CITATION REPORT List of articles citing

Large scale wildlife monitoring studies: statistical methods for design and analysis

DOI: 10.1002/env.514

Environmetrics, 2002, 13, 105-119.

Source: https://exaly.com/paper-pdf/34533910/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
471	ESTIMATING SITE OCCUPANCY RATES WHEN DETECTION PROBABILITIES ARE LESS THAN ONE. 2002 , 83, 2248-2255		2565
470	The use of photographic rates to estimate densities of tigers and other cryptic mammals: a comment on misleading conclusions. 2002 , 5, 119-120		103
469	Count data, detection probabilities, and the demography, dynamics, distribution, and decline of amphibians. 2003 , 326 Suppl 1, S119-24		74
468	POLICY, RESEARCH, AND ADAPTIVE MANAGEMENT IN AVIAN CONSERVATION. Auk, 2003, 120, 212	2.1	11
467	A HIERARCHICAL SPATIAL MODEL OF AVIAN ABUNDANCE WITH APPLICATION TO CERULEAN WARBLERS. 2004 , 14, 1766-1779		99
466	Tigers and their prey: Predicting carnivore densities from prey abundance. 2004, 101, 4854-8		420
465	Lifting Cassandra's Curse. 2004 , 18, 600-600		
464	Letters. 2004 , 18, 601-601		
463	Monitoring programs need to take into account imperfect species detectability. 2004 , 5, 65-73		95
462	ESTIMATING DETECTION PROBABILITY PARAMETERS FOR PLETHODON SALAMANDERS USING THE ROBUST CAPTURE R ECAPTURE DESIGN. <i>Journal of Wildlife Management</i> , 2004 , 68, 1-13	1.9	115
461	The estimation of wildlife ungulate abundance using sample area surveys: an application to Maremma Regional Park. 2004 , 13, 197		2
460	Monitoring the conservation status of an endangered amphibian: the natterjack toad Bufo calamita in Britain. 2004 , 7, 221-228		38
459	ESTIMATING SITE OCCUPANCY AND SPECIES DETECTION PROBABILITY PARAMETERS FOR TERRESTRIAL SALAMANDERS. 2004 , 14, 692-702		227
458	Comparing Population Size Estimators for Plethodontid Salamanders. 2004, 38, 370-380		39
457	SPATIAL AND TEMPORAL VARIATION IN DETECTION PROBABILITY OF PLETHODON SALAMANDERS USING THE ROBUST CAPTURE R ECAPTURE DESIGN. <i>Journal of Wildlife Management</i> , 2004 , 68, 14-24	1.9	71
456	Data quality in monitoring plant species richness in Switzerland. 2004 , 5, 135-143		26
455	Improving the efficiency of wildlife monitoring by estimating detectability: a case study of foxes (Vulpes vulpes) on the Eyre Peninsula, South Australia. 2005 , 32, 253		31

(2006-2005)

454	Designing occupancy studies: general advice and allocating survey effort. 2005 , 42, 1105-1114		809
453	Estimating species richness: calibrating a large avian monitoring programme. 2005 , 43, 101-110		63
452	Selecting a distributional assumption for modelling relative densities of benthic macroinvertebrates. 2005 , 185, 1-12		42
451	RELATIVE IMPORTANCE OF POPULATION PROCESSES AND HABITAT CHARACTERISTICS IN DETERMINING SITE OCCUPANCY OF TWO ANURANS. <i>Journal of Wildlife Management</i> , 2005 , 69, 884-893 ¹	.9	35
450	ESTIMATING AND DEALING WITH DETECTABILITY IN OCCUPANCY SURVEYS FOR FOREST OWLS AND ARBOREAL MARSUPIALS. <i>Journal of Wildlife Management</i> , 2005 , 69, 905-917	.9	126
449	PELLET COUNT INDICES COMPARED TO MARK R ECAPTURE ESTIMATES FOR EVALUATING SNOWSHOE HARE DENSITY. <i>Journal of Wildlife Management</i> , 2005 , 69, 1053-1062	.9	50
448	Monitoring the distribution of pond-breeding amphibians when species are detected imperfectly. 2005 , 15, 681-692		52
447	Effect of observer experience on the monitoring of a mouflon population. 2005, 50, 109-114		15
446	Monitoring the abundance of mouflon in South France. 2005 , 51, 69-76		16
445	GARTER SNAKE POPULATION DYNAMICS FROM A 16-YEAR STUDY: CONSIDERATIONS FOR ECOLOGICAL MONITORING. 2005 , 15, 294-303		32
444	Estimating the Sizes of Large Gull Colonies Taking into Account Nest Detection Probability. 2005 , 28, 53-60		7
443	IMPROVING INFERENCES IN POPULATION STUDIES OF RARE SPECIES THAT ARE DETECTED IMPERFECTLY. 2005 , 86, 1101-1113		267
442	Monitoring distributions using call surveys: estimating site occupancy, detection probabilities and inferring absence. 2005 , 123, 27-35		146
441	Monitoring change in biodiversity through composite indices. 2005 , 360, 243-54		244
440	OPTIMIZING ALLOCATION OF MONITORING EFFORT UNDER ECONOMIC AND OBSERVATIONAL CONSTRAINTS. <i>Journal of Wildlife Management</i> , 2005 , 69, 473-482	.9	185
439	MODELING AVIAN ABUNDANCE FROM REPLICATED COUNTS USING BINOMIAL MIXTURE MODELS. 2005 , 15, 1450-1461		208
438	Assessing spatial coupling in complex population dynamics using mutual prediction and continuity statistics. 2005 , 67, 9-21		8
437	Point-Transect Surveys for Songbirds: Robust Methodologies. <i>Auk</i> , 2006 , 123, 345	.1	136

436	MONITORING LOW DENSITY AVIAN POPULATIONS: AN EXAMPLE USING MOUNTAIN PLOVERS. Condor, 2006 , 108, 700	2.1	7
435	Comparison of breeding bird and vegetation communities in primary and secondary forests of Great Smoky Mountains National Park. 2006 , 129, 302-311		19
434	Point-Transect Surveys for Songbirds: Robust Methodologies. <i>Auk</i> , 2006 , 123, 345-357	2.1	160
433	Are Point Counts of Boreal Songbirds Reliable Proxies for More Intensive Abundance Estimators?. <i>Auk</i> , 2006 , 123, 438-454	2.1	42
432	Monitoring Low Density Avian Populations: An Example Using Mountain Plovers. <i>Condor</i> , 2006 , 108, 700	<i>-</i> ∄ . 0 6	8
431	Assessing detection probabilities for the endangered growling grass frog (Litoria raniformis) in southern Victoria. 2006 , 33, 557		32
430	How biased are estimates of extinction probability in revisitation studies?. 2006 , 94, 980-986		62
429	Monitoring of biodiversity indicators in boreal forests: a need for improved focus. 2006 , 121, 263-73		11
428	Developing and Applying Habitat Models Using Forest Inventory Data: An Example Using a Terrestrial Salamander. <i>Journal of Wildlife Management</i> , 2006 , 70, 671-681	1.9	18
427	Should managed populations be monitored every year?. 2006 , 16, 807-19		71
426	ARE POINT COUNTS OF BOREAL SONGBIRDS RELIABLE PROXIES FOR MORE INTENSIVE ABUNDANCE ESTIMATORS?. <i>Auk</i> , 2006 , 123, 438	2.1	25
425	How reliable are total counts to detect trends in population size of chamois Rupicapra rupicapra and R. pyrenaica?. <i>Wildlife Biology</i> , 2006 , 12, 77-88	1.7	30
424	Species richness estimation and determinants of species detectability in butterfly monitoring programmes. 2007 , 32, 53-61		67
423	Strategies for Modeling Habitat Relationships of Uncommon Species: An Example Using the Siskiyou Mountains Salamander (Plethodon stormi). 2007 , 81, 15-36		8
422	Adaptive roadside sampling for bark beetle damage assessment. 2007 , 253, 177-187		14
421	Quantifying off-highway vehicle impacts on density and survival of a threatened dune-endemic plant. 2007 , 135, 119-134		42
420	Habitat selection by the common wombat (Vombatus ursinus) in disturbed environments: Implications for the conservation of a Bommon pecies. 2007 , 137, 437-449		37
419	Making Great Leaps Forward: Accounting for Detectability in Herpetological Field Studies. 2007 , 41, 672	-689	197

(2008-2007)

