Crossed unilateral lesions of temporal lobe structures a visual conditional and object discrimination learning in

European Journal of Neuroscience 15, 507-516 DOI: 10.1046/j.0953-816x.2001.01888.x

Citation Report

#	Article	IF	CITATIONS
1	Learning impairments in monkeys with combined but not separate excitotoxic lesions of the anterior and mediodorsal thalamic nuclei. Brain Research, 2002, 950, 39-51.	1.1	16
2	Unilateral hippocampal and inferotemporal cortex lesions in opposite hemispheres impair learning of single-pair visual discriminations as well as visuovisual conditional tasks in monkeys. Behavioural Brain Research, 2003, 141, 51-62.	1.2	13
3	Muscarinic cholinergic influences in memory consolidation. Neurobiology of Learning and Memory, 2003, 80, 178-193.	1.0	233
4	Role of the hippocampal system in associative learning beyond the spatial domain. Brain, 2003, 126, 1202-1223.	3.7	129
5	Topographical memory impairments after unilateral lesions of the anterior thalamus and contralateral inferotemporal cortex. Neuropsychologia, 2004, 42, 1178-1191.	0.7	14
6	Conditional Motor Learning in the Nonspatial Domain: Effects of Errorless Learning and the Contribution of the Fornix to One-Trial Learning Behavioral Neuroscience, 2005, 119, 662-676.	0.6	18
7	Further analysis of the effects of immunotoxic lesions of the basal nucleus of Meynert reveals substantial impairment on visual discrimination learning in monkeys. Brain Research Bulletin, 2005, 65, 433-442.	1.4	19
8	Comparison of population activity in the dorsal premotor cortex and putamen during the learning of arbitrary visuomotor mappings. Experimental Brain Research, 2006, 169, 69-84.	0.7	43
9	Muscarinic Receptor–Dependent Long-Term Depression in Rat Visual Cortex Is PKC Independent but Requires ERK1/2 Activation and Protein Synthesis. Journal of Neurophysiology, 2007, 98, 1862-1870.	0.9	36
10	Sympathetic sprouting in visual cortex stimulated by cholinergic denervation rescues expression of two forms of long-term depression at layer 2/3 synapses. Neuroscience, 2010, 168, 591-604.	1.1	4
11	The marmoset monkey as a model for visual neuroscience. Neuroscience Research, 2015, 93, 20-46.	1.0	189
12	Scopolamine Induces Deficits in Spontaneous Object-Location Recognition and Fear-Learning in Marmoset Monkeys. Frontiers in Pharmacology, 2017, 8, 395.	1.6	18
13	Multimodal Encoding of Novelty, Reward, and Learning in the Primate Nucleus Basalis of Meynert. Journal of Neuroscience, 2018, 38, 1942-1958.	1.7	10
14	Methods matter: A primer on permanent and reversible interference techniques in animals for investigators of human neuropsychology. Neuropsychologia, 2018, 115, 211-219.	0.7	9
15	The Marmoset as a Model for Visual Neuroscience. , 2019, , 377-413.		4
16	Exploring the Role of Acetylcholine in Primate Cognition Using Me20.4 IgG-Saporin. , 2005, , 101-142.		0