Observing the transformation of experience into memo

Trends in Cognitive Sciences 6, 93-102 DOI: 10.1016/s1364-6613(00)01845-3

Citation Report

#	Article	IF	Citations
1	Cognitive neuroscience: Forgetting of things past. Current Biology, 2001, 11, R964-R967.	1.8	118
2	Effects of Triazolam on Brain Activity During Episodic Memory Encoding: A PET Study. Neuropsychopharmacology, 2001, 25, 744-756.	2.8	23
3	Mistaken Memories: Remembering Events That Never Happened. Neuroscientist, 2002, 8, 391-395.	2.6	30
4	The birth of a memory. Trends in Neurosciences, 2002, 25, 279-281.	4.2	14
5	Neural Correlates of Successful Encoding Identified Using Functional Magnetic Resonance Imaging. Journal of Neuroscience, 2002, 22, 9541-9548.	1.7	125
6	Hippocampal Contributions to Episodic Encoding: Insights From Relational and Item-Based Learning. Journal of Neurophysiology, 2002, 88, 982-990.	0.9	456
7	Field potentials in the human hippocampus during the encoding and recognition of visual stimuli. Hippocampus, 2002, 12, 415-420.	0.9	19
8	State-related and item-related neural correlates of successful memory encoding. Nature Neuroscience, 2002, 5, 1339-1344.	7.1	187
9	Assembling and encoding word representations: fMRI subsequent memory effects implicate a role for phonological control. Neuropsychologia, 2003, 41, 304-317.	0.7	103
10	Emotional context modulates subsequent memory effect. NeuroImage, 2003, 18, 439-447.	2.1	227
11	Content, context and cognitive style in mood–memory interactions. Trends in Cognitive Sciences, 2003, 7, 433-434.	4.0	3
12	Colour specificity in episodic and in perceptual object recognition with enhanced colour impact. European Journal of Cognitive Psychology, 2003, 15, 349-370.	1.3	9
13	Multiple routes to memory: Distinct medial temporal lobe processes build item and source memories. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2157-2162.	3.3	774
14	Theta and Gamma Oscillations during Encoding Predict Subsequent Recall. Journal of Neuroscience, 2003, 23, 10809-10814.	1.7	698
15	What Neural Correlates Underlie Successful Encoding and Retrieval? A Functional Magnetic Resonance Imaging Study Using a Divided Attention Paradigm. Journal of Neuroscience, 2003, 23, 2407-2415.	1.7	125
16	Electrical Signals of Memory and of the Awareness of Remembering. Current Directions in Psychological Science, 2004, 13, 49-55.	2.8	16
17	Remembering Emotional Experiences: The Contribution of Valence and Arousal. Reviews in the Neurosciences, 2004, 15, 241-51.	1.4	382
18	Effects of Left Inferior Prefrontal Stimulation on Episodic Memory Formation: A Two-Stage fMRI—rTMS Study. Journal of Cognitive Neuroscience, 2004, 16, 178-188.	1.1	132

ATION REDO

#	Article	IF	CITATIONS
19	Neural Evidence That Vivid Imagining Can Lead to False Remembering. Psychological Science, 2004, 15, 655-660.	1.8	130
20	Temporal and Cerebellar Brain Regions that Support both Declarative Memory Formation and Retrieval. Cerebral Cortex, 2004, 14, 256-267.	1.6	98
22	Dissociable correlates of recollection and familiarity within the medial temporal lobes. Neuropsychologia, 2004, 42, 2-13.	0.7	593
23	Neural foundations of emerging route knowledge in complex spatial environments. Cognitive Brain Research, 2004, 21, 401-411.	3.3	121
24	Two routes to emotional memory: Distinct neural processes for valence and arousal. Proceedings of the United States of America, 2004, 101, 3310-3315.	3.3	700
25	Encoding-Specific Effects of Social Cognition on the Neural Correlates of Subsequent Memory. Journal of Neuroscience, 2004, 24, 4912-4917.	1.7	224
26	An electrophysiological investigation of memory encoding, depth of processing, and word frequency in humans. Neuroscience Letters, 2004, 356, 79-82.	1.0	31
27	Interaction between the Amygdala and the Medial Temporal Lobe Memory System Predicts Better Memory for Emotional Events. Neuron, 2004, 42, 855-863.	3.8	618
28	Neural Correlates of Successful Declarative Memory Formation and Retrieval: The Anatomical Overlap. Cortex, 2004, 40, 200-202.	1.1	17
29	The neural basis of the butcher-on-the-bus phenomenon: when a face seems familiar but is not remembered. NeuroImage, 2004, 21, 789-800.	2.1	208
30	Item- and task-level processes in the left inferior prefrontal cortex: positive and negative correlates of encoding. NeuroImage, 2004, 21, 1472-1483.	2.1	54
31	The hippocampal region is involved in successful recognition of both remote and recent famous faces. NeuroImage, 2004, 22, 1704-1714.	2.1	82
32	Dissociable effects of arousal and valence on prefrontal activity indexing emotional evaluation and subsequent memory: an event-related fMRI study. NeuroImage, 2004, 23, 64-74.	2.1	394
33	Induced gamma band responses: an early marker of memory encoding and retrieval. NeuroReport, 2004, 15, 1837-1841.	0.6	148
34	A Comparison of Two fMRI Protocols for Eliciting Hippocampal Activation. Epilepsia, 2005, 46, 1061-1070.	2.6	60
35	Electrophysiological correlates of forming memories for faces, names, and face–name associations. Cognitive Brain Research, 2005, 22, 153-164.	3.3	26
36	Contributions of occipital, parietal and parahippocampal cortex to encoding of object-location associations. Neuropsychologia, 2005, 43, 732-743.	0.7	87
37	Emotional content and reality-monitoring ability: fMRI evidence for the influences of encoding processes. Neuropsychologia, 2005, 43, 1429-1443.	0.7	79

#	Article	IF	CITATIONS
38	Functional connectivity with the hippocampus during successful memory formation. Hippocampus, 2005, 15, 997-1005.	0.9	193
39	Alzheimer's patients engage an alternative network during a memory task. Annals of Neurology, 2005, 58, 870-879.	2.8	158
40	Quantification of phase synchronization phenomena and their importance for verbal memory processes. Biological Cybernetics, 2005, 92, 275-287.	0.6	76
41	Hippocampal function, declarative memory, and schizophrenia: Anatomic and functional neuroimaging considerations. Current Neurology and Neuroscience Reports, 2005, 5, 249-256.	2.0	42
42	Further Dissociating the Processes Involved in Recognition Memory: An fMRI Study. Journal of Cognitive Neuroscience, 2005, 17, 1058-1073.	1.1	135
43	Effects of Divided Attention on fMRI Correlates of Memory Encoding. Journal of Cognitive Neuroscience, 2005, 17, 1923-1935.	1.1	85
44	Transient Disruption of Ventrolateral Prefrontal Cortex During Verbal Encoding Affects Subsequent Memory Performance. Journal of Neurophysiology, 2005, 94, 688-698.	0.9	52
45	Neural Correlates of Relational Memory: Successful Encoding and Retrieval of Semantic and Perceptual Associations. Journal of Neuroscience, 2005, 25, 1203-1210.	1.7	287
46	fMRI Evidence for the Role of Recollection in Suppressing Misattribution Errors: The Illusory Truth Effect. Journal of Cognitive Neuroscience, 2005, 17, 800-810.	1.1	22
47	Working Memory Maintenance Contributes to Long-term Memory Formation: Neural and Behavioral Evidence. Journal of Cognitive Neuroscience, 2005, 17, 994-1010.	1.1	243
48	Changes in brain activation associated with use of a memory strategy: a functional MRI study. NeuroImage, 2005, 24, 1154-1163.	2.1	77
49	Neurocognitive correlates of incidental verbal memory encoding: a magnetoencephalographic (MEG) study. NeuroImage, 2005, 25, 430-443.	2.1	11
50	Emotional context during encoding of neutral items modulates brain activation not only during encoding but also during recognition. NeuroImage, 2005, 26, 829-838.	2.1	75
51	Retrieving accurate and distorted memories: Neuroimaging evidence for effects of emotion. NeuroImage, 2005, 27, 167-177.	2.1	82
52	Encoding and the Durability of Episodic Memory: A Functional Magnetic Resonance Imaging Study. Journal of Neuroscience, 2005, 25, 7260-7267.	1.7	125
53	Reward-Related fMRI Activation of Dopaminergic Midbrain Is Associated with Enhanced Hippocampus- Dependent Long-Term Memory Formation. Neuron, 2005, 45, 459-467.	3.8	579
54	Neural activity during encoding predicts false memories created by misinformation. Learning and Memory, 2005, 12, 3-11.	0.5	114
55	On why the elderly have normal semantic retrieval but deficient episodic encoding: A study of left inferior frontal ERP activity. NeuroImage, 2006, 30, 299-312.	2.1	45

	Сітатіс	on Report	
#	Article	IF	CITATIONS
56	Oscillatory correlates of the primacy effect in episodic memory. NeuroImage, 2006, 32, 1422-1431.	2.1	139
57	Associative Memory Encoding and Recognition in Schizophrenia: An Event-Related fMRI Study. Biological Psychiatry, 2006, 60, 1215-1223.	0.7	60
58	Neural activation during successful and unsuccessful verbal learning in schizophrenia. Schizophrenia Research, 2006, 83, 121-130.	1.1	9
59	Dissociation of event-related potentials indexing arousal and semantic cohesion during emotional word encoding. Brain and Cognition, 2006, 62, 43-57.	0.8	91
60	Hippocampus proper distinguishes between identified and unidentified real-life visual objects: An intracranial ERP study. Neuroscience Letters, 2006, 401, 165-170.	1.0	13
61	Attending to Remember and Remembering to Attend. Neuron, 2006, 49, 784-787.	3.8	7
62	Episodic Encoding Is More than the Sum of Its Parts: An fMRI Investigation of Multifeatural Contextual Encoding. Neuron, 2006, 52, 547-556.	3.8	179
63	Intra- and Inter-Item Associations Doubly Dissociate the Electrophysiological Correlates of Familiarity and Recollection. Neuron, 2006, 52, 535-545.	3.8	123
64	Successful declarative memory formation is associated with ongoing activity during encoding in a distributed neocortical network related to working memory: A magnetoencephalography study. Neuroscience, 2006, 139, 291-297.	1.1	35
65	Working memory for visual objects: Complementary roles of inferior temporal, medial temporal, and prefrontal cortex. Neuroscience, 2006, 139, 277-289.	1.1	186
66	The rhinal cortex: â€~gatekeeper' of the declarative memory system. Trends in Cognitive Sciences, 2006 10, 358-362.	5, 4.0	113
67	Prefrontal and parietal cortex in human episodic memory: an interference study by repetitive transcranial magnetic stimulation. European Journal of Neuroscience, 2006, 23, 793-800.	1.2	98
68	Brain activity before an event predicts later recollection. Nature Neuroscience, 2006, 9, 489-491.	7.1	157
69	Cognitive neuroscience of emotional memory. Nature Reviews Neuroscience, 2006, 7, 54-64.	4.9	1,412
70	Cortical EEG correlates of successful memory encoding: Implications for lifespan comparisons. Neuroscience and Biobehavioral Reviews, 2006, 30, 839-854.	2.9	121
71	Dose effects of triazolam on brain activity during episodic memory encoding: a PET study. Psychopharmacology, 2006, 188, 445-461.	1.5	12
72	ltem, context and relational episodic encoding in humans. Current Opinion in Neurobiology, 2006, 16, 693-700.	2.0	1,003
73	Oscillatory brain activity in the human EEG during indirect and direct memory tasks. Brain Research, 2006, 1097, 194-204.	1.1	67