418	A method for estimating insect abundance and patch occupancy with potential applications in large-scale monitoring programmes. 2007 , 15, 89-101	8
417	Effects of sample standardization on mean species detectabilities and estimates of relative differences in species richness among assemblages. 2007 , 170, 381-95	37
416	Building EDENs: The Rise of Environmentally Distributed Ecological Networks. 2007, 57, 45-54	19
415	Sampling design trade-offs in occupancy studies with imperfect detection: examples and software. 2007 , 17, 281-90	163
414	Experimental Analysis of The Auditory Detection Process on Avian Point Counts. <i>Auk</i> , 2007 , 124, 986 2.1	107
413	Experimental Analysis of The Auditory Detection Process on Avian Point Counts. <i>Auk</i> , 2007 , 124, 986-99 9 .1	140
412	Making monitoring meaningful. 2007 , 32, 485-491	149
411	Spatial dynamics of an invasive bird species assessed using robust design occupancy analysis: the case of the Eurasian collared dove (Streptopelia decaocto) in France. 2007 , 34, 1077-1086	41
410	Using modeling to improve monitoring of structured populations: are we collecting the right data?. 2007 , 21, 241-52	29
409	Using regional wildlife surveys to assess the CRP: scale and data-quality issues. 2007, 78, 140-151	9
408	Detectability and Response Rates of Ferruginous Pygmy-Owls. <i>Journal of Wildlife Management</i> , 2007 , 71, 981-990	15
407	Aerial Surveys for Estimating Wild Turkey Abundance in the Texas Rolling Plains. <i>Journal of Wildlife Management</i> , 2007 , 71, 1639-1645	13
406	Assessing Impacts of Wind-Energy Development on Nocturnally Active Birds and Bats: A Guidance Document. <i>Journal of Wildlife Management</i> , 2007 , 71, 2449-2486	162
405	Distance sampling as an effective method for monitoring feral pigeon (Columba livia f. domestica) urban populations. 2007 , 10, 397-412	16
404	Robustness and uncertainty in estimates of butterfly abundance from transect counts. 2007 , 49, 191-200	24
403	Butterfly monitoring in Europe: methods, applications and perspectives. 2008 , 17, 3455-3469	166
402	Estimating wild boar (Sus scrofa) abundance and density using capturellesights in Canton of Geneva, Switzerland. 2008 , 54, 391-401	47
401	Determining optimal population monitoring for rare butterflies. 2008 , 22, 929-40	51

400	Negative density Brea relationships: the importance of the zeros. 2008 , 17, 203-210		16
399	Estimating animal density using camera traps without the need for individual recognition. 2008 , 45, 122	8-123	5417
398	Foot Surveys of Large Mammals in Woodlands of Western Tanzania. <i>Journal of Wildlife Management</i> , 2008 , 72, 603-610	1.9	35
397	In Defense of Indices: The Case of Bird Surveys. <i>Journal of Wildlife Management</i> , 2008 , 72, 857-868	1.9	251
396	Factors Affecting Detection of Burrowing Owl Nests During Standardized Surveys. <i>Journal of Wildlife Management</i> , 2008 , 72, 688-696	1.9	23
395	Assessing Landbird Monitoring Programs and Demographic Causes of Population Trends. <i>Journal of Wildlife Management</i> , 2008 , 72, 1665-1673	1.9	41
394	On the analysis of monitoring data: Testing for no trend in population size. 2008 , 16, 157-163		6
393	Detection of Wood Frog Egg Masses and Implications for Monitoring Amphibian Populations. 2008 , 2008, 669-672		7
392	Stock structure and seasonal distribution patterns of American lobster, Homarus americanus, inferred through movement analyses. <i>Fisheries Research</i> , 2008 , 90, 279-288	2.3	7
391	Butterfly Monitoring Methods: The ideal and the Real World. 2008 , 54, 69-88		50
390	Factors Affecting Bottom Trawl Catches: Implications for Monitoring the Fishes of Lake Superior. <i>North American Journal of Fisheries Management</i> , 2008 , 28, 109-122	1.1	31
389	ESTIMATING ABUNDANCE FROM BIRD COUNTS: BINOMIAL MIXTURE MODELS UNCOVER COMPLEX COVARIATE RELATIONSHIPS. <i>Auk</i> , 2008 , 125, 336-345	2.1	68
	COM LEACO VARIATE RELEATIONS IN S. Man, 2000, 125, 550 5 15		
388	Biotelemetry and biologging in endangered species research and animal conservation: relevance to regional, national, and IUCN Red List threat assessments. <i>Endangered Species Research</i> , 2008 , 4, 165-185	5 ^{2.5}	201
388 387	Biotelemetry and biologging in endangered species research and animal conservation: relevance to	5 ^{2.5}	201
	Biotelemetry and biologging in endangered species research and animal conservation: relevance to regional, national, and IUCN Red List threat assessments. <i>Endangered Species Research</i> , 2008 , 4, 165-185 Evaluation of Predicted Fish Distribution Models for Rare Fish Species in South Dakota. <i>North</i>		
387	Biotelemetry and biologging in endangered species research and animal conservation: relevance to regional, national, and IUCN Red List threat assessments. <i>Endangered Species Research</i> , 2008 , 4, 165-185 Evaluation of Predicted Fish Distribution Models for Rare Fish Species in South Dakota. <i>North American Journal of Fisheries Management</i> , 2008 , 28, 1259-1269	1.1	8
387 386	Biotelemetry and biologging in endangered species research and animal conservation: relevance to regional, national, and IUCN Red List threat assessments. <i>Endangered Species Research</i> , 2008 , 4, 165-185 Evaluation of Predicted Fish Distribution Models for Rare Fish Species in South Dakota. <i>North American Journal of Fisheries Management</i> , 2008 , 28, 1259-1269 Can ground counts reliably monitor ibex Capra ibex populations. <i>Wildlife Biology</i> , 2008 , 14, 489-499	1.1	8

(2010-2009)

382	Double-Observer Approachincorporaci de la Detectabilidad en los Anlisis de Tendencias Poblacionales que se Basan en Conteos de Halcones: Una Aproximaci de Observador Doble.	18
381	Condor, 2009, 111, 43-58 Modeling abundance using N-mixture models: the importance of considering ecological mechanisms. 2009, 19, 631-42	96
380	Evaluating Methods for Counting Cryptic Carnivores. <i>Journal of Wildlife Management</i> , 2009 , 73, 433-441 1.9	152
379	Seals at sea: modelling seal distribution in the German bight based on aerial survey data. 2009 , 156, 811-820	17
378	Long-term effects of experimental forest harvesting on abundance and reproductive demography of terrestrial salamanders. 2009 , 142, 110-121	72
377	Inferences About Landbird Abundance from Count Data: Recent Advances and Future Directions. 2009 , 201-235	73
376	An inventory of mammalian pests in a New Zealand city. 2009 , 36, 23-33	17
375	Efficacy of Sampling Techniques for Determining Species Richness Estimates of Reptiles and Amphibians. <i>Wildlife Biology</i> , 2009 , 15, 113-122	14
374	Modeling Demographic Processes In Marked Populations. 2009,	29
373	Geographic Approaches to Biodiversity Conservation. 2009 , 85-121	4
372	Comparison of methods to detect rare and cryptic species: a case study using the red fox (Vulpes vulpes). 2009 , 36, 436	82
371	Explaining long-distance dispersal: effects of dispersal distance on survival and growth in a stream salamander. 2010 , 91, 3008-15	24
370	Estimating the population size of a threatened arboreal marsupial: use of distance sampling to dispense with ad hoc survey techniques. 2010 , 37, 512	5
369	Long-term monitoring of black turtles Chelonia mydas at coastal foraging areas off the Baja California Peninsula. <i>Endangered Species Research</i> , 2010 , 11, 35-45	31
368	The influence of environmental variables on capybara (Hydrochoerus hydrochaeris: Rodentia, Hydrochoeridae) detectability in anthropogenic environments of southeastern Brazil. 2010 , 52, 263-270	11
367	On the efficiency of using song playback during call count surveys of Red-legged partridges (Alectoris rufa). 2010 , 56, 907-913	16
366	Evaluation of Bear Rub Surveys to Monitor Grizzly Bear Population Trends. <i>Journal of Wildlife Management</i> , 2010 , 74, 860-870	55
365	The Wildlife Picture Index: monitoring top trophic levels. 2010 , 13, 335-343	86

364	Age and sex specific timing, frequency, and spatial distribution of horseshoe crab spawning in Delaware Bay: Insights from a large-scale radio telemetry array. 2010 , 56, 563-574		31
363	Scientific and Cost Effective Monitoring: The Case of an Aerial Insectivore, the Chimney Swift. 2010 , 5,		
362	Are abundance indices derived from spotlight counts reliable to monitor red deer Cervus elaphus populations?. <i>Wildlife Biology</i> , 2010 , 16, 77-84	1.7	44
361	Ecology of juvenile Northern watersnakes (Nerodia sipedon) inhabiting low-order streams. 2010 , 31, 169-174		4
360	Application of Detection Probabilities to the Design of Amphibian Monitoring Programs in Temporary Ponds. 2010 , 47, 306-322		7
359	A comparison of the effectiveness of camera trapping and live trapping for sampling terrestrial small-mammal communities. 2010 , 37, 456		148
358	Monitoring Golden-Cheeked Warblers on Private Lands in Texas. <i>Journal of Wildlife Management</i> , 2010 , 74, 140-147	1.9	24
357	Long-term monitoring of tropical bats for anthropogenic impact assessment: Gauging the statistical power to detect population change. 2010 , 143, 2797-2807		49
356	Estimating population size using captureflecapture encounter histories created from point-coordinate locations of animals. 2010 , 1, 389-397		11
355	Estimates of Density, Detection Probability, and Factors Influencing Detection of Burrowing Owls in the Mojave Desert. <i>Journal of Raptor Research</i> , 2010 , 44, 1-11	0.9	9
354	Detection Probability of Cliff-Nesting Raptors During Helicopter and Fixed-Wing Aircraft Surveys in Western Alaska. <i>Journal of Raptor Research</i> , 2010 , 44, 175-187	0.9	16
353	Investigation into survey techniques of large mammals: surveyor competence and camera-trapping vs. transect-sampling. 2011 , 4, 40-49		25
352	Population size influences amphibian detection probability: implications for biodiversity monitoring programs. <i>PLoS ONE</i> , 2011 , 6, e28244	3.7	45
351	An evaluation of field techniques for monitoring terrestrial mammal populations in Amazonia. 2011 , 76, 401-408		32
350	Camera Traps in Animal Ecology. 2011 ,		307
349	Can the abundance of tigers be assessed from their signs?. 2011 , 48, 14-24		52
348	Accounting for detectability improves estimates of species richness in tropical bat surveys. 2011 , 48, 777-787		61
347	A field test of the distance sampling method using Golden-cheeked Warblers. 2011 , 82, 311-319		11

