CITATION REPORT List of articles citing

Polymer microfluidic devices

DOI: 10.1016/s0039-9140(01)00594-x Talanta, 2002, 56, 267-87.

Source: https://exaly.com/paper-pdf/34215884/citation-report.pdf

Version: 2024-04-23

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
993	Brief Measurement of Diffusion Profiles of Deep Impurities by Moving Schottky Contact. 1996 , 35, 3686	6-3687	2
992	Area in Grassmann geometry. 1997 , 141-170		1
991	Investigation of Polymer Micro-Actuators Based on Electrostrictive Poly(vinylidene fluoride-trifluoroethylene) Copolymers. 2002 , 741, 541		
990	Excimer laser micromachining technology in biochip. 2002 , 4928, 98		
989	Disposable biochip fabrication for DNA diagnostics. 2002,		7
988	Plastic fantastic?. Lab on A Chip, 2002 , 2, 31N-36N	7.2	91
987	Components for integrated poly(dimethylsiloxane) microfluidic systems. 2002 , 23, 3461-73		496
986	CO(2)-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. <i>Lab on A Chip</i> , 2002 , 2, 242-6	7.2	376
985	Direct determination of carbohydrates, amino acids, and antibiotics by microchip electrophoresis with pulsed amperometric detection. 2003 , 75, 4778-83		122
984	Introduction to micro-analytical systems: bioanalytical and pharmaceutical applications. 2003, 20, 149-7	1	120
983	Electrophoretic separations on chips with hydrodynamically closed separation systems. 2003 , 24, 2208-	27	58
982	Fabrication and characterization of poly(methyl methacrylate) microchannels by in situ polymerization with a novel metal template. 2003 , 24, 3246-52		49
981	Capillary electrochromatography and preconcentration of neutral compounds on poly(dimethylsiloxane) microchips. 2003 , 24, 3253-9		46
980	Cross-linked coatings for electrophoretic separations in poly(dimethylsiloxane) microchannels. 2003 , 24, 3679-88		73
979	Electrokinetic characterization of poly(dimethylsiloxane) microchannels. 2003, 24, 3674-8		49
978	Microfluidic systems in proteomics. 2003 , 24, 3533-62		221
977	Microchannel wall coatings for protein separations by capillary and chip electrophoresis. 2003 , 24, 34-5	4	255

(2004-2003)

976	Integrated moulded polymer electrodes for performing conductivity detection on isotachophoresis microdevices. 2003 , 990, 11-22		33
975	Measuring protein interactions by microchip self-interaction chromatography. 2003 , 19, 1006-10		30
974	Zone electrophoresis of proteins on a poly(methyl methacrylate) chip with conductivity detection. 2003 , 990, 179-88		34
973	Nonlinear decrease of background fluorescence in polymer thin-films - a survey of materials and how they can complicate fluorescence detection in microTAS. <i>Lab on A Chip</i> , 2003 , 3, 248-52	7.2	74
972	Optical Manipulation and Fusion of Liposomes as Microreactors. 2003 , 19, 8206-8210		77
971	Sheathless electrospray from polymer microchips. 2003 , 75, 3934-40		59
970	Microfluidics meets MEMS. 2003 , 91, 930-953		313
969	Microstructure fabrication with a CO2 laser system: characterization and fabrication of cavities produced by raster scanning of the laser beam. <i>Lab on A Chip</i> , 2003 , 3, 302-7	7.2	52
968	Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. 2003, 75, 6544-54		1901
96 7	Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds. <i>Lab on A Chip</i> , 2003 , 3, 158-63	7.2	78
966	Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems. <i>Lab on A Chip</i> , 2003 , 3, 141-9	7.2	221
965	Design and fabrication of multi-metal electrodes implanted PDMS structures for micro flow devices using 3-D assembly.		1
964	Influence of master fabrication techniques on the characteristics of embossed microfluidic channels. <i>Lab on A Chip</i> , 2003 , 3, 121-7	7.2	68
963	Surface chemistry in polymer microfluidic systems. 2003 , 65-82		9
962	Laser-based fabrication of microfluidic components and systems. 2003 , 4982, 73		2
961	Polymer Micromachining. 169-181		
960	Polymer based microfluidic devices: examples for fluidic interfaces and standardization concepts. 2003 , 4982, 99		2
959	Experimental studies of electroosmotic flow. 2004 , 2, 354-462		

958	Fabrication of curved structures with electron-beam and surface structure characterization. 2004 , 22, 492	8
957	Microfabrication of Glassy Carbon by Electrochemical Etching. 2004 , 151, C142	11
956	Microfluidic toolbox: tools and standardization solutions for microfluidic devices for life sciences applications. 2004 ,	3
955	Laser-based fabrication of polymer micropump. 2004 , 3, 152	7
954	Elements for surface microfluidics in diamond. 2004 , 13, 780-784	29
953	Fabrication of calcium fluoride capillary electrophoresis microdevices for on-chip infrared detection. 2004 , 1027, 231-5	38
952	Integrated microsystems for controlled drug delivery. 2004 , 56, 185-98	156
951	Hybrid replication development for construction of polymeric devices. 2004 , 10, 711-715	6
950	Multiwalled carbon nanotube AFM probes for surface characterization of micro/nanostructures. 2004 , 10, 633-639	21
949	Application of on-chip cell cultures for the detection of allergic response. 2004 , 19, 741-7	68
948	Poly(tetrafluoroethylene) separation capillaries for capillary electrophoresis. Properties and applications. 2004 , 1039, 193-9	18
947	Production of monodispersed water-in-oil emulsions using polymer microchannels. 2004 , 81, 705-711	31
946	Separation of fluorescein isothiocyanate-labeled amines by microchip electrophoresis in uncoated and polyvinyl alcohol-coated glass chips using water and dimethyl sulfoxide as solvents of background electrolyte. 2004 , 25, 1901-6	19
945	Separation of proteins by zone electrophoresis on-line coupled with isotachophoresis on a column-coupling chip with conductivity detection. 2004 , 25, 3865-74	30
944	Electrophoresis microchip fabricated by a direct-printing process with end-channel amperometric detection. 2004 , 25, 3832-9	55
943	Wall coating for capillary electrophoresis on microchips. 2004 , 25, 3589-601	122
942	Determination of inorganic ions using microfluidic devices. 2004 , 25, 3602-24	39
941	Capillary isoelectric focusing of proteins utilizing poly(vinylpyrrolidone)- and plexiglas-coated columns. 2004 , 27, 124-8	12

(2004-2004)

9	40	Generation of mass tags by the inherent electrochemistry of electrospray for protein mass spectrometry. 2004 , 15, 1767-79		50	
9.	39	CFD-based optimal design of manifold in plate-fin microdevices. 2004 , 101, 397-402		138	
9.	38	Parametric investigation on the effect of channel topologies on electrophoretic separations. 2004 , 1027, 237-44		11	
9.	37	Vacuum-assisted thermal bonding of plastic capillary electrophoresis microchip imprinted with stainless steel template. 2004 , 1038, 239-45		57	
9.	36	Integrated microfluidic devices. 2004 , 507, 11-26		530	
9.	35	Enhanced determination of glucose by microchip electrophoresis with pulsed amperometric detection. 2004 , 508, 1-9		51	
9.	34	Ultra-smooth glass channels for bioassay with motor proteins. 2004 , 129, 850-4		6	
9.	33	Frontal photopolymerization for microfluidic applications. 2004 , 20, 10020-9		155	
9.	32	Fabrication of microfluidic chip and its application.		2	
9.	31	Automatic fabrication system for plastic microfluidic chips.			
9.	30	A new on-chip ESI nozzle for coupling of MS with microfluidic devices. Lab on A Chip, 2004, 4, 220-4	7.2	47	
9.	29	Rapid prototyping of polymer microsystems via excimer laser ablation of polymeric moulds. <i>Lab on A Chip</i> , 2004 , 4, 391-5	7.2	67	
9:	28	A miniaturized high-voltage integrated power supply for portable microfluidic applications. <i>Lab on A Chip</i> , 2004 , 4, 87-90	7.2	42	
9.	27	Rapid prototyping of thermoset polyester microfluidic devices. 2004 , 76, 4697-704		81	
9	26	Off-Lattice Simulation of Multifunctional Monomer Polymerizations: Effects of Monomer Mobility, Structure, and Functionality on Structural Evolution at Low Conversion. 2004 , 108, 11097-11104		2	
9.	25	Elements for surface microfluidics in diamond. 2004 , 13, 780-780		1	
9:	24	Fabrication of poly(methyl methacrylate) microfluidic chips by atmospheric molding. 2004 , 76, 2290-7		112	
9:	23	Scale dependence of micro/nano-friction and adhesion of MEMS/NEMS materials, coatings and lubricants. 2004 , 15, 1561-1570		161	

922	Introduction to Nanotechnology. 2004 , 1-6		6
921	Robust polymer microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP). <i>Lab on A Chip</i> , 2004 , 4, 658-62	7.2	75
920	Fabrication of hybrid plastic-silicon microfluidic devices for individual cell manipulation by dielectrophoresis. 2004 ,		9
919	A rapid prototyping technique for the fabrication of solvent-resistant structures. 2004 , 14, 153-158		101
918	Application of fluorescence correlation spectroscopy for velocity imaging in microfluidic devices. 2004 , 58, 1180-6		29
917	Disposable smart lab on a chip for point-of-care clinical diagnostics. 2004 , 92, 154-173		346
916	Replication of microstructures in polymers using laser-fabricated glass-ceramic stamps. 2004,		2
915	Microfluidic sample preparation for nucleic acid analysis.		
914	Development of surface connectors for microfluidic systems. 2004,		
913	Laser-Based Fabrication of Polymer Micro-Fluidic Devices. 2004 , 293		O
912	Hydrophilic Modification of Polymer Microchannel for Preparation of Oil-in-Water Emulsions. 2005 , 52, 599-604		2
911	Evaluation of novel tooling for nanoscale injection molding. 2005,		7
910	Chemical mechanical polishing of polycarbonate and poly methyl methacrylate substrates. 2005 , 81, 117-124		19
909	Modification of poly(methyl methacrylate) microchannels for highly efficient and reproducible electrophoretic separations of double-stranded DNA. 2005 , 1073, 191-9		26
908	Optical analysis of textured plastic substrates to be used in thin silicon solar cells. 2005 , 87, 333-341		4
907	Microfluidic immunosensor systems. 2005 , 20, 2488-503		443
906	Fabrication of poly(dimethylsiloxane) microfluidic system based on masters directly printed with an office laser printer. 2005 , 1089, 270-5		64
905	Low temperature bonding of poly(methylmethacrylate) electrophoresis microchips by in situ polymerisation. 2005 , 1094, 138-47		29

