System dynamics model for predicting floods from snow watersheds

Hydrological Processes 16, 2645-2666 DOI: 10.1002/hyp.1064

Citation Report

#	Article	IF	CITATIONS
1	Methodology for Assessment of Climate Change Impacts on Large-Scale Flood Protection System. Journal of Water Resources Planning and Management - ASCE, 2003, 129, 361-371.	2.6	83
2	Spatial System Dynamics: New Approach for Simulation of Water Resources Systems. Journal of Computing in Civil Engineering, 2004, 18, 331-340.	4.7	150
3	Developing land use scenario dynamics model by the integration of system dynamics model and cellular automata model. , 0, , .		2
4	Sensitivity of the Red River Basin Flood Protection System to Climate Variability and Change. Water Resources Management, 2004, 18, 89-110.	3.9	54
5	Integrated Analyses of Canada's Water Resources: A System Dynamics Approach. Canadian Water Resources Journal, 2004, 29, 223-250.	1.2	50
6	Developing land use scenario dynamics model by the integration of system dynamics model and cellular automata model. Science in China Series D: Earth Sciences, 2005, 48, 1979-1989.	0.9	78
7	Modelling scenarios of land use change in northern China in the next 50 years. Journal of Chinese Geography, 2005, 15, 177-186.	3.9	5
8	System dynamics approach to assess the sustainability of reclamation of disturbed watersheds. Canadian Journal of Civil Engineering, 2005, 32, 144-158.	1.3	70
9	Hydrological extremes in a southwestern Ontario river basin under future climate conditions/Extrêmes hydrologiques dans un basin versant du sud-ouest de l'Ontario sous conditions climatiques futures. Hydrological Sciences Journal, 2005, 50, .	2.6	55
10	Modeling urban expansion scenarios by coupling cellular automata model and system dynamic model in Beijing, China. Applied Geography, 2006, 26, 323-345.	3.7	241
11	Object-oriented modeling approach to surface water quality management. Environmental Modelling and Software, 2006, 21, 689-698.	4.5	53
12	Impacts of Changing Climatic Conditions in the Upper Thames River Basin. Canadian Water Resources Journal, 2007, 32, 265-284.	1.2	7
13	Simulation of the hydrological processes on reconstructed watersheds using system dynamics. Hydrological Sciences Journal, 2007, 52, 538-562.	2.6	36
14	Inverse flood risk modelling under changing climatic conditions. Hydrological Processes, 2007, 21, 563-577.	2.6	49
15	A generic system dynamics model for simulating and evaluating the hydrological performance of reconstructed watersheds. Hydrology and Earth System Sciences, 2009, 13, 865-881.	4.9	35
16	The Use of System Dynamics Simulation in Water Resources Management. Water Resources Management, 2009, 23, 1301-1323.	3.9	333
17	Prediction of snowmelt floods with a distributed hydrological model using a physical snow mass and energy balance approach. Natural Hazards, 2010, 54, 451-468.	3.4	31
18	Streamflow Forecast and Reservoir Operation Performance Assessment Under Climate Change. Water Resources Management, 2010, 24, 83-104.	3.9	90

