Catalytic activity of mesoporous silicate-immobilized c

Journal of Molecular Catalysis B: Enzymatic 17, 1-8 DOI: 10.1016/s1381-1177(01)00072-8

Citation Report

#	Article	IF	CITATIONS
1	Determination of Phase Composition of MCM-48/Lamellar Phase Mixtures Using Nitrogen Adsorption and Thermogravimetry. Chemistry of Materials, 2002, 14, 4434-4442.	3.2	26
2	Surface-Specific Zeolite-Binding Proteins. Advanced Materials, 2002, 14, 1853-1856.	11.1	65
3	Transesterification Catalyzed by Trypsin Supported on MCM-41. Catalysis Letters, 2003, 88, 183-186.	1.4	21
4	Argon Adsorption at 77 K as a Useful Tool for the Elucidation of Pore Connectivity in Ordered Materials with Large Cagelike Mesopores. Chemistry of Materials, 2003, 15, 2942-2949.	3.2	148
5	Ordered Mesoporous Silica with Large Cage-Like Pores:  Structural Identification and Pore Connectivity Design by Controlling the Synthesis Temperature and Time. Journal of the American Chemical Society, 2003, 125, 821-829.	6.6	367
6	Characterization of Regular and Plugged SBA-15 Silicas by Using Adsorption and Inverse Carbon Replication and Explanation of the Plug Formation Mechanism. Journal of Physical Chemistry B, 2003, 107, 2205-2213.	1.2	184
7	Surface Modifications of Cage-like and Channel-like Mesopores and Their Implications for Evaluation of Sizes of Entrances to Cage-like Mesopores. Journal of Physical Chemistry B, 2003, 107, 11900-11906.	1.2	41
8	Biological applications of organically functionalised mesoporous molecular sieves and related materials. Studies in Surface Science and Catalysis, 2003, 146, 581-584.	1.5	3
9	Covalent immobilization of chloroperoxidase on silica gel and properties of the immobilized biocatalyst. Journal of Molecular Catalysis B: Enzymatic, 2004, 27, 103-106.	1.8	55
10	Microencapsulated Chloroperoxidase as a Recyclable Catalyst for the Enantioselective Oxidation of Sulfides with Hydrogen Peroxide. Angewandte Chemie - International Edition, 2004, 43, 4097-4099.	7.2	56
12	Synthesis and characterization of small pore thick-walled SBA-16 templated by oligomeric surfactant with ultra-long hydrophilic chains. Microporous and Mesoporous Materials, 2004, 67, 135-141.	2.2	51
13	Immobilization of enzymes in mesoporous materials: controlling the entrance to nanospace. Microporous and Mesoporous Materials, 2004, 73, 121-128.	2.2	218
14	Catalytic Activity of Myoglobin Immobilized on Zirconium Phosphonates. Langmuir, 2004, 20, 5019-5025.	1.6	37
15	Adsorption of Lysozyme over Mesoporous Molecular Sieves MCM-41 and SBA-15:Â Influence of pH and Aluminum Incorporation. Journal of Physical Chemistry B, 2004, 108, 7323-7330.	1.2	330
16	Tailoring the Pore Structure of SBA-16 Silica Molecular Sieve through the Use of Copolymer Blends and Control of Synthesis Temperature and Time. Journal of Physical Chemistry B, 2004, 108, 11480-11489.	1.2	333
17	Influence of synthesis time on adsorption properties of FDU1 materials. Studies in Surface Science and Catalysis, 2005, 156, 105-112.	1.5	9
18	Microemulsion templated mesoporous silica: characterisation via small angle x-ray scattering and stability in aqueous buffers. Studies in Surface Science and Catalysis, 2005, , 717-724.	1.5	0
19	Control of pore size and condensation rate of cubic mesoporous silica thin films using a swelling agent. Microporous and Mesoporous Materials, 2005, 78, 245-253.	2.2	35