904	Microfluidic technologies in drug discovery. 2005 , 10, 1377-83	7	9
903	The zeta potential of cyclo-olefin polymer microchannels and its effects on insulative (electrodeless) dielectrophoresis particle trapping devices. 2005 , 26, 1792-9	8	5
902	Comparison of surfactants for dynamic surface modification of poly(dimethylsiloxane) microchips. 2005 , 26, 703-9	8	3
901	Development of monolithic enzymatic reactors in glass microchips for the quantitative determination of enzyme substrates using the example of glucose determination via immobilized glucose oxidase. 2005 , 26, 2303-12	3.	2
900	Static adsorptive coating of poly(methyl methacrylate) microfluidic chips for extended usage in DNA separations. 2005 , 26, 4625-31	1	3
899	Direct coupling of polymer-based microchip electrophoresis to online MALDI-MS using a rotating ball inlet. 2005 , 26, 4703-10	4	.2
898	Electrokinetic-driven microfluidic system in poly(dimethylsiloxane) for mass spectrometry detection integrating sample injection, capillary electrophoresis, and electrospray emitter on-chip. 2005 , 26, 4674-83	4	5
897	Electrokinetic control of fluid in plastified laser-printed poly(ethylene terephthalate)-toner microchips. 2005 , 382, 192-7	2	9
896	Production of structures for microfluidics using polymer imprint techniques. 2005 , 78-79, 695-700	4.	.5
895	Amperometric PDMS/glass capillary electrophoresis-based biosensor microchip for catechol and dopamine detection. <i>Sensors and Actuators B: Chemical</i> , 2005 , 108, 688-694	8.5 9	6
894	Micro/nanotribological characterization of PDMS and PMMA used for BioMEMS/NEMS applications. 2005 , 105, 238-247	6	9
893	Swelling of SU-8 structure in Ni mold fabrication by UV-LIGA technique. 2005 , 11, 1272-1275	1	7
892	Design and fabrication of poly(dimethylsiloxane) electrophoresis microchip with integrated electrodes. 2005 , 11, 1262-1266	1	3
891	Manipulation of the Electroosmotic Flow in Glass und PMMA Microchips with Respect to Specific Enzymatic Glucose Determinations. 2005 , 151, 29-38	10	O
890	Continuous-flow fractionation of animal cells in microfluidic device using aqueous two-phase extraction. 2005 , 7, 189-95	6	9
889	Micro flow-through PCR in a PMMA chip fabricated by KrF excimer laser. 2005 , 7, 253-7	4	8
888	Microfluidics for cell-based assays. 2005 , 8, 46-51	2	9
887	Access of Plasma Polymerization and Plasma Induced Vapor Phase Grafting Processes to High		

886	Porous polymer monolith assisted electrospray from a glass microdevice. 2005 , 19, 3279-86	14
885	Oxygen-Plasma Modification of Polyhedral Oligomeric Silsesquioxane (POSS) Containing Copolymers for Micro- and Nanofabrication. 2005 , 281-292	3
884	Laser bonding of multilayer polymer microfluidic chips. 2005,	1
883	Durability studies of micro/nanoelectromechanical systems materials, coatings and lubricants at high sliding velocities (up to 10mms) using a modified atomic force microscope. 2005 , 23, 830-835	31
882	Micro- and nanostructuring of poly(ethylene-2,6-naphthalate) surfaces, for biomedical applications, using polymer replication techniques. 2005 , 16, 369-375	26
881	Microwave welding of polymeric-microfluidic devices. 2005 , 15, 1692-1699	65
880	Low-Temperature Thermal Bonding of PMMA Microfluidic Chips. 2005 , 38, 1127-1136	39
879	Patterning of thick polymeric substrates for the fabrication of microfluidic devices. 2005 , 10, 293-296	17
878	Mechanical and Microfluidic Interconnects Fabricated in SU-8 Photopolymer. 2005 , 585	3
877	Determination of levoglucosan from smoke samples using microchip capillary electrophoresis with pulsed amperometric detection. 2005 , 39, 618-23	61
876	Localized bonding processes for assembly and packaging of polymeric MEMS. 2005, 28, 635-642	14
875	Microfluidic operations using deformable polymer membranes fabricated by single layer soft lithography. <i>Lab on A Chip</i> , 2005 , 5, 350-4	55
874	Fluorescence correlation spectroscopy for flow rate imaging and monitoringoptimization, limitations and artifacts. <i>Lab on A Chip</i> , 2005 , 5, 785-91	29
873	Surface engineering of microfluidic systems for cellular biochips.	
872	In situ fabrication of macroporous polymer networks within microfluidic devices by living radical photopolymerization and leaching. <i>Lab on A Chip</i> , 2005 , 5, 151-7	36
871	Patterned solvent delivery and etching for the fabrication of plastic microfluidic devices. 2005 , 77, 7478-82	19
870	Sol-gel modified poly(dimethylsiloxane) microfluidic devices with high electroosmotic mobilities and hydrophilic channel wall characteristics. 2005 , 77, 1414-22	181
869	CMP of PC, PMMA and SU-8 Polymers.	1

(2006-2005)

868	Photochemically patterned poly(methyl methacrylate) surfaces used in the fabrication of microanalytical devices. 2005 , 109, 16988-96	76
867	Combined circuit/device modeling and simulation of integrated microfluidic systems. 2005 , 14, 81-95	46
866	Microchip separations in reduced-gravity and hypergravity environments. 2005 , 77, 7933-40	29
865	Polymerizable Living Free Radical Initiators as a Platform To Synthesize Functional Networks. 2005 , 17, 4789-4797	30
864	Thermoplastic microfluidic platform for single-molecule detection, cell culture, and actuation. 2005 , 77, 7122-30	25
863	The autofluorescence of plastic materials and chips measured under laser irradiation. <i>Lab on A Chip</i> , 2005 , 5, 1348-54	284
862	Phase-changing sacrificial materials for solvent bonding of high-performance polymeric capillary electrophoresis microchips. 2005 , 77, 3536-41	77
861	. 2005 , 28, 533-546	61
860	Wafer-scale fabrication of polymer-based microdevices via injection molding and photolithographic micropatterning protocols. 2005 , 77, 5414-20	31
859	Resist-free patterning of surface architectures in polymer-based microanalytical devices. 2005 , 127, 842-3	109
858	Adhesion and friction properties of polymers in microfluidic devices. 2005 , 16, 467-478	61
857	Continuous flow analytical microsystems based on low-temperature co-fired ceramic technology. Integrated potentiometric detection based on solvent polymeric ion-selective electrodes. 2006 , 78, 2985-92	37
856	Engineered wettability in tree capillaries. 2006 , 22, 3148-53	43
855	Injection molded microfluidic chips featuring integrated interconnects. <i>Lab on A Chip</i> , 2006 , 6, 1346-54 7.2	163
854	Chitosan-mediated in situ biomolecule assembly in completely packaged microfluidic devices. <i>Lab on A Chip</i> , 2006 , 6, 1315-21	63
853	Plastic-Silicon PCR Amplification System Made Using Microfabrication Technologies. 2006,	
852	Zeolite nanoparticle modified microchip reactor for efficient protein digestion. <i>Lab on A Chip</i> , 2006 , 6, 534-9	67
851	Pulsed amperometric detection with poly(dimethylsiloxane)-fabricated capillary electrophoresis microchips for the determination of EPA priority pollutants. 2006 , 131, 208-14	44

850	Microfluidic-optical integrated CMOS compatible devices for label-free biochemical sensing. 2006 , 16, 1006-1016		61
849	Electrokinetic flow control in microfluidic chips using a field-effect transistor. <i>Lab on A Chip</i> , 2006 , 6, 714-23	7.2	43
848	Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents. <i>Lab on A Chip</i> , 2006 , 6, 66-73	7.2	224
847	Capillarity induced solvent-actuated bonding of polymeric microfluidic devices. 2006 , 78, 3348-53		52
846	A novel fabrication method of flexible and monolithic 3D microfluidic structures using lamination of SU-8 films. 2006 , 16, 113-121		147
845	High efficiency micellar electrokinetic chromatography of hydrophobic analytes on poly(dimethylsiloxane) microchips. 2006 , 131, 194-201		58
844	Rapid prototyping tools and methods for all-Topas cyclic olefin copolymer fluidic microsystems. 2006 , 220, 1625-1632		31
843	High-throughput determination of quantitative structure-property relationships using a resonant multisensor system: solvent resistance of bisphenol a polycarbonate copolymers. 2006 , 78, 3090-6		16
842	PDMS absorption of small molecules and consequences in microfluidic applications. <i>Lab on A Chip</i> , 2006 , 6, 1484-6	7.2	718
841	Fabrication of conductive membrane in a polymeric electric field gradient focusing microdevice. 2006 , 78, 4654-62		39
840	Plastified poly(ethylene terephthalate) (PET)-toner microfluidic chip by direct-printing integrated with electrochemical detection for pharmaceutical analysis. <i>Talanta</i> , 2006 , 68, 1303-8	6.2	42
839	Total Analysis Systems, Micro. 2006 ,		
838	Polymer chemistry in flow: New polymers, beads, capsules, and fibers. 2006 , 44, 6505-6533		102
837	Chemiluminescence microfluidic chip fabricated in PMMA for determination of benzoyl peroxide in flour. 2006 , 95, 693-698		32
836	Point-of-care biosensor systems for cancer diagnostics/prognostics. 2006 , 21, 1932-42		272
835	Polymeric microfluidic system for DNA analysis. 2006 , 556, 80-96		91
834	Modification of poly(dimethylsiloxane) microfluidic channels with silica nanoparticles based on layer-by-layer assembly technique. 2006 , 1136, 111-7		38
833	Using highly carboxylated microspheres to simplify immunoassays and enhance diffusional mixing in a microfluidic device. 2006 , 49, 106-11		28