#	Article	IF	CITATIONS
74	Distinguishing source memory and item memory: Brain potentials at encoding and retrieval. Brain Research, 2006, 1118, 142-154.	1.1	47
75	Evaluating models of object-decision priming: Evidence from event-related potential repetition effects Journal of Experimental Psychology: Learning Memory and Cognition, 2006, 32, 230-248.	0.7	23
76	Why do beliefs about intelligence influence learning success? A social cognitive neuroscience model. Social Cognitive and Affective Neuroscience, 2006, 1, 75-86.	1.5	376
77	Hippocampal and Neocortical Gamma Oscillations Predict Memory Formation in Humans. Cerebral Cortex, 2006, 17, 1190-1196.	1.6	349
78	Item memory, source memory, and the medial temporal lobe: Concordant findings from fMRI and memory-impaired patients. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9351-9356.	3.3	133
79	Differential Encoding Mechanisms for Subsequent Associative Recognition and Free Recall. Journal of Neuroscience, 2006, 26, 9162-9172.	1.7	256
80	Amygdala Activity Is Associated with the Successful Encoding of Item, But Not Source, Information for Positive and Negative Stimuli. Journal of Neuroscience, 2006, 26, 2564-2570.	1.7	317
81	Memory Encoding and Retrieval in the Aging Brain. Clinical EEG and Neuroscience, 2007, 38, 2-7.	0.9	57
82	The Dorsolateral Prefrontal Cortex Contributes to Successful Relational Memory Encoding. Journal of Neuroscience, 2007, 27, 5515-5522.	1.7	207
83	The medial temporal lobe and memory. , 2007, , 305-337.		17
83 84	The medial temporal lobe and memory. , 2007, , 305-337. Selective Abnormal Modulation of Hippocampal Activity During Memory Formation in First-Episode Psychosis. Archives of General Psychiatry, 2007, 64, 999.	13.8	17 65
	Selective Abnormal Modulation of Hippocampal Activity During Memory Formation in First-Episode	13.8	
84	Selective Abnormal Modulation of Hippocampal Activity During Memory Formation in First-Episode Psychosis. Archives of General Psychiatry, 2007, 64, 999. Distinct Patterns of Neural Activity during Memory Formation of Nonwords versus Words. Journal		65
84 85	Selective Abnormal Modulation of Hippocampal Activity During Memory Formation in First-Episode Psychosis. Archives of General Psychiatry, 2007, 64, 999. Distinct Patterns of Neural Activity during Memory Formation of Nonwords versus Words. Journal of Cognitive Neuroscience, 2007, 19, 1776-1789. Distinguishing the Neural Correlates of Episodic Memory Encoding and Semantic Memory Retrieval.	1.1	65 38
84 85 86	Selective Abnormal Modulation of Hippocampal Activity During Memory Formation in First-Episode Psychosis. Archives of General Psychiatry, 2007, 64, 999. Distinct Patterns of Neural Activity during Memory Formation of Nonwords versus Words. Journal of Cognitive Neuroscience, 2007, 19, 1776-1789. Distinguishing the Neural Correlates of Episodic Memory Encoding and Semantic Memory Retrieval. Psychological Science, 2007, 18, 144-151. Brain Networks Subserving the Extraction of Sentence Information and Its Encoding to Memory.	1.1 1.8	65 38 67
84 85 86 87	Selective Abnormal Modulation of Hippocampal Activity During Memory Formation in First-Episode Psychosis. Archives of General Psychiatry, 2007, 64, 999. Distinct Patterns of Neural Activity during Memory Formation of Nonwords versus Words. Journal of Cognitive Neuroscience, 2007, 19, 1776-1789. Distinguishing the Neural Correlates of Episodic Memory Encoding and Semantic Memory Retrieval. Psychological Science, 2007, 18, 144-151. Brain Networks Subserving the Extraction of Sentence Information and Its Encoding to Memory. Cerebral Cortex, 2007, 17, 2899-2913. Modulation of Memory Formation by Stimulus Content: Specific Role of the Medial Prefrontal Cortex	1.1 1.8 1.6	65 38 67 70
84 85 86 87 88	Selective Abnormal Modulation of Hippocampal Activity During Memory Formation in First-Episode Psychosis. Archives of General Psychiatry, 2007, 64, 999. Distinct Patterns of Neural Activity during Memory Formation of Nonwords versus Words. Journal of Cognitive Neuroscience, 2007, 19, 1776-1789. Distinguishing the Neural Correlates of Episodic Memory Encoding and Semantic Memory Retrieval. Psychological Science, 2007, 18, 144-151. Brain Networks Subserving the Extraction of Sentence Information and Its Encoding to Memory. Cerebral Cortex, 2007, 17, 2899-2913. Modulation of Memory Formation by Stimulus Content: Specific Role of the Medial Prefrontal Cortex in the Successful Encoding of Social Pictures. Journal of Cognitive Neuroscience, 2007, 19, 351-362. Fragments of a Larger Whole: Retrieval Cues Constrain Observed Neural Correlates of Memory	1.1 1.8 1.6 1.1	 65 38 67 70 55

#	Article	IF	Citations
92	Neural correlates of age-related verbal episodic memory decline: A PET study with combined subtraction/correlation analysis. Neurobiology of Aging, 2007, 28, 1568-1576.	1.5	23
93	Effects of aging on transient and sustained successful memory encoding activity. Neurobiology of Aging, 2007, 28, 1749-1758.	1.5	103
94	Functional dissociations in top–down control dependent neural repetition priming. NeuroImage, 2007, 34, 1733-1743.	2.1	6
95	Probing the transformation of discontinuous associations into episodic memory: An event-related fMRI study. NeuroImage, 2007, 38, 212-222.	2.1	55
96	Prefrontal Cortex and Long-Term Memory Encoding: An Integrative Review of Findings from Neuropsychology and Neuroimaging. Neuroscientist, 2007, 13, 280-291.	2.6	500
97	Differential Contributions of Prefrontal, Medial Temporal, and Sensory-Perceptual Regions to True and False Memory Formation. Cerebral Cortex, 2007, 17, 2143-2150.	1.6	113
98	The effect of scene context on episodic object recognition: Parahippocampal cortex mediates memory encoding and retrieval success. Hippocampus, 2007, 17, 873-889.	0.9	131
99	Comparison of spectral analysis methods for characterizing brain oscillations. Journal of Neuroscience Methods, 2007, 162, 49-63.	1.3	129
100	A deficit in the ability to form new human memories without sleep. Nature Neuroscience, 2007, 10, 385-392.	7.1	489
101	The coupling of emotion and cognition in the eye: Introducing the pupil old/new effect. Psychophysiology, 2008, 45, 130-140.	1.2	117
102	The memory that's right and the memory that's left: Event-related potentials reveal hemispheric asymmetries in the encoding and retention of verbal information. Neuropsychologia, 2007, 45, 1777-1790.	0.7	106
103	Effects of aging on true and false memory formation: An fMRI study. Neuropsychologia, 2007, 45, 3157-3166.	0.7	133
104	Working memory maintenance contributes to long-term memory formation: Evidence from slow event-related brain potentials. Cognitive, Affective and Behavioral Neuroscience, 2007, 7, 212-224.	1.0	37
105	The role of medial temporal lobe in item recognition and source recollection of emotional stimuli. Cognitive, Affective and Behavioral Neuroscience, 2007, 7, 233-242.	1.0	58
106	Noradrenergic–glucocorticoid mechanisms in emotion-induced amnesia: from adaptation to disease. Psychopharmacology, 2008, 197, 13-23.	1.5	41
107	Emotional valence influences the neural correlates associated with remembering and knowing. Cognitive, Affective and Behavioral Neuroscience, 2008, 8, 143-152.	1.0	114
108	Mesolimbic interaction of emotional valence and reward improves memory formation. Neuropsychologia, 2008, 46, 1000-1008.	0.7	113
109	Orbitofrontal and hippocampal contributions to memory for face–name associations: The rewarding power of a smile. Neuropsychologia, 2008, 46, 2310-2319.	0.7	87

#	Article	IF	CITATIONS
110	Brain substrates of implicit and explicit memory: The importance of concurrently acquired neural signals of both memory types. Neuropsychologia, 2008, 46, 3021-3029.	0.7	123
111	Enhanced Intersubject Correlations during Movie Viewing Correlate with Successful Episodic Encoding. Neuron, 2008, 57, 452-462.	3.8	288
112	Activity in Both Hippocampus and Perirhinal Cortex Predicts the Memory Strength of Subsequently Remembered Information. Neuron, 2008, 59, 547-553.	3.8	111
113	Integrating Memories in the Human Brain: Hippocampal-Midbrain Encoding of Overlapping Events. Neuron, 2008, 60, 378-389.	3.8	427
114	Memory search and the neural representation of context. Trends in Cognitive Sciences, 2008, 12, 24-30.	4.0	166
115	Declarative Memory. Current Directions in Psychological Science, 2008, 17, 112-118.	2.8	49
116	Structure of the cortical networks during successful memory encoding in TV commercials. Clinical Neurophysiology, 2008, 119, 2231-2237.	0.7	30
117	Predicting the recognition of natural scenes from single trial MEG recordings of brain activity. NeuroImage, 2008, 42, 1056-1068.	2.1	44
118	Neural correlates of successful encoding of semantically and phonologically mediated inter-item associations. Neurolmage, 2008, 43, 165-172.	2.1	34
119	Oscillatory brain activity before and after an internal context change — Evidence for a reset of encoding processes. NeuroImage, 2008, 43, 173-181.	2.1	44
120	Prefrontal social cognition network dysfunction underlying face encoding and social anxiety in fragile X syndrome. NeuroImage, 2008, 43, 592-604.	2.1	48
121	Brain mechanisms of persuasion: how â€~expert power' modulates memory and attitudes. Social Cognitive and Affective Neuroscience, 2008, 3, 353-366.	1.5	154
122	Coding Processes. , 2008, , 79-102.		0
123	Role of Amygdala Connectivity in the Persistence of Emotional Memories Over Time: An Event-Related fMRI Investigation. Cerebral Cortex, 2008, 18, 2494-2504.	1.6	177
124	Effects of study task on the neural correlates of source encoding. Learning and Memory, 2008, 15, 417-425.	0.5	42
125	Neural Processes Supporting Young and Older Adults' Emotional Memories. Journal of Cognitive Neuroscience, 2008, 20, 1161-1173.	1.1	162
126	Plasticity and Memory in the Prefrontal Cortex. Reviews in the Neurosciences, 2008, 19, 29-46.	1.4	38
127	The Relationship between Study Processing and the Effects of Cue Congruency at Retrieval: fMRI Support for Transfer Appropriate Processing. Cerebral Cortex, 2008, 18, 868-875.	1.6	25

#	ARTICLE	IF	CITATIONS
128	The Cognitive Neuroscience of Motivation and Learning. Social Cognition, 2008, 26, 593-620.	0.5	79
129	Neural Correlates of Availability and Accessibility in Memory. Cerebral Cortex, 2008, 18, 1720-1726.	1.6	53
130	Immediate memory consequences of the effect of emotion on attention to pictures. Learning and Memory, 2008, 15, 172-182.	0.5	103
131	Chapter 21 Encoding-retrieval overlap in human episodic memory: A functional neuroimaging perspective. Progress in Brain Research, 2008, 169, 339-352.	0.9	168
132	Effects of aging on the neural correlates of successful item and source memory encoding Journal of Experimental Psychology: Learning Memory and Cognition, 2008, 34, 791-808.	0.7	269
133	Electrophysiological correlates of encoding and retrieving emotional events Emotion, 2008, 8, 162-173.	1.5	61
134	A context-based theory of recency and contiguity in free recall Psychological Review, 2008, 115, 893-912.	2.7	256
135	Content-specific source encoding in the human medial temporal lobe Journal of Experimental Psychology: Learning Memory and Cognition, 2008, 34, 769-779.	0.7	76
136	Neural Substrates of Remembering $\hat{a} \in $ Electroencephalographic Studies. , 2008, , 79-97.		23
137	Hippocampal response to visual objects is related to visual memory functioning. NeuroReport, 2008, 19, 965-968.	0.6	11
138	The Wick in the Candle of Learning: Epistemic Curiosity Activates Reward Circuitry and Enhances Memory. SSRN Electronic Journal, 2008, , .	0.4	6
139	A influência das emoções nas falsas memórias: uma revisão crÃtica. Psicologia USP, 2008, 19, 415-434.	0.1	5
140	Prefrontal Cortex and Memory. , 2008, , 261-279.		14
141	Neuropsychology and neuroimaging of sleep-dependent memory processing: implications for aging. , 0, , 45-56.		0
142	Humans. , 2009, , 29-34.		2
143	The Wick in the Candle of Learning. Psychological Science, 2009, 20, 963-973.	1.8	580
144	Effects of Aging on Functional Connectivity of the Amygdala for Subsequent Memory of Negative Pictures. Psychological Science, 2009, 20, 74-84.	1.8	140
145	Memory Effects of Speech and Gesture Binding: Cortical and Hippocampal Activation in Relation to Subsequent Memory Performance. Journal of Cognitive Neuroscience, 2009, 21, 821-836.	1.1	78

		CITATION RE	PORT	
#	Article		IF	Citations
146	How emotion affects older adults $\hat{a} \in M$ memories for event details. Memory, 2009, 17,	208-219.	0.9	65
147	Familiarity and Recollection in the Medial Temporal Lobe. Journal of Neuroscience, 200	9, 29, 2309-2311.	1.7	11
148	Modulation of medial temporal lobe activity in epilepsy patients with hippocampal scle verbal working memory. Journal of the International Neuropsychological Society, 2009	rosis during , 15, 536-546.	1.2	15
149	Performance-Related Sustained and Anticipatory Activity in Human Medial Temporal Lo Delayed Match-to-Sample. Journal of Neuroscience, 2009, 29, 11880-11890.	bbe during	1.7	93
150	The Medial Temporal Lobe and the Left Inferior Prefrontal Cortex Jointly Support Interfor Resolution in Verbal Working Memory. Journal of Cognitive Neuroscience, 2009, 21, 1		1.1	61
151	Remembering the Details: Effects of Emotion. Emotion Review, 2009, 1, 99-113.		2.1	580
152	Event-related fMRI studies of episodic encoding and retrieval: Meta-analyses using acti likelihood estimation. Neuropsychologia, 2009, 47, 1765-1779.	vation	0.7	677
153	Hippocampal, amygdala, and neocortical synchronization of theta rhythms is related to recall during rey auditory verbal learning test. Human Brain Mapping, 2009, 30, 2077-2		1.9	56
154	The Role of Sleep in Cognition and Emotion. Annals of the New York Academy of Scien 168-197.	ces, 2009, 1156,	1.8	669
155	Brain Oscillations Dissociate between Semantic and Nonsemantic Encoding of Episodi Cerebral Cortex, 2009, 19, 1631-1640.	c Memories.	1.6	269
156	Activation of right parietal cortex during memory retrieval of nonlinguistic auditory stir Cognitive, Affective and Behavioral Neuroscience, 2009, 9, 242-248.	nuli.	1.0	49
157	Posterior parietal cortex and episodic encoding: Insights from fMRI subsequent memory dual-attention theory. Neurobiology of Learning and Memory, 2009, 91, 139-154.	ry effects and	1.0	291
158	Remembering and knowing: Electrophysiological distinctions at encoding but not retri Neurolmage, 2009, 46, 280-289.	eval.	2.1	89
159	Dissecting medial temporal lobe contributions to item and associative memory format NeuroImage, 2009, 46, 874-881.	ion.	2.1	46
160	Cultural influences on memory. Progress in Brain Research, 2009, 178, 137-150.		0.9	62
161	Reconciling findings of emotion-induced memory enhancement and impairment of pre Emotion, 2009, 9, 763-781.	ceding items	1.5	108
162	Emotion and autobiographical memory. Physics of Life Reviews, 2010, 7, 88-131.		1.5	337
163	The adaptive characteristics of memory: A perspective from the life-span development memory illusion. Science Bulletin, 2010, 55, 1581-1589.	of associative	1.7	1