	Сіта	tion Report	
#	Article	IF	CITATIONS
20	Ordered mesoporous materials in catalysis. Microporous and Mesoporous Materials, 2005, 77, 1-45.	2.2	1,976
21	Methylene blue encapsulated in silica-based mesophases: characterisation and electrochemical activity. Microporous and Mesoporous Materials, 2005, 79, 275-281.	2.2	30
22	Stability and catalytic properties of chloroperoxidase immobilized on SBA-16 mesoporous materials. Microporous and Mesoporous Materials, 2005, 83, 193-200.	2.2	95
23	Ordered Mesoporous Materials for Bioadsorption and Biocatalysis. Chemistry of Materials, 2005, 17, 4577-4593.	3.2	1,082
24	The adsorption characteristics, activity and stability of trypsin onto mesoporous silicates. Journal of Molecular Catalysis B: Enzymatic, 2005, 32, 231-239.	1.8	90
25	Simple Fabrication of a Highly Sensitive and Fast Glucose Biosensor Using Enzymes Immobilized in Mesocellular Carbon Foam. Advanced Materials, 2005, 17, 2828-2833.	11.1	202
26	Mesoporous Silica Nanoreactors for Highly Efficient Proteolysis. Chemistry - A European Journal, 2005, 11, 5391-5396.	1.7	81
27	Simple Synthesis of Hierarchically Ordered Mesocellular Mesoporous Silica Materials Hosting Crosslinked Enzyme Aggregates. Small, 2005, 1, 744-753.	5.2	184
28	A Magnetically Separable, Highly Stable Enzyme System Based on Nanocomposites of Enzymes and Magnetic Nanoparticles Shipped in Hierarchically Ordered, Mesocellular, Mesoporous Silica. Small, 2005, 1, 1203-1207.	5.2	106
29	Immobilization of hemoglobin on stable mesoporous multilamellar silica vesicles and their activity and stability. Journal of Materials Research, 2005, 20, 2682-2690.	1.2	18
30	Structured mesoporous organosilicas from an acetonitrile–water template system. Journal of Materials Chemistry, 2005, 15, 3946.	6.7	13
31	Novel interface-binding chloroperoxidase for interfacial epoxidation of styrene. Journal of Biotechnology, 2005, 117, 195-202.	1.9	24
32	Synthesis of FDU-1 Silica with Narrow Pore Size Distribution and Tailorable Pore Entrance Size in the Presence of Sodium Chloride. Journal of Physical Chemistry B, 2005, 109, 3838-3843.	1.2	33
33	Enhancing Stability and Oxidation Activity of Cytochrome c by Immobilization in the Nanochannels of Mesoporous Aluminosilicates. Journal of Physical Chemistry B, 2005, 109, 12277-12286.	1.2	101
34	Three-Dimensional Low Symmetry Mesoporous Silica Structures Templated from Tetra-Headgroup Rigid Bolaform Quaternary Ammonium Surfactant. Journal of the American Chemical Society, 2005, 127, 6780-6787.	6.6	79
35	Thiol-Functionalized Silica with Mesocellular Foam and Hybrid Mesocellular Foamâ^'Wormhole Structures. Chemistry of Materials, 2005, 17, 947-949.	3.2	18
36	Direct Electrochemistry of Myoglobin in Titanate Nanotubes Film. Analytical Chemistry, 2005, 77, 8068-8074.	3.2	168
37	Enzymes supported on ordered mesoporous solids: a special case of an inorganic–organic hybrid. Journal of Materials Chemistry, 2005, 15, 3690.	6.7	381

#	Article	IF	CITATIONS
38	Mesoporous Silica Spheres as Supports for Enzyme Immobilization and Encapsulation. Chemistry of Materials, 2005, 17, 953-961.	3.2	509
39	Physical and Chemical Adsorption ofMucorjavanicusLipase on SBA-15 Mesoporous Silica. Synthesis, Structural Characterization, and Activity Performance. Langmuir, 2005, 21, 5511-5516.	1.6	143
40	Synthesis and Bio-adsorptive Properties of Large-Pore Periodic Mesoporous Organosilica Rods. Chemistry of Materials, 2005, 17, 6172-6176.	3.2	100
41	Characterization of mesoporous carbons synthesized with SBA-16 silica template. Journal of Materials Chemistry, 2005, 15, 1560.	6.7	162
42	Modification of MCM-48-, SBA-15-, MCF-, and MSU-type Mesoporous Silicas with Transition Metal Oxides Using the Molecular Designed Dispersion Method. Journal of Physical Chemistry B, 2005, 109, 11552-11558.	1.2	83
43	Preparation of biocatalytic nanofibres with high activity and stability via enzyme aggregate coating on polymer nanofibres. Nanotechnology, 2005, 16, S382-S388.	1.3	175
44	Hierarchical bimodal porous silicas and organosilicas for enzyme immobilization. Journal of Materials Chemistry, 2005, 15, 3859.	6.7	66
45	Effect of polymer-to-silica ratio on the formation of large three-dimensional cage-like mesostructures. New Journal of Chemistry, 2006, 30, 1071.	1.4	18
46	The application of modified mesoporous silicas in liquid phase catalysis. Dalton Transactions, 2006, , 4297.	1.6	100
47	Heterogeneous Adsorption Characteristics of Volatile Organic Compounds (VOCs) on MCMâ€48. Separation Science and Technology, 2006, 41, 3693-3719.	1.3	30
48	Synthesis and lysozyme adsorption of rod-like large-pore periodic mesoporous organosilica. Progress in Solid State Chemistry, 2006, 34, 249-256.	3.9	59
49	Highly efficient enrichment and subsequent digestion of proteins in the mesoporous molecular sieve silicate SBA-15 for matrix-assisted laser desorption/ionization mass spectrometry with time-of-flight/time-of-flight analyzer peptide mapping. Rapid Communications in Mass Spectrometry, 2006. 20. 3139-3144	0.7	19
50	Single enzyme nanoparticles in nanoporous silica: A hierarchical approach to enzyme stabilization and immobilization. Enzyme and Microbial Technology, 2006, 39, 474-480.	1.6	63
51	Tungsten-containing MCF silica as active and recyclable catalysts for liquid-phase oxidation of 1,3-butanediol to 4-hydroxy-2-butanone. Applied Catalysis A: General, 2006, 315, 91-100.	2.2	31
52	Synthesis of ordered large pore SBA-15 spherical particles for adsorption of biomolecules. Journal of Chromatography A, 2006, 1122, 13-20.	1.8	269
53	New approach to the immobilization of glucose oxidase on non-porous silica microspheres functionalized by (3-aminopropyl)trimethoxysilane (APTMS). Colloids and Surfaces B: Biointerfaces, 2006, 53, 225-232.	2.5	40
54	Controlled release of Captopril by regulating the pore size and morphology of ordered mesoporous silica. Microporous and Mesoporous Materials, 2006, 92, 1-9.	2.2	258
55	Performance evaluation of wash-coated MCM-48 monolith for adsorption of volatile organic compounds and water vapors. Microporous and Mesoporous Materials, 2006, 94, 15-28.	2.2	18

