Carbon Nanostructures

Critical Reviews in Solid State and Materials Sciences 27, 227-356 DOI: 10.1080/10408430208500497

Citation Report

CITATION	DEDODT

#	Article	IF	CITATIONS
1	Coexistence of bucky diamond with nanodiamond and fullerene carbon phases. Physical Review B, 2003, 68, .	3.2	104
2	Surface structure of cubic diamond nanowires. Surface Science, 2003, 538, 204-210.	1.9	22
3	Ab Initio Modeling of Diamond Nanowire Structures. Nano Letters, 2003, 3, 1323-1328.	9.1	73
4	Electronic band gaps of diamond nanowires. Physical Review B, 2003, 68, .	3.2	39
5	Potassium Structures in Carbon Nanotubes. Journal of the Physical Society of Japan, 2004, 73, 738-744.	1.6	6
6	Electronic Transport in a Controllably Grown Carbon Nanotube-Silicon Heterojunction Array. Physical Review Letters, 2004, 92, 075505.	7.8	63
7	Electric Field Effect in Atomically Thin Carbon Films. Science, 2004, 306, 666-669.	12.6	56,177
8	Coulomb interactions and the problem of stability of inorganic nanotubes. Doklady Physical Chemistry, 2004, 399, 293-297.	0.9	2
9	Coulomb interactions and the problem of stability of inorganic nanotubes. Doklady Physical Chemistry, 2004, 399, 293-297.	0.9	2
10	Diamond Nanorods from Carbon Nanotubes. Advanced Materials, 2004, 16, 1849-1853.	21.0	107
11	Effective in-plane stiffness and bending rigidity of armchair and zigzag carbon nanotubes. International Journal of Solids and Structures, 2004, 41, 5451-5461.	2.7	104
12	An introduction to computational nanomechanics and materials. Computer Methods in Applied Mechanics and Engineering, 2004, 193, 1529-1578.	6.6	346
13	Mechanical behavior of functionalized nanotubes. Chemical Physics Letters, 2004, 387, 247-252.	2.6	76
14	Phase stability of nanocarbon in one dimension: Nanotubes versus diamond nanowires. Journal of Chemical Physics, 2004, 120, 3817-3821.	3.0	52
15	Molecular Dynamics Simulations of Single-wall GaN Nanotubes. Molecular Simulation, 2004, 30, 29-35.	2.0	18
16	Atomistic simulation of the torsion deformation of carbon nanotubes. Modelling and Simulation in Materials Science and Engineering, 2004, 12, 1099-1107.	2.0	57
17	Twist of hypothetical silicon nanotubes. Modelling and Simulation in Materials Science and Engineering, 2004, 12, 1-12.	2.0	27

#	Article	IF	Citations
19	Functionalization of Nanoscale Diamond Powder:  Fluoro-, Alkyl-, Amino-, and Amino Acid-Nanodiamond Derivatives. Chemistry of Materials, 2004, 16, 3924-3930.	6.7	334
20	From nanodiamond to diamond nanowires: structural properties affected by dimension. Philosophical Magazine, 2004, 84, 899-907.	1.6	21
21	Comparison of III- Nitride Nanotubes: Atomistic Simulations. Materials Science Forum, 2004, 449-452, 1185-1188.	0.3	1
22	High microwave permittivity of multiwalled carbon nanotube composites. Applied Physics Letters, 2004, 84, 4956-4958.	3.3	152
23	Atomistic study of III-nitride nanotubes. Computational Materials Science, 2004, 31, 237-246.	3.0	47
24	Amorphous carbon nanostructures from chlorination of ferrocene. Carbon, 2005, 43, 978-985.	10.3	37
25	Unusually tight aggregation in detonation nanodiamond: Identification and disintegration. Carbon, 2005, 43, 1722-1730.	10.3	579
26	Electronic structure of diamond/graphite composite nanoparticles. European Physical Journal D, 2005, 34, 157-160.	1.3	4
27	Electronic state of nanodiamond/graphite interfaces. Applied Physics A: Materials Science and Processing, 2005, 81, 393-398.	2.3	8
28	Comparative study of diamond films grown on silicon substrate using microwave plasma chemical vapor deposition and hot-filament chemical vapor deposition technique. Korean Journal of Chemical Engineering, 2005, 22, 770-773.	2.7	3
29	New framework nanostructures of carbon atoms in sp 2 and sp 3 hybridized states. Journal of Structural Chemistry, 2005, 46, 961-967.	1.0	6
30	Structural investigation of diamond nanoplatelets grown by microwave plasma-enhanced chemical vapor deposition. Journal of Materials Research, 2005, 20, 703-711.	2.6	12
32	Structural Properties of Potassium Encapsulated in Carbon Nanotubes. Key Engineering Materials, 2005, 277-279, 919-928.	0.4	1
33	Functionalized carbon nanotubes and nanodiamonds for engineering and biomedical applications. Diamond and Related Materials, 2005, 14, 859-866.	3.9	150
34	Purification and Functionalization of Nanodiamond. , 2005, , 241-252.		14
35	Size Dependence of the Thin-Shell Model for Carbon Nanotubes. Physical Review Letters, 2005, 95, 105501.	7.8	157
36	Controlled Evolution of Carbon Nanotubes Coated by Nanodiamond:Â the Realization of a New Class of Hybrid Nanomaterials. Chemistry of Materials, 2005, 17, 3214-3220.	6.7	64
37	Mesoscopic model for dynamic simulations of carbon nanotubes. Physical Review B, 2005, 71, .	3.2	65

#	Article	IF	CITATIONS
38	Carbon Family at the Nanoscale. , 2005, , 1-14.		6
39	From Nanodiamond to Nanowires. , 2005, , 25-38.		5
40	New Perspectives on the Structure of Graphitic Carbons. Critical Reviews in Solid State and Materials Sciences, 2005, 30, 235-253.	12.3	336
41	Effects of temperature, strain rate, and vacancies on tensile and fatigue behaviors of silicon-based nanotubes. Physical Review B, 2005, 71, .	3.2	30
42	Substitutional Nitrogen in Nanodiamond and Bucky-Diamond Particles. Journal of Physical Chemistry B, 2005, 109, 17107-17112.	2.6	73
43	Density Functional Study of H-Induced Defects as Nucleation Sites in Hybrid Carbon Nanomaterials. Chemistry of Materials, 2005, 17, 527-535.	6.7	31
44	Surface functionalisation of detonation diamond suitable for biological applications. Journal of Materials Chemistry, 2006, 16, 2322-2328.	6.7	320
45	Nanocomposite Fiber Systems Processed from Fluorinated Single-Walled Carbon Nanotubes and a Polypropylene Matrix. Chemistry of Materials, 2006, 18, 4561-4569.	6.7	96
46	The Thermal Stability of Nanodiamond Surface Groups and Onset of Nanodiamond Graphitization. Fullerenes Nanotubes and Carbon Nanostructures, 2006, 14, 557-564.	2.1	70
47	Theory and modeling of nanocarbon phase stability. Diamond and Related Materials, 2006, 15, 285-291.	3.9	31
48	Types of Nanocrystalline Diamond. , 2006, , 79-114.		18
49	Reactivity of [1(2,3)4]Pentamantane (Td-Pentamantane): A Nanoscale Model of Diamondâ€. Journal of Organic Chemistry, 2006, 71, 8532-8540.	3.2	55
50	Carbon nanostructures for advanced composites. Reports on Progress in Physics, 2006, 69, 1847-1895.	20.1	194
51	From conventional technology to carbon nanotechnology: The fourth industrial revolution and the discoveries of C60, carbon nanotube and nanodiamond. , 2006, , 3-11.		19
52	Self-Assembly of Single-Walled Carbon Nanotubes into Multiwalled Carbon Nanotubes in Water:Â Molecular Dynamics Simulations. Nano Letters, 2006, 6, 430-434.	9.1	75
53	n-diamond: an intermediate state between rhombohedral graphite and diamond?. New Journal of Physics, 2006, 8, 62-62.	2.9	25
54	Stability of Nanodiamond. , 2006, , 117-154.		8
55	Diamond Phase Transitions at Nanoscale 2006 405-475		27 _

#	Article	IF	CITATIONS
56	Carbon Family at the Nanoscale. , 2006, , 3-22.		6
57	Characterization and Physical Properties of UNCD Particles. , 2006, , 379-404.		5
58	Nanodiamond. , 2006, , 529-557.		16
59	Carbide-Derived Carbon. , 2006, , .		6
60	Nano-structured carbon obtained by chlorination of NbC. Carbon, 2006, 44, 753-761.	10.3	17
61	Surface functionalization of nanodiamond particles via atom transfer radical polymerization. Carbon, 2006, 44, 2308-2315.	10.3	119
62	Interaction of nanodiamond with in situ generated sp-carbon chains probed by Raman spectroscopy. Carbon, 2006, 44, 3113-3116.	10.3	39
63	Nickel modified ultrananosized diamonds and their application as catalysts in methanol decomposition. Journal of Molecular Catalysis A, 2006, 259, 223-230.	4.8	28
64	Iron-oxide-modified nanosized diamond: Preparation, characterization, and catalytic properties in methanol decomposition. Journal of Colloid and Interface Science, 2006, 302, 492-500.	9.4	11
65	Thickness of graphene and single-wall carbon nanotubes. Physical Review B, 2006, 74, .	3.2	564
66	Direct observation of isolated ultrananodimensional diamond clusters using atomic force microscopy. Technical Physics Letters, 2006, 32, 561-563.	0.7	11
67	Carbon nanostructures based on IR-pyrolyzed polyacrylonitrile. Polymer Science - Series A, 2006, 48, 633-637.	1.0	44
68	Nuclear magnetic resonance study of ultrananocrystalline diamonds. European Physical Journal B, 2006, 52, 397-402.	1.5	86
69	Control of sp2/sp3Carbon Ratio and Surface Chemistry of Nanodiamond Powders by Selective Oxidation in Air. Journal of the American Chemical Society, 2006, 128, 11635-11642.	13.7	809
70	Quantum-chemical modeling of the atomic and electronic structure of thin diamond-like nanocrystallites. Theoretical and Experimental Chemistry, 2006, 42, 207-210.	0.8	0
71	Iron oxide modified diamond blends containing ultradispersed diamond. Journal of Colloid and Interface Science, 2006, 300, 183-189.	9.4	9
72	Hard and Soft: Biofunctionalized Diamond. Angewandte Chemie - International Edition, 2006, 45, 6426-6427.	13.8	67
74	Carbon blacks as the source materials for carbon nanotechnology. , 2006, , 127-151.		17

#	Article	IF	CITATIONS
75	DIAMOND NANORODS FROM CARBON NANOTUBES BY HYDROGEN PLASMA TREATMENT. International Journal of Nanoscience, 2006, 05, 307-313.	0.7	3
76	Synthesis and crystal structure of n-diamond. International Materials Reviews, 2007, 52, 131-151.	19.3	43
77	Preparation and characterization of monoatomic C-chains: unraveling and field emission. Nanotechnology, 2007, 18, 475705.	2.6	25
78	Spherical carbon nanoparticles produced by direct chlorination of cobaltocene. Carbon, 2007, 45, 1699-1701.	10.3	12
79	Are Diamond Nanoparticles Cytotoxic?. Journal of Physical Chemistry B, 2007, 111, 2-7.	2.6	641
80	Recent progress and perspectives in single-digit nanodiamond. Diamond and Related Materials, 2007, 16, 2018-2022.	3.9	179
81	Nanophase of Water in Nano-Diamond Gel. Journal of Physical Chemistry C, 2007, 111, 7330-7334.	3.1	100
82	Surface electronic structure of detonation nanodiamonds after oxidative treatment. Diamond and Related Materials, 2007, 16, 2090-2092.	3.9	10
83	Mapping the location and configuration of nitrogen in diamond nanoparticles. Nanotechnology, 2007, 18, 025702.	2.6	36
84	Differential biocompatibility of carbon nanotubes and nanodiamonds. Diamond and Related Materials, 2007, 16, 2118-2123.	3.9	312
85	Benzoyl Peroxide Initiated In Situ Functionalization, Processing, and Mechanical Properties of Single-Walled Carbon Nanotubeâ^'Polypropylene Composite Fibers. Journal of Physical Chemistry C, 2007, 111, 1592-1600.	3.1	107
86	Reaction Pathways for the Additions of Triplet Carbene, Silylene, Germylene and Nitrene onto the Diamond (100) Surface:  A Theoretical Investigation. Journal of Physical Chemistry C, 2007, 111, 3729-3735.	3.1	7
87	Carbon Hollow Nanospheres from Chlorination of Ferrocene. Chemistry of Materials, 2007, 19, 2304-2309.	6.7	64
88	Solid state nuclear magnetic resonance studies of nanocarbons. Diamond and Related Materials, 2007, 16, 2044-2049.	3.9	34
89	Pressure induced changes in fractal structure of detonation nanodiamond powder by small-angle neutron scattering. Diamond and Related Materials, 2007, 16, 2050-2053.	3.9	20
90	Study on the preparation and the catalytic performance of Ni-modified shock-wave synthesized diamond blends and nanodispersed diamond. Catalysis Communications, 2007, 8, 1502-1506.	3.3	8
91	New prospects and frontiers of nanodiamond clusters. Journal Physics D: Applied Physics, 2007, 40, 6300-6311.	2.8	185
92	Functionalization of Carbon Nano-onions by Direct Fluorination. Chemistry of Materials, 2007, 19, 778-786.	6.7	109