832	Chemical mechanical polishing of polymeric materials for MEMS applications. 2006 , 37, 295-301	23
831	JSR photolithography based microvessel scaffold fabrication and cell seeding. 2006 , 8, 17-23	20
830	Fabrication of Poly(dimethylsiloxane)-Based Capillary Electrophoresis Microchips Using Epoxy Templates. 2006 , 153, 151-158	5
829	Rapid hot embossing of polymer microfeatures. 2006 , 12, 730-735	58
828	Study of PMMA thermal bonding. 2006 , 13, 403-407	67
827	Effect of channel geometry on solute dispersion in pressure-driven microfluidic systems. 2006 , 2, 275-290	117
826	Evaluation of micromilled metal mold masters for the replication of microchip electrophoresis devices. 2006 , 3, 1-11	93
825	Polymers for Microfluidic Chips. 2006 , 14, 121-128	20
824	Electrophoresis microchips with sharp inlet tips, for contactless conductivity detection, fabricated by in-situ surface polymerization. 2006 , 384, 683-91	21
823	Integration of microcolumns and microfluidic fractionators on multitasking centrifugal microfluidic platforms for the analysis of biomolecules. 2006 , 385, 596-605	17
822	Laser processing for bio-microfluidics applications (part I). 2006 , 385, 1351-61	114
821	Bonding of glass-based microfluidic chips at low- or room-temperature in routine laboratory. Sensors and Actuators B: Chemical, 2006, 119, 335-344	41
820	Microfluidic devices with integrated active valves based on thermoplastic elastomers. 2006 , 83, 1681-1683	10
819	Characterization of liquid flows in microfluidic systems. 2006 , 49, 815-824	155
818	PCR microfluidic devices for DNA amplification. 2006 , 24, 243-84	476
817	Reactive blending approach to modify spin-coated epoxy film: Part I. Synthesis and characterization of star-shaped poly(?-caprolactone). 2006 , 101, 3677-3688	11
816	Permanent surface modification of polymeric capillary electrophoresis microchips for protein and peptide analysis. 2006 , 27, 3533-46	93
815	Poly(methyl methacrylate) CE microchips replicated from poly(dimethylsiloxane) templates for the determination of cations. 2006 , 27, 4910-8	24

814	Transparent micro- and nanopatterned poly(lactic acid) for biomedical applications. 2006, 76, 781-7	32
813	Optofluidically driven micro- and nano-fluidic devices. 2006 , 6329, 80	
812	Critical factors for nanoscale injection molding. 2006,	5
811	Micro-molding for poly(dimethylsiloxane) microchips. 2006 , 339, 27-36	8
810	Active sealing for soft polymer microchips: method and practical applications. 2006 , 16, 708-714	15
809	A conductivity-based interface tracking method for microfluidic application. 2006 , 16, 920-928	8
808	Vacuum casting to manufacture a plastic biochip for highly parallel cell transfection. 2006, 17, 3134-3140	11
807	New Enonolithic Lemplates and improved protocols for soft lithography and microchip fabrication. 2006 , 18, S665-S676	6
806	A Strategy for Rapid Thermal Cycling of Molds in Thermoplastic Processing. 2006 , 128, 837-843	9
805	The Development of Polymeric Devices as Dielectrophoretic Separators and Concentrators. 2006 , 31, 120-124	41
804	Using the Hot Embossing Technology to Fabricate the Movable Component on Polymer Material. 2006 , 505-507, 103-108	1
803	Patterning of platinum microelectrodes in polymeric microfluidic chips. 2006 , 5, 039701	3
802	Controlling the hydrophilicity of microchannels with bonding adhesives containing surfactants. 2006 , 16, N9-N16	10
801	Realization of conducting polymer actuators using a controlled volume microsyringe system. <i>Smart Materials and Structures</i> , 2006 , 15, 279-287	17
800	Characterizing the Hot Embossing Process of Microchannels for Polymer Capillary Electrophoresis Chips by Experiment and Numerical Simulation. 2006 ,	
799	The Process of Automatically Fabricating Polymer Microfluidic Chips. 2006,	
798	Universal Microcarriers for Microfluidic Assays. 2007 , 613	
797	Novel all-polymer microfluidic devices monolithically integrated within metallic electrodes for SDS-CGE of proteins. 2007 , 17, 1289-1298	16

796	Copolymerization of MMA with VAc by Starch/Manganic Pyrophosphate Initiation. 2007, 46, 61-62		1
795	Copolymerization of MMA with VAc by Starch Catalysis. 2007 , 39, 23-32		1
794	Microchip-Based Immunoassay. 2007 , 56, 521-534		4
793	Fabrication Process Development and Characterization of Polymethylhydrosiloxane (PMHS) for Surface-Modified Microfluidic Chips. 2007 , 351		
792	Magnetically driven colloidal microstirrer. 2007 , 111, 3077-80		30
791	Mechanically assembled polymer interconnects with dead volume analysis for microfluidic systems. 2007 ,		5
790	Plasma surface modification and characterization of POSS-based nanocomposite polymeric thin films. 2007 , 23, 4346-50		30
789	PET Chemistry. 2007,		24
788	Polymer Surface Modification: Topography Effects Leading to Extreme Wettability Behavior. 2007 , 40, 3965-3969		65
787	Capillary electrophoresis in pharmaceutical analysis: a survey on recent applications. 2007 , 45, 559-77		34
786	Polymer based microchip for combined capillary electrophoresis and electrochemical detection. 2007 , 2007, 111-4		
785	Rapid Fabrication of Micromolds for Polymeric Microfluidic Devices. 2007,		5
784	Dynamic Microfluidic Photomasking. 2007 , 16, 1145-1151		2
783	Thick SU-8 and PDMS Three-Dimensional Enclosed Channels for Free-Standing Polymer Microfluidic Systems. 2007 ,		1
782	A toner-mediated lithographic technology for rapid prototyping of glass microchannels. <i>Lab on A Chip</i> , 2007 , 7, 931-4	7.2	48
781	The effects of alkyl sulfates on the analysis of phenolic compounds by microchip capillary electrophoresis with pulsed amperometric detection. 2007 , 132, 997-1004		22
780	Room-temperature bonding for plastic high-pressure microfluidic chips. 2007 , 79, 5097-102		69
779	Concentration gradient immunoassay. 1. An immunoassay based on interdiffusion and surface binding in a microchannel. 2007 , 79, 3542-8		34

778	Fabrication of PLGA microvessel scaffolds with circular microchannels using soft lithography. 2007 , 17, 2000-2005		28
777	Microfabrication of PDMS microchannels using SU-8/PMMA moldings and their sealing to polystyrene substrates. <i>Smart Materials and Structures</i> , 2007 , 16, 367-371	3.4	38
776	Straightforward protein immobilization on Sylgard 184 PDMS microarray surface. 2007 , 23, 4523-7		36
775	A sol-gel-modified poly(methyl methacrylate) electrophoresis microchip with a hydrophilic channel wall. 2007 , 13, 6461-7		10
774	Applications of Microplasmas and Microreactor Technology. 2007 , 47, 80-88		71
773	CE chips fabricated by injection molding and polyethylene/thermoplastic elastomer film packaging methods. 2007 , 28, 1130-7		30
772	Lamination-based rapid prototyping of microfluidic devices using flexible thermoplastic substrates. 2007 , 28, 1115-22		40
771	Fast quantitative determination of diuretic drugs in tablets and human urine by microchip electrophoresis with native fluorescence detection. 2007 , 28, 2934-41		19
770	A sheathless poly(methyl methacrylate) chip-CE/MS interface fabricated using a wire-assisted epoxy-fixing method. 2007 , 28, 1265-73		14
769	Fabrication and performance of fiber electrophoresis microchips. 2007 , 28, 2466-73		3
768	Fabrication of poly(methyl methacrylate) microfluidic chips by redox-initiated polymerization. 2007 , 28, 2897-903		21
767	Temperature gradient focusing in a PDMS/glass hybrid microfluidic chip. 2007 , 28, 4606-11		36
766	Analytical investigations on the effects of substrate kinetics on macromolecular transport and hybridization through microfluidic channels. 2007 , 58, 203-17		17
765	Characterization and performance of injection molded poly(methylmethacrylate) microchips for capillary electrophoresis. 2007 , 1154, 444-53		22
764	Simple and rapid methods for the fabrication of polymeric and glass chips for using in analytical chemistry. 2007 , 589, 84-8		8
763	Optical sensing systems for microfluidic devices: a review. 2007 , 601, 141-55		340
762	Construction and evaluation of a flow injection micro-analyser based on urethane-acrylate resin. 2007 , 603, 159-66		27
761	Rapid prototyping of micro/nano poly (methyl methacrylate) fluidic systems using proton beam writing. 2007 , 260, 362-365		10

(2008-2007)