#	Article	IF	CITATIONS
56	Synthesis of carbon replicas of SBA-1 and SBA-7 mesoporous silicas. Microporous and Mesoporous Materials, 2006, 95, 193-199.	2.2	23
57	New families of mesoporous materials. Science and Technology of Advanced Materials, 2006, 7, 753-771.	2.8	156
58	Application of hydrophilic ionic liquids as co-solvents in chloroperoxidase catalyzed oxidations. Tetrahedron Letters, 2006, 47, 5089-5093.	0.7	59
59	Adsorption study of heme proteins on SBA-15 mesoporous silica with pore-filling models. Thin Solid Films, 2006, 499, 13-18.	0.8	70
60	Hybrid materials for immobilization of MP-11 catalyst. Topics in Catalysis, 2006, 38, 269-278.	1.3	108
61	Selective oxidation of indole by chloroperoxidase immobilized on the mesoporous molecular sieve SBA-15. Journal of Porous Materials, 2006, 13, 347-352.	1.3	34
62	Carbon nanocage: a large-pore cage-type mesoporous carbon material as an adsorbent for biomolecules. Journal of Porous Materials, 2006, 13, 379-383.	1.3	107
63	Trypsin immobilization on mesoporous silica with or without thiol functionalization. Journal of Porous Materials, 2006, 13, 385-391.	1.3	32
64	Nanostructures for enzyme stabilization. Chemical Engineering Science, 2006, 61, 1017-1026.	1.9	787
65	Catalytic performance of various mesoporous silicas modified with copper or iron oxides introduced by different ways in the selective reduction of NO by ammonia. Applied Catalysis B: Environmental, 2006, 62, 369-380.	10.8	138
66	Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnology Advances, 2006, 24, 296-308.	6.0	533
67	Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie - International Edition, 2006, 45, 3216-3251.	7.2	2,787
69	Electrochemical Biosensing Systems Based on Carbon Nanotubes and Carbon Nanofibers. Analytical Letters, 2007, 40, 2271-2287.	1.0	26
70	Myoglobin/arylhydroxylamine film modified electrode: Direct electrochemistry and electrochemical catalysis. Talanta, 2007, 72, 831-838.	2.9	21
71	Acid-Free Synthesis of Mesoporous Silica Using Triblock Copolymer as Template with the Aid of Salt and Alcohol. Chemistry of Materials, 2007, 19, 3041-3051.	3.2	58
72	Mesostructured Silica SBA-16 with Tailored Intrawall Porosity Part 1:  Synthesis and Characterization. Journal of Physical Chemistry C, 2007, 111, 3053-3058.	1.5	75
73	Asymmetric transfer hydrogenation over Ru–TsDPEN catalysts supported on siliceous mesocellular foam. Chemical Communications, 2007, , 1825-1827.	2.2	56
74	The growth mechanism of continuous cubic mesoporous SBA-16 film with a large area of highly ordered pores. Nanotechnology, 2007, 18, 185705.	1.3	5

#	Article	IF	CITATIONS
75	Synergetic Effects of Nanoporous Support and Urea on Enzyme Activity. Nano Letters, 2007, 7, 1050-1053.	4.5	49
76	Controlling Bioprocesses with Inorganic Surfaces:  Layered Clay Hemostatic Agents. Chemistry of Materials, 2007, 19, 4390-4392.	3.2	90
77	Oligodeoxynucleotide molecule delivery by organically modified SBA-15 mesoporous materials. Studies in Surface Science and Catalysis, 2007, 165, 821-824.	1.5	0
78	Crosslinked enzyme aggregates in hierarchically-ordered mesoporous silica: A simple and effective method for enzyme stabilization. Biotechnology and Bioengineering, 2007, 96, 210-218.	1.7	187
81	Covalent immobilization of trypsin on to siliceous mesostructured cellular foams to obtain effective biocatalysts. Catalysis Today, 2007, 124, 2-10.	2.2	51
82	Coordination chemistry and supramolecular chemistry in mesoporous nanospace. Coordination Chemistry Reviews, 2007, 251, 2562-2591.	9.5	179
83	ENFET glucose biosensor produced with mesoporous silica microspheres. Materials Science and Engineering C, 2007, 27, 736-740.	3.8	24
84	Application and properties of siliceous mesostructured cellular foams as enzymes carriers to obtain efficient biocatalysts. Microporous and Mesoporous Materials, 2007, 99, 167-175.	2.2	71
85	Synthesis and characterization of a mesoporous silica (MCM-48) membrane on a large-pore α-Al2O3 ceramic tube. Microporous and Mesoporous Materials, 2007, 106, 35-39.	2.2	34
86	Quantitative analysis of defects and domain boundaries in mesoporous SBA-16 films. Micron, 2007, 38, 362-370.	1.1	5
87	Immobilization of chloroperoxidase on silica-based materials for 4,6-dimethyl dibenzothiophene oxidation. Journal of Molecular Catalysis B: Enzymatic, 2007, 48, 90-98.	1.8	49
88	Influence of pH and ionic strength on the adsorption, leaching and activity of myoglobin immobilized onto ordered mesoporous silicates. Journal of Molecular Catalysis B: Enzymatic, 2007, 49, 61-68.	1.8	89
89	Proteins in Mesoporous Silicates. Angewandte Chemie - International Edition, 2008, 47, 8582-8594.	7.2	622
90	Hollow Spheres to Nanocups: Tuning the Morphology and Magnetic Properties of Singleâ€Crystalline αâ€Fe ₂ O ₃ Nanostructures. Angewandte Chemie - International Edition, 2008, 47, 7685-7688.	7.2	90
91	Swellingâ€Agentâ€Free Synthesis of Siliceous and Functional Mesocellular Foamâ€Like Mesophases by Using a Carboxyâ€Terminated Triblock Copolymer. Advanced Functional Materials, 2008, 18, 1799-1808.	7.8	13
94	Templating multiple length scales by combining phase separation, self-assembly and photopatterning in porous films. Journal of Colloid and Interface Science, 2008, 328, 374-384.	5.0	6
95	One-dimensional crosslinked enzyme aggregates in SBA-15: Superior catalytic behavior to conventional enzyme immobilization. Microporous and Mesoporous Materials, 2008, 111, 18-23.	2.2	69
96	Oxidation of indole using chloroperoxidase and glucose oxidase immobilized on SBA-15 as tandem biocatalyst. Microporous and Mesoporous Materials, 2008, 113, 523-529.	2.2	57

