biorefineries., 2021, 577-589. 7 Biological treatment of plant biomass and factors affecting bioactivity. Journal of Cleaner 3734 4.6 Production, 2021, 279, 123546. Vivid techniques of pretreatment showing promising results in biofuel production and food 3735 2 1.5 processing. Journal of Food Process Engineering, 2021, 44, e13580. Developments in Bioethanol. Green Energy and Technology, 2021, , . Sugarcane bagasse based biorefineries in India: potential and challenges. Sustainable Energy and Fuels, 3737 2.562 2021, 5, 52-78. Enhanced Enzymatic Hydrolysis and Structure Properties of Bamboo by Moderate Two-Step 3738 1.4 Pretreatment. Applied Biochemistry and Biotechnology, 2021, 193, 1011-1022.

#	Article	IF	CITATIONS
3739	Current challenges and innovative developments in pretreatment of lignocellulosic residues for biofuel production: A review. Fuel, 2021, 287, 119670.	3.4	114
3740	Transforming biomass pyrolysis technologies to produce liquid smoke food flavouring. Journal of Cleaner Production, 2021, 294, 125368.	4.6	28
3741	Sustainability of <scp><i>Ageratum conyzoides</i></scp> (billy goat weed) for bioethanol and recycling of residues for gaseous fuel production. Engineering Reports, 2021, 3, e12284.	0.9	2
3742	Bioconversion of lignocellulosic â€~waste' to highâ€value food proteins: Recombinant production of bovine and human l± S1 â€casein based on wheat straw lignocellulose. GCB Bioenergy, 2021, 13, 640-655.	2.5	3
3743	Integrated treatment of perennial ryegrass: Structural characterization of hemicelluloses and improvement of enzymatic hydrolysis of cellulose. Carbohydrate Polymers, 2021, 254, 117257.	5.1	23
3744	Cellulose, proteins, starch and simple carbohydrates molecules control the hydrogen exchange capacity of bio-indicators and foodstuffs. Chemosphere, 2021, 269, 128676.	4.2	6
3745	Sequential fractionation of sugarcane bagasse using liquid hot water and formic acid-catalyzed glycerol-based organosolv with solvent recycling. Bioenergy Research, 2021, 14, 135-152.	2.2	22
3746	Effects and Mechanisms of Alkali Recycling and Ozone Recycling on Enzymatic Conversion in Alkali Combined with Ozone Pretreatment of Corn Stover. Applied Biochemistry and Biotechnology, 2021, 193, 281-295.	1.4	6
3747	Essential basics on biomass torrefaction, densification and utilization. International Journal of Energy Research, 2021, 45, 1375-1395.	2.2	48
3748	Solid-state fermentation with Pleurotus ostreatus improves the nutritive value of corn stover-kudzu biomass. Folia Microbiologica, 2021, 66, 41-48.	1.1	5
3749	Bioprocess developments for improved cellulase production. , 2021, , 85-93.		0
3750	Fundamentals of Lignin-Carbohydrate Complexes and Its Effect on Biomass Utilization. , 2021, , 133-155.		2
3751	Biomass to Xylose. Advances in Science, Technology and Innovation, 2021, , 247-265.	0.2	2
3752	Microbial Lipid Production from Lignocellulosic Biomass Pretreated by Effective Pretreatment. , 2021, , 175-206.		1
3753	Deconstruction of Lignocellulose Recalcitrance by Organosolv Fractionating Pretreatment for Enzymatic Hydrolysis. , 2021, , 23-56.		1
3754	Fusion catalyst mediated lignin valorization. , 2021, , 243-266.		0
3755	Microbial Valorization of Coir Pith for Development of Compost and Bioethanol Production. Environmental and Microbial Biotechnology, 2021, , 1-20.	0.4	1
3756	Biofuel: Marine Biotechnology Securing Alternative Sources of Renewable Energy. Environmental and Microbial Biotechnology, 2021, , 161-194.	0.4	2

#	Article	IF	Citations
3757	Process Integration for Cost-Effective Lignocellulosic Bioethanol Production—An Avenue for Promoting Circular Bioeconomy. , 2021, , 557-582.		0
3758	Bio-prospecting of Fruits Waste for Exopolysaccharide Production by Bacteria. , 2021, , 353-371.		2
3759	Introduction to lignocellulosic materials. , 2021, , 1-34.		1
3760	Utilization of Aqueous Weeds for Biofuel Production: Current Status and Future Prospects. Energy, Environment, and Sustainability, 2021, , 37-57.	0.6	1
3761	Enzymatic hydrolysis of lignocellulosic biomass: Mechanistic insight and advancement. , 2021, , 79-94.		0
3762	Engineering Vibrio sp. SP1 for the production of carotenoids directly from brown macroalgae. Computational and Structural Biotechnology Journal, 2021, 19, 1531-1540.	1.9	8
3763	Thermochemical conversion methods of bio-derived lignocellulosic waste molecules into renewable fuels. , 2021, , 197-215.		1
3764	An overview on pretreatment processes for an effective conversion of lignocellulosic biomass into bioethanol. , 2021, , 41-68.		2
3765	A comparative evaluation of fermentable sugars production from oxidative, alkaline, alkaline peroxide oxidation, dilute acid, and molten hydrate salt pretreatments of corn cob biomass. AIMS Energy, 2021, 9, 15-28.	1.1	4
3766	Biocatalysis in industrial biodiesel and bioethanol production. , 2021, , 1-28.		0
3767	Bioconversion of Food Waste into Ethanol: A Review. Advances in Science, Technology and Innovation, 2021, , 45-58.	0.2	2
3768	Cellulose Photocatalysis for Renewable Energy Production. Environmental Chemistry for A Sustainable World, 2021, , 1-34.	0.3	1
3769	Microbial Enzymes and Their Role in Phytoremediation. , 2021, , 625-650.		3
3770	Ultrasound-assisted acid hydrolysis of cassava (Manihot esculenta) bagasse: Kinetics, acoustic field and structural effects. Ultrasonics Sonochemistry, 2021, 70, 105318.	3.8	2
3771	Current perspective on improved fermentative production and purification of fungal cellulases for successful biorefinery applications: a brief review. Biomass Conversion and Biorefinery, 2022, 12, 967-995.	2.9	10
3772	Process and product design for the simultaneous synthesis of xylitol and sorbitol from biomass. Computer Aided Chemical Engineering, 2021, , 159-165.	0.3	0
3773	A review on biomass-derived hard carbon materials for sodium-ion batteries. Materials Advances, 2021, 2, 5881-5905.	2.6	50
3774	Biomethanization of agricultural lignocellulosic wastes: Pretreatments. , 2021, , 155-202.		1

#	Article	IF	Citations
3775	Lignocellulosic biorefineries: the path forward. , 2021, , 21-42.		18
3776	Bioconversion of Lignocellulosic Residues into Hydrogen. Advances in Science, Technology and Innovation, 2021, , 59-80.	0.2	1
3777	Application of Hemicellulose in Biohydrogen Production. Advances in Science, Technology and Innovation, 2021, , 315-327.	0.2	2
3778	Microbial Mediated Valorization of Lignocellulose: A Green Technology for Bioethanol Production. Environmental and Microbial Biotechnology, 2021, , 53-71.	0.4	0
3779	Background and General Information. SpringerBriefs in Applied Sciences and Technology, 2021, , 1-8.	0.2	0
3780	Processing of Biomass by DESs. SpringerBriefs in Applied Sciences and Technology, 2021, , 29-54.	0.2	0
3781	Characterization and pre-leaching effect on the peels of predominant cassava varieties in Uganda for production of activated carbon. Current Research in Green and Sustainable Chemistry, 2021, 4, 100083.	2.9	10
3782	Multi-scale study of the integrated use of the carbohydrate fractions of sugarcane bagasse for ethanol and xylitol production. Renewable Energy, 2021, 163, 1343-1355.	4.3	35
3783	Exogenous Enzymes. , 2021, , 319-338.		2
3784	Microbial and Bioinformatics Approach in Biofuel Production. Clean Energy Production Technologies, 2021, , 257-306.	0.3	2
3785	Optimization and strategies for the production of microbial cellulases and their potential industrial applications. , 2021, , 313-330.		1
3786	Nanomaterials: stimulants for biofuels and renewables, yield and energy optimization. Materials Advances, 2021, 2, 5318-5343.	2.6	49
3787	Influence of chlorite treatment on the fine structure of alkali pretreated sugarcane bagasse. Biomass Conversion and Biorefinery, 0, , 1.	2.9	0
3788	Overcome saccharification barrier. , 2021, , 137-159.		12
3789	Transforming the Lignocellulosic Biomass into High Value-Added Bioproducts. Environmental and Microbial Biotechnology, 2021, , 21-51.	0.4	3
3790	Bioethanol production using high density Eucalyptus crops in Uruguay. Heliyon, 2021, 7, e06031.	1.4	6
3791	Challenges in Bioethanol Production: Effect of Inhibitory Compounds. Clean Energy Production Technologies, 2021, , 119-154.	0.3	3
3792	Screening of Microbial Enzymes and Their Potential Applications in the Bioremediation Process. Microorganisms for Sustainability, 2021, , 359-378.	0.4	2

#	Article	IF	CITATIONS
3793	Hydrogen Peroxide Pretreatment of Lignocellulosic Biomass (Pepper Plant and Eggplant) for Anaerobic Digestion. , 2021, , 318-324.		0
3794	Alternative Bio-Refinery Products From Hydrothermal Liquefaction of Waste. , 2021, , .		0
3795	Application of enzymes derived from beneficial microorganisms and their synergetic effects with biosurfactants and their role in bioremediation. , 2021, , 353-365.		0
3796	CRISPRi screens reveal genes modulating yeast growth in lignocellulose hydrolysate. Biotechnology for Biofuels, 2021, 14, 41.	6.2	15
3797	Effect of Ceria Addition to Na2O-ZrO2 Catalytic Mixtures on Lignin Waste Ex-Situ Pyrolysis. Molecules, 2021, 26, 827.	1.7	2
3798	Agro-Food Residues and Bioethanol Potential: A Study for a Specific Area. Processes, 2021, 9, 344.	1.3	14
3799	Photocatalytic hydrogen evolution from biomass conversion. Nano Convergence, 2021, 8, 6.	6.3	75
3800	Biomass pyrolysis technologies for value-added products: a state-of-the-art review. Environment, Development and Sustainability, 2021, 23, 14324-14378.	2.7	77
3801	Potassium permanganate assisted organosolv pretreatment enhances enzymatic hydrolysis of corn stover. GCB Bioenergy, 2021, 13, 665-678.	2.5	7
3802	Bacterial pretreatment of microalgae and the potential of novel nature hydrolytic sources. Environmental Technology and Innovation, 2021, 21, 101362.	3.0	30
3803	An Alkali-Halostable Endoglucanase Produced Constitutively by a Bacterium Isolated from Sambhar Lake in India with Biotechnological Potential. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2021, 91, 319-326.	0.4	2
3804	EFFECT OF REACTION TIME AND SODIUM HYDROXIDE CONCENTRATION ON DELIGNIFICATION AND ENZYMATIC HYDROLYSISOF BREWER'S SPENT GRAIN FROM WO BRAZILIAN BREWERS. Cellulose Chemistry and Technology, 2021, 55, 101-112.	0.5	5
3805	Structural and Morphological Analysis of Cellulose Pulp Produced from the Fractionation of <i>Eucalyptus obliqua</i> Sawdust Using γ-Valerolactone. ACS Omega, 2021, 6, 4126-4136.	1.6	11
3806	Wheat straw: A natural remedy against different maladies. Food Science and Nutrition, 2021, 9, 2335-2344.	1.5	36
3807	Recent advances on biomass-fueled microbial fuel cell. Bioresources and Bioprocessing, 2021, 8, .	2.0	67
3808	Pretreatment of Tropical Lignocellulosic Biomass for Industrial Biofuel Production : A Review. IOP Conference Series: Materials Science and Engineering, 2021, 1053, 012097.	0.3	6
3809	Bioethanol Production from Stalk Residues of Chiquere and Gebabe Varieties of Sweet Sorghum. International Journal of Microbiology, 2021, 2021, 1-16.	0.9	7
3810	Sugarcane Bagasse as a Co-Substrate with Oil-Refinery Biological Sludge for Biogas Production Using Batch Mesophilic Anaerobic Co-Digestion Technology: Effect of Carbon/Nitrogen Ratio. Water (Switzerland), 2021, 13, 590.	1.2	44

#	Article	IF	CITATIONS
3811	Material utilization of green waste: a review on potential valorization methods. Bioresources and Bioprocessing, 2021, 8, .	2.0	35
3812	Biocatalytic potential of basidiomycetes: Relevance, challenges and research interventions in industrial processes. Scientific African, 2021, 11, e00717.	0.7	10
3813	Second Generation Biofuel – An Alternative Clean Fuel. Smart Moves Journal Ijoscience, 2021, 7, 13-21.	0.0	1
3814	Complex processing of plant raw materials for furfural and glucose production. IOP Conference Series: Earth and Environmental Science, 2021, 677, 052014.	0.2	2
3815	Biochemical Conversion of Lignocellulosic Biomass from Date Palm of Phoenix dactylifera L. into Ethanol Production. Energies, 2021, 14, 1887.	1.6	5
3816	Isolation of Cellulose-Degrading Thermoanaerobacterium Strains from Thermophilic Methanogenic Microbial Communities. Microbiology, 2021, 90, 158-165.	0.5	2
3817	Optimization of extracellular ethanol-tolerant β-glucosidase production from a newly isolated Aspergillus sp. DHE7 via solid state fermentation using jojoba meal as substrate: purification and biochemical characterization for biofuel preparation. Journal of Genetic Engineering and Biotechnology, 2021, 19, 45,	1.5	11
3818	Determination of Mechanical Properties and Characterization of Alkali Treated Sugarcane Bagasse, Pine Apple Leaf and Sisal Fibers Reinforced Hybrid Polyester Composites for Various Applications. Fibers and Polymers, 2021, 22, 1675-1683.	1.1	40
3819	Very High Gravity Bioethanol Revisited: Main Challenges and Advances. Fermentation, 2021, 7, 38.	1.4	21
3820	Integrated Renewable Production of Sorbitol and Xylitol from Switchgrass. Industrial & Engineering Chemistry Research, 2021, 60, 5558-5573.	1.8	12
3821	Prediction, enrichment and isolation identify a responsive, competitive community of cellulolytic microorganisms from a municipal landfill. FEMS Microbiology Ecology, 2021, 97, .	1.3	3
3822	Review of waste biorefinery development towards a circular economy: From the perspective of a life cycle assessment. Renewable and Sustainable Energy Reviews, 2021, 139, 110716.	8.2	71
3823	Semidry acid hydrolysis of cellulose sustained by autoclaving for production of reducing sugars for bacterial biohydrogen generation from various cellulose feedstock. PeerJ, 2021, 9, e11244.	0.9	1
3824	Vapor phase hydrodeoxygenation of phenolic compounds on group 10 metal-based catalysts: Reaction mechanism and product selectivity control. Catalysis Today, 2021, 365, 143-161.	2.2	19
3825	Mathematical Modelling of Alkaline and Ionic Liquid Pretreated Coconut Husk Enzymatic Hydrolysis. Bulletin of Chemical Reaction Engineering and Catalysis, 2021, 16, 331-341.	0.5	0
3826	ASSESSMENT OF CELLULASE COMPLEX SECRETORY CAPACITY OF TRICHODERMA STRAINS AND MORPHOLOGICAL AND MOLECULAR IDENTIFICATION OF THE ISOLATE WITH THE HIGHEST ENZYMATIC SECRETION CAPACITY. Journal of Microbiology, Biotechnology and Food Sciences, 2021, 10, .	0.4	2
3827	Investigation of choline chloride-formic acid pretreatment and Tween 80 to enhance sugarcane bagasse enzymatic hydrolysis. Bioresource Technology, 2021, 326, 124748.	4.8	29
3828	Mass Balance analysis of Bioethanol Production from Sweet Sorghum (Sorghum bicolor). IOP Conference Series: Materials Science and Engineering, 2021, 1143, 012027.	0.3	0

#	Article	IF	CITATIONS
3829	Insights into Glucose-6-phosphate Allosteric Activation of Î ² -Glucosidase A. Journal of Chemical Information and Modeling, 2021, 61, 1931-1941.	2.5	4
3830	Thermal degradation of hemicellulose and cellulose in ball-milled cedar and beech wood. Journal of Wood Science, 2021, 67, .	0.9	12
3831	Isolation and identification of an osmotolerant <i>Bacillus amyloliquefaciens</i> strain T4 for 2, 3-butanediol production with tobacco waste. Preparative Biochemistry and Biotechnology, 2022, 52, 210-217.	1.0	2
3832	Potential for reduced water consumption in biorefining of lignocellulosic biomass to bioethanol and biogas. Journal of Bioscience and Bioengineering, 2021, 131, 461-468.	1.1	29
3833	Thermotolerance and Cellulolytic Activity of Fungi Isolated from Soils/Waste Materials in the Industrial Region of Nigeria. Current Microbiology, 2021, 78, 2660-2671.	1.0	2
3835	Study of Hydrolysis Process from Pineapple Leaf Fibers using Sulfuric Acid, Nitric Acid, and Bentonite Catalysts. Bulletin of Chemical Reaction Engineering and Catalysis, 2021, 16, 571-580.	0.5	3
3836	Role of Catalysis in Biofuels Production Process – A Review. ChemBioEng Reviews, 2021, 8, 417-438.	2.6	4
3837	Effect of pyrolysis operating conditions on the biomass shrinkage process of leaf waste and the formation of oxygenate and non-oxygenate compound products in bio-oil using ZSM-5 and YSZ catalysts. IOP Conference Series: Earth and Environmental Science, 2021, 749, 012064.	0.2	0
3839	Biotransformation Methods of Paddy Straw into Bioethanol. IOP Conference Series: Earth and Environmental Science, 2021, 757, 012085.	0.2	1
3840	Bioconvertibility of mannan-containing polysaccharides to bioethanol: a comparative study of palm kernel cake and copra meal feedstocks. Biomass Conversion and Biorefinery, 2023, 13, 5175-5186.	2.9	1
3841	Statistical optimization of dilute acid and H2O2 alkaline pretreatment using surface response methodology and tween 80 for the enhancement of the enzymatic hydrolysis of corncob. Biomass Conversion and Biorefinery, 2023, 13, 6185-6196.	2.9	7
3842	Recent progress in metabolic engineering of Corynebacterium glutamicum for the production of C4, C5, and C6 chemicals. Korean Journal of Chemical Engineering, 2021, 38, 1291-1307.	1.2	6
3843	Polyols and polyurethanes from renewable sources: past, present and future—part 1: vegetable oils and lignocellulosic biomass. Journal of Coatings Technology Research, 2022, 19, 201-222.	1.2	26
3844	Trends and perspectives of liquid biofuel – Process and industrial viability. Energy Conversion and Management: X, 2021, 10, 100075.	0.9	22
3845	Silage quality and biogas production from Spartina pectinata L. fermented with a novel xylan-degrading strain of Lactobacillus buchneri M B/00077. Scientific Reports, 2021, 11, 13175.	1.6	3
3846	Aqueous phase reforming process for the valorization of wastewater streams: Application to different industrial scenarios. Catalysis Today, 2022, 387, 224-236.	2.2	59
3847	Valueâ€Added Products from Fruit and Vegetable Wastes: A Review. Clean - Soil, Air, Water, 2021, 49, 2000376.	0.7	15
3848	ENZYMATIC HYDROLYSIS OF FAST-GROWING POPLAR WOOD AFTER PRETREATMENT BY STEAM EXPLOSION. Cellulose Chemistry and Technology, 2021, 55, 637-647.	0.5	8

