Responses to methylphenidate in Attention-Deficit/Hyjchildren: Update 2002

Journal of Attention Disorders 6, 57-60

DOI: 10.1177/070674370200601s07

Citation Report

#	Article	IF	CITATIONS
1	A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behavioral and Brain Sciences, 2005, 28, 397-419; discussion 419-68.	0.4	795
2	Influence of methylphenidate on brain developmentan update of recent animal experiments. Behavioral and Brain Functions, 2006, 2, 2.	1.4	59
3	Methylphenidate Preferentially Increases Catecholamine Neurotransmission within the Prefrontal Cortex at Low Doses that Enhance Cognitive Function. Biological Psychiatry, 2006, 60, 1111-1120.	0.7	544
4	Stimulants: Therapeutic Actions in ADHD. Neuropsychopharmacology, 2006, 31, 2376-2383.	2.8	406
5	Improving our Brains?. BioSocieties, 2006, 1, 103-111.	0.8	17
6	Integrative neuroscience approach to predict ADHD stimulant response. Expert Review of Neurotherapeutics, 2006, 6, 753-763.	1.4	35
7	Low-Dose Methylphenidate Actions on Tonic and Phasic Locus Coeruleus Discharge. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 1327-1335.	1.3	67
8	Reconsidering the Attention Deficit Paradigm. Australasian Psychiatry, 2006, 14, 127-132.	0.4	2
9	AN INTEGRATIVE APPROACH TO DETERMINE THE BEST BEHAVIORAL AND BIOLOGICAL MARKERS OF METHYLPHENIDATE. Journal of Integrative Neuroscience, 2007, 06, 105-140.	0.8	20
10	Does Stimulant Medication Decrease the Lower Extremity Response Times of Children with and without Attention-Deficit/Hyperactivity Disorder?. Perceptual and Motor Skills, 2007, 104, 67-68.	0.6	1
11	Neurophysiological actions of methylphenidate in the primary somatosensory cortex. Synapse, 2007, 61, 985-990.	0.6	19
12	Acute effect of methylphenidate on QT interval duration and dispersion in children with attention deficit hyperactivity disorder. Advances in Therapy, 2007, 24, 182-188.	1.3	14
13	Methylphenidate reduces impulsive behaviour in juvenile Wistar rats, but not in adult Wistar, SHR and WKY rats. Psychopharmacology, 2007, 193, 215-223.	1.5	103
14	Cognition-Enhancing Doses of Methylphenidate Preferentially Increase Prefrontal Cortex Neuronal Responsiveness. Biological Psychiatry, 2008, 64, 626-635.	0.7	106
15	Methylphenidate Decreased the Amount of Glucose Needed by the Brain to Perform a Cognitive Task. PLoS ONE, 2008, 3, e2017.	1.1	98
16	Critical Neuroscience: Linking Neuroscience and Society through Critical Practice. BioSocieties, 2009, 4, 61-77.	0.8	179
17	Issues in the Management of Patients with Complex ADHD Symptoms. Journal of Pediatrics, 2009, 154, I-S43.	0.9	1
18	Safety and Efficacy Limitations of ADHD Pharmacotherapy. Journal of Pediatrics, 2009, 154, I-S43.	0.9	3

#	Article	IF	Citations
19	ADHD and the Prefrontal Cortex. Journal of Pediatrics, 2009, 154, I-S43.	0.9	105
20	Advances in ADHD Therapy: Investigation of Alpha-2a Agonists. Journal of Pediatrics, 2009, 154, I-S43.	0.9	0
27	CME Section. Journal of Pediatrics, 2009, 154, I-S43.	0.9	0
28	Differential regulation of psychostimulantâ€induced gene expression of brain derived neurotrophic factor and the immediateâ€early gene ⟨i>Arc⟨li> in the juvenile and adult brain. European Journal of Neuroscience, 2009, 29, 465-476.	1.2	55
29	Personal reflections on observational and experimental research approaches to childhood psychopathology. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2009, 50, 36-43.	3.1	4
30	The dopaminergic hypothesis of attention-deficit/hyperactivity disorder needs re-examining. Trends in Neurosciences, 2009, 32, 2-8.	4.2	56
31	Toward a New Understanding of Attention-Deficit Hyperactivity Disorder Pathophysiology. CNS Drugs, 2009, 23, 33-41.	2.7	300
32	Clinical Responses to Atomoxetine in Attention-Deficit/Hyperactivity Disorder: The Integrated Data Exploratory Analysis (IDEA) Study. Journal of the American Academy of Child and Adolescent Psychiatry, 2009, 48, 511-518.	0.3	72
34	Age-dependent effects of methylphenidate in the prefrontal cortex: evidence from electrophysiological and Arc gene expression measurements. Journal of Psychopharmacology, 2010, 24, 1819-1827.	2.0	14
35	Psychostimulants as Cognitive Enhancers: The Prefrontal Cortex, Catecholamines, and Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, 2011, 69, e101-e111.	0.7	118
36	Chronic Treatment with Extended Release Methylphenidate Does Not Alter Dopamine Systems or Increase Vulnerability for Cocaine Self-Administration: A Study in Nonhuman Primates. Neuropsychopharmacology, 2012, 37, 2555-2565.	2.8	47
39	Differential Sensitivity to Psychostimulants Across Prefrontal Cognitive Tasks: Differential Involvement of Noradrenergic $\hat{l}\pm 1$ - and $\hat{l}\pm 2$ -Receptors. Biological Psychiatry, 2012, 71, 467-473.	0.7	83
41	Methylphenidate modulates sustained attention and cortical activation in survivors of traumatic brain injury: a perfusion fMRI study. Psychopharmacology, 2012, 222, 47-57.	1.5	39
42	†New Homeopathic Medicines' database: A project to employ conventional drugs according to the homeopathic method of treatment. European Journal of Integrative Medicine, 2013, 5, 270-278.	0.8	16
43	Adult ADHD., 2013,,.		68
44	Abuse and dependence liability analysis of methylphenidate in the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder (ADHD): what have we learned? Archives of Pharmacal Research, 2013, 36, 400-410.	2.7	16
45	Psychostimulants and motivated behavior: Arousal and cognition. Neuroscience and Biobehavioral Reviews, 2013, 37, 1976-1984.	2.9	78
46	Neurocircuitry Underlying the Preferential Sensitivity of Prefrontal Catecholamines to Low-Dose Psychostimulants. Neuropsychopharmacology, 2013, 38, 1078-1084.	2.8	37