#	Article	IF	CITATIONS
97	Immobilization of lipase in ordered mesoporous materials: Effect of textural and structural parameters. Microporous and Mesoporous Materials, 2008, 114, 201-213.	2.2	107
98	Stabilization of Chloroperoxidase by Polyethylene Glycols in Aqueous Media: Kinetic Studies and Synthetic Applications. Biotechnology Progress, 2008, 20, 96-101.	1.3	44
99	Effects of Additives on the Thermostability of Chloroperoxidase. Biotechnology Progress, 2008, 23, 729-733.	1.3	23
100	Nanobiocatalysis and its potential applications. Trends in Biotechnology, 2008, 26, 639-646.	4.9	392
101	Decolorization of an anthraquinone dye by the recombinant dye-decolorizing peroxidase (rDyP) immobilized on mesoporous materials. Journal of Molecular Catalysis B: Enzymatic, 2008, 54, 42-49.	1.8	24
102	Highly Porous Polysilsesquioxane Networks via Hydrosilylative Polymerization of Macrocyclic Oligomeric Silsesquioxanes. Macromolecules, 2008, 41, 4561-4564.	2.2	24
103	Enzyme specific activity in functionalized nanoporous supports. Nanotechnology, 2008, 19, 125102.	1.3	59
104	Controlled Design of Ordered and Disordered Pore Architectures, Geometries, and Dimensions of HOM-Type Mesostructured Monoliths and Their Hydrothermal Stabilities. Journal of Physical Chemistry C, 2008, 112, 5476-5489.	1.5	55
105	Blood Clot Initiation by Mesocellular Foams: Dependence on Nanopore Size and Enzyme Immobilization. Langmuir, 2008, 24, 14254-14260.	1.6	54
106	Oxidation of Indole with CPO and GOx Immobilized on SBA-15. Studies in Surface Science and Catalysis, 2008, 174, 1045-1050.	1.5	11
107	Comparative study on functionalized SBA-15 and SBA-16 nanostructured materials used for immobilization of D-amino acid oxidase. , 2008, , .		0
108	Highly Sensitive and Magnetically Switchable Biosensors Using Ordered Mesoporous Carbons. ACS Symposium Series, 2008, , 234-242.	0.5	4
109	Myoglobin-loaded layer-by-layer films containing SiO ₂ nanoparticles studied using electrochemistry. Nanotechnology, 2008, 19, 055709.	1.3	20
111	Immobilization of alkaline serine endopeptidase from Bacillus licheniformis on SBA-15 and MCF by surface covalent binding. Journal of Molecular Catalysis B: Enzymatic, 2009, 56, 34-40.	1.8	42
112	Effects of pH and pore characters of mesoporous silicas on horseradish peroxidase immobilization. Journal of Molecular Catalysis B: Enzymatic, 2009, 56, 246-252.	1.8	68
113	Activation Function of Chloroperoxidase in the Presence of Metal Ions at Elevated Temperature from 25 to 55°C. Chinese Journal of Chemistry, 2009, 27, 1291-1294.	2.6	2
114	Adsorption of CO2 on mesocellular siliceous foam iteratively functionalized with dendrimers. Adsorption, 2009, 15, 429-437.	1.4	55
115	Effect of pore diffusional resistance on biocatalytic activity of Burkholderia cepacia lipase immobilized on SBA-15 hosts. Chemical Engineering Science, 2009, 64, 1474-1479.	1.9	37