760	Poly (dimethyl siloxane) micro/nanostructure replication using proton beam written masters. 2007 , 260, 479-482	14
759	Replication of microchannel structures in polymers using laser fabricated glassderamic stamp. 2007 , 45, 890-897	2
758	Fabrication and surface functionalization of high aspect ratio plastic nanostructures. 2007, 84, 1724-1728	4
757	Sealing of polymeric-microfluidic devices by using high frequency electromagnetic field and screen printing technique. 2007 , 189, 401-408	21
756	A two-station embossing process for rapid fabrication of surface microstructures on thermoplastic polymers. <i>Polymer Engineering and Science</i> , 2007 , 47, 530-539	24
755	Greener approaches to organic synthesis using microreactor technology. 2007 , 107, 2300-18	834
754	Introduction to Nanotechnology. 2007 , 1-12	2
753	Micro-reactors for PET tracer labeling. 2007 , 271-87	15
75 ²	Fabrication of a fiberglass-packed channel in a microchip for flow injection analysis. 2007, 159, 191-199	5
751	A new technology for microfluidic structures preparation based on a photoimageable ceramic. 2007 , 13, 657-661	2
75°	Bonding quartz wafers by the atom transfer radical polymerization of the glycidyl methacrylate at mild temperature. 2007 , 135, 257-261	6
749	Fabrication of nanofluidic devices utilizing proton beam writing and thermal bonding techniques. 2007 , 260, 450-454	19
749 74 ⁸	Fabrication of nanofluidic devices utilizing proton beam writing and thermal bonding techniques. 2007 , 260, 450-454 Characterization and fabrication of polyvinylsilazane glass microfluidic channels via soft lithographic technique. 2008 , 14, 45-51	19
	2007, 260, 450-454 Characterization and fabrication of polyvinylsilazane glass microfluidic channels via soft	
748	2007, 260, 450-454 Characterization and fabrication of polyvinylsilazane glass microfluidic channels via soft lithographic technique. 2008, 14, 45-51 Fabrication of an integrated microfluidic device based on a heat-sensitive poly(N-isopropylacrylamide) polymer and micromachining protocols for programmed bio-molecular 8.5	4
74 ⁸	Characterization and fabrication of polyvinylsilazane glass microfluidic channels via soft lithographic technique. 2008, 14, 45-51 Fabrication of an integrated microfluidic device based on a heat-sensitive poly(N-isopropylacrylamide) polymer and micromachining protocols for programmed bio-molecular patterning. Sensors and Actuators B: Chemical, 2008, 130, 150-157 Performance impact of dynamic surface coatings on polymeric insulator-based dielectrophoretic	15
748 747 746	Characterization and fabrication of polyvinylsilazane glass microfluidic channels via soft lithographic technique. 2008, 14, 45-51 Fabrication of an integrated microfluidic device based on a heat-sensitive poly(N-isopropylacrylamide) polymer and micromachining protocols for programmed bio-molecular patterning. Sensors and Actuators B: Chemical, 2008, 130, 150-157 Performance impact of dynamic surface coatings on polymeric insulator-based dielectrophoretic particle separators. 2008, 390, 847-55 Fabrication of integrated microchip for optical sensing by femtosecond laser direct writing of	4 15 40

742	Multidimensional liquid phase separations for mass spectrometry. 2008 , 31, 1964-79	22
741	Affinity analyses on moldable optical polycarbonate. 2008 , 9, 201-5	2
740	Disposable Injection-Moulded Cell-on-a-Chip Microfluidic Devices with Integrated Conducting Polymer Electrodes for On-Line Voltammetric and Electrochemiluminescence Detection. 2008 , 20, 448-454	16
739	Recent innovations in protein separation on microchips by electrophoretic methods. 2008 , 29, 157-78	46
738	A high-performance polycarbonate electrophoresis microchip with integrated three-electrode system for end-channel amperometric detection. 2008 , 29, 1881-8	45
737	Fabrication, modification, and application of poly(methyl methacrylate) microfluidic chips. 2008 , 29, 1801-14	115
736	Microchip capillary electrophoresis for frontal analysis of free bilirubin and study of its interaction with human serum albumin. 2008 , 29, 1924-31	37
735	Protein-aptamer binding studies using microchip affinity capillary electrophoresis. 2008, 29, 1415-22	27
734	Comparison of the analytical performance of electrophoresis microchannels fabricated in PDMS, glass, and polyester-toner. 2008 , 29, 4928-37	51
733	Underivatized cyclic olefin copolymer as substrate material and stationary phase for capillary and microchip electrochromatography. 2008 , 29, 3145-52	40
732	The use of high glass temperature polymers in the production of transparent, structured surfaces using nanoimprint lithography. 2008 , 85, 1897-1901	11
731	Novel hybrid material for microfluidic devices. <i>Sensors and Actuators B: Chemical</i> , 2008 , 132, 397-403 8.5	19
730	Fluidic interconnections for microfluidic systems: A new integrated fluidic interconnection allowing plugfiplay functionality. <i>Sensors and Actuators B: Chemical</i> , 2008 , 130, 947-953	121
729	Nano-sized patterns derived from a SiCN preceramic polymer: Fabrication and their characterization. 2008 , 69, 2131-2136	5
728	Modification of amorphous poly(ethylene terephthalate) surface by UV light and plasma for fabrication of an electrophoresis chip with an integrated gold microelectrode. 2008 , 1209, 246-52	42
727	Abrasive jet micromachining of acrylic and polycarbonate polymers at oblique angles of attack. 2008 , 265, 888-901	59
726	Green-tape ceramics. New technological approach for integrating electronics and fluidics in microsystems. 2008 , 27, 24-33	63
725	Applications of polymers for biomolecule immobilization in electrochemical biosensors. 2008 , 28, 1530-1543	198

(2008-2008)

724	Novel methods to pattern polymers for microfluidics. 2008 , 85, 972-975		4
723	A State-of-the-Art Review of Mixing in Microfluidic Mixers. 2008 , 16, 503-516		143
722	Dependence of the quality of adhesion between poly(dimethylsiloxane) and glass surfaces on the conditions of treatment with oxygen plasma. 2008 , 24, 13218-24		40
721	Nanotechnology-Enabled Sensors. 2008,		51
720	Encyclopedia of Microfluidics and Nanofluidics. 2008, 1078-1078		
719	A polymer lab-on-a-chip for magnetic immunoassay with on-chip sampling and detection capabilities. <i>Lab on A Chip</i> , 2008 , 8, 542-9	7.2	105
718	Chemical derivatization of compact disc polycarbonate surfaces for SNPs detection. 2008 , 19, 665-72		32
717	Encyclopedia of Microfluidics and Nanofluidics. 2008 , 1188-1189		
716	BioNanoFluidic MEMS. 2008,		3
715	The fabrication of a microcolumn for gas separation using poly(dimethylsiloxane) as the structural and functional material. 2008 , 18, 105007		9
714	Polymer Lab-on-a-Chip System With Electrical Detection. 2008 , 8, 572-579		29
713	Polymer mechanically interlocking structures as interconnects for microfluidic systems. 2008 , 18, 03504	43	13
712	Experimental and model investigation of the time-dependent 2-dimensional distribution of binding in a herringbone microchannel. <i>Lab on A Chip</i> , 2008 , 8, 557-64	7.2	25
711	A microfluidic platform for integrated synthesis and dynamic light scattering measurement of block copolymer micelles. <i>Lab on A Chip</i> , 2008 , 8, 950-7	7.2	36
710	A Disposable Plastic-Silicon Micro PCR Chip Using Flexible Printed Circuit Board Protocols and Its Application to Genomic DNA Amplification. 2008 , 8, 558-564		13
709	Polymethylhydrosiloxane (PMHS) as a functional material for microfluidic chips. 2008 , 18, 025026		10
708	A polymeric micro actuator to be integrated into an organic material based lab on chip microsystem. 2008 ,		O
707	Quantitative analysis by microchip capillary electrophoresis: current limitations and problem-solving strategies. 2008 , 133, 167-74		36

706	Photochemical functionalization of polymer surfaces for microfabricated devices. 2008 , 24, 3645-53	23
705	Rapid fabrication of tooling for microfluidic devices via laser micromachining and hot embossing. 2008 , 18, 025012	44
704	Fluorescence affinity sensing by using a self-contained fluid manoeuvring microfluidic chip. 2008 , 133, 499-504	12
703	CO2-laser micromachining of PMMA: the effect of polymer molecular weight. 2008 , 18, 095020	71
702	PEGMA/MMA copolymer graftings: generation, protein resistance, and a hydrophobic domain. 2008 , 24, 8151-7	53
701	Cryogenically assisted abrasive jet micromachining of polymers. 2008 , 18, 115010	28
700	96-well polycarbonate-based microfluidic titer plate for high-throughput purification of DNA and RNA. 2008 , 80, 3483-91	65
699	Phase-changing sacrificial layer fabrication of multilayer polymer microfluidic devices. 2008 , 80, 333-9	18
698	Plastic extended optical-path-length absorbance Detection Microchip For On-Chip Prostate Specific antigen (PSA) quantification. 2008 ,	
697	Neural network approach to modeling hot intrusion process for micromold fabrication. 2008,	
696	Design and Fabrication of a Roller Imprinting Device for Microfluidic Device Manufacturing. 2008,	2
695	Nano Fabrication and Patterning Techniques. 2008, 135-210	
694	Acrylated hyperbranched polymer photoresist for ultra-thick and low-stress high aspect ratio micropatterns. 2008 , 18, 045022	24
693	Multipurpose DVD pick-up scanner for analysis of microfluidics and micromechanical structures. 2008 , 2008, 2749-51	2
692	. 2008 , 17, 548-557	4
691	Fabrication of polymer microfluidic devices with 3D microfeatures that have near optical surface quality. 2008 ,	
690	Deep-UV patterning of commercial grade PMMA for low-cost, large-scale microfluidics. 2008 , 18, 115029	22
689	Development of a Low-Cost, Rapid-Cycle Hot Embossing System for Microscale Parts. 2008,	

688	Flexible enclosure for fluidic sealing of microcomponents. 2008,	1
687	Dissolution of a liquid microdroplet in a nonideal liquid-liquid mixture far from thermodynamic equilibrium. 2009 , 103, 064501	34
686	Accurate and diverse recommendations via eliminating redundant correlations. 2009, 11, 123008	88
685	Microfluidics for Biological Applications. 2009,	3
684	Micromolding of polymers. 2009 , 552-578	1
683	Pressure Drop in Rectangular Microchannels as Compared With Theory Based on Arbitrary Cross Section. 2009 , 131,	39
682	A review of micro/nano welding and its future developments. 2009 , 3, 53-60	19
681	Low-temperature bonding of poly-(methyl methacrylate) microfluidic devices under an ultrasonic field. 2009 , 19, 015035	42
680	Research on Microchannel of PMMA Microfluidic Chip under Various Injection Molding Parameters. 2009 , 87-88, 381-386	1
679	CE separation of various analytes of biological origin using polyether ether ketone capillaries and contactless conductivity detection. 2009 , 30, 424-30	11
678	Dry film microchips for miniaturised separations. 2009 , 30, 4219-24	14
677	Rubber-assisted micro forming of polymer thin films. 2009 , 15, 251-257	20
676	Bonding of thermoplastic polymer microfluidics. 2009 , 6, 1-16	415
675	Micro-injection moulding of polymer microfluidic devices. 2009 , 7, 1-28	294
674	Multi-layer PMMA microfluidic chips with channel networks for liquid sample operation. 2009 , 209, 5487-5493	3 14
673	Microfluidics for kinetic inspection of phase diagrams. 2009 , 12, 258-269	7
672	Antibody immobilization on to polystyrene substrateon-chip immunoassay for horse IgG based on fluorescence. 2009 , 11, 653-61	43
671	Phase-changing sacrificial layers in microfluidic devices: adding another dimension to separations. 2009 , 393, 431-5	5

