Effect of heating on the electrical resistivity of conducti

Journal of Electronic Materials 31, 933-939 DOI: 10.1007/s11664-002-0186-4

Citation Report

#	Article	IF	CITATIONS
1	A continuous contact resistance monitoring during the temperature ramp of anisotropic conductive adhesive film joint. Journal of Electronic Materials, 2004, 33, 14-21.	1.0	7
2	Thermal and Mechanical stability of electrically conductive adhesive joints. Journal of Electronic Materials, 2005, 34, 625-629.	1.0	13
3	Electrical conductivity changes in bulk Sn, and eutectic Sn-Ag in bulk and in joints, from aging and thermal shock. Journal of Materials Research, 2005, 20, 364-374.	1.2	34
4	Electrically conductive adhesive and soldered joints under compression. Journal of Adhesion Science and Technology, 2005, 19, 1003-1023.	1.4	7
5	Growth and morphology of the intermetallic compounds formed at the Sn–9Zn–2.5Ag/Cu interface. Journal of Alloys and Compounds, 2005, 402, 141-148.	2.8	14
6	Thermal behavior and microstructure of the intermetallic compounds formed at the Sn–3Ag–0.5Cu/Cu interface after soldering and isothermal aging. Journal of Crystal Growth, 2006, 290, 103-110.	0.7	17
7	Properties of Two New Medium Temperature Solders. , 2007, , .		0
8	Hygrothermal Stability of Electrical Contacts Made from Silver and Graphite Electrically Conductive Pastes. Journal of Electronic Materials, 2007, 36, 65-74.	1.0	19
9	Silver Particle Carbon-Matrix Composites as Thick Films for Electrical Applications. Journal of Electronic Materials, 2007, 36, 1188-1192.	1.0	6
10	Electrochemical Properties of Joints Formed Between Sn-9Zn-1.5Ag-1Bi Alloys and Cu Substrates in a 3.5Âwt.% NaCl Solution. Journal of Electronic Materials, 2007, 36, 1531-1535.	1.0	11
11	Effect of Carbon Nanotubes on the Shear Strength and Electrical Resistivity of a Lead-Free Solder. Journal of Electronic Materials, 2008, 37, 515-522.	1.0	103
12	Reinforcements at nanometer length scale and the electrical resistivity of lead-free solders. Journal of Alloys and Compounds, 2009, 478, 458-461.	2.8	51
13	Effect of addition of nano-copper and extrusion temperature on the microstructure and mechanical response of tin. Journal of Alloys and Compounds, 2010, 490, 110-117.	2.8	7
15	Electrical Properties. Engineering Materials and Processes, 2010, , 203-275.	0.2	0
16	Mechanical and electrical properties of nanocomposites containing hybrid fillers of disk-like copper and conductive carbon black. Journal of Materials Science: Materials in Electronics, 2011, 22, 1737-1743.	1.1	2
17	Investigation of temperature dependency of electrical resistance changes for structural management of graphite/polymer composite. Journal of Composite Materials, 2011, 45, 2603-2611.	1.2	41
18	Development of high strength Sn-Mg solder alloys with reasonable ductility. Electronic Materials Letters, 2013, 9, 575-585.	1.0	15
19	Influence of filler concentration on frequency dependence of electrically conductive adhesive joints impedance. , 2013, , .		0

CITATION REPORT

#	Article	IF	CITATIONS
20	Assessment of energy dissipation mechanisms for AT-cut QCM sensors with high frequency impedance analysis and optimization heuristics. Journal of Electroceramics, 2013, 30, 232-250.	0.8	1
21	Development of extremely ductile lead-free Sn-Al solders for futuristic electronic packaging applications. Electronic Materials Letters, 2014, 10, 515-524.	1.0	22
22	Effect of Ag content and the minor alloying element Fe on the electrical resistivity of Sn–Ag–Cu solder alloy. Journal of Alloys and Compounds, 2014, 599, 114-120.	2.8	51
23	Sensitivity of resistance, noise and nonlinearity of conductive adhesive joints to changes in adhesive. , 2016, , .		Ο
24	Thermal aging effects on microstructures and mechanical properties of an environmentally friendly eutectic tin-copper solder alloy. Materials and Design, 2016, 110, 275-283.	3.3	50
25	Research on change of phase transformation temperatures and electrical resistance triggered by heat treatment of alloy from Cu–Mn system. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	2
26	Effect of temperature and alloying elements (Fe and Bi) on the electrical resistivity of Sn–0.7Cu solder alloy. RSC Advances, 2016, 6, 58010-58019.	1.7	20
27	Effect of isothermal aging on microstructure, electrical resistivity and damping properties of Sn–Ag–Cu solder. Journal of Materials Science: Materials in Electronics, 2017, 28, 9363-9370.	1.1	7
28	Thermal aging effects on microstructure, elastic property and damping characteristic of a eutectic Sn–3.5Ag solder. Journal of Materials Science: Materials in Electronics, 2018, 29, 14519-14527.	1.1	9
29	Manufacturing and characterization of Sn–Cu/SiO2np lead-free nanocomposite solder by accumulative roll bonding (ARB) process. Journal of Materials Science: Materials in Electronics, 2022, 33, 13516-13530.	1.1	1
30	Increasing the Pressureâ€Free Stripping Capacity of the Lithium Metal Anode in Solidâ€Stateâ€Batteries by Carbon Nanotubes. Advanced Energy Materials, 2022, 12, .	10.2	21