#	Article	IF	CITATIONS
116	Immobilization of Invertase on Mesoporous Silicas to Obtain Hyper Active Biocatalysts. Topics in Catalysis, 2009, 52, 1030-1036.	1.3	43
117	Hydrophobic mesoporous materials for immobilization of enzymes. Microporous and Mesoporous Materials, 2009, 124, 76-83.	2.2	101
118	Enhancement of Rhizopus oryzae lipase activity immobilized on alkyl-functionalized spherical mesocellular foam: Influence of alkyl chain length. Microporous and Mesoporous Materials, 2009, 118, 115-120.	2.2	30
119	Mesoporous materials for encapsulating enzymes. Nano Today, 2009, 4, 165-179.	6.2	418
120	Mesostructured SBA-16 with excellent hydrothermal, thermal and mechanical stabilities: Modified synthesis and its catalytic application. Journal of Colloid and Interface Science, 2009, 333, 317-323.	5.0	62
121	Tuning interfacial non-covalent interactions through biomimetic functionalization of inorganic surface: The case of lysozyme and mesocellular silica foam hybrids. Chemical Engineering Journal, 2009, 146, 503-514.	6.6	13
122	Adsorption of trypsin on commercial silica gel. Engineering in Life Sciences, 2009, 9, 336-341.	2.0	8
123	Probing mechanisms for enzymatic activity enhancement of organophosphorus hydrolase in functionalized mesoporous silica. Biochemical and Biophysical Research Communications, 2009, 390, 1177-1181.	1.0	31
124	Nanotechnology, nanotoxicology, and neuroscience. Progress in Neurobiology, 2009, 87, 133-170.	2.8	356
125	Biocatalysts for selective introduction of oxygen. Biocatalysis and Biotransformation, 2009, 27, 1-26.	1.1	72
127	Magnetically-separable and highly-stable enzyme system based on crosslinked enzyme aggregates shipped in magnetite-coated mesoporous silica. Journal of Materials Chemistry, 2009, 19, 7864.	6.7	44
128	High performance immunoassay using immobilized enzyme in nanoporous carbon. Analyst, The, 2009, 134, 926.	1.7	22
129	Entrapping Flavin ontaining Monooxygenase on Corrugated Silica Nanospheres and their Recyclable Biocatalytic Activities. ChemCatChem, 2010, 2, 1004-1010.	1.8	7
130	Magnetic mesoporous silica nanoparticles: Fabrication and their laccase immobilization performance. Bioresource Technology, 2010, 101, 8931-8935.	4.8	176
131	Inactivation of chloroperoxidase by arginine. Process Biochemistry, 2010, 45, 312-316.	1.8	7
132	Effects of pore structure of mesoporous silicas on the electrochemical properties of hemoglobin. Microporous and Mesoporous Materials, 2010, 130, 333-337.	2.2	13
133	Low temperature strategy to synthesize high surface area mesoporous hydroxypropyl-β-cyclodextrin-based silicas via benign template removal. Microporous and Mesoporous Materials, 2010, 134, 175-180.	2.2	9
134	Efficient decolorization of an anthraquinone dye by recombinant dye-decolorizing peroxidase (rDyP) immobilized in silica-based mesocellular foam. Journal of Molecular Catalysis B: Enzymatic, 2010, 62, 277-281.	1.8	20

#	Article	IF	CITATIONS
135	Functional immobilization of racemase by adsorption on folded-sheet mesoporous silica. Journal of Molecular Catalysis B: Enzymatic, 2010, 64, 107-112.	1.8	23
136	Chemical modification and immobilisation of lipase B from Candida antarctica onto mesoporous silicates. Journal of Molecular Catalysis B: Enzymatic, 2010, 66, 203-209.	1.8	50
137	Immobilization of lysozyme on the layered silicate RUB-15. Materials Chemistry and Physics, 2010, 122, 269-272.	2.0	17
138	Ordered hexagonal mesoporous silica materials (SBA-15) with additional disordered large-mesopore networks formed by gaseous expansion. Microporous and Mesoporous Materials, 2010, 136, 126-131.	2.2	28
139	Preparation and characterization of mesoporous materials from a nonionic fluorinated surfactant: Adsorption of glucose oxidase. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 357, 128-135.	2.3	18
140	The nanoscale integration of heterostructures in chemo- and bio-catalysis. Studies in Surface Science and Catalysis, 2010, , 1-8.	1.5	1
141	Enzyme Technology of Peroxidases: Immobilization, Chemical and Genetic Modification. , 2010, , 209-243.		3
142	Enantioselective Synthesis of Sulfoxides: 2000â^2009. Chemical Reviews, 2010, 110, 4303-4356.	23.0	392
143	Effective Enrichment and Mass Spectrometry Analysis of Phosphopeptides Using Mesoporous Metal Oxide Nanomaterials. Analytical Chemistry, 2010, 82, 7193-7201.	3.2	67
145	Photosynthetic Oxygen Evolution in Mesoporous Silica Material: Adsorption of Photosystem II Reaction Center Complex into 23 nm Nanopores in SBA. Langmuir, 2011, 27, 705-713.	1.6	61
146	Biosensors Based on Nanoporous Materials. Biological and Medical Physics Series, 2011, , 171-205.	0.3	6
147	Immobilization of enzyme (DAAO) on hybrid nanoporous MCF, SBA-15, and MCM-41 materials. , 2011, , .		1
148	Tuning pore diameter of platelet SBA-15 materials with short mesochannels for enzyme adsorption. Journal of Materials Chemistry, 2011, 21, 5693.	6.7	66
149	General Description of the Adsorption of Proteins at Their Iso-electric Point in Nanoporous Materials. Langmuir, 2011, 27, 13828-13837.	1.6	85
150	Electrochemical Oxidation of Bisphenol A on Ti/SnO2- Sb2O5/PbO2 Anode for Waste Water Treatment. Procedia Environmental Sciences, 2011, 10, 647-652.	1.3	15
151	Enhancing oxidation activity and stability of iso-1-cytochrome c and chloroperoxidase by immobilization in nanostructured supports. Journal of Molecular Catalysis B: Enzymatic, 2011, 70, 81-87.	1.8	27
152	Tailoring the surface chemistry of mesocellular foams for protein adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 386, 25-35.	2.3	27
153	Exotemplating synthesis of nitrogen-doped carbon materials with hierarchically porous structure and their application for lysozyme adsorption. Chemical Engineering Journal, 2011, 174, 452-460.	6.6	11