#	Article	IF	CITATIONS
47	Neuroimaging markers for the prediction of treatment response to Methylphenidate in ADHD. European Journal of Paediatric Neurology, 2013, 17, 543-551.	0.7	5
48	A selective dopamine reuptake inhibitor improves prefrontal cortex-dependent cognitive function: Potential relevance to attention deficit hyperactivity disorder. Neuropharmacology, 2013, 64, 321-328.	2.0	36
49	Attentionâ€deficit hyperactivity disorder reduces automatic attention in young adults. Psychophysiology, 2013, 50, 308-313.	1.2	10
51	The Norepinephrine Transporter in Attention-Deficit/Hyperactivity Disorder Investigated With Positron Emission Tomography. JAMA Psychiatry, 2014, 71, 1340.	6.0	44
52	Targeting the Nicotinic Cholinergic System to Treat Attention-Deficit/Hyperactivity Disorder: Rationale and Progress to Date. CNS Drugs, 2014, 28, 1103-1113.	2.7	43
53	Animal model of methylphenidate's long-term memory-enhancing effects. Learning and Memory, 2014, 21, 82-89.	0.5	33
54	Effects of dopamine D1 receptor blockade in the prelimbic prefrontal cortex or lateral dorsal striatum on frontostriatal function in Wistar and Spontaneously Hypertensive Rats. Behavioural Brain Research, 2014, 268, 229-238.	1.2	10
55	Catecholamine influences on prefrontal cortex circuits and function. , 0, , 161-173.		O
56	Exposure to methylphenidate during infancy and adolescence in non-human animals and sensitization to abuse of psychostimulants later in life: a systematic review. Trends in Psychiatry and Psychotherapy, 2015, 37, 107-117.	0.4	0
57	D-amphetamine improves attention performance in adolescent Wistar, but not in SHR rats, in a two-choice visual discrimination task. Psychopharmacology, 2015, 232, 3269-3286.	1.5	7
58	The Cognition-Enhancing Effects of Psychostimulants Involve Direct Action in the Prefrontal Cortex. Biological Psychiatry, 2015, 77, 940-950.	0.7	146
59	Differential cognitive actions of norepinephrine a2 and a1 receptor signaling in the prefrontal cortex. Brain Research, 2016, 1641, 189-196.	1.1	79
60	Outcomes in Child Psychiatry. Journal of Child and Adolescent Psychopharmacology, 2017, 27, 535-537.	0.7	1
61	Bupropion for attention deficit hyperactivity disorder (ADHD) in adults. The Cochrane Library, 2017, 2017, CD009504.	1.5	36
63	The influence of early exposure to methylphenidate on addiction-related behaviors in mice. Pharmacology Biochemistry and Behavior, 2021, 206, 173208.	1.3	0
64	Staying in Touch With Methylphenidate: AHDH and Sensory Processing. Focus on "Methylphenidate Enhances Noradrenergic Transmission and Suppresses Mid- and Long-Latency Sensory Responses in the Primary Somatosensory Cortex of Awake Rats― Journal of Neurophysiology, 2006, 96, 524-525.	0.9	5
66	Les médicaments stimulants et leurs alternatives dans le traitement psychopharmacologique du syndrome de l'hyperactivité infantile. Perspectives Psy, 2004, 43, 46-57.	0.0	2
68	Pode o melhoramento humano ser aceito como um dos objetivos da medicina?. Barbarói, 0, , 290-303.	0.3	0

#	Article	IF	CITATIONS
69	Wie wirkt "Ritalin"?., 2019,, 219-249.		O
71	Prepubertal methylphenidate leads to sex-dependent differences in probabilistic discounting. Pharmacology Biochemistry and Behavior, 2022, 218, 173424.	1.3	1