#	Article	IF	CITATIONS
93	Crystallinity and surface electrostatics of diamond nanocrystals. Journal of Materials Chemistry, 2007, 17, 4811.	6.7	221
94	Fluorescent Carbon Nanoparticles Derived from Candle Soot. Angewandte Chemie - International Edition, 2007, 46, 6473-6475.	13.8	1,509
96	Preparation and Behavior of Brownish, Clear Nanodiamond Colloids. Advanced Materials, 2007, 19, 1201-1206.	21.0	315
97	Hybrid Diamondâ€Graphite Nanowires Produced by Microwave Plasma Chemical Vapor Deposition. Advanced Materials, 2007, 19, 4058-4062.	21.0	107
98	Effect of the preparation conditions of Ni-supported shock-wave synthesized nanodiamond catalysts. Applied Surface Science, 2007, 253, 7115-7123.	6.1	11
99	Transfection and imaging of diamond nanocrystals as scattering optical labels. Journal of Luminescence, 2007, 127, 260-263.	3.1	46
100	Deagglomeration and functionalisation of detonation diamond. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 2881-2887.	1.8	124
101	Electronic state of carbon in carbonaceous chondrite meteorites. Physica Status Solidi (B): Basic Research, 2007, 244, 3955-3959.	1.5	0
102	Atomic structure, electronic properties, and thermal stability of diamond-like nanowires and nanotubes. Inorganic Materials, 2007, 43, 349-357.	0.8	18
103	Dimensionally, morphologically, and thermally induced phase transformations in boron-nitrogen nanowires. JETP Letters, 2007, 85, 626-631.	1.4	3
104	New self-intercalated C28, Ti@C28, and Zn@C28 hyperdiamonds: Crystal structure and elastic and electronic properties. JETP Letters, 2007, 86, 537-542.	1.4	8
105	Partially-crystallized carbon material obtained by the reducing reactions from alkalis carbonate and its electric performance. Materials Letters, 2007, 61, 4722-4724.	2.6	1
106	Atomic and electronic structures and stability of icosahedral nanodiamonds and onions. Physics of the Solid State, 2007, 49, 392-397.	0.6	14
107	Electron microscopy characterization of nanostructured carbon obtained from chlorination of metallocenes and metal carbides. Micron, 2007, 38, 335-345.	2.2	11
108	Material and structural instabilities of single-wall carbon nanotubes. Acta Mechanica Sinica/Lixue Xuebao, 2008, 24, 285-288.	3.4	5
109	Detonation nanodiamond and onionâ€like carbon: applications in composites. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2245-2251.	1.8	52
110	New Carbon Materials: Biological Applications of Functionalized Nanodiamond Materials. Chemistry - A European Journal, 2008, 14, 1382-1390.	3.3	399
111	Diamonds are a Chemist's Best Friend: Diamondoid Chemistry Beyond Adamantane. Angewandte Chemie - International Edition, 2008, 47, 1022-1036.	13.8	364

		Citation R	EPORT	
#	Article		IF	CITATIONS
112	Diamond Nanoparticles: Jewels for Chemistry and Physics. Advanced Materials, 2008, 2	20, 2445-2449.	21.0	262
113	Turning PMMA Nanofibers into Graphene Nanoribbons by In Situ Electron Beam Irradia Materials, 2008, 20, 3284-3288.	tion. Advanced	21.0	77
115	Reinforcing copper matrix composites through molecular-level mixing of functionalized nanodiamond by co-deposition route. Materials Science & Engineering A: Structur Properties, Microstructure and Processing, 2008, 490, 293-299.	ł ral Materials:	5.6	23
116	An atomistic-based finite-deformation shell theory for single-wall carbon nanotubes. Jo Mechanics and Physics of Solids, 2008, 56, 279-292.	urnal of the	4.8	124
117	Can a single-wall carbon nanotube be modeled as a thin shell?. Journal of the Mechanic of Solids, 2008, 56, 2213-2224.	s and Physics	4.8	87
118	Modeling of the mechanical instability of carbon nanotubes. Carbon, 2008, 46, 285-29	0.	10.3	39
119	Direct synthesis of graphitic carbon nanostructures from saccharides and their use as electrocatalytic supports. Carbon, 2008, 46, 931-939.		10.3	83
120	Biotinylated Nanodiamond:  Simple and Efficient Functionalization of Detonation 2008, 24, 4200-4204.	Diamond. Langmuir,	3.5	184
121	Thermal stability of graphene edge structure and graphene nanoflakes. Journal of Chen 2008, 128, 094707.	nical Physics,	3.0	82
122	Assemblies of carbon and boron-nitrogen nanotubes and fullerenes: Structure and pro Russian Journal of Inorganic Chemistry, 2008, 53, 2083-2102.	perties.	1.3	8
123	On the mechanism of forming nanosized particles of diamond detonation synthesized decomposition products. Journal of Superhard Materials, 2008, 30, 143-162.	from explosive	1.2	5
124	Size-Dependent Temperatureâ^'Pressure Phase Diagram of Carbon. Journal of Physical (112, 1423-1426.	Chemistry C, 2008,	3.1	33
125	First-principles studies of diamond polytypes. Diamond and Related Materials, 2008, 1	7, 356-364.	3.9	61
126	Instabilities in cubic diamond under non-hydrostatic compressive stress. Diamond and Materials, 2008, 17, 1353-1355.	Related	3.9	9
127	Using Detonation Nanodiamond for the Specific Capture of Glycoproteins. Analytical C 80, 4659-4665.	hemistry, 2008,	6.5	118
128	The structure and reactivity of nanoscale diamond. Journal of Materials Chemistry, 200	8, 18, 1485.	6.7	242
129	Effect of proton irradiation on photoluminescent properties of PDMS–nanodiamond Nanotechnology, 2008, 19, 455701.	composites.	2.6	26
130	Electrical properties of aggregated detonation nanodiamonds. Applied Physics Letters,	2008, 93, .	3.3	21

#	Article	IF	CITATIONS
131	Cathodoluminescence microanalysis of diamond nanocrystals in fused silicon dioxide. Journal of Applied Physics, 2008, 104, 113514.	2.5	4
132	A mechanical equivalence for Poisson's ratio and thickness of C–C bonds in single wall carbon nanotubes. Journal Physics D: Applied Physics, 2008, 41, 085306.	2.8	85
133	Self-assembly in nanodiamond agglutinates. Journal of Materials Chemistry, 2008, 18, 4038.	6.7	154
134	Theoretical study of the vibrational edge modes in graphene nanoribbons. Physical Review B, 2008, 78, .	3.2	86
135	From Fulleranes and Icosahedral Diamondoids to Polyicosahedral Nanowires: Structural, Electronic, and Mechanical Characteristics. Journal of Physical Chemistry C, 2008, 112, 11122-11129.	3.1	12
136	Polycrystalline diamond on self-assembled detonation nanodiamond: a viable route for fabrication of all-diamond preformed microcomponents. Nanotechnology, 2008, 19, 415601.	2.6	13
137	A comprehensive study on the mechanical properties of super carbon nanotubes. Journal Physics D: Applied Physics, 2008, 41, 155423.	2.8	18
138	Turning electrospun poly(methyl methacrylate) nanofibers into graphitic nanostructures by in situ electron beam irradiation. Journal of Applied Physics, 2008, 103, 046105.	2.5	9
139	Does natural frequency quantify the mass flow rate of fluid conveying single-walled carbon nanotubes?. Journal of Applied Physics, 2008, 103, .	2.5	11
140	Nanostructures of carbon in nuclear graphite. Journal of Physics: Conference Series, 2008, 126, 012056.	0.4	2
141	Laser-assisted deposition of good carbon $\hat{a} \in \rakepsilon$ From diamond films to nanotubes. , 2009, , .		0
142	Electrospray Deposition of Diamond Nanoparticle Nucleation Layers for Subsequent CVD Diamond Growth. Materials Research Society Symposia Proceedings, 2009, 1203, 1.	0.1	8
143	Proteins Induced Formation of Hydrothermal Nitrogen Doped Carbons. Materials Research Society Symposia Proceedings, 2009, 1219, 4051.	0.1	0
144	Reactivities of the Prismâ€&haped Diamondoids [1(2)3]Tetramantane and [12312]Hexamantane (Cyclohexamantane). Chemistry - A European Journal, 2009, 15, 3851-3862.	3.3	24
145	Photoacetylation of Diamondoids: Selectivities and Mechanism. European Journal of Organic Chemistry, 2009, 2009, 5153-5161.	2.4	20
146	Magnetic Resonance Study of Detonation Nanodiamonds with Surface Chemically Modified by Transition Metal Ions. Applied Magnetic Resonance, 2009, 36, 317-329.	1.2	37
147	Fiveâ€Nanometer Diamond with Luminescent Nitrogenâ€Vacancy Defect Centers. Small, 2009, 5, 1649-1653.	10.0	156
148	Analysis, behavior and ecotoxicity of carbon-based nanomaterials in the aquatic environment. TrAC - Trends in Analytical Chemistry, 2009, 28, 820-832.	11.4	143

#	Article	IF	CITATIONS
149	Mechanical properties of nanodiamond-reinforced polymer-matrix composites. Solid State Communications, 2009, 149, 1693-1697.	1.9	149
150	Radiofrequency plasma beam deposition of various forms of carbon based thin films and their characterization. Applied Surface Science, 2009, 255, 5378-5381.	6.1	21
151	First-principles theoretical analysis of pure and hydrogenated crystalline carbon phases and nanostructures. Chemical Physics Letters, 2009, 474, 168-174.	2.6	11
152	Surface functionalization and physicochemical characterization of diamond nanoparticles. Current Applied Physics, 2009, 9, e144-e147.	2.4	67
153	Iron oxide nanoparticles supported on ultradispersed diamond powders: Effect of the preparation procedure. Applied Surface Science, 2009, 255, 4322-4328.	6.1	2
154	Diamond standard in diagnostics: nanodiamond biolabels make their mark. Analyst, The, 2009, 134, 1751.	3.5	144
155	Nanodiamond Particles: Properties and Perspectives for Bioapplications. Critical Reviews in Solid State and Materials Sciences, 2009, 34, 18-74.	12.3	690
156	Nanodiamonds for nanomedicine. Nanomedicine, 2009, 4, 207-218.	3.3	187
157	Nanographene and Nanodiamond; New Members in the Nanocarbon Family. Chemistry - an Asian Journal, 2009, 4, 796-804.	3.3	50
158	A General Procedure to Functionalize Agglomerating Nanoparticles Demonstrated on Nanodiamond. ACS Nano, 2009, 3, 2288-2296.	14.6	202
159	Combining carbon and polymeric particles in an inert fluid as a promising approach to synthesis of nanocomposites. Russian Journal of Applied Chemistry, 2009, 82, 483-487.	0.5	7
160	On the origin of the anomalous component Xe-HL in nanodiamonds of chondrites. Doklady Earth Sciences, 2009, 429, 1403-1406.	0.7	2
161	The influence of ammonia on the electrical properties of detonation nanodiamond. Journal of Applied Physics, 2009, 106, .	2.5	10
162	Aggregate Structure in Concentrated Liquid Dispersions of Ultrananocrystalline Diamond by Small-Angle Neutron Scattering. Journal of Physical Chemistry C, 2009, 113, 9473-9479.	3.1	53
163	In-Situ Nanocomposite Synthesis: Arylcarbonylation and Grafting of Primary Diamond Nanoparticles with a Poly(etherâ^'ketone) in Polyphosphoric Acid. Macromolecules, 2009, 42, 114-124.	4.8	41
164	Organic functionalization of ultradispersed nanodiamond: synthesis and applications. Journal of Materials Chemistry, 2009, 19, 8432.	6.7	97
165	Nonaromatic Coreâ Shell Structure of Nanodiamond from Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2009, 131, 1426-1435.	13.7	147
166	Mechanical properties of non-reconstructed defective single-wall carbon nanotubes. Journal Physics D: Applied Physics, 2009, 42, 142002.	2.8	44

#	Article	IF	CITATIONS
167	Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology, 2009, 20, 065709.	2.6	438
168	Biodistribution and fate of nanodiamonds in vivo. Diamond and Related Materials, 2009, 18, 95-100.	3.9	168
169	Carbon Cluster Formation during Thermal Decomposition of Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-Triamino-2,4,6-trinitrobenzene High Explosives from ReaxFF Reactive Molecular Dynamics Simulations. Journal of Physical Chemistry A, 2009, 113, 10619-10640.	2.5	257
170	Prediction and Measurement of the Size-Dependent Stability of Fluorescence in Diamond over the Entire Nanoscale. Nano Letters, 2009, 9, 3555-3564.	9.1	92
171	Cytotoxicity and Genotoxicity of Carbon Nanomaterials. Nanostructure Science and Technology, 2009, , 159-187.	0.1	46
172	Electrostatic Grafting of Diamond Nanoparticles: A Versatile Route to Nanocrystalline Diamond Thin Films. ACS Applied Materials & Interfaces, 2009, 1, 2738-2746.	8.0	96
173	Contribution of Functional Groups to the Raman Spectrum of Nanodiamond Powders. Chemistry of Materials, 2009, 21, 273-279.	6.7	240
174	Study of detonation nanodiamond – plasma polymerized hexamethildisiloxan composites for medical application. Journal of Physics: Conference Series, 2010, 253, 012078.	0.4	1
175	Methods of the functionalization of hydrocarbons with a diamond-like structure. Petroleum Chemistry, 2010, 50, 1-16.	1.4	11
176	Treatment of detonation carbon in supercritical water. Russian Journal of Applied Chemistry, 2010, 83, 1202-1208.	0.5	7
177	Synthesis and properties of a microporous carbon material as a catalyst support for fuel cells. Kinetics and Catalysis, 2010, 51, 312-317.	1.0	0
178	Detonation Nanodiamond Particles Processing, Modification and Bioapplications. , 2010, , 79-116.		13
179	Single-Nano Buckydiamond Particles. , 2010, , 1-33.		9
180	Application of Nanodiamonds in Biomolecular Mass Spectrometry. Materials, 2010, 3, 1845-1862.	2.9	10
181	Electrodeposition of Pt nanoparticles on undoped nanodiamond powder for methanol oxidation electrocatalysts. Journal of Electroanalytical Chemistry, 2010, 644, 85-88.	3.8	36
182	Oneâ€Step Hydrothermal Synthesis of Nitrogenâ€Doped Nanocarbons: Albumine Directing the Carbonization of Glucose. ChemSusChem, 2010, 3, 246-253.	6.8	124
184	The transverse elasticity of bilayer graphene. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 2053-2057.	2.1	50
185	The use of nanodiamond monolayer coatings to promote the formation of functional neuronal networks. Biomaterials, 2010, 31, 2097-2104.	11.4	126