#	Article	IF	CITATIONS
3849	A perspective on catalytic hydropyrolysis of biomass. Renewable and Sustainable Energy Reviews, 2021, 143, 110960.	8.2	38
3850	Understanding acid pretreatment of lotus leaves to prepare hard carbons as anodes for sodium ion batteries. Surface and Coatings Technology, 2021, 415, 127125.	2.2	15
3851	Advances in Pretreatment of Straw Biomass for Sugar Production. Frontiers in Chemistry, 2021, 9, 696030.	1.8	55
3852	Controlled Instant Pressure Drop (DIC) Pretreatment to Enhance Fractionation and Enzymatic Saccharification of Poppy Capsule Waste. Bioenergy Research, 2022, 15, 426-438.	2.2	2
3853	Bioethanol production from pretreated palm empty fruit bunch (PEFB) using sequential enzymatic hydrolysis and yeast fermentation. Biomass and Bioenergy, 2021, 149, 106088.	2.9	14
3854	Membrane Purification Techniques for Recovery of Succinic Acid Obtained from Fermentation Broth during Bioconversion of Lignocellulosic Biomass: Current Advances and Future Perspectives. Sustainability, 2021, 13, 6794.	1.6	14
3855	Selective delignification of poplar wood with a newly isolated white-rot basidiomycete Peniophora incarnata T-7 by submerged fermentation to enhance saccharification. Biotechnology for Biofuels, 2021, 14, 135.	6.2	17
3856	Differential effects of inorganic salts on cellulase kinetics in enzymatic saccharification of cellulose and lignocellulosic biomass. Bioprocess and Biosystems Engineering, 2021, 44, 2331-2344.	1.7	9
3857	The Pretreatment of Lignocelluloses With Green Solvent as Biorefinery Preprocess: A Minor Review. Frontiers in Plant Science, 2021, 12, 670061.	1.7	29
3858	Optimization of sugar production from Durian seeds via alkaline hydrolysis for second-generation bioethanol production. Clean Energy, 2021, 5, 375-386.	1.5	3
3859	Enhanced lignin extraction and optimisation from oil palm biomass using neural network modelling. Fuel, 2021, 293, 120485.	3.4	78
3860	Harvesting and pretreatment techniques of aquatic macrophytes and macroalgae for production of biofuels. Environmental Sustainability, 2021, 4, 299-316.	1.4	12
3861	3Dâ€Printed, Highâ€Porosity, Highâ€Strength Graphite Aerogel. Small Methods, 2021, 5, e2001188.	4.6	21
3862	Technoeconomic Assessment of a Biomass Pretreatment + Ionic Liquid Recovery Process with Aprotic and Choline Derived Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2021, 9, 8467-8476.	3.2	22
3863	Hydrothermal carbonization of miscanthus: Processing, properties, and synergistic Co-combustion with lignite. Energy, 2021, 225, 120200.	4.5	18
3864	Saccharification of Hazelnut and Rhododendron Biomasses Using \hat{I}^2 -xylanase from Thermotoga naphthophila. Journal of the Institute of Science and Technology, 0, , 1321-1328.	0.3	Ο
3865	Mesoporous activated carbon yielded from pre-leached cassava peels. Bioresources and Bioprocessing, 2021, 8, .	2.0	9
3866	Catalytic C–O bond cleavage in a β-O-4 lignin model through intermolecular hydrogen transfer. Inorganica Chimica Acta, 2021, 521, 120305.	1.2	14

#	Article	IF	CITATIONS
3867	Pressure Reduction Enhancing the Production of 5-Hydroxymethylfurfural from Glucose in Aqueous Phase Catalysis System. Polymers, 2021, 13, 2096.	2.0	4
3868	Synthesis of cello-oligosaccharides by depolymerization of cellulose: A review. Applied Catalysis A: General, 2021, 621, 118177.	2.2	30
3869	Enzymatic Hydrolysis and Fermentation of Banana Pseudostem Hydrolysate to Produce Bioethanol. International Journal of Microbiology, 2021, 2021, 1-14.	0.9	7
3870	CAZyme prediction in ascomycetous yeast genomes guides discovery of novel xylanolytic species with diverse capacities for hemicellulose hydrolysis. Biotechnology for Biofuels, 2021, 14, 150.	6.2	10
3871	Fruit residues as a sustainable feedstock for the production of bacterial polyhydroxyalkanoates. Journal of Cleaner Production, 2021, 307, 127236.	4.6	24
3872	A review on biomass-derived levulinic acid for application in drug synthesis. Critical Reviews in Biotechnology, 2022, 42, 220-253.	5.1	12
3873	Liquefaction of lignocellulosic biomass for methane production: A review. Bioresource Technology, 2021, 332, 125068.	4.8	41
3874	A comprehensive review on ecological approaches of waste to wealth strategies for production of sustainable biobutanol and its suitability in automotive applications. Energy Conversion and Management, 2021, 239, 114219.	4.4	46
3875	Reconciling the Sustainable Manufacturing of Commodity Chemicals with Feasible Technoeconomic Outcomes. Johnson Matthey Technology Review, 2021, 65, 375-394.	0.5	8
3876	The Potential of Cellulose as a Source of Bioethanol using the Solid Catalyst: A Mini-Review. Bulletin of Chemical Reaction Engineering and Catalysis, 2021, 16, 661-672.	0.5	1
3877	Alkali pretreatment of industrial mixed vegetable waste for fermentable sugar production. Biomass Conversion and Biorefinery, 2023, 13, 5367-5377.	2.9	2
3878	Lignin Biorefinery: New Horizons in Catalytic Hydrodeoxygenation for the Production of Chemicals. Energy & Fuels, 2021, 35, 16965-16994.	2.5	39
3879	Estudios previo inversionistas para la producción de furfural-etanol y tableros a partir de bagazo de caña de azúcar. Revista lon, 2021, 34, .	0.1	0
3880	Process intensification of the ionoSolv pretreatment: effects of biomass loading, particle size and scale-up from 10ÂmL to 1ÂL. Scientific Reports, 2021, 11, 15383.	1.6	15
3881	Enhanced simultaneous saccharification and fermentation of Napier grass and Napier silage for two stage bio-hydrogen and methane production using organosolv and hydrothermal. Materials Chemistry and Physics, 2021, 267, 124614.	2.0	9
3882	Cell wall hemicellulose for sustainable industrial utilization. Renewable and Sustainable Energy Reviews, 2021, 144, 110996.	8.2	83
3883	Optimization of biogas yield from lignocellulosic materials with different pretreatment methods: a review. Biotechnology for Biofuels, 2021, 14, 159.	6.2	81
3884	Elucidating the effect of solid base on the hydrogenation of C5 and C6 sugars over Pt–Sn bimetallic catalyst at room temperature. Carbohydrate Research, 2021, 505, 108341.	1.1	3

#	Article	IF	CITATIONS
3885	Effects of Pretreatment and Ratio of Solid Sago Waste to Rumen on Biogas Production through Solid-State Anaerobic Digestion. Sustainability, 2021, 13, 7491.	1.6	8
3886	Cellulosic biofuel production using emulsified simultaneous saccharification and fermentation (eSSF) with conventional and thermotolerant yeasts. Biotechnology for Biofuels, 2021, 14, 157.	6.2	13
3887	Emerging technologies for biofuel production: A critical review on recent progress, challenges and perspectives. Journal of Environmental Management, 2021, 290, 112627.	3.8	122
3888	Efficiency of Fe3O4 Nanoparticles with Different Pretreatments for Enhancing Biogas Yield of Macroalgae Ulva intestinalis Linnaeus. Molecules, 2021, 26, 5105.	1.7	29
3889	Effects of Magnetic Nanoparticles on Biogas Production in Anaerobic Digester. Northwestern Medical Journal, 2021, 36, 283-296.	0.0	2
3890	Rumen Fermentation, Digestive Enzyme Activity, and Bacteria Composition between Pre-Weaning and Post-Weaning Dairy Calves. Animals, 2021, 11, 2527.	1.0	14
3891	Biomass Pretreatment and Characterization: A Review. , 0, , .		23
3892	Co-Production of Isobutanol and Ethanol from Prairie Grain Starch Using Engineered Saccharomyces cerevisiae. Fermentation, 2021, 7, 150.	1.4	4
3893	The effect of microwave and ultrasound activation on the characteristics of biochar produced from tea waste in the presence of H3PO4 and KOH. Biomass Conversion and Biorefinery, 2023, 13, 9075-9094.	2.9	10
3894	Xylose Metabolism in Bacteria—Opportunities and Challenges towards Efficient Lignocellulosic Biomass-Based Biorefineries. Applied Sciences (Switzerland), 2021, 11, 8112.	1.3	18
3895	Extraction, separation, and utilization of components contained in waste bamboo by pressurized microwave-assisted ethanol solvent treatment. Biomass Conversion and Biorefinery, 2023, 13, 8315-8326.	2.9	4
3896	Review of biodiesel synthesis technologies, current trends, yield influencing factors and economical analysis of supercritical process. Journal of Cleaner Production, 2021, 309, 127388.	4.6	69
3897	Conversion of Lignocellulose for Bioethanol Production, Applied in Bio-Polyethylene Terephthalate. Polymers, 2021, 13, 2886.	2.0	25
3898	Agricultural Waste and Wastewater as Feedstock for Bioelectricity Generation Using Microbial Fuel Cells: Recent Advances. Fermentation, 2021, 7, 169.	1.4	72
3899	Kinetics and isotherms of lead ions removal from wastewater using modified corncob nanocomposite. Inorganic Chemistry Communication, 2021, 130, 108742.	1.8	9
3900	Conversion of lignocellulose to biofuels and chemicals via sugar platform: An updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose. Renewable and Sustainable Energy Reviews, 2021, 146, 111169.	8.2	138
3901	Solid-state fermentation as an alternative technology for cost-effective production of bioethanol as useful renewable energy: a review. Biomass Conversion and Biorefinery, 0, , 1.	2.9	7
3902	Peroxidase enzymes as green catalysts for bioremediation and biotechnological applications: A review. Science of the Total Environment, 2022, 806, 150500.	3.9	59

#	Article	IF	CITATIONS
3903	Recent Progress and Trends in the Development of Microbial Biofuels from Solid Waste—A Review. Energies, 2021, 14, 6011.	1.6	7
3904	Overexpression of Oxidoreductase YghA Confers Tolerance of Furfural in Ethanologenic Escherichia coli Strain SSK42. Applied and Environmental Microbiology, 2021, 87, e0185521.	1.4	7
3905	Assessment of organosolv, hydrothermal, and combined organosolv and hydrothermal with enzymatic pretreatment to increase the production of biogas from Napier grass and Napier silage. Renewable Energy, 2022, 181, 1237-1249.	4.3	12
3906	Ethers and esters as alternative fuels for internal combustion engine: A review. International Journal of Engine Research, 2023, 24, 178-216.	1.4	7
3907	Anaerobic co-digestion of Palm Oil Mill Effluent (POME) with Decanter cake (DC): Effect of mixing ratio and kinetic study. Bioresource Technology Reports, 2021, 15, 100736.	1.5	4
3908	Residual Gas for Ethanol Production by Clostridium carboxidivorans in a Dual Impeller Stirred Tank Bioreactor (STBR). Fermentation, 2021, 7, 199.	1.4	5
3909	Influence of functional groups on low-temperature combustion chemistry of biofuels. Progress in Energy and Combustion Science, 2021, 86, 100925.	15.8	58
3910	Sustainable Exploitation of Residual Cynara cardunculus L. to Levulinic Acid and n-Butyl Levulinate. Catalysts, 2021, 11, 1082.	1.6	11
3911	Chemical Methods for Hydrolyzing Dairy Manure Fiber: A Concise Review. Energies, 2021, 14, 6159.	1.6	4
3912	Nanocellulose from Agricultural Wastes: Products and Applications—A Review. Processes, 2021, 9, 1594.	1.3	67
3914	Cascade temperature-arising strategy for xylo-oligosaccharide production from lignocellulosic biomass with acetic acid catalyst recycling operation. Renewable Energy, 2021, 175, 625-637.	4.3	9
3915	A review on cellulose nanocrystals production and characterization methods from Elaeis guineensis empty fruit bunches. Arabian Journal of Chemistry, 2021, 14, 103339.	2.3	34
3916	Kinetics of combined hydrothermal pretreatment and anaerobic digestion of lignocellulosic biomass (pepper plant and eggplant). Environmental Technology (United Kingdom), 2023, 44, 501-511.	1.2	2
3917	The synergy of catalysis and biotechnology as a tool to modulate the composition of biopolymers (polyhydroxyalkanoates) with lignocellulosic wastes. Catalysis Today, 2022, 397-399, 220-231.	2.2	3
3918	High-value utilization of the waste hydrolysate of Dioscorea zingiberensis for docosahexaenoic acid production in Schizochytrium sp Bioresource Technology, 2021, 336, 125305.	4.8	14
3919	Enzymatic Hydrolysis Intensification of Lignocellulolytic Enzymes Through Ultrasonic Treatment. Bioenergy Research, 2022, 15, 875-888.	2.2	2
3920	Effects of combined zinc chloride-ultrasound pretreatment and thermal modification on the physicochemical properties of Moso bamboo. Journal of the Taiwan Institute of Chemical Engineers, 2021, 126, 223-230.	2.7	10
3921	The role of lignin and lignin-based materials in sustainable construction – A comprehensive review. International Journal of Biological Macromolecules, 2021, 187, 624-650.	3.6	192

#	Article	IF	CITATIONS
3922	INFLUENCE OF ENZYME PREPARATIONS WITH DIFFERENT SUBSTRATE SPECIFICITY ON HYDROLYSIS OF SUNFLOWER HOOD. XXI Vek: Itogi ProÅ;logo I Problemy NastoâÅego Plûs, 2021, 10, .	0.0	0
3923	Remediation of nitrate-contaminated groundwater by a combined treatment method of novel Mass Bio System and solid organic carbon sources: In-depth study. Cleaner Engineering and Technology, 2021, 4, 100161.	2.1	3
3924	New insights into the accessibility of native cellulose to environmental contaminants toward tritium behavior prediction. Journal of Hazardous Materials, 2021, 420, 126619.	6.5	6
3925	Ethanol from lignocellulosic biomass: An in-depth analysis of pre-treatment methods, fermentation approaches and detoxification processes. Journal of Environmental Chemical Engineering, 2021, 9, 105798.	3.3	92
3926	Recent advances in green pre-treatment methods of lignocellulosic biomass for enhanced biofuel production. Journal of Cleaner Production, 2021, 321, 129038.	4.6	59
3927	Improved hydrolysis yields and silica recovery by design of experiments applied to acid-alkali pretreatment in rice husks. Industrial Crops and Products, 2021, 170, 113676.	2.5	12
3928	Synthesis of jet fuel intermediates via aldol condensation of biomass-derived furfural with lanthanide catalyst. Molecular Catalysis, 2021, 515, 111893.	1.0	3
3929	Recent progress in furfural production from hemicellulose and its derivatives: Conversion mechanism, catalytic system, solvent selection. Molecular Catalysis, 2021, 515, 111899.	1.0	23
3930	Enhancement of lignocellulosic biomass anaerobic digestion by optimized mild alkaline hydrogen peroxide pretreatment for biorefinery applications. Journal of Environmental Management, 2021, 298, 113539.	3.8	11
3931	Continuous removal of ethanol from dilute ethanol-water mixtures using hot microbubbles. Chemical Engineering Journal, 2021, 424, 130511.	6.6	12
3932	Technical difficulties of mixed culture driven waste biomass-based biohydrogen production: Sustainability of current pretreatment techniques and future prospective. Renewable and Sustainable Energy Reviews, 2021, 151, 111519.	8.2	23
3933	Efficient decomposition of lignocellulose and improved composting performances driven by thermally activated persulfate based on metagenomics analysis. Science of the Total Environment, 2021, 794, 148530.	3.9	52
3934	Current insights into lignocellulose related waste valorization. Chemical Engineering Journal Advances, 2021, 8, 100186.	2.4	25
3935	Fungal-mediated electrochemical system: Prospects, applications and challenges. Current Research in Microbial Sciences, 2021, 2, 100041.	1.4	12
3936	Optimization of acid-mediated delignification of corn stover, an agriculture residue carbohydrate polymer for improved ethanol production. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100029.	1.6	3
3937	Ultrastructural change in lignocellulosic biomass during hydrothermal pretreatment. Bioresource Technology, 2021, 341, 125807.	4.8	54
3938	A one-step deconstruction-separation organosolv fractionation of lignocellulosic biomass using acetone/phenoxyethanol/water ternary solvent system. Bioresource Technology, 2021, 342, 125963.	4.8	17
3939	Selective photocatalytic conversion of guaiacol using g-C3N4 metal free nanosheets photocatalyst to add-value products. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 421, 113513.	2.0	5

		CITATION R	EPORT	
#	Article		IF	CITATIONS
3940	Recent advances in bioelectricity generation through the simultaneous valorization of lignocellulosic biomass and wastewater treatment in microbial fuel cell. Sustainable Ener Technologies and Assessments, 2021, 48, 101572.	gy	1.7	17
3941	Study on Preparation of Lignin-Containing Nanocellulose from Bamboo Parenchyma. Jou Renewable Materials, 2022, 10, 385-399.	rnal of	1.1	6
3942	Application of nanotechnology for the pretreatment of lignocellulosic biomass. , 2022, ,	187-204.		1
3943	Design and engineering of artificial microbial consortia for biohydrogen production. Curr Opinion in Biotechnology, 2022, 73, 74-80.	ent	3.3	21
3944	Background and general information. , 2022, , 1-10.			1
3945	Overview of key pretreatment methods. , 2022, , 97-130.			1
3946	Biomass-based systems. , 2022, , 137-192.			0
3947	Various conversion techniques for the recovery of value-added products from tea waste. 237-265.	,2021,,		3
3949	Application of Microorganisms for Biofuel Production. Clean Energy Production Technolo 35-72.	ogies, 2021, ,	0.3	1
3950	Bioconversion of Agro-Industrial Waste into Value-Added Compounds. Advances in Scier Technology and Innovation, 2021, , 349-368.	ice,	0.2	18
3951	Nanotechnology in functional and active food packaging. , 2021, , 405-441.			3
3952	Growth of Leucoagaricus gongylophorus Möller (Singer) and production of key enzyme submerged and solid-state cultures with lignocellulosic substrates. Biotechnology Letter 845-854.	s in s, 2021, 43,	1.1	5
3953	Renewable Biomass Wastes for Biohydrogen Production. , 2022, , 273-298.			2
3954	Complete conversion of lignocellulosic biomass to mixed organic acids and ethylene glyc cascade steps. Green Chemistry, 2021, 23, 2427-2436.	tol <i>via</i>	4.6	23
3959	Optimization of Ammonia Fiber Expansion (AFEX) Pretreatment and Enzymatic Hydrolys of <i>Miscanthus x giganteus</i> to Fermentable Sugars. Biotechnology Progress, 2007, 2	is 23, 846-850.	1.3	138
3960	Biomass biomass as Renewable Source of Energy biomass as renewable source of energy Conversion Routes. , 2012, , 1198-1231.	, Possible		2
3961	Biochemical Conversion of Biomass to Fuels. , 2012, , 965-999.			5
3962	Biocatalysis and Biotransformation. , 2004, , 237-306.			9

#	Article	IF	Citations
3964	Effect of Lignocellulosic Degradation Compounds from Steam Explosion Pretreatment on Ethanol Fermentation by Thermotolerant Yeast Kluyveromyces marxianus. , 2003, , 141-153.		8
3965	Biomass Conversion. , 2012, , 1249-1322.		3
3966	Extraction of Glucose from Kenaf Core Using Mild Acid Treatment. , 2013, , 241-248.		1
3967	Biochemical Conversion of Biomass to Fuels. , 2015, , 1-28.		1
3968	Ethanol Production in Immobilized-Cell Bioreactors from Mixed Sugar Syrups and Enzymatic Hydrolysates of Steam-Exploded Biomass. , 2004, , 539-557.		1
3969	Combined Steam Pretreatment and Enzymatic Hydrolysis of Starch-Free Wheat Fibers. , 2004, , 989-1002.		2
3970	Enzyme Pretreatment of Grass Lignocellulose for Potential High-Value Co-products and an Improved Fermentable Substrate. , 2005, , 303-310.		1
3971	Studies into Using Manure in a Biorefinery Concept. , 2005, , 999-1015.		4
3972	Effects of Hemicellulose and Lignin on Enzymatic Hydrolysis of Cellulose from Dairy Manure. , 2005, , 1017-1030.		1
3973	Production of Cellulase/β-Glucosidase by the Mixed Fungi Culture of Trichoderma reesei and Aspergillus phoenicis on Dairy Manure. , 2005, , 93-104.		16
3974	Fractionation of Cynara cardunculus (Cardoon) Biomass by Dilute-Acid Pretreatment. , 2007, , 239-252.		2
3975	Heat Extraction of Corn Fiber Hemicellulose. , 2007, , 253-265.		1
3976	An Alternative Application to the Portuguese Agro-Industrial Residue: Wheat Straw. , 2007, , 453-464.		3
3977	Lime Pretreatment. Methods in Molecular Biology, 2009, 581, 115-124.	0.4	23
3978	Waste Biomass Pretreatment Methods. Green Energy and Technology, 2020, , 19-48.	0.4	4
3979	Anaerobic Digestion of Rice Straw for Biogas Production. , 2020, , 65-92.		28
3980	Biological Pretreatment: Need of the Future. , 2020, , 51-72.		2
3981	Biotechnological Strategies for Enhanced Production of Biofuels from Lignocellulosic Biomass. Green Energy and Technology, 2020, , 521-551.	0.4	6