346	Using simulation to explore the functional relationships of terrestrial carnivore population indices. 2011 , 222, 2761-2769		10	
345	Ecological and methodological factors affecting detectability and population estimation in elusive species. <i>Journal of Wildlife Management</i> , 2011 , 75, 36-45	1.9	36	
344	Monitoring the mission blue butterfly using immature stages. 2011 , 15, 765-773		7	
343	Estimating demographic parameters for loggerhead sea turtles using markflecapture data and a multistate model. 2011 , 53, 165-174		17	
342	Forestcheck: terrestrial vertebrate associations with fox control and silviculture in jarrah (Eucalyptus marginata) forest. 2011 , 74, 336-349		12	
341	Abundance, Density and Relative Abundance: A Conceptual Framework. 2011 , 71-96		52	
340	Northern Goshawk Monitoring In the Western Great Lakes Bioregion. <i>Journal of Raptor Research</i> , 2011 , 45, 290-303	0.9	3	
339	Counting India's wild tigers reliably. 2011 , 332, 791		26	
338	Using virtual simulation in a geographic information system to optimize abundance survey designs when logistic and biological conditions are constrained. 2012 , 36, 784-795		1	
337	Safety in numbers? Supplanting data quality with fanciful models in wildlife monitoring and conservation. 2012 , 21, 3269-3276		15	
336	Empirical and simulation evaluations of an abundance estimator using unmarked individuals of cryptic forest-dwelling taxa. 2012 , 286, 129-136		8	
335	Population Survey of Leach's Storm-Petrels Breeding at Grand Colombier Island, Saint-Pierre and Miquelon Archipelago. <i>Wilson Journal of Ornithology</i> , 2012 , 124, 245-252	0.4	6	
334	Large-scale monitoring of shorebird populations using count data andN-mixture models: Black Oystercatcher (Haematopus bachmani) surveys by land and sea. <i>Auk</i> , 2012 , 129, 645-652	2.1	12	
333	Efficient species-level monitoring at the landscape scale. 2012 , 26, 432-41		83	
332	Critical evaluation of a long-term, locally-based wildlife monitoring program in West Africa. 2012 , 21, 3079-3094		31	
331	Non-human predator interactions with wild great apes in Africa and the use of camera traps to study their dynamics. 2012 , 83, 312-28		13	
330	Monitoring for Reintroductions. 2012 , 223-255		30	
329	Dealing with varying detection probability, unequal sample sizes and clumped distributions in count data. <i>PLoS ONE</i> , 2012 , 7, e40923	3.7	30	

328 References. 509-552

327	A sightability model for correcting visibility and availability biases in standardized surveys of breeding burrowing owls in southwest agroecosystem environments. <i>Journal of Wildlife Management</i> , 2012 , 76, 65-74	1.9	3
326	Hierarchical multi-scale occupancy estimation for monitoring wildlife populations. <i>Journal of Wildlife Management</i> , 2012 , 76, 154-162	1.9	48
325	Estimating breeding season abundance of golden-cheeked warblers in Texas, USA. <i>Journal of Wildlife Management</i> , 2012 , 76, 1117-1128	1.9	18
324	A comparison of methods for estimating raccoon abundance: Implications for disease vaccination programs. <i>Journal of Wildlife Management</i> , 2012 , 76, 1290-1297	1.9	15
323	Nocturnal line transect sampling of wild boar (Sus scrofa) in a Mediterranean forest: long-term comparison with captureharklesight population estimates. 2012 , 58, 385-402		31
322	Occupancy, colonization and extinction patterns of rabbit populations: implications for Iberian lynx conservation. 2012 , 58, 523-533		9
321	Decomposing the heterogeneity of species distributions into multiple scales: a hierarchical framework for large-scale count surveys. 2012 , 35, 839-854		4
320	When can we ignore the problem of imperfect detection in comparative studies?. 2012 , 3, 188-194		57
319	Can natural selection maintain long-distance dispersal? Insight from a stream salamander system. 2012 , 26, 11-24		22
318	Morphometric Analysis ofOryctes rhinoceros(L.) (Coleoptera: Scarabaeidae) from Oil Palm Plantations. 2013 , 67, 194-200		3
317	Site occupancy models in the analysis of environmental DNA presence/absence surveys: a case study of an emerging amphibian pathogen. 2013 , 4, 646-653		181
316	Conservation Assessments of Arboreal Mammals in Difficult Terrain: Occupancy Modeling of Pileated Gibbons (Hylobates pileatus). 2013 , 34, 823-835		49
315	New methods and technologies for regional-scale abundance estimation of land-breeding marine animals: application to Adlie penguin populations in East Antarctica. 2013 , 36, 843-856		28
314	Calibrating indices of avian density from non-standardized survey data: making the most of a messy situation. 2013 , 4, 1047-1058		65
313	Human - Wildlife Conflicts in Europe. Environmental Science and Engineering, 2013,	0.2	14
312	Reducing the uncertainty of wildlife population abundance: model-based versus design-based estimates. <i>Environmetrics</i> , 2013 , 24, 476-488	1.3	4
311	Intraguild relationships between sympatric predators exposed to lethal control: predator manipulation experiments. 2013 , 10, 39		38

310	When a trap is not a trap: converging entry and exit rates and their effect on trap saturation of black sea bass (Centropristis striata). 2013 , 70, 873-882		18
309	Modeling the effects of life-history traits on estimation of population parameters for a cryptic stream species. 2013 , 32, 116-125		8
308	Bioregional monitoring design and occupancy estimation for two Sierra Nevadan amphibian taxa. 2013 , 32, 675-691		5
307	Influence of Water Conductivity on Amphibian Occupancy in the Greater Yellowstone Ecosystem. Western North American Naturalist, 2013 , 73, 184-197	0.4	9
306	A Case Study of Urban and Peri-urban Mammal Communities: Implications for the Management of National Park Service Areas. 2013 , 20, 631-654		10
305	Effects of Repeated-Stand Entries on Terrestrial Salamanders and their Habitat. 2013 , 12, 353-366		9
304	Calibration of a burrow count index for the Indian desert jird, Meriones hurrianae. 2013, 55, 241-245		3
303	Evidence-based assessment of butterfly habitat restoration to enhance management practices. 2013 , 22, 239-252		8
302	Accounting for incomplete detection: What are we estimating and how might it affect long-term passerine monitoring programs?. 2013 , 160, 130-139		48
301	Risky business or simple solution [Relative abundance indices from camera-trapping. 2013, 159, 405-412	2	162
300	Risky business or simple solution [Relative abundance indices from camera-trapping. 2013, 159, 405-412] Estimating abundance and population trends when detection is low and highly variable: A comparison of three methods for the Hermann's tortoise. <i>Journal of Wildlife Management</i> , 2013, 77, 454-462	1.9	162 45
Ĭ	Estimating abundance and population trends when detection is low and highly variable: A comparison of three methods for the Hermann's tortoise. <i>Journal of Wildlife Management</i> , 2013 ,		
300	Estimating abundance and population trends when detection is low and highly variable: A comparison of three methods for the Hermann's tortoise. <i>Journal of Wildlife Management</i> , 2013 , 77, 454-462		45
300	Estimating abundance and population trends when detection is low and highly variable: A comparison of three methods for the Hermann's tortoise. <i>Journal of Wildlife Management</i> , 2013 , 77, 454-462 The Wildlife Picture Index: A Biodiversity Indicator for Top Trophic Levels. 2013 , 45-70 Catchability model selection for estimating the composition of fishes and invertebrates within	1.9	45
300 299 298	Estimating abundance and population trends when detection is low and highly variable: A comparison of three methods for the Hermann's tortoise. <i>Journal of Wildlife Management</i> , 2013 , 77, 454-462 The Wildlife Picture Index: A Biodiversity Indicator for Top Trophic Levels. 2013 , 45-70 Catchability model selection for estimating the composition of fishes and invertebrates within dynamic aquatic ecosystems. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2013 , 70, 381-392	1.9	45 4 14
300 299 298 297	Estimating abundance and population trends when detection is low and highly variable: A comparison of three methods for the Hermann's tortoise. <i>Journal of Wildlife Management</i> , 2013 , 77, 454-462 The Wildlife Picture Index: A Biodiversity Indicator for Top Trophic Levels. 2013 , 45-70 Catchability model selection for estimating the composition of fishes and invertebrates within dynamic aquatic ecosystems. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2013 , 70, 381-392 Effects of oil-palm plantations on diversity of tropical anurans. 2013 , 27, 615-24 As clear as mud: A critical review of evidence for the ecological roles of Australian dingoes. 2013 ,	1.9	45 4 14 41
300 299 298 297 296	Estimating abundance and population trends when detection is low and highly variable: A comparison of three methods for the Hermann's tortoise. <i>Journal of Wildlife Management</i> , 2013 , 77, 454-462 The Wildlife Picture Index: A Biodiversity Indicator for Top Trophic Levels. 2013 , 45-70 Catchability model selection for estimating the composition of fishes and invertebrates within dynamic aquatic ecosystems. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2013 , 70, 381-392 Effects of oil-palm plantations on diversity of tropical anurans. 2013 , 27, 615-24 As clear as mud: A critical review of evidence for the ecological roles of Australian dingoes. 2013 , 159, 158-174 Spotlight surveys for white-tailed deer: Monitoring panacea or exercise in futility?. <i>Journal of</i>	2.4	45 4 14 41 69