#	Article	IF	CITATIONS
164	fMRI studies of successful emotional memory encoding: A quantitative meta-analysis. Neuropsychologia, 2010, 48, 3459-3469.	0.7	287
165	Frontoâ€ŧemporal dysregulation in asymptomatic bipolar I patients: A paired associate functional MRI study. Human Brain Mapping, 2010, 31, 1041-1051.	1.9	37
166	Hierarchical relational binding in the medial temporal lobe: The strong get stronger. Hippocampus, 2010, 20, 1206-1216.	0.9	65
167	Predictive, interactive multiple memory systems. Hippocampus, 2010, 20, 1315-1326.	0.9	163
168	Episodic memory across the lifespan: The contributions of associative and strategic components. Neuroscience and Biobehavioral Reviews, 2010, 34, 1080-1091.	2.9	251
169	Neural Correlates of Encoding Predict Infants' Memory in the Pairedâ€Comparison Procedure. Infancy, 2010, 15, 270-299.	0.9	22
170	Human memory strength is predicted by theta-frequency phase-locking of single neurons. Nature, 2010, 464, 903-907.	13.7	537
171	Electrophysiological signature of working and longâ€ŧerm memory interaction in the human hippocampus. European Journal of Neuroscience, 2010, 31, 177-188.	1.2	32
172	Impairment of verbal learning and memory and executive function in unaffected siblings of probands with bipolar disorder. Bipolar Disorders, 2010, 12, 647-656.	1.1	54
173	Time to Go Our Separate Ways: Opposite Effects of Study Duration on Priming and Recognition Reveal Distinct Neural Substrates. Frontiers in Human Neuroscience, 2010, 4, 227.	1.0	16
174	Staying Cool when Things Get Hot: Emotion Regulation Modulates Neural Mechanisms of Memory Encoding. Frontiers in Human Neuroscience, 2010, 4, 230.	1.0	168
175	Dissociating the Neural Correlates of Intra-Item and Inter-Item Working-Memory Binding. PLoS ONE, 2010, 5, e10214.	1.1	62
176	Facilitating Memory for Novel Characters by Reducing Neural Repetition Suppression in the Left Fusiform Cortex. PLoS ONE, 2010, 5, e13204.	1.1	34
177	The Time Course of Ventrolateral Prefrontal Cortex Involvement in Memory Formation. Journal of Neurophysiology, 2010, 103, 1569-1579.	0.9	28
178	COMT Val108/158 Met Genotype Affects Neural but not Cognitive Processing in Healthy Individuals. Cerebral Cortex, 2010, 20, 672-683.	1.6	48
179	Dissociable Roles of the Anterior Temporal Regions in Successful Encoding of Memory for Person Identity Information. Journal of Cognitive Neuroscience, 2010, 22, 2226-2237.	1.1	43
180	Flexible Memories: Differential Roles for Medial Temporal Lobe and Prefrontal Cortex in Cross-Episode Binding. Journal of Neuroscience, 2010, 30, 14676-14684.	1.7	212
181	Hippocampal Gamma Oscillations Increase with Memory Load. Journal of Neuroscience, 2010, 30, 2694-2699.	1.7	182

#	Article	IF	CITATIONS
182	Modulation of Brain Activity after Learning Predicts Long-Term Memory for Words. Journal of Neuroscience, 2010, 30, 15160-15164.	1.7	21
183	Voluntary Control over Prestimulus Activity Related to Encoding. Journal of Neuroscience, 2010, 30, 9793-9800.	1.7	101
184	Real-Time Neural Signals of Perceptual Priming with Unfamiliar Geometric Shapes. Journal of Neuroscience, 2010, 30, 9181-9188.	1.7	46
185	Requirements at retrieval modulate subsequent memory effects: An event-related potential study. Cognitive Neuroscience, 2010, 1, 254-260.	0.6	16
186	Reduced Hippocampal Activity in Youth with Posttraumatic Stress Symptoms: An fMRI Study. Journal of Pediatric Psychology, 2010, 35, 559-569.	1.1	141
187	Medial prefrontal cortex activity during memory encoding of pictures and its relation to symptomatic improvement after citalopram treatment in patients with major depression. Journal of Psychiatry and Neuroscience, 2010, 35, 152-162.	1.4	172
188	Prestimulus Subsequent Memory Effects for Auditory and Visual Events. Journal of Cognitive Neuroscience, 2010, 22, 1212-1223.	1.1	48
190	High-resolution fMRI of Content-sensitive Subsequent Memory Responses in Human Medial Temporal Lobe. Journal of Cognitive Neuroscience, 2010, 22, 156-173.	1.1	114
191	Dissociable Neural Substrates for Agentic versus Conceptual Representations of Self. Journal of Cognitive Neuroscience, 2010, 22, 2186-2197.	1.1	32
192	Use of fMRI Language Lateralization for Quantitative Prediction of Naming and Verbal Memory Outcome in Left Temporal Lobe Epilepsy Surgery. , 2010, , 77-93.		2
193	The Neural Correlates of Emotional Memory in Posttraumatic Stress Disorder. Biological Psychiatry, 2010, 68, 1023-1030.	0.7	94
194	Developmental fMRI study of episodic verbal memory encoding in children. Neurology, 2010, 75, 2110-2116.	1.5	48
195	Deep and shallow encoding effects on face recognition: An ERP study. International Journal of Psychophysiology, 2010, 78, 239-250.	0.5	44
196	There are age-related changes in neural connectivity during the encoding of positive, but not negative, information. Cortex, 2010, 46, 425-433.	1.1	87
197	Forming intentions successfully: Differential compensational mechanisms of adolescents and old adults. Cortex, 2010, 46, 575-589.	1.1	17
198	Imaging the Human Medial Temporal Lobe with High-Resolution fMRI. Neuron, 2010, 65, 298-308.	3.8	157
199	Dopamine and adaptive memory. Trends in Cognitive Sciences, 2010, 14, 464-472.	4.0	551
200	Temporal lobe functional activity and connectivity in young adult <i>APOE</i> É>4 carriers. Alzheimer's and Dementia, 2010, 6, 303-311.	0.4	177

		CITATION RE	PORT	
#	Article		IF	CITATIONS
201	The Hippocampal Formation in Schizophrenia. American Journal of Psychiatry, 2010, 16	7, 1178-1193.	4.0	507
202	Binding Items and Contexts. Current Directions in Psychological Science, 2010, 19, 13	1-137.	2.8	171
203	Individual Differences in Face Cognition: Brain–Behavior Relationships. Journal of Cog Neuroscience, 2010, 22, 571-589.	initive	1.1	57
204	Preoperative Prediction of Verbal Episodic Memory Outcome Using fMRI. Neurosurgery North America, 2011, 22, 219-232.	Clinics of	0.8	37
205	Recognition Memory Strength is Predicted by Pupillary Responses at Encoding While Fi Distinguish Recollection from Familiarity. Quarterly Journal of Experimental Psychology 1971-1989.	xation Patterns 2011, 64,	0.6	118
206	Remembering beauty: Roles of orbitofrontal and hippocampal regions in successful me of attractive faces. Neurolmage, 2011, 54, 653-660.	mory encoding	2.1	115
207	Neural activity that predicts subsequent memory and forgetting: A meta-analysis of 74 NeuroImage, 2011, 54, 2446-2461.	fMRI studies.	2.1	535
208	Mapping anterior temporal lobe language areas with fMRI: A multicenter normative stu 2011, 54, 1465-1475.	dy. Neurolmage,	2.1	237
209	Recalling and Forgetting Dreams: Theta and Alpha Oscillations during Sleep Predict Sub Recall. Journal of Neuroscience, 2011, 31, 6674-6683.	osequent Dream	1.7	117
210	The Relationship between Brain Oscillations and BOLD Signal during Memory Formatio EEG–fMRI Study. Journal of Neuroscience, 2011, 31, 15674-15680.	n: A Combined	1.7	174
211	Working memory, long-term memory, and medial temporal lobe function. Learning and 19, 15-25.	Memory, 2012,	0.5	266
212	Functional MRI is a valid noninvasive alternative to Wada testing. Epilepsy and Behavio 214-222.	r, 2011, 20,	0.9	181
213	Age-related dedifferentiation of learning systems: an fMRI study of implicit and explicit Neurobiology of Aging, 2011, 32, 2318.e17-2318.e30.	learning.	1.5	151
214	The role of the basal ganglia in learning and memory: Insight from Parkinson's disea of Learning and Memory, 2011, 96, 624-636.	ise. Neurobiology	1.0	144
215	Constructing Semantic Representations From a Gradually Changing Representation of Context. Topics in Cognitive Science, 2011, 3, 48-73.	Temporal	1.1	45
216	Real-Time Measurement of Face Recognition in Rapid Serial Visual Presentation. Frontie Psychology, 2011, 2, 42.	rs in	1.1	46
217	A flicker change detection task reveals object-in-scene memory across species. Frontier Neuroscience, 2011, 5, 58.	s in Behavioral	1.0	33
218	Why Some Faces won't be Remembered: Brain Potentials Illuminate Successful Versus Encoding for Same-Race and Other-Race Faces. Frontiers in Human Neuroscience, 2013		1.0	48

			0
#	ARTICLE	IF	CITATIONS
219	People's hypercorrection of high-confidence errors: Did they know it all along?. Journal of Experimental Psychology: Learning Memory and Cognition, 2011, 37, 437-448.	0.7	55
220	Altered Processing of Visual Memory in Patients with Mesial Temporal Sclerosis: An fMRI Study. , 2011, 21, 138-144.		3
221	Reprint of: fMRI studies of successful emotional memory encoding: A quantitative meta-analysis. Neuropsychologia, 2011, 49, 695-705.	0.7	45
222	Reduced hippocampal activity during encoding in cognitively normal adults carrying the APOE É⁄4 allele. Neuropsychologia, 2011, 49, 2448-2455.	0.7	29
223	Event congruency and episodic encoding: A developmental fMRI study. Neuropsychologia, 2011, 49, 3036-3045.	0.7	41
224	Reduced hippocampal and amygdala activity predicts memory distortions for trauma reminders in combat-related PTSD. Journal of Psychiatric Research, 2011, 45, 660-669.	1.5	162
225	Remember to forget: ERP evidence for inhibition in an item-method directed forgetting paradigm. Brain Research, 2011, 1392, 80-92.	1.1	44
226	Neural correlates of emotion–cognition interactions: A review of evidence from brain imaging investigations. Journal of Cognitive Psychology, 2011, 23, 669-694.	0.4	306
227	Episodic retrieval and the cortical binding of relational activity. Cognitive, Affective and Behavioral Neuroscience, 2011, 11, 277-291.	1.0	188
228	"Wanted!―The effects of reward on face recognition: electrophysiological correlates. Cognitive, Affective and Behavioral Neuroscience, 2011, 11, 627-643.	1.0	32
229	Adaptive case-based reasoning using retention and forgetting strategies. Knowledge-Based Systems, 2011, 24, 230-247.	4.0	39
230	Neural basis for successful encoding and retrieval of prospective memory. Science China Life Sciences, 2011, 54, 580-587.	2.3	4
231	Increase in posterior alpha activity during rehearsal predicts successful longâ€ŧerm memory formation of word sequences. Human Brain Mapping, 2011, 32, 2045-2053.	1.9	60
232	Different Brain Activities Predict Retrieval Success during Emotional and Semantic Encoding. Journal of Cognitive Neuroscience, 2011, 23, 4008-4021.	1.1	25
233	Level of Processing Modulates the Neural Correlates of Emotional Memory Formation. Journal of Cognitive Neuroscience, 2011, 23, 757-771.	1.1	72
234	Oscillatory patterns in temporal lobe reveal context reinstatement during memory search. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12893-12897.	3.3	173
235	Brain Imaging Investigation of the Memory-Enhancing Effect of Emotion. Journal of Visualized Experiments, 2011, , .	0.2	13
236	Temporal Dynamics of Memory Trace Formation in the Human Prefrontal Cortex. Cerebral Cortex, 2011, 21, 368-373.	1.6	39

