CITATION REPORT List of articles citing

Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing

DOI: 10.1016/s1381-1177(02)00020-6 Journal of Molecular Catalysis B: Enzymatic, 2002, 17, 133-142

Source: https://exaly.com/paper-pdf/34464365/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
578	Enzymatic conversion of steryl esters to free sterols. <i>JAOCS, Journal of the American Oil Chemistsk Society</i> , 2003 , 80, 243-247	1.8	7
577	Enzymatic enrichment of astaxanthin from Haematococcus pluvialis cell extracts. <i>JAOCS, Journal of the American Oil ChemistskSociety</i> , 2003 , 80, 975	1.8	12
576	Enzymatic production of fatty acid alkyl esters with a lipase preparation from Candida sp. 99-125. 2003 , 105, 727-734		59
575	Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2004 , 30, 125-129		400
574	Modeling of enzymatic conversion in the catalytic gel layer located on a membrane surface. 2004 , 162, 327-334		10
573	Conversion of Soybean Oil to Biodiesel Fuel Using Lipozyme TL IM in a Solvent-free Medium. 2004 , 22, 45-48		92
572	Utilization of enzymes for environmental applications. 2004 , 24, 125-54		106
57 ¹	Preparation of biodiesel from crude oil of Pongamia pinnata. 2005 , 96, 1425-9		432
570	Current status of biodiesel development in Brazil. 2005 , 121-124, 807-19		24
569	Production of biodiesel by lipase-catalyzed transesterification of vegetable oils: a kinetics study. 2005 , 21, 1442-8		70
568	Study on the kinetics of enzymatic interesterification of triglycerides for biodiesel production with methyl acetate as the acyl acceptor. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2005 , 32, 241-245		115
567	Study on acyl migration in immobilized lipozyme TL-catalyzed transesterification of soybean oil for biodiesel production. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2005 , 37, 68-71		140
566	Optimized synthesis of lipase-catalyzed biodiesel by Novozym 435. 2005 , 80, 307-312		84
565	Production of FAME from acid oil model using immobilized Candida antarctica lipase. <i>JAOCS, Journal of the American Oil ChemistskSociety</i> , 2005 , 82, 825-831	1.8	38
564	Oxidation of carbonyl compounds by whole-cell biocatalyst. 2005 , 21, 457-461		2
563	Experimental Optimization on a Continuous-flow Reactive Distillation Reactor System for Biodiesel Production via Transesterification. 2005 ,		
562	Current Status of Biodiesel Development in Brazil. 2005 , 807-819		

(2007-2005)

561	Biodiesel production from triolein and short chain alcohols through biocatalysis. 2005 , 119, 291-9	196
560	Synthesis of esters by immobilized-lipase-catalyzed condensation reaction of sugars and fatty acids in water-miscible organic solvent. 2005 , 99, 87-94	53
559	Lipase-catalyzed methanolysis of palm oil in presence and absence of organic solvent for production of biodiesel. 2006 , 24, 257-262	30
558	[Immobilization of lipase on macroporous resin and its application in synthesis of biodiesel in low aqueous media]. 2006 , 22, 114-8	54
557	The effect of fatty acid concentration and water content on the production of biodiesel by lipase. 2006 , 30, 212-217	87
556	Production of biodiesel by immobilized Candida sp. lipase at high water content. 2006 , 128, 109-16	54
555	Biodiesel production using a mixture of immobilizedRhizopus oryzae andCandida rugosa lipases. 2006 , 11, 522-525	82
554	Lipase-catalyzed biodiesel production from soybean oil deodorizer distillate with absorbent present in tert-butanol system. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2006 , 43, 29-32	142
553	Study on the effect of cultivation parameters and pretreatment on Rhizopus oryzae cell-catalyzed transesterification of vegetable oils for biodiesel production. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2006 , 43, 15-18	40
552	Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2006 , 43, 58-62	286
551	Lipase catalyzed methanolysis to produce biodiesel: Optimization of the biodiesel production. Journal of Molecular Catalysis B: Enzymatic, 2006 , 43, 142-147	256
550	The effect of substrate concentrations on the production of biodiesel by lipase-catalysed transesterification of vegetable oils. 2006 , 81, 299-305	13
549	Application of a silica gel prolonged-release system for methanol in the production of biodiesel. 2006 , 81, 1846-1848	10
548	Biodiesel Fuel Production by the Transesterification Reaction of Soybean Oil Using Immobilized Lipase. 2007 , 105-114	
547	Effect of Ultrasonic Irradiation on Enxymatic Transesterification of Waste Oil to Biodiesel. 2007, 43-49	6
546	An integrated process: ester synthesis in an enzymatic membrane reactor and water sorption. 2007 , 130, 47-56	38
545	[Lipase-catalyzed production of biodiesel from high acid value waste oil with ultrasonic assistant]. 2007 , 23, 1121-8	55
544	Industrial Enzymes. 2007 ,	78

543	Synthesis of Biodiesel from Castor Oil and Linseed Oil in Supercritical Fluids. <i>Industrial & amp;</i> Engineering Chemistry Research, 2007 , 46, 1-6 3-9	160
542	Preparation of Biodiesel by Lipase-Catalyzed Transesterification of High Free Fatty Acid Containing Oil fromMadhuca indica. 2007 , 21, 368-372	144
541	A Supercritical Fluid-Assisted, Integrated Process for By-Products from Fat and Lipid Production. 2007 , 30, 732-736	6
540	Production of biodiesel: possibilities and challenges. <i>Biofuels, Bioproducts and Biorefining</i> , 2007 , 1, 57-66 _{5.3}	277
539	Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst. 2007 , 98, 416-21	320
538	Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. 2007 , 98, 648-53	392
537	Synthesis of a green biosolvent: Isopropyl esters. 2007 , 41, 533-538	13
536	Lipase-catalyzed irreversible transesterification of vegetable oils for fatty acid methyl esters production with dimethyl carbonate as the acyl acceptor. 2007 , 36, 167-173	91
535	Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor. 2007 , 98, 1260-4	221
534	Lipase-catalyzed biodiesel production from soybean oil in ionic liquids. 2007, 41, 480-483	187
533	Proposed kinetic mechanism of the production of biodiesel from palm oil using lipase. 2007 , 42, 951-960	180
532	Enzymatic synthesis of fatty acid methyl esters from lard with immobilized Candida sp. 99-125. 2007 , 42, 1367-1370	150
531	Possible methods for biodiesel production. <i>Renewable and Sustainable Energy Reviews</i> , 2007 , 11, 1300-1362	932
530	Conversion of acid oil by-produced in vegetable oil refining to biodiesel fuel by immobilized Candida antarctica lipase. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2007 , 44, 99-105	76
529	Cloning, expression and characterization of a novel thermal stable and short-chain alcohol tolerant lipase from Burkholderia cepacia strain G63. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2007 , 45, 91-96	70
528	Lipase-catalyzed in situ reactive extraction of oilseeds with short-chained alkyl acetates for fatty acid esters production. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2007 , 48, 28-32	35
527	Use of Lipases for the Production of Biodiesel. 2007 , 317-339	13
526	Enzymatic approach to biodiesel production. 2007 , 55, 8995-9005	294

525	Kinetics of Palm Oil Methanolysis. JAOCS, Journal of the American Oil ChemistskSociety, 2007, 84, 971-977.8	52
524	Biodiesel fuel production by the transesterification reaction of soybean oil using immobilized lipase. 2007 , 137-140, 105-14	28
523	Study on factors influencing stability of whole cell during biodiesel production in solvent-free and tert-butanol system. 2008 , 41, 111-115	41
522	Impact of transesterification mechanisms on the kinetic modeling of biodiesel production by immobilized lipase. 2008 , 42, 261-269	78
521	Catalytic studies of lipase on FAME production from waste cooking palm oil in a tert-butanol system. 2008 , 43, 1436-1439	109
520	High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. 2008 , 78, 29-36	400
519	Lipase production in solid-state fermentation monitoring biomass growth of aspergillus niger using digital image processing. 2008 , 147, 63-75	43
518	Supercritical fluid assisted, integrated process for the synthesis and separation of different lipid derivatives. 2008 , 31, 1346-51	13
517	Selective enzymatic synthesis of lower acylglycerols rich in polyunsaturated fatty acids. 2008, 110, 325-333	9
516	Enzymatic biodiesel production: Technical and economical considerations. 2008, 110, 692-700	179
515	Supported Ionic Liquid Enzymatic Catalysis for the Production of Biodiesel. 2008, 350, 160-164	105
514	A life-cycle comparison between inorganic and biological catalysis for the production of biodiesel. 2008 , 16, 1368-1378	119
513	Enzymatic production of biodiesel from Jatropha oil: A comparative study of immobilized-whole cell and commercial lipases as a biocatalyst. 2008 , 39, 185-189	190
512	Potential plant oil feedstock for lipase-catalyzed biodiesel production in Thailand. <i>Biomass and Bioenergy</i> , 2008 , 32, 1279-1286	66
511	Different enzyme requirements for the synthesis of biodiesel: Novozym 435 and Lipozyme TL IM. 2008 , 99, 277-86	197
510	An overview of enzymatic production of biodiesel. 2008 , 99, 3975-81	481
509	Development of heterogeneous base catalysts for biodiesel production. 2008 , 99, 3439-43	266
508	Immobilized lipase Candida sp. 99-125 catalyzed methanolysis of glycerol trioleate: solvent effect. 2008 , 99, 6070-4	70