#	Article	IF	CITATIONS
19	Evaluating Municipal Water Conservation Policies Using a Dynamic Simulation Model. Water Resources Management, 2010, 24, 3371-3395.	3.9	116
20	A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues. Waste Management, 2010, 30, 2194-2203.	7.4	167
21	A systems dynamic modelling approach to assessing elements of a weather forecasting system. Atmosphere - Ocean, 2010, 48, 1-9.	1.6	1
22	Inferring groundwater system dynamics from hydrological time-series data. Hydrological Sciences Journal, 2010, 55, 593-608.	2.6	32
23	System dynamics modeling of infiltration and drainage in layered coarse soil. Canadian Journal of Soil Science, 2011, 91, 185-197.	1.2	20
24	The simulation of snowmelt runoff in the ungauged Kaidu River Basin of TianShan Mountains, China. Environmental Earth Sciences, 2011, 62, 1039-1045.	2.7	40
25	Performance Evaluation of Water Resources Systems Using System Dynamics Approach: Application to the Aras River Basin, Iran. , 2012, , .		0
26	Spatial and temporal distribution of snow water content and response to air temperature in seasonal snow in the western Tianshan Mountains, China. Hydrology Research, 2012, 43, 933-944.	2.7	1
27	Effectiveness of Grass Filters in Reducing Phosphorus and Sediment Runoff. Water, Air, and Soil Pollution, 2012, 223, 5865-5875.	2.4	19
28	Lessons from water scarcity of the 2008–2009 Gwangdong reservoir: needs to address drought management with the adaptiveness concept. Aquatic Sciences, 2012, 74, 213-227.	1.5	11
29	Changing climatic conditions in the Colorado River Basin: Implications for water resources management. Journal of Hydrology, 2012, 430-431, 127-141.	5.4	127
30	Perturbation study of climate change impacts in a snowâ€fed river basin. Hydrological Processes, 2013, 27, 3461-3474.	2.6	14
31	A system dynamics approach for water resources policy analysis in arid land: a model for Manas River Basin. Journal of Arid Land, 2013, 5, 118-131.	2.3	34
32	A Dynamic Model for Vulnerability Assessment of Regional Water Resources in Arid Areas: A Case Study of Bayingolin, China. Water Resources Management, 2013, 27, 3085-3101.	3.9	120
33	Evaluating the impact of demand-side management on water resources under changing climatic conditions and increasing population. Journal of Environmental Management, 2013, 114, 261-275.	7.8	161
34	Incorporating accumulated temperature and algorithm of snow cover calculation into the snowmelt runoff model. Hydrological Processes, 2013, 27, 3589-3595.	2.6	17
35	An Energy-Economy-Environment Model for Simulating the Impacts of Socioeconomic Development on Energy and Environment. Scientific World Journal, The, 2014, 2014, 1-14.	2.1	1
36	Assimilation of point SWE data into a distributed snow cover model comparing two contrasting methods. Water Resources Research, 2014, 50, 7816-7835.	4.2	78

#	Article	IF	CITATIONS
37	Application of System Dynamics to Water Security Research. Water Resources Management, 2014, 28, 287-300.	3.9	57
38	Developing efficient management strategies for a water supply system using system dynamics modelling. Civil Engineering and Environmental Systems, 2014, 31, 189-208.	0.9	6
39	Using path analysis to identify the influence of climatic factors on spring peak flow dominated by snowmelt in an alpine watershed. Journal of Mountain Science, 2014, 11, 990-1000.	2.0	68
40	River basin flood potential inferred using GRACE gravity observations at several months lead time. Nature Geoscience, 2014, 7, 588-592.	12.9	211
41	System Dynamics Modeling for Determining Optimal Ship Sizes and Types in Coastal Liner Services. Asian Journal of Shipping and Logistics, 2014, 30, 31-50.	3.4	14
42	Simulation Methods of a System Dynamics Model for Efficient Operations and Planning of Capacity Expansion of Activated-sludge Wastewater Treatment Plants. Procedia Engineering, 2014, 70, 1289-1295.	1.2	19
43	Modeling Streamflow Dominated by Snowmelt in an Ungauged Basin in Northwestern China. , 2014, , .		0
44	Evaluation of urban water resource security under urban expansion using a system dynamics model. Water Science and Technology: Water Supply, 2015, 15, 1259-1274.	2.1	20
45	Evaluating Municipal Water Management Options with the Incorporation of Water Quality and Energy Consumption. Water Resources Management, 2015, 29, 35-61.	3.9	12
46	Energy balance-based SWAT model to simulate the mountain snowmelt and runoff — taking the application in Juntanghu watershed (China) as an example. Journal of Mountain Science, 2015, 12, 368-381.	2.0	30
47	Dynamics model to simulate water and salt balance of Bosten Lake in Xinjiang, China. Environmental Earth Sciences, 2015, 74, 2499-2510.	2.7	62
48	A new parallel framework of distributed SWAT calibration. Journal of Arid Land, 2015, 7, 122-131.	2.3	7
49	Temporal and spatial variation of 10-day mean air temperature in Northwestern China. Theoretical and Applied Climatology, 2015, 119, 285-298.	2.8	4
50	Estimating Snow Water Equivalent with Backscattering at X and Ku Band Based on Absorption Loss. Remote Sensing, 2016, 8, 505.	4.0	37
51	Forecasting Snowmelt-Induced Flooding Using GRACE Satellite Data: A Case Study for the Red River Watershed. Canadian Journal of Remote Sensing, 2016, 42, 203-213.	2.4	18
52	A system dynamics based socio-hydrological model for agricultural wastewater reuse at the watershed scale. Agricultural Water Management, 2016, 171, 89-107.	5.6	29
53	Assessing and Enhancing Environmental Sustainability: A Conceptual Review. Environmental Science & Technology, 2016, 50, 6830-6845.	10.0	59
54	Sensitivity of runoff to climatic variability in the northern and southern slopes of the Middle Tianshan Mountains, China. Journal of Arid Land, 2016, 8, 681-693.	2.3	18