#	Article	IF	CITATIONS
237	Expected value information improves financial risk taking across the adult life span. Social Cognitive and Affective Neuroscience, 2011, 6, 207-217.	1.5	61
238	Effects of modality on the neural correlates of encoding processes supporting recollection and familiarity. Learning and Memory, 2011, 18, 565-573.	0.5	9
239	Constructing Realistic Engrams: Poststimulus Activity of Hippocampus and Dorsal Striatum Predicts Subsequent Episodic Memory. Journal of Neuroscience, 2011, 31, 9032-9042.	1.7	173
240	Sex Differences in the Use of Anticipatory Brain Activity to Encode Emotional Events. Journal of Neuroscience, 2011, 31, 12364-12370.	1.7	34
241	The Effects of Age, Memory Performance, and Callosal Integrity on the Neural Correlates of Successful Associative Encoding. Cerebral Cortex, 2011, 21, 2166-2176.	1.6	128
242	Cooperation between the Hippocampus and the Striatum during Episodic Encoding. Journal of Cognitive Neuroscience, 2011, 23, 1597-1608.	1.1	85
243	Dissociable Effects of Top-Down and Bottom-Up Attention during Episodic Encoding. Journal of Neuroscience, 2011, 31, 12613-12628.	1.7	120
244	Fiber density between rhinal cortex and activated ventrolateral prefrontal regions predicts episodic memory performance in humans. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5408-5413.	3.3	38
245	Gamma-Band Activation Predicts Both Associative Memory and Cortical Plasticity. Journal of Neuroscience, 2011, 31, 12748-12758.	1.7	85
246	What you know can hurt you: Effects of age and prior knowledge on the accuracy of judgments of learning Psychology and Aging, 2011, 26, 919-931.	1.4	40
247	Modulating the Focus of Attention for Spoken Words at Encoding Affects Frontoparietal Activation for Incidental Verbal Memory. International Journal of Biomedical Imaging, 2012, 2012, 1-11.	3.0	7
248	Study–Test Congruency Affects Encoding-related Brain Activity for Some but Not All Stimulus Materials. Journal of Cognitive Neuroscience, 2012, 24, 183-195.	1.1	13
249	Neuroscience in branding: A functional magnetic resonance imaging study on brands' implicit and explicit impressions. Journal of Brand Management, 2012, 19, 735-757.	2.0	14
250	Reduced Specificity of Hippocampal and Posterior Ventrolateral Prefrontal Activity during Relational Retrieval in Normal Aging. Journal of Cognitive Neuroscience, 2012, 24, 159-170.	1.1	52
251	The effect of emotional arousal and retention delay on subsequent-memory effects. Cognitive Neuroscience, 2012, 3, 150-159.	0.6	40
252	Reward Modulation of Hippocampal Subfield Activation during Successful Associative Encoding and Retrieval. Journal of Cognitive Neuroscience, 2012, 24, 1532-1547.	1.1	128
253	Neural Reactivation Reveals Mechanisms for Updating Memory. Journal of Neuroscience, 2012, 32, 3453-3461.	1.7	87
254	Spontaneously Reactivated Patterns in Frontal and Temporal Lobe Predict Semantic Clustering during Memory Search. Journal of Neuroscience, 2012, 32, 8871-8878.	1.7	69

#	Article	IF	CITATIONS
255	Distinct contributions of the amygdala and parahippocampal gyrus to suspicion in a repeated bargaining game. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8728-8733.	3.3	31
256	Understanding Low Reliability of Memories for Neutral Information Encoded under Stress: Alterations in Memory-Related Activation in the Hippocampus and Midbrain. Journal of Neuroscience, 2012, 32, 4032-4041.	1.7	69
257	Prestimulus brain activity predicts primacy in list learning. Cognitive Neuroscience, 2012, 3, 160-167.	0.6	19
258	Neural correlates of the encoding of multimodal contextual features. Learning and Memory, 2012, 19, 605-614.	0.5	14
259	Neural Correlates of Reactivation and Retrieval-Induced Distortion. Journal of Neuroscience, 2012, 32, 12144-12151.	1.7	47
260	Emotion blocks the path to learning under stereotype threat. Social Cognitive and Affective Neuroscience, 2012, 7, 230-241.	1.5	49
261	Counterfactuals in action: An fMRI study of counterfactual sentences describing physical effort. Neuropsychologia, 2012, 50, 3663-3672.	0.7	22
262	Explaining the encoding/retrieval flip: Memory-related deactivations and activations in the posteromedial cortex. Neuropsychologia, 2012, 50, 3764-3774.	0.7	100
263	Encoding-related brain activity dissociates between the recollective processes underlying successful recall and recognition: A subsequent-memory study. Neuropsychologia, 2012, 50, 2317-2324.	0.7	10
264	Cognitive contributions of the ventral parietal cortex: an integrative theoretical account. Trends in Cognitive Sciences, 2012, 16, 338-352.	4.0	337
265	EEG synchronization characteristics of functional connectivity and complex network properties of memory maintenance in the delta and theta frequency bands. International Journal of Psychophysiology, 2012, 83, 399-402.	0.5	37
266	High neuromagnetic activation in the left prefrontal and frontal cortices correlates with better memory performance for abstract words. Brain and Language, 2012, 123, 42-51.	0.8	3
267	Chronometry of word and picture identification: Common and modality-specific effects. NeuroImage, 2012, 59, 3701-3712.	2.1	3
268	Distinct neural correlates of associative working memory and long-term memory encoding in the medial temporal lobe. NeuroImage, 2012, 63, 989-997.	2.1	70
269	Hippocampal novelty activations in schizophrenia: Disease and medication effects. Schizophrenia Research, 2012, 138, 157-163.	1.1	27
270	Movement-Related Theta Rhythm in Humans: Coordinating Self-Directed Hippocampal Learning. PLoS Biology, 2012, 10, e1001267.	2.6	127
271	Neuroelectric Evidence for Cognitive Association Formation: An Event-Related Potential Investigation. PLoS ONE, 2012, 7, e34856.	1.1	7
272	Oscillatory power decreases and long-term memory: the information via desynchronization hypothesis. Frontiers in Human Neuroscience, 2012, 6, 74.	1.0	369

#	Article	IF	Citations
273	Male Carriers of the FMR1 Premutation Show Altered Hippocampal-Prefrontal Function During Memory Encoding. Frontiers in Human Neuroscience, 2012, 6, 297.	1.0	25
274	Emotion and cognition interactions in PTSD: a review of neurocognitive and neuroimaging studies. Frontiers in Integrative Neuroscience, 2012, 6, 89.	1.0	254
275	NEURAL CORRELATES OF EMOTIONAL MEMORIES: A REVIEW OF EVIDENCE FROM BRAIN IMAGING STUDIES. Psychologia, 2012, 55, 80-111.	0.3	76
276	Fearful expressions enhance recognition memory: Electrophysiological evidence. Acta Psychologica, 2012, 139, 7-18.	0.7	73
277	Neuropsychological correlates of insight in obsessive–compulsive disorder. Acta Psychiatrica Scandinavica, 2012, 126, 106-114.	2.2	46
278	Multi-voxel patterns of visual category representation during episodic encoding are predictive of subsequent memory. Neuropsychologia, 2012, 50, 458-469.	0.7	100
279	Impact of tDCS on performance and learning of target detection: Interaction with stimulus characteristics and experimental design. Neuropsychologia, 2012, 50, 1594-1602.	0.7	51
280	The relationship between level of processing and hippocampal–cortical functional connectivity during episodic memory formation in humans. Human Brain Mapping, 2013, 34, 407-424.	1.9	81
281	Theta power during encoding predicts subsequentâ€nemory performance and default mode network deactivation. Human Brain Mapping, 2013, 34, 2929-2943.	1.9	79
282	Disruption of Dorsolateral But Not Ventrolateral Prefrontal Cortex Improves Unconscious Perceptual Memories. Journal of Neuroscience, 2013, 33, 13233-13237.	1.7	36
283	The effect of object processing in content-dependent source memory. BMC Neuroscience, 2013, 14, 71.	0.8	8
284	Over-activation in bilateral superior temporal gyrus correlated with subsequent forgetting effect of Chinese words. Brain and Language, 2013, 126, 203-207.	0.8	4
285	Differential roles for medial prefrontal and medial temporal cortices in schema-dependent encoding: From congruent to incongruent. Neuropsychologia, 2013, 51, 2352-2359.	0.7	229
286	Learning and memory. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 116, 693-737.	1.0	52
287	Category-Specific Neural Oscillations Predict Recall Organization During Memory Search. Cerebral Cortex, 2013, 23, 2407-2422.	1.6	45
288	Available processing resources influence encoding-related brain activity before an event. Cortex, 2013, 49, 2239-2248.	1.1	15
289	The posterior medial cortex is involved in visual but not in verbal memory encoding processing: an intracerebral recording study. Journal of Neural Transmission, 2013, 120, 391-397.	1.4	12
290	Dorsal and ventral working memory-related brain areas support distinct processes in contextual cueing. NeuroImage, 2013, 67, 363-374.	2.1	34

# 291	ARTICLE Brain oscillatory subsequent memory effects differ in power and long-range synchronization between semantic and survival processing. NeuroImage, 2013, 79, 361-370.	lF 2.1	Citations 86
292	Synchronous and Asynchronous Theta and Gamma Activity during Episodic Memory Formation. Journal of Neuroscience, 2013, 33, 292-304.	1.7	246
293	Neural correlates of retrieval-based memory enhancement: An fMRI study of the testing effect. Neuropsychologia, 2013, 51, 2360-2370.	0.7	71
294	The generation effect: Activating broad neural circuits during memory encoding. Cortex, 2013, 49, 1901-1909.	1.1	28
295	Expected reward modulates encoding-related theta activity before an event. NeuroImage, 2013, 64, 68-74.	2.1	85
296	Successful memory encoding is associated with increased cross-frequency coupling between frontal theta and posterior gamma oscillations in human scalp-recorded EEG. NeuroImage, 2013, 66, 642-647.	2.1	198
297	Age-Related Task Sensitivity of Frontal EEG Entropy During Encoding Predicts Retrieval. Brain Topography, 2013, 26, 547-557.	0.8	10
298	Functional and structural differences in the hippocampus associated with memory deficits in adult survivors of acute lymphoblastic leukemia. Pediatric Blood and Cancer, 2013, 60, 293-300.	0.8	49
299	Insular and hippocampal contributions to remembering people with an impression of bad personality. Social Cognitive and Affective Neuroscience, 2013, 8, 515-522.	1.5	24
300	Mechanisms for widespread hippocampal involvement in cognition Journal of Experimental Psychology: General, 2013, 142, 1159-1170.	1.5	160
301	Temporally specific divided attention tasks in young adults reveal the temporal dynamics of episodic encoding failures in elderly adults Psychology and Aging, 2013, 28, 443-456.	1.4	10
302	Pupil size signals novelty and predicts later retrieval success for declarative memories of natural scenes. Journal of Vision, 2013, 13, 11-11.	0.1	84
303	Awake reactivation predicts memory in humans. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 21159-21164.	3.3	181
304	Developmental changes in memory encoding: insights from eventâ€related potentials. Developmental Science, 2013, 16, 599-609.	1.3	12
305	The component structure of <scp>ERP</scp> subsequent memory effects in the <scp>V</scp> on <scp>R</scp> estorff paradigm and the word frequency effect in recall. Psychophysiology, 2013, 50, 1079-1093.	1.2	24
306	Clobal Similarity and Pattern Separation in the Human Medial Temporal Lobe Predict Subsequent Memory. Journal of Neuroscience, 2013, 33, 5466-5474.	1.7	182
307	Age-Related Decline in Working Memory and Episodic Memory. , 2013, , .		6
308	Consolidation Differentially Modulates Schema Effects on Memory for Items and Associations. PLoS ONE, 2013, 8, e56155.	1.1	41

#	Article	IF	CITATIONS
309	The Dorsolateral Prefrontal Cortex Plays a Role in Self-Initiated Elaborative Cognitive Processing during Episodic Memory Encoding: rTMS Evidence. PLoS ONE, 2013, 8, e73789.	1.1	25
310	In sync: gamma oscillations and emotional memory. Frontiers in Behavioral Neuroscience, 2013, 7, 170.	1.0	65
311	Concealed semantic and episodic autobiographical memory electrified. Frontiers in Human Neuroscience, 2012, 6, 354.	1.0	10
312	Comparison of the neural correlates of encoding item-item and item-context associations. Frontiers in Human Neuroscience, 2013, 7, 436.	1.0	18
313	Memory for fearful faces across development: specialization of amygdala nuclei and medial temporal lobe structures. Frontiers in Human Neuroscience, 2013, 7, 901.	1.0	7
315	Functional neuroimaging: sedating medication effects. , 0, , 396-405.		0
316	Brain regions supporting verbal memory improvement in healthy older subjects. Arquivos De Neuro-Psiquiatria, 2014, 72, 663-670.	0.3	15
317	Genetic variation of the RASGRF1 regulatory region affects human hippocampus-dependent memory. Frontiers in Human Neuroscience, 2014, 8, 260.	1.0	22
318	Abnormal development of sensory-motor, visual temporal and parahippocampal cortex in children with learning disabilities and borderline intellectual functioning. Frontiers in Human Neuroscience, 2014, 8, 806.	1.0	31
319	Power Shifts Track Serial Position and Modulate Encoding in Human Episodic Memory. Cerebral Cortex, 2014, 24, 403-413.	1.6	49
320	Effects of Age on Negative Subsequent Memory Effects Associated with the Encoding of Item and Item-Context Information. Cerebral Cortex, 2014, 24, 3322-3333.	1.6	43
321	What Makes Deeply Encoded Items Memorable? Insights into the Levels of Processing Framework from Neuroimaging and Neuromodulation. Frontiers in Psychiatry, 2014, 5, 61.	1.3	14
322	Active retrieval facilitates across-episode binding by modulating the content of memory. Neuropsychologia, 2014, 63, 154-164.	0.7	19
323	Is the Emotional Memory Effect Sensitive to Encoding Instructions and the Passage of Time?. American Journal of Psychology, 2014, 127, 63-73.	0.5	1
324	The neural fate of neutral information in emotionâ€enhanced memory. Psychophysiology, 2014, 51, 673-684.	1.2	35
325	The relationship between taskâ€related and subsequent memory effects. Human Brain Mapping, 2014, 35, 3687-3700.	1.9	19
326	Prestimulus theta in the human hippocampus predicts subsequent recognition but not recall. Hippocampus, 2014, 24, 1562-1569.	0.9	41
327	Subsequent memory effects in schizophrenia. Psychiatry Research - Neuroimaging, 2014, 224, 211-217.	0.9	3

