Electronic applications of flexible graphite

Journal of Electronic Materials 31, 535-544 DOI: 10.1007/s11664-002-0111-x

Citation Report

#	Article	IF	CITATIONS
1	Self-heating structural materials. Smart Materials and Structures, 2004, 13, 562-565.	1.8	104
2	Electromagnetic interference shielding effectiveness of carbon nanofiber/LCP composites. Composites Part A: Applied Science and Manufacturing, 2005, 36, 691-697.	3.8	303
3	Carbon black pastes as coatings for improving thermal gap-filling materials. Carbon, 2006, 44, 435-440.	5.4	70
4	Comparative evaluation of thermal interface materials for improving the thermal contact between an operating computer microprocessor and its heat sink. Journal of Electronic Materials, 2006, 35, 1628-1635.	1.0	36
5	The effect of a CNT interface on the thermal resistance of contacting surfaces. Carbon, 2007, 45, 695-703.	5.4	73
6	Graphite nanoplatelet pastes vs. carbon black pastes as thermal interface materials. Carbon, 2009, 47, 295-305.	5.4	129
7	Graphene sheets from worm-like exfoliated graphite. Journal of Materials Chemistry, 2009, 19, 3367.	6.7	189
8	Foldable Printed Circuit Boards on Paper Substrates. Advanced Functional Materials, 2010, 20, 28-35.	7.8	630
9	Carbon Fibers and Nanofillers. Engineering Materials and Processes, 2010, , 35-46.	0.2	0
11	Flexible graphite modified by carbon black paste for use as a thermal interface material. Carbon, 2011, 49, 1075-1086.	5.4	38
12	Influence of Nanomaterials in Polymer Composites on Thermal Conductivity. Journal of Heat Transfer, 2012, 134, .	1.2	14
13	Performance of Isotropic and Anisotropic Heat Spreaders. Journal of Electronic Materials, 2012, 41, 2580-2587.	1.0	22
14	Dynamic mechanical behavior of flexible graphite made from exfoliated graphite. Carbon, 2012, 50, 283-289.	5.4	30
15	Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon, 2012, 50, 3342-3353.	5.4	507
16	Facile synthesis of few-layer graphene by mild solvent thermal exfoliation of highly oriented pyrolytic graphite. Chemical Engineering Journal, 2013, 231, 1-11.	6.6	21
17	Viscoelastic behavior of the cell wall of exfoliated graphite. Carbon, 2013, 61, 305-312.	5.4	36
18	Electromagnetic Wave Shielding Effectiveness Based on Carbon Microcoil-Polyurethane Composites. Journal of Nanomaterials, 2014, 2014, 1-6.	1.5	12
19	Carbon Coils-Polyurethane Composites for the Shielding Materials of Electromagnetic Interference. Advances in Science and Technology, 0, , .	0.2	0

ATION RED

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
20	Interface-derived extraordinary viscous behavior of exfoliated graphite. Carbon, 2014, 68, 646-652.	5.4	34
21	Solder–Graphite Network Composite Sheets as High-Performance Thermal Interface Materials. Journal of Electronic Materials, 2015, 44, 929-947.	1.0	19
22	Tannin-Based Carbon Foams for Electromagnetic Applications. IEEE Transactions on Electromagnetic Compatibility, 2015, 57, 989-995.	1.4	28
23	Accelerating the graphitization process of polyimide by addition of graphene. Journal of Applied Polymer Science, 2015, 132, .	1.3	12
24	Elastomeric behavior of exfoliated graphite, as shown by instrumented indentation testing. Carbon, 2015, 81, 505-513.	5.4	14
25	A Mössbauer investigation of nano-NiFe alloy/expanded graphite for electromagnetic shielding. Nuclear Science and Techniques/Hewuli, 2016, 27, 1.	1.3	3
26	Heat dissipation properties of polyimide nanocomposite films. Korean Journal of Chemical Engineering, 2016, 33, 3245-3250.	1.2	10
27	Metallic Ni, Cu, and Ag Dispersed on Expanded Graphite for Radiation Shielding. IEEE Transactions on Electromagnetic Compatibility, 2016, 58, 429-433.	1.4	2
28	A review of exfoliated graphite. Journal of Materials Science, 2016, 51, 554-568.	1.7	205
29	Shapeâ€Persistent Graphite Replica of Metal Wires. Advanced Materials, 2017, 29, 1603732.	11.1	2
30	MWCNT Coated Free-Standing Carbon Fiber Fabric for Enhanced Performance in EMI Shielding with a Higher Absolute EMI SE. Materials, 2017, 10, 1350.	1.3	30
31	Aqueous Dispersion of Carbon Fibers and Expanded Graphite Stabilized from the Addition of Cellulose Nanocrystals to Produce Highly Conductive Cellulose Composites. ACS Sustainable Chemistry and Engineering, 2018, 6, 3291-3298.	3.2	33
32	Electret, piezoelectret, dielectricity and piezoresistivity discovered in exfoliated-graphite-based flexible graphite, with applications in mechanical sensing and electric powering. Carbon, 2019, 150, 531-548.	5.4	28
33	Advances in Ceramics for Environmental, Functional, Structural, and Energy Applications II, Ceramic Transactions Volume 266. Ceramic Transactions, 2019, , .	0.1	0
35	Microwave Materials for Defense and Aerospace Applications. , 2020, , 165-213.		3
36	Material properties and structure of natural graphite sheet. Scientific Reports, 2020, 10, 18672.	1.6	31
37	A review on thermophysical properties of flexible graphite. Procedia Structural Integrity, 2020, 26, 187-198.	0.3	11
38	Mechanical properties of flexible graphite: review. Procedia Structural Integrity, 2020, 25, 420-429.	0.3	17

#	Article	IF	CITATIONS
39	Performance Characteristics of Custom Thermocouples for Specialized Applications. Crystals, 2021, 11, 377.	1.0	4
40	Thermal Interface Materials in Electronic Packaging. Springer Series in Advanced Microelectronics, 2011, , 305-371.	0.3	12
41	Composite materials for thermal applications. Engineering Materials and Processes, 2003, , 55-71.	0.2	3
42	Microwave Materials for Defense and Aerospace Applications. , 2019, , 1-48.		1
43	Thermoelectric properties of carbonaceous solids. Carbon Letters, 2016, 19, 107-111.	3.3	2
44	Conductive Elastomer and Flexible Graphite Gaskets. , 2008, , 127-158.		0
45	Nanoindentation of flexible graphite: experimental versus simulation studies. Advanced Material Science, 2018, 3, .	0.3	1
46	Thermoelectric Micro-Scale Generation by Carbonaceous Devices. Energies, 2022, 15, 8105.	1.6	0

CITATION REPORT