292	Nest and breeding population abundance of Least Terns: assessing bias and variation in survey timing and methods. 2013 , 84, 287-298		3
291	Annual male lek attendance influences count-based population indices of greater sage-grouse. Journal of Wildlife Management, 2013 , 77, 1583-1592	1.9	36
29 0	Toward a non-invasive inuit polar bear survey: Genetic data from polar bear hair snags. 2013 , 37, 394-40)1	7
289	Importance of getting the numbers right: quantifying the rapid and substantial decline of an abundant marsupial, Bettongia penicillata. 2013 , 40, 169		50
288	Recommendations for monitoring avian populations with point counts: a case study in southeastern Brazil. 2013 ,		
287	Accounting for imperfect detection in ecology: a quantitative review. <i>PLoS ONE</i> , 2014 , 9, e111436	3.7	140
286	Movement patterns and space use of maternal grizzly bears influence cub survival in Interior Alaska. 2014 , 25, 121-138		38
285	Commonness of not-so-common birds: the need for baseline knowledge of actual population size for the validation of population size predictions. <i>Bird Study</i> , 2014 , 61, 351-360	0.7	7
284	Accounting for variation in species detection in fish community monitoring. 2014 , 21, 96-112		15
283	Riparian disturbance restricts in-stream movement of salamanders. 2014 , 59, 2354-2364		17
282	Distribution models for koalas in South Australia using citizen science-collected data. 2014 , 4, 2103-14		44
281	Aerial vertical-looking infrared imagery to evaluate bias of distance sampling techniques for white-tailed deer. 2014 , 38, 419-427		13
2 80	Occupancy models for monitoring marine fish: a bayesian hierarchical approach to model imperfect detection with a novel gear combination. <i>PLoS ONE</i> , 2014 , 9, e108302	3.7	26
279	Monitoring for Threshold-Dependent Decisions. 2014 , 87-100		2
278	Rapid assessment of wildlife abundance: estimating animal density with track counts using body massday range scaling rules. 2014 , 17, 486-497		21
277	Application of Threshold Concepts in Natural Resource Decision Making. 2014 ,		9
276	The short-term effects of a routine poisoning campaign on the movements and detectability of a social top-predator. 2014 , 21, 2178-2190		29
275	Coping with heterogeneity to detect species on a large scale: N-mixture modeling applied to red-legged partridge abundance. <i>Journal of Wildlife Management</i> , 2014 , 78, 540-549	1.9	9

(2015-2014)

population with catchability depending on environmental conditions. Application to tick abundance. 2014 , 274, 72-79		8	
Reviving common standards in point-count surveys for broad inference across studiesRelancer les normes communes dans les inventaires par points d'Eoute pour une vaste infEence dans les EudesReviving common standards for point-count surveys. <i>Condor</i> , 2014 , 116, 599-608	2.1	52	
Evaluation of three field monitoring-density estimation protocols and their relevance to Komodo dragon conservation. 2014 , 23, 2473-2490		17	
Spatial replicates as an alternative to temporal replicates for occupancy modelling when surveys are based on linear features of the landscape. 2014 , 51, 1425-1433		18	
Detection probability of least tern and piping plover chicks in a large river system. <i>Journal of Wildlife Management</i> , 2014 , 78, 709-720	1.9	8	
Full Issue. Condor, 2014 , 116, iii-iii	2.1		
Variable effect of playback of chickadee mobbing calls on detection probability of boreal forest birds. 2015 , 86, 51-64		6	
Monitoring populations of a guild of ungulates: implications for the conservation of a relict Mediterranean forest. 2015 , 26, 535-544		4	
Nesting Pair Density and Abundance of Ferruginous Hawks (Buteo regalis) and Golden Eagles (Aquila chrysaetos) from Aerial Surveys in Wyoming. <i>Journal of Raptor Research</i> , 2015 , 49, 400-412	0.9	9	
Primates decline rapidly in unprotected forests: evidence from a monitoring program with data constraints. <i>PLoS ONE</i> , 2015 , 10, e0118330	3.7	27	
Temporally adaptive sampling: a case study in rare species survey design with marbled salamanders (Ambystoma opacum). <i>PLoS ONE</i> , 2015 , 10, e0120714	3.7	3	
Re-constructing historical Adlie penguin abundance estimates by retrospectively accounting for detection bias. <i>PLoS ONE</i> , 2015 , 10, e0123540	3.7	6	
Partitioning detectability components in populations subject to within-season temporary emigration using binomial mixture models. <i>PLoS ONE</i> , 2015 , 10, e0117216	3.7	13	
Citizen science based monitoring of Greylag goose (Anser anser) in Bavaria (Germany): combining count data and bag data to estimate long-term trends between 1988/89 and 2010/11. <i>PLoS ONE</i> , 2015 , 10, e0130159	3.7	6	
Reliable monitoring of elephant populations in the forests of India: Analytical and practical considerations. 2015 , 187, 212-220		22	
Life History and Demographic Characteristics of the Magdalena River Turtle (Podocnemis lewyana): Implications for Management. 2015 , 103, 1058-1074		10	
Combining survey methods to estimate abundance and transience of migratory birds among tropical nonbreeding habitats. <i>Auk</i> , 2015 , 132, 926-937	2.1	10	
An examination of index-calibration experiments: counting tigers at macroecological scales. 2015 , 6, 1055-1066		40	
	population with catchability depending on environmental conditions. Application to tick abundance. 2014, 274, 72-79 Reviving common standards in point-count surveys for broad inference across studiesRelancer les normes communes dans les inventaires par points d'boute pour une vaste inflètence dans les BudesReviving common standards for point-count surveys. Condor, 2014, 116, 599-608 Evaluation of three field monitoring-density estimation protocols and their relevance to Komodo dragon conservation. 2014, 23, 2473-2490 Spatial replicates as an alternative to temporal replicates for occupancy modelling when surveys are based on linear features of the landscape. 2014, 51, 1425-1433 Detection probability of least tern and piping plover chicks in a large river system. Journal of Wildlife Management, 2014, 78, 709-720 Full Issue. Condor, 2014, 116, iii-iii Variable effect of playback of chickadee mobbing calls on detection probability of boreal forest birds. 2015, 86, 51-64 Monitoring populations of a guild of ungulates: implications for the conservation of a relict Mediterranean forest. 2015, 26, 535-544 Nesting Pair Density and Abundance of Ferruginous Hawks (Buteo regalis) and Golden Eagles (Aquila chrysaetos) from Aerial Surveys in Wyoming. Journal of Raptor Research, 2015, 49, 400-412 Primates decline rapidly in unprotected forests: evidence from a monitoring program with data constraints. PLoS ONE, 2015, 10, e0118330 Temporally adaptive sampling: a case study in rare species survey design with marbled salamanders (Ambystoma opacum). PLoS ONE, 2015, 10, e0123540 Partitioning detectability components in populations subject to within-season temporary emigration using binomial mixture models. PLoS ONE, 2015, 10, e0117216 Clitizen science based monitoring of Greylag goose (Anser anser) in Bavaria (Germany): combining count data and bag data to estimate long-term trends between 1988/89 and 2010/11. PLoS ONE, 2015, 10, e0130159 Reliable monitoring of elephant populations in the forests of India: Analytical a	population with catchability depending on environmental conditions. Application to tick abundance. 2014, 274, 72-79. Reviving common standards in point-count surveys for broad inference across studiesRelancer les normes communes dans les inventaires par points (bute pour une waste inflænce dans les inventaires par points (bute pour une waste inflænce dans les inventaires par points (bute pour une waste inflænce dans les inventaires par points (bute pour une waste inflænce dans les inventaires par points (bute pour une waste inflænce dans les butens pour dans particular points of the condition of three field monitoring-density estimation protocols and their relevance to Komodo dragon conservation. 2014, 23, 2473-2490 Spatial replicates as an alternative to temporal replicates for occupancy modelling when surveys are based on linear features of the landscape. 2014, 51, 1425-1433 Detection probability of least tern and piping plover chicks in a large river system. Journal of willdlife Management, 2014, 78, 709-720 Full Issue. Condor. 2014, 116, iii-iii 2.1 Variable effect of playback of chickadee mobbing calls on detection probability of boreal forest birds. 2015, 86, 51-64 Monitoring populations of a guild of ungulates: implications for the conservation of a relict Mediterranean forest. 2015, 26, 535-544 Nesting Pair Density and Abundance of Ferruginous Hawks (Buteo regalis) and Golden Eagles (Aquila chrysaetos) from Aerial Surveys in Wyoming. Journal of Raptor Research, 2015, 49, 400-412 Primates decline rapidly in unprotected forests: evidence from a monitoring program with data constraints. PLoS ONE, 2015, 10, e0118330 37 Temporally adaptive sampling: a case study in rare species survey design with marbled salamanders (Ambystoma opacum). PLoS ONE, 2015, 10, e0120714 Re-constructing historical Adlle penguin abundance estimates by retrospectively accounting for detection bias. PLoS ONE, 2015, 10, e0122714 Re-constructing historical Adlle penguin abundance estimates by retrospectively accounting for	population with catchability depending on environmental conditions. Application to tick abundance. 2014, 274, 72-79. Reviving common standards in point-count surveys for broad inference across studiesRelancer les normes communes dans les inventaires par points of Boute pour une vaste inflênce dans les BudesReviving common standards for point-count surveys. Condio, 2014, 116, 599-608 Evaluation of three field monitoring-density estimation protocols and their relevance to Komodo dragon conservation. 2014, 23, 2473-2490 Spatial replicates as an alternative to temporal replicates for occupancy modelling when surveys are based on linear features of the landscape. 2014, 51, 1425-1433 Detection probability of least tern and piping plover chicks in a large river system. Journal of Wildlife Management, 2014, 78, 709-720 Full Issue. Condor, 2014, 116, III-III Variable effect of playback of chickadee mobbing calls on detection probability of boreal forest birds. 2015, 86, 51-64 Monitoring populations of a guild of ungulates: implications for the conservation of a relict Mediterranean forest. 2015, 26, 539-544 Nesting Pair Density and Abundance of Ferruginous Hawks (Buteo regalis) and Golden Eagles (Aquila chrysaetos) from Aerial Surveys in Wyoming. Journal of Raptor Research, 2015, 49, 400-412 Primates decline rapidly in unprotected forests: evidence from a monitoring program with data constraints. PLoS ONE, 2015, 10, e0123014 Re-constructing historical Adile penguin abundance estimates by retrospectively accounting for detection bias. PLoS ONE, 2015, 10, e0123015 Partitioning detectability components in populations subject to within-season temporary emigration using binomial mixture models. PLoS ONE, 2015, 10, e0122074 Partitioning detectability components in populations subject to within-season temporary emigration using binomial mixture models. PLoS ONE, 2015, 10, e0123019 Reliable monitoring of elephant populations in the forests of India: Analytical and practical considerations. 2015, 1187, 212-220 Life