#	Article	IF	CITATIONS
328	Remembering with Gains and Losses: Effects of Monetary Reward and Punishment on Successful Encoding Activation of Source Memories. Cerebral Cortex, 2014, 24, 1319-1331.	1.6	71
329	First steps in using machine learning on fMRI data to predict intrusive memories of traumatic film footage. Behaviour Research and Therapy, 2014, 62, 37-46.	1.6	28
330	Electrophysiological Correlates of Voice Learning and Recognition. Journal of Neuroscience, 2014, 34, 10821-10831.	1.7	32
331	Shifting Gears in Hippocampus: Temporal Dissociation between Familiarity and Novelty Signatures in a Single Event. Journal of Neuroscience, 2014, 34, 12973-12981.	1.7	46
332	Using single-trial EEG to predict and analyze subsequent memory. NeuroImage, 2014, 84, 712-723.	2.1	68
333	Testing alters brain activity during subsequent restudy: Evidence for test-potentiated encoding. Trends in Neuroscience and Education, 2014, 3, 69-80.	1.5	18
334	Entrainment of Prefrontal Beta Oscillations Induces an Endogenous Echo and Impairs Memory Formation. Current Biology, 2014, 24, 904-909.	1.8	172
335	Encoding-related EEG oscillations during memory formation are modulated by mood state. Social Cognitive and Affective Neuroscience, 2014, 9, 1934-1941.	1.5	10
336	Impaired Prefrontal Sleep Spindle Regulation of Hippocampal-Dependent Learning in Older Adults. Cerebral Cortex, 2014, 24, 3301-3309.	1.6	117
337	Human intracranial high-frequency activity maps episodic memory formation in space and time. NeuroImage, 2014, 85, 834-843.	2.1	129
338	Cortical Reinstatement Mediates the Relationship Between Content-Specific Encoding Activity and Subsequent Recollection Decisions. Cerebral Cortex, 2014, 24, 3350-3364.	1.6	140
339	Episodic Memory Encoding Interferes with Reward Learning and Decreases Striatal Prediction Errors. Journal of Neuroscience, 2014, 34, 14901-14912.	1.7	109
340	Remembering the Past. Current Directions in Psychological Science, 2014, 23, 257-263.	2.8	30
341	States of Curiosity Modulate Hippocampus-Dependent Learning via the Dopaminergic Circuit. Neuron, 2014, 84, 486-496.	3.8	411
342	Is what goes in what comes out? Encoding and retrieval event-related potentials together determine memory outcome. Experimental Brain Research, 2014, 232, 3175-3190.	0.7	13
343	Neural processes during encoding support durable memory. NeuroImage, 2014, 88, 1-9.	2.1	12
344	Frontal midline theta connectivity is related to efficiency of WM maintenance and is affected by aging. Neurobiology of Learning and Memory, 2014, 114, 58-69.	1.0	55
345	Neural mechanisms of motivated forgetting. Trends in Cognitive Sciences, 2014, 18, 279-292.	4.0	428

		CITATION REPORT		
#	Article		IF	CITATIONS
346	Subsequent memory effect in intracranial and scalp EEG. NeuroImage, 2014, 84, 488-4	194.	2.1	156
347	Competitive mechanisms in sentence processing: Common and distinct production an comprehension networks linked to the prefrontal cortex. NeuroImage, 2014, 84, 354-3	d reading 866.	2.1	28
348	Immediate emotion-enhanced memory dependent on arousal and valence: The role of controlled processing. Acta Psychologica, 2014, 150, 153-160.	automatic and	0.7	29
349	The effects of lateral prefrontal transcranial magnetic stimulation on item memory enc Neuropsychologia, 2014, 53, 197-202.	oding.	0.7	43
350	How brain oscillations form memories — A processing based perspective on oscillato memory effects. NeuroImage, 2014, 85, 648-655.	ry subsequent	2.1	202
351	A Neurocognitive Approach to Metacognitive Monitoring and Control. , 0, , .			10
352	Psychophysiological evidence for the role of emotion in adaptive memory Journal of E Psychology: General, 2015, 144, 925-933.	xperimental	1.5	24
353	The effects of study task on prestimulus subsequent memory effects in the hippocamp 2015, 25, 1217-1223.	ous. Hippocampus,	0.9	16
354	On the roles of distinctiveness and semantic expectancies in episodic encoding of emo Psychophysiology, 2015, 52, 1599-1609.	otional words.	1.2	25
355	The beneficial effect of testing: an event-related potential study. Frontiers in Behaviora Neuroscience, 2015, 9, 248.	I	1.0	17
356	Incidental Memory Encoding Assessed with Signal Detection Theory and Functional Ma Resonance Imaging (fMRI). Frontiers in Behavioral Neuroscience, 2015, 9, 305.	agnetic	1.0	7
357	Dissociable Effects of Valence and Arousal on Different Subtypes of Old/New Effect: Ev Event-Related Potentials. Frontiers in Human Neuroscience, 2015, 9, 650.	idence from	1.0	15
358	EEG oscillations during sleep and dream recall: state- or trait-like individual differences Psychology, 2015, 6, 605.	?. Frontiers in	1.1	34
359	Processing fluency hinders subsequent recollection: an electrophysiological study. From Psychology, 2015, 6, 863.	ntiers in	1.1	11
360	Mental Imagery and Post-Traumatic Stress Disorder: A Neuroimaging and Experimenta Psychopathology Approach to Intrusive Memories of Trauma. Frontiers in Psychiatry, 2		1.3	33
361	Noninvasive Functional and Anatomical Imaging of the Human Medial Temporal Lobe. Harbor Perspectives in Biology, 2015, 7, a021840.	Cold Spring	2.3	9
362	Brain computer interface to enhance episodic memory in human participants. Frontiers Neuroscience, 2014, 8, 1055.	s in Human	1.0	29
363	Effective Connectivity between Hippocampus and Ventromedial Prefrontal Cortex Con Preferential Choices from Memory. Neuron, 2015, 86, 1078-1090.	trols	3.8	121

#	Article	IF	CITATIONS
364	Sensitivity of negative subsequent memory and task-negative effects to age and associative memory performance. Brain Research, 2015, 1612, 16-29.	1.1	42
365	Predicting and Improving Recognition Memory Using Multiple Electrophysiological Signals in Real Time. Psychological Science, 2015, 26, 1026-1037.	1.8	24
366	Oscillatory Theta Activity during Memory Formation and Its Impact on Overnight Consolidation: A Missing Link?. Journal of Cognitive Neuroscience, 2015, 27, 1648-1658.	1.1	27
367	Neural Conflict-Control Mechanisms Improve Memory for Target Stimuli. Cerebral Cortex, 2015, 25, 833-843.	1.6	69
369	The effects of negative emotion on encoding-related neural activity predicting item and source recognition. Neuropsychologia, 2015, 73, 48-59.	0.7	27
370	Decreases in theta and increases in high frequency activity underlie associative memory encoding. NeuroImage, 2015, 114, 257-263.	2.1	114
371	Contributions of attention and elaboration to associative encoding in young and older adults. Neuropsychologia, 2015, 75, 252-264.	0.7	39
372	Successful memory formation is driven by contextual encoding in the core memory network. NeuroImage, 2015, 119, 332-337.	2.1	58
374	The gamma band effect for episodic memory encoding is absent in epileptogenic hippocampi. Clinical Neurophysiology, 2015, 126, 866-872.	0.7	21
375	Task-evoked fMRI changes in attention networks are associated with preclinical Alzheimer's disease biomarkers. Neurobiology of Aging, 2015, 36, 1771-1779.	1.5	36
376	Computational dissection of human episodic memory reveals mental process-specific genetic profiles. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4939-48.	3.3	16
377	Enlivening The Machinist Perspective: Humanising The Information Processing Theory With Social And Cultural Influences. Procedia, Social and Behavioral Sciences, 2015, 197, 2331-2338.	0.5	9
378	Effect of emotional valence on retrieval-related recapitulation of encoding activity in the ventral visual stream. Neuropsychologia, 2015, 78, 221-230.	0.7	45
379	Inhibition-Induced Forgetting Results from Resource Competition between Response Inhibition and Memory Encoding Processes. Journal of Neuroscience, 2015, 35, 11936-11945.	1.7	36
380	Episodic memory in normal aging and Alzheimer disease: Insights from imaging and behavioral studies. Ageing Research Reviews, 2015, 24, 232-262.	5.0	255
381	NEREC, an effective brain mapping protocol for combined language and long-term memory functions. Epilepsy and Behavior, 2015, 53, 140-148.	0.9	8
382	Age differences in self-referencing: Evidence for common and distinct encoding strategies. Brain Research, 2015, 1612, 118-127.	1.1	35
383	Intracranial recordings and human memory. Current Opinion in Neurobiology, 2015, 31, 18-25.	2.0	69

#	Article	IF	CITATIONS
384	Young and Middle-Aged Schoolteachers Differ in the Neural Correlates of Memory Encoding and Cognitive Fatigue: A Functional MRI Study. Frontiers in Human Neuroscience, 2016, 10, 148.	1.0	9
385	What Is the Effect of Basic Emotions on Directed Forgetting? Investigating the Role of Basic Emotions in Memory. Frontiers in Human Neuroscience, 2016, 10, 378.	1.0	25
386	Interactions between Memory and New Learning: Insights from fMRI Multivoxel Pattern Analysis. Frontiers in Systems Neuroscience, 2016, 10, 46.	1.2	21
387	Rumination and Rebound from Failure as a Function of Gender and Time on Task. Brain Sciences, 2016, 6, 7.	1.1	13
388	Interâ€hemispheric connectivity in the fusiform gyrus supports memory consolidation for faces. European Journal of Neuroscience, 2016, 43, 1137-1145.	1.2	9
389	Organic Biomimicking Memristor for Information Storage and Processing Applications. Advanced Electronic Materials, 2016, 2, 1500298.	2.6	181
390	Aberrant prefrontal beta oscillations predict episodic memory encoding deficits in schizophrenia. NeuroImage: Clinical, 2016, 12, 499-505.	1.4	13
391	Masked repetition priming hinders subsequent recollection but not familiarity: A behavioral and event-related potential study. Cognitive, Affective and Behavioral Neuroscience, 2016, 16, 789-801.	1.0	5
392	Intrusive memories to traumatic footage: the neural basis of their encoding and involuntary recall. Psychological Medicine, 2016, 46, 505-518.	2.7	43
393	Lower Parietal Encoding Activation Is Associated with Sharper Information and Better Memory. Cerebral Cortex, 2017, 27, bhw097.	1.6	32
394	EEG-based decoding of declarative memory formation. , 2016, , .		3
395	Multiple "buy buttons―in the brain: Forecasting chocolate sales at point-of-sale based on functional brain activation using fMRI. NeuroImage, 2016, 136, 122-128.	2.1	76
396	Knowledge Acquisition during Exam Preparation Improves Memory and Modulates Memory Formation. Journal of Neuroscience, 2016, 36, 8103-8111.	1.7	40
397	Distinct Neurophysiological Mechanisms Support the Online Formation of Individual and Across-Episode Memory Representations. Cerebral Cortex, 2016, 27, 4314-4325.	1.6	4
398	The Learning Hippocampus: Education and Experienceâ€Dependent Plasticity. Mind, Brain, and Education, 2016, 10, 171-183.	0.9	16
399	Goal-directed mechanisms that constrain retrieval predict subsequent memory for new "foil― information. Neuropsychologia, 2016, 89, 356-363.	0.7	9
400	Cognitive Training. , 2016, , .		39
401	Episodic Memory. , 2016, , 69-80.		3