#	Article	IF	CITATIONS
186	Nanodiamond/poly (lactic acid) nanocomposites: Effect of nanodiamond on structure and properties of poly (lactic acid). Composites Part B: Engineering, 2010, 41, 646-653.	12.0	69
187	Transmission electron microscopy characterization of nanostructured carbon derived from Cr3C2 and Cr(C5H7O2)3. Carbon, 2010, 48, 1425-1433.	10.3	6
188	Growth and field emission study of a monolithic carbon nanotube/diamond composite. Carbon, 2010, 48, 3353-3358.	10.3	50
189	Nanocomposites with auxetic nanotubes. International Journal of Smart and Nano Materials, 2010, 1, 83-94.	4.2	14
190	Plasma techniques for nanostructured carbon materials synthesis. A case study: carbon nanowall growth by low pressure expanding RF plasma. Plasma Sources Science and Technology, 2010, 19, 034016.	3.1	105
191	Properties of Nitrogen-Functionalized Ordered Mesoporous Carbon Prepared Using Polypyrrole Precursor. Journal of the Electrochemical Society, 2010, 157, B1665.	2.9	116
192	Nanodiamond-coated silicon cantilever array for chemical sensing. Applied Physics Letters, 2010, 97, 093103.	3.3	18
193	Mechanical and electronic properties of ultrathin nanodiamonds under uniaxial compressions. Diamond and Related Materials, 2010, 19, 21-25.	3.9	19
194	Functionalization of nanodiamond particles with N,O-carboxymethyl chitosan. Diamond and Related Materials, 2010, 19, 441-444.	3.9	57
195	The Fundamental Properties and Characteristics of Nanodiamonds. , 2010, , 55-77.		13
196	Nanodiamond-gated diamond field-effect transistor for chemical sensing using hydrogen-induced transfer doping for channel formation. Applied Physics Letters, 2010, 97, 203503.	3.3	2
197	Hexagon Preserving Carbon Nanofoams. Carbon Materials, 2010, , 57-77.	1.2	2
198	Modulation of electronic density in waved graphite layers. Synthetic Metals, 2010, 160, 1848-1855.	3.9	15
199	The bending of single layer graphene sheets: the lattice versus continuum approach. Nanotechnology, 2010, 21, 125702.	2.6	105
200	Aggregate structure of "single-nano buckydiamond―in gel and dried powder by differential scanning calorimetry and nitrogen adsorption. Diamond and Related Materials, 2010, 19, 665-671.	3.9	33
201	Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy. Nanotechnology, 2010, 21, 315106.	2.6	180
202	Treatment of Nanodiamonds in Supercritical Water. , 2010, , 165-176.		0
203	Structure and Bonding in Fluorinated Nanodiamond. Journal of Physical Chemistry C, 2010, 114, 774-782.	3.1	51

#	Article	IF	CITATIONS
204	Convergence in the Evolution of Nanodiamond Raman Spectra with Particle Size: A Theoretical Investigation. ACS Nano, 2010, 4, 4475-4486.	14.6	36
205	Preparation of Fluorescent Diamond Nanoparticles Stably Dispersed under a Physiological Environment through Multistep Organic Transformations. Chemistry of Materials, 2010, 22, 3462-3471.	6.7	81
206	Supramolecular donor–acceptor assemblies composed of carbon nanodiamond and porphyrin for photoinduced electron transfer and photocurrent generation. Journal of Materials Chemistry, 2010, 20, 582-587.	6.7	35
208	Ballistic Thermal Conductance of Graphene Ribbons. Nano Letters, 2010, 10, 1652-1656.	9.1	190
209	Size-Dependent Reactivity of Diamond Nanoparticles. ACS Nano, 2010, 4, 4824-4830.	14.6	345
210	Facile Surface Functionalization of Nanodiamonds. Langmuir, 2010, 26, 3685-3689.	3.5	72
211	Fenton-Treated Functionalized Diamond Nanoparticles as Gene Delivery System. ACS Nano, 2010, 4, 65-74.	14.6	137
212	Electrical properties of monodispersed detonation nanodiamonds. Applied Physics Letters, 2010, 96, .	3.3	26
213	The effect of boundary conditions on the vibrations of armchair, zigzag, and chiral single-walled carbon nanotubes. Journal of Applied Physics, 2011, 110, 124311.	2.5	9
214	The 2010 Nobel Prize in physics—ground-breaking experiments on graphene. Journal Physics D: Applied Physics, 2011, 44, 473001.	2.8	50
215	Transformation between Different Hybridized Bonding Structures in Two-Dimensional Diamond-Based Materials. Journal of Physical Chemistry C, 2011, 115, 22168-22179.	3.1	13
216	Study on protein conformation and adsorption behaviors in nanodiamond particle–protein complexes. Nanotechnology, 2011, 22, 145703.	2.6	64
217	RANDOM WALK TO GRAPHENE. International Journal of Modern Physics B, 2011, 25, 4055-4080.	2.0	14
218	Modeling the thermostability of surface functionalisation by oxygen, hydroxyl, and water on nanodiamonds. Nanoscale, 2011, 3, 2566.	5.6	62
219	Nanodiamond-gated silicon ion-sensitive field effect transistor. Applied Physics Letters, 2011, 98, 153507.	3.3	6
220	The Controlled Display of Biomolecules on Nanoparticles: A Challenge Suited to Bioorthogonal Chemistry. Bioconjugate Chemistry, 2011, 22, 825-858.	3.6	444
221	Surface structure and properties of functionalized nanodiamonds: a first-principles study. Nanotechnology, 2011, 22, 065706.	2.6	16
222	Bending Ultrathin Graphene at the Margins of Continuum Mechanics. Physical Review Letters, 2011, 106, 255503.	7.8	215

ARTICLE IF CITATIONS # Surface chemical modifications and surface reactivity of nanodiamonds hydrogenated by CVD plasma. 223 2.8 71 Physical Chemistry Chemical Physics, 2011, 13, 11481. Nanocrystalline diamond. Diamond and Related Materials, 2011, 20, 621-640. 224 225 Nobel Lecture: Random walk to graphene. Reviews of Modern Physics, 2011, 83, 851-862. 45.6 361 Carbon nanostructures for orthopedic medical applications. Nanomedicine, 2011, 6, 1231-1244. Fabrication and macro/nanoscale characterization of aggregated and highly de-aggregated 227 6.7 20 nanodiamond/polyacrylonitrile composite thick films. Journal of Materials Chemistry, 2011, 21, 18832. Synthesis of Carbon Nanomaterials Using High-Voltage Electric Discharge Techniques., 2011, , . POLYCYCLIC AROMATIC HYDROCARBON FAR-INFRARED SPECTROSCOPY. Astrophysical Journal, 2011, 729, 229 4.5 39 64. Production of anomalous Xe in nanodiamond in chondrites during the last supernova explosion 230 predating the origin of the Solar System. Geochemistry International, 2011, 49, 555-567. Thermal oscillations of structurally distinct single-walled carbon nanotubes. Physical Review B, 2011, 231 3.2 7 84, . Simulation and vibrational analysis of thermal oscillations of single-walled carbon nanotubes. 3.2 Physical Review B, 2011, 83, Hydroxylated Detonation Nanodiamond: FTIR, XPS, and NMR Studies. Journal of Physical Chemistry C, 233 143 3.12011, 115, 19005-19011. Effect of thermal and chemical treatment on the structure and composition of nanodiamonds. 234 0.4 Physics of Particles and Nuclei Letters, 2011, 8, 1043-1045. Structure and mechanical properties of thermoplastics modified with nanodiamonds. Polymer Science 235 1.0 8 - Series A, 2011, 53, 765-774. Stability of Nanodiamond Surfaces Exposed to N, NH, and NH₂. Journal of Physical 3.1 Chemistry C, 2011, 115, 6218-6228. Beyond the shine: recent progress in applications of nanodiamond. Journal of Materials Chemistry, 237 106 6.7 2011, 21, 12571. Improved mechanical properties of epoxy reinforced by low content nanodiamond powder. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 53 528, 7295-7300. Thermal and mechanical properties of alkyl-functionalized nanodiamond composites. Current Applied 239 2.4 38 Physics, 2011, 11, 1183-1187. Chromatographic Separation of Highly Soluble Diamond Nanoparticles Prepared by Polyglycerol 243 13.8 156 Grafting. Angewandte Chemie - International Edition, 2011, 50, 1388-1392.

#	Article	IF	CITATIONS
244	Random Walk to Graphene (Nobel Lecture). Angewandte Chemie - International Edition, 2011, 50, 6966-6985.	13.8	137
245	Oxygen Insertion Catalysis by sp ² Carbon. Angewandte Chemie - International Edition, 2011, 50, 10226-10230.	13.8	118
246	Energetics of single-wall carbon nanotubes as revealed by calorimetry and neutron scattering. Carbon, 2011, 49, 949-954.	10.3	17
247	Microwave–hydrothermal synthesis of fluorescent carbon dots from graphite oxide. Carbon, 2011, 49, 3134-3140.	10.3	309
248	Electrostatic self-assembly of diamond nanoparticles. Chemical Physics Letters, 2011, 509, 12-15.	2.6	130
249	Evaluating the characteristics of multiwall carbon nanotubes. Carbon, 2011, 49, 2581-2602.	10.3	951
250	Pressure-dependent mechanical stability of simple cubic carbon. Physica B: Condensed Matter, 2011, 406, 2654-2657.	2.7	6
251	Deagglomeration and surface modification of thermally annealed nanoscale diamond. Journal of Colloid and Interface Science, 2011, 354, 23-30.	9.4	91
252	Graphene based materials: Past, present and future. Progress in Materials Science, 2011, 56, 1178-1271.	32.8	3,063
254	Nuclear Magnetic Resonance Study of Hydroxylated Detonation Nanodiamond. Fullerenes Nanotubes and Carbon Nanostructures, 2012, 20, 579-586.	2.1	7
255	Gold nanoparticles on nanodiamond for nanophotonic applications. Materials Research Society Symposia Proceedings, 2012, 1452, 1.	0.1	6
257	Advances in Surface Chemistry of Nanodiamond and Nanodiamond–Polymer Composites. , 2012, , 421-456.		11
258	Simulations of nanosensors based on single walled carbon nanotubes. Journal of Physics: Conference Series, 2012, 402, 012002.	0.4	1
259	Plasma deposited polymers as gas sensitive films. Journal of Physics: Conference Series, 2012, 356, 012013.	0.4	1
260	Nanomaterials: A Challenge for Toxicological Risk Assessment?. Exs, 2012, 101, 219-250.	1.4	14
261	Selective Alkane CH Bond Substitutions: Strategies for the Preparation of Functionalized Diamondoids (Nanodiamonds). Strategies and Tactics in Organic Synthesis, 2012, , 317-350.	0.1	4
262	Surface phase diagram and thermodynamic stability of functionalisation of nanodiamonds. Journal of Materials Chemistry, 2012, 22, 16774.	6.7	23
263	Adsorption of azo dye onto nanodiamond surface. Diamond and Related Materials, 2012, 26, 1-6.	3.9	33

#	Article	IF	CITATIONS
264	Maximizing Young's modulus of aminated nanodiamond-epoxy composites measured in compression. Polymer, 2012, 53, 5965-5971.	3.8	54
265	Quantification of nanodiamonds in aqueous solutions by spectrophotometry and thermal lens spectrometry. Journal of Analytical Chemistry, 2012, 67, 842-850.	0.9	13
266	Nanodiamond for hydrogen storage: Temperature-dependent hydrogenation and charge-induced dehydrogenation. Nanoscale, 2012, 4, 1130-1137.	5.6	23
267	Mechanical stabilities of K4 carbon and K4-like NaC2. Journal of Physics and Chemistry of Solids, 2012, 73, 1264-1267.	4.0	3
268	Nuclear Magnetic Resonance Studies of Nanodiamonds. Critical Reviews in Solid State and Materials Sciences, 2012, 37, 276-303.	12.3	60
269	Fullerene and graphene formation from carbon nanotube fragments. Computational and Theoretical Chemistry, 2012, 987, 115-121.	2.5	13
270	Comparative structural characterization of the water dispersions of detonation nanodiamonds by small-angle neutron scattering. Journal of Surface Investigation, 2012, 6, 821-824.	0.5	16
271	Diamond Phase Transitions at Nanoscale. , 2012, , 181-244.		6
272	Advances in Synthesis of Nanodiamond Particles. , 2012, , 133-164.		7
273	Stability of Diamond at the Nanoscale. , 2012, , 3-52.		2
274	Deagglomeration of Detonation Nanodiamond. , 2012, , 165-179.		4
275	Characterization of Detonation Nanodiamonds for Biocompatibility. , 2012, , 519-548.		3
276	Magnetic resonance study of nanodiamonds prepared by laser-assisted technique. Diamond and Related Materials, 2012, 23, 150-153.	3.9	32
277	Fluorescent carbon dots obtained from chitosan gel. RSC Advances, 2012, 2, 12156.	3.6	137
278	Properties of nanoporous carbon material with one-dimensional conductivity. Solid Fuel Chemistry, 2012, 46, 297-304.	0.7	3
279	Identification, quantification and modification of detonation nanodiamond functional groups. Diamond and Related Materials, 2012, 22, 113-117.	3.9	70
280	Preparation of films of nanodiamonds by step-by-step deposition approach through hydrogen bonding. Diamond and Related Materials, 2012, 25, 73-79.	3.9	6
281	Study on low temperature growth and formation mechanism of hexagonal diamond. Diamond and Related Materials, 2012, 27-28, 76-81.	3.9	8