256	The use of block counts, mark-resight and distance sampling to estimate population size of a mountain-dwelling ungulate. 2015 , 57, 409-419		24
255	Timing of spring surveys for midcontinent sandhill cranes. 2015 , 39, 87-93		7
254	Synthesising the effects of land use on natural and managed landscapes. 2015 , 526, 136-52		6
253	Sampling animal sign in heterogeneous environments: How much is enough?. 2015 , 119, 51-55		3
252	Cost-effective nocturnal distance sampling for landscape monitoring of ungulate populations. 2015 , 61, 285-298		11
251	Estimating the abundance of the bilby (Macrotis lagotis): a vulnerable, uncommon, nocturnal marsupial. 2015 , 37, 75		12
250	Rat eradication and the resistance and resilience of passerine bird assemblages in the Falkland Islands. 2015 , 84, 755-764		7
249	Diver towed GPS to estimate densities of a critically endangered fish. 2015 , 191, 700-706		9
248	Reprint of: Synthesising the effects of land use on natural and managed landscapes. 2015 , 534, 14-30		4
247	Management by proxy? The use of indices in applied ecology. 2015 , 52, 1-6		99
246	Methodological challenges in monitoring bat population- and assemblage-level changes for anthropogenic impact assessment. 2015 , 80, 159-169		17
245	Incorporating detectability of threatened species into environmental impact assessment. 2015 , 29, 216	5-25	24
244	Standardized Assessment of Biodiversity Trends in Tropical Forest Protected Areas: The End Is Not in Sight. 2016 , 14, e1002357		87
243	A Spatio-Temporally Explicit Random Encounter Model for Large-Scale Population Surveys. <i>PLoS ONE</i> , 2016 , 11, e0162447	3.7	3
242	Effects of lek count protocols on greater sage-grouse population trend estimates. <i>Journal of Wildlife Management</i> , 2016 , 80, 667-678	1.9	19
241	Full Issue. Condor, 2016, 118, iii-iii	2.1	
240	Comparison of survey techniques on detection of northern flying squirrels. 2016 , 40, 654-662		22
239	Spring spotlight counts provide reliable indices to track changes in population size of mountain-dwelling red deerCervus elaphus. <i>Wildlife Biology</i> , 2016 , 22, 268-276	1.7	23

238 Full Issue. *Condor*, **2016**, 118, iii-iii 2.1

237	References. 2016 , 321-340	
236	Ecological integrity assessment as a metric of biodiversity: are we measuring what we say we are?. 2016 , 25, 1011-1035	31
235	Estimating Spring Salamander Detection Probability Using Multiple Methods. 2016 , 50, 126-129	2
234	Current and former populations of Audubon's Shearwater (Puffinus lherminieri) in the Caribbean region. <i>Condor</i> , 2016 , 118, 655-673	3
233	Fin whale seasonal trends in the Pelagos Sanctuary, Mediterranean Sea. <i>Journal of Wildlife Management</i> , 2016 , 80, 490-499	10
232	Quantifying population declines based on presence-only records for red-list assessments. 2016 , 30, 1112-21	21
231	Avoiding the subject: the implications of avoidance behaviour for detecting predators. 2016 , 70, 1535-1546	18
230	Developing indices of relative abundance for monitoring cave and ground wff(Orthoptera) in southern beech forest, New Zealand. 2016 , 43, 149-162	3
229	A comparison of point-count and area-search surveys for monitoring site occupancy of the Coastal California Gnatcatcher (Polioptila californica californica). <i>Condor</i> , 2016 , 118, 329-337	
228	Evaluating vital rate contributions to greater sage-grouse population dynamics to inform conservation. 2016 , 7, e01249	29
227	Estimates of small Indian mongoose densities: Implications for rabies management. <i>Journal of Wildlife Management</i> , 2016 , 80, 37-47	11
226	Precision, accuracy, and costs of survey methods for giraffeGiraffa camelopardalis. 2016 , 97, 940-948	14
225	References. 2016 , 737-760	
224	Estimating Mammalian Abundance Using Camera Traps in the Tropical Forest of Similipal Tiger Reserve, Odisha, India. 2016 , 69, 181-188	8
223	Road effects on demographic traits of small mammal populations. 2017 , 63, 1	12
222	Quantifying the bias in density estimated from distance sampling and camera trapping of unmarked individuals. 2017 , 350, 79-86	23
221	A pilot study to survey the carnivore community in the hyper-arid environment of South Sinai mountains. 2017 , 141, 16-24	1

220	Study design concepts for inferring functional roles of mammalian top predators. 2017 , 12, 56-63		8
219	Examining the occupancydensity relationship for a low-density carnivore. 2017, 54, 2043-2052		65
218	Estimating population size of fishers (Pekania pennanti) using camera stations and auxiliary data on home range size. 2017 , 8, e01747		18
217	Full Issue. Condor, 2017, 119, iii-iii 2.	1	
216	The application of non-invasive genetic tagging reveals new insights into the clay lick use by macaws in the Peruvian Amazon. 2017 , 18, 1037-1046		5
215	Autonomous acoustic recorders reveal complex patterns in avian detection probability. <i>Journal of Wildlife Management</i> , 2017 , 81, 1228-1241	9	8
214	Evaluating and improving count-based population inference: A case study from 31 years of monitoring Sandhill CranesEvaluando y mejorando la inferencia poblacional basada en conteos: Un estudio de caso de 31 a\frac{1}{2}s de monitoreo de Antigone canadensisMonitoring animal populations.	1	4
213	Condor, 2017, 119, 191-206 Effects of trap baits and height on stag beetle and flower chafer monitoring: ecological and conservation implications. 2017, 21, 157-168		17
212	Interspecies interference and monitoring duration affect detection rates in chew cards. 2017 , 42, 522-532		3
211	Visibility bias for sage-grouse lek counts. 2017 , 41, 461-470		9
210	Combined analysis of roadside and off-road breeding bird survey data to assess population change in Alaska. <i>Condor</i> , 2017 , 119, 557-575	1	11
209	Population dynamics affect the capacity of species distribution models to predict species abundance on a local scale. 2017 , 23, 1008-1017		22
208	Improving inference for aerial surveys of bears: The importance of assumptions and the cost of unnecessary complexity. 2017 , 7, 4812-4821		40
207	Efficacy of N-mixture models for surveying and monitoring white-tailed deer populations. 2017 , 62, 413-43	22	25
206	A Survey of Clustering Techniques in WSNs and Consideration of the Challenges of Applying Such to 5G IoT Scenarios. 2017 , 4, 1229-1249		160
205	Comparative evaluation of three sampling methods to estimate detection probability of American red squirrels (Tamiasciurus hudsonicus). 2017 , 83, 1-9		5
204	Do occupancy or detection rates from camera traps reflect deer density?. 2017 , 98, 1547-1557		39
203	Full Issue. <i>Condor</i> , 2017 , 119, iii-iii 2.	1	