#	Article	IF	CITATIONS
55	Assessment of climate change impacts on watershed in cold-arid region: an integrated multi-GCM-based stochastic weather generator and stepwise cluster analysis method. Climate Dynamics, 2016, 47, 191-209.	3.8	28
56	Water-level regulation for freshwater management of Bosten Lake in Xinjiang, China. Water Science and Technology: Water Supply, 2016, 16, 828-836.	2.1	10
57	Simulating low and high streamflow driven by snowmelt in an insufficiently gauged alpine basin. Stochastic Environmental Research and Risk Assessment, 2016, 30, 59-75.	4.0	55
58	A study of the system dynamics coupling model of the driving factors for multi-scale land use change. Environmental Earth Sciences, 2016, 75, 1.	2.7	14
59	Streamflow Pattern Variations Resulting from Future Climate Change in Middle Tianshan Mountains Region in China. , 2017, , .		2
60	Coupling of a distributed stakeholder-built system dynamics socio-economic model with SAHYSMOD for sustainable soil salinity management. Part 2: Model coupling and application. Journal of Hydrology, 2017, 551, 278-299.	5.4	25
61	Development of computational algorithms for pump operations and their applications to the system dynamics modelling of a water supply system. Civil Engineering and Environmental Systems, 2017, 34, 162-183.	0.9	3
62	Estimating Snow Mass and Peak River Flows for the Mackenzie River Basin Using GRACE Satellite Observations. Remote Sensing, 2017, 9, 256.	4.0	24
63	Study on Variations in Climatic Variables and Their Influence on Runoff in the Manas River Basin, China. Water (Switzerland), 2017, 9, 258.	2.7	21
64	Review article: Hydrological modeling in glacierized catchments of central Asia – status and challenges. Hydrology and Earth System Sciences, 2017, 21, 669-684.	4.9	62
65	Coastal vulnerability: Evolving concepts in understanding vulnerable people and places. Environmental Science and Policy, 2018, 82, 19-29.	4.9	84
66	An integrated and dynamic approach to agricultural landâ€use change modeling at countryâ€level to regional scale: Application to Iran. Systems Engineering, 2018, 21, 16-29.	2.7	1
67	A hybrid system dynamics and optimization approach for supporting sustainable water resources planning in Zhengzhou City, China. Journal of Hydrology, 2018, 556, 50-60.	5.4	43
68	Infiltration into frozen soil: From coreâ€scale dynamics to hillslopeâ€scale connectivity. Hydrological Processes, 2018, 32, 66-79.	2.6	20
69	Fully coupled heat and water dynamics modelling of a reclamation cover for oil sands shale overburden. Journal of Hydrology, 2018, 566, 250-263.	5.4	6
70	Snow Properties From Active Remote Sensing Instruments. , 2018, , 237-257.		2
71	Phosphorus dynamics in vegetated buffer strips in cold climates: a review. Environmental Reviews, 2018, 26, 255-272.	4.5	43
72	Terrestrial water storage. , 2019, , 41-64.		11

#	Article	IF	CITATIONS
73	Using a Particle Filter to Estimate the Spatial Distribution of the Snowpack Water Equivalent. Journal of Hydrometeorology, 2019, 20, 577-594.	1.9	9
74	Changes in Snow Phenology from 1979 to 2016 over the Tianshan Mountains, Central Asia. Remote Sensing, 2019, 11, 499.	4.0	32
75	Snow depth reconstruction over last century: Trend and distribution in the Tianshan Mountains, China. Global and Planetary Change, 2019, 173, 73-82.	3.5	26
76	Multi-risk assessment in mountain regions: A review of modelling approaches for climate change adaptation. Journal of Environmental Management, 2019, 232, 759-771.	7.8	102
77	Quantified hydrological responses to permafrost degradation in the headwaters of the Yellow River (HWYR) in High Asia. Science of the Total Environment, 2020, 712, 135632.	8.0	47
78	Spatiotemporal variability of snowfall and its concentration in northern Xinjiang, Northwest China. Theoretical and Applied Climatology, 2020, 139, 1247-1259.	2.8	20
79	System Dynamics Modeling for Supporting Drought-Oriented Management of the Jucar River System, Spain. Water (Switzerland), 2020, 12, 1407.	2.7	22
80	Analyzing the Effectiveness of a Multi-Purpose Dam Using a System Dynamics Model. Water (Switzerland), 2020, 12, 1062.	2.7	8
81	Snowpack response in the Assiniboine-Red River basin associated with projected global warming of 1.0°C to 3.0°C. Journal of Great Lakes Research, 2021, 47, 677-689.	1.9	10
82	Increasing cryospheric hazards in a warming climate. Earth-Science Reviews, 2021, 213, 103500.	9.1	83
83	What conditions favor the influence of seasonally frozen ground on hydrological partitioning? A systematic review. Environmental Research Letters, 2021, 16, 043008.	5.2	21
84	Quantifying rain, snow and glacier meltwater in river discharge during flood events in the Manas River Basin, China. Natural Hazards, 2021, 108, 1137-1158.	3.4	10
85	Critical review of system dynamics modelling applications for water resources planning and management. Cleaner Environmental Systems, 2021, 2, 100031.	4.2	34
86	Simulating low and high streamflow driven by snowmelt in an insufficiently gauged alpine basin. , 2016, 30, 59.		3
87	Dynamics model to simulate water and salt balance of Bosten Lake in Xinjiang, China. , 2015, 74, 2499.		3
88	Impact of climate factors on runoff in the Kaidu River watershed: path analysis of 50-year data. Journal of Arid Land, 2011, 3, 132-140.	2.3	26
89	Development of a System Dynamics Model to Support the Decision Making Processes in the Operation and Management of Water Supply Systems. Journal of Korea Water Resources Association, 2010, 43, 609-623.	0.2	3
90	Development of a System Dynamics Model for the Efficient Operation and Maintenance of Sewerage Systems. Journal of Korea Water Resources Association, 2012, 45, 101-111.	0.2	2