507	Catalysts of Cu(II) and Co(II) ions adsorbed in chitosan used in transesterification of soy bean and babassu oils - a new route for biodiesel syntheses. 2008 , 99, 6793-8		62
506	Biodiesel production from waste cooking oils. <i>Fuel</i> , 2008 , 87, 3490-3496	7.1	539
505	Production of biodiesel using immobilized lipasea critical review. 2008 , 28, 253-64		252
504	Biodiesel Production Catalyzed by Whole-Cell Lipase from Rhizopus chinensis. 2008 , 29, 41-46		78
503	Whole-cell biocatalysts for biodiesel fuel production. 2008 , 26, 668-73		190
502	Comparison among immobilised lipases on macroporous polypropylene toward biodiesel synthesis. Journal of Molecular Catalysis B: Enzymatic, 2008, 54, 19-26		106
501	Improvement in lipase-catalyzed methanolysis of triacylglycerols for biodiesel production using a solvent engineering method. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2008 , 55, 118-125		55
500	Biofuels: a technological perspective. 2008 , 1, 542		468
499	Transesterification of Vegetable Oil to Biodiesel over MgO-Functionalized Mesoporous Catalysts. 2008 , 22, 145-149		105
498	Study Cases of Enzymatic Processes. 2008 , 253-378		3
497	Hierarchically supporting for biocatalysts: Assembling nanoscale catalysts in cell-like microcapsules. 2008 , 136, S393		
496	Synthesis of l-ascorbyl palmitate by immobilized lipase. 2008 , 136, S393		1
495	Comparative study on lipase-catalyzed alcoholysis of soybean oil for fatty acid esters production with different alcohols. 2008 , 136, S393		
494	Biodiesel Production Using Ultralow Catalyst Concentrations. 2008, 22, 2748-2755		44
493	Improved Method for Efficient Production of Biodiesel from Palm Oil (12008, 22, 141-144)		23
492	Optimization of the production of biodiesel by a commercial immobilized lipase in a solvent-free system using a response surface methodology. 2008 , 73, 147-156		12
491	Lipases in conversion of oils. Experimental screening of enzymes and substrates for biodiesel production. 2008 , 54, 247-252		2
490	Lipase-catalyzed biodiesel production with methyl acetate as acyl acceptor. 2008 , 63, 297-302		17

 $489\,$ Optimization of Lipase-Catalyzed Biodiesel by Statistical Approach. 163-184 $\,$

488	Conversion of Soybean Oil to Biodiesel Fuel with Immobilized Candida Lipase on Textile Cloth. 2008 , 30, 872-879	26
487	Transesterification of Waste Olive Oil by Candida Lipase. 2008 , 28, 521-528	1
486	Conversion of Biomass on Solid Catalysts. 2008 , 2447	2
485	Enzymatic Reactions for Production of Biodiesel Fuel and Their Application to the Oil and Fat Industry. 59-82	
484	. 2008,	7
483	Kinetic Study of Biodiesel Production by Enzymatic Transesterification of Vegetable Oils. 2009 , 27, 1809-181	4 5
482	Biofuels. 2009 , 61-76	2
481	Cold-adapted esterases and lipases: from fundamentals to application. 2009, 16, 1172-80	43
480	Effect of water on methanolysis of glycerol trioleate catalyzed by immobilized lipase Candida sp. 99¶25 in organic solvent system. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2009 , 56, 122-125	63
479	Novozym 435 for production of biodiesel from unrefined palm oil: Comparison of methanolysis methods. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2009 , 60, 106-112	65
478	Biocatalysis: towards ever greener biodiesel production. 2009 , 27, 398-408	328
477	Synthesis of biodiesel from waste cooking oil using immobilized lipase in fixed bed reactor. 2009 , 50, 668-673	193
476	Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. 2009 , 50, 923-927	326
475	Catalytic applications in the production of biodiesel from vegetable oils. 2009, 2, 278-300	254
474	The application of biotechnological methods for the synthesis of biodiesel. 2009 , 111, 800-813	93
473	A review of the current state of biodiesel production using enzymatic transesterification. 2009 , 102, 1298-315	573
472	An overview on the recent advances in the transesterification of vegetable oils for biodiesel production using chemical and biocatalysts. 2009 , 8, 367-394	57

471	Lipase-catalyzed transesterification of soybean oil for biodiesel production in tert-amyl alcohol. 2009 , 25, 41-46		42
470	Enzymatic synthesis of biodiesel via alcoholysis of palm oil. 2009 , 155, 347-55		24
469	Biodiesel synthesis via esterification of feedstock with high content of free fatty acids. 2009 , 154, 74-88	3	46
468	Biodiesel production from various oils under supercritical fluid conditions by Candida antartica lipase B using a stepwise reaction method. 2009 , 156, 24-34		43
467	Enzymatic transesterification of Jatropha oil. 2009 , 2, 1		227
466	Economic assessment of batch biodiesel production processes using homogeneous and heterogeneous alkali catalysts. 2009 , 100, 3268-76		133
465	Continuous lipase-catalyzed production of fatty acid ethyl esters from soybean oil in compressed fluids. 2009 , 100, 5818-26		71
464	Biodiesel production from rapeseed deodorizer distillate in a packed column reactor. <i>Chemical Engineering and Processing: Process Intensification</i> , 2009 , 48, 1152-1156	3.7	29
463	A Transesterification Double Step Process ITDSP for biodiesel preparation from fatty acids triglycerides. 2009 , 90, 599-605		68
462	Technologies for production of biodiesel focusing on green catalytic techniques: A review. 2009 , 90, 1502-1514		483
461	Ability of Vasconcellea [heilbornii lipase to catalyse the synthesis of alkyl esters from vegetable oils. 2009 , 44, 1265-1269		16
460	Enzymatic biodiesel synthesis likey factors affecting efficiency of the process. <i>Renewable Energy</i> , 2009 , 34, 1185-1194	8.1	349
459	A review on biodiesel production, combustion, emissions and performance. <i>Renewable and Sustainable Energy Reviews</i> , 2009 , 13, 1628-1634	16.2	513
458	Technical aspects of production and analysis of biodiesel from used cooking oil review. <i>Renewable and Sustainable Energy Reviews</i> , 2009 , 13, 2205-2224	16.2	280
457	Bioenergy: Sustainable fuels from biomass by yeast and fungal whole-cell biocatalysts. 2009 , 44, 2-12		97
456	Acceleration of catalytic activity of calcium oxide for biodiesel production. 2009 , 100, 696-700		259
455	Continuous biosynthesis of biodiesel from waste cooking palm oil in a packed bed reactor: optimization using response surface methodology (RSM) and mass transfer studies. 2009 , 100, 710-6		217
454	Enzymatic conversion of sunflower oil to biodiesel in a solvent-free system: process optimization and the immobilized system stability. 2009 , 100, 5146-54		126

(2010-2009)

453	Biotechnological production of biodiesel fuel using biocatalysed transesterification: A review. 2009 , 29, 82-93	86
452	Immobilized Lipase on Fe3O4 Nanoparticles as Biocatalyst for Biodiesel Production. 2009 , 23, 1347-1353	191
451	Comparison of Novozym 435 and Amberlyst 15 as Heterogeneous Catalyst for Production of Biodiesel from Palm Fatty Acid Distillate. 2009 , 23, 1-4	95
450	ORIGINAL RESEARCH: Improved lipase biosynthesis by a newly isolated Penicillium sp. grown on agricultural wastes. 2009 , 5, 119-126	14
449	Biodiesel fuel production via transesterification of oils using lipase biocatalyst. 2009 , 1, 115-125	30
448	Catalytic production of biodiesel and diesel-like hydrocarbons from triglycerides. 2009 , 2, 1258	71
447	Chapter 2 Jatropha curcas. 2009 , 50, 39-86	77
446	Transesterification - Biological. 2010 ,	2
445	Fatty acid alkyl esters: perspectives for production of alternative biofuels. 2010, 85, 1713-33	104
444	Biotechnological processes for biodiesel production using alternative oils. 2010 , 88, 621-36	134
443	Biocatalytic ethanolysis of palm oil for biodiesel production using microcrystalline lipase in tert-butanol system. 2010 , 45, 829-834	54
442	Synthesis of biodiesel in column fixed-bed bioreactor using the fermented solid produced by Burkholderia cepacia LTEB11. 2010 , 45, 1348-1354	94
441	Kinetics of enzymatic trans-esterification of glycerides for biodiesel production. 2010 , 33, 701-10	30
440	Effects of environmental conditions and methanol feeding strategy on lipase-mediated biodiesel production using soybean oil. 2010 , 15, 614-619	5
439	Environmentally Sustainable Biofuels: Advances in Biodiesel Research. 2010 , 1, 47-63	56
438	Optimization of lipase-catalyzed transesterification of lard for biodiesel production using response surface methodology. 2010 , 160, 504-15	61
437	Development of batch and continuous processes on biodiesel production in a packed-bed reactor by a mixture of immobilized Candida rugosa and Rhizopus oryzae lipases. 2010 , 161, 365-71	36
436	Production of biodiesel via enzymatic ethanolysis of the sunflower and soybean oils: modeling. 2010 , 161, 238-44	14

435	Isolation and characterization of a novel thermophilic-organic solvent stable lipase from Acinetobacter baylyi. 2010 , 162, 1362-76		41
434	Esterification activity of novel fungal and yeast lipases. 2010 , 162, 1881-8		8
433	Continuous Lipase-Catalyzed Alcoholysis of Sunflower Oil: Effect of Phase-Equilibrium on Process Efficiency. <i>JAOCS, Journal of the American Oil ChemistskSociety</i> , 2010 , 87, 45-53	1.8	17
432	Two-step bioprocess employing whole cell and enzyme for economical biodiesel production. 2010 , 27, 1555-1559		16
431	Biodiesel production with special emphasis on lipase-catalyzed transesterification. 2010 , 32, 1019-30		86
430	Pretreatment of immobilized Candida sp. 99-125 lipase to improve its methanol tolerance for biodiesel production. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2010 , 62, 15-18		48
429	Ectoine improves yield of biodiesel catalyzed by immobilized lipase. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2010 , 62, 90-95		21
428	Both hydrolytic and transesterification activities of Penicillium expansum lipase are significantly enhanced in ionic liquid [BMIm][PF6]. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2010 , 63, 23-30		60
427	Optimization of immobilization conditions of Thermomyces lanuginosus lipase on styrenedivinylbenzene copolymer using response surface methodology. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2010 , 63, 170-178		60
426	A kinetic study of the lipase-catalyzed ethanolysis of two short-chain triradylglycerols: Alkylglycerols vs. triacylglycerols. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2010 , 64, 101-106		2
425	Ethanolysis of rapeseed oil to produce biodiesel fuel catalyzed by Fusarium heterosporum lipase-expressing fungus immobilized whole-cell biocatalysts. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2010 , 66, 101-104		22
424	Transesterification of used sunflower oil using immobilized enzyme. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2010 , 66, 142-147		26
423	Mixed lipases for efficient enzymatic synthesis of biodiesel from used palm oil and ethanol in a solvent-free system. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2010 , 67, 52-59		74
422	Biodiesel production with immobilized lipase: A review. 2010 , 28, 628-34		524
421	Process considerations for the scale-up and implementation of biocatalysis. 2010 , 88, 3-11		108
420	Improving fatty acid methyl ester production yield in a lipase-catalyzed process using waste frying oils as feedstock. 2010 , 109, 609-14		47
419	A review on biodiesel production using catalyzed transesterification. 2010 , 87, 1083-1095		1626
418	Subcritical hydrolysis and supercritical methylation of supercritical carbon dioxide extraction of Jatropha oil. 2010 , 74, 7-13		17