202	A Smart and Balanced Energy-Efficient Multihop Clustering Algorithm (Smart-BEEM) for MIMO IoT Systems in Future Networks. 2017 , 17,	30
201	Direct Observation of Dog Density and Composition during Street Counts as a Resource Efficient Method of Measuring Variation in Roaming Dog Populations over Time and between Locations. 2017 , 7,	9
200	Predicting above-ground density and distribution of small mammal prey species at large spatial scales. <i>PLoS ONE</i> , 2017 , 12, e0177165	4
199	A spatially explicit, multi-scale occupancy model for large-scale population monitoring. <i>Journal of Wildlife Management</i> , 2018 , 82, 1300-1310	3
198	Are Two Days Enough? Checking the Accuracy of the Survey Protocols Used in Common Bird Monitoring Schemes. 2018 , 65, 41-52	2
197	Occupancy Applications. 2018, 27-70	1
196	Bibliography. 2018 , 597-630	
195	Evaluation of methods to monitor wild mammals on Mediterranean farmland. 2018 , 91, 23-29	7
194	Estimating Mammalian Diversity and Relative Abundance Using Camera Traps in a Tropical Deciduous Forest of Kuldiha Wildlife Sanctuary, Eastern India. <i>Mammal Study</i> , 2018 , 43, 1-9	6
193	Monitoring Least Bitterns (Ixobrychis exilis) in Vermont: Detection Probability and Occupancy Modeling. 2018 , 25, 56-71	2
192	Optimizing monitoring schemes to detect trends in abundance over broad scales. 2018 , 21, 221-231	21
191	Combining noninvasive genetics and a new mammalian sex-linked marker provides new tools to investigate population size, structure and individual behaviour: An application to bats. 2018 , 18, 217-228	15
190	A new framework for analysing automated acoustic species detection data: Occupancy estimation and optimization of recordings post-processing. 2018 , 9, 560-570	26
189	Evaluating relative abundance indices for terrestrial herbivores from large-scale camera trap surveys. 2018 , 56, 791-803	32
188	Internet of Too Many Things in Smart Transport: The Problem, The Side Effects and The Solution. 2018 , 6, 62840-62848	12
187	Internet of Things Home Healthcare: The Feasibility of Elderly Activity Monitoring. 2018,	О
186	Spatially explicit approach to estimation of total population abundance in field surveys. 2018 , 453, 88-95	2
185	The spatial structure of variation in salamander survival, body condition and morphology in a headwater stream network. 2018 , 63, 1287-1299	5

184	N-mixture models reliably estimate the abundance of small vertebrates. <i>Scientific Reports</i> , 2018 , 8, 1035 4 .	9	35
183	Estimating transient populations of unmarked individuals at a migratory stopover site using generalized N-mixture models. 2018 , 55, 2917-2932		4
182	Detection errors in wildlife abundance estimates from Unmanned Aerial Systems (UAS) surveys: Synthesis, solutions, and challenges. 2018 , 9, 1864-1873		21
181	Multi-scale considerations for grassland butterfly conservation in agroecosystems. 2018 , 226, 196-204		15
180	Estimating densities for sympatric kit foxes (Vulpes macrotis) and coyotes (Canis latrans) using noninvasive genetic sampling. 2018 , 96, 1080-1089		9
179	The return of giant otter to the Baniwa Landscape: A multi-scale approach to species recovery in the middle Iana River, Northwest Amazonia, Brazil. 2018 , 224, 318-326		5
178	The importance of simulation assumptions when evaluating detectability in population models. 2019 , 10, e02791		7
177	All the eggs in one basket: A countrywide assessment of current and historical giraffe population distribution in Uganda. 2019 , 19, e00612		7
176	Remotely piloted aircraft improve precision of capture thank the sight population estimates of Australian fur seals. 2019 , 10, e02812		10
175	Managing for multiple species: greater sage-grouse and sagebrush songbirds. <i>Journal of Wildlife Management</i> , 2019 , 83, 1043-1056	9	7
174	Integrating distance sampling with minimum counts to improve monitoring. <i>Journal of Wildlife Management</i> , 2019 , 83, 1454-1465	9	3
173	A century of conservation: The ongoing recovery of Svalbard reindeer. <i>Journal of Wildlife Management</i> , 2019 , 83, 1676-1686	9	12
172	White-tailed deer and coyote colonization: a response to Kilgo et al. (2019). <i>Journal of Wildlife Management</i> , 2019 , 83, 1641-1643	9	
171	Designing multi-scale hierarchical monitoring frameworks for wildlife to support management: a sage-grouse case study. 2019 , 10, e02872		4
170	Modelling the rate of successful search of red foxes during population control. 2019 , 46, 285		1
169	Benefits and limits of comparative effectiveness studies in evidence-based conservation. 2019 , 236, 115-1	23	15
168	Effective monitoring of freshwater fish. 2019 , 20, 729		35
167	Quantifying data quality in a citizen science monitoring program: False negatives, false positives and occupancy trends. <i>Conservation Science and Practice</i> , 2019 , 1, e54	2	5

(2020-2019)

166	Dynamic and diverse amphibian assemblages: Can we differentiate natural processes from human induced changes?. <i>PLoS ONE</i> , 2019 , 14, e0214316	3.7	3
165	Tiger density, dhole occupancy, and prey occupancy in the human disturbed Dong Phayayen IKhao Yai Forest Complex, Thailand. 2019 , 95, 51-58		5
164	Impact of prey occupancy and other ecological and anthropogenic factors on tiger distribution in Thailand's western forest complex. 2019 , 9, 2449-2458		9
163	Top-down control of ecosystems and the case for rewilding: does it all add up?. 2019 , 325-354		5
162	Habitat use and diel activity pattern of the Tibetan Snowcock (Tetraogallus tibetanus): a case study using camera traps for surveying high-elevation bird species. 2019 , 10,		7
161	Design Implications for Surveys to Monitor Monarch Butterfly Population Trends. 2019 , 7,		4
160	How sampling-based overdispersion reveals India's tiger monitoring orthodoxy. <i>Conservation Science and Practice</i> , 2019 , 1, e128	2.2	6
159	Development of Multispecies, Long-Term Monitoring Programs for Resource Management. 2019 , 72, 168-181		3
158	Verifying bilby presence and the systematic sampling of wild populations using sign-based protocols (with notes on aerial and ground survey techniques and asserting absence. 2019 , 41, 27		5
157	Assessing habitat quality when forest attributes have opposing effects on abundance and detectability: A case study on Darwin frogs. 2019 , 432, 942-948		3
156	Relationship between social loafing and the self-concept. 2019 , 11, 60-74		4
155	Statistical learning mitigation of false positives from template-detected data in automated acoustic wildlife monitoring. 2020 , 29, 296-321		6
154	A roadmap for survey designs in terrestrial acoustic monitoring. 2020 , 6, 220-235		19
153	Novel method for detection probability and estimating population size of mountain frog, Rana macrocnemis (Boulenger, 1885) at the end of its distribution range. 2020 , 16, 11-21		2
152	Multi-event capture-recapture analysis in Alpine chamois reveals contrasting responses to interspecific competition, within and between populations. 2020 , 89, 2279-2289		6
151	Rabies Management Implications Based on Raccoon Population Density Indexes. <i>Journal of Wildlife Management</i> , 2020 , 84, 877-890	1.9	2
150	Estimating and forecasting spatial population dynamics of apex predators using transnational genetic monitoring. 2020 , 117, 30531-30538		26
149	Application of Photo-Identification and Lengthened Deployment Periods to Baited Remote Underwater Video Stations (BRUVS) Abundance Estimates of Coral Reef Sharks. 2020 , 1, 274-299		1

148	Personalised ecology and detection functions. 2020 , 2, 995-1005		3
147	Performance of spatial capture-recapture models with repurposed data: Assessing estimator robustness for retrospective applications. <i>PLoS ONE</i> , 2020 , 15, e0236978	3.7	1
146	Design and analytical considerations for improving effectiveness of bird surveys that use autonomous sound recorders. 2020 , 91, 271-273		
145	Seasonal and annual fluctuations of deer populations estimated by a Bayesian state-space model. <i>PLoS ONE</i> , 2020 , 15, e0225872	3.7	3
144	Weather and Exposure Period Affect Coyote Detection at Camera Traps. 2020, 44, 342-350		2
143	Using Ultrasonic Acoustics to Detect Cryptic Flying Squirrels: Effects of Season and Habitat Quality. 2020 , 44, 300-308		2
142	Trapping, Collaring and Monitoring the Lorisinae of Asia (Loris, Nycticebus) and Perodicticinae (Arctocebus, Perodicticus) of Africa. 2020 , 279-294		2
141	Evaluation of Field Techniques Used to Assess Populations of Pottos and Lorises. 2020 , 295-303		1
140	References. 2020 , 404-464		
139	A systemic approach to assess the potential and risks of wildlife culling for infectious disease control. 2020 , 3, 353		13
0	The effect of account of the best of the detector in the effect of the e		
138	The effect of camera orientation on the detectability of wildlife: a case study from north-western Australia. 2020 , 6, 546-556		5
137			3
-	Australia. 2020, 6, 546-556 Altitude shapes the environmental drivers of large-scale variation in abundance of a widespread	4.9	
137	Australia. 2020, 6, 546-556 Altitude shapes the environmental drivers of large-scale variation in abundance of a widespread mammal species. 2020, 10, 119-130 A comparison of cost and quality of three methods for estimating density for wild pig (Sus scrofa).	4.9	3
137 136	Australia. 2020, 6, 546-556 Altitude shapes the environmental drivers of large-scale variation in abundance of a widespread mammal species. 2020, 10, 119-130 A comparison of cost and quality of three methods for estimating density for wild pig (Sus scrofa). Scientific Reports, 2020, 10, 2047	4.9	3
137 136 135	Australia. 2020, 6, 546-556 Altitude shapes the environmental drivers of large-scale variation in abundance of a widespread mammal species. 2020, 10, 119-130 A comparison of cost and quality of three methods for estimating density for wild pig (Sus scrofa). Scientific Reports, 2020, 10, 2047 Foreword. 2020, xix-xx	4.9	3
137 136 135	Australia. 2020, 6, 546-556 Altitude shapes the environmental drivers of large-scale variation in abundance of a widespread mammal species. 2020, 10, 119-130 A comparison of cost and quality of three methods for estimating density for wild pig (Sus scrofa). Scientific Reports, 2020, 10, 2047 Foreword. 2020, xix-xx Introduction. 2020, 1-16	4.9	3