#	ARTICLE	IF	CITATIONS
154	Energetics of lysozyme adsorption on mesostructured cellular foam silica: Effect of salt concentration. Journal of Chromatography A, 2011, 1218, 6697-6704.	1.8	26
155	Instant synthesis of mesoporous monolithic materials with controllable geometry, dimension and stability: a review. Journal of Porous Materials, 2011, 18, 259-287.	1.3	41
156	Improved catalytic hydrolysis of carboxy methyl cellulose using cellulase immobilized on functionalized meso cellular foam. Journal of Porous Materials, 2011, 18, 409-416.	1.3	19
157	Immobilization of Thermoanaerobium brockii alcohol dehydrogenase on SBA-15. Bioprocess and Biosystems Engineering, 2011, 34, 247-251.	1.7	18
158	Enzyme precipitate coatings of lipase on polymer nanofibers. Bioprocess and Biosystems Engineering, 2011, 34, 841-847.	1.7	13
159	Synthesis and characterization of sulfonic acid-functionalized SBA-15 for adsorption of biomolecules. Microporous and Mesoporous Materials, 2011, 142, 614-620.	2.2	39
160	Immobilization of chloroperoxidase onto highly hydrophilic polyethylene chains via bio-conjugation: Catalytic properties and stabilities. Bioresource Technology, 2011, 102, 475-482.	4.8	46
161	Activity and Stability of Chloroperoxidase in the Presence of Small Quantities of Polysaccharides: A Catalytically Favorable Conformation Was Induced. Applied Biochemistry and Biotechnology, 2011, 165, 1691-1707.	1.4	6
162	Immobilization of hemoglobin within channel of mesoporous TiO2-SiO2 composite. Rare Metals, 2011, 30, 144-146.	3.6	0
163	Specifically and Reversibly Immobilizing Proteins/Enzymes to Nitriolotriaceticâ€Acidâ€Modified Mesoporous Silicas through Histidine Tags for Purification or Catalysis. Chemistry - A European Journal, 2011, 17, 13059-13067.	1.7	29
164	Novel vanadium-containing mesocellular foams (V-MCF) obtained by direct synthesis. Microporous and Mesoporous Materials, 2011, 142, 45-54.	2.2	27
165	Mechanism of interaction between colloids and bacteria as evidenced by tailored silica–lysozyme composites. Journal of Materials Chemistry, 2012, 22, 22851.	6.7	30
166	Synthesis and catalytic activity of amino-functionalized SBA-15 materials with controllable channel lengths and amino loadings. Journal of Materials Chemistry, 2012, 22, 2233-2243.	6.7	64
167	Functionalized periodic mesoporous organosilicas for selective adsorption of proteins. Applied Surface Science, 2012, 258, 7126-7134.	3.1	27
168	A novel immobilized chloroperoxidase biocatalyst with improved stability for the oxidation of amino alcohols to amino aldehydes. Journal of Molecular Catalysis B: Enzymatic, 2012, 84, 144-151.	1.8	30
169	Highly Efficient Enzyme Immobilization and Stabilization within Meso-Structured Onion-Like Silica for Biodiesel Production. Chemistry of Materials, 2012, 24, 924-929.	3.2	70
170	In vitro release of organophosphorus acid anhydrolase from functionalized mesoporous silica against nerve agents. Analytical Biochemistry, 2012, 421, 477-481.	1.1	9
171	Mesocellular-foam-silica-supported Ni catalyst: Effect of pore size on H2 production from cellulose pyrolysis. International Journal of Hydrogen Energy, 2012, 37, 9590-9601.	3.8	43

#	Article	IF	CITATIONS
172	Adsorption of biomolecules on mesostructured cellular foam silica: Effect of acid concentration and aging time in synthesis. Microporous and Mesoporous Materials, 2012, 149, 60-68.	2.2	35
173	Adsorption of amino acids on periodic mesoporous organosilicas. Journal of Porous Materials, 2012, 19, 29-35.	1.3	14
174	lonic liquid immobilized on mesocellular silica foam as an efficient heterogeneous catalyst for the synthesis of dimethyl carbonate via transesterification. Applied Catalysis A: General, 2013, 464-465, 357-363.	2.2	55
175	Synthesis and Characterization of Mesostructured Cellular Foam (MCF) Silica Loaded with Nickel Nanoparticles as a Novel Catalyst. Materials Sciences and Applications, 2013, 04, 52-62.	0.3	6
176	Non-destructively shattered mesoporous silica for protein drug delivery. Microporous and Mesoporous Materials, 2013, 175, 157-160.	2.2	8
177	Improvement of catalytic efficiency of chloroperoxidase by its covalent immobilization on SBA-15 for azo dye oxidation. Journal of Porous Materials, 2013, 20, 387-396.	1.3	24
179	From amino alcohol to aminopolyol: one-pot multienzyme oxidation and aldol addition. Applied Microbiology and Biotechnology, 2013, 97, 7173-7183.	1.7	12
180	Bioresponsive Hydrogels. Advanced Healthcare Materials, 2013, 2, 520-532.	3.9	45
181	Catalase immobilized on siliceous mesocellular foam with controlled window size. Journal of Porous Materials, 2013, 20, 75-79.	1.3	8
182	Amino-functionalized mesostructured cellular foams as carriers of glucose oxidase. Journal of Bioscience and Bioengineering, 2013, 116, 555-561.	1.1	13
183	Investigations to optimize the catalytic performance of CPO encapsulated in PEG 200-doped silica matrices. Journal of Molecular Catalysis B: Enzymatic, 2013, 97, 23-30.	1.8	10
184	Designing Inorganic Porous Materials for Enzyme Adsorption and Applications in Biocatalysis. ChemCatChem, 2013, 5, 862-884.	1.8	107
185	Progress in enzyme immobilization in ordered mesoporous materials and related applications. Chemical Society Reviews, 2013, 42, 3894.	18.7	498
186	Nafionâ€Resinâ€Modified Mesocellular Silica Foam Catalyst for 5â€Hydroxymethylfurfural Production from <scp>D</scp> â€Fructose. ChemSusChem, 2013, 6, 1063-1069.	3.6	66
187	Nanobio Interfaces: Charge Control of Enzyme/Inorganic Interfaces for Advanced Biocatalysis. Langmuir, 2013, 29, 14001-14016.	1.6	30
188	Heated Proteins are Still Active in a Functionalized Nanoporous Support. Small, 2013, 9, 2228-2232.	5.2	11
189	Enzyme Catalytic Efficiency: A Function of Bio–Nano Interface Reactions. ACS Applied Materials & Interfaces, 2014, 6, 5393-5403.	4.0	77
190	Probing structural and catalytic characteristics of galactose oxidase confined in nanoscale chemical environments. RSC Advances, 2014, 4, 21939-21950.	1.7	7