417	A review on FAME production processes. <i>Fuel</i> , 2010 , 89, 1-9	7.1	399
416	Synthesis and component confirmation of biodiesel from palm oil and dimethyl carbonate catalyzed by immobilized-lipase in solvent-free system. <i>Fuel</i> , 2010 , 89, 3960-3965	7.1	54
415	Economic and ecological aspects of biodiesel production over homogeneous and heterogeneous catalysts. 2010 , 91, 1316-1320		71
414	Production of biodiesel fuel from soybean oil catalyzed by fungus whole-cell biocatalysts in ionic liquids. 2010 , 46, 51-55		80
413	Biodiesel production from supercritical carbon dioxide extracted Jatropha oil using subcritical hydrolysis and supercritical methylation. 2010 , 52, 228-234		49
412	Novel investigation of enzymatic biodiesel reaction by isothermal calorimetry. 2010 , 501, 84-90		10
411	Two-step lipase catalysis for production of biodiesel. 2010 , 49, 207-212		53
410	Transesterification of Swida wilsoniana oil with methanol to biodiesel catalyzed by Lipozyme TL IM in MgCl2-saturated solution. 2010 , 38, 287-291		5
409	Biofuels in China. 2010 , 122, 73-104		6
408	Extremophiles in biofuel synthesis. 2010 , 31, 871-88		116
407	Conversion of Waste Cooking Oil to Biodiesel via Enzymatic Hydrolysis Followed by Chemical Esterification. 2010 , 24, 2016-2019		39
406	A newly isolated fungal strain used as whole-cell biocatalyst for biodiesel production from palm oil. 2010 , 2, 45-51		16
405	Different techniques for the production of biodiesel from waste vegetable oil. 2010 , 7, 183-213		191
404	Lipase Catalyzed Production of Biodiesel. 2010 ,		
403	Alkali Metal Exchanged Zeolite as Heterogeneous Catalyst for Biodiesel Production from Sunflower Oil and Waste Oil: Studies in a Batch/Continuous Slurry Reactor System. 2011 , 9,		3
402	An efficient activity ionic liquid-enzyme system for biodiesel production. 2011 , 13, 444		69
401	Biotechnological Methods to Produce Biodiesel. 2011 , 315-337		9
400	Development of a software tool for in silico biodiesel production from rapeseed oil. 2011 ,		

399	Biodiesel production using Aspergillus niger as a whole-cell biocatalyst in a packed-bed reactor. 2011 , 3, 293-298	19
398	Biodiesel Production from Waste Oils. 2011 , 375-396	4
397	Biodiesel Fuel Production by Enzymatic Transesterification of Oils: Recent Trends, Challenges and Future Perspectives. 2011 ,	14
396	Animal Fat Wastes for Biodiesel Production. 2011 ,	9
395	Bioconversion of Renewables P lant Oils. 2011 , 391-427	
394	Effect of the immobilization protocol on the properties of lipase B from Candida antarctica in organic media: Enantiospecifc production of atenolol acetate. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2011 , 71, 124-132	56
393	Pseudomonas cepacia lipase immobilized onto the electrospun PAN nanofibrous membranes for biodiesel production from soybean oil. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2011 , 72, 40-45	60
392	Glycerol acyl-transfer kinetics of a circular permutated Candida antarctica lipase B. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2011 , 72, 175-180	2
391	Biocatalytic esterification of palm oil fatty acids for biodiesel production using glycine-based cross-linked protein coated microcrystalline lipase. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2011 , 73, 74-79	29
390	Refining technologies for the purification of crude biodiesel. 2011 , 88, 4239-4251	142
390 389	Refining technologies for the purification of crude biodiesel. 2011 , 88, 4239-4251 Novel three-phase bioreactor concept for fatty acid alkyl ester production using R. oryzae as whole cell catalyst. 2011 , 27, 2505-2512	142 7
	Novel three-phase bioreactor concept for fatty acid alkyl ester production using R. oryzae as whole	
389	Novel three-phase bioreactor concept for fatty acid alkyl ester production using R. oryzae as whole cell catalyst. 2011 , 27, 2505-2512 Highly efficient biodiesel production by a whole-cell biocatalyst employing a system with high	7
389	Novel three-phase bioreactor concept for fatty acid alkyl ester production using R. oryzae as whole cell catalyst. 2011 , 27, 2505-2512 Highly efficient biodiesel production by a whole-cell biocatalyst employing a system with high lipase expression in Aspergillus oryzae. 2011 , 90, 1171-7 Yield and component distribution of biodiesel by methanolysis of soybean oil with	7 27
389 388 387	Novel three-phase bioreactor concept for fatty acid alkyl ester production using R. oryzae as whole cell catalyst. 2011, 27, 2505-2512 Highly efficient biodiesel production by a whole-cell biocatalyst employing a system with high lipase expression in Aspergillus oryzae. 2011, 90, 1171-7 Yield and component distribution of biodiesel by methanolysis of soybean oil with lipase-immobilized mesoporous silica. 2011, 142, 37-44 Enzymatic packed-bed reactor integrated with glycerol-separating system for solvent-free	7 27 7
389 388 387 386	Novel three-phase bioreactor concept for fatty acid alkyl ester production using R. oryzae as whole cell catalyst. 2011, 27, 2505-2512 Highly efficient biodiesel production by a whole-cell biocatalyst employing a system with high lipase expression in Aspergillus oryzae. 2011, 90, 1171-7 Yield and component distribution of biodiesel by methanolysis of soybean oil with lipase-immobilized mesoporous silica. 2011, 142, 37-44 Enzymatic packed-bed reactor integrated with glycerol-separating system for solvent-free production of biodiesel fuel. 2011, 55, 66-71	7 27 7 62
389 388 387 386 385	Novel three-phase bioreactor concept for fatty acid alkyl ester production using R. oryzae as whole cell catalyst. 2011, 27, 2505-2512 Highly efficient biodiesel production by a whole-cell biocatalyst employing a system with high lipase expression in Aspergillus oryzae. 2011, 90, 1171-7 Yield and component distribution of biodiesel by methanolysis of soybean oil with lipase-immobilized mesoporous silica. 2011, 142, 37-44 Enzymatic packed-bed reactor integrated with glycerol-separating system for solvent-free production of biodiesel fuel. 2011, 55, 66-71 Enhanced enzymatic transesterification of palm oil to biodiesel. 2011, 55, 119-122	7 27 7 62 36

381	Comparison of methods for preventing methanol inhibition in enzymatic production of biodiesel. 2011 , 28, 1420-1426	11
380	Kinetics of glycerol effect on biodiesel production for optimal feeding of methanol. 2011 , 28, 1908-1912	12
379	Enzymatic large-scale production of biodiesel. 2011 , 23, 230-233	19
378	Characterization of ionic liquid-based biocatalytic two-phase reaction system for production of biodiesel. 2011 , 57, 1628-1637	23
377	Synthesis and characterization of mono-acylglycerols through the glycerolysis of methyl esters obtained from linseed oil. 2011 , 113, 1533-1540	9
376	Selection of CalB immobilization method to be used in continuous oil transesterification: analysis of the economical impact. 2011 , 48, 61-70	115
375	Enzyme deactivation during biodiesel production. 2011 , 166, 358-361	31
374	Transesterification of rapeseed and palm oils in supercritical methanol and ethanol. <i>Biomass and Bioenergy</i> , 2011 , 35, 2999-3011	40
373	Biodiesel production by a mixture of Candida rugosa and Rhizopus oryzae lipases using a supercritical carbon dioxide process. 2011 , 102, 2105-8	96
372	Biodiesel production using heterogeneous catalysts. 2011 , 102, 2151-61	382
371	Enzymatic coproduction of biodiesel and glycerol carbonate from soybean oil and dimethyl carbonate. 2011 , 48, 505-9	71
370	Improvement of enzymatic biodiesel production by controlled substrate feeding using silica gel in solvent free system. 2011 , 49, 402-6	27
369	Combustion performance and emissions of petrodiesel and biodiesels based on various vegetable oils in a semi industrial boiler. <i>Fuel</i> , 2011 , 90, 3078-3092	72
368	Innovative approaches for effective selection of lipase-producing microorganisms as whole cell catalysts for biodiesel production. 2011 , 28, 375-81	7
367	Biocatalytic production of biodiesel from cottonseed oil: Standardization of process parameters and comparison of fuel characteristics. 2011 , 88, 1251-1256	67
366	Biocatalytic transesterification of sunflower and waste cooking oils in ionic liquid media. 2011 , 46, 1475-1480	52
365	Enzymatic production of biodiesel from used/waste vegetable oils: Design of a pilot plant. Renewable Energy, 2011 , 36, 2605-2614	33
364	Transesterification of Cotton-Seed Oil by Heterogeneous Solid Super Base KF/MgO Catalyst. 2011 , 287-290, 1496-1504	2