670	Bioconjugation techniques for microfluidic biosensors. 2009 , 394, 469-79		46
669	Hot embossing of pyramidal micro-structures in PMMA for cell culture. 2009 , 206, 501-507		19
668	Nanointerstice-driven microflow. 2009 , 5, 609-13		24
667	Micro-fabrication of polymeric devices using hot roller embossing. 2009 , 86, 933-936		66
666	Flow behavior in surface-modified microchannels with polymer nanosheets. 2009 , 518, 606-609		6
665	"Macromolecules to PDMS transfer" as a general route for PDMS biochips. 2009 , 24, 1146-52		15
664	Microfluidics with MALDI analysis for proteomicsa review. 2009 , 649, 180-90		53
663	Controlled transport of droplets using conducting polymers. 2009 , 25, 11137-41		30
662	A monolithic continuous-flow microanalyzer with amperometric detection based on the green tape technology. 2009 , 81, 7448-53		19
661	Flow injection based microfluidic device with carbon nanotube electrode for rapid salbutamol detection. <i>Talanta</i> , 2009 , 79, 995-1000	.2 -	46
660	Surface modification of poly(dimethylsiloxane) microchips using a double-chained cationic surfactant for efficiently resolving fluorescent dye adsorption. <i>Talanta</i> , 2009 , 79, 959-62	.2	16
659	A PMMA microfluidic droplet platform for in vitro protein expression using crude E. coli S30 extract. <i>Lab on A Chip</i> , 2009 , 9, 3391-8	7.2	49
658	Rapid cholesterol detection by functionalized carbon nanotube based electrochemical sensor on flow injection microfluidic chip. 2009 ,		0
657	A low temperature surface modification assisted method for bonding plastic substrates. 2009 , 19, 01500	7	114
656	Combinatorial Methods for Chemical and Biological Sensors. 2009,		13
655	"Print-n-Shrink" technology for the rapid production of microfluidic chips and protein microarrays. Lab on A Chip, 2009 , 9, 3489-94	7.2	25
654	Microfluidic emulsification and sorting assisted preparation of monodisperse chitosan microparticles. <i>Lab on A Chip</i> , 2009 , 9, 145-50	7.2	66
653	Microfluidic assisted synthesis of multi-functional polycaprolactone microcapsules: incorporation of CdTe quantum dots, Fe3O4 superparamagnetic nanoparticles and tamoxifen anticancer drugs. Lab on A Chip. 2009 , 9, 961-5	7.2	95

(2010-2009)

652	Two-Dimensional Contact and Noncontact Micromanipulation in Liquid Using an Untethered Mobile Magnetic Microrobot. 2009 , 25, 1332-1342	122
651	Development of microfluidic chips for heterogeneous receptor-ligand interaction studies. 2009 , 81, 5095-8	14
650	Reusable, compression-sealed fluid cells for surface mounting to planar substrates. <i>Lab on A Chip</i> , 2009 , 9, 1468-71	9
649	PMMA/PDMS valves and pumps for disposable microfluidics. <i>Lab on A Chip</i> , 2009 , 9, 3088-94 7.2	129
648	Poly(methyl methacrylate) palladium clusters nanocomposite formation by supersonic cluster beam deposition: a method for microstructured metallization of polymer surfaces. 2009 , 42, 082002	33
647	Development and Testing of a Low-Cost Rapid-Cycle Hot Embossing System for Manufacturing Microscale Parts. 2009 ,	1
646	An Experimental Investigation of Liquid Plug Flows in Polymeric Mini-Channels. 2009,	
645	Culture of bovine embryos on a polydimethylsiloxane (PDMS) microwell plate. 2010 , 56, 475-9	14
644	Metallic mould inserts for fabrication of polymer microfluidic devices. 2010 , 6, 66	
643	Biomimetic membranes and biomolecule immobilisation strategies for nanobiotechnology applications. 2010 , 7, 753	8
642	Surface patterning strategies for microfluidic applications based on functionalized poly-p-xylylenes. 2010 , 2, 1717-28	5
641	Simple replication methods for producing nanoslits in thermoplastics and the transport dynamics of double-stranded DNA through these slits. <i>Lab on A Chip</i> , 2010 , 10, 3255-64	52
640	An optimal design method for preventing air bubbles in high-temperature microfluidic devices. 2010 , 396, 457-64	32
639	A microfluidic device with integrated fluorimetric detection for flow injection analysis. 2010 , 396, 715-23	22
638	IgG anti-gliadin determination with an immunological microfluidic system applied to the automated diagnostic of the celiac disease. 2010 , 396, 2921-7	26
637	Integration of functionality into polymer-based microfluidic devices produced by high-volume micro-moulding techniques. 2010 , 48, 973-991	19
636	Welding methods for joining thermoplastic polymers for the hermetic enclosure of medical devices. 2010 , 32, 690-9	129
635	Cyclic olefin polymers: emerging materials for lab-on-a-chip applications. 2010 , 9, 145-161	282

634	Fabrication of metallic micromolds by laser and electro-discharge micromachining. 2010 , 16, 477-485	13
633	A microvalve for hybrid microfluidic systems. 2010 , 16, 1269-1276	24
632	Influence of tool fabrication process on characteristics of hot embossed polymer microfluidic chips for electrospray. 2010 , 16, 2075-2085	2
631	The optimization of PDMS-PMMA bonding process using silane primer. <i>Biochip Journal</i> , 2010 , 4, 148-154 ₄	51
630	Microfluidic DNA microarrays in PMMA chips: streamlined fabrication via simultaneous DNA immobilization and bonding activation by brief UV exposure. 2010 , 12, 673-81	15
629	Microfluidic device to study arterial shear-mediated platelet-surface interactions in whole blood: reduced sample volumes and well-characterised protein surfaces. 2010 , 12, 987-1000	35
628	A spring-driven press device for hot embossing and thermal bonding of PMMA microfluidic chips. 2010 , 31, 2512-9	11
627	Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips. 2010 , 4, 386-400	73
626	Transmission laser welding of amorphous and semi-crystalline poly-ether ther theretone for applications in the medical device industry. 2010 , 31, 4823-4830	67
625	Region-selective electroless gold plating on polycarbonate sheets by UV-patterning in combination with silver activating. 2010 , 55, 2542-2549	39
624	Plasticizer-assisted bonding of poly(methyl methacrylate) microfluidic chips at low temperature. 2010 , 1217, 160-6	21
623	Modified paramagnetic beads in a microfluidic system for the determination of ethinylestradiol (EE2) in river water samples. 2010 , 25, 1376-81	56
622	Polyshrink[based microfluidic chips and protein microarrays. 2010, 26, 1218-24	7
621	Fast cholesterol detection using flow injection microfluidic device with functionalized carbon nanotubes based electrochemical sensor. 2010 , 26, 1514-20	92
620	Development of microfluidic-based heterogeneous immunoassays. 2010 , 2, 73-84	4
619	Parameters affecting electrospray performance of hot-embossed open-channel polymer microfluidic chips. 2010 , 9, 013050	
618	Fabrication of robust tooling for mass production of polymeric microfluidic devices. 2010 , 20, 085019	12
617	Adaptive pressure ultrasonic precise bonding method for polymer micro joint. 2010 ,	

616	Direct thermal-UV nanoimprint of an iron-containing organometallic hybrid film. 2010 , 28, 78-81		4
615	. 2010 , 19, 944-950		20
614	Characterisation of rapid prototyping techniques for studies in cell behaviour. 2010 , 16, 116-123		9
613	Experimental study on capillary flow through polymer microchannel bends for microfluidic applications. 2010 , 20, 055018		10
612	Bonding of microfluidic devices fabricated in polycarbonate. <i>Lab on A Chip</i> , 2010 , 10, 1324-7	7.2	112
611	Process Robustness of Hot Embossing Microfluidic Devices. 2010 , 132,		12
610	MEMS/NEMS and BioMEMS/BioNEMS: Materials, Devices, and Biomimetics. 2010 , 1663-1740		3
609	Time-lapse cinematography-compatible polystyrene-based microwell culture system: a novel tool for tracking the development of individual bovine embryos. 2010 , 83, 970-8		63
608	Continuous flow synthesis of nanoparticles using ceramic microfluidic devices. 2010 , 21, 415603		32
607	Anisotropic and hindered diffusion of colloidal particles in a closed cylinder. 2010 , 26, 16722-9		53
606	Perfusion Based Cell Culture Chips. 2010 , 427-452		
605	Microfluidic cell culture systems for drug research. <i>Lab on A Chip</i> , 2010 , 10, 939-56	7.2	314
604	Injection molded chips with integrated conducting polymer electrodes for electroporation of cells. 2010 , 20, 055010		32
603	Low-cost fabrication of poly(methyl methacrylate) microchips using disposable gelatin gel templates. <i>Talanta</i> , 2010 , 81, 1325-30	6.2	7
602	Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. 2010 , 39, 1153-82		1154
601	Perspectives of Micro and Nanofabrication of Carbon for Electrochemical and Microfluidic Applications. 2010 , 181-263		7
600	The application of microfluidics in biology. 2010 , 583, 55-80		38
599	A novel approach for the fabrication of all-polymer microfluidic devices. 2010 ,		3