#	Article	IF	CITATIONS	
3982	Biological and Non-Biological Methods for Lignocellulosic Biomass Deconstruction. Green Energy and Technology, 2020, , 121-134.	0.4	3	
3983	Extraction of Multiple Value-Added Compounds from Agricultural Biomass Waste: A Review. Green Energy and Technology, 2020, , 163-192.	0.4	5	
3984	Cellulase in Degradation of Lignocellulosic Wastes. , 2020, , 15-40.		1	
3985	Evaluation of Cashew Apple Bagasse for Xylitol Production. Advanced Structured Materials, 2014, , 179-204.	0.3	2	
3986	Cellulose from Lignocellulosic Waste. , 2015, , 475-511.		16	
3987	Pulsed Electric Fields and High-Voltage Electrical Discharges Assisted Extraction of Valuable Bio-compounds and Biopolymers from Rapeseed By-Products. , 2016, , 1-16.		2	
3988	Evolutionary Engineering of Microorganisms to Overcome Toxicity During Lignocellulose Hydrolysates Utilization. , 2017, , 181-200.		1	
3989	Nanoparticles for Biofuels Production from Lignocellulosic Waste. Sustainable Agriculture Reviews, 2017, , 263-278.	0.6	6	
3990	Pretreatment of Lignocellulosic Feedstocks. , 2017, , 31-52.		11	
3991	Bioethanol Production from Pretreated Solids Using Hydrothermal Processing. , 2017, , 237-252.		1	
3992	Microalgae for Industrial Purposes. , 2018, , 133-167.		18	
3993	Advanced Pretreatment Strategies for Bioenergy Production from Biomass and Biowaste. , 2019, , 1507-1524.		4	
3994	Biofuels from Microorganisms. Biofuel and Biorefinery Technologies, 2019, , 93-110.	0.1	3	
3995	Second Generation Bioethanol Production: The State of Art. Biofuel and Biorefinery Technologies, 2019, , 121-146.	0.1	10	
3996	Improving Biomass Sugar Utilization by Engineered Saccharomyces cerevisiae. Microbiology Monographs, 2012, , 137-160.	0.3	2	
3997	Mechanisms and Applications of Microbial Solvent Tolerance. Microbiology Monographs, 2012, , 177-208.	0.3	3	
3999	Structure and Properties of Lignin. Green Chemistry and Sustainable Technology, 2017, , 1-12.	0.4	4	
4001	Chemistry, Types, and Sources of Ethanol. SpringerBriefs in Applied Sciences and Technology, 2013, ,	0.2	3	
		CITATION RE	PORT	
------	---	--	------	-----------
#	Article		IF	CITATIONS
4002	Halophytes for the Production of Liquid Biofuels. Tasks for Vegetation Science, 2014, ,	67-72.	0.6	11
4004	Ultrasound-Enhanced Biogas Production from Different Substrates. Biofuels and Bioref 209-242.	fineries, 2015, ,	0.5	6
4005	Pretreatment Strategies of Lignocellulosic Biomass Towards Ethanol Yield: Case Study Needles. Green Energy and Technology, 2017, , 85-102.	of Pine	0.4	2
4006	Modeling Biochar Yield and Syngas Production During the Pyrolysis of Agro-Residues. S Transactions in Civil and Environmental Engineering, 2019, , 325-336.	Springer	0.3	4
4007	Efficiency Analysis of Crude Versus Pure Cellulase in Industry. Clean Energy Production Technologies, 2020, , 283-298.		0.3	2
4008	Biofuels Generation Based on Technical Process and Biomass Quality. Clean Energy Pro Technologies, 2020, , 37-64.	oduction	0.3	6
4009	Synthesis of Iron Oxide Nanomaterials for Biofuel Applications. Clean Energy Productic Technologies, 2020, , 275-307.	חנ	0.3	1
4010	Enhancement of Feedstock Composition and Fuel Properties for Biogas Production. En Environment, and Sustainability, 2020, , 113-131.	ergy,	0.6	6
4011	Conversion of Rice Husk and Nutshells into Gaseous, Liquid, and Solid Biofuels. , 2020,	, , 171-194.		4
4012	Introduction to Lignocellulosic Ethanol. , 2020, , 1-21.			2
4013	Expression and Extracellular Secretion of Endo-glucanase and Xylanase by Zymomonas Applied Biochemistry and Biotechnology, 2019, 187, 239-252.	; mobilis.	1.4	9
4014	Agave bagasse response to steam explosion and anaerobic treatment. Biomass Conver Biorefinery, 2020, 10, 1279-1289.	rsion and	2.9	16
4015	Biomass Pretreatment, Biorefineries, and Potential Products for a Bioeconomy Develop 1-22.	oment. , 2016, ,		35
4016	Recent trends in biorefinery-based valorisation of lignocellulosic biomass. , 2020, , 219	-242.		6
4017	Novel bioethanol production processes and purification technology using membranes. Surface Science and Catalysis, 2020, 179, 359-384.	Studies in	1.5	7
4018	Evaluation of models to predict the influence of chemical pretreatment on the peels of lappaceum L. based on pyrolysis kinetic parameters obtained using a combined Fraser- and Friedman's isoconversional method. Journal of Analytical and Applied Pyrolysis	Nephelium Suzuki function , 2020, 149, 104827.	2.6	19
4019	Optically Transparent Bamboo with High Strength and Low Thermal Conductivity. ACS Materials & Interfaces, 2021, 13, 1662-1669.	Applied	4.0	68
4020	Second-Generation Biofuel Production from the Marine Filter Feeder <i>Ciona intestina Sustainable Chemistry and Engineering, 2020, 8, 8373-8380.</i>	alis. ACS	3.2	8

#	Article	IF	CITATIONS
4021	Conversion of Biomass into Sugars. RSC Green Chemistry, 2015, , 1-53.	0.0	21
4022	Chapter 2. Aqueous-phase Reforming of Sugar Derivatives: Challenges and Opportunities. RSC Green Chemistry, 0, , 54-88.	0.0	1
4023	Chapter 7. Non-fuel Applications of Sugars in Brazil. RSC Green Chemistry, 0, , 228-257.	0.0	2
4024	Intensification of Enzymatic Hydrolysis of Cellulose Using High Frequency Ultrasound. RSC Green Chemistry, 2018, , 166-187.	0.0	1
4025	The Thermochemical Conversion of Biomass into High-Value Products: Microwave Pyrolysis. RSC Green Chemistry, 2013, , 38-63.	0.0	2
4026	Rapid mechanoenzymatic saccharification of lignocellulosic biomass without bulk water or chemical pre-treatment. Green Chemistry, 2020, 22, 3877-3884.	4.6	21
4027	Deconstructing plant biomass: cell wall structure and novel manipulation strategies , 2013, , 135-150.		2
4028	Three novel species of d-xylose-assimilating yeasts, Barnettozyma xylosiphila sp. nov., Barnettozyma xylosica sp. nov. and Wickerhamomyces xylosivorus f.a., sp. nov International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 3971-3976.	0.8	7
4030	Growth and enzymatic activity of <i>Leucoagaricus gongylophorus,</i> a mutualistic fungus isolated from the leaf-cutting ant <i>Atta mexicana,</i> on cellulose and lignocellulosic biomass. Letters in Applied Microbiology, 2017, 65, 173-181.	1.0	10
4031	Lignocellulosic Biomass Conversion to Ethanol by <i>Saccharomyces</i> ., 0, , 17-36.		23
4032	Consolidated Bioprocessing of Cellulosic Biomass to Ethanol Using Thermophilic Bacteria. , 0, , 55-74.		8
4033	Mutagenicity of the Extract from Defatted Rice Bran by Subcritical Water Treatment. Japan Journal of Food Engineering, 2008, 9, 75-78.	0.1	3
4034	Pretreatments to Enhance the Digestibility of Wheat Straw. International Journal of Renewable and Sustainable Energy, 2014, 3, 26.	0.3	4
4035	Saccharification of Ulva Lactuca Via Pseudoalteromonas Piscicida for Biofuel Production. Journal of Energy and Natural Resources, 2014, 3, 77.	0.2	5
4036	Improving the enzymatic hydrolysis of thermo-mechanical fiber from. Biotechnology for Biofuels, 2014, 7, 116.	6.2	45
4038	Bioethanol from Lignocellulosic Biomass Part I Pretreatment of the Substrates. , 2008, , 121-139.		2
4039	Fuel EthanolCurrent Status and Outlook. , 2008, , 57-71.		7
4040	Minor Cucurbits. , 2011, , 17-60.		5

#	Article	IF	CITATIONS
4041	Sunflower. , 2012, , 717-735.		1
4042	Energy production from corn, cellulosic, and algae biomass. Advances in Agroecology, 2012, , 321-356.	0.3	1
4043	The Current Status and Prospect of Biodiesel. Energy and Environment, 2009, 20-21, 1397-1405.	2.7	1
4047	Bioconversion of Municipal Solid Wastes for Bioethanol Production. Biosciences, Biotechnology Research Asia, 2017, 14, 1151-1157.	0.2	8
4048	Potential in bioethanol production from various ethanol fermenting microorganisms using rice husk as substrate. Biodiversitas, 2016, 16, .	0.2	4
4049	Effect of Hemicellulose Extraction on Physical and Mechanical Properties and Mold Susceptibility of Flakeboard. Forest Products Journal, 2011, 61, 31-37.	0.2	21
4050	Properties of Medium-Density Fiberboards from Bagasse Digested with Different Retention Times. Forest Products Journal, 2012, 62, 400-405.	0.2	4
4051	Cellulolytic Potential of Actinomycetes Isolated from Different Habitats. Bioengineering and Bioscience, 2016, 4, 88-94.	0.2	9
4052	The Minor Wall-Networks between Monolignols and Interlinked-Phenolics Predominantly Affect Biomass Enzymatic Digestibility in Miscanthus. PLoS ONE, 2014, 9, e105115.	1.1	30
4053	Thermophysical Properties of Lignocellulose: A Cell-Scale Study Down to 41K. PLoS ONE, 2014, 9, e114821.	1.1	9
4054	Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation. PLoS ONE, 2015, 10, e0135626.	1.1	12
4055	Lignocellulosic Biomass to Biofuel Production: Integration of Chemical and Extrusion (Screw Press) Pretreatment. King Mongkut's University of Technology North Bangkok International Journal of Applied Science and Technology, 2016, , .	0.2	11
4056	Effect of Compression Ratio on Performance and Emission Characteristics of Dual Spark Plug Ignition Engine Fueled With n-Butanol as Additive Fuel. International Journal of Renewable Energy Development, 2021, 10, 37-45.	1.2	8
4057	Utilization of Oak (Quercus petreae (Matt.) Liebl.) Bark for Anaerobic Digested Biogas Production. Acta Silvatica Et Lignaria Hungarica, 2017, 13, 125-134.	0.2	2
4058	Quantity and Quality of Biogas Produced from the Poultry Sludge Optimized by Filamentous Fungi. Ecological Chemistry and Engineering S, 2018, 25, 395-404.	0.3	7
4059	Lignin-Based Carbon Nanomaterials—The Future Scope. Materials Performance and Characterization, 2019, 8, 20180153.	0.2	4
4060	Evaluating Fungal Mixed Culture for Pretreatment of Cotton Gin Waste to Bioethanol by Enzymatic Hydrolysis and Fermentation Using Co-Culture. Polish Journal of Environmental Studies, 2017, 26, 1215-1223.	0.6	6
4061	Production of Cellulases by Bacillus cellulosilyticus Using Lignocellulosic Material. Polish Journal of Environmental Studies, 2018, 27, 2659-2667.	0.6	3

#	Article	IF	CITATIONS
4062	THE EFFECTIVENESS OF PHYSICAL AND ALKALI HYDROTHERMAL PRETREATMENT > IN IMPROVING ENZYME SUSCEPTIBILITY OF SWEET SORGHUM BAGASSE. Jurnal Bahan Alam Terbarukan, 2017, 6, 117-131.	0.5	10
4065	Optimization of alkali, big bluestem particle size, and extruder parameters for maxium enzymatic sugar recovery using response surface methodology. BioResources, 2011, 6, 762-790.	0.5	20
4069	Increased Degradability of Cellulose by Dissolution in Cold Alkali. BioResources, 2014, 9, .	0.5	3
4070	Effects of inoculum to feedstock ratio on anaerobic digestion for biogas production. International Journal of Hydrology, 2018, 2, .	0.2	4
4071	A Review on Spray Characteristics of Bioethanol and Its Blended Fuels in CI Engines. Journal of ILASS-Korea, 2014, 19, 155-166.	0.1	5
4072	Enzymatic hydrolysis of cassava stalks pretreated with the alkaline method. Agronomia Colombiana, 2015, 33, 238-243.	0.1	4
4073	Biotechnological valorization of agro industrial and household wastes for lactic acid production. Revista Colombiana De BiotecnologÃa, 2019, 21, 113-127.	0.5	7
4074	Celulazy – wÅ,aÅ›ciwoÅ›ci, otrzymywanie i zastosowanie. Engineering Sciences and Technologies, 2014, 2, .	0.1	1
4075	STUDY OF LIGNINOLYTIC BACTERIA ISOLATION AND CHARACTERIZATION FROM DHAMDHA AGRO FIELD OF BHILAI-DURG REGION. International Journal of Research in Engineering and Technology, 2015, 04, 258-262.	0.1	3
4076	BIOETHANOL PRODUCTION FROM LIGNOCELLULOSIC BIOMASS BY ENVIRONMENT-FRIENDLY PRETREATMENT METHODS: A REVIEW. Applied Ecology and Environmental Research, 2018, 16, 225-249.	0.2	92
4077	Conversion of Lignocellulosic Biomass to Bioethanol: An Overview with a Focus on Pretreatment. International Journal of Engineering and Technologies, 0, 15, 17-43.	0.0	3
4078	Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review. Biofuel Research Journal, 0, , 152-195.	7.2	174
4079	A review of conversion processes for bioethanol production with a focus on syngas fermentation. Biofuel Research Journal, 2015, 2, 268-280.	7.2	123
4080	Pre-Treatment Effect of Palm Oil Mill Effluent (POME) during Hydrogen Production by a Local Isolate Clostridium butyricum. International Journal on Advanced Science, Engineering and Information Technology, 2012, 2, 325.	0.2	19
4081	Bioethanol Production from Coconut Fiber Using Alkaline Pretreatment and Acid Hydrolysis Method. International Journal on Advanced Science, Engineering and Information Technology, 2015, 5, 320.	0.2	10
4082	The Effect of Microwave-NaOH Pretreatment and Hydrolysis Enzyme Using Trichoderma reesei-Aspergillus niger on Rice Straw Bioethanol Production. International Journal on Advanced Science, Engineering and Information Technology, 2016, 6, 20.	0.2	3
4083	An Innovative Approach towards Economic Bio-ethanol Production from Starchy and Ligno-Cellulosic Biomass through Simultaneous Saccharification and Fermentation (SSF). International Journal of Current Microbiology and Applied Sciences, 2016, 5, 870-877.	0.0	1
4084	Xylitol: Production, Optimization and Industrial Application. International Journal of Current Microbiology and Applied Sciences, 2016, 5, 324-339.	0.0	12

#	Article	IF	CITATIONS
4085	Application of Microbial Enzymes in Industrial Waste Water Treatment. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 1243-1254.	0.0	38
4086	Saccharification of Sugarcane Bagasse by Enzymatic Treatment for bioethanol production. Malaysian Journal of Microbiology, 2012, , .	0.1	6
4087	Production of bioethanol from Robusta coffee pulp (Coffea robusta L.) in Vietnam. Foods and Raw Materials, 2019, , 10-17.	0.8	7
4088	Lytic Polysaccharide Monooxygenase from Aspergillus fumigatus can Improve Enzymatic Cocktail Activity During Sugarcane Bagasse Hydrolysis. Protein and Peptide Letters, 2019, 26, 377-385.	0.4	22
4089	Proteins for Breaking Barriers in Lignocellulosic Bioethanol Production. Current Protein and Peptide Science, 2015, 16, 100-134.	0.7	18
4090	Exploitation of for the Heterologous Production of Cellulases and Hemicellulases. Open Biotechnology Journal, 2008, 2, 167-175.	0.6	18
4091	Isolation and Characterization of a Thermostable Cellulase from Bacillus licheniformis Strain Vic Isolated from Geothermal Wells in the Kenyan Rift Valley. Open Biotechnology Journal, 2016, 10, 198-207.	0.6	4
4092	"Green―Chemicals from Renewable Agricultural Biomass - A Mini Review. Open Agriculture Journal, 2008, 2, 54-61.	0.3	53
4093	Enhanced Methane Production from Pilot-Scale Anaerobic Digester Loaded with Rice Straw. The Open Environmental Engineering Journal, 2013, 6, 32-39.	1.2	4
4094	Composición quÃmica de las hojas y ramas de Cedrela odorata L. de dos plantaciones forestales como fuente de materia prma lignocelósica. Madera Bosques, 2016, 22, 131-146.	0.1	4
4095	Limitaciones fÃsicas y quÃmicas de la digestibilidad de pastos tropicales y estrategias para aumentarla. Ciencia Tecnologia Agropecuaria, 2014, 6, 69-82.	0.3	24
4096	Comparative Alterations in the Compositional Profile of Selected Root and Vegetable Peels Subjected to Three Pretreatments for Enhanced Saccharification. International Journal of Environment Agriculture and Biotechnology, 2017, 2, 1732-1744.	0.0	8
4097	Nutritional Profile of Red Seaweed Kappaphycus alvarezii after Fermentation using Saccharomyces Cerevisiae as a Feed Supplement for White Shrimp Litopenaeus vannamei Nutritional Profile of Fermented Red Seaweed. Journal of Pure and Applied Microbiology, 2017, 11, 1637-1645.	0.3	8
4098	Technological Processes for Conversion of Lignocellulosic Biomass to Bioethanol. Journal of Pure and Applied Microbiology, 2017, 11, 1863-1881.	0.3	4
4099	Influence of nutrient substrates on the expression of cellulases in Cerambyx cerdo L. (Coleoptera:) Tj ETQq0 0 0 r	gBT /Overl 0.2	oçk 10 Tf 50
4100	Pretreatments of lignocellulosic feedstock for bioethanol production. Hemijska Industrija, 2010, 64, 283-293.	0.3	2
4101	Recent trends in bioethanol production. Hemijska Industrija, 2011, 65, 103-114.	0.3	8

4103	Chemical and Physical Process Combinations: Microwave in Lignin Degradation of Pecan Shells as Alternative Fuel Raw Materials. , 0, , .	2
------	--	---