363	Biochemical catalytic production of biodiesel. 2011 , 134-159	3
362	Continuous production of lipase-catalyzed biodiesel in a packed-bed reactor: optimization and enzyme reuse study. 2011 , 2011,	31
361	Statistical optimisation of methanolysis of jatropha oil using immobilised R. oryzae cells in n-hexane system. 2011 , 68, 31-42	4
360	Application of Supercritical Fluids for Biodiesel Production. 2012 , 375-395	
359	Response Surface Methodology: An Emphatic Tool for Optimized Biodiesel Production Using Rice Bran and Sunflower Oils. <i>Energies</i> , 2012 , 5, 3307-3328	46
358	Advances in biodiesel catalysts and processing technologies. 2012 , 133-153	2
357	Biodiesel From Waste Cooking Oil: Optimization of Production and Monitoring of Exhaust Emission Levels From its Combustion in a Diesel Engine. 2012 , 9, 685-701	21
356	- Biochemical and Nutritional Aspects of Food Processing By-Products. 2012 , 196-215	
355	Stability of Immobilized Candida sp. 99 1 25 Lipase for Biodiesel Production. 2012 , 35, 2120-2124	22
354	Synthetic resin-bound truncated Candida antarctica lipase B for production of fatty acid alkyl esters by transesterification of corn and soybean oils with ethanol or butanol. 2012 , 159, 69-77	8
353	Purification and characterization of lipase from newly isolated Burkholderia multivorans PSU-AH130 and its application for biodiesel production. 2012 , 62, 1615-1624	18
352	Kinetic Resolution of 1,3,6-Tri-O-benzyl-myo-Inositol by Novozym 435: Optimization and Enzyme Reuse. 2012 , 16, 1378-1384	23
351	Comparative analysis for the production of fatty acid alkyl esterase using whole cell biocatalyst and purified enzyme from Rhizopus oryzae on waste cooking oil (sunflower oil). 2012 , 32, 1539-47	41
350	Biodiesel Production from Corn Oil via Enzymatic Catalysis with Ethanol. 2012 , 26, 3034-3041	31
349	Biofuels as Suitable Replacement for Fossil Fuels. 2012 , 451-478	
348	Activity of homogeneous and heterogeneous catalysts, spectroscopic and chromatographic characterization of biodiesel: A review. <i>Renewable and Sustainable Energy Reviews</i> , 2012 , 16, 6303-6316 ^{16.2}	140
347	Preparation of n-3 PUFAs ethyl esters by an efficient biocatalyzed solvent-free process. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2012 , 84, 173-176	3
346	Reaction and Process Engineering. 2012 , 217-247	6

345	Concentration of Docosahexaenoic Acid (DHA) by Selective Alcoholysis Catalyzed by Lipases. JAOCS, Journal of the American Oil ChemistskSociety, 2012 , 89, 1633-1645	1.8	28
344	Process design and evaluation of value-added chemicals production from biomass. 2012 , 17, 1055-1061		14
343	Catalytic Technologies for Biodiesel Fuel Production and Utilization of Glycerol: A Review. <i>Catalysts</i> , 2012 , 2, 191-222	4	157
342	Study of the Elemental Content of Some Natural and Synthetic Eye Cosmetics. 2012 , 3,		1
341	Enzymatic production of biodiesel from Pistacia chinensis bge seed oil using immobilized lipase. <i>Fuel</i> , 2012 , 92, 89-93	7.1	66
340	Ionic liquids for biofuel production: Opportunities and challenges. 2012 , 92, 406-414		171
339	LiCl-induced improvement of multilayer nanofibrous lipase for biodiesel synthesis. 2012 , 103, 266-72		10
338	Biodiesel production using enzymatic transesterification ©urrent state and perspectives. <i>Renewable Energy</i> , 2012 , 39, 10-16	8.1	314
337	The effects of water on biodiesel production and refining technologies: A review. <i>Renewable and Sustainable Energy Reviews</i> , 2012 , 16, 3456-3470	16.2	179
336	Characteristics of menhaden oil ethanolysis by immobilized lipase in supercritical carbon dioxide. Journal of Industrial and Engineering Chemistry, 2012 , 18, 546-550	6.3	15
335	Effect of ionic liquids on enzymatic synthesis of caffeic acid phenethyl ester. 2012 , 35, 235-40		23
334	Continuous biodiesel production using in situ glycerol separation by membrane bioreactor system. 2012 , 35, 69-75		27
333	Improved high-pressure enzymatic biodiesel batch synthesis in near-critical carbon dioxide. 2012 , 35, 105-13		12
332	Producing biodiesel from cottonseed oil using Rhizopus oryzae ATCC #34612 whole cell biocatalysts: Culture media and cultivation period optimization. 2013 , 17, 331-336		21
331	Are plant lipases a promising alternative to catalyze transesterification for biodiesel production?. 2013 , 39, 441-456		45
330	Optimization of enzymatic biodiesel synthesis using RSM in high pressure carbon dioxide and its scale up. 2013 , 36, 775-80		6
329	Lipase-immobilized biocatalytic membranes for biodiesel production. 2013 , 145, 229-32		37
328	Enzymatic biodiesel synthesis in semi-pilot continuous process in near-critical carbon dioxide. 2013 , 171, 1118-27		20

327	Screening, gene sequencing and characterising of lipase for methanolysis of crude palm oil. 2013 , 170, 32-43		2
326	Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing A review. Renewable and Sustainable Energy Reviews, 2013, 27, 622-653	16.2	384
325	Evaluation of biodiesel production using lipase immobilized on magnetic silica nanocomposite particles of various structures. 2013 , 79, 267-273		44
324	Comparison of Novozyme 435 and Purolite D5081 as heterogeneous catalysts for the pretreatment of used cooking oil for biodiesel production. <i>Fuel</i> , 2013 , 111, 186-193	7.1	15
323	Catalyst-free biodiesel preparation from wet Yarrowia lipolytica Po1g biomass under subcritical condition. 2013 , 115, 50-56		8
322	Biodiesel production by enzymatic process using Jatropha oil and waste soybean oil. 2013 , 18, 703-708		22
321	Biodiesel production by transesterification using immobilized lipase. 2013 , 35, 479-90		65
320	Multipoint covalent immobilization of lipases on aldehyde-activated support: Characterization and application in transesterification reaction. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2013 , 94, 57-62		24
319	Real-Time Monitoring of the Transesterification of Soybean Oil and Methanol by Fourier-Transform Infrared Spectroscopy. 2013 , 27, 5957-5961		13
318	Biodiesel production from used cooking oil: A review. <i>Renewable and Sustainable Energy Reviews</i> , 2013 , 27, 445-452	16.2	167
317	Lipase-Catalyzed Transesterification for Biodiesel Production in Ionic Liquid [Emim]Tfo. 2013 , 10, 63-71		11
316	A review on novel processes of biodiesel production from waste cooking oil. 2013 , 104, 683-710		500
315	Ionic liquids and deep eutectic solvents for biodiesel synthesis: a review. 2013 , 88, 3-12		206
314	The development of a capillary microreactor for transesterification reactions using lipase immobilized onto a silica monolith. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2013 , 92, 62-70		23
313	Liquid II quid phase equilibrium studies of organic II queous medium during biodiesel synthesis. 2013 , 104, 540-548		3
312	Multifunctionalized Ordered Mesoporous Carbon as an Efficient and Stable Solid Acid Catalyst for Biodiesel Preparation. 2013 , 117, 6252-6258		61
311	Overview of the production of biodiesel from Waste cooking oil. <i>Renewable and Sustainable Energy Reviews</i> , 2013 , 18, 184-193	16.2	371
310	Immobilised enzymes in biorenewables production. 2013 , 42, 6491-533		198

(2013-2013)

309	54, 84-96	40
308	Microalgal Biodiesel. 2013 , 399-430	
307	Effect of phospholipids on free lipase-mediated methanolysis for biodiesel production. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2013 , 91, 67-71	25
306	Industrial use of immobilized enzymes. 2013 , 42, 6437-74	878
305	Solid acid-catalyzed biodiesel production from microalgal oilThe dual advantage. 2013 , 1, 113-121	51
304	Optimized Enzymatic Production of Waste Oil to Biodiesel. 2013 , 291-294, 284-289	
303	Co-immobilization of Candida rugosa and Rhyzopus oryzae lipases and biodiesel production. 2013 , 30, 1335-1338	39
302	Immobilisation and application of lipases in organic media. 2013 , 42, 6406-36	588
301	Potential Bioresources as Future Sources of Biofuels Production: An Overview. 2013 , 223-258	21
300	Enzymatic coproduction of biodiesel and glycerol carbonate from soybean oil in solvent-free system. 2013 , 53, 154-8	29
299	An integrative process model of enzymatic biodiesel production through ethanol fermentation of brown rice followed by lipase-catalyzed ethanolysis in a water-containing system. 2013 , 52, 118-22	11
298	Synthesis and characterization of ethylic biodiesel from animal fat wastes. <i>Fuel</i> , 2013 , 105, 228-234 7.1	72
297	Effect of reaction rate on converted products from wheat germ oil by immobilized lipase ethanolysis. 2013 , 22, 295-300	12
296	Enzymatic transesterification monitored by an easy-to-use Fourier transform infrared spectroscopy method. 2013 , 8, 133-8	18
295	Biofuels: Production Technologies, Global Profile, and Market Potentials. 2013, 31-74	6
294	Optimized production of biodiesel from waste cooking oil by lipase immobilized on magnetic nanoparticles. 2013 , 14, 24074-86	56
293	Ultrasonic-Assisted Biodiesel Production from Palm Oil Using Adsorption of Homogeneous Catalysts over Solid Sodium Silicate. 2013 , 781-784, 2396-2399	
292	Self-Assembly of Globular-Protein-Containing Block Copolymers. 2013 , 214, 1659-1668	21

291	Kinetic study on lipase catalyzed trans-esterification of palm oil and dimethyl carbonate for biodiesel production. 2013 , 5, 033127	15
290	Enzymatic transesterification of soybean ethanolic miscella for biodiesel production. 2013, 88, n/a-n/a	3
289	The Enzymatic Conversion of Brown Grease to Biodiesel in a Solvent-free Medium. 2013 , 35, 1779-1786	3
288	Biotechnological Applications of Lipases in Biodiesel Production. 2013,	1
287	Biocatalytic Production of Ethyl Esters (Biodiesel) by Enzymatic Transesterification from Synthetic Triolein. 2013 , 2, 53-61	9
286	RSM based optimization of chemical and enzymatic transesterification of palm oil: biodiesel production and assessment of exhaust emission levels. 2014 , 2014, 526105	14
285	Thermomyces lanuginosus Lipase with Closed Lid Catalyzes Elimination of Acetic Acid from 11-Acetyl-Prostaglandin E2. 2014 , 6, 1998-2010	2
284	Chapter 6: BENEFICIAL REUSE OF WASTE PRODUCTS. 2014 , 425-489	1
283	Polymers from Natural Products. 2014 , 427-450	
282	Fed-batch synthesis of galacto-oligosaccharides with Aspergillus oryzae 暇alactosidase using optimal control strategy. 2014 , 30, 59-67	25
281	Biodiesel production via enzymatic catalysis. 2014 , 50, 737-749	6
280	Lipase-Catalyzed Biodiesel Production. 2014 , 119-129	3
279	Enzyme immobilization on gold/Fe-oxide composite nanoparticles using a methionine tag. 2014 , 459, 298-301	8
278	Lignocellulosic Materials as the Potential Source of Catalyst. 2014 , 247-274	
277	Application of pseudo-two phase partitioning bioreactor (P-TPPB) to the production of biodiesel. 2014 , 37, 269-75	4
276	Enzymatic biodiesel: Challenges and opportunities. 2014 , 119, 497-520	342
275	Kinetic modelling of the production of methyl oleate by Celite ^[] supported lipase sol g els. 2014 , 85, 63-70	12
274	Critical Technological Analysis for Enzymatic Biodiesel Production: An Appraisal and Future Directions. 2014 , 303-329	1