#	Article	IF	CITATIONS
191	Protein adsorptive behavior on mesoporous titanium dioxide determined by geometrical topography. Chemical Engineering Science, 2014, 117, 146-155.	1.9	19
192	Halogenation of \hat{I}^2 -estradiol by a rationally designed mesoporous biocatalyst based on chloroperoxidase. Biocatalysis, 2015, 1, .	2.3	6
193	Adsorption of Acid Dyes by Functionalized SBAâ€15 Mesoporous Silica of Different Pore Lengths. Journal of the Chinese Chemical Society, 2015, 62, 483-494.	0.8	5
194	Silica Sol-Gel Entrapment of the Enzyme Chloroperoxidase. Journal of Nanotechnology, 2015, 2015, 1-10.	1.5	9
195	Encapsulation of chloroperoxidase in novel hybrid polysaccharide-silica biocomposites: Catalytic efficiency, re-use and thermal stability. Applied Catalysis A: General, 2015, 492, 23-30.	2.2	19
196	Insight into microwave assisted immobilized Candida antarctica lipase B catalyzed kinetic resolution of RS-(±)-ketorolac. Process Biochemistry, 2015, 50, 230-236.	1.8	21
197	Generation of a Highly Stable Reusable Biocatalyst by Entrapment of an Oligomeric Enzyme in Ultra-Large-Pore Mesoporous Silica. Australian Journal of Chemistry, 2015, 68, 396.	0.5	3
198	Salt-assisted synthesis of mesostructured cellular foams consisting ofÂsmall primary particles with enhanced hydrothermal stability. Microporous and Mesoporous Materials, 2015, 212, 66-72.	2.2	3
199	Preparation of nano-magnetite impregnated mesocellular foam composite with a Cu ligand for His-tagged enzyme immobilization. Chemical Engineering Journal, 2015, 274, 1-8.	6.6	22
200	Impact of structural features of SBA-15 host particles on activity of immobilized glucose oxidase enzyme and sensitivity of a glucose sensor. Journal of Porous Materials, 2015, 22, 369-378.	1.3	9
201	Enhancement of operational stability of chloroperoxidase from Caldariomyces fumago by immobilization onto mesoporous supports and the use of co-solvents. Journal of Molecular Catalysis B: Enzymatic, 2015, 116, 1-8.	1.8	16
202	Quick high-temperature hydrothermal synthesis of mesoporous materials with 3D cubic structure for the adsorption of lysozyme. Science and Technology of Advanced Materials, 2015, 16, 024806.	2.8	17
203	Dimensional and Structural Control of Silica Aerogel Membranes for Miniaturized Motionless Gas Pumps. ACS Applied Materials & Interfaces, 2015, 7, 18803-18814.	4.0	28
204	Emerging Enzyme-Based Technologies for Wastewater Treatment. ACS Symposium Series, 2015, , 69-85.	0.5	3
205	Polysaccharide-layered double hydroxide–aldolase biohybrid beads for biocatalysed CC bond formation. Journal of Molecular Catalysis B: Enzymatic, 2015, 122, 204-211.	1.8	11
206	Immobilization of lipase in cage-type mesoporous organosilicas via covalent bonding and crosslinking. Catalysis Today, 2015, 243, 173-183.	2.2	48
207	Mechanochemical preparation of advanced catalytically active bifunctional Pd-containing nanomaterials for aqueous phase hydrogenation. Catalysis Science and Technology, 2015, 5, 2085-2091.	2.1	12
208	Nanobiocatalysis: Nanostructured materials – a minireview. Biocatalysis, 2016, 2, 1-24.	2.3	46