#	Article	IF	CITATIONS
4104	BIOGAS PRODUCTION FROM WHEAT STRAW PRE-TREATED WITH LIGNINOLYTIC FUNGI AND CO-DIGESTION WITH PIG SLURRY. Environmental Engineering and Management Journal, 2015, 14, 1751-1760.	0.2	28
4105	Studies on Alkaline Pretreatment of Sugarcane Bagasse and Rice Straw Hydrolysis for the Recovery of Reducing Sugar. International Journal of Current Research in Science Engineering & Technology, 2018, 1, 28.	0.1	2
4106	Trichoderma: A part of possible answer towards crop residue disposal. Journal of Applied and Natural Science, 2019, 11, 516-523.	0.2	8
4107	Insect cellulolytic enzymes: Novel sources for degradation of lignocellulosic biomass. Journal of Applied and Natural Science, 2015, 7, 625-630.	0.2	4
4108	Etude du désencrage des déchets de papier journal par un traitement alcalin. Annales De Chimie: Science Des Materiaux, 2011, 36, 237-245.	0.2	2
4109	Increasing the value of a biorefinery based on hot-water extraction: Lignin products. Tappi Journal, 2012, 11, 19-26.	0.2	31
4110	Pretreatment technologies for biological and chemical conversion of woody biomass. Tappi Journal, 2012, 11, 9-16.	0.2	12
4111	Organic material dissolved during oxygen-alkali pulping of hot water extracted birch sawdust. Tappi Journal, 2015, 14, 237-244.	0.2	3
4112	Possible ways of bio-refining and utilizing the residual lignocelluloses of corn growing and processing. Periodica Polytechnica: Chemical Engineering, 2007, 51, 29.	0.5	5
4113	CARBON SOURCES FOR BIOMASS, FOOD, FOSSILS, BIOFUELS AND BIOTECHNOLOGY - REVIEW ARTICLE. World Journal of Biology and Biotechnology, 2016, 1, 1.	0.2	6
4114	HISTORICAL DEVELOPMENTS IN CARBON SOURCES, BIOMASS, FOSSILS, BIOFUELS AND BIOTECHNOLOGY REVIEW ARTICLE. World Journal of Biology and Biotechnology, 2016, 1, 71.	0.2	1
4115	Alkaline-peroxide Treatment for Enzymatic Hydrolysis of Japanese Cypress (Chamaecyparis obtusa). Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2013, 92, 1197-1204.	0.2	1
4116	Compression-grinding Treatment of Wet Rice Straw for Bioethanol Production. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2015, 94, 321-326.	0.2	1
4117	Biomass Pretreatment with Hydrothermal Explosion for Bioethanol Production. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2017, 96, 386-392.	0.2	1
4118	Pre-treatment by Acidification and Freezing on Corncob Polymers and its Enzymatic Hydrolysis. Asian Journal of Scientific Research, 2018, 11, 222-231.	0.3	5
4119	Microbiological Saccharification and Ethanol Production from Sugarcane Bagasse. Biotechnology, 2006, 5, 517-521.	0.5	6
4120	Bioprocessing of Lignocellulosic Biomass for Production of Bioethanol using Thermotolerant Aspergillus fumigatus under Solid State Fermentation Conditions. Biotechnology, 2010, 9, 513-522.	0.5	19
4121	Bioethanol Production from Lignocellulosic Feedstocks Based on Enzymatic Hydrolysis: Current Status and Recent Developments. Biotechnology, 2013, 13, 1-21.	0.5	35

C1-	г л т 1	ON	DEDODT
	ΙΑΠ		KEPUKI

#	Article	IF	CITATIONS
4122	The Effect of Substrate Composition Fermented Using Pleurotus ostreatus on the Nutrient Content of Palm Oil Sludge. International Journal of Poultry Science, 2019, 18, 323-327.	0.6	1
4123	Xylanase Production of Aspergillus niger and Penicillium chrysogenum from Ammonia Pretreated Cellulosic Waste. Research Journal of Microbiology, 2008, 3, 246-253.	0.2	9
4124	Bioconversion of Lignocellulosic Wastes into Organic Acids by Cellulolytic Rock Phosphate-Solubilizing Fungal Isolates Grown under Solid-State Fermentation Conditions. Research Journal of Microbiology, 2010, 5, 1-20.	0.2	24
4125	Decomposition of Lignin and Holocellulose on Acacia mangium Leaves and Twigs by Six Fungal Isolates from Nature. Pakistan Journal of Biological Sciences, 2010, 13, 604-610.	0.2	4
4126	Termite Digestomes as a Potential Source of Symbiotic Microbiota for Lignocelluloses Degradation: A Review. Pakistan Journal of Biological Sciences, 2014, 17, 956-963.	0.2	9
4127	Effects of Calcium (Ca) and Manganese (Mn) Supplementation During Oil Palm Frond Fermentation by Phanerochaete chrysosporium on In vitro Digestibility and Rumen Fluid Characteristics. Pakistan Journal of Nutrition, 2016, 15, 352-358.	0.2	9
4128	Influence of Solid Loading Concentrations, Inoculums Size and Nitrogen Sources on Ethanol Production from Empty Fruit Bunches (EFB) Hydrolysate in Separate Hydrolysis and Fermentation (SHF). Research Journal of Applied Sciences, 2011, 6, 310-319.	0.1	6
4129	Biothanol Production from Enzymatically Saccharified Empty Fruit Bunches Hydrolysate using Saccharomyces cerevisiae. Research Journal of Environmental Sciences, 2011, 5, 573-586.	0.5	15
4130	Microwave assisted acid and alkali pretreatment of <i>Miscanthus </i> biomas <i>s </i> for biorefineries. AIMS Bioengineering, 2015, 2, 449-468.	0.6	31
4131	A novel optimization approach to estimating kinetic parameters of the enzymatic hydrolysis of corn stover. AIMS Energy, 2016, 4, 52-67.	1.1	6
4132	Switchgrass (Panicum virgatum) fermentation by Clostridium thermocellum and Clostridium saccharoperbutylacetonicum sequential culture in a continuous flow reactor. AIMS Energy, 2016, 4, 95-103.	1.1	3
4133	Simultaneous Saccharification and Fermentation of Ground Corn Stover for the Production of Fuel Ethanol Using Phanerochaete chrysosporium, Gloeophyllum trabeum, Saccharomyces cerevisiae, and Escherichia coli K011. Journal of Microbiology and Biotechnology, 2011, 21, 703-710.	0.9	12
4134	Sugarcane Bagasse Hydrolysis Using Yeast Cellulolytic Enzymes. Journal of Microbiology and Biotechnology, 2013, 23, 1403-1412.	0.9	12
4135	Sulfuric Acid Hydrolysis and Detoxification of Red Alga Pterocladiella capillacea for Bioethanol Fermentation with Thermotolerant Yeast Kluyveromyces marxianus. Journal of Microbiology and Biotechnology, 2014, 24, 1245-1253.	0.9	23
4136	Towards a Miniaturized Culture Screening for Cellulolytic Fungi and Their Agricultural Lignocellulosic Degradation. Journal of Microbiology and Biotechnology, 2020, 30, 1670-1679.	0.9	8
4137	Mycotechnology for Lignocellulosic Bioethanol Production. Advances in Environmental Engineering and Green Technologies Book Series, 2018, , 28-43.	0.3	2
4138	Bioremediation. , 2019, , 1002-1030.		3
4139	Functional Materials from Plant Biomass Obtained by Simultaneous Enzymatic Saccharification and Communition. Trends in Glycoscience and Glycotechnology, 2020, 32, E63-E76.	0.0	4

#	Article	IF	CITATIONS
4140	Fractionation of Pinus radiata wood by combination of steam explosion and organosolv delignification. Maderas: Ciencia Y Tecnologia, 2019, , 0-0.	0.7	3
4141	Extrusion with Thermostable α-amylase Injection as Pretreatment Method for Ethanol Production from Corn Starch. Journal of Microbial & Biochemical Technology, 2013, 05, .	0.2	2
4142	Biorefinery of Energy Crop Cardoon(Cynara cardunculus l.)-Hydrolytic Xylose Production as Entry Point to Complex Fractionation Scheme. Journal of Chemical Engineering & Process Technology, 2011, 02, .	0.1	15
4143	Hot Compressed Water Extraction of Lignin by Using a Flow-Through Reactor. Engineering Journal, 2015, 19, 25-44.	0.5	19
4144	Molecular Cloning and Expression of a Family 6 Cellobiohydrolase Gene <i>cbhII</i> from <i>Penicillium funiculosum</i> NCL1. Advances in Bioscience and Biotechnology (Print), 2015, 06, 213-222.	0.3	5
4145	Biodegradation and Sugar Release from Canola Plant Biomass by Selected White Rot Fungi. Advances in Biological Chemistry, 2014, 04, 395-406.	0.2	15
4146	Production of Fermentable Sugars from Organosolv Pretreated Cassava Peels. Advances in Microbiology, 2015, 05, 117-122.	0.3	9
4147	Actinomycetes from Soil of Lachung, a Pristine High Altitude Region of Sikkim Himalaya, Their Antimicrobial Potentiality and Production of Industrially Important Enzymes. Advances in Microbiology, 2019, 09, 750-773.	0.3	11
4148	The Potential Use of Cassava Peel for Treatment of Mine Water in Mozambique. Journal of Environmental Protection, 2017, 08, 277-289.	0.3	8
4149	Microwave-Assisted Alkaline Pretreatment and Microwave Assisted Enzymatic Saccharification of Oil Palm Empty Fruit Bunch Fiber for Enhanced Fermentable Sugar Yield. Journal of Sustainable Bioenergy Systems, 2013, 03, 7-17.	0.2	77
4150	A Review on 1 st and 2 nd Generation Bioethanol Production-Recent Progress. Journal of Sustainable Bioenergy Systems, 2016, 06, 72-92.	0.2	70
4151	Two-Stage Dilute Acid Hydrolysis of Dairy Manure for Nutrient Release, Solids Reduction and Reducing Sugar Production. Natural Resources, 2011, 02, 224-233.	0.2	7
4152	Literature Review on Biorefinery Processes Integrated to the Pulp Industry. Natural Resources, 2014, 05, 419-432.	0.2	18
4153	Cellulosic ethanol and its co-products from different substrates, pretreatments, microorganisms and bioprocesses: A review. Natural Science, 2013, 05, 624-630.	0.2	5
4155	Optimizing biomethanation of a lignocellulosic biomass using indigenous microbial-cellulases systems. Biotechnologia, 2017, 98, 245-255.	0.3	2
4156	Bioethanol Production from Macroalgal Biomass. Journal of Life Science, 2016, 26, 976-982.	0.2	4
4157	Thermal Depolymerization of Lignin. International Journal of Thermal and Environmental Engineering, 2016, 13, .	1.3	3
4158	A Method for Producing Bioethanol from the Lignocellulose of Shorea uliginosa Foxw. by Enzymatic Saccharification and Fermentation. Journal of Mathematical and Fundamental Sciences, 2014, 46, 169-174.	0.3	2

#	Article	IF	CITATIONS
4159	Current Status and Prospects on Biofuel Conversion Technologies and Facilities, Using Lignocellulosic Biomass. Journal of the Korean Wood Science and Technology, 2016, 44, 622-628.	0.8	3
4160	Bio-hydrogen and Methane Production from Lignocellulosic Materials. , 0, , .		9
4163	Oxalic acid pretreatment, fungal enzymatic saccharification and fermentation of maize residues to ethanol. African Journal of Biotechnology, 2012, 11, .	0.3	7
4164	Cellulase activity of filamentous fungi induced by rice husk. African Journal of Biotechnology, 2014, 13, 4236-4245.	0.3	2
4165	Xylanase activity from Cellulomonas flavigena extracts as affected by temperature and its degradation under in vitro ruminal conditions. African Journal of Microbiology Research, 2011, 5, 961-964.	0.4	1
4166	Study of an Extraction Process as the Pretreatment Step for Sugar Production from Acid Hydrolysis. Food and Public Health, 2015, 5, 47-55.	2.0	12
4167	Behaviour of biopolishing on dyeability and certain properties of cotton fabrics. Tekstilna Industrija, 2019, 67, 20-24.	0.3	2
4168	Effect of biological corn stover replacing partial corn meal on production performance, nutrient metabolic rates and carcass characteristics of broilers. Indian Journal of Animal Research, 2015, 49, 474.	0.0	2
4169	Biochemical conversion of rice straw into bioethanol - an exploratory investigation. Journal of Biofuels, 2011, 2, 33.	0.1	3
4170	Effects of alkali treatment on the mechanical and thermal properties of sisal/cattail polyester commingled composites. , 0, 2, e5.		13
4171	Effect of Single and Sequential Cellulolytic Enzyme Cocktail on the Fermentable Sugar Yield from Pretreated Agricultural Residues of Cassava. American Journal of Biomass and Bioenergy, 0, , .	0.0	3
4172	Hydrolysis of Empty Fruit Bunches of Palm Oil (Elaeis Guineensis Jacq.) by Chemical, Physical, and Enzymatic Methods for Bioethanol Production. International Journal of Chemical Engineering and Applications (IJCEA), 2015, 6, 422-426.	0.3	7
4173	Pretreatment and Enzymatic Saccharification of Wasted MDF for Bioethanol Production. KSBB Journal, 2015, 30, 332-338.	0.1	2
4174	Study on the Hydrolysis Kinetics of Xylan on Different Acid Catalysts. Korean Chemical Engineering Research, 2014, 52, 226-232.	0.2	3
4175	Bioenergy Potentials of Elephant Grass, Pennisetum purpureum Schumach. Annual Research & Review in Biology, 2014, 4, 2215-2227.	0.4	6
4176	Biomass Pre-treatment Methods and Their Economic Viability for Efficient Production of Biofuel. British Biotechnology Journal, 2015, 8, 1-17.	0.4	11
4177	Kinetic Study of the Acid Hydrolysis of Parthenium hysterophorus L. for xylose yield in the Production of Lignocellulosic ethanol. IOSR Journal of Pharmacy and Biological Sciences, 2012, 3, 35-41.	0.1	2
4178	High Purity Softwood Lignin Obtained by an Eco-Friendly Organosolv Process. SSRN Electronic Journal, 0, , .	0.4	1

#	Article	IF	CITATIONS
4179	EFFECT OF CO2-ADDED STEAM EXPLOSION ON OIL PALM EMPTY FRUIT BUNCH FOR BIOETHANOL PRODUCTION. Cellulose Chemistry and Technology, 2021, 55, 839-847.	0.5	5
4180	Agro-Endüstriyel Atık Olan Elma Posalarının Box-Behnken Yanıt Yüzey Metodolojisi ile Alkali Ön İÅ Optimizasyonu. Northwestern Medical Journal, 2021, 36, 769-780.	^{Ÿl} en	1
4181	Enzyme Complexes of Ptr4CL and PtrHCT Modulate Co-enzyme A Ligation of Hydroxycinnamic Acids for Monolignol Biosynthesis in Populus trichocarpa. Frontiers in Plant Science, 2021, 12, 727932.	1.7	5
4182	Effect of manganese peroxidase on the decomposition of cellulosic components: Direct cellulolytic activity and synergistic effect with cellulase. Bioresource Technology, 2022, 343, 126138.	4.8	18
4183	Effects of ultrasonic and ozone pretreatment on the structural and functional properties of soluble dietary fiber from lemon peel. Journal of Food Process Engineering, 2022, 45, e13916.	1.5	8
4184	Production and Surface Modification of Cellulose Bioproducts. Polymers, 2021, 13, 3433.	2.0	35
4185	Microbial lipids for foods. Trends in Food Science and Technology, 2022, 119, 593-607.	7.8	37
4186	Agricultural waste management strategies for environmental sustainability. Environmental Research, 2022, 206, 112285.	3.7	250
4187	Production of reducing sugar in Gracilaria verrucosa using physio-chemical pretreatment and subsequent enzymatic hydrolysis. Algal Research, 2021, 60, 102531.	2.4	9
4188	Optimization of Steam Pretreatment of Corn Stover to Enhance Enzymatic Digestibility. , 2004, , 509-523.		59
4189	Corn Stover Fractions and Bioenergy. , 2006, , 104-116.		6
4190	Filter Paper Degrading Ability of a Trichoderma Strain With Multinucleate Conidia. , 2007, , 155-160.		3
4191	Kinetics of xylose in hydrolysate using dilute sulphuric acid as catalyst. International Journal of Global Environmental Issues, 2009, 31, 230.	0.1	0
4192	Aerobic and Anaerobic Degradation of Monomer and Polymer Plant Constituents by Soil Microorganisms. , 2009, , 17-30.		0
4193	Enzymatic Saccharification of Japanese Cedar Wood by Combined Pretreatments using White Rot Fungus and Organosolvolysis with Lactic Acid. Journal of the Japan Society of Material Cycles and Waste Management, 2010, 21, 219-225.	0.1	1
4194	Investigation of the Effective Catalyst for Organosolv Pretreatment of Liriodendron tulipifera. Journal of the Korean Wood Science and Technology, 2010, 38, 149-158.	0.8	1
4195	Characterization of Cellulases from Schizophyllum commune for Hydrolysis of Cellulosic Biomass. Journal of the Korean Wood Science and Technology, 2010, 38, 547-560.	0.8	3
4196	Effects of a Partial Hydrolysis on the Stiffness and Mass Loss of Three Southern Hardwoods. Forest Products Journal, 2010, 60, 654-658.	0.2	2

#	Article	IF	CITATIONS
4197	Application of White-Rot Fungi in Transformation, Detoxification, or Revalorization of Agriculture Wastes: Role of Laccase in the Processes. , 2011, , 501-509.		0
4198	Comparative Study on Microorganisms Used for the Bioethanol Production. Low Carbon Economy, 2011, 02, 224-229.	0.7	1
4200	Effects of Dilute Acid Pretreatment on Enzyme Adsorption and Surface Morphology of Liriodendron tulipifera. Journal of the Korean Wood Science and Technology, 2011, 39, 187-195.	0.8	1
4201	Preparation of a lignin-based composite and its properties. BioResources, 2011, 6, 1532-1542.	0.5	8
4202	Biofuel From Cellulosic Mass with Incentive for Feed Industry Employing Thermophilic Microbes. , 0, , .		0
4203	Characterization of Enzymes Associated with Degradation of Insoluble Fiber of Soybean Curd Residue by Bacillus subtilis. , 0, , .		0
4204	Optimal Condition for Simultaneous Saccharification and Fermentation Using Pretreated Corncob by Oxalic Acid. Journal of the Korean Wood Science and Technology, 2011, 39, 490-497.	0.8	3
4205	Technologies for Second-Generation Ethanol Based on Biochemical Platform. , 2011, , 289-324.		0
4206	Biofuels and Biochemicals in Brazil. , 2011, , 391-453.		0
4207	Vehicle Biofuels vehicle biofuels. , 2012, , 11429-11455.		0
4208	Niche Position and Opportunities for Woody Biomass Conversion. RSC Green Chemistry, 2012, , 151-179.	0.0	0
4209	Vehicle Biofuels. , 2012, , 105-131.		0
4210	Bioethanol bioethanol from Celluloses bioethanol from celluloses. , 2012, , 961-987.		1
4211	Biomass as Feedstock. , 2012, , 911-964.		1
4212	OTIMIZAĂ‡ĂƒO DOS PARĂ,METROS DE HIDRĂ"LISE ENZIMĂŢICA DO BAGAÇO DE CANA-DE-AÇÚCAR. Engevista 2012, 14, .	^{a,} 0.1	1
4213	Enzymatic Hydrolysis Condition of Pretreated Corncob by Oxalic Acid to Improve Ethanol Production. Journal of the Korean Wood Science and Technology, 2012, 40, 294-301.	0.8	5
4214	Kinetic Study on the Acid-catalyzed Hydrolysis of Xylan. Journal of the Korean Wood Science and Technology, 2012, 40, 389-396.	0.8	0
4215	Alternative Fuel from Agricultural Waste. Journal of Advances in Biotechnology, 2014, 2, 113-118.	0.1	0

ARTICLE

- IF CITATIONS
- Vehicle Biofuels vehicle biofuels., 2013, , 1006-1032. 0 4216 Bioethanol bioethanol from Celluloses bioethanol from celluloses., 2013,, 45-71. 4217 Optimization of media and submerged fermentation conditions using central composite design for 4218 increased endoglucanase production by Cladosporium sp. NCIM 901. Turkish Journal of Biochemistry, 0.3 2 2013, 38, 385-395. Pre-treatment and hydrolysis methods for bioethanol production from lignocellulosic material. Sakarya University Journal of Science, 2013, 17, 381-397. 4219 0.3 Biomass biomass as Renewable Source of Energy biomass as renewable source of energy, Possible 4221 0 Conversion Routes., 2013, , 257-289. Optimization of Bio-based Succinic Acid Production from Hardwood Using the Two Stage 0.8 pretreatments. Journal of the Korean Wood Science and Technology, 2013, 41, 111-122. Tropical Cellulolytic Bacteria Isolated From Hindgut Of A. Evuncifer Potential Candidates for 4223 0.2 0 Bioconversion of Lignocellulosic Waste Biomass. FASEB Journal, 2013, 27, 829.4. Biological vs. Chemical Treatments of Agrowastes: Chemical, Physical and Morphological properties. 4224 0.1 Egyptian Academic Journal of Biological Sciences G Microbiology, 2013, 5, 51-64. Evaluation of Ourococcus multisporus YSW008 for Advanced Wastewater Treatment with 4225 Simultaneous Biofuel Feedstock Production. Journal of the Korean Society of Mineral and Energy 0.1 1 Resources Engineers, 2013, 50, 651-659. Lignocellulosic Biofuels and Grass Plants Used in Production of Pellets., 0, , . Enzymatic Hydrolysis of Bamboo and Larch Alkaline Sulfite Pulps for Glucose Production. Kami Pa 4227 4 0.1 Gikýoshi/Japán Tappi Journal, 2014, 68, 567-573. Title is missing!. Kami Pa Gikyoshi/Japan Tappi Journal, 2014, 68, 560-566. 0.1 <i>Trametes versicolor as Agent for Delignification of Rice Husks</i>. Current 4229 0.0 3 Biochemistry, 2016, 1, 37-44. Modeling of a simultaneous saccharification and fermentation process for ethanol production from 4230 0.2 lignocellulosic wastes by kluyveromyces marxianus. DYNA (Colombia), 2014, 81, 107. Porous Ni@Tantalum Silicate as a Tandem Catalyst for Selective Synthesis of C4 Hydrocarbons from 4231 0 0.9 Ethanol. Open Catalysis Journal, 2014, 7, 26-35. Biohydrogen Production via Lignocellulose and Organic Waste Fermentation. Biofuels and 4232 Bioréfineries, 2015, , 41-75. Evaluation of Castor Stems Residue for Cellulose and Lignin Content. International Journal of 4233 0.1 4 Agriculture Environment and Biotechnology, 2015, 8, 331. The use of lignocellulosic biomass for fermentative butanol production in biorefining processes. 4234 0.1 Dissertationes Forestales, 2015, 2015, .