273	Batch production of FAEE-biodiesel using a liquid lipase formulation. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2014 , 105, 89-94		44
272	Simultaneous production of fatty acid methyl esters and diglycerides by four recombinant Candida rugosa lipase isozymes. 2014 , 155, 140-5		17
271	Alternative Fuels. 2014 , 121-176		1
270	Kinetic study on lipase-catalyzed biodiesel production from waste cooking oil. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2014 , 99, 43-50		28
269	A review of current technology for biodiesel production: State of the art. <i>Biomass and Bioenergy</i> , 2014 , 61, 276-297	5.3	438
268	Novozym 435-catalyzed synthesis of fatty acid ethyl esters from soybean oil for biodiesel production. <i>Biomass and Bioenergy</i> , 2014 , 61, 131-137	5.3	46
267	Microbial degradation and deterioration of polyethylene 🛭 review. 2014 , 88, 83-90		308
266	Parametric study of the alkali catalyzed transesterification of waste frying oil for Biodiesel production. 2014 , 79, 246-254		85
265	Steam reforming of biofuels for the production of hydrogen-rich gas. 2014 , 145-181		2
264	Optimisation of base-catalysed transesterification of Simarouba glauca oil for biodiesel production. 2014 , 33, 1033-1040		8
263	Concentration of docosahexaenoic and eicosapentaenoic acids by enzymatic alcoholysis with different acyl-acceptors. 2014 , 91, 163-173		20
262	Esterification of cooking oil for biodiesel production using composites Cs2.5H0.5PW12O40/ionic liquids catalysts. 2014 , 4, 305-312		9
261	Reactivity of Palm Fatty Acids for the Non-catalytic Esterification in a Bubble Column Reactor at Atmospheric Pressure. 2014 , 9, 182-193		8
260	A review on potential enzymatic reaction for biofuel production from algae. <i>Renewable and Sustainable Energy Reviews</i> , 2014 , 39, 24-34	16.2	61
259	Preparation of immobilized whole cell biocatalyst and biodiesel production using a packed-bed bioreactor. 2014 , 37, 2189-98		10
258	Biodiesel production using chemical and biological methods [A review of process, catalyst, acyl acceptor, source and process variables. <i>Renewable and Sustainable Energy Reviews</i> , 2014 , 38, 368-382	16.2	104
257	Enzymatic Production of Biodiesel from Millettia pinnata Seed Oil in Ionic Liquids. 2014 , 7, 1519-1528		21
256	Covalent immobilization of Candida antarctica lipase B on nanopolystyrene and its application to microwave-assisted esterification. 2014 , 35, 1555-1564		12

255	Transesterification of castor oil in a solvent-free medium using the lipase from Burkholderia cepacia LTEB11 immobilized on a hydrophobic support. <i>Fuel</i> , 2014 , 117, 458-462	7.1	27
254	Optimized enzymatic synthesis of the food additive polyglycerol polyricinoleate (PGPR) using Novozym ^[] 435 in a solvent free system. 2014 , 84, 91-97		17
253	Modeling the methanolysis of triglyceride catalyzed by immobilized lipase in a continuous-flow packed-bed reactor. 2014 , 126, 151-160		13
252	Dimethyl carbonate-mediated lipid extraction and lipase-catalyzed in situ transesterification for simultaneous preparation of fatty acid methyl esters and glycerol carbonate from Chlorella sp. KR-1 biomass. 2014 , 158, 105-10		37
251	Production characterization and efficiency of biodiesel: a review. <i>International Journal of Energy Research</i> , 2014 , 38, 1233-1259	4.5	40
250	Identification of critical parameters in liquid enzyme-catalyzed biodiesel production. 2014 , 111, 2446-5	3	37
249	Novel strategy for lipase-catalyzed synthesis of biodiesel using blended alcohol as an acyl acceptor. Journal of Molecular Catalysis B: Enzymatic, 2014 , 107, 17-22		17
248	Enzymatic biodiesel production of microalgae lipids under supercritical carbon dioxide: Process optimization and integration. 2014 , 90, 103-113		41
247	Effect of reaction parameters on conversion of krill (Euphausia superba) oil by immobilized lipase ethanolysis. <i>Journal of Industrial and Engineering Chemistry</i> , 2014 , 20, 1097-1102	6.3	7
246	Oleochemical industry future through biotechnology. 2014 , 63, 545-54		40
245	Transesterification catalyzed by Lipozyme TLIM for biodiesel production from low cost feedstock. 2015 ,		O
244	A review of biodiesel generation from non edible seed oils crop using non conventional heterogeneous catalysts. 2015 , 6, 1-12		4
243	Moving towards a Competitive Fully Enzymatic Biodiesel Process. Sustainability, 2015, 7, 7884-7903	3.6	35
242	Immobilization and characterization of a new regioselective and enantioselective lipase obtained from a metagenomic library. 2015 , 10, e0114945		26
241	Preparation of highly reusable biocatalysts by immobilization of lipases on epoxy-functionalized silica for production of biodiesel from canola oil. 2015 , 101, 23-31		69
240	Whole cell three phase bioreactors allow for effective production of fatty acid alkyl esters derived from microalgae lipids. <i>Fuel</i> , 2015 , 144, 25-32	7.1	7
239	Lipase-catalyzed process for biodiesel production: Enzyme immobilization, process simulation and optimization. <i>Renewable and Sustainable Energy Reviews</i> , 2015 , 44, 182-197	16.2	256
238	Kinetic study on esterification of palmitic acid catalyzed by glycine-based crosslinked protein coated microcrystalline lipase. 2015 , 278, 19-23		14

(2015-2015)

237	Enzymatic biodiesel synthesis from yeast oil using immobilized recombinant Rhizopus oryzae lipase. 2015 , 183, 175-80	51
236	Biocatalytic methanolysis activities of cross-linked protein-coated microcrystalline lipase toward esterification/transesterification of relevant palm products. 2015 , 70, 28-34	6
235	Regioselective synthesis of diacylglycerol rosmarinates and evaluation of their antioxidant activity in fibroblasts. 2015 , 117, 1159-1170	7
234	Reactive extraction and fermental transesterification of rapeseed oil with butanol in diesel fuel media. 2015 , 138, 758-764	4
233	Concentration of docosahexaenoic acid by enzymatic alcoholysis with different acyl-acceptors, using tert-butanol as reaction medium. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2015 , 120, 165-172	2
232	Improvement of fungal lipids esterification process by bacterial lipase for biodiesel synthesis. <i>Fuel</i> , 2015 , 160, 196-204	8
231	Kinetic study on free lipase NS81006-catalyzed biodiesel production from soybean oil. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2015 , 121, 22-27	26
230	Current status and new developments of biodiesel production using fungal lipases. <i>Fuel</i> , 2015 , 159, 52-6 7 .1	98
229	Production of Biodiesel via Enzymatic Palm Oil Ethanolysis: Kinetic Study. 2015 , 37, 539-544	2
228	Highly Active Biocatalytic Coatings from Protein-Polymer Diblock Copolymers. 2015 , 7, 14660-9	34
227	Expression and Characterization of a Novel Thermo-Alkalistable Lipase from Hyperthermophilic Bacterium Thermotoga maritima. 2015 , 176, 1482-97	4
226	Immobilized lipase from Schizophyllum commune ISTL04 for the production of fatty acids methyl esters from cyanobacterial oil. 2015 , 188, 214-8	25
225	Enhancing the enzymatic synthesis of alkyl esters by coupling transesterification to an efficient glycerol separation system. <i>Fuel</i> , 2015 , 153, 13-18	6
224	Highly efficient enzymatic biodiesel production promoted by particle-induced emulsification. 2015 , 8, 58	28
223	Enhancing biodiesel production via a synergic effect between immobilized Rhizopus oryzae lipase and Novozym 435. 2015 , 137, 298-304	39
222	Membrane reactors for biodiesel production and processing. 2015 , 289-312	8
221	Potassium modified layered Ln2O2CO3 (Ln: La, Nd, Sm, Eu) materials: efficient and stable heterogeneous catalysts for biofuel production. 2015 , 17, 3600-3608	21
220	Methyl Oleate Production in a Supported Sol © el Immobilized Lipase Packed Bed Reactor. 2015 , 29, 3168-3175	7

219	Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products. <i>Renewable and Sustainable Energy Reviews</i> , 2015 , 47, 634-653	16.2	139
218	Enzymatic transesterification of waste vegetable oil to produce biodiesel. 2015 , 121, 229-35		58
217	Transesterification of fish oil by lipase immobilized in supercritical carbon dioxide. 2015 , 81, 1113-1125		6
216	Biocatalysis for biomass valorization. 2015 , 3,		9
215	Analysis of multiphasic behavior during the ethyl esterification of fatty acids catalyzed by a fermented solid with lipolytic activity in a packed-bed bioreactor in a closed-loop batch system. <i>Fuel</i> , 2015 , 159, 364-372	7.1	23
214	Lipase/enzyme catalyzed biodiesel production from Prunus mahaleb: A comparative study with base catalyzed biodiesel production. 2015 , 76, 1049-1054		11
213	Production of Fatty Acid Ethyl Esters from Waste Cooking Oil Using Novozym 435 in a Solvent-Free System. 2015 , 29, 8074-8081		14
212	Effects of methanol on lipases: molecular, kinetic and process issues in the production of biodiesel. 2015 , 10, 22-30		102
211	An overview of the role of ionic liquids in biodiesel reactions. <i>Journal of Industrial and Engineering Chemistry</i> , 2015 , 21, 1-10	6.3	80
210	Literature Review. 2015 , 23-63		
209	The Kinetics of Interesterfication on Waste Cooking Oil (Sunflower Oil) for the Production of Fatty Acid Alkyl Esters using a Whole Cell Biocatalyst (Rhizopus oryzae) and Pure Lipase Enzyme. 2015 , 12, 1012-1017		10
208	Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches. <i>Renewable and Sustainable Energy Reviews</i> , 2015 , 41, 1447-1464	16.2	195
207	Plant latex lipase as biocatalysts for biodiesel production. 2016 , 15, 1487-1502		13
206	Diesel Fuels for Compression Ignition Internal Combustion Engines. 2016, 1-34		
205	Utilization of discard bovine bone as a support for immobilization of recombinant Rhizopus oryzae lipase expressed in Pichia pastoris. 2016 , 32, 1246-1253		2
204	Kinetic modelling of enzymatic biodiesel production from castor oil: Temperature dependence of the Ping Pong parameters. 2016 , 94, 512-517		10
203	The shape of proteinpolymer conjugates in dilute solution. 2016 , 54, 292-302		14
202	Engineering of lipase-catalyzed transesterification reaction media using water and diethylamine. 2016 , 34, 253-264		5