#	Article	IF	CITATIONS
209	Kinetic resolution of (R,S)-α-tetralol catalyzed by crosslinked Candida antarctica lipase B enzyme supported on mesocellular foam: A nanoscale enzyme reactor approach. Journal of Molecular Catalysis B: Enzymatic, 2016, 132, 61-66.	1.8	22
210	Modified nanoporous titanium dioxide as a novel carrier for enzyme immobilization. Biosensors and Bioelectronics, 2016, 80, 59-66.	5.3	53
211	A bienzymatic biocatalyst constituted by glucose oxidase and Horseradish peroxidase immobilized on ordered mesoporous silica. Microporous and Mesoporous Materials, 2017, 241, 145-154.	2.2	60
212	The effect of the buffer solution on the adsorption and stability of horse heart myoglobin on commercial mesoporous titanium dioxide: a matter of the right choice. Physical Chemistry Chemical Physics, 2017, 19, 13503-13514.	1.3	18
213	Well-oriented bioarchitecture for immobilization of chloroperoxidase on graphene oxide nanosheets by site-specific interactions and its catalytic performance. Journal of Materials Science, 2017, 52, 10001-10012.	1.7	17
214	Facile route to synthesize mesoporous SBA-15 rods with different sizes for lysozyme immobilization. Journal of Sol-Gel Science and Technology, 2017, 81, 782-790.	1.1	7
215	A Modular Enzyme Cascade for Coenzyme Regeneration: A Simple Approach to Master the Circumstance of Leaching. European Journal of Organic Chemistry, 2018, 2018, 2228-2232.	1.2	1
216	N-α-acylation of lysine catalyzed by immobilized aminoacylases from Streptomyces ambofaciens in aqueous medium. Microporous and Mesoporous Materials, 2018, 267, 24-34.	2.2	9
217	Hydration and Confinement Effects on Horse Heart Myoglobin Adsorption in Mesoporous TiO2. Journal of Physical Chemistry C, 2018, 122, 23393-23404.	1.5	4
218	Laccase Immobilization onto Magnetic β-Cyclodextrin-Modified Chitosan: Improved Enzyme Stability and Efficient Performance for Phenolic Compounds Elimination. Macromolecular Research, 2018, 26, 755-762.	1.0	42
219	Silica nanowires with tunable hydrophobicity for lipase immobilization and biocatalytic membrane assembly. Journal of Colloid and Interface Science, 2018, 531, 555-563.	5.0	22
220	Immobilization of Lipases – A Review. Part II: Carrier Materials. ChemBioEng Reviews, 2019, 6, 167-194.	2.6	48
221	Maintenance Properties of Enzyme Molecule Stereostructure at High Temperature by Adsorption on Organo-Modified Magnetic Nanoparticle Layer Template. Bulletin of the Chemical Society of Japan, 2019, 92, 1662-1671.	2.0	22
222	Nanoporous Phyllosilicate Assemblies for Enzyme Immobilization. ACS Applied Bio Materials, 2019, 2, 777-786.	2.3	16
223	Adsorptive Immobilization of Proteins on Mesoporous Molecular Sieves and Zeolites. Petroleum Chemistry, 2019, 59, 327-337.	0.4	10
224	Multiple catalytic roles of chloroperoxidase in the transformation of phenol: Products and pathways. Ecotoxicology and Environmental Safety, 2019, 179, 96-103.	2.9	13
225	Enzymatic Desulfurization of Crude Oil and Its Fractions: A Mini Review on the Recent Progresses and Challenges. Arabian Journal for Science and Engineering, 2019, 44, 5181-5193.	1.7	26
226	A comparative study on mesocellular foam silica with different template removal methods and their effects on enzyme immobilization. Journal of Porous Materials, 2019, 26, 1059-1068.	1.3	11

#	Article	IF	CITATIONS
227	Morphological, structural and physicochemical characteristics of the surface of mesocellular silica foam with the adsorbed OVA and BSA proteins. Microporous and Mesoporous Materials, 2020, 293, 109769.	2.2	6
228	Strategies, challenges and opportunities of enzyme immobilization on porous silicon for biosensing applications. Journal of Environmental Chemical Engineering, 2020, 8, 104266.	3.3	45
229	Mesocellular Silica Foams (MCFs) with Tunable Pore Size as a Support for Lysozyme Immobilization: Adsorption Equilibrium and Kinetics, Biocomposite Properties. International Journal of Molecular Sciences, 2020, 21, 5479.	1.8	12
230	Characterization of Mesoporous Silica and its Application as an Adsorbent for Benzene Sensing. Solid State Phenomena, 0, 302, 107-113.	0.3	1
231	Preparation of amino-functionalized silica supports for immobilization of epoxide hydrolase and cutinase: characterization and applications. Journal of Porous Materials, 2020, 27, 1559-1567.	1.3	10
232	Lipase Immobilization in Mesoporous Silica Nanoparticles for Biofuel Production. Catalysts, 2021, 11, 629.	1.6	39
233	Design of Mesoporous Silica at Low Acid Concentrations in Triblock Copolymer-Butanol-Water Systems. Bulletin of the Korean Chemical Society, 2005, 26, 1653-1668.	1.0	32
234	Immobilization of Enzymes onto Silica-Based Nanomaterials for Bioprocess Applications. Gels Horizons: From Science To Smart Materials, 2021, , 399-434.	0.3	0
235	Porous Silica Support for Immobilizing Chiral Metal Catalyst: Unravelling the Activity of Catalyst on Asymmetric Organic Transformations. ChemistrySelect, 2022, 7, .	0.7	4
236	Immobilization of Dextranase Obtained from the Marine Cellulosimicrobium sp. Y1 on Nanoparticles: Nano-TiO2 Improving Hydrolysate Properties and Enhancing Reuse. Nanomaterials, 2023, 13, 1065.	1.9	1