#	Article	IF	CITATIONS
402	The relationships between age, associative memory performance, and the neural correlates of successful associative memory encoding. Neurobiology of Aging, 2016, 42, 163-176.	1.5	61
403	Spurious correlations in simultaneous EEG-fMRI driven by in-scanner movement. NeuroImage, 2016, 133, 354-366.	2.1	32
404	Competing against a familiar friend: Interactive mechanism of the temporo-parietal junction with the reward-related regions during episodic encoding. NeuroImage, 2016, 130, 261-272.	2.1	13
405	The influence of self-awareness on emotional memory formation: an fMRI study. Social Cognitive and Affective Neuroscience, 2016, 11, 580-592.	1.5	14
406	An organic terpyridyl-iron polymer based memristor for synaptic plasticity and learning behavior simulation. RSC Advances, 2016, 6, 25179-25184.	1.7	48
407	Neural correlates of binding lyrics and melodies for the encoding of new songs. NeuroImage, 2016, 127, 333-345.	2.1	12
408	Investigating the Effects of Memorable Experiences: an Extended Model of Script Theory. Journal of Travel and Tourism Marketing, 2016, 33, 362-379.	3.1	55
409	Biased Competition during Long-term Memory Formation. Journal of Cognitive Neuroscience, 2016, 28, 187-197.	1.1	10
410	Effects of aging on value-directed modulation of semantic network activity during verbal learning. NeuroImage, 2016, 125, 1046-1062.	2.1	56
411	Slow-Theta-to-Gamma Phase–Amplitude Coupling in Human Hippocampus Supports the Formation of New Episodic Memories. Cerebral Cortex, 2016, 26, 268-278.	1.6	163
412	The Influence of Pre-stimulus EEG Activity on Reaction Time During a Verbal Sternberg Task is Related to Musical Expertise. Brain Topography, 2016, 29, 67-81.	0.8	7
413	Brain Volume, Connectivity, and Neuropsychological Performance in Mild Traumatic Brain Injury: The Impact of Post-Traumatic Stress Disorder Symptoms. Journal of Neurotrauma, 2017, 34, 16-22.	1.7	30
414	Variability in behavior that cognitive models do not explain can be linked to neuroimaging data. Journal of Mathematical Psychology, 2017, 76, 104-116.	1.0	13
415	Prior knowledge is essential for the beneficial effect of targeted memory reactivation during sleep. Scientific Reports, 2017, 7, 39763.	1.6	42
416	Targeted Reactivation during Sleep Differentially Affects Negative Memories in Socially Anxious and Healthy Children and Adolescents. Journal of Neuroscience, 2017, 37, 2425-2434.	1.7	31
417	Semantic Congruence Accelerates the Onset of the Neural Signals of Successful Memory Encoding. Journal of Neuroscience, 2017, 37, 291-301.	1.7	3
418	Dynamic changes in prefrontal cortex involvement during verbal episodic memory formation. Biological Psychology, 2017, 125, 36-44.	1.1	4
419	Flexible conceptual combination: Electrophysiological correlates and consequences for associative memory. Psychophysiology, 2017, 54, 833-847.	1.2	8

#	Article	IF	CITATIONS
421	Direct Brain Stimulation Modulates Encoding States and Memory Performance in Humans. Current Biology, 2017, 27, 1251-1258.	1.8	207
422	Semantic Congruence Accelerates the Onset of the Neural Signals of Successful Memory Encoding. Journal of Neuroscience, 2017, 37, 291-301.	1.7	36
423	Co-creating animal-based tourist experiences: Attention, involvement and memorability. Tourism Management, 2017, 63, 100-114.	5.8	107
424	Human Memory: Brain-State-Dependent Effects ofÂStimulation. Current Biology, 2017, 27, R385-R387.	1.8	9
425	Remembering my friends: Medial prefrontal and hippocampal contributions to the selfâ€reference effect on face memories in a social context. Human Brain Mapping, 2017, 38, 4256-4269.	1.9	17
426	Similar patterns of neural activity predict memory function during encoding and retrieval. NeuroImage, 2017, 155, 60-71.	2.1	52
427	Differences in Behavior and Brain Activity during Hypothetical and Real Choices. Trends in Cognitive Sciences, 2017, 21, 46-56.	4.0	103
428	The individual contribution of DSM 5 symptom clusters of PTSD, life events, and childhood adversity to frontal oscillatory brain asymmetry in a large sample of active combatants. Biological Psychology, 2017, 129, 305-313.	1.1	12
429	Neural Mechanisms of Language. Innovations in Cognitive Neuroscience, 2017, , .	0.3	5
430	Neural correlates of visual memory in patients with diffuse axonal injury. Brain Injury, 2017, 31, 1513-1520.	0.6	9
431	ERPs and oscillations during encoding predict retrieval of digit memory in superior mnemonists. Brain and Cognition, 2017, 117, 17-25.	0.8	4
432	Widespread theta synchrony and high-frequency desynchronization underlies enhanced cognition. Nature Communications, 2017, 8, 1704.	5.8	151
433	Brain Oscillations, Semantic Processing, and Episodic Memory. Innovations in Cognitive Neuroscience, 2017, , 63-80.	0.3	3
434	Interictal epileptiform activity outside the seizure onset zone impacts cognition. Brain, 2017, 140, 2157-2168.	3.7	106
435	It doesn't matter what you say: FMRI correlates ofÂvoice learning and recognition independent ofÂspeech content. Cortex, 2017, 94, 100-112.	1.1	30
436	Differential Effects of Encoding Instructions on Brain Activity Patterns of Item and Associative Memory. Journal of Cognitive Neuroscience, 2017, 29, 545-559.	1.1	16
437	Hippocampal Structure Predicts Statistical Learning and Associative Inference Abilities during Development. Journal of Cognitive Neuroscience, 2017, 29, 37-51.	1.1	113
438	Evidence for a differential contribution of early perceptual and late cognitive processes during encoding to episodic memory impairment in schizophrenia. World Journal of Biological Psychiatry, 2017, 18, 369-381.	1.3	10

#	Article	IF	CITATIONS
439	Lateral and medial prefrontal contributions to emotion generation by semantic elaboration during episodic encoding. Cognitive, Affective and Behavioral Neuroscience, 2017, 17, 143-157.	1.0	9
440	Spontaneous neural activity in the right superior temporal gyrus and left middle temporal gyrus is associated with insight level in obsessive-compulsive disorder. Journal of Affective Disorders, 2017, 207, 203-211.	2.0	54
441	Current Issues and Emerging Directions in the Impact of Emotion on Memory: A Review of Evidence from Brain Imaging Investigations. , 2017, , 57-101.		9
443	Achievement Goal Task Framing and Fit With Personal Goals Modulate the Neurocognitive Response to Corrective Feedback. AERA Open, 2017, 3, 233285841772087.	1.3	4
444	Emerging Directions in Emotional Episodic Memory. Frontiers in Psychology, 2017, 8, 1867.	1.1	85
445	Electrophysiological Anomalies in Face–Name Memory Encoding in Young Binge Drinkers. Frontiers in Psychiatry, 2017, 8, 216.	1.3	11
446	ERP Subsequent Memory Effects Differ between Inter-Item and Unitization Encoding Tasks. Frontiers in Human Neuroscience, 2017, 11, 30.	1.0	31
447	Passive Double-Sensory Evoked Coherence Correlates with Long-Term Memory Capacity. Frontiers in Human Neuroscience, 2017, 11, 598.	1.0	6
448	Principled Approaches to Direct Brain Stimulation for Cognitive Enhancement. Frontiers in Neuroscience, 2017, 11, 650.	1.4	16
449	Prefrontal Cortex and Human Memory: An Integrated Account From the Cognitive Neuroscience of Working and Long-Term Memory â ⁻ †. , 2017, , 275-293.		0
450	Exercise Promotes Neuroplasticity in Both Healthy and Depressed Brains: An fMRI Pilot Study. Neural Plasticity, 2017, 2017, 1-13.	1.0	28
451	Neuronal oscillations reveal the processes underlying intentional compared to incidental learning in children and young adults. PLoS ONE, 2017, 12, e0182540.	1.1	13
452	Neural Substrates of Remembering: Event-Related Potential Studies â~†. , 2017, , 81-98.		10
453	Imaging the Networks of Encoding, Consolidation, and Retrieval. , 2017, , .		0
454	Working memory alpha–beta band oscillatory signatures in adolescents and young adults. European Journal of Neuroscience, 2018, 48, 2527-2536.	1.2	14
458	Alignment of alpha-band desynchronization with syntactic structure predicts successful sentence comprehension. NeuroImage, 2018, 175, 286-296.	2.1	26
460	Brain Responses at Encoding Predict Limited Verbal Memory Retrieval by Persons with Schizophrenia. Archives of Clinical Neuropsychology, 2018, 33, 477-490.	0.3	4
461	Forgetting emotional material in working memory. Social Cognitive and Affective Neuroscience, 2018, 13, 331-340.	1.5	2

#	Article	IF	CITATIONS
462	Auditory stimulation of sleep slow oscillations modulates subsequent memory encoding through altered hippocampal function. Sleep, 2018, 41, .	0.6	57
463	Neural mechanisms underlying subsequent memory for personal beliefs:An fMRI study. Cognitive, Affective and Behavioral Neuroscience, 2018, 18, 216-231.	1.0	50
464	Sleep, Declarative Memory, and PTSD: Current Status and Future Directions. , 2018, , 265-272.		0
465	Multiple memory systems, multiple time points: how science can inform treatment to control the expression of unwanted emotional memories. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170209.	1.8	63
466	Remember to blink: Reduced attentional blink following instructions to forget. Attention, Perception, and Psychophysics, 2018, 80, 1489-1503.	0.7	5
467	Decoding of human memory formation with EEG signals using convolutional networks. , 2018, , .		2
468	Age-related Differences in Prestimulus Subsequent Memory Effects Assessed with Event-related Potentials. Journal of Cognitive Neuroscience, 2018, 30, 829-850.	1.1	19
469	Evidence that disrupted orienting to evaluative social feedback undermines error correction in rejection sensitive women. Social Neuroscience, 2018, 13, 451-470.	0.7	7
470	A review of rapid serial visual presentation-based brain–computer interfaces. Journal of Neural Engineering, 2018, 15, 021001.	1.8	81
471	Long-term effects of prenatal drug exposure on the neural correlates of memory at encoding and retrieval. Neurotoxicology and Teratology, 2018, 65, 70-77.	1.2	6
472	Memory Contextualization: The Role of Prefrontal Cortex in Functional Integration across Item and Context Representational Regions. Journal of Cognitive Neuroscience, 2018, 30, 579-593.	1.1	18
473	Local context influences memory for emotional stimuli but not electrophysiological markers of emotionâ€dependent attention. Psychophysiology, 2018, 55, e13014.	1.2	15
474	Prefrontal Cortex Contributions to the Development of Memory Formation. Cerebral Cortex, 2018, 28, 3295-3308.	1.6	40
475	Theta-gamma coupling binds visual perceptual features in an associative memory task. Scientific Reports, 2018, 8, 17688.	1.6	42
476	Foggy windows: Pupillary responses during task preparation. Quarterly Journal of Experimental Psychology, 2018, 71, 2235-2248.	0.6	6
477	Predicting What You Remember from Brain Activity: EEG-Based Decoding of Long-Term Memory Formation. Lecture Notes in Computer Science, 2018, , 63-73.	1.0	0
478	Multivoxel pattern similarity suggests the integration of temporal duration in hippocampal event sequence representations. NeuroImage, 2018, 178, 136-146.	2.1	32
479	Large-scale network integration in the human brain tracks temporal fluctuations in memory encoding performance. ELife, 2018, 7, .	2.8	39

		CITATION REP	PORT	
#	Article		IF	CITATIONS
480	Symbiotic Interaction. Lecture Notes in Computer Science, 2018, , .		1.0	2
481	Grounding the neurobiology of language in first principles: The necessity of non-language explanations for language comprehension. Cognition, 2018, 180, 135-157.	ge-centric	1.1	115
482	Expectation affects learning and modulates memory experience at retrieval. Cognition, 2 123-134.	2018, 180,	1.1	31
483	Correlation of BOLD Signal with Linear and Nonlinear Patterns of EEG in Resting State E fMRI. Frontiers in Human Neuroscience, 2017, 11, 654.	EG-Informed	1.0	30
484	Electrophysiological reward signals predict episodic memory for immediate and delayed feedback events. Brain Research, 2018, 1701, 64-74.	positive	1.1	7
485	Replay of Stimulus-specific Temporal Patterns during Associative Memory Formation. Job Cognitive Neuroscience, 2018, 30, 1577-1589.	urnal of	1.1	17
486	GedÃ e htnis. , 2018, , .			5
487	Selective and coherent activity increases due to stimulation indicate functional distincti episodic memory networks. Science Advances, 2018, 4, eaar2768.	ons between	4.7	51
488	Brain Password. , 2018, , .			33
489	Preparation breeds success: Brain activity predicts remembering. Cortex, 2018, 106, 1-1	1.	1.1	9
490	Reading memory formation from the eyes. European Journal of Neuroscience, 2018, 47,	1525-1533.	1.2	19
491	Contributions of the ventral parietal cortex to declarative memory. Handbook of Clinica Edited By P J Vinken and G W Bruyn, 2018, 151, 525-553.	Neurology /	1.0	16
492	Tip-of-the-tongue states predict enhanced feedback processing and subsequent memor Consciousness and Cognition, 2018, 63, 206-217.	у.	0.8	16
493	Stimulation of the Posterior Cingulate Cortex Impairs Episodic Memory Encoding. Journa Neuroscience, 2019, 39, 7173-7182.	al of	1.7	59
494	Flexible network community organization during the encoding and retrieval of spatioter episodic memories. Network Neuroscience, 2019, 3, 1070-1093.	nporal	1.4	17
495	Structure-function associations of successful associative encoding. NeuroImage, 2019,	201, 116020.	2.1	8
496	Selfâ€initiated learning reveals memory performance and electrophysiological difference younger, older and older adults with relative memory impairment. European Journal of N 2019, 50, 3855-3872.		1.2	3
497	Spectral fingerprints or spectral tilt? Evidence for distinct oscillatory signatures of memor formation. PLoS Biology, 2019, 17, e3000403.	bry	2.6	52