#	Article	IF	Citations
4236	Bioremediation. Advances in Environmental Engineering and Green Technologies Book Series, 2015, , 433-460.	0.3	1
4237	Biomass as Feedstock. , 2015, , 1-42.		1
4239	Biomass Processing Routes for Production of Raw Materials with High Added Value. , 2015, , 241-273.		0
4240	Environmentally friendly technologies for obtaining high sugars concentrations from invasive woody species. AIMS Environmental Science, 2015, 2, 884-898.	0.7	Ο
4241	ENZYMATIC HYDROLYSIS OF SUGARCANE BAGASSE IN ROTATING DRUM REACTOR. , 0, , .		0
4242	Estudo da inibição de HMF e furfural na fermentação do hidrolisado de madeira de Eucalyptus urophylla. , 0, , .		Ο
4243	ESTUDO FÃ&ICO-QUÃMICO POR DR - X E FTIR E HIDRÓLISE ENZIMÃTICA DO BAGAÇO DE CANA-DE-AÇÚCAR SUBMETIDO A DIFERENTES PRÉ-TRATAMENTOS VISANDO A PRODUÇÃO DE ETANOL. , 0, , .		0
4244	ESTUDO COMPARATIVO DO PRÉ-TRATAMENTO POR PERÓXIDO DE HIDROGÊNIO SEGUIDO DE HIDRÓLISE ENZIMÃTICA DE PALHA DE CANA DE AÇÚCAR E SABUGO DE MILHO. , 0, , .		Ο
4245	EVALUATION OF TREATMENT BY VACUUM EVAPORATION AND THE LIQUOR BIOSORPTION PREHYDROLYZATE FROM BAGASSE CASHEW FOR PRODUCTION OF XYLITOL. , 0, , .		0
4246	ESTUDO DO PROCESSO SACARIFICAÇÃO E FERMENTAÇÃO SIMULTÃ,NEA (SFS) EM BIORREATOR EM BATEL/ ALIMENTADA VISANDO A REDUÇÃO DE CUSTOS DA PRODUÇÃO DE ETANOL A PARTIR DE BAGAÇO DE CANA-DE-AÇÊCAR. , 0, , .	ADA	1
4247	ESTUDO CINÉTICO DO PROCESSO SFS EM BIORREATOR PARA PRODUÇÃ∱O DE ETANOL A PARTIR DE BAGAÃ DE CANA-DE-AÇÚCAR. , 0, , .	‡O	0
4248	AVALIAĂ‡ĂƒO DAS CONDIÇÕES DE PRÉ-TRATAMENTO E HIDRÓLISE ENZIMĂŦICA DO RESĂĐUO DO PROCESSAMENTO DE GRAVIOLA VISANDO A OBTENĂ‡ĂƒO DE ETANOL 2G. , 0, , .		0
4250	Comparison of Fractionated and Non-Fractionated Eucalyptus in Organic Solvent Subsequence Hydrolysis Reaction to Sugar Production. International Journal of Chemical Engineering and Applications (IJCEA), 2015, 6, 134-137.	0.3	1
4252	ANÃLISE DE SENSIBILIDADE GLOBAL E SELEÇÃO DE PARÃ,METROS DO MODELO CINÉTICO DE HIDRÓLISE ENZIMÃTICA DA PALHA DE CANA-DE-AÇÚCAR. , 0, , .		Ο
4253	Impact of sodium or potassium concentration in glucose aquoes solution to fermentation by Kluyveromyces marxianus. Palpu Chongi Gisul/Journal of Korea Technical Association of the Pulp and Paper Industry, 2015, 47, 11-17.	0.1	1
4254	Improvement of Cellulose Hydrolysis Process and Cost Savings. Journal of Modern Accounting and Auditing, 2015, 11, .	0.1	Ο
4255	Use of fungal mixed culture for pretreatment of cotton gin waste to enhance the bioethanol production. , 2015, , .		0
4256	Enzymes Fundamentals. , 2015, , 1-18.		0

ARTICLE IF CITATIONS Pretreatment and Designing Energy Crops: Technological Innovations and Prospects. Research Journal 4257 0.2 0 of Microbiology, 2015, 10, 557-570. Influence of Ethanol-ferric Chloride Pretreatment on Straw Enzymatic Saccharification., 2016, , . 4259 Fermentative Alkoholerzeugung und -nutzung., 2016, , 1501-1607. 0 4260 Engineering Central Metabolism for Production of Higher Alcohol-based Biofuels., 2016, , 1-34. 4261 Background and General Introduction. Springer Briefs in Molecular Science, 2016, , 1-5. 0.1 4262 0 Xylitol as Sweetener. Reference Series in Phytochemistry, 2016, , 1-21. 0.2 Alkaline pretreatment and enzymatic saccharification of oil palm empty fruit bunch fiber for ethanol 4264 0.2 0 kelapa sawit (TKKS) untuk produksi etanol. Menera Perkebunan, 2016, 78, . Process Optimization for Endoglucanase Production by in Submerged Fermentation. Hacettepe Journal 4265 0.3 of Biology and Chemistry, 2016, 1, 87-87. Análise do ciclo de vida aplicada à produção de bioetanol a partir de material LignocelulÃ3sico 4266 0.1 0 remanescente em dejeto bovino. Tecno-LÃ³gica, 2016, 20, 118. The Effect of Enzymatic Hydrolysis by Ethanol Organosolv Pretreatment of Corn Stover. Korean 0.2 Chemical Engineering Research, 2016, 54, 448-452 Improved Ethanol Production from Deacetylated Yellow Poplar (Liriodendron tulipifera) by 4268 0 0.2 Detoxification of Hydrolysate and Semi-SSF. Korean Chemical Engineering Research, 2016, 54, 494-500. Biochemical Conversion of Biomass to Fuels., 2017, , 1777-1811. 4269 THE PROSPECTS, IMPACTS, AND RESEARCH CHALLENGES OF ENHANCED CELLULOSIC ETHANOL 4271 0.2 5 PRODUCTION: A REVIEW. Nigerian Journal of Technology, 2016, 36, 267-275. WpÅ,yw metod obróbki wstÄ™pnej biomasy na wydajność otrzymywania biogazu. Studia Ecologiae Et 4272 0.2 Bioethicae, 2016, 14, 191-203. 2 Biomass for fuels – classification and composition. , 2016, , 15-36. 4273 0 Interactive Influence of Enzyme Loading and Initial Concentration of Fermentable Sugars on 4274 Simultaneous Saccharification and Fermentation of Cellulose to Ethanol. International Journal of Chemical Engineering and Applications (IJCEA), 2016, 7, 383-387. Self-reported Attributes Associated with Cognition and Motivation as a Function of Gender. Clinical 4275 0.1 0 and Experimental Psychology, 2017, 03, . Simultaneous saccharification and fermentation of woody stem Prosopis juliflora by Zymomonas 4276 mobilis for the production of cellulosic ethanol. International Journal of Materials and Product 0.1 Technology, 2017, 55, 236.

#	ARTICLE	IF	CITATIONS
4277	Pulsed Electric Fields and High-Voltage Electrical Discharges-Assisted Extraction of Valuable Biocompounds and Biopolymers from Rapeseed By-Products. , 2017, , 2883-2898.		0
4278	Lime Pretreatment Associated Compositional and Ultrastructural Changes in Selected Root and Vegetable Processing Residues. International Journal of Environment Agriculture and Biotechnology, 2017, 2, 306-318.	0.0	1
4279	Biomass as Renewable Source of Energy, Possible Conversion Routes. , 2017, , 1-38.		3
4280	Zastosowanie chemicznej i enzymatycznej obróbki wstępnej biomasy lignocelulozowej w celu poprawy wydajności procesu fermentacji metanowej. Cz. 2. PrzemysŕFermentacyjny I Owocowo-warzywny, 2017, 1, 32-34.	0.1	0
4281	Isolation and biochemical characterization of acid tolerance xylanase producing Bacteria, <i>Bacillus</i> sp. GJY from city park soil. Journal of Applied Biological Chemistry, 2017, 60, 79-86.	0.2	2
4282	USE OF THE MICROWAVE RADIATION FOR UPGRADING OF A BIOMASS ALCOHOLIC FERMENTATION. Inżynieria Ekologiczna, 2017, 18, 109-116.	0.2	0
4283	Reaproveitamento dos ResÃduos Sólidos da Indústria Cacaueira , 0, , .		0
4284	Pichia chibodasensis sp. nov., isolated in Indonesia. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 1024-1027.	0.8	4
4285	Evaluation of the impact of the hydration degree of bioethanol on the operation parameters of the spark-ignition engine. Silniki Spalinowe, 2017, 169, 71-75.	0.4	1
4286	Determination of Properties in Composites of Agave Fiber with LDPE and PP Applied Molecular Simulation. , 0, , 31-58.		0
4287	Microbial Cellulases and Their Applications in the Pulp and Paper Industry. , 2017, , 273-304.		0
4288	Evaluation of Non-Saccharomyces Cerevisiae Strains Isolated from Sea Water Against Inhibitory Compounds for Ethanol Production. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 2017, 12, 57.	0.2	2
4289	Microbial Intoxication in Dairy Food Products. , 2017, , 143-169.		0
4290	Prosopis juliflora Bark - An Alternate Feedstock in the Production of Bioethanol using Thermo Tolerant Yeast Kluyveromyces marxianus. Biosciences, Biotechnology Research Asia, 2017, 14, 945-951.	0.2	0
4291	Prosopis juliflora—A Potential Problematic Weed for Lignocellulosic Ethanol Production. Water Science and Technology Library, 2018, , 191-206.	0.2	1
4292	The Biorefinery Approach. , 2018, , 1-30.		2
4293	Enhancing biogas production of meat industrial wastewater by microwave pretreatment. Progress in Agricultural Engineering Sciences, 2017, 13, 1-11.	0.5	1
4294	Bioprospecting in Cuatro Cienegas: A Set of Open Possibilities to Save the Ecosystem. Cuatro Cielnegas Basin: an Endangered Hyperdiverse Oasis, 2018, , 113-127.	0.4	0

#	Article	IF	Citations
4295	Agricultural Waste Management for Bioethanol Production. Advances in Environmental Engineering and Green Technologies Book Series, 2018, , 1-33.	0.3	1
4296	Marin biyokütlenin hidrotermal sıvılaştırılması: Entegre bir proses. Academic Platform Journal of Engineering and Science, 0, , .	0.5	0
4297	Biyokütleden Biyoetanol Üretimi için Uygulanan ×n Hazırlık İşlemleri. Doğal Afetler Ve Çevre Derg 56-62.	gisi, 0, , 0:2	0
4298	A Study on the Catalytic Oxidation of Lignin and Preparation of Aromatic Aldehyde Compounds Carried by Phosphotungstic Acid. Journal of Organic Chemistry Research, 2018, 06, 19-26.	0.1	0
4299	Effects of Potassium Cocoyl Glycinate (PCG) on Enzymatic Hydrolysis of Alkali Pretreated Yellow Poplar (Liriodendron tulipifera L.). Palpu Chongi Gisul/Journal of Korea Technical Association of the Pulp and Paper Industry, 2018, 50, 11-18.	0.1	1
4300	Catalysis Using Metal Oxides with Mixed Ionic -Electronic Conductivity for Clean Energy Electrochemical Systems. Progress in Petrochemical Science, 2018, 1, .	0.0	0
4301	Characteristics of Biochars from Plant Biomass Wastes at Low-Temperature Pyrolysis. Sains Tanah, 2018, 15, 15.	0.2	2
4302	Utilization of statistical analysis and characterization methods in accordance to evaluate structural changes in biomass during pretreatment with aqueous ammonia. Anadolu University Journal of Sciences & Technology, 0, , 1-1.	0.2	0
4303	Thermally Stable Rice Husk Microcrystalline Cellulose as Adsorbent in PTLC Plates. Journal of the Turkish Chemical Society, Section A: Chemistry, 0, , 1177-1184.	0.4	5
4306	High Performance of Enzymatic Bioprocess for Production of Biomassed-based Bioethanol of Sago Palm Fiber Waste. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 2018, 9, 37-45.	0.1	0
4307	Production and characterization of bioethanol from Solanum lycopersicum stalk hydrolysates by the simultaneous saccharification and fermentation using Zymomonas mobilis and Saccharomyces cerevisae. GSC Biological and Pharmaceutical Sciences, 2018, 5, 071-077.	0.1	2
4308	Additives for Cellulose Nanofibril Suspension against Fungi. Palpu Chongi Gisul/Journal of Korea Technical Association of the Pulp and Paper Industry, 2018, 50, 92-99.	0.1	0
4309	New Paradigm in Degradation of Lignocellulosic Biomass and Discovery of Novel Microbial Strains. , 2019, , 403-440.		2
4310	Estudio del pretratamiento hidrotermico para favorecer la actividad de las celulasas libres e inmovilizadas. Bistua Revista De La Facultad De Ciencias Basicas, 2019, 16, 42.	0.1	0
4311	Biotechnological Applications of \hat{I}^2 -Glucosidases in Biomass Degradation. Fungal Biology, 2019, , 257-281.	0.3	2
4312	Agricultural Waste Management for Bioethanol Production. , 2019, , 492-524.		2
4313	Development of Renewable Resources Based on Biomass Waste in Malaysia. Journal of Smart Processing, 2019, 8, 243-252.	0.0	0
4314	Recent Advancements in Mycodegradation of Lignocellulosic Biomass for Bioethanol Production. Fungal Biology, 2019, , 167-192.	0.3	0

#	ARTICLE	IF	CITATIONS
4315	Bioproduct Engineering Solution to Sustainable Energy—Retrospection. Lecture Notes in Civil Engineering, 2019, , 291-305.	0.3	0
4316	Recent Molecular Approaches for Development of Value-Added Products From Lignocellulosic Food Waste. Advances in Environmental Engineering and Green Technologies Book Series, 2019, , 43-52.	0.3	0
4318	Investigation of Acid and Enzyme Wheat Straw Hydrolysis for Obtaining Polysaccharides. Oriental Journal of Chemistry, 2019, 35, 766-772.	0.1	1
4319	Industrial Products from Halophiles: A Review. International Journal for Research in Applied Science and Engineering Technology, 2019, 7, 34-37.	0.1	0
4320	Buğdayın Biyoetanol Üretimindeki Önemi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 2019, 8, 725-730.	0.1	1
4321	Optimization of Acid and Steam Explosion Pretreatment of Cogon Grass for Improved Cellulose Enzymatic Saccharification. Eurasian Chemico-Technological Journal, 2019, 21, 143.	0.3	1
4322	Agro-Food Waste's Proper Engineering for Bio-energy Using Experimental and Simulation Techniques. , 2020, , 450-461.		0
4324	Laccase: An Environmental Benign Pretreatment Agent for Efficient Bioconversion of Lignocellulosic Residues to Bioethanol. Current Organic Chemistry, 2019, 23, 1517-1526.	0.9	2
4325	Effect of Time Fermentation and Saccharomyces Cerevisiae Concentration for Bioethanol Production from Empty Fruit Bunch. Journal of Physics: Conference Series, 2019, 1351, 012104.	0.3	3
4326	Potencial biotecnológico para la valorización de residuos generados en granjas porcinas y cultivos de trigo. Entreciencias: Diálogos En La Sociedad Del Conocimiento, 2019, 7, .	0.1	0
4327	Biodegradation of Agricultural Wastes by Chaetomium Species. Fungal Biology, 2020, , 301-341.	0.3	0
4328	Farklı meyve atıkları ve organik ham tavuk gübresi atıkları karışımlarından termal ön işlem biyogaz üretiminin incelenmesi. Journal of the Faculty of Engineering and Architecture of Gazi University, 0, , .	uygulanara 0.3	ak O
4329	Dark Fermentation and Bioelectrochemical Systems for Enhanced Biohydrogen Production from Palm Oil Mill Effluent: Current Progress, Potentials, and Future Perspectives. Applied Environmental Science and Engineering for A Sustainable Future, 2020, , 1-35.	0.2	0
4330	Water Hyacinth: An Environmental Concern or a Sustainable Lignocellulosic Substrate. , 2020, , 11-19.		1
4331	Impact of Pretreatment Technology on Cellulosic Availability for Fuel Production. Clean Energy Production Technologies, 2020, , 217-242.	0.3	0
4332	Degradation Techniques of Hemicellulose Fraction from Biomass Feedstock for Optimum Xylose Production: A Review. Jurnal Keteknikan Pertanian Tropis Dan Biosistem, 2020, 8, 107-124.	0.1	7
4333	Lean-Burn Stratified Alcohol Fuels Engines of Power Density up to 475 kW/Liter Featuring Super-Turbocharging, Rotary Valves, Direct Injection, and Jet Ignition. , 0, , .		0
4334	Oligosaccharides production by enzymatic hydrolysis of banana pseudostem pulp. Biomass Conversion and Biorefinery, 2023, 13, 10677-10688.	2.9	5

	Сітатіс	on Report	
#	Article	IF	CITATIONS
4335	Konjac Glucomannan (KGM), Deacetylated KGM (Da-KGM), and Degraded KGM Derivatives: A Special Focus on Colloidal Nutrition. Journal of Agricultural and Food Chemistry, 2021, 69, 12921-12932.	2.4	30
4336	Production of microcrystalline cellulose and bacterial nanocellulose through biological valorization of lignocellulosic biomass wastes. Journal of Cleaner Production, 2021, 327, 129462.	4.6	12
4337	Strategies for Saccharification of Lignocellulosic Substrate. , 2020, , 73-89.		1
4338	Lignocellulosic Pretreatment Methods for Bioethanol Production. Green Energy and Technology, 2020, , 135-162.	0.4	Ο
4339	Process Design in Fungal-Based Biofuel Production Systems. Fungal Biology, 2020, , 177-198.	0.3	0
4340	Pretreatment Technologies for Biomass Deconstruction. , 2020, , 65-109.		1
4341	Potential of Bran from Two Varieties of Rice (Oryza) Spp for Bioethanol Production. Journal of Advances in Biology & Biotechnology, 0, , 1-9.	0.2	0
4342	PRE-TREATMENT AND ENZYMATIC HYDROLYSIS OF BANANA (Musa acuminata x balbisiana) PSEUDOSTEM FOR ETHANOL PRODUCTION. Agro Bali Agricultural Journal, 2020, 3, 98-107.	0.1	0
4343	Potentials of Acremonium butyri fungus in pre-treatment and hydrolysis using Rice husk substrate for biofuel production: A short communication. UMYU Journal of Microbiology Research, 2020, , 131-137.	0.1	0
4344	Biochemical Aspects of Syngas Fermentation. Environmental and Microbial Biotechnology, 2021, , 395-424.	0.4	3
4345	Downstream process: toward cost/energy effectiveness. , 2022, , 249-260.		5
4346	Decongestion of lignocellulosics: a critical assessment of physicochemical approaches. , 2022, , 189-206.		5
4347	Biochemical-based processes. , 2022, , 193-237.		0
4348	Resource recovery of lignocellulosic biomass waste into lactic acid - Trends to sustain cleaner production. Journal of Environmental Management, 2022, 301, 113925.	3.8	21
4349	Technical challenges in scaling up the microwave technology for biomass processing. Renewable and Sustainable Energy Reviews, 2022, 153, 111767.	8.2	63
4350	Deconstruction of lignocelluloses: potential biological approaches. , 2022, , 207-232.		2
4351	Pretreatment Methods for Biofuel Production from Sorghum. , 2020, , 755-788.		0
4352	Role of Glycosyl Hydrolases in Breakdown of Lignocellulosic Waste and Its Industrial Applications. , 2020, , 131-149.		0