#	Article	IF	CITATIONS
282	Poly(vinylpyrrolidone) as a tool: aqueous dispersion of nanodiamonds by wrapping in the solid state. Polymer International, 2012, 61, 1228-1233.	3.1	4
283	Charge-induced restructuring and decomposition of bucky-diamonds. Journal of Materials Chemistry, 2012, 22, 13141.	6.7	5
284	A Tunable Multicolor Photoluminescent Nanocarbon Prepared from Castor Oil Soot. Journal of the Chinese Chemical Society, 2012, 59, 802-808.	1.4	4
285	Modelling of the reactivity and stability of carbon nanotubes under environmentally relevant conditions. Physical Chemistry Chemical Physics, 2012, 14, 10080.	2.8	15
286	Microwave synthesis and characterization of Pt nanoparticles supported on undoped nanodiamond for methanol electrooxidation. International Journal of Hydrogen Energy, 2012, 37, 1220-1225.	7.1	29
287	Microwave synthesis and properties of nanodiamond supported PtRu electrocatalyst for methanol oxidation. Electrochimica Acta, 2012, 60, 329-333.	5.2	25
288	A new CNT-oriented shell theory. European Journal of Mechanics, A/Solids, 2012, 35, 75-96.	3.7	13
289	Vibration frequency of graphene based composites: A multiscale approach. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 303-310.	3.5	76
290	Influence of thermal oxidation on as-synthesized detonation nanodiamond. Particuology, 2012, 10, 339-344.	3.6	4
291	Silica encapsulation of luminescent silicon nanoparticles: stable and biocompatible nanohybrids. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	5
292	Functionalized nanodiamond as a charge transporter in organic solar cells. Solar Energy, 2013, 91, 204-211.	6.1	32
293	Effect of the detonation nanodiamond surface on the catalytic activity of deposited nickel catalysts in the hydrogenation of acetylene. Russian Journal of Physical Chemistry A, 2013, 87, 1114-1120.	0.6	9
294	New approaches to the development of hybrid nanocomposites: from structural materials to high-tech applications. Russian Chemical Reviews, 2013, 82, 303-332.	6.5	96
295	Microwave induced carboxylation of nanodiamonds. Diamond and Related Materials, 2013, 34, 65-69.	3.9	16
296	Nanodiamond–TiO ₂ Composites for Heterogeneous Photocatalysis. ChemPlusChem, 2013, 78, 801-807.	2.8	33
297	Diamond nanoparticles as a new platform for the sequestration of waste carbon. Physical Chemistry Chemical Physics, 2013, 15, 9156.	2.8	7
298	A comparative study on the effect of type of reinforcement on the scratch behavior of a polyacrylic-based nanocomposite coating. Journal of Coatings Technology Research, 2013, 10, 255-261.	2.5	14
299	Spallation reactions in shock waves at supernova explosions and related problems. Physics of Atomic Nuclei, 2013, 76, 616-655.	0.4	0

#	Article	IF	CITATIONS
300	Detonation Nanodiamonds and Carbon Nanotubes as Reinforcements in Epoxy Composites—A Comparative Study. Journal of Nanotechnology in Engineering and Medicine, 2013, 4, .	0.8	22
301	Receptor- and ligand-based study of fullerene analogues: comprehensive computational approach including quantum-chemical, QSAR and molecular docking simulations. Organic and Biomolecular Chemistry, 2013, 11, 5798.	2.8	60
302	Nanodiamonds for surface engineering of orthopedic implants: Enhanced biocompatibility in human osteosarcoma cell culture. Diamond and Related Materials, 2013, 40, 107-114.	3.9	33
303	Electrical and Dielectric Properties of Polyaniline Doped with Carboxylâ€Functionalized Multiwalled Carbon Nanotube. Advances in Polymer Technology, 2013, 32, .	1.7	20
304	Nanodiamonds as Platforms for Biology and Medicine. Journal of the Association for Laboratory Automation, 2013, 18, 12-18.	2.8	35
305	Effect of heat treatment of nanodiamonds on the scratch behavior of polyacrylic/nanodiamond nanocomposite clear coats. Progress in Organic Coatings, 2013, 76, 1258-1264.	3.9	17
306	Nanodiamonds. , 2013, , 263-300.		6
307	Elastic properties of graphene obtained by computational mechanical tests. Europhysics Letters, 2013, 103, 68004.	2.0	25
308	In vivo imaging of tumour bearing near-infrared fluorescence-emitting carbon nanodots derived from tire soot. Chemical Communications, 2013, 49, 10290.	4.1	74
309	The spatial diamond–graphite transition in detonation nanodiamond as revealed by small-angle neutron scattering. Journal of Physics Condensed Matter, 2013, 25, 445001.	1.8	29
310	Methods for Obtaining Graphene. , 2013, , 129-228.		13
311	Microparticles and Nanoparticles. , 2013, , 360-388.		14
312	On a nanoscopically-informed shell theory of single-wall carbon nanotubes. European Journal of Mechanics, A/Solids, 2013, 42, 137-157.	3.7	15
313	Nanoâ \in "bio effects: interaction of nanomaterials with cells. Nanoscale, 2013, 5, 3547.	5.6	223
314	Nanodiamond Nanofluids for Enhanced Thermal Conductivity. ACS Nano, 2013, 7, 3183-3189.	14.6	143
315	Carbon nanostructures as multi-functional drug delivery platforms. Journal of Materials Chemistry B, 2013, 1, 401-428.	5.8	186
316	Nonlinear softening and hardening nonlocal bending stiffness of an initially curved monolayer graphene. International Journal of Non-Linear Mechanics, 2013, 56, 123-131.	2.6	18
317	Mechanics and morphology of single-walled carbon nanotubes: from graphene to the elastica. Philosophical Magazine, 2013, 93, 2057-2088.	1.6	20

# 318	ARTICLE 3D-nanostructured scaffold electrodes based on single-walled carbon nanotubes and nanodiamonds for high performance biosensors. Carbon, 2013, 61, 349-356.	IF 10.3	CITATIONS
319	Progress in the electrochemical modification of graphene-based materials and their applications. Electrochimica Acta, 2013, 107, 425-440.	5.2	112
320	Preparation of Polyhedral Graphite Particles by Arc Discharge under Atmospheric Pressure. Japanese Journal of Applied Physics, 2013, 52, 01AK01.	1.5	4
321	Effects of Dipping Pretreatment on the Flame Deposition of Carbon Nanostructure on the Low Carbon Steel Substrate. Advanced Materials Research, 0, 734-737, 2269-2272.	0.3	0
322	Nanodiamonds for drug delivery systems. , 2013, , 186-205.		18
323	Graphene nanofilm as pressure and force sensor: A mechanical analysis. Physica Status Solidi (B): Basic Research, 2013, 250, 2085-2089.	1.5	7
324	Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems. International Journal of Nanomedicine, 2013, 8, 203.	6.7	123
325	Detonation nanodiamonds biofunctionalization and immobilization to titanium alloy surfaces as first steps towards medical application. Beilstein Journal of Organic Chemistry, 2014, 10, 2765-2773.	2.2	16
326	Synthesis of nanodiamond derivatives carrying amino functions and quantification by a modified Kaiser test. Beilstein Journal of Organic Chemistry, 2014, 10, 2729-2737.	2.2	46
327	CVD growth of carbon nanofibers. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2679-2687.	1.8	9
328	Diamond Nanoparticles. , 2014, , 379-406.		1
329	Production of Nanodiamond Particles. , 2014, , 143-171.		2
330	Equivalent Young's modulus and thickness of graphene sheets for the continuum mechanical models. Applied Physics Letters, 2014, 104, .	3.3	46
331	Ultraviolet pulsed laser irradiation of multi-walled carbon nanotubes in nitrogen atmosphere. Journal of Applied Physics, 2014, 115, 093501.	2.5	27
332	Influence of the size and the attached organic tail of modified detonation nanodiamond on the physical properties of liquid crystals. Liquid Crystals, 2014, 41, 1332-1338.	2.2	8
333	Neuron Growth on Nanodiamond. RSC Nanoscience and Nanotechnology, 2014, , 195-220.	0.2	1
334	Diamond Nucleation and Seeding Techniques: Two Complementary Strategies for the Growth of Ultra-thin Diamond Films. RSC Nanoscience and Nanotechnology, 2014, , 221-252.	0.2	7
335	Preparation of complex nitric fertilizers during recycling of acidic wastes of detonation nanodiamonds purification stage. Russian Journal of General Chemistry, 2014, 84, 2539-2541.	0.8	4

ARTICLE IF CITATIONS Properties of Diamond Nanomaterials., 2014, , 555-574. 336 0 Nanodiamonds as Intracellular Probes for Imaging in Biology and Medicine. Fundamental Biomedical 0.2 Technologies, 2014, , 363-401. Hierarchical sol–gel derived porous titania/carbon nanotube films prepared by controlled phase 338 4.4 25 separation. Microporous and Mesoporous Materials, 2014, 183, 74-80. Genotoxic and mutagenic activity of diamond nanoparticles in human peripheral lymphocytes in vitro. 84 Carbon, 2014, 68, 763-776. Thermodynamics at the nanoscale: A new approach to the investigation of unique physicochemical 340 31.8 133 properties of nanomaterials. Materials Science and Engineering Reports, 2014, 79, 1-40. Thermochemistry of onion-like carbons. Carbon, 2014, 69, 490-494. 10.3 A shell theory for chiral single-wall carbon nanotubes. European Journal of Mechanics, A/Solids, 342 3.7 9 2014, 45, 198-210. Polymer/Nanodiamond Composites in Li-Ion Batteries: A Review. Polymer-Plastics Technology and 1.9 Engineering, 2014, 53, 550-563. Layer-by-Layer Oxidation for Decreasing the Size of Detonation Nanodiamond. Chemistry of Materials, 344 6.7 42 2014, 26, 3479-3484. 345 Carbon (Graphene/Graphite)., 2014, , 7-235. Platinum on Nanodiamond: A Promising Prodrug Conjugated with Stealth Polyglycerol, Targeting 346 14.9 106 Peptide and Acidâ€Responsive Antitumor Drug. Advanced Functional Materials, 2014, 24, 5348-5357. Quantitative analysis of the local atomic structure in disordered carbon. Journal of Non-Crystalline 3.1 Solids, 2014, 386, 1-7. Aggregation behavior of nanodiamonds and their functionalized analogs in an aqueous environment. 348 3.5 30 Environmental Sciences: Processes and Impacts, 2014, 16, 518-523. Diamond Nanowires: Fabrication, Structure, Properties, and Applications. Angewandte Chemie -349 13.8 54 International Edition, 2014, 53, 14326-14351. The production, characterization and applications of nanoparticles in the textile industry. Textile 350 2.0 41 Progress, 2014, 46, 133-226. Waste chicken eggshell as low-cost precursor for efficient synthesis of nitrogen-doped fluorescent 39 carbon nanodots and their multi-functional applications. RSC Advances, 2014, 4, 58329-58336. Novel carbon dot coated alginate beads with superior stability, swelling and pH responsive drug 352 5.8 76 delivery. Journal of Materials Chemistry B, 2014, 2, 4089. Synthesis of Carbon Nanotubes and Carbon Spheres and Study of their Hydrogen Storage Property by Electrochemical Method., 2014, 5, 1056-1065.

#	Article	IF	CITATIONS
354	The impact of structural polydispersivity on the surface electrostatic potential of nanodiamond. Nanoscale, 2014, 6, 1188-1194.	5.6	35
355	Single-walled carbon nanotubes as high pressure nanocontainer. International Journal of Modern Physics B, 2014, 28, 1450074.	2.0	1
356	Directly Thiolated Modification onto the Surface of Detonation Nanodiamonds. ACS Applied Materials & Interfaces, 2014, 6, 7198-7203.	8.0	36
357	Small-angle scattering from polydisperse particles with a diffusive surface. Journal of Applied Crystallography, 2014, 47, 642-653.	4.5	30
358	Surface Modifications of Detonation Nanodiamonds Probed by Multiwavelength Raman Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 23415-23425.	3.1	46
359	Graphene/activated carbon supercapacitors with sulfonated-polyetheretherketone as solid-state electrolyte and multifunctional binder. Solid State Sciences, 2014, 37, 80-85.	3.2	29
360	A Study of Carbonized Lignin as an Alternative to Carbon Black. ACS Sustainable Chemistry and Engineering, 2014, 2, 1257-1263.	6.7	123
361	Sonochemical preparation of carbon spheres. Ultrasonics Sonochemistry, 2014, 21, 943-945.	8.2	4
362	Molecular dynamics simulation of graphite melting. High Temperature, 2014, 52, 198-204.	1.0	22
363	Synthesis of embedded iron nanoparticles in Fe3C-derived carbons. Carbon, 2014, 79, 74-84.	10.3	17
364	Measurement of anode surface temperature in carbon nanomaterial production by arc discharge method. Materials Research Bulletin, 2014, 60, 158-165.	5.2	18
365	Controlling the Electronic Properties of Nanodiamonds via Surface Chemical Functionalization: A DFT Study. Journal of Physical Chemistry C, 2014, 118, 5530-5537.	3.1	28
366	Chemical Basis of Interactions Between Engineered Nanoparticles and Biological Systems. Chemical Reviews, 2014, 114, 7740-7781.	47.7	478
367	Tight-binding theory of graphene bending. Physical Review B, 2014, 89, .	3.2	39
368	Mechanical-Thermal-Electrical and Morphological Properties of Graphene Reinforced Polymer Composites: A Review. Transactions of the Indian Institute of Metals, 2014, 67, 803-816.	1.5	56
369	Diamond growth on copper rods from polymer composite nanofibres. Applied Surface Science, 2014, 312, 220-225.	6.1	9
370	Carbide derived carbon: from growth to tribological application. Journal of the Ceramic Society of Japan, 2014, 122, 577-585.	1.1	12
373	Microscopic, structural, and electrical characterization of the carbonaceous materials synthesized from various lignin feedstocks. Journal of Applied Polymer Science, 2015, 132, .	2.6	19