201	Recycling Rhizopus oryzae resting cells as biocatalyst to prepare near eutectic palmitic-stearic acid mixtures from non-edible fat. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2016 , 134, 172-177	4
200	Enhancing biodiesel production by immobilized whole cells by optimizing reaction conditions and adding glycerol and water. 2016 , 21, 274-282	2
199	A robust process for lipase-mediated biodiesel production from microalgae lipid. 2016 , 6, 48515-48522	11
198	A review of the enzymatic hydroesterification process for biodiesel production. <i>Renewable and Sustainable Energy Reviews</i> , 2016 , 61, 245-257	89
197	Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia. <i>Renewable and Sustainable Energy Reviews</i> , 2016 , 61, 302-318	82
196	Application of Poly(styrene-co-divinylbenzene) Macroporous Microparticles as a Catalyst Support in the Enzymatic Synthesis of Biodiesel. 2016 , 24, 264-273	5
195	Sulfonated porous carbon catalysts for biodiesel production: Clear effect of the carbon particle size on the catalyst synthesis and properties. 2016 , 149, 209-217	41
194	Towards sustainable biofuel production: Design of a new biocatalyst to biodiesel synthesis from waste oil and commercial ethanol. 2016 , 139, 495-503	28
193	Lipase-Catalyzed Production of Biodiesel by Hydrolysis of Waste Cooking Oil Followed by Esterification of Free Fatty Acids. <i>JAOCS, Journal of the American Oil ChemistskSociety</i> , 2016 , 93, 1615-1624	31
192	Production of biodiesel from Citrus limetta seed oil. 2016 , 38, 2994-3000	12
191	Ultrasonic and microwave effects on crystalline Mn(II) carbonate catalyzed biodiesel production using watermelon (Citrullus vulgaris) seed oil and alcohol (fibrous flesh) as exclusive green 2 feedstock. <i>Biofuels</i> , 2016 , 7, 735-741	4
190	Kinetic model of biodiesel production catalyzed by free liquid lipase from Thermomyces lanuginosus. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2016 , 133, 55-64	29
189	High-yielding, one-pot, and green production of biodiesel from waste grease using wet cells of a recombinant Escherichia coli strain as catalyst. 2016 , 115, 30-37	7
188	Lipase-catalyzed methanolysis of microalgae oil for biodiesel production and PUFAs concentration. 2016 , 84, 44-47	21
188		2195
	2016, 84, 44-47 Chemical modification of waste cooking oil to improve the physical and rheological properties of	
187	2016, 84, 44-47 Chemical modification of waste cooking oil to improve the physical and rheological properties of asphalt binder. 2016, 126, 218-226	95

183	The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. 2016 , 25, 21-31		209
182	Response surface optimization of biodiesel production using immobilized Rhizopus oryzae cells. <i>Biofuels</i> , 2016 , 7, 457-464	2	1
181	Lipase oriented-immobilized on dendrimer-coated magnetic multi-walled carbon nanotubes toward catalyzing biodiesel production from waste vegetable oil. <i>Fuel</i> , 2016 , 178, 172-178	7.1	78
180	Continuous biodiesel conversion via enzymatic transesterification catalyzed by immobilized Burkholderia lipase in a packed-bed bioreactor. 2016 , 168, 340-350		52
179	Assessing the Enzyme Activity of Different Plant Extracts of Biomasses from Sub-Saharan Africa for Ethyl Biodiesel Production. 2016 , 30, 2356-2364		6
178	Trends in catalytic production of biodiesel from various feedstocks. <i>Renewable and Sustainable Energy Reviews</i> , 2016 , 57, 496-504	16.2	203
177	Plasma Functionalized Multiwalled Carbon Nanotubes for Immobilization of Candida antarctica Lipase B: Production of Biodiesel from Methanolysis of Rapeseed Oil. 2016 , 178, 974-89		13
176	Ultrasound assisted intensification of biodiesel production using enzymatic interesterification. 2016 , 29, 67-75		96
175	Transesterification of rapeseed oil by butanol and separation of butyl ester. 2017, 155, 28-33		21
174	A review of ionic liquids as catalysts for transesterification reactions of biodiesel and glycerol carbonate production. 2017 , 59, 44-93		54
173	Regioselectivity and fatty acid specificity of crude lipase extracts from Pseudozyma tsukubaensis, Geotrichum candidum, and Candida rugosa. 2017 , 119, 1600302		12
172	Various Types of Lipases Immobilized on Dendrimer-Functionalized Magnetic Nanocomposite and Application in Biodiesel Preparation. 2017 , 31, 4372-4381		20
171	Efficient simultaneous production of biodiesel and glycerol carbonate via statistical optimization. Journal of Industrial and Engineering Chemistry, 2017, 51, 49-53	6.3	17
170	Biodiesel fuel production by enzymatic microalgae oil transesterification with ethanol. 2017 , 9, 023101		15
169	Biodiesel Production Through Chemical and Biochemical Transesterification. 2017, 465-485		16
168	Biodiesel synthesis in a solvent-free system by recombinant Rhizopus oryzae: comparative study between a stirred tank and a packed-bed batch reactor. 2017 , 35, 35-40		7
167	Enzyme catalyzed biodiesel production from rubber seed oil containing high free fatty acid. 2017 , 14, 687-693		18
166	Biorefineries: Industrial-Scale Production Paving the Way for Bioeconomy. 2017 , 233-270		4

165	Potential and challenges for large-scale application of biodiesel in automotive sector. 2017 , 61, 113-149	9	103
164	Immobilized Enzyme Technology for Biodiesel Production. 2017 , 67-106		6
163	A two-step enzymatic strategy to produce ethyl esters using frying oil as substrate. 2017 , 108, 52-55		14
162	Evaluation of different lipase biocatalysts in the production of biodiesel from used cooking oil: Critical role of the immobilization support. <i>Fuel</i> , 2017 , 200, 1-10	7.1	101
161	Lipase-Mediated Synthesis of Fatty Acid Esters Using a Blending Alcohol Consisting of Methanol and 1-Butanol. <i>JAOCS, Journal of the American Oil ChemistskSociety</i> , 2017 , 94, 559-565	1.8	2
160	Optimization of batch Novozym435-catalyzed transesterification of waste cooking oil with methanol for biodiesel production in a solvent-free medium. 2017 , 39, 911-925		6
159	Optimized synthesis of biodiesel using lipase from Pacific white shrimp (Litopenaeus vannamei) hepatopancreas. <i>Renewable Energy</i> , 2017 , 104, 139-147	8.1	28
158	Enhancement of methanol resistance of Yarrowia lipolytica lipase 2 using tyclodextrin as an additive: Insights from experiments and molecular dynamics simulation. 2017 , 96, 157-162		6
157	State of the art of biodiesel production under supercritical conditions. 2017, 63, 173-203		90
156	Alternative Oils Tested as Feedstocks for Enzymatic FAMEs Synthesis: Toward a More Sustainable Process. 2017 , 33, 1209-1217		4
155	Solvent-Free Biodiesel Production Catalyzed by Crude Lipase Powder from Seeds: Effects of Alcohol Polarity, Glycerol, and Thermodynamic Water Activity. 2017 , 65, 8683-8690		7
154	Biodiesel synthesis assisted by ultrasonication using engineered thermo-stable Proteus vulgaris lipase. <i>Fuel</i> , 2017 , 208, 430-438	7.1	14
153	Production of Porous Carbons from Resorcinol-Formaldehyde Gels: Applications. 2017, 175-196		1
152	Burkholderia cepacia lipase immobilized on heterofunctional magnetic nanoparticles and its application in biodiesel synthesis. 2017 , 7, 16473		33
151	Use of CaO and Na 3 PO 4 Catalysts in the Synthesis of Biodiesel and Investigation of Fuel Properties. <i>Materials Today: Proceedings</i> , 2017 , 4, 11111-11117	1.4	2
150	Biodiesel preparation from microalgae lipid by two-step lipase catalysis. 2017 , 35, 329-336		
149	The use of alternative solvents in enzymatic biodiesel production: a review. <i>Biofuels, Bioproducts and Biorefining</i> , 2017 , 11, 168-194	5.3	36
148	Studies on performance evaluation of a green plasticizer made by enzymatic esterification of furfuryl alcohol and castor oil fatty acid. 2017 , 157, 1076-1084		19

147	Covalent immobilization of Candida antarctica lipase on core-shell magnetic nanoparticles for production of biodiesel from waste cooking oil. <i>Renewable Energy</i> , 2017 , 101, 593-602	8.1	124
146	Recent insights into continuous-flow biodiesel production via catalytic and non-catalytic transesterification processes. 2017 , 185, 376-409		87
145	Rotating packed bed reactor for enzymatic synthesis of biodiesel. 2017 , 224, 292-297		32
144	Microbial Production of Added-Value Ingredients: State of the Art. 2017 , 1-32		1
143	Emerging Green Technologies for Biodiesel Production. 2017,		3
142	Identification and immobilization of a novel cold-adapted esterase, and its potential for bioremediation of pyrethroid-contaminated vegetables. 2017 , 16, 149		27
141	Optimization of bauhinia variegata biodiesel production and its performance, combustion and emission study on diesel engine. <i>Renewable Energy</i> , 2018 , 122, 561-575	8.1	38
140	Enzymatic ethanolysis of fish oil for selective concentration of polyunsaturated fatty acids (PUFAs) with flexible production of corresponding glycerides and ethyl esters. 2018 , 93, 2399-2405		11
139	Lipase catalysed biodiesel synthesis with integrated glycerol separation in continuously operated microchips connected in series. 2018 , 47, 80-88		19
138	Lipase immobilised on silica monoliths as continuous-flow microreactors for triglyceride transesterification. 2018 , 3, 68-74		10
137	Enzymatic production of biodiesel from insect fat using methyl acetate as an acyl acceptor: Optimization by using response surface methodology. 2018 , 158, 168-175		65
136	Synthesis of Fatty Acid Methyl Esters Using Mixed Enzyme in a Packed Bed Reactor. 2018 , 67, 321-326		1
135	Stabilization of Lipase in Polymerized High Internal Phase Emulsions. 2018 , 66, 3619-3623		9
134	Burkholderia cepacia lipase: A versatile catalyst in synthesis reactions. 2018 , 115, 6-24		52
133	Ionic liquids as a potential solvent for lipase-catalysed reactions: A review. 2018 , 251, 150-166		81
132	Biodiesellechnical Viability for India. 2018 , 343-359		
131	Biodiesel Synthesis: Use of Activated Carbon as Support of the Catalysts. 2018 , 117-152		2
130	Renewable boronic acid affiliated glycerol nano-adsorbents for recycling enzymatic catalyst in biodiesel fuel production. 2018 , 54, 12475-12478		3