ARTICLE IF CITATIONS "Catalyst in Biorefineries―Solution to Promote Environment Sustainability in India. Advances in 4353 0.2 0 Chemical and Materials Engineering Book Series, 2020, , 139-171. Role of Ionic Liquids in Food and Bioproduct Industries. Nanotechnology in the Life Sciences, 2020, , 4354 0.4 353-390. Efficient Utilization of Lignocellulosic Biomass: Hydrolysis Methods for Biorefineries. Clean Energy 4355 0.33 Production Technologies, 2020, , 273-295. Impact of Pretreatment Technologies for Biomass to Biofuel Production. Clean Energy Production 4356 0.3 Technologies, 2020, , 173-216. Bioethanol Production from Water Hyacinth., 2020, , 91-106. 4357 0 Biogas Production from Co-Digestion of Grass with Food Waste. Journal of Agricultural Chemistry and Environment, 2020, 09, 27-36. 4358 0.2 Potential for Biobutanol Production in Fiji from Sugarcane and Timber Industry Residues: 4359 1.6 0 Contribution to Avoided Emissions. Advances in Global Change Research, 2020, , 287-313. Pretreatment and Enzymatic Hydrolysis of Lignocellulosic Biomass for Reducing Sugar Production. 4360 0.2 Applied Environmental Science and Engineering for A Sustainable Future, 2020, , 1-27. Fourth Industrial Revolution: Progression, Scope and Preparedness in Indiaâ€"Intervention of MSMEs. 4361 0.5 1 Advances in Intelligent Systems and Computing, 2020, , 221-228. Wood-Rotting Fungi for Biofuel Production. Fungal Biology, 2020, , 123-147. 4362 Organic Waste for Biofuel Production: Energy Conversion Pathways and Applications. Biofuel and 4363 0.1 0 Biorefinery Technologies, 2020, , 267-286. Exo- and endoglucanase production by Curvularia affinis using bean (Phaseolus vulgaris L.) waste 4364 2.0 biomass. Bioresources and Bioprocessing, 2020, 7, . Functional Materials from Plant Biomass Obtained by Simultaneous Enzymatic Saccharification and 4365 0.0 0 Communition. Trends in Glycoscience and Glycotechnology, 2020, 32, J51-J62. A Comparison of Alkali and Biological Pretreatment Methods in Napier Grass (Pennisetum purpureum) Tj ETQq1 1 0.784314 rgBT /Ov 4366 0.3 Biological Science Technology and Management, 2020, 2, 31. The circular economy concept application to livestock systems: an agroecological approach. CAB 4367 0.6 3 Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , . Atomic-Level Understanding for the Enhanced Generation of Hydrogen Peroxide by the Introduction 4368 33 of an Aryl Amino Group in Polymeric Carbon Nitrides. ACS Catalysis, 2021, 11, 14087-14101. Valorizing Waste Biomass via Hydrodynamic Cavitation and Anaerobic Digestion. Industrial & amp; 4369 1.8 18 Engineering Chemistry Research, 2021, 60, 16577-16598. Over-feeding the gut microbiome: A scoping review on health implications and therapeutic 4370 1.4 perspectives. World Journal of Gastroenterology, 2021, 27, 7041-7064.

ARTICLE IF CITATIONS Ethanol Decomposition and Dehydrogenation for Hydrogen Production: A Review of Heterogeneous 4371 17 1.8 Catalysts. Industrial & amp; Engineering Chemistry Research, 2021, 60, 16561-16576. Sustainable Biofuel Production using Lignocellulosic Biomass as a Raw Material. International 4372 Journal of Current Microbiology and Applied Sciences, 2020, 9, 3339-3350. Effect of hydrothermal pretreatment of corn stover with pH adjustment on properties of pulp and 4373 0.51 hydrolysate. BioResources, 2020, 15, 6826-6839. Steam Pretreatment of Salix with and without SO2 Impregnation for Production of Bioethanol., 2005, 4374 , 1101-1117. Steam Pretreatment of Acid-Sprayed and Acid-Soaked Barley Straw for Production of Ethanol., 2006,, 4375 2 546-562. General Background and Introduction. Green Energy and Technology, 2021, , 1-13. 0.4 Chemistry, Types and Sources of Ethanol. Green Energy and Technology, 2021, , 27-39. 4377 0.4 0 Production of Bioethanol. Green Energy and Technology, 2021, , 41-110. 4378 0.4 Pretreatment of Lignocelluloses Biomass for Bioethanol Production. Green Energy and Technology, 4379 0.4 3 2021, , 111-144. Application of Pineapple Skin Waste as a Source of Biosolvent for Use as Wax Inhibitor. Journal of 0.1 Earth Energy Engineering, 2020, 9, 102-111. Environmental Impacts of Ethanol Production System., 2021, , 205-223. 4383 7 Lignocellulosic Biomass and Microbial Genome Engineering for Sustainable Ethanol Production: An 4384 Overview., 2021, , 87-112. Sustainable Biorefinery Technologies for Agro-Residues: Challenges and Perspectives., 2021, , 101-130. 4385 1 Kinetics of high-Level of ß-glucosidase production by a 2-deoxyglucose-resistant mutant of Humicola 4388 0.8 lanuginosa in submerged fermentation. Brazilian Journal of Microbiology, 2008, 39, 724-33. Effect of acid hydrolysis and fungal biotreatment on agro-industrial wastes for obtainment of free 4389 10 0.8 sugars for bioethanol production. Brazilian Journal of Microbiology, 2012, 43, 1523-35. Enzymatic saccharification and lactic acid production from banana pseudo-stem through optimized pretreatment at lowest catalyst concentration. EXCLI Journal, 2013, 12, 269-81. Bioethanol potentials of corn cob hydrolysed using cellulases of Aspergillus niger and Penicillium 4391 0.5 11 decumbens. EXCLI Journal, 2012, 11, 468-79. Overview of biomass conversion to biofuels., 2022, , 1-48.

#	Article	IF	CITATIONS
4393	Eco-friendly biogas production from algal biomass. , 2022, , 225-249.		0
4394	Pyrolysis. , 2022, , 279-300.		2
4395	Bioprocessing of sustainable renewable biomass for bioethanol production. , 2022, , 195-234.		9
4396	Algal biomass for bioethanol and biobutanol production. , 2022, , 251-279.		2
4397	Lignocellulosic biomass and its potential derivative products. , 2022, , 79-120.		3
4398	Refining lignocellulose of second-generation biomass waste for bioethanol production. , 2022, , 87-110.		8
4399	Sustainable approaches for biohydrogen and biogas production from corn wastes. , 2022, , 207-214.		0
4400	Multi-stage pre-treatment of lignocellulosic biomass for multi-product biorefinery: A review. Sustainable Energy Technologies and Assessments, 2022, 49, 101702.	1.7	21
4401	Electroreforming of Biomass for Value-Added Products. Micromachines, 2021, 12, 1405.	1.4	7
4402	The Effect of Dicarboxylic Acid Catalyst Structure on Hydrolysis of Cellulose Model Compound D-Cellobiose in Water. Current Organocatalysis, 2022, 9, 163-171.	0.3	1
4403	Production of Bioethanol—A Review of Factors Affecting Ethanol Yield. Fermentation, 2021, 7, 268.	1.4	104
4404	Syngas Fermentation for the Production of Bio-Based Polymers: A Review. Polymers, 2021, 13, 3917.	2.0	7
4405	Current status and opportunities for fruit processing waste biorefineries. Renewable and Sustainable Energy Reviews, 2022, 155, 111823.	8.2	24
4406	TECHNO-ECONOMIC EVALUATION OF NITROCELLULOSE PRODUCTION FROM PALM OIL EMPTY FRUIT BUNCHES. ASEAN Engineering Journal, 2021, 11, 246-254.	0.2	2
4407	Future production of bioethanol from microalgae as a renewable source of energy. IOP Conference Series: Earth and Environmental Science, 2021, 922, 012010.	0.2	0
4408	Lignocellulosic Biomass Pretreatment for Enhanced Bioenergy Recovery: Effect of Lignocelluloses Recalcitrance and Enhancement Strategies. Frontiers in Energy Research, 2021, 9, .	1.2	26
4409	Medical Waste Treatment Technologies for Energy, Fuels, and Materials Production: A Review. Energies, 2021, 14, 8065.	1.6	25
4410	Integrated Catalytic Hydrolysis and Complete Conversion of Three Crop Stalks to Valuable Oxygenated Organic Chemicals. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
4411	Production of Bioethanol using Waste Fruits under Acid and Alkali Catalytic Hydrolysis: A Review. Asian Journal of Chemistry, 2021, 34, 25-34.	0.1	3
4414	Cellulose processing from biomass and its derivatization into carboxymethylcellulose: A review. Scientific African, 2022, 15, e01078.	0.7	24
4415	D-Lactic acid production from Cistus ladanifer residues: Co-fermentation of pentoses and hexoses by Escherichia coli JU15. Industrial Crops and Products, 2022, 177, 114519.	2.5	11
4416	Improving biodegradability of corn stover pretreated by different organic acids: Investigation on the hydrolysis/acidification and methanogenic performance. Industrial Crops and Products, 2022, 177, 114395.	2.5	9
4417	Biosynthesis of fuel-grade ethanol from cellobiose by a cell-factory of non-GMO Saccharomyces cerevisiae/starch-gel-cellulase. Fuel, 2022, 313, 122986.	3.4	7
4418	Improving enzymatic hydrolysis of lignocellulosic biomass by bio-coordinated physicochemical pretreatment—A review. Energy Reports, 2022, 8, 696-709.	2.5	59
4419	Enhanced Enzymatic Conversion of Durian Peel by Sulfuric Pretreatment for Biofuel Production. , 2020, , .		2
4420	Pengaruh Delignifikasi Termal Terhadap Substansi Dinding Sel Pada Limbah Bunga Jantan Kelapa Sawit Pasca Anthesis (The Influence of Thermal Delignification of Cell Substantials for The Waste of Oil) Tj ETQq1 1 0.7	′843£4 rgl	3T¢Overlock
4421	BIOGAS PRODUCTION FROM SUGAR CANE PRESS MUD AND SUGAR CANE BAGASSE BY ANAEROBIC CO-DIGESTION. , 2020, 5, 194-197.		0
4422	Upcycling textile wastes: challenges and innovations. Textile Progress, 2021, 53, 65-122.	1.3	11
4423	Recent advancements in prebiotic oligomers synthesis via enzymatic hydrolysis of lignocellulosic biomass. Bioengineered, 2022, 13, 2139-2172.	1.4	22
4424	An Insight into Valorization of Lignocellulosic Biomass by Optimization with the Combination of Hydrothermal (HT) and Biological Techniques: A Review. Sustainable Chemistry, 2022, 3, 35-55.	2.2	27
4425	Production of bioethanol from wood sawdust using Saccharomyces cervisae. AIP Conference Proceedings, 2022, , .	0.3	0
4427	Production of water-soluble sugar from cellulose and corn stover via molten salt hydrate impregnation and separation. Cellulose, 2022, 29, 879-891.	2.4	7
4428	Laccases: catalytic and functional attributes for robust biocatalysis. , 2022, , 567-594.		3
4429	Engineering a Synthetic Pathway for Tyrosol Synthesis in <i>Escherichia coli</i> . ACS Synthetic Biology, 2022, 11, 441-447.	1.9	14
4430	lonic liquid assisted pretreatment to improve cellulose fractionation of lignocellulosic biomass. , 2022, , 75-99.		6
4431	Facile designing a nanosheet HMOR zeolite for enhancing the efficiency of ethanol synthesis from dimethyl ether and syngas. International Journal of Hydrogen Energy, 2022, 47, 9273-9282.	3.8	6

#	Article	IF	Citations
4432	Sargassum Invasion in the Caribbean: An Opportunity for Coastal Communities to Produce Bioenergy Based on Biorefinery—An Overview. Waste and Biomass Valorization, 2022, 13, 2769-2793.	1.8	11
4433	Pretreatment of Sugarcane Residues for Combustion in Biomass Power Stations: A Review. Sugar Tech, 2022, 24, 732-745.	0.9	4
4434	Yeast-mediated ethanol fermentation from lignocellulosic pentosan. , 2022, , 217-241.		1
4436	Recent Advances in Biomass Pretreatment Technologies for Biohydrogen Production. Energies, 2022, 15, 999.	1.6	42
4437	Development of lignocellulose-based bioethanol from chrysanthemum flower waste (Chrysanthemum) Tj ETQqO	0 0 rgBT /0 0.2	Overlock 10 T
4438	Corncob-based biorefinery: A comprehensive review of pretreatment methodologies, and biorefinery platforms. Journal of the Energy Institute, 2022, 101, 290-308.	2.7	22
4439	Integrated bio-based processes for the production of industrially important chemicals. , 2022, , 163-187.		1
4440	Sustainable biorefineries for circular bioeconomy. , 2022, , 3-28.		1
4442	Towards industrial application of fungal pretreatment in 2G biorefinery: scale-up of solid-state fermentation of wheat straw. Biomass Conversion and Biorefinery, 2024, 14, 593-605.	2.9	5
4443	Effect of ligninolytic axenic and coculture white-rot fungi on rice straw chemical composition and in vitro fermentation characteristics. Scientific Reports, 2022, 12, 1129.	1.6	8
4444	A Review of Pretreatment Methods to Improve Agri-Food Waste Bioconversion by Black Soldier Fly Larvae. Frontiers in Sustainable Food Systems, 2022, 5, .	1.8	22
4445	Impact of surfactant-aided subcritical water pretreatment process conditions on the reducing sugar production from oil palm empty fruit bunch. IOP Conference Series: Earth and Environmental Science, 2022, 963, 012005.	0.2	2
4446	High-pressure autohydrolysis process of wheat straw for cellulose recovery and subsequent use in PBAT composites preparation. Biocatalysis and Agricultural Biotechnology, 2022, 39, 102282.	1.5	6
4447	Changes in the structure and composition of pineapple leaf fiber after alkali and ionic surfactant pretreatments and their impact on enzymatic hydrolysis. Preparative Biochemistry and Biotechnology, 2022, , 1-10.	1.0	1
4448	Thermochemical and Enzymatic Saccharification of Water Hyacinth Biomass into Fermentable Sugars. Processes, 2022, 10, 210.	1.3	6
4449	Multi-response optimization of acid hydrolysis in sugarcane bagasse to obtain high xylose concentration. Biomass Conversion and Biorefinery, 2024, 14, 173-181.	2.9	3
4450	Starch isolation from turmeric dye extraction residue and its application in active film production. International Journal of Biological Macromolecules, 2022, 202, 508-519.	3.6	11
4451	Single cell oil production from hydrolysates of alkali pre-treated giant reed: High biomass-to-lipid yields with selected yeasts. Industrial Crops and Products, 2022, 178, 114596.	2.5	8

# 4452	ARTICLE Functionalized wood as bio-based advanced materials: Properties, applications, and challenges. Renewable and Sustainable Energy Reviews, 2022, 157, 112074.	IF 8.2	CITATIONS
4453	Effect of ozone and autohydrolysis pretreatments on enzymatic digestibility of coastal Bermuda grass. BioResources, 2010, 5, 1084-1101.	0.5	46
4454	Catalytic transformation of biomass-based feedstocks in green solvents. , 2022, , 673-720.		1
4456	Conversion of cellulosic biomass to furanics. , 2022, , 339-372.		1
4457	Urea/sodium hydroxide pretreatments enhance decomposition of maize straw in soils and sorption of straw residues toward herbicides. Journal of Hazardous Materials, 2022, 431, 128467.	6.5	13
4458	Organosolv pretreatment of oat husk using oxalic acid as an alternative organic acid and its potential applications in biorefinery. Biomass Conversion and Biorefinery, 0, , 1.	2.9	13
4459	Utilization of Kiwi Peel Lignocellulose as Fillers in Poly(Lactic Acid) Films. Journal of the Turkish Chemical Society, Section A: Chemistry, 0, , 283-294.	0.4	3
4460	Active pharmaceutical ingredient (API) chemicals: a critical review of current biotechnological approaches. Bioengineered, 2022, 13, 4309-4327.	1.4	20
4461	A review on biological recycling in agricultural waste-based biohydrogen production: Recent developments. Bioresource Technology, 2022, 347, 126595.	4.8	36
4462	Lytic Polysaccharide Monooxygenase from Talaromyces amestolkiae with an Enigmatic Linker-like Region: The Role of This Enzyme on Cellulose Saccharification. International Journal of Molecular Sciences, 2021, 22, 13611.	1.8	5
4463	Direct Hydrolysis of Biomass Polymers using High-pressure CO2 and CO2–H2O Mixtures. RSC Green Chemistry, 2017, , 83-114.	0.0	3
4466	Characteristics and Potential of Renewable Bioresources. Green Energy and Technology, 2022, , 21-43.	0.4	1
4467	Comparative Studies On Bioethanol Production From Some Starch Based Agricultural Waste Peels. , 2021, , 7-12.		0
4469	One-Pot Ethanol Production from Cellulose Transformation over Multifunctional Pt/WO <i>_x</i> and Hollow Pt@HZSM-5 Catalysts. ACS Sustainable Chemistry and Engineering, 2022, 10, 2802-2810.	3.2	13
4470	A Critical Look at Bioproducts Co-cultured Under Solid State Fermentation and Their Challenges and Industrial Applications. Waste and Biomass Valorization, 2022, 13, 3095-3111.	1.8	14
4471	Underutilized Lignocellulosic Waste as Sources of Feedstock for Biofuel Production in Developing Countries. Frontiers in Energy Research, 2022, 10, .	1.2	33
4472	Relationships Between Migration and Microbiome Composition and Diversity in Urban Canada Geese. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	5
4473	Physiological comparisons among Spathaspora passalidarum, Spathaspora arborariae, and Scheffersomyces stipitis reveal the bottlenecks for their use in the production of second-generation ethanol. Brazilian Journal of Microbiology, 2022, 53, 977-990.	0.8	4

#	Article	IF	CITATIONS
4474	Pineapple Waste Cell Wall Sugar Fermentation by Saccharomyces cerevisiae for Second Generation Bioethanol Production. Fermentation, 2022, 8, 100.	1.4	11
4475	Xylo-Oligosaccharide Utilization by Engineered Saccharomyces cerevisiae to Produce Ethanol. Frontiers in Bioengineering and Biotechnology, 2022, 10, 825981.	2.0	5
4476	Mild-temperature Organosolv treatment of rice-straw: extracting ability of dimethylformamide and material applications. International Journal of Environmental Science and Technology, 0, , 1.	1.8	2
4477	Residual Biomass: A Comprehensive Review on the Importance, Uses and Potential in a Circular Bioeconomy Approach. Resources, 2022, 11, 35.	1.6	21
4478	Biodegradation of woody film in river and sea water and surface sediments. Cellulose, 2022, 29, 4109-4124.	2.4	1
4479	Cellulolytic Properties of a Potentially Lignocellulose-Degrading Bacillus sp. 8E1A Strain Isolated from Bulk Soil. Agronomy, 2022, 12, 665.	1.3	15
4480	TowardÂbioeconomy of a multipurpose cereal: Cell wall chemistry of Sorghum is largely buffered against stem sugar content. Cereal Chemistry, 0, , .	1.1	0
4481	Bioethanol Production Optimization from KOH-Pretreated Bombax ceiba Using Saccharomyces cerevisiae through Response Surface Methodology. Fermentation, 2022, 8, 148.	1.4	13
4482	Preparation of bagasse pith-derived biochar for high-efficiency removal of Cr(VI) and further hydrogenation of furfural. Biomass Conversion and Biorefinery, 2024, 14, 1763-1780.	2.9	3
4483	MesothermalÂpretreatmentÂusing FeCl3 enhances methane production from riceÂstraw. Renewable Energy, 2022, 188, 670-677.	4.3	10
4484	Effective utilization of rice straw in value-added by-products: A systematic review of state of art and future perspectives. Biomass and Bioenergy, 2022, 159, 106411.	2.9	36
4485	Steering the formation of cellobiose and oligosaccharides during enzymatic hydrolysis of asparagus fibre. LWT - Food Science and Technology, 2022, 160, 113273.	2.5	5
4486	RDRP (Meth)acrylic Homo and Block Polymers from Lignocellulosic Sugar Derivatives. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	7
4487	Assessing the availability of two bamboo species for fermentable sugars by alkaline hydrogen peroxide pretreatment. Bioresource Technology, 2022, 349, 126854.	4.8	15
4488	Application of nanomaterials for enhanced production of biodiesel, biooil, biogas, bioethanol, and biohydrogen via lignocellulosic biomass transformation. Fuel, 2022, 315, 122840.	3.4	24
4489	Exploration of deep eutectic solvent-based biphasic system for furfural production and enhancing enzymatic hydrolysis: Chemical, topochemical, and morphological changes. Bioresource Technology, 2022, 352, 127074.	4.8	15
4490	Advancements in net-zero pertinency of lignocellulosic biomass for climate neutral energy production. Renewable and Sustainable Energy Reviews, 2022, 161, 112393.	8.2	57
4491	Pretreatment methods to enhance solubilization and anaerobic biodegradability of lignocellulosic biomass (wheat straw): Progress and challenges. Fuel, 2022, 319, 123726.	3.4	34