#	Article	IF	CITATIONS
374	Disaggregation and Anionic Activation of Nanodiamonds Mediated by Sodium Hydride—A New Route to Functional Aliphatic Polyesterâ€Based Nanodiamond Materials. Particle and Particle Systems Characterization, 2015, 32, 35-42.	2.3	14
375	Vibration analysis of a carbyne-based resonator in nano-mechanical mass sensors. Journal Physics D: Applied Physics, 2015, 48, 115303.	2.8	9
376	Photochemistry of Graphene. Structure and Bonding, 2015, , 213-238.	1.0	0
377	Diamond Nanowires: Fabrication, Structure, Properties and Applications. Topics in Applied Physics, 2015, , 123-164.	0.8	1
378	Evaluation of surface properties of epoxy–nanodiamonds composites. Composites Part B: Engineering, 2015, 80, 27-36.	12.0	44
379	Reinforcing Effects of Modified Nanodiamonds on the Physical Properties of Polymer-Based Nanocomposites: A Review. Polymer-Plastics Technology and Engineering, 2015, 54, 861-879.	1.9	35
380	Study of Reduced Graphene Oxide for Trench Schottky Diode. IOP Conference Series: Materials Science and Engineering, 2015, 99, 012031.	0.6	6
381	Density functional theory study of the multimode Jahn–Teller problem in the open-shell corannulenes and coronenes. Chemical Physics, 2015, 460, 64-74.	1.9	6
382	Physical properties of materials derived from diamondoid molecules. Reports on Progress in Physics, 2015, 78, 016501.	20.1	31
384	Structural Characteristics of Aqueous Dispersions of Detonation Nanodiamond and Their Aggregate Fractions as Revealed by Small-Angle Neutron Scattering. Journal of Physical Chemistry C, 2015, 119, 794-802.	3.1	50
385	Vacuum or flowing argon: What is the best synthesis atmosphere for nanodiamond-derived carbon onions for supercapacitor electrodes?. Carbon, 2015, 94, 507-517.	10.3	59
386	A Review on Polymeric Nanocomposites of Nanodiamond, Carbon Nanotube, and Nanobifiller: Structure, Preparation and Properties. Polymer-Plastics Technology and Engineering, 2015, 54, 1379-1409.	1.9	55
387	Carbon nanostructures. , 2015, , 97-120.		7
388	Electrochemical sensors based on carbon nanomaterials for acetaminophen detection: A review. Analytica Chimica Acta, 2015, 886, 16-28.	5.4	137
389	Nanodiamond–TiO ₂ composites for photocatalytic degradation of microcystin-LA in aqueous solutions under simulated solar light. RSC Advances, 2015, 5, 58363-58370.	3.6	39
390	Transition metal complexes with cage-opened diamondoid tetracyclo[7.3.1.1 ^{4,12} .0 ^{2,7}]tetradeca-6.11-diene. Journal of Coordination Chemistry, 2015, 68, 3295-3301.	2.2	2
391	Hierarchical porous graphitic carbon monoliths with detonation nanodiamonds: synthesis, characterisation and adsorptive properties. Journal of Materials Science, 2015, 50, 6245-6259.	3.7	10
392	Toward an Understanding of Diamond sp ² -Defects with Unsaturated Diamondoid Oligomer Models. Journal of the American Chemical Society, 2015, 137, 6577-6586.	13.7	19

	CHAHON R		
# 393	ARTICLE Metal-Free Catalysts for Oxygen Reduction Reaction. Chemical Reviews, 2015, 115, 4823-4892.	IF 47.7	Citations 2,083
394	Recent advances in electrochemical biosensing schemes using graphene and graphene-based nanocomposites. Carbon, 2015, 84, 519-550.	10.3	202
395	Resistance-Based Approach for Drain Current Modeling in Graphene FETs. IEEE Transactions on Electron Devices, 2015, 62, 4313-4321.	3.0	4
396	Trends of amino acid adsorption onto graphene and graphene oxide surfaces: a dispersion corrected DFT study. RSC Advances, 2015, 5, 92843-92857.	3.6	62
397	Graphene synthesis: a Review. Materials Science-Poland, 2015, 33, 566-578.	1.0	105
398	Flipping growth orientation of nanographitic structures by plasma enhanced chemical vapor deposition. RSC Advances, 2015, 5, 91922-91931.	3.6	22
399	Size and Purity Control of HPHT Nanodiamonds down to 1 nm. Journal of Physical Chemistry C, 2015, 119, 27708-27720.	3.1	144
400	Unique Dual Functions for Carbon Dots in Emulsion Preparations: Costabilization and Fluorescence Probing. Langmuir, 2015, 31, 9537-9545.	3.5	17
401	Carbon Dots: A Unique Fluorescent Cocktail of Polycyclic Aromatic Hydrocarbons. Nano Letters, 2015, 15, 6030-6035.	9.1	369
402	Science and engineering of nanodiamond particle surfaces for biological applications (Review). Biointerphases, 2015, 10, 030802.	1.6	146
403	Tailored Fe3C-derived carbons with embedded Fe nanoparticles for ammonia adsorption. Carbon, 2015, 95, 208-219.	10.3	11
404	Perspectives of Nanoâ€Carbon Based Engineering Materials. Advanced Engineering Materials, 2015, 17, 124-137.	3.5	53
405	Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 1321-1338.	2.7	137
406	Controlled drug release from pharmaceutical nanocarriers. Chemical Engineering Science, 2015, 125, 75-84.	3.8	359
407	Synthesis and Properties of Hydrogen-Free Detonation Diamond. Propellants, Explosives, Pyrotechnics, 2015, 40, 39-45.	1.6	18
408	Antibacterial Applications of Nanodiamonds. International Journal of Environmental Research and Public Health, 2016, 13, 413.	2.6	59
409	P-136: Light Propagation through Composite Heterophase Objects with Liquid Crystal Material. Digest of Technical Papers SID International Symposium, 2016, 47, 1632-1635.	0.3	0
410	Optical characterization of composite layers prepared by plasma polymerization. Journal of Physics: Conference Series, 2016, 682, 012025.	0.4	1

#	Article	IF	CITATIONS
411	High-yield fabrication and properties of 1.4 nm nanodiamonds with narrow size distribution. Scientific Reports, 2016, 6, 38419.	3.3	63
412	The analysis of thermal stability of detonation nanodiamond. Journal of Physics: Conference Series, 2016, 774, 012014.	0.4	1
413	Synthesis of carbon nanoparticles from commercially available liquified petroleum gas. IOP Conference Series: Materials Science and Engineering, 2016, 128, 012042.	0.6	4
414	Diamond-like-carbon nanoparticle production and agglomeration following UV multi-photon excitation of static naphthalene/helium gas mixtures. Journal of Chemical Physics, 2016, 145, 024303.	3.0	1
415	Burning and graphitization of optically levitated nanodiamonds in vacuum. Scientific Reports, 2016, 6, 21633.	3.3	66
416	Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures. Physics Reports, 2016, 638, 1-97.	25.6	140
417	Photoluminescent Carbon Nanostructures. Chemistry of Materials, 2016, 28, 4085-4128.	6.7	186
418	Computation of elastic moduli of graphene monolayer in nonsymmetric formulation using energy-based approach. Physical Mesomechanics, 2016, 19, 93-106.	1.9	7
419	Filamentation of diamond nanoparticles treated in underwater corona discharge. RSC Advances, 2016, 6, 2352-2360.	3.6	6
420	On the nature of fibres grown from nanodiamond colloids. Materials Chemistry and Physics, 2016, 173, 325-332.	4.0	12
422	Cyclic density functional theory: A route to the first principles simulation of bending in nanostructures. Journal of the Mechanics and Physics of Solids, 2016, 96, 605-631.	4.8	29
423	Nanostructured Catalysts. , 2016, , 285-327.		0
424	Synthesis of graphitized carbon, nanodiamond and graphene supported Li4Ti5O12 and comparison of their electrochemical performance as anodes for lithium ion batteries. Applied Surface Science, 2016, 389, 428-437.	6.1	12
425	An analytical benchmark and a Mathematica program for MD codes: Testing LAMMPS on the 2nd generation Brenner potential. Computer Physics Communications, 2016, 207, 426-431.	7.5	10
426	Preparation, characterization and optoelectronic properties of nanodiamonds doped zinc oxide nanomaterials by a ball milling technique. Materials Research Express, 2016, 3, 075016.	1.6	11
427	The effects of shear and particle shape on the physical adsorption of polyvinyl pyrrolidone on carbon nanoparticles. Nanotechnology, 2016, 27, 325709.	2.6	9
429	Perspectives of Polystyrene Composite with Fullerene, Carbon Black, Graphene, and Carbon Nanotube: A Review. Polymer-Plastics Technology and Engineering, 2016, 55, 1988-2011.	1.9	33
430	Nanodiamond-Decorated Silica Spheres as a Chromatographic Material. ACS Applied Materials & Interfaces, 2016, 8, 4149-4157.	8.0	29

	CITATION R	EPORT	
#	Article	IF	CITATIONS
431	Water-Soluble Phosphated Graphene: Preparation, Characterization, Catalytic Reactivity, and Adsorption Property. Industrial & amp; Engineering Chemistry Research, 2016, 55, 2970-2982.	3.7	42
432	Study of nitrogen-doped carbon nanomaterials by bomb calorimetry. Carbon, 2016, 102, 506-512.	10.3	16
433	Nanodiamonds: Behavior in Biological Systems and Emerging Bioapplications. Springer Series in Biomaterials Science and Engineering, 2016, , 319-361.	1.0	5
434	Carbon Containing Nanostructured Polymer Blends. , 2016, , 187-213.		1
435	Sustainable carbon nanomaterials: Recent advances and its applications in energy and environmental remediation. Journal of Environmental Chemical Engineering, 2016, 4, 835-856.	6.7	77
436	Nonlocal continuum model for large deformation analysis of SLGSs using the kp-Ritz element-free method. International Journal of Non-Linear Mechanics, 2016, 79, 1-9.	2.6	41
437	Facile one-step sonochemical synthesis of ultrafine and stable fluorescent C-dots. Ultrasonics Sonochemistry, 2016, 28, 367-375.	8.2	68
438	Water interaction with hydrogenated and oxidized detonation nanodiamonds — Microscopic and spectroscopic analyses. Diamond and Related Materials, 2016, 63, 97-102.	3.9	74
439	Synthesis of porous carbon nanofiber with bamboo-like carbon nanofiber branches by one-step carbonization process. Applied Surface Science, 2017, 402, 456-462.	6.1	16
440	One-step synthesis of Co-TiC-carbon composite nanofibers at low temperature. Ceramics International, 2017, 43, 5828-5831.	4.8	18
441	Schottky behavior of reduced graphene oxide at various operating temperatures. Surfaces and Interfaces, 2017, 6, 229-236.	3.0	11
442	Atomistic Modelingâ€Based Design of Novel Materials. Advanced Engineering Materials, 2017, 19, 1600688.	3.5	14
443	Environmental applications of titania-graphene photocatalysts. Catalysis Today, 2017, 285, 13-28.	4.4	95
444	A review on mechanics and mechanical properties of 2D materials—Graphene and beyond. Extreme Mechanics Letters, 2017, 13, 42-77.	4.1	920
445	Fluorescent spongy carbon nanoglobules derived from pineapple juice: A potential sensing probe for specific and selective detection of chromium (VI) ions. Ceramics International, 2017, 43, 7011-7019.	4.8	42
446	Hybrid carbon based nanomaterials for electrochemical detection of biomolecules. Progress in Materials Science, 2017, 88, 499-594.	32.8	137
447	Enhanced H ₂ O ₂ Production at Reductive Potentials from Oxidized Boron-Doped Ultrananocrystalline Diamond Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 16610-16619.	8.0	35
448	Pd and Cu-Pd nanoparticles supported on multiwall carbon nanotubes for H 2 detection. Materials Research Bulletin, 2017, 93, 102-111.	5.2	8

ARTICLE IF CITATIONS # Dielectric relaxation of near-percolated carbon nanofiber polypropylene composites. Physica B: 449 2.7 7 Condensed Matter, 2017, 516, 41-47. Current Analysis and Modeling of Fullerene Single-Electron Transistor at Room Temperature. Journal 2.2 of Electronic Materials, 2017, 46, 4294-4298. Length and temperature dependence of the mechanical properties of finite-size carbyne. Physica E: 451 2.7 14 Low-Dimensional Systems and Nanostructures, 2017, 93, 124-131. Electrospun CoCr7C3-supported C nanofibers: Effective, durable, and chemically stable catalyst for H2 2.0 gas generation from ammonia borane. Molecular Catalysis, 2017, 434, 32-38. Production and purification of nanodiamonds., 2017, , 25-56. 453 13 Raman investigations on nanodiamonds., 2017, , 85-107. High surface hierarchical carbon nanowalls synthesized by plasma deposition using an aromatic 455 10.3 18 precursor. Carbon, 2017, 118, 578-587. Light Propagation Through Composite Heterophase Objects with Liquid Crystal Material. Procedia 2.0 Computer Science, 2017, 103, 556-561. 457 Ab-initio design of 3D carbyne-based material. Computational Materials Science, 2017, 128, 223-228. 3.0 3 The enthalpies of formation of carbon nanomaterials as a key factor for understanding their 2.8 structural features. Physical Chemistry Chemical Physics, 2017, 19, 2269-2275. Research Advancement Towards Polymer/Nanodiamond Composite in Buckypaper: A Review. 459 1.9 6 Polymer-Plastics Technology and Engineering, 2017, 56, 946-965. Optical properties of composite heterophase objects with liquid crystal material for different display 460 2.1 applications. Journal of the Society for Information Display, 2017, 25, 561-567. Synthesis of carbon nanofibers via hydrothermal conversion of cellulose nanocrystals. Cellulose, 461 4.9 12 2017, 24, 4599-4604. Electrospun carbon nanofibers containing Co-TiC nanoparticles-like superficial protrusions as a catalyst for H2 gas production from ammonia borane complex. Ceramics International, 2017, 43, 4.8 15735-15742. Synthesis, Thermal Properties and Application of Nanodiamond., 2017, , 85-112. 463 3 Surface functionalisation of nanodiamonds for human neural stem cell adhesion and proliferation. 464 48 Scientific Reports, 2017, 7, 7307. Capillary electrophoresis and nanomaterials $\hat{a} \in \hat{a}$ Part I: Capillary electrophoresis of nanomaterials. 465 2.4 27 Electrophoresis, 2017, 38, 2389-2404. Surface chemistry of water-dispersed detonation nanodiamonds modified by atmospheric DC plasma afterglow. RSC Advances, 2017, 7, 38973-38980.