598	Microfluidics Based Microsystems. 2010,		8
597	A technique to design complex 3D lab on a chip involving multilayered fluidics, embedded thick electrodes and hard packaging application to dielectrophoresis and electroporation of cells. 2010 , 20, 047001		9
596	Mechanical Properties of Nanostructures. 2010 , 1227-1265		1
595	Lab-on-a-Foil: microfluidics on thin and flexible films. <i>Lab on A Chip</i> , 2010 , 10, 1365-86	7.2	189
594	Nano/Micro Biotechnology. 2010 ,		1
593	Introduction to Nanotechnology. 2010 , 1-13		16
592	Investigation of hot roller embossing for microfluidic devices. 2010 , 20, 015017		43
591	Better shrinkage than Shrinky-Dinks. <i>Lab on A Chip</i> , 2010 , 10, 1623-6	7.2	43
590	Integration of a zero dead-volume PDMS rotary switch valve in a miniaturised (bio)electroanalytical system. <i>Lab on A Chip</i> , 2010 , 10, 1841-7	7.2	12
589	Biofluid behaviour in 3D microchannel systems: Numerical analysis and design development of 3D microchannel biochip separators. 2010 ,		
588	Integrated microfluidic systems. 2010 , 119, 179-94		1
587	DNA electrophoresis in microfabricated devices. 2010 , 82, 2903-2947		139
586	'Fab-chips': a versatile, fabric-based platform for low-cost, rapid and multiplexed diagnostics. <i>Lab on A Chip</i> , 2011 , 11, 2493-9	7.2	98
585	Rapid prototyping of polymeric electrophoresis microchips with integrated electrodes for contactless conductivity detection. 2011 , 3, 168-172		29
584	Preparation of wafer-level glass cavities by a low-cost chemical foaming process (CFP). <i>Lab on A Chip</i> , 2011 , 11, 1532-40	7.2	23
583	Chemical-assisted bonding of thermoplastics/elastomer for fabricating microfluidic valves. 2011 , 83, 446-52		49
582	Capillary electrophoretic separations. 2011 , 54, 451-85		2
581	Droplet microfluidics for high-throughput analysis of cells and particles. 2011 , 102, 25-48		13

580	Mechanical Properties of Nanostructures. 2011 , 527-584		3
579	New Developments in LC-MS and Other Hyphenated Techniques. 2011 , 981-1030		1
578	Surface modification of poly(dimethylsiloxane) (PDMS) microchannels with DNA capture-probes for potential use in microfluidic DNA analysis systems. 2011 ,		3
577	Tunable Elastomeric Nanopores. 2011 , 209-261		9
576	Downsizing the Methods. 2011 , 157-184		4
575	Let there be chipflowards rapid prototyping of microfluidic devices: one-step manufacturing processes. 2011 , 3, 2681		235
574	Micromolding of solvent resistant microfluidic devices. Lab on A Chip, 2011, 11, 2035-8	7.2	25
573	Nanotribology and Nanomechanics I. 2011 ,		17
572	Surface modification of droplet polymeric microfluidic devices for the stable and continuous generation of aqueous droplets. 2011 , 27, 7949-57		39
57 ¹	Introduction to Microfluidics. 2011 , 16-21		
570	Multilayer soft lithography of perfluoropolyether based elastomer for microfluidic device fabrication. <i>Lab on A Chip</i> , 2011 , 11, 1962-7	7.2	32
569	Applications of electrowetting-based digital microfluidics in clinical diagnostics. 2011 , 11, 393-407		92
568	Fast DNA hybridization on a microfluidic mixing device based on pneumatic driving. <i>Talanta</i> , 2011 , 84, 565-71	6.2	21
567	AAO-CNTs electrode on microfluidic flow injection system for rapid iodide sensing. <i>Talanta</i> , 2011 , 84, 1390-5	6.2	23
566	Adsorption of Proteins to Thin-Films of PDMS and Its Effect on the Adhesion of Human Endothelial Cells. 2011 , 1, 706-714		62
566 565			62
	Cells. 2011 , 1, 706-714		

562	The development and analysis of plasma microfluidic devices. 2011, 205, S516-S519	9
561	Tribological properties of polymer/silica composite coatings for microsystems applications. 2011 , 44, 1926-1931	22
560	A microfluidic capacitance sensor for fluid discrimination and characterization. 2011 , 172, 212-219	21
559	Flexible polymer microtubes and microchannels via electrospinning. 2011 , 65, 3493-3495	5
558	Microfluidics-based diagnostics of infectious diseases in the developing world. 2011 , 17, 1015-9	575
557	Hot embossing for fabrication of a microfluidic 3D cell culture platform. 2011 , 13, 325-33	62
556	Effects of processing parameters on the micro-channels replication in microfluidic devices fabricated by micro injection molding. 2011 , 17, 1791-1798	19
555	Physisorbed surface coatings for poly(dimethylsiloxane) and quartz microfluidic devices. 2011 , 401, 2113-22	42
554	Multistep liquid-phase lithography for fast prototyping of microfluidic free-flow-electrophoresis chips. 2011 , 401, 2651-6	29
553	Hot embossing and thermal bonding of poly(methyl methacrylate) microfluidic chips using positive temperature coefficient ceramic heater. 2011 , 401, 2657-65	14
552	Thermal analysis of cryogenically assisted abrasive jet micromachining of PDMS. 2011 , 51, 721-730	15
551	Justification of rapid prototyping in the development cycle of thermoplastic-based lab-on-a-chip. 2011 , 32, 3115-20	
550	Synthesis of agar microparticles using temperature-controlled microfluidic devices for Cordyceps militaris cultivation. 2011 , 32, 3157-63	24
549	Solvent bonding of poly(methyl methacrylate) microfluidic chip using phase-changing agar hydrogel as a sacrificial layer. 2011 , 32, 3319-23	14
548	A modified quasi-creep model for assessment of deformation of topas COC substrates in the thermal bonding of microfluidic devices: Experiments and modeling. 2011 , 122, 867-873	6
547	Lab-on-a-chip technologies for massive parallel data generation in the life sciences: A review. 2011 , 108, 64-75	47
546	Microfluidic immunosensor with gold nanoparticle platform for the determination of immunoglobulin G anti-Echinococcus granulosus antibodies. 2011 , 409, 98-104	23
545	Modified imprinting process using hollow microneedle array for forming through holes in polymers. 2011 , 88, 2121-2125	5

544	Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels. 2011 , 257, 6243-6250		127
543	Patterning of SiO2 nanoparticle P MMA polymer composite microstructures based on soft lithographic techniques. 2011 , 88, 939-944		18
542	Reduction of particle embedding in solid particle erosion of polymers. 2011 , 270, 922-928		18
541	Reversible sealing techniques for microdevice applications. <i>Sensors and Actuators B: Chemical</i> , 2011 , 153, 301-311	.5	21
540	Fabrication of multi-layer polymeric micro-sieve having narrow slot pores with conventional ultraviolet-lithography and micro-fabrication techniques. 2011 , 5, 36504-365049		21
539	Applications on MEMS packaging and micro-reactors using wafer-level glass cavities by a low-cost glass blowing method. 2011 ,		1
538	Improving the adhesion of Au thin films onto poly(methyl methacrylate) substrates using spun-cast organic solvents. 2011 , 29, 030601		4
537	A parallel microfluidic channel fixture fabricated using laser ablated plastic laminates for electrochemical and chemiluminescent biodetection of DNA. 2011 , 5, 44115-4411514		11
536	A Lab-on-a-Chip Device Using a Dielectrophoresis-Aligned Carbon Nanotube Sensor Array. 2011 ,		
535	Recent developments in optofluidic-surface-enhanced Raman scattering systems: Design, assembly, and advantages. 2011 , 26, 170-185		22
534	A microfluidic control system with re-usable micropump/valve actuator and injection moulded disposable polymer lab-on-a-slide. 2011 ,		2
533	Characterisation and analysis of microchannels and submicrometre surface roughness of injection moulded microfluidic systems using optical metrology. 2012 , 41, 29-39		12
532	An aluminum microfluidic chip fabrication using a convenient micromilling process for fluorescent poly(DL-lactide-co-glycolide) microparticle generation. <i>Sensors</i> , 2012 , 12, 1455-67	.8	24
531	Microdroplet Technology. 2012,		23
530	Polymer-Based Microfluidic Devices for Pharmacy, Biology and Tissue Engineering. 2012 , 4, 1349-1398		100
529	Fabrication of micro pneumatic valves with double-layer elastic poly(dimethylsiloxane) membranes in rigid poly(methyl methacrylate) microfluidic chips. 2012 , 22, 085008		16
528	Cell-Based Biosensors: Electrical Sensing in Microfluidic Devices. 2012 , 2, 83-96		23
527	Electrostatically Actuated Compliant Microvalve. 2012,		

526 Capillary and Microchip Electrophoresis. **2012**,

525	A simple microfluidic integrated with an optical sensor for micro flow injection colorimetric determination of glutathione. 2012 , 28, 651-6		7
524	Design of pressure-driven microfluidic networks using electric circuit analogy. <i>Lab on A Chip</i> , 2012 , 12, 515-45	7.2	395
523	Encyclopedia of Nanotechnology. 2012 , 1644-1644		
522	Influence of injection air pressure on the microcapillary formation within extruded plastic films. 2012 , 47, 8188-8196		12
521	Enhanced depth control of ultrafast laser micromachining of microchannels in soda-lime glass. 2012 , 98, 672-675		9
520	Hydrophilic coatings for biomedical applications in and ex vivo. 2012 , 3-42		7
519	A Hybrid-Structured Microfluidic Chip Developed for ATP Bioluminescence Detection. 2012 , 531-532, 563-569		
518	Enriching carbonylated proteins inside a microchip through the use of oxalyldihydrazide as a crosslinker. <i>Lab on A Chip</i> , 2012 , 12, 2526-32	7.2	8
517	Rapid microarray processing using a disposable hybridization chamber with an integrated micropump. <i>Lab on A Chip</i> , 2012 , 12, 1384-8	7.2	27
516	Microfluidic elastomer composites with switchable vis-IR transmittance. 2012 , 8, 11232		13
515	On-chip irreversible electroporation for bacterial cell membrane rupture. 2012,		1
514	Fabrication of metallic stamps for injection moulding applications by combining proton beam writing and UV lithography. 2012 , 258, 4191-4194		4
513	Microelectrofluidic bench using UV-curable rigid polymer fabricated by rapid and low-temperature process. 2012 , 12, 1596-1599		2
512	Microchip capillary electrophoresis instrumentation for in situ analysis in the search for extraterrestrial life. 2012 , 33, 2624-38		32
511	Encyclopedia of Nanotechnology. 2012 ,		55
510	Encyclopedia of Nanotechnology. 2012 , 1790-1803		
509	Commercialization of microfluidic point-of-care diagnostic devices. <i>Lab on A Chip</i> , 2012 , 12, 2118-34	7.2	898