#	Article	IF	CITATIONS
4492	Biomass, lignocellulolytic enzyme production and lignocellulose degradation patterns by Auricularia auricula during solid state fermentation of corn stalk residues under different pretreatments. Food Chemistry, 2022, 384, 132622.	4.2	21
4493	Kajian Pustaka: Potensi Kulit Buah Untuk Menghasilkan Bioetanol Dengan Mengkaji Kondisi, Substrat, Dan Metode Fermentasi. , 2021, 1, .		0
4494	Influence of mechanical operation on the biodelignification of Leucaena leucocephala by xylanase treatment. 3 Biotech, 2022, 12, 20.	1.1	1
4495	The Expansion of Lignocellulose Biomass Conversion Into Bioenergy via Nanobiotechnology. Frontiers in Nanotechnology, 2021, 3, .	2.4	17
4496	Lignocellulosic waste biomass for biohydrogen production: future challenges and bioâ€economic perspectives. Biofuels, Bioproducts and Biorefining, 2022, 16, 838-858.	1.9	18
4497	Recent Advances in the Valorization of Lignin: A Key Focus on Pretreatment, Characterization, and Catalytic Depolymerization Strategies for Future Biorefineries. Advanced Sustainable Systems, 2022, 6,	2.7	14
4498	Analysis of the beryllium stability under standard and critical operation in a fusion reactor. Eurasian Journal of Physics and Functional Materials, 2021, 5, 236-244.	0.2	0
4499	Biogas Production: Evaluation and Possible Applications. , 0, , .		0
4500	Utilization of Cellulose to Its Full Potential: A Review on Cellulose Dissolution, Regeneration, and Applications. Polymers, 2021, 13, 4344.	2.0	53
4501	Sequential Hydrothermal HCl Pretreatment and Enzymatic Hydrolysis of Saccharina japonica Biomass. Energies, 2021, 14, 8053.	1.6	1
4502	Sustainable and green bio-ethanol purification for biofuel production via membrane engineering. , 2022, , 375-392.		0
4503	Simulated elephant colon for cellulose extraction from sugarcane bagasse: An effective pretreatment to reduce chemical use. Science of the Total Environment, 2022, 835, 155281.	3.9	10
4504	Valorization of Biomass as a Raw Material to Obtain Products of Industrial Interest. , 0, , .		0
4505	Role of nanotechnology for the conversion of lignocellulosic biomass into biopotent energy: A biorefinery approach for waste to value-added products. Fuel, 2022, 322, 124236.	3.4	20
4506	Optimization of synergistic degradation of steam exploded corn straw by lytic polysaccharide monooxygenase R17L and cellulase. Industrial Crops and Products, 2022, 182, 114924.	2.5	5
4507	CHAPTER 6. Advanced Generation of Bioenergy. RSC Green Chemistry, 0, , 117-145.	0.0	0
4508	High Value Chemicals and Materials Production Based on Biomass Components Separation. RSC Green Chemistry, 2014, , 146-175.	0.0	0
4509	Chapter 3. Pre-treatment of Biomass Using CO2-based Methods. RSC Green Chemistry, 0, , 37-65.	0.0	0

#	Article	IF	CITATIONS
4510	Chapter 4. Enzyme-based Biomass Catalyzed Reactions in Supercritical CO2. RSC Green Chemistry, 0, , 66-82.	0.0	0
4520	Future Maize Hybrid Development. , 0, , 280-293.		0
4541	Co-Digestion of Lignocellulosic Wastes with Food Waste for Sustainable Biogas Production. Clean Energy Production Technologies, 2022, , 77-97.	0.3	2
4542	Insights on Hydrogen Production by Thermochemical and Biological Techniques. Advances in Science, Technology and Innovation, 2022, , 321-331.	0.2	1
4544	Construction of Recombinant Saccharomyces cerevisiae with Ethanol and Aldehydes Tolerance via Overexpression of Aldehyde Reductase. Microorganisms, 2022, 10, 850.	1.6	3
4545	Thermochemical liquefaction of wheat straw in sub- and supercritical tetralin. Izvestiâ Vuzov: Prikladnaâ Himiâ I Biotehnologiâ, 2022, 12, 160-166.	0.1	1
4546	Efficient utilization of melon peels to produce ethanol: a step toward sustainable waste management. Biomass Conversion and Biorefinery, 2024, 14, 3463-3475.	2.9	2
4547	Co-immobilization of Cellulase and β-Glucosidase into Mesoporous Silica Nanoparticles for the Hydrolysis of Cellulose Extracted from <i>Eriobotrya japonica</i> Leaves. Langmuir, 2022, 38, 5481-5493.	1.6	35
4548	<i>In-situ</i> transesterification of single-cell oil for biodiesel production: a review. Preparative Biochemistry and Biotechnology, 2023, 53, 120-135.	1.0	4
4549	Consolidated bioprocessing of hemicellulose to fuels and chemicals through an engineered Bacillus subtilis-Escherichia coli consortium. Renewable Energy, 2022, 193, 288-298.	4.3	6
4550	Photocatalytic materials applications for sustainable agriculture. Progress in Materials Science, 2022, 130, 100965.	16.0	10
4551	Synthesis of Xylitol from bio-renewables using chemo-catalytic routes: Review. Materials Today: Proceedings, 2022, , .	0.9	1
4552	Current knowledge on cyanobacterial biobutanol production: advances, challenges, and prospects. Reviews in Environmental Science and Biotechnology, 0, , 1.	3.9	2
4553	Biotechnological advances in biomass pretreatment for bio-renewable production through nanotechnological intervention. Biomass Conversion and Biorefinery, 2024, 14, 2959-2981.	2.9	15
4554	Sugar production from husk coffee using combined pretreatments. Chemical Engineering and Processing: Process Intensification, 2022, 176, 108966.	1.8	11
4555	Microbial conversion of waste baklava syrup to biofuels and bioproducts. Biocatalysis and Agricultural Biotechnology, 2022, 42, 102364.	1.5	2
4556	SOME RECENT DEVELOPMENTS IN VALORIZATION OF CHITOSAN TO A VALUABLE PLATFORM CHEMICAL 5-HYDROXYMETHYLFURFURAL (5-HMF): A SHORT REVIEW. Catalysis in Green Chemistry and Engineering, 2022, 5, 1-18.	0.2	1
4557	A comprehensive review on optimization of anaerobic digestion technologies for lignocellulosic biomass available in India. Biomass and Bioenergy, 2022, 161, 106479.	2.9	28

#	Article	IF	CITATIONS
4559	Pretreatment, Hydrolysis and Fermentation of Lignocellulosic Biomass for Bioethanol. Current World Environment Journal, 2022, 17, 113-121.	0.2	0
4560	Rapid quantification of ethanol content in aqueous solutions using a ratiometric fluorescent sensor. Sensors & Diagnostics, 2022, 1, 714-718.	1.9	3
4561	Strategies involved in biofuel production from agro-based lignocellulose biomass. Environmental Technology and Innovation, 2022, 28, 102679.	3.0	26
4562	Biomass torrefaction: An overview of process and technology assessment based on global readiness level. Fuel, 2022, 324, 124663.	3.4	39
4563	Structural complexity of Konjac glucomannan and its derivatives governs the diversity and outputs of gut microbiota. Carbohydrate Polymers, 2022, 292, 119639.	5.1	14
4564	Features of single and combined technologies for lignocellulose pretreatment to enhance biomethane production. Renewable and Sustainable Energy Reviews, 2022, 165, 112606.	8.2	15
4566	Potential of Weed Biomass for Bioethanol Production. Green Chemistry and Sustainable Technology, 2022, , 65-71.	0.4	2
4568	Current Trends in Pretreatment Technologies for Bioethanol Production: Biorefinery Concept. Green Chemistry and Sustainable Technology, 2022, , 27-45.	0.4	1
4570	2G-biofuel ethanol: an overview of crucial operations, advances and limitations. Biomass Conversion and Biorefinery, 2024, 14, 2983-3006.	2.9	1
4571	A low-cost environmentally friendly approach to isolate lignin containing micro and nanofibrillated cellulose from Eucalyptus globulus bark by steam explosion. Cellulose, 2022, 29, 5593-5607.	2.4	4
4572	Plant Cell Wall Breakdown by Hindgut Microorganisms: Can We Get Scientific Insights From Rumen Microorganisms?. Journal of Equine Veterinary Science, 2022, 115, 104027.	0.4	5
4577	Lignocellulose-based nanomaterials for diagnostic and therapeutic applications. , 2022, , 285-302.		1
4578	New insights of cellulosic ethanol production from lignocellulosic feedstocks. , 2022, , 749-779.		0
4580	Lignocellulosic biomass as an alternate source for next-generation biofuel. , 2022, , 207-221.		0
4581	Advances and sustainable conversion of waste lignocellulosic biomass into biofuels. , 2022, , 167-206.		0
4582	Co-production of schizophyllan and cellulolytic enzymes from bagasse by <i>Schizophyllum commune</i> . Bioscience, Biotechnology and Biochemistry, 2022, 86, 1144-1150.	0.6	2
4583	Kinetic model supported improved and optimized submerged production strategy of cellulase enzyme from newspaper waste biomass. Bioprocess and Biosystems Engineering, 0, , .	1.7	0
4584	TRENDS AND PERFORMANCES OF THE ALGAL BIOFUEL: A BIBLIOMETRIC APPROACH. Journal of Environmental Engineering and Landscape Management, 2022, 30, 284-300.	0.4	0

#	Article	IF	Citations
4585	Biomass Production and Predicted Ethanol Yield Are Linked with Optimum Photosynthesis in Phragmites karka under Salinity and Drought Conditions. Plants, 2022, 11, 1657.	1.6	12
4586	Recycling slaughterhouse wastes into potential energy and hydrogen sources: An approach for the future sustainable energy. Bioresource Technology Reports, 2022, 19, 101133.	1.5	10
4587	Ionic liquids, the mixture of ionic liquids and their co-solvent with N, N-dimethylformamide as solvents for cellulose using experimental and COSMO study. Results in Engineering, 2022, 15, 100484.	2.2	6
4588	Harnessing the power of cellulolytic nitrogen-fixing bacteria for biovalorization of lignocellulosic biomass. Industrial Crops and Products, 2022, 186, 115235.	2.5	7
4590	Microbial resources for bioconversion of lignocellulose to ethanol. , 2022, , 237-268.		0
4591	Fungal cellulases. , 2022, , 353-368.		0
4592	Industrial applications of xylanases. , 2022, , 149-211.		0
4593	Nepenthes mirabilis Fractionated Pitcher Fluid Use for Mixed Agro-Waste Pretreatment: Advocacy for Non-Chemical Use in Biorefineries. Catalysts, 2022, 12, 726.	1.6	1
4594	A Lignin-Rich Extract of Giant Reed (Arundo donax L.) as a Possible Tool to Manage Soilborne Pathogens in Horticulture: A Preliminary Study on a Model Pathosystem. Horticulturae, 2022, 8, 589.	1.2	5
4595	Physical and Fuel Properties of <i>Bambusa vulgaris</i> of Different Age Groups and Their Effect on Producing Biofuel. South-East European Forestry, 2022, 13, 53-64.	0.1	0
4596	Intensification of Acidogenic Fermentation for the Production of Biohydrogen and Volatile Fatty Acids—A Perspective. Fermentation, 2022, 8, 325.	1.4	17
4597	Isolation and characterization of cellulose nanocrystals from Ensete ventricosum pseudo-stem fiber using acid hydrolysis. Biomass Conversion and Biorefinery, 0, , .	2.9	9
4598	A Review on Enhancing Cupriavidus necator Fermentation for Poly(3-hydroxybutyrate) (PHB) Production From Low-Cost Carbon Sources. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	10
4599	The effect of operating conditions on the conversion of the agricultural waste into 5-hdroxymethylfurfural. Journal of Physics: Conference Series, 2022, 2299, 012024.	0.3	0
4600	Towards efficient and greener processes for furfural production from biomass: A review of the recent trends. Science of the Total Environment, 2022, 847, 157599.	3.9	24
4601	Multidisciplinary Pretreatment Approaches to Improve the Bio-methane Production from Lignocellulosic Biomass. Bioenergy Research, 2023, 16, 228-247.	2.2	7
4602	Pretreatment of agricultural lignocellulosic biomass for fermentable sugar: opportunities, challenges, and future trends. Biomass Conversion and Biorefinery, 2024, 14, 6155-6183.	2.9	12
4603	Gasification as a potential solution for forest fires in the Indian Himalayan Region: A review. Bioresource Technology Reports, 2022, 19, 101162.	1.5	4

#	Article	IF	CITATIONS
4604	Reclaiming the Value of Cotton Waste Textiles: A New Improved Method to Recycle Cotton Waste Textiles via Acid Hydrolysis. Recycling, 2022, 7, 57.	2.3	5
4605	Biohydrogen and Methane Production from Sugarcane Leaves Pretreated by Deep Eutectic Solvents and Enzymatic Hydrolysis by Cellulolytic Consortia. Fermentation, 2022, 8, 396.	1.4	12
4606	Sustainable Biofuel Production from Animal Manure and Crop Residues in Ghana. Energies, 2022, 15, 5800.	1.6	5
4607	Xylose Fermentation Was Improved by Kluyveromyces marxianus KHM89 through Up-regulation of Nicotinamide Adenine Dinucleotide (NAD+) Salvage Pathway. Biotechnology and Bioprocess Engineering, 2022, 27, 624-630.	1.4	1
4609	Optically Transparent Bamboo: Preparation, Properties, and Applications. Polymers, 2022, 14, 3234.	2.0	0
4610	Evaluation of fungal consortium lignozyme for biodeligniciation of agricultural residues. Biofuels, Bioproducts and Biorefining, 0, , .	1.9	2
4611	Forecast of glucose production from biomass wet torrefaction using statistical approach along with multivariate adaptive regression splines, neural network and decision tree. Applied Energy, 2022, 324, 119775.	5.1	25
4612	An optimized protocol for estimating cellulase activity in biological samples. Analytical Biochemistry, 2022, 655, 114860.	1.1	1
4613	Valorization of wastewater: A paradigm shift towards circular bioeconomy and sustainability. Science of the Total Environment, 2022, 848, 157709.	3.9	34
4614	One-step chemical activation facilitates synthesis of activated carbons from Acer truncatum seed shells for premium capacitor electrodes. Industrial Crops and Products, 2022, 187, 115458.	2.5	8
4615	Sustainable Fiberâ€Reinforced Composites: A Review. Advanced Sustainable Systems, 2022, 6, .	2.7	61
4616	Contribution of atmospheric pressure chemical ionization mass spectrometry for the characterization of bio-oils from lignocellulosic biomass: Comparison with electrospray ionization and atmospheric pressure photoionization. Journal of Analytical and Applied Pyrolysis, 2022, 167, 105694.	2.6	8
4617	Lytic polysaccharide monooxygenase – A new driving force for lignocellulosic biomass degradation. Bioresource Technology, 2022, 362, 127803.	4.8	7
4618	Ultrasonic cavitation: An effective cleaner and greener intensification technology in the extraction and surface modification of nanocellulose. Ultrasonics Sonochemistry, 2022, 90, 106176.	3.8	45
4619	Cellulose nanocrystals based delivery vehicles for anticancer agent curcumin. International Journal of Biological Macromolecules, 2022, 221, 842-864.	3.6	8
4620	Ring-opening of furfuryl alcohol to pentanediol with extremely high selectivity over Cu/MFI catalysts with balanced Cu ⁰ –Cu ⁺ and BrÃ,nsted acid sites. Catalysis Science and Technology, 2022, 12, 5879-5890.	2.1	9
4621	Design and applications of biocompatible choline amino acid ionic liquids. Green Chemistry, 2022, 24, 7281-7304.	4.6	16
4622	Utilization of Sugarcane Bagasse as a Substrate for Lipid Production by <i>Aurantiochytrium</i> sp Journal of Oleo Science, 2022, 71, 1493-1500.	0.6	1

#	Article	IF	CITATIONS
4623	Physico-chemical interactions within lignocellulosic biomass and their importance in developing solvent based deconstruction methods. Reaction Chemistry and Engineering, 2022, 7, 2471-2487.	1.9	2
4624	Sustainability of Bioethanol Production. Clean Energy Production Technologies, 2022, , 167-182.	0.3	0
4625	Enzymatic extraction of polyphenols from wastes of Amazon fruits industry. , 2022, , 225-246.		0
4626	Conventional Liquid Biofuels. Clean Energy Production Technologies, 2022, , 145-166.	0.3	0
4627	Integrated Biorefinery Approach for Utilization of Wood Waste into Levulinic Acid and 2-Phenylethanol Production Using Mild Treatment Conditions. SSRN Electronic Journal, 0, , .	0.4	0
4628	An Overview on Organosolv Production of Bio-refinery Process Streams for the Production of Biobased Chemicals. Clean Energy Production Technologies, 2022, , 345-374.	0.3	Ο
4629	Application of machine learning to predict the yield of alginate lyase solid-state fermentation by Cunninghamella echinulata: artificial neural networks and support vector machine. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 3155-3171.	0.8	1
4630	Radiation-Assisted Hydrolysis of Lignocellulosic Biomass. Mechanistic Study. Waste and Biomass Valorization, 2023, 14, 1113-1122.	1.8	1
4631	Comparative Study of Physicochemical Characteristics and Catalytic Activity of Copper Oxide over Synthetic Silicon Oxide and Silicon Oxide from Rice Husk in Non-Oxidative Dehydrogenation of Ethanol. ChemEngineering, 2022, 6, 74.	1.0	1
4632	Kinetics of the Release of Sugars from the Enzymatic and Physico-Chemical Pre-treated Sugarcane Bagasse and Residual Forest Biomass. Waste and Biomass Valorization, 2023, 14, 1069-1077.	1.8	2
4633	Exploration of the Interrelationship within Biomass Pyrolysis Liquid Composition Based on Multivariate Analysis. Molecules, 2022, 27, 5656.	1.7	1
4634	Kinetic and thermodynamic study on acid hydrolysis of corn cob, rose stem, and pineapple crown. Chemical Engineering Communications, 0, , 1-12.	1.5	0
4635	Recent insights in synthesis and energy storage applications of porous carbon derived from biomass waste: A review. International Journal of Hydrogen Energy, 2022, 47, 39338-39363.	3.8	23
4636	Separation of fuel additive levulinic acid using toluene, xylene, and octanol from water stream. Journal of the Indian Chemical Society, 2022, 99, 100746.	1.3	3
4637	Bioethanol from Biomass: Technologies and Challenges. Microorganisms for Sustainability, 2022, , 41-55.	0.4	0
4638	Conversion of sewage sludge to biofuels. , 2022, , 37-51.		0
4639	Agricultural Lignocellulosic Waste for Bioethanol Production. Clean Energy Production Technologies, 2022, , 271-308.	0.3	0
4643	Agri-Biodegradable Mulch Films Derived from Lignin in Empty Fruit Bunches. Catalysts, 2022, 12, 1150.	1.6	10