ARTICLE IF CITATIONS Rehybridization of carbon on facets of detonation diamond nanocrystals and forming hydrosols of 10.3 72 467 individual particles. Carbon, 2017, 122, 737-745. On the Origin of Diamond Plates Deposited at Low Temperature. Crystal Growth and Design, 2017, 17, 468 24 4306-4314. Electromagnetic Interference Shielding of Polymer/Nanodiamond, Polymer/Carbon Nanotube, and Polymer/Nanodiamondâ€"Carbon Nanotube Nanobifiller Composite: Á Review. Polymer-Plastics 469 1.9 23 Technology and Engineering, 2017, 56, 347-363. Carbon nanotubes from renewable feedstocks: A move toward sustainable nanofabrication. Journal of Applied Polymer Science, 2017, 134, . Structure and chemistry of polymer/nanodiamond composites., 2017, , 1-21. 471 8 Carbon-Based Nanomaterials., 2017, , 233-249. 473 Diamond-like local structures in the ball-milled graphite., 2017,,. 1 Haemocompatibility of Modified Nanodiamonds. Materials, 2017, 10, 352. 474 2.9 30 475 Mechanics of More Complicated Structures., 2017, , 177-210. 1 Effect of structure and composition of nanodiamond powders on thermal stability and oxidation kinetics. Carbon, 2018, 132, 616-622. Willmore energy for joining of carbon nanostructures. Philosophical Magazine, 2018, 98, 1511-1524. 477 1.6 6 Enrichment of ODMR-active nitrogen-vacancy centres in five-nanometre-sized detonation-synthesized 478 3.3 nanodiamonds: Nanoprobes for temperature, angle and position. Scientific Reports, 2018, 8, 5463. Materials-by-design: computation, synthesis, and characterization from atoms to structures. Physica 479 2.5 32 Scripta, 2018, 93, 053003. A critical review of nanodiamond based nanocomposites: Synthesis, properties and applications. 480 Composites Part B: Engineering, 2018, 143, 19-27. Graphene oxide incorporated functional materials: A review. Composites Part B: Engineering, 2018, 145, 481 12.0 198 270-280. Carbon-Based Metal-Free Electrocatalysis for Energy Conversion, Energy Storage, and Environmental 482 153 Protection. Electrochemical Energy Réviews, 2018, 1, 84-112. Nanodiamond: a multitalented material for cutting edge solar cell application. Materials Research 483 2.319 Innovations, 2018, 22, 302-314. Overview of Hydroxyapatite–Graphene Nanoplatelets Composite as Bone Graft Substitute: Mechanical 484 Behavior and <i>In-vitro</i>Biofunctionality. Critical Reviews in Solid State and Materials Sciences, 12.3 58 2018, 43, 177-212.

#	Article	IF	Citations
485	Carbon Nanowalls: A Potential 2-Dimensional Material for Field Emission and Energy-Related Applications. Advanced Structured Materials, 2018, , 27-71.	0.5	3
486	Energies of combustion and enthalpies of formation of carbon nanotubes. Journal of Thermal Analysis and Calorimetry, 2018, 131, 2763-2768.	3.6	5
487	Carbon (C) the Nacre and Its Allotropes. , 2018, , 1-45.		0
488	The Transparent Carbon: the Diamond. , 2018, , 259-298.		1
489	Graphene, Fullerenes, Carbon Nanotubes: Electronic Subsystem. Lecture Notes in Nanoscale Science and Technology, 2018, , 253-286.	0.8	1
490	Graphene composites as dye adsorbents: Review. Chemical Engineering Research and Design, 2018, 129, 75-88.	5.6	122
491	Exfoliation of Graphene Oxide via Chemical Reduction Method. , 2018, , .		1
492	Evidence of CF ₂ Loss from Fluorine-Rich Cluster Anions Generated from Laser Ablation of Graphite Fluoride. Journal of Physical Chemistry A, 2018, 122, 9894-9900.	2.5	2
493	Fabrication of poly (4,4′-oxybisbenzenamine) and its conjugated copolymers initiated by easily accessible carbon dots. European Polymer Journal, 2018, 109, 153-161.	5.4	17
494	Existence of a system of discrete volume-localized quantum levels for charged fullerenes. Physical Review B, 2018, 98, .	3.2	5
495	Modulating Metalâ€Free and Nonâ€Enzymatic Electrocatalytic Activity of sp ² Carbons Towards H ₂ O ₂ Reduction by a Facile and Lowâ€Temperature Electrochemical Approach. ChemElectroChem, 2018, 5, 3668-3678.	3.4	1
496	On the molecular mechanics of single layer graphene sheets. International Journal of Engineering Science, 2018, 133, 109-131.	5.0	33
497	Thermal Analysis of Detonation Nanodiamonds. Nanotechnologies in Russia, 2018, 13, 11-17.	0.7	2
498	Fixation of atmospheric nitrogen by nanodiamonds. New Journal of Chemistry, 2018, 42, 11160-11164.	2.8	4
499	Atomistic Simulations of Carbon Nanotubes: Stiffness, Strength, and Toughness of Locally Buckled CNTs. , 2018, , 259-290.		0
500	Molecular dynamics study of cavitation in carbon nanotube reinforced polyethylene nanocomposite. Journal of Physics: Conference Series, 2018, 946, 012044.	0.4	1
501	Using Covalent Chemistry. Interface Science and Technology, 2018, 21, 333-365.	3.3	1
502	Graphene-based nanosheets for stronger and more durable concrete: A review. Construction and Building Materials, 2018, 183, 642-660.	7.2	252

ARTICLE IF CITATIONS # FTIR spectroscopy of nanodiamonds: Methods and interpretation. Diamond and Related Materials, 2018, 503 3.9 214 89, 52-66. Metallic Nanoparticles: Potential Antimicrobial and Therapeutic Agents., 2018, , 143-160. 504 Raman spectroscopy study of detonation nanodiamond. Diamond and Related Materials, 2018, 87, 505 3.9 73 248-260. Novel synthesis and properties of hydrogen-free detonation nanodiamond. Materials Chemistry and 506 4.0 Physics, 2018, 216, 120-129. Nanomechanics of graphene. National Science Review, 2019, 6, 324-348. 507 9.5 75 C-N cross coupling: Novel approach towards effective aryl secondary amines modification on nanodiamond surface. Diamond and Related Materials, 2019, 98, 107468. 508 Molecular simulation of efficient removal of H2S pollutant by cyclodextrine functionalized CNTs. 509 3.3 20 Scientific Reports, 2019, 9, 10605. Improvement of physical and mechanical properties on bio-polymer matrix composites using morphed 9 graphene. Composites Science and Technology, 2019, 184, 107836. Structures and Dynamics in Thiolated Diamantane Derivative Monolayers. Journal of Physical 512 3.1 5 Chemistry C, 2019, 123, 27477-27482. Determination of crystallite size of nanodiamond by Raman spectroscopy. Diamond and Related Materials, 2019, 99, 107524. Negative thermoelectric power of melt mixed vapor grown carbon nanofiber polypropylene 514 10.3 25 composites. Carbon, 2019, 150, 408-416. Graphene for Photodynamic Therapy. NATO Science for Peace and Security Series A: Chemistry and 0.5 Biology, 2019, , 201-223. Application of Advanced Microscopic Methods to Study the Interaction of Carboxylated Fluorescent Nanodiamonds with Membrane Structures in THP-1 Cells: Activation of Inflammasome NLRP3 as the 516 4.6 7 Result of Lysosome Destabilization. Molecular Pharmaceutics, 2019, 16, 3441-3451. Sedimentation of Ultradispersed Diamonds in the Citrate Copper-Plating Electrolyte. Russian Journal of Non-Ferrous Metals, 2019, 60, 95-100. Computationally Supported Neutron Scattering Study of Natural and Synthetic Amorphous Carbons. 518 3.113 Journal of Physical Chemistry C, 2019, 123, 15841-15850. The effects of fillers on properties of automotive nanocomposite clear coats: Type, content and 3.9 surface functionalization. Progress in Organic Coatings, 2019, 134, 33-39. Engineering nanomaterials for water and wastewater treatment: review of classifications, properties 520 2.8 72 and applications. New Journal of Chemistry, 2019, 43, 7902-7927. Polymer/nanodiamond composites - a comprehensive review from synthesis and fabrication to 14.7 properties and applications. Advances in Colloid and Interface Science, 2019, 269, 122-151.

#	Article	IF	CITATIONS
522	Functionalization of WS 2 Nanotubes with Fluorescent Câ€dots and Conductive Polythiophenes. Macromolecular Chemistry and Physics, 2019, 220, 1800476.	2.2	2
523	Photophysical properties and photodynamic therapy activities of detonated nanodiamonds-BODIPY-phthalocyanines nanoassemblies. Photodiagnosis and Photodynamic Therapy, 2019, 26, 101-110.	2.6	28
524	Existence criteria and validity of plate models for graphene-like materials. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	3
525	Diamond Nanowires: Theoretical Simulation and Experiments. Topics in Applied Physics, 2019, , 313-362.	0.8	1
526	A review of the concepts, recent advances and niche applications of the (photo) Fenton process, beyond water/wastewater treatment: Surface functionalization, biomass treatment, combatting cancer and other medical uses. Applied Catalysis B: Environmental, 2019, 248, 309-319.	20.2	99
527	Study of the mechanical, dielectric, and thermal properties of annealed modified nanodiamond/epoxy composites. Materials Research Express, 2019, 6, 125612.	1.6	0
528	Analysis of thermal and mechanical properties of annealed surface modified nanodiamond/epoxy nanocomposites. Materials Research Express, 2019, 6, 125316.	1.6	4
529	Chain Model for Carbon Nanotube Bundle under Plane Strain Conditions. Materials, 2019, 12, 3951.	2.9	24
530	The Role of Functionalization in the Applications of Carbon Materials: An Overview. Journal of Carbon Research, 2019, 5, 84.	2.7	51
531	Classic Carbon Nanostructures. , 2019, , 35-109.		1
532	Synthesis, Characterization, and Applications of Diamond Films. , 2019, , 183-224.		6
533	<i>Citrus limetta</i> Organic Waste Recycled Carbon Nanolights: Photoelectro Catalytic, Sensing, and Biomedical Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 502-512.	6.7	33
534	Nanodiamonds: Emerging face of future nanotechnology. Carbon, 2019, 143, 678-699.	10.3	105
535	Electrical Conductivity Behavior of Polymer Nanocomposite with Carbon Nanofillers. , 2019, , 41-72.		13
536	Elastic constants and phonon dispersion relation analysis of graphene sheet with varied Poisson's ratio. Composites Part B: Engineering, 2019, 162, 411-424.	12.0	8
537	Nanodiamond nanofluid microstructural and thermo-electrical characterization. International Communications in Heat and Mass Transfer, 2019, 101, 82-88.	5.6	38
538	Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. Materials Today, 2019, 23, 87-104.	14.2	537
539	Storage of Mechanical Energy Based on Carbon Nanotubes with High Energy Density and Power Density. Advanced Materials, 2019, 31, e1800680.	21.0	46

#	Article	IF	CITATIONS
540	Surface functionalization and antibacterial activity of biomedical textiles with metal oxides-carbon nanocomposites. Ceramics International, 2019, 45, 5210-5217.	4.8	10
541	Exploring the sensitivity of nanodiamond to sarafloxacin: A DFT approach. Journal of Physics and Chemistry of Solids, 2019, 124, 235-241.	4.0	2
542	A review on application of carbon nanostructures as nanofiller in corrosion-resistant organic coatings. Journal of Coatings Technology Research, 2020, 17, 19-55.	2.5	44
543	Carbon at the nanoscale: Ultrastiffness and unambiguous definition of incompressibility. Carbon, 2020, 160, 228-235.	10.3	10
544	The use of optical and atomic force microscopy for probing the sensing mechanism of hazardous tellurium species for environmental applications. Journal of Molecular Structure, 2020, 1203, 127407.	3.6	0
545	Carbon nanotube frameworks by spark plasma sintering. Microporous and Mesoporous Materials, 2020, 293, 109807.	4.4	14
546	Quantifying the rigidity of 2D carbides (MXenes). Physical Chemistry Chemical Physics, 2020, 22, 2115-2121.	2.8	52
547	Lattice chain theories for dynamics of acoustic flexural phonons in nonpolar nanomaterials. Physical Review B, 2020, 102, .	3.2	10
548	Effect of Carbon in Severe Plastically Deformed Metals. Advanced Engineering Materials, 2020, 22, 2000879.	3.5	8
549	A new, fast and facile synthesis method for reduced graphene oxide in N,N-dimethylformamide. Synthetic Metals, 2020, 269, 116576.	3.9	12
550	Thermophysical features of carbon nanotubes frameworks formation by spark plasma sintering. Carbon, 2020, 168, 597-605.	10.3	16
551	Nitrogen Fixation and Biological Behavior of Nanodiamond Colloidal Solutions. ChemPlusChem, 2020, 85, 1905-1911.	2.8	1
552	Stable Silicene Wrapped by Graphene in Air. ACS Applied Materials & Interfaces, 2020, 12, 40620-40628.	8.0	11
553	Reconstructing the fractal clusters of detonation nanodiamonds from small-angle X-ray scattering. Carbon, 2020, 169, 349-356.	10.3	8
554	Formation of nanodiamond by pulsed discharge of carbon fiber wires. Applied Physics Letters, 2020, 117, .	3.3	3
555	Studying the performance of an Activated Carbon Filter using almond shell. IOP Conference Series: Materials Science and Engineering, 2020, 737, 012172.	0.6	0
556	Carbon microfiber converted from the poly(butylene terephthalate)/lignin blending fiber. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 823-827.	2.1	2
557	Molecular Dynamics Simulations of Twisting-Induced Helical Carbon Nanotube Fibers for Reinforced Nanocomposites. ACS Applied Nano Materials, 2020, 3, 5521-5529.	5.0	12