(2020-2020)

130	Outliers. 2020 , 47-56	
129	Molecular Advances in Lorisid Taxonomy and Phylogeny. 2020 , 57-66	3
128	The Toothcomb of Karanisia clarki. 2020 , 67-75	2
127	The Soft-Tissue Anatomy of the Highly Derived Hand of Perodicticus Relative to the More Generalised Nycticebus. 2020 , 76-96	2
126	Making Scents of Olfactory Sensitivity in Lorises and Pottos. 2020 , 97-112	
125	Allometric and Phylogenetic Diversity in Lorisiform Orbit Orientation. 2020 , 113-128	
124	The Evolution of Social Organisation in Lorisiformes. 2020 , 129-137	4
123	Biomechanics of Loris Locomotion. 2020 , 138-152	
122	What Role Did Gum-Feeding Play in the Evolution of the Lorises?. 2020 , 153-162	
121	Ecology and Captive Management. 2020 , 163-276	
120	Nutrition of Lorisiformes. 2020 , 165-173	
119	Seeing in the Dark. 2020 , 174-186	1
118	Thermoregulation in Lorises. 2020 , 187-192	1
117	Home Range, Activity Budgets and Habitat Use in the Bengal Slow Loris (Nycticebus bengalensis) in Bangladesh. 2020 , 193-203	2
116	Behaviour of Pottos and Angwantibos. 2020 , 204-209	
115	Positional Behaviour and Substrate Preference of Slow Lorises, with a Case Study of Nycticebus bengalensis in Northeast India. 2020 , 210-218	2
114	Sexual Differences in Feeding and Foraging of Released Philippine Slow Loris (Nycticebus menagensis). 2020 , 219-227	
113	Ranging Patterns of the Pygmy Slow Loris (Nycticebus pygmaeus) in a Mixed Deciduous Forest in Eastern Cambodia. 2020 , 228-234	2

112	Utilising Current and Historical Zoo Records to Provide an Insight into the Captive Biology of the Rarely Kept Species Pottos and Angwantibos. 2020 , 235-241	
111	MotherInfant Behaviours in Greater Slow Loris (Nycticebus coucang) Dyads Consisting of Mothers Pregnant at Confiscation and Their Sanctuary-Born Infants. 2020 , 242-262	
110	Husbandry and Reproductive Management Recommendations for Captive Lorises and Pottos (Nycticebus, Loris and Perodicticus). 2020 , 263-276	2
109	Research, Trade and Conservation. 2020 , 277-403	
108	Occupancy Modelling as a Method to Study Slender Loris Density. 2020 , 304-315	
107	Using Accelerometers to Measure Nocturnal Primate Behaviour. 2020 , 316-325	
106	Distribution and Conservation Status of Slow Lorises in Indo-China. 2020 , 326-338	1
105	Wildlife Trade Research Methods. 2020 , 339-361	1
104	Online Imagery and Loris Conservation. 2020 , 362-373	1
103	Slow Lorises (Nycticebus spp.) as Photo Props on Instagram. 2020 , 374-380	1
102	Integrating Science and Puppetry to Inspire Teenagers in Rural Asia to Value Slow Lorises. 2020 , 381-392	
101	Developing a Rescue and Rehabilitation Centre as a Reaction to the Extensive Illegal Wildlife Trade in Slow Lorises. 2020 , 393-403	
100	Index. 2020 , 465-492	
99	Density Estimation of Unmarked Populations Using Camera Traps in Heterogeneous Space. 2020 , 44, 173-181	8
98	Rapid and varied responses of songbirds to climate change in California coniferous forests. 2020 , 241, 108347	15
97	Male-Biased Partial Migration in a Giraffe Population. 2020 , 7,	4
96	Efficient data transfer in clustered IoT network with cooperative member nodes. 2020, 79, 34241-34251	4

94 Introduction: The Conservation Issue. **2021**, 1-33

Spatial Dynamics and Ecology of Large Ungulate Populations in Tropical Forests of India. 2021, Development of Hierarchical Spatial Models for Assessing Ungulate Abundance and Habitat Relationships. 2021, 35-82 Efficacy and risks from a modified sodium nitrite toxic bait for wild pigs. 2021, 77, 1616-1625 Adjusting a finite population block kriging estimator for imperfect detection. Environmetrics, 2021, 32,	2
Relationships. 2021 , 35-82 g1 Efficacy and risks from a modified sodium nitrite toxic bait for wild pigs. 2021 , 77, 1616-1625 Adjusting a finite population block kriging estimator for imperfect detection. <i>Environmetrics</i> , 2021 ,	2
Adjusting a finite population block kriging estimator for imperfect detection. <i>Environmetrics</i> , 2021 ,	2
00 11	
	O
Improving waterbird monitoring and conservation in the Sahel using remote sensing: a case study with the International Waterbird Census in Sudan. 2021 , 163, 607-622	
Insight into occupancy determinants and conflict dynamics of grey wolf (Canis lupus) in the dry temperate zone of Hindukush Range. 2021 , 25, e01402	3
8_7 Evaluating a herpetofaunal monitoring program in the Rolling Plains of Texas. 2021 , 193, 137	
Next-Generation Camera Trapping: Systematic Review of Historic Trends Suggests Keys to Expanded Research Applications in Ecology and Conservation. 2021 , 9,	9
High-density camera trap grid reveals lack of consistency in detection and capture rates across space and time. 2021 , 12, e03350	8
Leveraging local knowledge to estimate wildlife densities in bornean tropical rainforests. <i>Wildlife Biology</i> , 2021 , 2021,	1
Capitoline Dolphins: Residency Patterns and Abundance Estimate of at the Tiber River Estuary (Mediterranean Sea). 2021 , 10,	3
Influence of invasive Prosopis juliflora on the distribution and ecology of native blackbuck in protected areas of Tamil Nadu, India. 2021 , 67, 1	3
Efficient effort allocation in line-transect distance sampling of high-density species: When to walk further, measure less-often and gain precision. 2021 , 12, 962-970	O
80 Estimating bird densities in montane deserts: A methodological comparison in South Sinai, Egypt. 2021 , 189, 104477	
Feasibility Analyses of Real-Time Detection of Wildlife Using UAV-Derived Thermal and RGB Images. 2021 , 13, 2169	3
Post-white-nose syndrome passive acoustic sampling effort for determining bat species occupancy within the mid-Atlantic region. <i>Ecological Indicators</i> , 2021 , 125, 107489	3
Estimating occupancy and detection probability of the Amazonian manatee (Trichechus inunguis), in Central Amazon, Brazil. 2021 , 19, 354-361	

Factors influencing detectability and responses of Elf Owls to playback of conspecific vocalizations. **2021**, 92, 246-259

	2021, 72, 240-237		
75	Evaluation of camera trap-based abundance estimators for unmarked populations. <i>Ecological Applications</i> , 2021 , 31, e02410	4.9	4
74	The challenge of estimating wildlife populations at scale: the case of the European badger (Meles meles) in Ireland. 2021 , 67, 1		0
73	A hierarchical distance sampling model to estimate spatially explicit sea otter density. 2021 , 12, e03666		1
72	Sources of Measurement Error, Misclassification Error, and Bias in Auditory Avian Point Count Data. 2009 , 237-254		18
71	GRID Sampling for a Global Rapid Biodiversity Assessment: Methods, Applications, Results, and Lessons Learned. 2015 , 435-459		1
70	The Role of Abundance Estimates in Conservation Decision-Making. 2014, 117-131		4
69	Introduction. 2011 , 1-8		6
68	Inference for Occupancy and Occupancy Dynamics. 2011 , 191-204		26
67	Species Richness and Community Dynamics: A Conceptual Framework. 2011 , 207-231		7
66	Geostatistical Modelling of Wildlife Populations: A Non-stationary Hierarchical Model for Count Data. <i>Quantitative Geology and Geostatistics</i> , 2010 , 1-12		3
65	Spatially explicit approach to population abundance estimation in field surveys.		1
64	Sources of Variation in a Two-Step Monitoring Protocol for Species Clustered in Conspicuous Points: Dolichotis patagonum as a Case Study. <i>PLoS ONE</i> , 2015 , 10, e0128133	3.7	4
63	The Bees among Us: Modelling Occupancy of Solitary Bees. <i>PLoS ONE</i> , 2016 , 11, e0164764	3.7	8
62	Is the detection of aquatic environmental DNA influenced by substrate type?. PLoS ONE, 2017, 12, e018	3371	42
61	A statistically rigorous sampling design to integrate avian monitoring and management within Bird Conservation Regions. <i>PLoS ONE</i> , 2017 , 12, e0185924	3.7	29
60	Analysis of wild boar (Sus scrofa L., 1758) distribution in Northeast of European Russia: A quantitative approach. <i>Russian Journal of Theriology</i> , 2006 , 4, 115-122	0.3	3
59	In Defense of Indices: The Case of Bird Surveys. <i>Journal of Wildlife Management</i> , 2008 , 72, 857	1.9	26