#	Article	IF	CITATIONS
498	Neural Pattern Similarity Differentially Relates to Memory Performance in Younger and Older Adults. Journal of Neuroscience, 2019, 39, 8089-8099.	1.7	29
499	Age Differences in Encoding-Related Alpha Power Reflect Sentence Comprehension Difficulties. Frontiers in Aging Neuroscience, 2019, 11, 183.	1.7	6
500	Plugging in to Human Memory: Advantages, Challenges, and Insights from Human Single-Neuron Recordings. Cell, 2019, 179, 1015-1032.	13.5	42
501	Photonic Memristor for Future Computing: A Perspective. Advanced Optical Materials, 2019, 7, 1900766.	3.6	130
502	Reducing negative affect with anodal transcranial direct current stimulation increases memory performance in young—but not in elderly—individuals. Brain Structure and Function, 2019, 224, 2973-2982.	1.2	13
503	Sex, Age, and Handedness Modulate the Neural Correlates of Active Learning. Frontiers in Neuroscience, 2019, 13, 961.	1.4	9
505	Counting Occurrences: How Frequency Made Its Way into the Study of Language. , 2019, , 15-39.		0
506	Measuring Exposure: Frequency as a Linguistic Game Changer. , 2019, , 40-71.		1
507	More than Frequencies: Towards a Probabilistic View on Language. , 2019, , 72-96.		0
508	Committing Experiences to Memory. , 2019, , 99-130.		0
509	Entrenching Linguistic Structures. , 2019, , 131-158.		0
510	The Brain's Attention-Orienting Mechanisms. , 2019, , 161-181.		0
511	Salience: Capturing Attention in and through Language. , 2019, , 182-202.		0
512	Predicting: Using Past Experience to Guide Future Action. , 2019, , 205-232.		1
513	Learning: Navigating Frequency, Recency, Context and Contingency. , 2019, , 233-259.		0
514	By Way of Conclusion. , 2019, , 260-275.		0
517	The lateral prefrontal cortex and human long-term memory. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 163, 221-235.	1.0	4
518	Increasing Dopamine and Acetylcholine Levels during Encoding Does Not Modulate Remember or Know Responses during Memory Retrieval in Healthy Aging—a Randomized Controlled Feasibility Study. Journal of Cognitive Enhancement: Towards the Integration of Theory and Practice, 2019, 3, 328-337.	0.8	1

#	Article	IF	CITATIONS
519	Out and about: Subsequent memory effect captured in a natural outdoor environment with smartphone EEG. Psychophysiology, 2019, 56, e13331.	1.2	36
520	Electrophysiological and behavioral evidence for attentional up-regulation, but not down-regulation, when encoding pictures into long-term memory. Memory and Cognition, 2019, 47, 351-364.	0.9	11
521	Voices to remember: Comparing neural signatures of intentional and non-intentional voice learning and recognition. Brain Research, 2019, 1711, 214-225.	1.1	5
522	Rhythmic Temporal Structure at Encoding Enhances Recognition Memory. Journal of Cognitive Neuroscience, 2019, 31, 1549-1562.	1.1	16
523	The congruent, the incongruent, and the unexpected: Event-related potentials unveil the processes involved in schematic encoding. Neuropsychologia, 2019, 131, 285-293.	0.7	22
524	Effects of distinctiveness and memory on lateralized and unlateralized brain-electrical activity during visual word encoding. Brain and Cognition, 2019, 134, 9-20.	0.8	3
525	Benefit of wakeful resting on gist and peripheral memory retrieval in healthy younger and older adults. Neuroscience Letters, 2019, 705, 27-32.	1.0	10
526	Effects of negative emotion on neural correlates of item and source memory during encoding and retrieval. Brain Research, 2019, 1718, 32-45.	1.1	20
527	Elaboration Benefits Source Memory Encoding Through Centrality Change. Scientific Reports, 2019, 9, 3704.	1.6	5
528	Pre-retrieval event-related potentials predict source memory during task switching. NeuroImage, 2019, 194, 174-181.	2.1	10
529	Dynamic Theta Networks in the Human Medial Temporal Lobe Support Episodic Memory. Current Biology, 2019, 29, 1100-1111.e4.	1.8	85
530	Post-Encoding Amygdala-Visuosensory Coupling Is Associated with Negative Memory Bias in Healthy Young Adults. Journal of Neuroscience, 2019, 39, 3130-3143.	1.7	34
531	Grappling With Implicit Social Bias: A Perspective From Memory Research. Neuroscience, 2019, 406, 684-697.	1.1	4
532	Prestimulus and poststimulus oscillatory activity predicts successful episodic encoding for both young and older adults. Neurobiology of Aging, 2019, 77, 1-12.	1.5	23
533	Electrophysiological evidence of encoding in self-referential effect. NeuroReport, 2019, 30, 901-907.	0.6	4
534	Decision confidence: EEG correlates of confidence in different phases of an old/new recognition task. Brain-Computer Interfaces, 2019, 6, 162-177.	0.9	6
535	How the size of the to-be-learned material influences the encoding and later retrieval of associative memories: A pupillometric assessment. PLoS ONE, 2019, 14, e0226684.	1.1	5
536	Working memory predicts subsequent episodic memory decline during healthy cognitive aging: evidence from a cross-lagged panel design. Aging, Neuropsychology, and Cognition, 2019, 26, 711-730.	0.7	10

#	Article	IF	CITATIONS
537	Effects of acute psychosocial stress on the neural correlates of episodic encoding: Item versus associative memory. Neurobiology of Learning and Memory, 2019, 157, 128-138.	1.0	25
538	Neural Network Connectivity During Post-encoding Rest: Linking Episodic Memory Encoding and Retrieval. Frontiers in Human Neuroscience, 2018, 12, 528.	1.0	5
539	Wakeful resting and memory retention: a study with healthy older and younger adults. Cognitive Processing, 2019, 20, 125-131.	0.7	14
540	The Role of Meaning in Visual Memory: Face-Selective Brain Activity Predicts Memory for Ambiguous Face Stimuli. Journal of Neuroscience, 2019, 39, 1100-1108.	1.7	17
541	Suppress to feel and remember less: Neural correlates of explicit and implicit emotional suppression on perception and memory. Neuropsychologia, 2020, 145, 106683.	0.7	13
542	Early signal from the hippocampus for memory encoding. Hippocampus, 2020, 30, 114-120.	0.9	8
543	Exploring a Brain-Based Cancelable Biometrics for Smart Headwear: Concept, Implementation, and Evaluation. IEEE Transactions on Mobile Computing, 2020, 19, 2774-2792.	3.9	5
544	Beyond prospective memory retrieval: Encoding and remembering of intentions across the lifespan. International Journal of Psychophysiology, 2020, 147, 44-59.	0.5	6
545	The effect of conceptual priming on subsequent familiarity: Behavioral and electrophysiological evidence. Biological Psychology, 2020, 149, 107783.	1.1	2
546	The impact of focused attention on subsequent emotional recollection: A functional MRI investigation. Neuropsychologia, 2020, 138, 107338.	0.7	9
547	Feedback timing modulates interactions between feedback processing and memory encoding: Evidence from event-related potentials. Cognitive, Affective and Behavioral Neuroscience, 2020, 20, 250-264.	1.0	12
548	Comparison of fMRI correlates of successful episodic memory encoding in temporal lobe epilepsy patients and healthy controls. NeuroImage, 2020, 207, 116397.	2.1	20
549	Prediction of Memory Retrieval Performance Using Ear-EEG Signals. , 2020, 2020, 3363-3366.		3
550	Frontal ERP slow waves during memory encoding are associated with affective attitude formation. International Journal of Psychophysiology, 2020, 158, 389-399.	0.5	10
551	Attention control processes that prioritise task execution may come at the expense of incidental memory encoding. Brain and Cognition, 2020, 144, 105602.	0.8	8
552	Exploring emotional traces in families' recollection of experiences. Qualitative Market Research, 2020, 23, 21-45.	1.0	3
553	Epistemic curiosity and the region of proximal learning. Current Opinion in Behavioral Sciences, 2020, 35, 40-47.	2.0	33
554	Learning abilities. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 173, 241-254.	1.0	5

#	Article	IF	CITATIONS
555	EEG-Based Prediction of Successful Memory Formation During Vocabulary Learning. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 2377-2389.	2.7	4
556	Evidence for Immediate Enhancement of Hippocampal Memory Encoding by Network-Targeted Theta-Burst Stimulation during Concurrent fMRI. Journal of Neuroscience, 2020, 40, 7155-7168.	1.7	63
557	Single-Trial EEG Connectivity of Default Mode Network Before and During Encoding Predicts Subsequent Memory Outcome. Frontiers in Systems Neuroscience, 2020, 14, 591675.	1.2	4
558	Using Posterior EEG Theta Band to Assess the Effects of Architectural Designs on Landmark Recognition in an Urban Setting. Frontiers in Human Neuroscience, 2020, 14, 584385.	1.0	16
559	Predicting memory from study-related brain activity. Journal of Neurophysiology, 2020, 124, 2060-2075.	0.9	8
560	How to optimize knowledge construction in the brain. Npj Science of Learning, 2020, 5, 5.	1.5	30
561	Spiking activity in the human hippocampus prior to encoding predicts subsequent memory. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13767-13770.	3.3	23
562	Understanding Image Memorability. Trends in Cognitive Sciences, 2020, 24, 557-568.	4.0	38
563	Investigating EEG theta and alpha oscillations as measures of value-directed strategic processing in cognitively normal younger and older adults. Behavioural Brain Research, 2020, 391, 112702.	1.2	7
564	Motor cortex activity during action observation predicts subsequent action imitation in human infants. NeuroImage, 2020, 218, 116958.	2.1	13
565	Neural correlates of successful emotional episodic encoding and retrieval: An SDM meta-analysis of neuroimaging studies. Neuropsychologia, 2020, 143, 107495.	0.7	31
566	The Effect of Semantic Similarity on Learning Ambiguous Words in a Second Language: An Event-Related Potential Study. Frontiers in Psychology, 2020, 11, 1633.	1.1	3
567	Memory in time: Neural tracking of low-frequency rhythm dynamically modulates memory formation. NeuroImage, 2020, 213, 116693.	2.1	18
568	Introduction to photo-electroactive nonvolatile memory. , 2020, , 1-12.		1
569	Survival processing modulates the neurocognitive mechanisms of episodic encoding. Cognitive, Affective and Behavioral Neuroscience, 2020, 20, 717-729.	1.0	8
570	Oscillatory Mechanisms of Successful Memory Formation in Younger and Older Adults Are Related to Structural Integrity. Cerebral Cortex, 2020, 30, 3744-3758.	1.6	17
571	Frontoparietal theta-gamma interactions track working memory enhancement with training and tDCS. NeuroImage, 2020, 211, 116615.	2.1	68
572	Picture-evoked changes in pupil size predict learning success in children. Journal of Experimental Child Psychology, 2020, 192, 104787.	0.7	8

#	Article	IF	CITATIONS
573	Neural fatigue influences memory encoding in the human hippocampus. Neuropsychologia, 2020, 143, 107471.	0.7	10
574	Conceptual Closure Elicited by Event Boundary Transitions Affects Commercial Communication Effectiveness. Frontiers in Neuroscience, 2020, 14, 292.	1.4	1
575	Episodic memory governs choices: An RNN-based reinforcement learning model for decision-making task. Neural Networks, 2021, 134, 1-10.	3.3	8
576	Linking the Rapid Cascade of Visuo-Attentional Processes to Successful Memory Encoding. Cerebral Cortex, 2021, 31, 1861-1872.	1.6	2
577	Effects of Age on Prestimulus Neural Activity Predictive of Successful Memory Encoding: An fMRI Study. Cerebral Cortex, 2021, 31, 917-932.	1.6	3
578	Electroencephalographic signatures of the binge drinking pattern during adolescence and young adulthood: A PRISMA-driven systematic review. NeuroImage: Clinical, 2021, 29, 102537.	1.4	21
580	Age moderation of the association between negative subsequent memory effects and episodic memory performance. Aging Brain, 2021, 1, 100021.	0.7	1
581	Optimistic amnesia: how online and offline processing shape belief updating and memory biases in immediate and long-term optimism biases. Social Cognitive and Affective Neuroscience, 2021, 16, 453-462.	1.5	6
582	Tracking Age Differences in Neural Distinctiveness across Representational Levels. Journal of Neuroscience, 2021, 41, 3499-3511.	1.7	20
583	Memory of my victory and your defeat: Contributions of reward- and memory-related regions to the encoding of winning events in competitions with others. Neuropsychologia, 2021, 152, 107733.	0.7	4
584	Subsequent memory effects on event-related potentials in associative fear learning. Social Cognitive and Affective Neuroscience, 2021, 16, 525-536.	1.5	8
586	Geometric models reveal behavioural and neural signatures of transforming experiences into memories. Nature Human Behaviour, 2021, 5, 905-919.	6.2	27
587	Volunteering at the Olympic and Youth Olympic Games: More Than a Distant Memory?. Journal of Global Sport Management, 0, , 1-25.	1.2	0
589	Genes that give our brains their rhythms. Nature Neuroscience, 2021, 24, 455-456.	7.1	0
590	Gaze-pattern similarity at encoding may interfere with future memory. Scientific Reports, 2021, 11, 7697.	1.6	1
591	The phase of Theta oscillations modulates successful memory formation at encoding. Neuropsychologia, 2021, 154, 107775.	0.7	9
592	Encoding-linked pupil response is modulated by expected and unexpected novelty: Implications for memory formation and neurotransmission. Neurobiology of Learning and Memory, 2021, 180, 107412.	1.0	10
594	Memory specificity is linked to repetition effects in event-related potentials across the lifespan. Developmental Cognitive Neuroscience, 2021, 48, 100926.	1.9	9