129	Lipase NS40116 as catalyst for enzymatic transesterification of abdominal chicken fat as substrate. <i>Bioresource Technology Reports</i> , 2018 , 4, 214-217	4.1	13
128	Transforming food waste: how immobilized enzymes can valorize waste streams into revenue streams. 2018 , 2, 19		50
127	Microstructured devices for biodiesel production by transesterification. <i>Biomass Conversion and Biorefinery</i> , 2018 , 8, 1005-1020	2.3	13
126	In situ lipase-catalyzed transesterification in rice bran for synthesis of fatty acid methyl ester. 2018 , 120, 140-146		20
125	Biodiesel Production via Trans-Esterification Using Immobilized on Cellulosic Polyurethane. 2018 , 3, 68	304-68°	1117
124	Biodiesel Production Using Lipases. 2018 , 203-238		2
123	Study of a reactor model for enzymatic reactions in continuous mode coupled to an ultrasound bath for esters production. 2018 , 41, 1589-1597		10
122	The Realm of Lipases in Biodiesel Production. 2018 , 247-288		5
121	Easy reuse of magnetic cross-linked enzyme aggregates of lipase B from Candida antarctica to obtain biodiesel from Chlorella vulgaris lipids. 2018 , 126, 451-457		21
120	Solid-State Fermentation for the Production of Lipases for Environmental and Biodiesel Applications. 2018 , 123-168		6
119	Production of lipases in cottonseed meal and application of the fermented solid as biocatalyst in esterification and transesterification reactions. <i>Renewable Energy</i> , 2019 , 130, 574-581	8.1	43
118	A novel process for biodiesel production from sludge palm oil. 2019 , 6, 2838-2844		8
117	Comparative analysis of immobilized biocatalyst: study of process variables in trans-esterification reaction. 2019 , 9, 443		3
116	Review of diesel production from renewable resources: Catalysis, process kinetics and technologies. 2019 , 10, 821-839		37
115	Biodiesel from waste frying oils: Methods of production and purification. 2019 , 184, 205-218		96
114	Multi-faceted strategy based on enzyme immobilization with reactant adsorption and membrane technology for biocatalytic removal of pollutants: A critical review. 2019 , 37, 107401		84
113	Nanobiocatalytic processes for producing biodiesel from algae. 2019 , 299-326		5
112	Biodiesel preparation from Phoenix tree seed oil using ethanol as acyl acceptor. 2019 , 137, 270-275		15

Biodiesel: Use of Green Feedstocks and Catalysts. **2019**, 169-184

110	Efficient Biodiesel Conversion from Microalgae Oil of Schizochytrium sp <i>Catalysts</i> , 2019 , 9, 341	4	3
109	Sustainable bioconversion of food waste into high-value products by immobilized enzymes to meet bio-economy challenges and opportunities - A review. 2019 , 123, 226-240		74
108	Reuse of immobilized lipases in the transesterification of waste fish oil for the production of biodiesel. <i>Renewable Energy</i> , 2019 , 140, 1-8	8.1	46
107	Two phase enzymatic membrane reactor for the production of biodiesel from crude Eruca sativa oil. <i>Renewable Energy</i> , 2019 , 140, 104-110	8.1	14
106	Fermented Solids and Their Application in the Production of Organic Compounds of Biotechnological Interest. 2019 , 169, 125-146		2
105	Ultrasonic emulsification assisted immobilized Burkholderia cepacia lipase catalyzed transesterification of soybean oil for biodiesel production in a novel reactor design. <i>Renewable Energy</i> , 2019 , 135, 1025-1034	8.1	28
104	Techno-economical and Experimental Analysis of Biodiesel Production from Used Cooking Oil. 2019 , 4, 1		23
103	Sustainability Assessment of Biodiesel Production in India from Different Edible Oil Crops Using Emergy Analysis. 2019 , 107-134		
102	Biocatalytic esterification of fatty acids using a low-cost fermented solid from solid-state fermentation with. 2019 , 9, 38		6
101	Lab and pilot plant FAME production through enzyme-catalyzed reaction of low-cost feedstocks. Bioresource Technology Reports, 2019 , 5, 150-156	4.1	27
100	Comparison of acid, basic and enzymatic catalysis on the production of biodiesel after RSM optimization. <i>Renewable Energy</i> , 2019 , 135, 1-9	8.1	60
99	Microwave mediated production of FAME from waste cooking oil: Modelling and optimization of process parameters by RSM and ANN approach. <i>Fuel</i> , 2019 , 237, 40-49	7.1	45
98	Application of sulfonated nanoporous carbons as acid catalysts for Fischer esterification reactions. 2019 , 12, 3172-3182		22
97	Synthesis of fatty acid ethyl esters with conventional and microwave heating systems using the free lipase B from Candida antarctica. 2019 , 37, 25-34		8
96	Improving the reusability of an immobilized lipase-ionic liquid system for biodiesel production. <i>Biofuels</i> , 2019 , 10, 635-641	2	7
95	Enzymatic production of biodiesel from waste oil in ionic liquid medium. <i>Biofuels</i> , 2019 , 10, 463-472	2	27
94	Enzymatic biodiesel production from crude Eruca sativa oil using Candida rugosa lipase in a solvent-free system using response surface methodology. <i>Biofuels</i> , 2020 , 11, 93-99	2	25

(2020-2020)

93	Utilization of Atlantic Salmon By-product Oil for Omega-3 Fatty Acids Rich 2-Monoacylglycerol Production: Optimization of Enzymatic Reaction Parameters. 2020 , 11, 153-163		5
92	Influence of acyl acceptor blends on the ester yield and fuel properties of biodiesel generated by whole-cell catalysis of cottonseed oil. <i>Fuel</i> , 2020 , 259, 116258	7.1	3
91	. 2020,		2
90	Conversion of Lipids to Biodiesel via Esterification and Transesterification. 2020 , 439-468		
89	Synthesis and characterization of biodiesel from waste cooking oil by lipase immobilized on genipin cross-linked chitosan beads: A green approach. 2020 , 17, 84-93		12
88	Up-grading of Waste Oil. 2020 , 121-147		1
87	Lipid Extraction Maximization and Enzymatic Synthesis of Biodiesel from Microalgae. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 6103	2.6	14
86	. 2020,		
85	Combining technology with liquid-formulated lipases for in-spec biodiesel production. 2020,		9
84	Developing an immobilized low-cost biocatalyst for FAME synthesis. 2020 , 29, 101752		6
83	Ultrasound-assisted production of biodiesel using engineered methanol tolerant Proteus vulgaris lipase immobilized on functionalized polysulfone beads. 2020 , 68, 105211		11
82	One Pot Use of Combilipases for Full Modification of Oils and Fats: Multifunctional and Heterogeneous Substrates. <i>Catalysts</i> , 2020 , 10, 605	4	35
81	A Review on Bio-Based Catalysts (Immobilized Enzymes) Used for Biodiesel Production. <i>Energies</i> , 2020 , 13, 3013	3.1	34
80	Ethyl esters production catalyzed by immobilized lipases is influenced by n-hexane and ter-amyl alcohol as organic solvents. 2020 , 43, 2107-2115		2
79	Synthesis and characterization of monoacylglycerols through glycerolysis of ethyl esters derived from linseed oil by green processes 2020 , 10, 2327-2336		4
78	Biodiesel continuous esterification process experimental study and equipment design. <i>Biomass Conversion and Biorefinery</i> , 2020 , 1	2.3	2
77	Conversion of waste frying palm oil into biodiesel using free lipase A from Candida antarctica as a novel catalyst. <i>Fuel</i> , 2020 , 267, 117323	7.1	46
76	A new reactor for enzymatic synthesis of biodiesel from waste cooking oil: A static-mixed reactor pilot study. <i>Renewable Energy</i> , 2020 , 154, 270-277	8.1	13