#	Article	IF	CITATIONS
91	Development of Hydrological Shared Vision Model for Conflict Mediation of Dam Construction. Journal of Korea Water Resources Association, 2012, 45, 1009-1022.	0.2	2
92	Application of machine learning techniques for regional bias correction of snow water equivalent estimates in Ontario, Canada. Hydrology and Earth System Sciences, 2020, 24, 4887-4902.	4.9	10
94	Modeling Daily Streamflow in Wastewater Reused Watersheds Using System Dynamics. Journal of the Korean Society of Agricultural Engineers, 2014, 56, 45-53.	0.1	0
95	Medium and Long-term Sales Forecast of Hydrogen Fuel Cell Vehicles (HFCV) Based on System Dynamics and Discrete Selection Model. E3S Web of Conferences, 2020, 218, 02037.	0.5	2
96	Research on application of ecohydrology to disaster prevention and mitigation in China: a review. Water Science and Technology: Water Supply, 2022, 22, 2946-2958.	2.1	3
97	Short-Term River Flood Forecasting Using Composite Models and Automated Machine Learning: The Case Study of Lena River. Water (Switzerland), 2021, 13, 3482.	2.7	7
99	System dynamics applications in crisis management: A literature review. Journal of Simulation, 2023, 17, 800-817.	1.5	0
100	Water Level Forecasting Using Deep Learning Time-Series Analysis: A Case Study of Red River of the North. Water (Switzerland), 2022, 14, 1971.	2.7	23
101	Short-term forecasting of spring freshet peak flow with the Generalized Additive model. Journal of Hydrology, 2022, 612, 128089.	5.4	2
102	Large-scale snow data assimilation using a spatialized particle filter: recovering the spatial structure of the particles. Cryosphere, 2022, 16, 3489-3506.	3.9	3
103	Mapping of snow water equivalent by a deep-learning model assimilating snow observations. Journal of Hydrology, 2023, 616, 128835.	5.4	2
104	An updated review of the efficacy of buffer zones in warm/temperate and cold climates: Insights into processes and drivers of nutrient retention. Journal of Environmental Management, 2023, 336, 117646.	7.8	3
105	Necessity of Regional Coordinated Development of New Energy Vehicles Based On System Dynamics Model. , 2022, , .		0
106	Operational policy development for dynamic restoration of lakes in a changing climate; application of innovative hedging rules in a system dynamics platform. Applied Water Science, 2023, 13, .	5.6	0
107	ls switching propulsion technologies the path to sustainable land transport? decarbonizing Bogotá. Transportation Research, Part D: Transport and Environment, 2023, 122, 103890.	6.8	0
108	Identifying and mapping the spatial distribution of regions prone to snowmelt flood hazards in the arid region of <scp>Central Asia</scp> : A case study in <scp>Xinjiang, China</scp> . Journal of Flood Risk Management, 0, , .	3.3	0
109	Compound extreme inundation risk of coastal wetlands caused by climate change and anthropogenic activities in the Yellow River Delta, China. Advances in Climate Change Research, 2024, 15, 134-147.	5.1	0