#	Article	IF	CITATIONS
595	Late frontal positivity effects in Self-referential Memory: Unique to the Self?. Social Neuroscience, 2021, 16, 406-422.	0.7	2
596	Distinct Neurophysiological Correlates of the fMRI BOLD Signal in the Hippocampus and Neocortex. Journal of Neuroscience, 2021, 41, 6343-6352.	1.7	13
598	Measurement of Cortical Atrophy and Its Correlation to Memory Impairment in Patients With Asymptomatic Carotid Artery Stenosis Based on VBM-DARTEL. Frontiers in Aging Neuroscience, 2021, 13, 620763.	1.7	6
599	The value of subsequent memory paradigms in uncovering neural mechanisms of early social learning. NeuroImage, 2021, 234, 117978.	2.1	2
600	Functional Connectivity during Encoding Predicts Individual Differences in Long-Term Memory. Journal of Cognitive Neuroscience, 2021, 33, 2279-2296.	1.1	3
601	Behavioural and neurophysiological signatures in the retrieval of individual memories of recent and remote real-life routine episodic events. Cortex, 2021, 141, 128-143.	1.1	2
603	Hippocampal–Cortical Encoding Activity Predicts the Precision of Episodic Memory. Journal of Cognitive Neuroscience, 2021, 33, 2328-2341.	1.1	12
605	Effects of age differences in memory formation on neural mechanisms of consolidation and retrieval. Seminars in Cell and Developmental Biology, 2021, 116, 135-145.	2.3	9
606	Riding the slow wave: Exploring the role of entrained low-frequency oscillations in memory formation. Neuropsychologia, 2021, 160, 107962.	0.7	4
607	Stimulation of the left dorsolateral prefrontal cortex with slow rTMS enhances verbal memory formation. PLoS Biology, 2021, 19, e3001363.	2.6	9
608	Separable neural mechanisms support intentional forgetting and thought substitution. Cortex, 2021, 142, 317-331.	1.1	3
610	A Role for Sleep in Artificial Cognition through Deferred Restructuring of Experience in Autonomous Machines. Lecture Notes in Computer Science, 2014, , 1-10.	1.0	2
613	Emotionin Episodic Memory. , 2013, , 465-488.		10
614	Neural Encoding Correlates of High and Low Verbal Memory Performance. Journal of Psychophysiology, 2006, 20, 68-78.	0.3	9
615	Neural activity reveals interactions between episodic and semantic memory systems during retrieval Journal of Experimental Psychology: General, 2019, 148, 1-12.	1.5	51
616	The spatial distribution of attention predicts familiarity strength during encoding and retrieval Journal of Experimental Psychology: General, 2020, 149, 2046-2062.	1.5	11
617	The Relationship Between Brain Activity, Cognitive Performance, and Aging. , 2004, , 132-154.		13
618	The striatum and beyond: contributions of the hippocampus to decision making. , 2011, , 281-310.		7

		CITATION REPORT	
#	Article	IF	Citations
626	Neocortical Connectivity during Episodic Memory Formation. PLoS Biology, 2006, 4, e128.	2.6	96
627	BAIAP2 Is Related to Emotional Modulation of Human Memory Strength. PLoS ONE, 2014, 9, e83	707. 1.1	19
628	ERP Correlates of Encoding Success and Encoding Selectivity in Attention Switching. PLoS ONE, 2 11, e0167396.	2016, 1.1	9
629	Remembered or Forgotten?—An EEG-Based Computational Prediction Approach. PLoS ONE, 201 e0167497.	16, 11, 1.1	37
630	Differential effects of ongoing EEG beta and theta power on memory formation. PLoS ONE, 2017, e0171913.	, 12, 1.1	49
631	Cognitive control, attention, and the other race effect in memory. PLoS ONE, 2017, 12, e017357	9. 1.1	43
632	Environmental rhythms orchestrate neural activity at multiple stages of processing during memor encoding: Evidence from event-related potentials. PLoS ONE, 2020, 15, e0234668.	у 1.1	4
633	Memorable Audiovisual Narratives Synchronize Sensory and Supramodal Neural Responses. ENeu 2016, 3, ENEURO.0203-16.2016.	ro, 0.9	80
634	Emotion and memory: Event-related potential indices predictive for subsequent successful memo depend on the emotional mood state. Advances in Cognitive Psychology, 2007, 3, 363-373.	ry 0.2	13
635	Constructive memory: past and future. Dialogues in Clinical Neuroscience, 2012, 14, 7-18.	1.8	79
636	The effect of shared distinctiveness on source memory: An event-related potential study. Cognitiv Affective and Behavioral Neuroscience, 2020, 20, 1027-1040.	ve, 1.0	5
637	The Explanatory Indispensability of Memory Traces. The Harvard Review of Philosophy, 0, 27, 23-4	7. 0.2	6
639	Corticothalamic phase synchrony and cross-frequency coupling predict human memory formatior ELife, 2014, 3, e05352.	ı. 2.8	82
640	Leave-One-Trial-Out, LOTO, a general approach to link single-trial parameters of cognitive models neural data. ELife, 2019, 8, .	to 2.8	16
641	Population response magnitude variation in inferotemporal cortex predicts image memorability. E 2019, 8, .	Life, 2.8	39
642	Stimulating the hippocampal posterior-medial network enhances task-dependent connectivity and memory. ELife, 2019, 8, .	d 2.8	35
643	Transformative neural representations support long-term episodic memory. Science Advances, 20 eabg9715.	21, 7, 4.7	28
644	Use of fMRI Language Lateralization for Quantitative Prediction of Naming and Verbal Memory Outcome in Left Temporal Lobe Epilepsy Surgery. , 2013, , 119-139.		0

#	Article	IF	Citations
645	Memory Encoding and Consolidation in the Default Mode Networks. Korean Journal of Cognitive and Biological Psychology, 2014, 26, 343-367.	0.0	1
647	Memory in a Social Context. , 2017, , .		2
648	Voluntary Suppression and Involuntary Repression: Brain Mechanisms for Forgetting Unpleasant Memories. , 2017, , 147-164.		1
651	How neuroscience can inform education. , 0, , .		Ο
653	Functional Wiring of the Human Medial Temporal Lobe. SSRN Electronic Journal, 0, , .	0.4	0
664	Cognitive Psychologists' Approach to Research. , 2019, , 1-35.		Ο
684	Use of fMRI Language Lateralization for Quantitative Prediction of Naming and Verbal Memory Outcome in Left Temporal Lobe Epilepsy Surgery. , 2020, , 241-264.		1
685	ERP Template Matching for EEG Single Trial Classification. , 2020, , .		1
686	Biomarkers of memory variability in traumatic brain injury. Brain Communications, 2021, 3, fcaa202.	1.5	5
687	The role of context in episodic memory: Behavior and neurophysiology. Psychology of Learning and Motivation - Advances in Research and Theory, 2021, 75, 157-199.	0.5	0
688	Prediction of Subsequent Memory Effects Using Convolutional Neural Network. Lecture Notes in Computer Science, 2020, , 251-263.	1.0	2
691	Episodic Memory Training. , 2021, , 169-184.		1
695	Neural measures of subsequent memory reflect endogenous variability in cognitive function. Journal of Experimental Psychology: Learning Memory and Cognition, 2021, 47, 641-651.	0.7	2
698	Emotional Modulation of Episodic Memory in School-Age Children and Adults: An Event-Related Potential Study. Brain Sciences, 2021, 11, 1598.	1.1	Ο
699	Reliability of subsequent memory effects in children and adults: The good, the bad, and the hopeful. Developmental Cognitive Neuroscience, 2021, 52, 101037.	1.9	3
700	The more you know: Schema-congruency supports associative encoding of novel compound words. Evidence from event-related potentials. Brain and Cognition, 2021, 155, 105813.	0.8	3
701	Neural measures of subsequent memory reflect endogenous variability in cognitive function Journal of Experimental Psychology: Learning Memory and Cognition, 2021, 47, 641-651.	0.7	10
702	Por Ser Hombre Platico: Francisco Gasparo and the 1568 Spanish Negotiations with the Ottoman Governors of Algiers. Legatio, 2020, , 143.	0.3	0

ARTICLE IF CITATIONS Out of Rhythm: Compromised Precision of Theta-Gamma Coupling Impairs Associative Memory in Old 703 1.7 13 Age. Journal of Neuroscience, 2022, 42, 1752-1764. Language Models Explain Word Reading Times Better Than Empirical Predictability. Frontiers in 704 Artificial Intelligence, 2021, 4, 730570. Spectral pattern similarity analysis: Tutorial and application in developmental cognitive neuroscience. 705 1.9 4 Developmental Cognitive Neuroscience, 2022, 54, 101071. Stimulation of distinct parietal locations differentiates frontal versus hippocampal network 1.1 involvement in memory formation. Current Research in Neurobiology, 2022, 3, 100030. Al & amp; learning: A preferred future. Computers and Education Artificial Intelligence, 2022, 3, 100062. 708 6.9 8 Medial prefrontal and occipito-temporal activity at encoding determines enhanced recognition of threatening faces after 1.5Âyears. Brain Structure and Function, 2022, 227, 1655-1672. 1.2 Contributions of representational distinctiveness and stability to memory performance and age 711 0.7 10 differences. Aging, Neuropsychology, and Cognition, 2022, 29, 443-462. An event-related potential study of the testing effect: Electrophysiological evidence for context-dependent processes changing throughout repeated practice. Biological Psychology, 2022, 171, 1.1 108341. Neural Mechanisms of Perceiving and Subsequently Recollecting Emotional Facial Expressions in 718 3 1.1 Young and Older Adults. Journal of Cognitive Neuroscience, 2022, 34, 1183-1204. EEG-based audiovisual face-name association classifications using transfer learning., 2022, , . Disrupted Value-Directed Strategic Processing in Individuals with Mild Cognitive Impairment: 720 0 0.6 Behavioral and Neural Correlates. Geriatrics (Switzerland), 2022, 7, 56. Benefits and costs of predictive processing: How sentential constraint and word expectedness affect memory formation. Brain Research, 2022, 1788, 147942. 1.1 Vigorous-intensity acute exercise during encoding can reduce levels of episodic and false memory. 722 0.9 0 Memory, 2022, , 1-15. Attention- versus significance-driven memory formation: Taxonomy, neural substrates, and meta-analyses. Neuroscience and Biobehavioral Reviews, 2022, 138, 104685. Angiotensin Antagonist Inhibits Preferential Negative Memory Encoding via Decreasing Hippocampus Activation and Its Coupling With the Amygdala. Biological Psýchiatry: Cognitive Neuroscience and 724 1.1 5 Neuroimaging, 2022, 7, 970-978. Altered alpha/beta desynchronization during item $\hat{a} \in \hat{c}$ context binding contributes to the associative deficit in older age. Cerebral Cortex, 2023, 33, 2455-2469. Affective Enhancement of Episodic Memory Is Associated With Widespread Patterns of Intrinsic 726 Functional Connectivity in the Brain Across the Adult Lifespan. Frontiers in Behavioral Neuroscience, 1.0 1 0,16,. Altered developmental trajectories of verbal learning skills in 22q11.2DS: associations with hippocampal development and psychosis. Psychological Medicine, 2023, 53, 4923-4932.

#	Article	IF	CITATIONS
728	Management practices matter: understanding volunteers' memories at the Youth Olympic Games*. Managing Sport and Leisure, 2023, 28, 228-246.	2.2	0
729	Hotspot of human verbal memory encoding in the left anterior prefrontal cortex. EBioMedicine, 2022, 82, 104135.	2.7	1
731	The influence of imagery vividness and internally-directed attention on the neural mechanisms underlying the encoding of visual mental images into episodic memory. Cerebral Cortex, 2023, 33, 3207-3220.	1.6	2
734	Decoding declarative memory process for predicting memory retrieval based on source localization. PLoS ONE, 2022, 17, e0274101.	1.1	0
737	Post-encoding Reactivation Is Related to Learning of Episodes in Humans. Journal of Cognitive Neuroscience, 2022, 35, 74-89.	1.1	6
739	Advanced synaptic devices and their applications in biomimetic sensory neural system. , 2023, 2, 100031.		7
740	Effects of age on the neural correlates of encoding source and item information: An fMRI study. Neuropsychologia, 2022, 177, 108415.	0.7	1
741	Alterations of theta power and synchrony during encoding in young adult binge drinkers: Subsequent memory effects associated with retrieval after 48 h and 6 months. Frontiers in Psychology, 0, 13, .	1.1	0
743	Neuronal activity in the human amygdala and hippocampus enhances emotional memory encoding. Nature Human Behaviour, 2023, 7, 754-764.	6.2	11
744	Direct brain recordings suggest a causal subsequent-memory effect. Cerebral Cortex, 2023, 33, 6891-6901.	1.6	1
745	Hippocampal neuronal activity preceding stimulus predicts later memory success. ENeuro, 0, , ENEURO.0252-22.2023.	0.9	1
747	Fronto-parietal single-trial brain connectivity benefits successful memory recognition. Translational Neuroscience, 2022, 13, 506-513.	0.7	0
748	Interactive Educational Toy Design Strategies for Promoting Young Children's Garbage-Sorting Behavior and Awareness. International Journal of Environmental Research and Public Health, 2023, 20, 4460.	1.2	2
749	Scene-object semantic incongruity across stages of processing: From detection to identification and episodic encoding. , 0, 2, .		1
750	Identifying causal subsequent memory effects. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	3
751	Representational formats of human memory traces. Brain Structure and Function, 0, , .	1.2	4

Drawing as a versatile cognitive tool. , 2023, 2, 556-568.