#	Article	IF	CITATIONS
558	Synthesis of nanodiamond reinforced silver matrix nanocomposites: Microstructure and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 782, 139254.	5.6	11
559	Size-dependent buckling analysis of nanobeams resting on two-parameter elastic foundation through stress-driven nonlocal elasticity model. Mechanics of Advanced Materials and Structures, 2021, 28, 2408-2416.	2.6	51
560	Investigation of carbon phase structure of corncob charcoal powder. AIP Conference Proceedings, 2020, , .	0.4	0
561	Fabrication of nanocrystalline carbon based on corncobs charcoal. AIP Conference Proceedings, 2020, , .	0.4	0
562	Effect of ultrasonic treatment on the thermal oxidation of detonation nanodiamonds. Applied Nanoscience (Switzerland), 2020, 10, 4991-5001.	3.1	23
563	Nickel supported on carbon nanotubes and carbon nanospheres for ammonia oxidation reaction. Nanotechnology, 2020, 31, 235706.	2.6	13
564	Advances in finite element modelling of graphene and associated nanostructures. Materials Science and Engineering Reports, 2020, 140, 100544.	31.8	38
565	Particle size analysis and characterization of nanodiamond dispersions in water and dimethylformamide by various scattering and diffraction methods. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	15
566	Mechanical Response of Carbon Nanotube Bundle to Lateral Compression. Computation, 2020, 8, 27.	2.0	18
567	Synthesis of Carbon Onion and Its Application as a Porous Carrier for Amorphous Drug Delivery. Crystals, 2020, 10, 281.	2.2	7
568	Diamond Nanoparticles in Heterogeneous Catalysis. Chemistry of Materials, 2020, 32, 4116-4143.	6.7	23
569	Surface-topology-controlled mechanical characteristics of triply periodic carbon Schwarzite foams. Soft Matter, 2020, 16, 4324-4338.	2.7	10
570	Carbon Allotrope-Based Optical Fibers for Environmental and Biological Sensing: A Review. Sensors, 2020, 20, 2046.	3.8	21
571	Diamond Nanofluids: Microstructural Analysis and Heat Transfer Study. Heat Transfer Engineering, 2021, 42, 479-491.	1.9	9
572	Potential of graphene oxide as a drug delivery system for Sumatriptan: a detailed density functional theory study. Journal of Biomolecular Structure and Dynamics, 2021, 39, 1611-1620.	3.5	30
573	Roles of twisting-compression operations on mechanical enhancement of carbon nanotube fibers. Carbon, 2021, 172, 41-49.	10.3	12
574	Recent advances in electrochemical sensors for amoxicillin detection in biological and environmental samples. Bioelectrochemistry, 2021, 137, 107687.	4.6	39
575	Behaviour of carbon nanotube bundle under quasistatic and dynamic transverse compression. IOP Conference Series: Materials Science and Engineering, 0, 1008, 012063.	0.6	1

#	Article	IF	CITATIONS
576	Retention of perylene diimide optical properties in solid-state materials through tethering to nanodiamonds. Journal of Materials Chemistry C, 2021, 9, 10317-10323.	5.5	2
577	Behavior of the mechanical system composed of highly deformable structural elements. IOP Conference Series: Materials Science and Engineering, 0, 1008, 012069.	0.6	0
578	Graphene, an Interesting Nanocarbon Allotrope for Biosensing Applications: Advances, Insights, and Prospects. Biomedical Engineering and Computational Biology, 2021, 12, 117959722098382.	2.0	8
579	Review on Carbon Nanomaterials-Based Nano-Mass and Nano-Force Sensors by Theoretical Analysis of Vibration Behavior. Sensors, 2021, 21, 1907.	3.8	15
580	N-doped MWCNTs from catalyst-free, direct pyrolysis of commercial glue. Materials Chemistry and Physics, 2021, 262, 124319.	4.0	3
581	Strong, tough, transparent and highly heat-resistant acrylic glass based on nanodiamond. Polymer, 2021, 222, 123661.	3.8	11
582	Nanostructures derived from expired drugs and their applications toward sensing, security ink, and bactericidal material. Science of the Total Environment, 2021, 764, 144260.	8.0	4
583	Advances in Carbon Nanostructures and Nanocellulose as Additives for Efficient Drilling Fluids: Trends and Future Perspective—A Review. Energy & Fuels, 2021, 35, 7319-7339.	5.1	28
584	Transformation of Nanodiamonds to Onion-like Carbons by Ambient Electrospray Deposition. Journal of Physical Chemistry C, 2021, 125, 10998-11006.	3.1	5
585	Tight-binding theory of graphene mechanical properties. Microsystem Technologies, 2021, 27, 3851-3858.	2.0	7
586	Ultrathin Diamond Nanofilms—Development, Challenges, and Applications. Small, 2021, 17, e2007529.	10.0	61
587	A comprehensive study of biocompatibility of detonation nanodiamonds. Journal of Molecular Liquids, 2021, 332, 115763.	4.9	7
588	Sol-gel synthesized carbon nanoparticles as supercapacitor electrodes with ultralong cycling stability. Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29, 1045-1052.	2.1	21
589	Mechanical properties of graphene. Applied Physics Reviews, 2021, 8, .	11.3	37
590	From Bulk to Nanoparticles: An Overview of Antiviral Materials, Its Mechanisms, and Applications. Particle and Particle Systems Characterization, 2021, 38, 2100044.	2.3	6
591	Effect of oxygen based functional groups on the nucleation of TiO2 by atomic layer deposition: A theoretical and experimental study. Materials Chemistry and Physics, 2021, 267, 124588.	4.0	5
592	Graphene oxide synthesis using a top–down approach and discrete characterization techniques: a holistic review. Carbon Letters, 2022, 32, 1-38.	5.9	14
593	ÐеорганіÐĐÔŇ†Ñ–Ñ•Ň"ракŇ,Ð°Đ»ÑŒÐ½Đ¾Ñ— ÑŇ,рукŇ,урÐ, пор у Ð¿Đ¾I	Ñ€ Ð ¾Ñ^Ð	₽ Đ 乳де

#	Article	IF	CITATIONS
594	Studies on 2D-molybdenum diselenide (MoSe2) based electrode materials for supercapacitor and batteries: A critical analysis. Journal of Energy Storage, 2021, 40, 102809.	8.1	31
595	Role of nanotube chirality on the mechanical characteristics of pillared graphene. Mechanics of Materials, 2021, 162, 104035.	3.2	16
596	Nanostructured diamond for biomedical applications. Nanotechnology, 2021, 32, 132001.	2.6	23
597	Titanium Oxide Composites with Graphene and Laser-Induced Graphene for the Environmental Applications. Energy, Environment, and Sustainability, 2021, , 27-58.	1.0	1
598	Emergence of Carbon Nanodots as a Probe for Super-Resolution Microscopy. Journal of Physical Chemistry C, 2021, 125, 1637-1653.	3.1	14
600	Small-Angle Scattering in Structural Research of Nanodiamond Dispersions. Springer Proceedings in Physics, 2019, , 201-223.	0.2	7
601	Bio-Inspired Engineering of 3D Carbon Nanostructures. Springer Series in Biomaterials Science and Engineering, 2016, , 365-420.	1.0	1
602	Fullerenes and Beyond: Complexity, Morphology, and Functionality in Closed Carbon Nanostructures. , 2013, , 83-104.		6
603	Nanosized Materials. Monographs in Electrochemistry, 2014, , 139-181.	0.2	1
604	The Chemistry of Nanodiamond. RSC Nanoscience and Nanotechnology, 2014, , 49-88.	0.2	7
604 605	The Chemistry of Nanodiamond. RSC Nanoscience and Nanotechnology, 2014, , 49-88. Nanodiamonds for Drug Delivery and Diagnostics. RSC Nanoscience and Nanotechnology, 2014, , 151-169.	0.2	7
604 605 606	The Chemistry of Nanodiamond. RSC Nanoscience and Nanotechnology, 2014, , 49-88. Nanodiamonds for Drug Delivery and Diagnostics. RSC Nanoscience and Nanotechnology, 2014, , 151-169. Influence of crystallization temperature on fluorescence of n-diamond quantum dots. Nanotechnology, 2020, 31, 505712.	0.2 0.2 2.6	7 4 11
604 605 606	The Chemistry of Nanodiamond. RSC Nanoscience and Nanotechnology, 2014, , 49-88. Nanodiamonds for Drug Delivery and Diagnostics. RSC Nanoscience and Nanotechnology, 2014, , 151-169. Influence of crystallization temperature on fluorescence of n-diamond quantum dots. Nanotechnology, 2020, 31, 505712. Rotobreather in a carbon nanotube bundle. Journal of Micromechanics and Molecular Physics, 2020, 05, 2050010.	0.2 0.2 2.6 1.2	7 4 11 13
 604 605 606 607 608 	The Chemistry of Nanodiamond. RSC Nanoscience and Nanotechnology, 2014, , 49-88. Nanodiamonds for Drug Delivery and Diagnostics. RSC Nanoscience and Nanotechnology, 2014, , 151-169. Influence of crystallization temperature on fluorescence of n-diamond quantum dots. Nanotechnology, 2020, 31, 505712. Rotobreather in a carbon nanotube bundle. Journal of Micromechanics and Molecular Physics, 2020, 05, 2050010. Nanocrystalline Diamond. , 2006, , .	0.2 0.2 2.6 1.2	7 4 11 13 8
 604 605 606 607 608 609 	The Chemistry of Nanodiamond. RSC Nanoscience and Nanotechnology, 2014, , 49-88.Nanodiamonds for Drug Delivery and Diagnostics. RSC Nanoscience and Nanotechnology, 2014, , 151-169.Influence of crystallization temperature on fluorescence of n-diamond quantum dots. Nanotechnology, 2020, 31, 505712.Rotobreather in a carbon nanotube bundle. Journal of Micromechanics and Molecular Physics, 2020, 05, 2050010.Nanocrystalline Diamond. , 2006, , .Carbide-Derived Carbon. Advanced Materials and Technologies, 2006, , 211-254.	0.2 0.2 2.6 1.2 0.4	7 4 11 13 8 9
 604 605 606 607 608 609 610 	The Chemistry of Nanodiamond. RSC Nanoscience and Nanotechnology, 2014, , 49-88. Nanodiamonds for Drug Delivery and Diagnostics. RSC Nanoscience and Nanotechnology, 2014, , 151-169. Influence of crystallization temperature on fluorescence of n-diamond quantum dots. Nanotechnology, 2020, 31, 505712. Rotobreather in a carbon nanotube bundle. Journal of Micromechanics and Molecular Physics, 2020, 05, 2050010. Nanocrystalline Diamond. , 2006, , . Carbide-Derived Carbon. Advanced Materials and Technologies, 2006, , 211-254. Polyurethane Nanocomposite Coatings for Aeronautical Applications. , 2010, , 337-387.	0.2 0.2 2.6 1.2 0.4	 7 4 11 13 8 9 5
 604 605 606 607 608 609 610 	The Chemistry of Nanodiamond. RSC Nanoscience and Nanotechnology, 2014, , 49-88.Nanodiamonds for Drug Delivery and Diagnostics. RSC Nanoscience and Nanotechnology, 2014, , 151-169.Influence of crystallization temperature on fluorescence of n-diamond quantum dots. Nanotechnology, 2020, 31, 505712.Rotobreather in a carbon nanotube bundle. Journal of Micromechanics and Molecular Physics, 2020, 05, 2050010.Nanocrystalline Diamond. , 2006, , .Carbide-Derived Carbon. Advanced Materials and Technologies, 2006, , 211-254.Polyurethane Nanocomposite Coatings for Aeronautical Applications. , 2010, , 337-387.Synthesis of Nanodiamond. , 2014, , 5-48.	0.2 0.2 2.6 1.2 0.4	7 4 11 13 8 9 5

ARTICLE IF CITATIONS # High Temperature Stability of Onion-Like Carbon vs Highly Oriented Pyrolytic Graphite. PLoS ONE, 2014, 613 2.5 7 9, e105788. Structural Researches of Carbonic Fluid Nanosystems. Ukrainian Journal of Physics, 2015, 60, 835-843. 614 0.2 Functionalizations of Diamantane Dimers. Journal of Organic and Pharmaceutical Chemistry, 2020, 18, 615 0.4 1 16-22. Design and Synthetic Scheme of Water Dispersible Graphene Oxide-Coumarin Complex for Ultra-Sensitive Fluorescence Based Detection of Copper (Cu2+) Ion in Aqueous Environment. Graphene, 2014, 03, 45-51. A Study on Synthesis and Characterization of Biobased Carbon Nanoparticles from Lignin. World 618 0.3 43 Journal of Nano Science and Engineering, 2012, 02, 148-153. Comprehensive review on synthesis and adsorption behaviors of graphene-based materials. Carbon 39 Letters, 2012, 13, 73-87. Adsorption performance of modified graphene toward Ti: a first-principles investigation. Journal of 620 1.8 1 Molecular Modeling, 2021, 27, 321. Torsion of Hypothetical Single-Wall Silicon Nanotubes. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2003, 16, 1165-1174. 622 Nanocrystalline Diamond. Advanced Materials and Technologies, 2006, , 175-209. 0.4 0 624 Latest Informations and View of the Ultra-dispersed Nano-diamonds. Hyomen Kagaku, 2009, 30, 287-292. On solar origin of nanodiamond population in chondrites. Vestnik Otdelenia Nauk O Zemle RAN, 2010, 625 0 0.5 2,217-227. Nanodiamonds., 2012, , 597-622. Carbon Nanostructures and Nanocomposites. The Electrical Engineering Handbook, 2012, , 513-544. 628 0.2 0 Nanodiamond Particles. The Electrical Engineering Handbook, 2012, , 789-866. 0.2 - Gas Desorption from Detonation Nanodiamonds During Temperature-Programmed Pyrolysis., 2012,, 630 0 235-268. Growth of Spherical Carbon Particles in the Vertically Excited Columnar Plasma Sheath. Journal of the Vacuum Society of Japan, 2014, 57, 155-158. CHAPTER 8. Biophysical Interaction of Nanodiamond with Biological Entities In Vivo. RSC Nanoscience 632 0.2 0 and Nanotechnology, 2014, , 170-194. Carbon at the Nanoscale., 2014, , 1-35.