75	Materials and Methods for Biodiesel Production. Sustainable Agriculture Reviews, 2020, 179-204	1.3	2
74	Application of microalgae for the production of biodiesel fuel. 2020 , 353-365		2
73	Optimization of the Production of Enzymatic Biodiesel from Residual Babassu Oil (Orbignya sp.) via RSM. <i>Catalysts</i> , 2020 , 10, 414	4	33
72	Ultrasonic and microwave effects on Prussian blue catalysed high-quality biodiesel production using Watermelon (Citrullus vulgaris) seed oil and alcohol extract (from fibrous flesh) as an exclusive green feedstock. <i>Biofuels</i> , 2021 , 12, 597-603	2	1
71	Candida rugosa lipase immobilization over SBA-15 to prepare solid biocatalyst for cotton seed oil transesterification. <i>Materials Today: Proceedings</i> , 2021 , 36, 763-768	1.4	3
70	Kinetics of enzymatic cetyl palmitate production by esterification with fermented solid of Burkholderia contaminans in the presence of organic solvent. <i>Reaction Kinetics, Mechanisms and Catalysis</i> , 2021 , 132, 139-153	1.6	2
69	Biodiesel production by lipase-catalyzed reactions: bibliometric analysis and study of trends. <i>Biofuels, Bioproducts and Biorefining</i> , 2021 , 15, 1141	5.3	9
68	A Comprehensive Review on Oil Extraction and Biodiesel Production Technologies. <i>Sustainability</i> , 2021 , 13, 788	3.6	34
67	Waste of Nile Tilapia (Oreochromis niloticus) to Biodiesel Production by Enzymatic Catalysis (Oreochromis pactorial Experimental Design. <i>Industrial & Design & Desig</i>	3.9	1
66	Statistical Optimization of Biodiesel Production from Salmon Oil via Enzymatic Transesterification: Investigation of the Effects of Various Operational Parameters. <i>Processes</i> , 2021 , 9, 700	2.9	2
65	Biodiesel production with enzymatic technology: progress and perspectives. <i>Biofuels, Bioproducts and Biorefining</i> , 2021 , 15, 1526-1548	5.3	5
64	A Review on the Use of Bio/Nanostructured Heterogeneous Catalysts in Biodiesel Production. 2021 , 59-91		2
63	Evaluation on feedstock, technologies, catalyst and reactor for sustainable biodiesel production: A review. <i>Journal of Industrial and Engineering Chemistry</i> , 2021 , 98, 60-81	6.3	35
62	Advances in Enzyme and Ionic Liquid Immobilization for Enhanced in MOFs for Biodiesel Production. <i>Molecules</i> , 2021 , 26,	4.8	7
61	Biocatalytic Processes for Biodiesel Production. 2021 , 1-58		1
60	Development of a green integrated process for biodiesel esters production: Use of fermented macaBa cake as biocatalyst for macaBa acid oil transesterification. <i>JAOCS, Journal of the American Oil ChemistskSociety</i> , 2021 , 98, 825-835	1.8	2
59	Biodiesel Production From Lignocellulosic Biomass Using Oleaginous Microbes: Prospects for Integrated Biofuel Production. <i>Frontiers in Microbiology</i> , 2021 , 12, 658284	5.7	14
58	A bio-based hydrolysis catalyst for the transesterification of triglycerides. <i>Bioresource Technology Reports</i> , 2021 , 15, 100750	4.1	1

(2015-2021)

57	Mitigation of CO2 emissions by transforming to biofuels: Optimization of biofuels production processes. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 150, 111487	16.2	4
56	Recent advances in biodiesel production: Challenges and solutions. <i>Science of the Total Environment</i> , 2021 , 794, 148751	10.2	24
55	Recent advances in sustainable production and catalytic transformations of fatty acid methyl esters. <i>Sustainable Energy and Fuels</i> , 2021 , 5, 4512-4545	5.8	8
54	Valorization of Waste Frying Oils and Animal Fats for Biodiesel Production. 2013 , 671-693		11
53	Lipase Production in Solid-State Fermentation Monitoring Biomass Growth of Aspergillus niger Using Digital Image Processing. 2007 , 431-443		3
52	Produktion und Nutzung von Pflanzen l kraftstoffen. 2016 , 1339-1445		5
51	Biodiesel and the Potential Role of Microbial Lipases in Its Production. <i>Microorganisms for Sustainability</i> , 2019 , 83-99	1.1	4
50	Biodiesel Review on Recent Advancements in Production. 2020, 117-129		3
49	Application of heterogeneous catalysis to biodiesel synthesis using microalgae oil. <i>Frontiers of Environmental Science and Engineering</i> , 2021 , 15, 1	5.8	10
48	Biodiversity Research and Innovation in Antarctica and the Southern Ocean.		1
47	Production of Monoacylglycerols through Lipase-Catalyzed Reactions. 2009 , 181-197		2
46	Lipase Reactions Applicable to Purification of Oil- and Fat-Related Materials. 2005,		1
45	Lipase-catalyzed biodiesel synthesis with different acyl acceptors. <i>Acta Periodica Technologica</i> , 2008 , 161-169	0.8	11
44	Biodiesel production by enzyme-catalyzed transesterification. <i>Hemijska Industrija</i> , 2005 , 59, 49-59	0.6	8
43	Lipases as biocatalysts for biodiesel production. <i>Hemijska Industrija</i> , 2010 , 64, 1-8	0.6	2
42	A Comparative Study of Immobilized-Whole Cell and Commercial Lipase as a Biocatalyst for Biodiesel Production from Soybean Oil. 2011 ,		5
41	APPLICATION OF DOLOMITE AS A HETEROGENEOUS CATALYST OF BIODIESEL SYNTHESIS. Transport, 2018 , 33, 1155-1161	1.4	4
40	Optimization of oligoglycerol fatty acid esters preparation catalyzed by Lipozyme 435. <i>Grasas Y Aceites</i> , 2015 , 66, e088	1.3	6

39	A Laboratory Study of the Effect of Temperature on Densities and Viscosities of Binary and Ternary Blends of Soybean Oil, Soy Biodiesel and Petroleum Diesel Oil. <i>Advances in Chemical Engineering and Science</i> , 2012 , 02, 444-452	0.4	15
38	Biodiesel Production from Waste Cooking Oil Using Sulfuric Acid and Microwave Irradiation Processes. <i>Journal of Environmental Protection</i> , 2012 , 03, 107-113	0.6	99
37	Sfitesis quimioenzimfica de literes metficos de fiidos grasos a partir de aceite residual y cliculo de sus parfhetros fisicoquíhicos. <i>TECNOCIENCIA (Misco)</i> , 2021 , 15, 26-37	O	
36	Strategies for the Immobilization of Eversa Transform 2.0 Lipase and Application for Phospholipid Synthesis. <i>Catalysts</i> , 2021 , 11, 1236	4	1
35	Application of Lipases to Industrial-Scale Purification of Oil- and Fat-Related Compounds. 2005, 8-1-8-2	27	
34	Oil and Fat Processing by Lipase-Catalyzed Reactions. <i>Oleoscience</i> , 2008 , 8, 3-9	0.1	1
33	Technologies for the conversion of food waste to energy: a research review. <i>Food Manufacturing Efficiency</i> , 2009 , 2, 35-58		
32	Chapter 4:Enzymatic Biodiesel. <i>RSC Green Chemistry</i> , 2010 , 131-180	0.9	1
31	Studies on Base Catalyzed Transesterification of Karanja Oil. <i>Journal of Engineering and Applied Sciences</i> , 2010 , 5, 316-319	1.3	O
30	Enzymatic processing of omega-3 specialty oils. 2012 , 141-164		
29	Enzymes as Biocatalysts for Lipid-based Bioproducts Processing. 333-358		
28	Biodiesel production using lipase producing bacteria isolated from button mushroom bed. <i>Journal of Mushrooms</i> , 2015 , 13, 56-62		
27	Analysis of Fatty Acid Positional Distribution in Triacylglycerols. 2017 , 185-202		
26	How the biodiesel from immobilized enzymes production is going on: An advanced bibliometric evaluation of global research. <i>Renewable and Sustainable Energy Reviews</i> , 2022 , 153, 111765	16.2	9
25	Sulfonated carbon: synthesis, properties and production of biodiesel. <i>Chemical Engineering and Processing: Process Intensification</i> , 2022 , 170, 108668	3.7	1
24	Biological Methods in Biodiesel Production and Their Environmental Impact. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 10946	2.6	3
23	Role of Operational Parameters to Enhance Biofuel Production. <i>Clean Energy Production Technologies</i> , 2021 , 165-188	0.8	
22	Production of Jet Biofuels by Catalytic Hydroprocessing of Esters and Fatty Acids: A Review. <i>Catalysts</i> , 2022 , 12, 237	4	1

21	Heterogeneous Catalyzed Synthesis of Biodiesel from Crude Sunflower Oil. <i>Journal of the Nigerian Society of Physical Sciences</i> , 16-19		O
20	Lewatit-immobilized lipase from Bacillus pumilus as a new catalyst for biodiesel production from tallow: Response surface optimization, fuel properties and exhaust emissions. <i>Chemical Engineering Research and Design</i> , 2022 , 160, 286-296	5.5	O
19	Effect of Different Parameters on Catalytic Production of Biodiesel from Different Oils. <i>ChemBioEng Reviews</i> , 2022 , 9, 6-20	5.2	1
18	Emerging biotechnological strategies for food waste management: A green leap towards achieving high-value products and environmental abatement. <i>Energy Nexus</i> , 2022 , 6, 100077		1
17	A multi-component reaction for covalent immobilization of lipases on amine-functionalized magnetic nanoparticles: production of biodiesel from waste cooking oil. <i>Bioresources and Bioprocessing</i> , 2022 , 9,	5.2	1
16	Biodiesel as renewable biofuel produced via enzyme-based catalyzed transesterification. <i>Energy Nexus</i> , 2022 , 100087		1
15	Application of Microalgae Biomass for Biodiesel Fuel Production. <i>Energies</i> , 2022 , 15, 4178	3.1	2
14	Sustainability of biodiesel production using immobilized enzymes: A strategy to meet future bio-economy challenges. <i>International Journal of Energy Research</i> ,	4.5	2
13	Biodiesel production from nonedible feedstocks catalyzed by nanocatalysts: A review. <i>Biomass and Bioenergy</i> , 2022 , 163, 106509	5.3	O
12	Design and development of a new static mixing bioreactor for enzymatic bioprocess: Application in biodiesel production. 2022 , 197, 922-931		O
11	Sfitesis quimioenzim t ica de literes metlicos de liidos grasos a partir de aceite residual y cliculo de sus parthetros fisicoquínicos. 2021 , 15, 755		О
10	Valorization of Waste Cooking Oil into Biodiesel via Bacillus stratosphericus Lipase Amine-Functionalized Mesoporous SBA-15 Nanobiocatalyst. 2022 , 2022, 1-20		O
9	Quality biodiesel via biotransesterification from inedible renewable sources. 2022, 379, 134653		2
8	Biodiesel Production from Transesterification with Lipase from Pseudomonas cepacia Immobilized on Modified Structured Metal Organic Materials.		O
7	Enzyme immobilization approaches. 2023 , 37-54		0
6	Acyl Migration of 2-Monoacylglycerols Rich in DHA: Effect of Temperature and Solvent Medium. 2023 , 135501		O
5	Utilization of green solvents for synthesis of biodiesel. 2023 , 1-16		О
4	Performance evaluation studies of PEG esters as biolubricant base stocks derived from non-edible oil sources via enzymatic esterification. 2023 , 195, 116429		O

A comprehensive review on nanocatalysts and nanobiocatalysts for biodiesel production in Indonesia, Malaysia, Brazil and USA. **2023**, 319, 138003

Use of lipases for the production of biofuels. **2023**, 621-648

О

Biodiesel Production Catalyzed by Lipase Extract Powder of Leonotis nepetifolia (Christmas Candlestick) Seed. **2023**, 16, 2848

Ο