508	One step high quality poly(dimethylsiloxane)-hydrocarbon plastics bonding. 2012, 6, 16507-165078	14
507	Flame Aerosol Deposition of TiO Nanoparticle Films on Polymers and Polymeric Microfluidic Devices for On-Chip Phosphopeptide Enrichment. 2012 , 97, 341-344	14
506	Fabrication of thermoplastics chips through lamination based techniques. <i>Lab on A Chip</i> , 2012 , 12, 1849- 5 62	36
505	Exploring emulsion science with microfluidics. 2012 , 8, 10549	75
504	Toward fabric-based flexible microfluidic devices: pointed surface modification for pH sensitive liquid transport. 2012 , 4, 4541-8	35
503	Fabrication of combined-scale nano- and microfluidic polymer systems using a multilevel dry etching, electroplating and molding process. 2012 , 22, 115008	43
502	Laser stenciling: a low-cost high-resolution CO2laser micromachining method. 2012 , 22, 015006	2
501	Encyclopedia of Nanotechnology. 2012 , 1543-1543	
500	Biocompatible "click" wafer bonding for microfluidic devices. <i>Lab on A Chip</i> , 2012 , 12, 3032-5 7.2	30
499	Surfactant-induced electroosmotic flow in microfluidic capillaries. 2012 , 33, 2094-101	8
498	Single-Cell Analysis in Microdroplets. 2012 , 211-228	1
497	Evaluation of roughness, hardness, and strength of AA 6061 molds for manufacturing polymeric microdevices. 2012 , 60, 1215-1221	1
496	Rapid polymer microchannel fabrication by hot roller embossing process. 2012 , 18, 713-722	16
495	Liquid phase chromatography on microchips. 2012 , 1221, 72-82	99
494	Controlled protein adsorption on microfluidic channels with engineered roughness and wettability. Sensors and Actuators B: Chemical, 2012 , 161, 216-222	52
493	In situ fabrication of a microfluidic device for immobilised metal affinity sensing. 2012 , 29, 494-501	9
492	Integration of nanosensors into a sealed microchannel in a hybrid lab-on-a-chip device. <i>Sensors and Actuators B: Chemical</i> , 2012 , 166-167, 870-877	28
491	Non-lithographic fabrication of metallic micromold masters by laser machining and welding. 2012 , 59, 157-167	5

490	Ultra sensitive affinity chromatography on avidin-functionalized PMMA microchip for low abundant post-translational modified protein enrichment. 2012 , 14, 67-81		14
489	Surface infusion micropatterning of elastomeric substrates. 2012 , 12, 451-464		5
488	Shrinking hydrogel-DNA spots generates 3D microdots arrays. 2013 , 13, 227-33		18
487	Lab-on-a-Chip, Micro- and Nanoscale Immunoassay Systems, and Microarrays. 2013 , 175-202		3
486	Integration of functional materials and surface modification for polymeric microfluidic systems. 2013 , 23, 033001		53
485	Resazurin reduction based colorimetric antibiogram in microfluidic plastic chip. <i>Sensors and Actuators B: Chemical</i> , 2013 , 176, 174-180	8.5	27
484	Fabrication of a circular PDMS microchannel for constructing a three-dimensional endothelial cell layer. 2013 , 36, 1871-8		38
483	Protein immobilization techniques for microfluidic assays. 2013 , 7, 41501		246
482	Robust microdevice manufacturing by direct lithography and adhesive-free bonding of off-stoichiometry thiol-ene-epoxy (OSTE+) polymer. 2013 ,		2
481	Enabling systems biology approaches through microfabricated systems. 2013 , 85, 8882-94		11
480	Analysis of the structural integrity of SU-8-based optofluidic systems for small-molecule crystallization studies. 2013 , 85, 9678-85		14
479	Analytical isotachophoresis of lactate in human serum using dry film photoresist microfluidic chips compatible with a commercially available field-deployable instrument platform. 2013 , 803, 135-42		14
478	Effect of cross sectional geometry on PDMS micro peristaltic pump performance: comparison of SU-8 replica molding vs. micro injection molding. 2013 , 138, 5791-800		4
477	A continuous tilting of micromolds for fabricating polymeric microstructures in microinjection. <i>Lab on A Chip</i> , 2013 , 13, 4321-5	7.2	3
476	Rewritable and shape-memory soft matter with dynamically tunable microchannel geometry in a biological temperature range. 2013 , 9, 3074		52
475	Microfab-less Microfluidic Capillary Electrophoresis Devices. 2013 , 5, 1652-1657		19
474	Microfluidic devices for high-throughput proteome analyses. 2013 , 13, 467-79		36
473	Polymer micromixers bonded to thermoplastic films combining soft-lithography with plasma and aptes treatment processes. 2013 , 51, 59-70		10

(2013-2013)

472	Plasma Etching of Poly(dimethylsiloxane): Roughness Formation, Mechanism, Control, and Application in the Fabrication of Microfluidic Structures. 2013 , 10, 29-40	29
471	Absorption spectroscopy in microfluidic flow cells using a metal clad leaky waveguide device with a porous gel waveguide layer. 2013 , 138, 307-14	22
470	Effects of liquid viscosity, surface wettability and channel geometry on capillary flow in SU8 based microfluidic devices. 2013 , 42, 30-35	5
469	Biparametric potentiometric analytical microsystem for nitrate and potassium monitoring in water recycling processes for manned space missions. 2013 , 804, 190-6	21
468	An organic thin film photodiode as a portable photodetector for the detection of alkylphenol polyethoxylates by a flow fluorescence-immunoassay on magnetic microbeads in a microchannel. 6.2 <i>Talanta</i> , 2013 , 117, 139-45	15
467	Manufacturing all-polymer laminar flow-based fuel cells. 2013 , 240, 486-493	23
466	Perfluorinated poly(dimethylsiloxane) via the covalent attachment of perfluoroalkylsilanes on the oxidized surface: Effects on zeta-potential values. 2013 , 271, 344-351	18
465	Miniaturization and Microfluidics. 2013 , 453-467	2
464	A doubly cross-linked nano-adhesive for the reliable sealing of flexible microfluidic devices. <i>Lab on A Chip</i> , 2013 , 13, 1266-72	47
463	Rapid fabrication of nickel molds for prototyping embossed plastic microfluidic devices. <i>Lab on A Chip</i> , 2013 , 13, 1468-71	34
462	Advances of lab-on-a-chip in isolation, detection and post-processing of circulating tumour cells. <i>Lab on A Chip</i> , 2013 , 13, 3163-82	91
461	Microfluidic Platforms for Human Disease Cell Mechanics Studies. 2013 , 107-119	2
460	Microfluidic based immunosensor for detection and purification of carbonylated proteins. 2013 , 15, 519-30	12
459	Investigation of the maskless lithography technique for the rapid and cost-effective prototyping of microfluidic devices in laboratories. 2013 , 23, 025016	23
458	Autohesion of semi-crystalline PEEK near and under the glass transition temperature. 2013, 282, 571-577	17
457	Room temperature phosphorescence of metal-free organic materials in amorphous polymer matrices. 2013 , 135, 6325-9	313
456	Purification of Bacillus thuringiens is DNA with polymer-based, microfluidic lab-on-a-chip systems. 2013 ,	
455	An investigation into dispersion upon switching between solvents within a microfluidic system using a chemically resistant integrated optical refractive index sensor. <i>Lab on A Chip</i> , 2013 , 13, 377-85	7

454	Pen microfluidics: rapid desktop manufacturing of sealed thermoplastic microchannels. <i>Lab on A Chip</i> , 2013 , 13, 1102-8	7.2	23
453	Prospects of low temperature co-fired ceramic (LTCC) based microfluidic systems for point-of-care biosensing and environmental sensing. 2013 , 14, 683-702		42
452	CHAPTER 7:Microchip Technology in Metabolomics. 2013 , 138-182		O
451	3D stepped electrodes on a flexible substrate with permanently bonded poly(dimethylsiloxane) channels for moving microfluid. 2013 , 31, 022002		2
450	Laser micromachining as a metallization tool for microfluidic polymer stacks. 2013, 23, 035020		2
449	Buried picolitre fluidic channels in single-crystal diamond. 2013,		5
448	Design and Fabrication of a Microfluidic Device for Synthesis of Chitosan Nanoparticles. 2013, 4,		9
447	Materials and methods for the microfabrication of microfluidic biomedical devices. 2013, 3-62		7
446	Characterization of freestanding photoresist films for biological and MEMS applications. 2013, 23,		12
445	Enhancement of the thermo-mechanical properties of PDMS molds for the hot embossing of PMMA microfluidic devices. 2013 , 23, 095024		48
444	Novel Microfluidic Valve Technology Based on Shape Memory Effect of Poly(‡caprolactone). 2013 , 6, 037201		14
443	A microfluidic chip using phenol formaldehyde resin for uniform-sized polycaprolactone and chitosan microparticle generation. 2013 , 18, 6521-31		12
442	Laser Surface Patterning. 2014 , 75-113		5
441	Silicones for Microfluidic Systems. 2014 , 371-379		2
440	Atomic layer deposition of aluminum-free silica onto patterned carbon nanotube forests in the preparation of microfabricated thin-layer chromatography plates. 2014 , 27, 151-156		9
439	Advanced Fabrication Methods and Techniques. 2014 , 87-170		1
438	Chapter 6:Introduction to Optofluidics for LOC Systems. 2014 , 153-191		
437	The zeta potential of PMMA in contact with electrolytes of various conditions: theoretical and experimental investigation. 2014 , 35, 870-82		27