58	Policy, Research, and Adaptive Management in Avian Conservation. Auk, 2003, 120, 212-217	2.1	1
57	A field test of unconventional camera trap distance sampling to estimate abundance of marmot populations. <i>Wildlife Biology</i> , 2020 , 2020,	1.7	3
56	A Review of Wildlife Abundance Estimation Models: Comparison of Models for Correct Application. <i>Mammal Study</i> , 2020 , 45, 177	0.6	11
55	Estimating abundance of endangered fish by eliminating bias from non-constant detectability. <i>Endangered Species Research</i> , 2017 , 32, 187-201	2.5	9
54	Occupancy estimation of marine species: dealing with imperfect detectability. <i>Marine Ecology - Progress Series</i> , 2012 , 453, 95-106	2.6	18
53	Environmental conditions and habitat characteristics influence trap and video detection probabilities for reef fish species. <i>Marine Ecology - Progress Series</i> , 2014 , 517, 1-14	2.6	35
52	Identifying where vulnerable species occur in a data-poor context: combining satellite imaging and underwater occupancy surveys. <i>Marine Ecology - Progress Series</i> , 2017 , 577, 17-32	2.6	4
51	Comparison of Estimators for Monitoring Long-Term Population Trends in Deer Mice,Peromyscus maniculatus, on the California Channel Islands. <i>Western North American Naturalist</i> , 2018 , 78, 496-509	0.4	4
50	Can we successfully monitor a population density decline of elusive invertebrates? A statistical power analysis on Lucanus cervus. <i>Nature Conservation</i> , 19, 1-18		4
49	And Then There was One: A Camera Trap Survey of the Declining Population of African Elephants in Knysna, South Africa. <i>African Journal of Wildlife Research</i> , 2019 , 49,	0.8	3
48	Accounting for Surveyor Effort in Large-Scale Monitoring Programs. <i>Journal of Fish and Wildlife Management</i> , 2018 , 9, 459-466	0.7	1
47	Occupancy Modeling of Woodpeckers: Maximizing Detections for Multiple Species With Multiple Spatial Scales. <i>Journal of Fish and Wildlife Management</i> , 2014 , 5, 198-207	0.7	5
46	Proxies in Practice: Calibration and Validation of Multiple Indices of Animal Abundance. <i>Journal of Fish and Wildlife Management</i> , 2016 , 7, 117-128	0.7	7
45	Ecology and life history of (Araneae: Tetragnathidae) from Monte Albo (Sardinia, Italy). <i>PeerJ</i> , 2018 , 6, e6049	3.1	10
44	Twisted tale of the tiger: the case of inappropriate data and deficient science. <i>PeerJ</i> , 2019 , 7, e7482	3.1	3
43	A novel curation system to facilitate data integration across regional citizen science survey programs. <i>PeerJ</i> , 2020 , 8, e9219	3.1	3
42	Calibrating abundance indices with population size estimators of red back salamanders (Plethodon cinereus) in a New England forest. <i>PeerJ</i> , 2015 , 3, e952	3.1	7
41	Quantifying status and trends from monitoring surveys: application to Pygmy Whitefish (Prosopium coulterii) in Lake Superior. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> ,	2.4	

40	Deterring non-target birds from toxic bait sites for wild pigs. Scientific Reports, 2021, 11, 19967	4.9	1
39	Effectiveness of signs of activity as relative abundance indices for wild boar. <i>Wildlife Biology</i> , 2021 , 2021,	1.7	2
38	References. 2002 , 767-791		
37	In Defense of Indices: The Case of Bird Surveys. <i>Journal of Wildlife Management</i> , 2008 , 72, 857	1.9	1
36	Data Analysis in Monitoring. 2010 , 189-218		
35	Lessons Learned from Current Monitoring Programs. 2010 , 17-36		
34	Goals and Objectives Now and Into the Future. 2010 , 59-78		
33	Module 8: Management and Viability of Target Species: Modeling and Monitoring. <i>Environmental Science and Engineering</i> , 2013 , 293-303	0.2	
32	Population and Distribution of Swainson Hawks (Buteo swainsoni) in California Great Valley: A Framework for Long-Term Monitoring. <i>Journal of Raptor Research</i> , 2019 , 53, 253	0.9	1
31	Evolution, Ecology and Conservation of Lorises and Pottos. 2020 ,		2
30	Evaluation of the Effectiveness of Scented Wooden Posts for DNA Hair Snagging of Brown Bears. <i>Mammal Study</i> , 2020 , 45, 213	0.6	1
29	Methods for wildlife monitoring in tropical forests: Comparing human observations, camera traps, and passive acoustic sensors. <i>Conservation Science and Practice</i> ,	2.2	1
28	Policy, Research, and Adaptive Management in Avian Conservation. Auk, 2003, 120, 212-217	2.1	1
27	Reliable estimates of wild boar populations by nocturnal distance sampling. <i>Wildlife Biology</i> , 2020 , 2020, 1-15	1.7	2
26	A hierarchical dependent double-observer method for estimating waterfowl breeding pairs abundance from helicopters. <i>Wildlife Biology</i> , 2021 ,	1.7	1
25	Hierarchical models improve the use of alligator abundance as an indicator. <i>Ecological Indicators</i> , 2021 , 133, 108406	5.8	1
24	Integrating distance sampling survey data with population indices to separate trends in abundance and temporary immigration. <i>Journal of Wildlife Management</i> ,	1.9	О
23	The Decline of Common Birds Exemplified by the Western Jackdaw Warns on Strong Environmental Degradation. <i>Conservation</i> , 2022 , 2, 80-96		О

22	Monitoring Spatial and Seasonal Abundance of Indian Wild Ass (Equus hemionus khur) in Little Rann of Kutch Landscape, Western India. <i>Journal of Ecophysiology and Occupational Health</i> , 2022 , 21, 168	0.2	
21	Modelling population dynamics and trends in migratory birds from non-standardized multi-species ringing data: the potential of multi-model selection. <i>Bird Study</i> , 1-15	0.7	O
20	Rapid growth of the Swainson Hawk population in California since 2005. Condor,	2.1	1
19	Hyperstability in electrofishing catch rates of common Carp and Bigmouth Buffalo. <i>North American Journal of Fisheries Management</i> ,	1.1	
18	A comparison of monitoring designs to assess wildlife community parameters across spatial scales <i>Ecological Applications</i> , 2022 , e2621	4.9	1
17	Multi-season site occupancy of Eastern Whip-poor-wills (Antrostomus vociferus) in New York. Wilson Journal of Ornithology, 2022 , 133,	0.4	
16	Data_Sheet_1.pdf. 2020 ,		
15	Preliminary Estimation of Marine Recreational Fisheries (MRF) in the Time of COVID-19 Pandemic: The Marche Region Case Study (Adriatic Sea, Italy). <i>Frontiers in Marine Science</i> , 2022 , 9,	4.5	O
14	Mesoscale assessment of sedentary coastal fish density using vertical underwater cameras. <i>Fisheries Research</i> , 2022 , 253, 106362	2.3	0
13	When can model-based estimates replace surveys of wildlife populations that span many discrete management units?. <i>Ecological Solutions and Evidence</i> , 2022 , 3,	2.1	
12	Light and Malaise traps tell different stories about the spatial variations in arthropod biomass and method-specific insect abundance. <i>Insect Conservation and Diversity</i> ,	3.8	О
11	Using microchip-reading antennas to passively monitor a mammal reintroduction in south-west Queensland. 2022 ,		O
10	A comparison of methods for monitoring a sparse population of the red fox (Vulpes vulpes) subject to lethal control using GPS telemetry, camera traps and sand plots. 2022 , NULL		0
9	Use of aerial distance sampling to estimate abundance of tule elk across a gradient of canopy cover and comparison to a concurrent fecal DNA spatial capture-recapture survey. 2022 , 108,		O
8	Mammalian Diversity, Abundance and Habitat Preferences in Godebe National Park, Amhara Regional State, Ethiopia.		O
7	Latrine counts to estimate wild rabbit (Oryctolagus cuniculus) density as a tool for biodiversity conservation and management. 2022 , 145, 109684		O
6	BACACIXIa spatial index combining proxies of bovine and badger space use associated with extended Mycobacterium bovis circulation in France. 2023, 211, 105817		О
5	Monitoring small mammal abundance using NEON data: are calibrated indices useful?.		O

A comparison of survey method efficiency for estimating densities of Zebra Mussels (Dreissena polymorpha).

From species detection to population size indexing: the use of sign surveys for monitoring a rare and otherwise elusive small mammal. 2023, 69,

Temporal Patterns of Cooing Activity of the European Turtle-Dove Streptopelia turtur: Optimising Monitoring Schemes Based on Abundance Indices. 2023, 70,

Observers are a key source of detection heterogeneity and biased occupancy estimates in species monitoring. 2023, 283, 110102