#	Article	IF	CITATIONS
634	Clusters and Nanocrystals. , 2015, , 1-38.		0
636	Investigation of the cluster structure in aqueous suspensions of nanodiamonds by small-angle neutron scattering. Nuclear Physics and Atomic Energy, 2015, 16, 198-202.	0.5	2
637	Clusters and Nanocrystals. , 2016, , 1323-1364.		0
638	Nanocrystalline Diamond Coatings. , 2016, , 857-873.		0
640	Preparation Nano-Diamond Film by Sol-Gelled Coating Method for Field Emission Display. Advances in Nanoparticles, 2017, 06, 1-9.	1.0	0
641	Revealing the Uncertainty and Absolute Certainty Principles in the Kinetics of Objects Formation. World Journal of Mechanics, 2018, 08, 82-93.	0.4	0
642	Clusters and Nanocrystals. , 2019, , 1-49.		0
643	Clusters and Nanocrystals. , 2020, , 1525-1573.		3
644	CNT-Based Nano Medicine From Synthesis to Therapeutic Application. Advances in Medical Technologies and Clinical Practice Book Series, 2022, , 175-211.	0.3	0
645	Carbon and Inorganic Binary Clusters. Springer Series in Materials Science, 2020, , 255-281.	0.6	0
646	Mechanical Properties of Carbon Thin Films. , 2004, , 185-196.		1
647	NANOSTRUCTURED CARBON MATERIALS BASED ON IR-PYROLIZED POLYACRYLONITRILE. , 2007, , 577-586.		0
649	FORMATION OF CARBON NANOSTRUCTURES DURING IR-PYROLYSIS OF POLYACRYLONITRILE IN PRESENCE OF Fe AND Co. NATO Science for Peace and Security Series C: Environmental Security, 2008, , 357-364.	0.2	0
650	The growth of agglomerates in the conditions of detonation synthesis of diamond. Journal of Physics: Conference Series, 2020, 1666, 012024.	0.4	0
651	Process optimization for enhanced tribological properties of Al/MWCNT composites produced by powder metallurgy using artificial neural networks. Surface Topography: Metrology and Properties, 2021, 9, 045032.	1.6	5
652	Effect of carbon nanotubes on microhardness and adhesion strength of high-velocity oxy-fuel sprayed NiCr–Cr ₃ C ₂ coatings. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2022, 236, 86-96.	1.1	4
653	Nature bioinspired and engineered nanomaterials. , 2022, , 31-58.		4
654	DFT investigation of BN, AlN, and SiC fullerene sensors for arsine gas detection and removal. Main Group Chemistry, 2022, 21, 513-521.	0.8	5

<u> </u>			D		
(\Box)	TAT	ION.	17F	PO	RT

#	Article	IF	CITATIONS
655	Defective Carbon Nanostructures for Biomedical Application. Advances in Material Research and Technology, 2022, , 1-34.	0.6	1
656	Experimental and theoretical review on covalent coupling and elemental doping of carbon nanomaterials for environmental photocatalysis. Critical Reviews in Solid State and Materials Sciences, 2023, 48, 215-256.	12.3	10
657	Recent applications of carbon-based composites in defence industry: A review. Defence Technology, 2022, 18, 1281-1300.	4.2	56
658	Recent advances in the synthesis of various analogues of MOF-based nanomaterials: A mini-review. Inorganica Chimica Acta, 2022, 536, 120890.	2.4	10
659	Carbon nanoparticles for medicine: current and future. Bulletin of Materials Science, 2022, 45, 1.	1.7	5
660	Effect of vacancy defect and dopants on the sensitivity of germanene to H2CO. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 142, 115268.	2.7	11
661	Carbon nanomaterials-based sensors for biomedical applications. , 2022, , 59-75.		2
662	Multifunctional nanodiamonds as emerging platforms for cancer treatment, and targeted delivery of genetic factors and protein medications—a review. Journal of Materials Science, 2022, 57, 8064-8099.	3.7	8
663	Realization of diamond nucleation within the multi-walled carbon nanotubes matrix upon electron irradiation. Carbon Letters, 2022, 32, 1119-1130.	5.9	3
664	Facile Synthesis of Catalyst Free Carbon Nanoparticles From the Soot of Natural Oils. Frontiers in Materials, 2022, 9, .	2.4	0
665	Encyclopedia of the Elemental Carbon (with a Commentary Tailored for Inorganic Chemists). Comments on Inorganic Chemistry, 0, , 1-7.	5.2	0
666	Nano-Structured Carbon: Its Synthesis from Renewable Agricultural Sources and Important Applications. Materials, 2022, 15, 3969.	2.9	12
667	Catalyst and substrate-free synthesis of graphene nanosheets by unzipping C60 fullerene clusters using a pulse current method. Materials Science in Semiconductor Processing, 2022, 149, 106831.	4.0	2
668	Experimental and theoretical characterization of x-ray induced excitons, magnons, and <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>d</mml:mi>dd transitions in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoO</mml:mi><mml:mn>3<td>2.4 :mn> <td>ow>O nl:msub></td></td></mml:mn></mml:msub></mml:math </mml:mrow></mmi:math 	2.4 :mn> <td>ow>O nl:msub></td>	ow>O nl:msub>
669	On the Origin of Nonclassical Ripples in Draped Graphene Nanosheets: Implications for Straintronics. ACS Applied Nano Materials, 2022, 5, 10829-10838.	5.0	4
670	Engineered $\hat{a} \in Nanomaterials$ by design $\hat{a} \in M$ theoretical studies experimental validations current and future prospects. , 0, , 301-364.		4
671	Natural Convection Heat Transfer Enhancement using Functionalized Nanodiamonds in Transformer Oil. , 2022, , .		0
672	Review—Heteroatom-Doped High Porous Carbon Metal Free Nanomaterials for Energy Storage and Conversion. ECS Journal of Solid State Science and Technology, 2022, 11, 091006.	1.8	1

#	Article	IF	CITATIONS
673	Evolution of local atomic arrangements in ball-milled graphite. Applied Nanoscience (Switzerland), 2023, 13, 5021-5031.	3.1	2
674	Recovery of release cloud from laser shock-loaded graphite and hydrocarbon targets: in search of diamonds. Journal Physics D: Applied Physics, 2023, 56, 025301.	2.8	4
675	Coulomb interactions and the problem of stability of inorganic nanotubes. Doklady Physical Chemistry, 2004, 399, 293-297.	0.9	1
676	Nano-cementitious composites modified with Graphene Oxide – a review. Thin-Walled Structures, 2023, 183, 110326.	5.3	10
677	Surface Control of Nanodiamond: From Homogeneous Termination to Complex Functional Architectures for Biomedical Applications. Accounts of Chemical Research, 2022, 55, 3594-3604.	15.6	12
678	Assessment of Pristine Carbon Nanotubes Toxicity in Rodent Models. International Journal of Molecular Sciences, 2022, 23, 15343.	4.1	12
679	Green Synthesis of Carbon Nanoparticles (CNPs) from Biomass for Biomedical Applications. International Journal of Molecular Sciences, 2023, 24, 1023.	4.1	9
680	Mechanical properties of twisted CNT fibers: A molecular dynamic study. Materials Today Communications, 2023, 34, 105378.	1.9	1
681	Carbonaceous nanofillers in polymer matrix. , 2023, , 23-53.		0
682	Drug delivery aspects of carbon nanotubes. , 2023, , 119-155.		1
682 683	Drug delivery aspects of carbon nanotubes. , 2023, , 119-155. Improvement in compressive stiffness of graphene aerogels by sandwiching carbon nanotubes. Diamond and Related Materials, 2023, 135, 109897.	3.9	1
682 683 684	Drug delivery aspects of carbon nanotubes. , 2023, , 119-155. Improvement in compressive stiffness of graphene aerogels by sandwiching carbon nanotubes. Diamond and Related Materials, 2023, 135, 109897. Graphene quantum dots for optical application. , 2023, , 211-225.	3.9	1 2 1
682 683 684 685	Drug delivery aspects of carbon nanotubes. , 2023, , 119-155. Improvement in compressive stiffness of graphene aerogels by sandwiching carbon nanotubes. Diamond and Related Materials, 2023, 135, 109897. Graphene quantum dots for optical application. , 2023, , 211-225. Molecular dynamics simulations of Carbyne/Carbon nanotube gigahertz oscillators. Computational Materials Science, 2023, 222, 112105.	3.9 3.0	1 2 1 2
682 683 684 685 685	Drug delivery aspects of carbon nanotubes., 2023, , 119-155.Improvement in compressive stiffness of graphene aerogels by sandwiching carbon nanotubes. Diamond and Related Materials, 2023, 135, 109897.Graphene quantum dots for optical application., 2023, , 211-225.Molecular dynamics simulations of Carbyne/Carbon nanotube gigahertz oscillators. Computational Materials Science, 2023, 222, 112105.Nanodiamonds improve amaranth biodegradation in a lab-scale biofilter. Biotechnology and Biotechnological Equipment, 2023, 37, 317-328.	3.9 3.0 1.3	1 2 1 2 0
 682 683 684 685 686 687 	Drug delivery aspects of carbon nanotubes. , 2023, , 119-155.Improvement in compressive stiffness of graphene aerogels by sandwiching carbon nanotubes. Diamond and Related Materials, 2023, 135, 109897.Graphene quantum dots for optical application. , 2023, , 211-225.Molecular dynamics simulations of Carbyne/Carbon nanotube gigahertz oscillators. Computational Materials Science, 2023, 222, 112105.Nanodiamonds improve amaranth biodegradation in a lab-scale biofilter. Biotechnology and Biotechnological Equipment, 2023, 37, 317-328.Spark plasma sintering of carbon nanomaterials. Russian Chemical Bulletin, 2023, 72, 345-366.	3.9 3.0 1.3 1.5	1 2 1 2 0 2
 682 683 684 685 686 687 688 	Drug delivery aspects of carbon nanotubes. , 2023, , 119-155. Improvement in compressive stiffness of graphene aerogels by sandwiching carbon nanotubes. Diamond and Related Materials, 2023, 135, 109897. Graphene quantum dots for optical application. , 2023, , 211-225. Molecular dynamics simulations of Carbyne/Carbon nanotube gigahertz oscillators. Computational Materials Science, 2023, 222, 112105. Nanodiamonds improve amaranth biodegradation in a lab-scale biofilter. Biotechnology and Biotechnological Equipment, 2023, 37, 317-328. Spark plasma sintering of carbon nanomaterials. Russian Chemical Bulletin, 2023, 72, 345-366. Self Assembly and Building Nano Structures. , 2013, , 393-424.	 3.9 3.0 1.3 1.5 	1 2 1 2 0 2 2
 682 683 684 685 686 687 688 689 	Drug delivery aspects of carbon nanotubes., 2023,, 119-155.Improvement in compressive stiffness of graphene aerogels by sandwiching carbon nanotubes. Diamond and Related Materials, 2023, 135, 109897.Graphene quantum dots for optical application., 2023,, 211-225.Molecular dynamics simulations of Carbyne/Carbon nanotube gigahertz oscillators. Computational Materials Science, 2023, 222, 112105.Nanodiamonds improve amaranth biodegradation in a lab-scale biofilter. Biotechnology and Biotechnological Equipment, 2023, 37, 317-328.Spark plasma sintering of carbon nanomaterials. Russian Chemical Bulletin, 2023, 72, 345-366.Self Assembly and Building Nano Structures., 2013, , 393-424.Polymer/graphene-derived nanocomposites as advanced marine antifouling coatings., 2023, , 193-230.	3.9 3.0 1.3 1.5	1 2 1 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2

	CITATION R	EPORT	
#	Article	IF	Citations
691	Nanomaterial based delivery of genetic material to plant systems. , 2023, , 41-56.		0
692	Functionalization of Graphene and Factors Affecting Catalytic Performance. , 2023, , 154-207.		0
693	Synergistic effects of TiC/GNP strengthening on the mechanical and tribological properties of Al6061 matrix composites coupled with process optimization by artificial neural network. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 0, , 095440892311728.	2.5	0
694	Stone–Wales Defect in Graphene. Small, 2023, 19, .	10.0	6
695	Fabrication process independent and robust aggregation of detonation nanodiamonds in aqueous media. Diamond and Related Materials, 2023, 139, 110199.	3.9	1
696	Nanomaterials-based photothermal therapies for antibacterial applications. Materials and Design, 2023, 233, 112231.	7.0	9
697	Hydrogen-migration governed dynamic magnetic coupling characteristics in nitrogen-vacancy-hydrogen nanodiamonds. Physical Chemistry Chemical Physics, 2023, 25, 25818-25827.	2.8	0
698	Synthesis and Functionalization of Isomeric Sesquihomodiamantenes. Journal of Organic Chemistry, 2023, 88, 14172-14177.	3.2	0
699	Carbon nanostructures. , 2024, , 111-141.		0
702	Continuum Mechanics Applied for Studying Instabilities in Nanoparticles. Advanced Structured Materials, 2023, , 429-456.	0.5	0
703	Controlling carbon nanostructure synthesis in thermal plasma jet: Correlation of process parameters, plasma characteristics, and product morphology. Carbon, 2024, 217, 118605.	10.3	0
704	Fluorination of Single-Wall Carbon Nanotubes: Toward "Diamond Nanoribbons― Journal of Physical Chemistry C, 0, , .	3.1	0
705	Comparative analysis of modified reverse degree topological indices for certain carbon nanosheets using entropy measures and multi criteria decisionâ€making analysis. International Journal of Quantum Chemistry, 2024, 124, .	2.0	0
706	Radiation-Induced Synthesis of Carbon Nanostructures. , 2023, , 1-60.		0
707	Flame-retardant properties of fullerene and nanodiamond-based polymer nanocomposites. , 2024, , 263-286.		0
708	Tailoring graphene-oxide and reduced-graphene-oxide with NaNO ₃ and CaCl ₂ catalysts with enhanced photo-catalytic degradation of methylene blue dye. RSC Advances, 2024, 14, 8769-8778.	3.6	0