#	Article	IF	CITATIONS
4644	Valorisation Potential of Invasive Acacia dealbata, A. longifolia and A. melanoxylon from Land Clearings. Molecules, 2022, 27, 7006.	1.7	6
4646	Catalytic Synthesis of Energyâ€rich Fuel Additive Levulinate Esters from Levulinic Acid using Modified Ultraâ€stable Zeolite Y. ChemistrySelect, 2022, 7, .	0.7	4
4647	Production of a halotolerant endo-1,4-β-glucanase by a newly isolated Bacillus velezensis H1 on olive mill wastes without pretreatment: purification and characterization of the enzyme. Archives of Microbiology, 2022, 204, .	1.0	6
4648	Plant Carbon Sources for Denitrification Enhancement and Its Mechanism in Constructed Wetlands: A Review. Sustainability, 2022, 14, 12545.	1.6	1
4649	Lignocellulose biohydrogen towards net zero emission: A review on recent developments. Bioresource Technology, 2022, 364, 128084.	4.8	12
4650	Aquatic macrophytes (Spirogyra porticalis and Nymphaea L.) as substrates for biofuel production: potentials and challenges. Scientific African, 2022, 18, e01412.	0.7	3
4652	Thermal conditioning of remoistened wheat straw to produce durable pellets. Biomass and Bioenergy, 2022, 166, 106622.	2.9	0
4653	Comparing the effects of gamma ray and alkaline treatments of sodium hydroxide and calcium oxide on chemical composition, ruminal degradation kinetics and crystallinity degree of soybean straw. Applied Radiation and Isotopes, 2023, 191, 110524.	0.7	2
4654	Communities of Microbial Enzymes and Biodegradation of Persistent Environmental Pollutants. Environmental and Microbial Biotechnology, 2022, , 247-277.	0.4	0
4655	Microbial Enzymes in the Recycling of Wastes. Environmental and Microbial Biotechnology, 2022, , 189-213.	0.4	0
4656	Occurrence and Distribution of Microbial Enzymes in Freshwater. Environmental and Microbial Biotechnology, 2022, , 61-82.	0.4	0
4657	Cavitation-based technologies for pretreatment and processing of food wastes: Major applications and mechanisms – A review. Chemical Engineering Journal, 2023, 454, 140388.	6.6	18
4658	State-of-the-art in bioresources for sustainable transportation. International Journal of Hydrogen Energy, 2023, 48, 3768-3790.	3.8	7
4659	High-Pressure Water Jet System Treatment of Argan Nut Shell and Enzymatic Hydrolysis for Bioethanol Production. Fermentation, 2022, 8, 627.	1.4	2
4660	Improved Sugar Recovery of Alkaline Pre-Treated Pineapple Leaf Fibres via Enzymatic Hydrolysis and Its Enzymatic Kinetics. Fermentation, 2022, 8, 640.	1.4	0
4661	Non-targeted screening and multivariate analysis of waste stream biomass conversion products. Biomass Conversion and Biorefinery, 0, , .	2.9	0
4662	Transformations of the Lignin–Carbohydrate Complex of Triticum L. during Delignification with Ozone. Russian Journal of Physical Chemistry A, 2022, 96, 2358-2366.	0.1	0
4663	Pretreatment with fermentable and recyclable deep eutectic solvent (DES) for improving resource utilization of biomass. Industrial Crops and Products, 2022, 190, 115868.	2.5	5

		CITATION REPORT		
#	Article		IF	CITATIONS
4664	Review on biobutanol as Malaysia potential biofuels. AIP Conference Proceedings, 2022	,,.	0.3	0
4665	Insights into the recent advances in the pretreatment of biomass for sustainable bioene bio-products synthesis: Challenges and future directions. European Journal of Sustainab Development Research, 2023, 7, em0209.	rgy and le	0.4	3
4666	Sugarcane bagasse cellulose-based scaffolds incorporated hydroxyapatite for promoting proliferation, adhesion and differentiation of osteoblasts. Industrial Crops and Products 115979.	, 2023, 192,	2.5	5
4667	Nature-inspired pretreatment of lignocellulose – Perspective and development. Biores Technology, 2023, 369, 128456.	ource	4.8	4
4668	Conversion of Lignocellulosic Biomass to Bioethanol: An Overview with a Focus on Preta International Journal of Engineering and Technologies, 0, 15, 17-43.	reatment.	0.0	0
4669	Finding values in lignin: A promising yet under-utilized component of the lignocellulosic Frontiers in Chemical Engineering, 0, 4, .	biomass.	1.3	4
4670	Lightweight, Thermally Insulating, Fireâ€Proof Graphite ellulose Foam. Advanced Fur 2023, 33, .	ictional Materials,	7.8	17
4671	Optimized Production of Second-Generation Bioethanol from a Spent C4 Grass: Vetiver	(Chrysopogon) Tj ETQq1	1 0.78431 1.6	4 ₄ rgBT /Ov
4674	Deciphering biomarkers of the plant cell-wall recalcitrance: towards enhanced delignific saccharification. Biomass Conversion and Biorefinery, 0, , .	ation and	2.9	0
4675	BTX production by breaking down lignin: Current status and future prospects. Biofuels, and Biorefining, 2023, 17, 664-681.	Bioproducts	1.9	2
4676	Biomass as adsorbent – A depollution cost effective material in a promising market. IG Series: Earth and Environmental Science, 2022, 1123, 012070.	DP Conference	0.2	1
4678	Circular Economy Involving Microbial Consortia in Consolidated Bioprocesses to Produc 2022, , 279-301.	e Biofuels. ,		1
4679	Agricultural Lignocellulosic Waste to Biofuels. Clean Energy Production Technologies, 2 205-247.	023, ,	0.3	2
4680	Denitrification efficiency, microbial communities and metabolic mechanisms of corn col as denitrifying carbon source. Environmental Research, 2023, 221, 115315.	b hydrolysate	3.7	11
4681	Production of Bioethanol from Mixed Lignocellulosic Biomass: Future Prospects and Cha Clean Energy Production Technologies, 2023, , 313-326.	allenges.	0.3	1
4682	Advanced strategies for production of soy-processing enzyme. Frontiers in Bioengineeri Biotechnology, 0, 10, .	ng and	2.0	0
4683	Biomass characterization of wild and cultivated cardoon accessions and estimation of p biofuels production. Biomass Conversion and Biorefinery, 0, , .	otential	2.9	0
4684	Valorization of rice straw, sugarcane bagasse and sweet sorghum bagasse for the produ bioethanol and phenylacetylcarbinol. Scientific Reports, 2023, 13, .	iction of	1.6	12

	CITATION RE	PORT	
#	Article	IF	CITATIONS
4685	Degradable optical resonators as <i>in situ</i> microprobes for microscopy-based observation of enzymatic hydrolysis. Chemical Communications, 2023, 59, 1477-1480.	2.2	2
4686	Lactic acid production from oil palm empty fruit bunch using Lactobacillus delbrueckii. AlP Conference Proceedings, 2023, , .	0.3	1
4687	Direct conversion of chitin derived N-acetyl-D-glucosamine into 3-acetamido-5-acetylfuran in deep eutectic solvents. Carbohydrate Research, 2023, 524, 108742.	1.1	3
4688	Mechanisms of ethanol dehydration to ethylene on γ-Al2O3ï¼^100)and (110C): A combined DFT and KMC study. Computational Materials Science, 2023, 219, 111979.	1.4	3
4689	Crop residue management challenges, opportunities and way forward for sustainable food-energy security in India: A review. Soil and Tillage Research, 2023, 228, 105641.	2.6	25
4690	Determination of Cellulosic Bioethanol Yield of Sweet Sorghum Genotypes Grown Under Cukurova Conditions. Journal of Tekirdag Agricultural Faculty, 2023, 20, 61-70.	0.2	2
4691	Opportunities to Production of Biofuel from Grains and to Improve the Factors Increasing the Yield of Bioethanol in a Short Time. , 2022, 2, 253-272.		0
4692	Marginal note on wastewater recycling margins from the perspective of simultanism of sustainability and technological development. Columella Journal of Agricultural and Environmental Sciences, 2022, 9, 135-143.	0.1	0
4694	Challenges to biofuel production. , 2023, , 67-89.		0
4695	Biotechnology in Hydrogen Generation. , 2023, , 111-133.		1
4696	Microbial enzymes: a futuristic tools for a sustainable environment in 21st century. , 2023, , 45-63.		0
4697	Sugar Production from Bamboo. , 2023, , 217-241.		1
4698	Bioconversion of Dilute Acid Pretreated Corn Stover to L-Lactic Acid Using Co-Culture of Furfural Tolerant Enterococcus mundtii WX1 and Lactobacillus rhamnosus SCJ9. Fermentation, 2023, 9, 112.	1.4	4
4700	Microbial enzymes as a robust process to mitigate pollutants of environmental concern. , 2023, , 241-267.		4
4701	Environmentally Benign Pulping Processes. Springer Briefs in Molecular Science, 2023, , 37-85.	0.1	0
4702	Cellulases for biofuels production. , 2023, , 139-177.		0
4705	A comprehensive review on biogas production from lignocellulosic wastes through anaerobic digestion: An insight into performance improvement strategies. Fuel, 2023, 340, 127239.	3.4	28
4706	Future Directions for Applications of Bio-Oils in the Asphalt Industry: A Step to Sequester Carbon in Roadway Infrastructure. Energy & Fuels, 2023, 37, 4791-4815.	2.5	3

#	Article	IF	CITATIONS
4707	Water/acid/reductive biomass leaching of Cr(VI) in chromium ore processing residue (CORP) for safe discharge of effluent and to recover Cr(III) and gypsum. Hydrometallurgy, 2023, 218, 106060.	1.8	0
4708	Review of Konjac Glucomannan Structure, Properties, Gelation Mechanism, and Application in Medical Biology. Polymers, 2023, 15, 1852.	2.0	4
4709	Nano‧trategies for Lignin Biomaterials toward Cancer Therapy. Advanced Healthcare Materials, 2023, 12, .	3.9	4
4710	Integrated biorefinery of Mucor circinelloides biomass and sugarcane bagasse for application of high-value biopolymers. Biomass Conversion and Biorefinery, 0, , .	2.9	1
4711	Biological pretreatment for algal biomass feedstock for biofuel production. Journal of Environmental Chemical Engineering, 2023, 11, 109870.	3.3	19
4712	Production of ethanol from xylan by indigenous xylanolytic and ethanologenic bacteria isolated from fruit wastes. Sustainable Energy Technologies and Assessments, 2023, 57, 103216.	1.7	1
4713	Photoreforming of Waste Polymers for Sustainable Hydrogen Fuel and Chemicals Feedstock: Waste to Energy. Chemical Reviews, 2023, 123, 4443-4509.	23.0	47
4714	Ethanol production using the whole solid-state fermented sugarcane bagasse cultivated by Trichoderma reesei RUT-C30 supplemented with commercial cellulase. Biocatalysis and Agricultural Biotechnology, 2023, 50, 102667.	1.5	3
4718	Syngas from agricultural waste. , 2023, , 379-409.		1
4719	Improving the Energetic Efficiency of Biogas Plants Using Enzymatic Additives to Anaerobic Digestion. Energies, 2023, 16, 1845.	1.6	5
4720	Process simulation–based scenario analysis of scaled-up bioethanol production from water hyacinth. Biomass Conversion and Biorefinery, 0, , .	2.9	1
4722	Anaerobic demethylation of guaiacyl-derived monolignols enabled by a designed artificial cobalamin methyltransferase fusion enzyme. RSC Advances, 2023, 13, 5770-5777.	1.7	0
4723	Microbial Enzyme Systems in the Production of Second Generation Bioethanol. Sustainability, 2023, 15, 3590.	1.6	7
4724	Biogeneration of Valuable Nanomaterials from Agro-Wastes: A Comprehensive Review. Agronomy, 2023, 13, 561.	1.3	10
4725	Automated quantification of fluorescence and morphological changes in pretreated wood cells by fluorescence macroscopy. Plant Methods, 2023, 19, .	1.9	1
4726	Evaluating the Impact of Cellulose Extraction via Traditional and Ionosolv Pretreatments from Domestic Matchstick Waste on the Properties of Carboxymethyl Cellulose. ACS Omega, 2023, 8, 8722-8731.	1.6	2
4727	Role of Microbes in the Synthesis of Industrial Products from Lignocellulosic Materials. Sustainable Agriculture Reviews, 2023, , 415-458.	0.6	1
4728	Value Added Products Generation from Sugarcane Bagasse and Its Impact on Economizing Biorefinery and Sustainability of Sugarcane Industry. , 0, , .		1

#	ARTICLE Comparative study of microwave-assisted versus conventional heated reactions of biomass	IF	CITATIONS
4729	conversion into levulinic acid over hierarchical Mn3O4/ZSM-5 zeolite catalysts. Carbon Resources Conversion, 2023, 6, 245-252.	3.2	1
4730	Lactic Acid: A Comprehensive Review of Production to Purification. Processes, 2023, 11, 688.	1.3	10
4731	Hydrothermal carbonization of nonlignocellulosic wastes using enzyme pretreatment. , 2023, , 123-136.		0
4732	Applications of itaconic acid in biofuel production. , 2023, , 63-78.		0
4733	Overexpression of the Arabidopsis SHN3 transcription factor compromises the rust disease resistance of transgenic switchgrass plants. Grass Research, 2023, 3, 0-0.	0.6	0
4734	Latest development in the fabrication and use of lignin-derived humic acid. , 2023, 16, .		8
4735	Lignocellulosic Feedstock Pretreatment forÂBiogas Production. Green Energy and Technology, 2023, , 81-95.	0.4	0
4736	Click Synthesis of Triazole Polymers Based on Lignin-Derived Metabolic Intermediate and Their Strong Adhesive Properties to Cu Plate. Polymers, 2023, 15, 1349.	2.0	1
4737	Stoichiometric balance ratio of cellobiose and gentiobiose induces cellulase production in Talaromyces cellulolyticus. , 2023, 16, .		2
4738	Use of biobased materials from agro-industrial residues in food packaging. , 2023, , 173-229.		1
4739	Bioethanol Production from Rice Husk through SHCF and SSCF Processing Strategies. , 2022, , 1-7.		0
4740	New Development in Renewable Energy Research. Environmental Science and Engineering, 2023, , 269-285.	0.1	0
4741	Conversion of oil palm empty fruit bunch into bioethanol through pretreatment with CO2 as impregnating agent in alkali explosion. Biomass Conversion and Biorefinery, 0, , .	2.9	0
4742	Chemical recycling of waste clothes: a smarter approach to sustainable development. Environmental Science and Pollution Research, 2023, 30, 54448-54469.	2.7	2
4743	Enhance the Growth of <i>Clostridium ljungdahlii</i> Microbial Cells by Modifying the Medium Composition and Trace Metals. , 0, 1, 21-29.		0
4744	Wood Biorefineries. Springer Handbooks, 2023, , 1713-1751.	0.3	0
4745	Insight into the genomes of dominant yeast symbionts of European spruce bark beetle, Ips typographus. Frontiers in Microbiology, 0, 14, .	1.5	4
4746	Direct hydrogenation of CO ₂ to ethanol at ambient conditions using Cu(<scp>i</scp>)-MOF in a dielectric barrier discharge plasma reactor. Journal of Materials Chemistry A, 2023, 11, 10766-10775.	5.2	4
CITATION REPORT

#	Article	IF	CITATIONS
4747	Xylanase enhanced second-generation bioethanol production through simultaneous saccharification and fermentation. Biofuels, 2023, 14, 1009-1014.	1.4	1
4748	Selectively enzymatic conversion of wood constituents with white and brown rot fungi. Industrial Crops and Products, 2023, 199, 116703.	2.5	2
4751	Agro-industrial Residues: An Eco-friendly and Inexpensive Substrate for Fungi in the Development of White Biotechnology. , 2023, , 571-603.		0
4753	Multiple strategies for the development of multienzyme complex for one-pot reactions. Environmental Science and Pollution Research, 2023, 30, 64904-64931.	2.7	1
4756	Fermentable sugars as bioprocessing feedstocks from lignocellulosic biomass pretreated with acid mine drainage. , 2023, , 161-178.		0
4764	Conversion of waste biomass into nanocellulose and their applications as high-value product. , 2023, , 275-289.		0
4767	Biological conversion technologies. , 2023, , 171-200.		0
4779	Weed—An Alternate Energy Source. Energy, Environment, and Sustainability, 2023, , 165-193.	0.6	0
4785	Enhanced bioethanol production by H2O2 pretreatment-hydrolysis-fermentation of rice husk. AIP Conference Proceedings, 2023, , .	0.3	0
4790	Cellulose acetate-based membrane for wastewater treatment—A state-of-the-art review. Materials Advances, 2023, 4, 4054-4102.	2.6	2
4793	Bioethanol Production via Fermentation: Microbes, Modeling and Optimization. Green Energy and Technology, 2023, , 193-227.	0.4	1
4794	Bioethanol Production Using Novel Starch Sources. Green Energy and Technology, 2023, , 103-121.	0.4	0
4795	Overview of Commercial Bioethanol Production Plants. Green Energy and Technology, 2023, , 279-303.	0.4	0
4799	A systematic review on smart waste biomass production using machine learning and deep learning. Journal of Material Cycles and Waste Management, 2023, 25, 3175-3191.	1.6	0
4801	Challenges and Opportunities of Agricultural Biomass as a Replacement for PCI Coal in the Ironmaking Blast Furnace: A Review. Journal of Sustainable Metallurgy, 2023, 9, 927-949.	1.1	0
4810	Improving the Value of Spent Coffee Ground by Converting Carbohydrates into Sugars by Saccharomyces cerevisiae to Produce Bioethanol. , 2023, , 208-214.		0
4814	Sustainability in residue management: a review with special reference to Indian agriculture. Paddy and Water Environment, 0, , .	1.0	0
4821	The importance of microorganisms for biofuels production. , 2024, , 253-263.		0

#	Article	IF	CITATIONS
4822	Cellulose Degradation Enzymes in Filamentous Fungi, A Bioprocessing Approach Towards Biorefinery. Molecular Biotechnology, 0, , .	1.3	0
4831	A guide to lignin valorization in biorefineries: traditional, recent, and forthcoming approaches to convert raw lignocellulose into valuable materials and chemicals. , 2024, 2, 37-90.		3
4832	Sustainable production of advanced biofuel and platform chemicals from woody biomass. , 2024, , 163-194.		0
4836	An Economic and Sustainable Method of Bio-Ethanol Production from Agro-Waste: A Waste to Energy Approach. , 2023, , 65-99.		0
4840	Utilization of woody biomass for biogas production. , 2024, , 103-123.		0
4845	An Overview of Bioethanol Production from Lignocellulosic Biomass. , 2024, , 1-10.		0
4847	Pretreatment of agricultural wastes to improve biogas production: A review. AIP Conference Proceedings, 2023, , .	0.3	0
4851	The effectiveness of pretreated biomass using autoclave heat shock with H2SO4 for bioethanol production in simultaneous saccharification and fermentation. AIP Conference Proceedings, 2023, , .	0.3	0
4860	Conversion of cellulosic biomass through consolidated bioprocessing method using Clostridium thermocellum. AIP Conference Proceedings, 2023, , .	0.3	0
4864	Current Progress on Biomass Pretreatment: The Key for Its Valorization. Green Energy and Technology, 2024, , 1-17.	0.4	0
4867	From Organic Waste to Renewable Energy: Rice Straw. Clean Energy Production Technologies, 2024, , 31-50.	0.3	0
4868	Lignocellulosic Waste to Biofuel-Paddy Straw to Bioethanol: Advancement in Technology. Clean Energy Production Technologies, 2024, , 87-107.	0.3	0
4869	Bioethanol Production from Paddy Straw Lignocellulosic Waste. Clean Energy Production Technologies, 2024, , 151-182.	0.3	0
4873	A novel approach to explore new means of depletion of potable water crisis by phytoremediation of Abandoned Coalmine Pitlake and generate alternate livelihood: A case study of Raniganj Coalfield, West Bengal, India. , 0, , .		Ο
4875	Algae a valuable biomass for bioethanol production. , 2024, , 143-155.		0
4878	Valorization of lignocellulosic biomass through biorefinery concepts. , 2024, , 461-503.		0
4879	Composition and characterization of lignocellulosic biomass. , 2024, , 33-46.		0
4880	Use of cellulose, hemicellulose and generated sugars and lignin. , 2024, , 173-202.		Ο

CITATION REPORT

		CITATION REPORT		
#	Article		IF	Citations
4882	Novel and Tailor-Made Enzyme Cocktails for Saccharification of Cellulosic Biomass. , 20	024, , 1-25.		0
4889	Biofuel Production from Agricultural Waste: A Global Trend. Clean Energy Production 7 2024, , 1-13.	echnologies,	0.3	Ο
4890	Recycling Resources of Soil and Agroecosystem. Earth and Environmental Sciences Lib 173-203.	rary, 2024, ,	0.3	0
4891	Biomass feedstock: A sustainable and renewable source of energy production. , 2024,	, 1-34.		0
4892	Challenges and future prospective of biomass conversion to various products. , 2024,	, 485-500.		0