436	Developments of Laser Fabrication Methods for Lab-on-a-Chip Microfluidic Multisensing Devices. 2014 , 447-458		4
435	Shape-Memory Materials. 2014 , 285-373		1
434	Label free detection of phospholipids by infrared absorption spectroscopy. 2014,		2
433	Smart Biomaterials. 2014 ,		48
432	Protein and cell patterning in closed polymer channels by photoimmobilizing proteins on photografted poly(ethylene glycol) diacrylate. 2014 , 8, 064127		18
43 ¹	Infrared heated Eblistering, a new fabrication technology for HARMST. 2014 , 20, 2017-2022		
430	Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices. <i>Lab on A Chip</i> , 2014 , 14, 1294-301	7.2	29 0
429	Preparation of transparent zein films for cell culture applications. 2014 , 120, 55-62		42
428	Polycarbonate bonding assisted by surface chemical modification without plasma treatment and its application for the construction of plastic-based cell arrays. 2014 , 206, 57-66		17
427	Far infrared-assisted embossing and bonding of poly(methyl methacrylate) microfluidic chips. 2014 , 4, 56440-56444		11
426	Bulk-Aluminum Microfabrication for Micro Fuel Cells. 2014 , 23, 372-379		11
425	Microfluidic bio-particle manipulation for biotechnology. 2014 , 92, 63-82		41
424	Surface modification of bisphenol A polycarbonate using an ultraviolet laser with high-speed, direct-writing technology. 2014 , 254, 423-428		7
423	Preparation and validation of low cost microfluidic chips using a shrinking approach. <i>Lab on A Chip</i> , 2014 , 14, 4007-16	7.2	7
422	Surface modification of bisphenol A polycarbonate material by ultraviolet Nd:YVO4laser high-speed microprocessing technology. 2014 , 24, 085002		4
421	Arrays of High-Aspect Ratio Microchannels for High-Throughput Isolation of Circulating Tumor Cells (CTCs). 2014 , 20, 1815-1825		17
420	Silica nanoparticle-based microfluidic immunosensor with laser-induced fluorescence detection for the quantification of immunoreactive trypsin. 2014 , 463, 31-7		27
419	A low-cost, high-efficiency and high-flexibility surface modification technology for a black bisphenol A polycarbonate board. 2014 , 314, 679-685		4

418	Optimized fabrication protocols of microfluidic devices for X-ray analysis. 2014 , 124, 13-16		13
417	Photolithography and plasma processing of polymeric lab on chip for wetting and fouling control and cell patterning. 2014 , 124, 47-52		21
416	CFD (computational fluid dynamics)-based optimal design of a micro-reformer by integrating computational a fluid dynamics code using a simplified conjugate-gradient method. 2014 , 70, 355-365		18
415	Liquid polystyrene: a room-temperature photocurable soft lithography compatible pour-and-cure-type polystyrene. <i>Lab on A Chip</i> , 2014 , 14, 2698-708	2	23
414	Emerging role of nanomaterials in circulating tumor cell isolation and analysis. 2014, 8, 1995-2017		192
413	Preparation of homogeneous CNT coatings in insulating capillary tubes by an innovative electrochemically-assisted method. 2014 , 67, 564-571		4
412	A Miniaturized Stepwise Injection Spectrophotometric Analyzer. 2015 , 31, 529-33		3
411	Capillary Electrophoresis of Nucleic Acids. 2015 , 1-26		
410	Nanoscale coating in microfluidic laboratory-on-a-chip devices fabricated by microelectronic technologies. 2015 ,		
409	Synthesis and properties of UV curable polyvinylsilazane as a precursor for micro-structuring. 2015 , 26, 245-249		8
408	Two-photon excitation in chip electrophoresis enabling label-free fluorescence detection in non-UV transparent full-body polymer chips. 2015 , 36, 2976-82		7
407	An Inert Continuous Microreactor for the Isolation and Analysis of a Single Microbial Cell. Micromachines, 2015, 6, 1836-1855	,	7
406	Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications. <i>Sensors</i> , 2015 , 15, 30011-31	}	273
405	Automated, Miniaturized, and Integrated Quality Control-on-Chip (QC-on-a-Chip) for Cell-Based Cancer Therapy Applications. 2015 , 2,		16
404	Low temperature and deformation-free bonding of PMMA microfluidic devices with stable hydrophilicity via oxygen plasma treatment and PVA coating. 2015 , 5, 8377-8388		46
403	Room temperature direct imprinting of porous glass prepared from phase-separated glass. 2015 , 26, 255304		4
402	Nano/Micro Science and Technology in Biorheology. 2015 ,		1
401	Synthesis and characterization of siloxane photopolymers used for microfluidic devices. 2015 , 39, 2532-25	40	7

400	Integration of biosensors based on microfluidic: a review. 2015 , 35, 190-199	18
399	Fabrication of PDMS Nanocomposite Materials and Nanostructures for Biomedical Nanosystems. 2015 , 14, 841-9	13
398	Potentiometric analytical microsystem based on the integration of a gas-diffusion step for on-line ammonium determination in water recycling processes in manned space missions. 2015 , 874, 26-32	17
397	Fabrication of microchannels on transparent PMMA using CO2 Laser (10.6 fb) for microfluidic applications: An experimental investigation. 2015 , 16, 361-366	61
396	FISH in chips: turning microfluidic fluorescence in situ hybridization into a quantitative and clinically reliable molecular diagnosis tool. <i>Lab on A Chip</i> , 2015 , 15, 811-22	25
395	Dynamic transformations of self-assembled polymeric microspheres induced by AC voltage and shear flow. 2015 , 5, 14851-14857	2
394	Blue and UV combined photolithographic polymerization for the patterning of thick structures. 2015 , 267, 65-72	9
393	Laser Spot Welding of Thermoplastic and Ceramic: An Experimental Investigation. 2015 , 30, 1138-1145	11
392	Self-anchoring nickel microelectrodes for rapid fabrication of functional thermoplastic microfluidic prototypes. <i>Sensors and Actuators B: Chemical</i> , 2015 , 216, 263-270	5
391	Femtosecond fiber laser welding of PMMA. 2015,	
390	Fabrication of molds for PDMS microfluidic devices by laser swelling of PMMA. 2015 , 5, 25089-25096	11
389	Electrochemical paper-based microfluidic devices. 2015 , 36, 1811-24	133
388	Welding of PMMA by a femtosecond fiber laser. 2015 , 23, 4114-24	31
387	Recent applications of microchip electrophoresis to biomedical analysis. 2015 , 113, 72-96	82
386	GrapheneBrotein field effect biosensors: glucose sensing. 2015 , 18, 513-522	110
385	Effect of hematocrit on blood dynamics on a compact disc platform. 2015 , 140, 1432-7	19
384	Combination of PDMS microfilters and micromixers based on flexible thermoplastic films for size sorting and mixing of microparticles. 2015 , 132, n/a-n/a	3
383	Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. <i>Lab on A Chip</i> , 2015 , 15, 2364-78	304

382	A disposable laser print-cut-laminate polyester microchip for multiplexed PCR via infra-red-mediated thermal control. 2015 , 901, 59-67		22
381	Rapid prototyping of microfluidic chips for dead-volume-free MS coupling. 2015 , 407, 8735-43		7
380	EXPERIMENTAL STUDIES OF SURFACE-DRIVEN CAPILLARY FLOW IN PMMA MICROFLUIDIC DEVICES PREPARED BY DIRECT BONDING TECHNIQUE AND PASSIVE SEPARATION OF MICROPARTICLES IN MICROFLUIDIC LABORATORY-ON-A-CHIP SYSTEMS. 2015 , 22, 1550050		4
379	Multi-layered, membrane-integrated microfluidics based on replica molding of a thiol-ene epoxy thermoset for organ-on-a-chip applications. <i>Lab on A Chip</i> , 2015 , 15, 4542-54	7.2	76
378	McCLEC, a robust and stable enzymatic based microreactor platform. <i>Lab on A Chip</i> , 2015 , 15, 4083-9	7.2	4
377	Solvent-free thermoplastic-poly(dimethylsiloxane) bonding mediated by UV irradiation followed by gas-phase chemical deposition of an adhesion linker. 2015 , 25, 075007		9
376	Immobilization of lipase on porous monodisperse chitosan microspheres. 2015 , 62, 101-6		12
375	Microfluidic chip designs process optimization and dimensional quality control. 2015 , 21, 561-570		15
374	Fabrication of microchannels: A review. 2015 , 229, 1273-1288		78
373	Microfluidic biosensors for high throughput screening of pathogens in food. 2015 , 327-357		8
372	Mycotoxin Determination in Foods Using Advanced Sensors Based on Antibodies or Aptamers. 2016 , 8,		34
371	An Interference-Assisted Thermal Bonding Method for the Fabrication of Thermoplastic Microfluidic Devices. <i>Micromachines</i> , 2016 , 7,	3.3	7
370	Polymer Microfluidics: Simple, Low-Cost Fabrication Process Bridging Academic Lab Research to Commercialized Production. <i>Micromachines</i> , 2016 , 7,	3.3	171
369	Zeta potentials of polydimethylsiloxane surfaces modified by polybrene of different concentrations. 2016 , 37, 567-72		7
368	Light emitting diode, photodiode-based fluorescence detection system for DNA analysis with microchip electrophoresis. 2016 , 37, 406-13		12
367	Encyclopedia of Nanotechnology. 2016 , 2157-2167		
366	Encyclopedia of Nanotechnology. 2016 , 2659-2666		
365	Encyclopedia of Nanotechnology. 2016 , 1937-1946		

(2016-2016)

364	Encyclopedia of Nanotechnology. 2016 , 2369-2379		
363	Encyclopedia of Nanotechnology. 2016 , 2010-2019		
362	Encyclopedia of Nanotechnology. 2016 , 1903-1903		
361	Encyclopedia of Nanotechnology. 2016 , 2125-2128		
360	. 2016,		3
359	Lab-on-a-chip workshop activities for secondary school students. 2016 , 10, 011301		9
358	Encyclopedia of Nanotechnology. 2016 , 2137-2137		
357	Encyclopedia of Nanotechnology. 2016 , 2285-2285		
356	Encyclopedia of Nanotechnology. 2016 , 2028-2028		
355	Encyclopedia of Nanotechnology. 2016 , 2244-2254		
354	Encyclopedia of Nanotechnology. 2016 , 2254-2254		
353	A strategy to modulate the electrophoretic behavior in plastic microchips using sodium polystyrene sulfonate. 2016 , 1477, 132-140		4
352	Performance enhanced UV/vis spectroscopic microfluidic sensor for ascorbic acid quantification in human blood. 2016 , 85, 568-572		36
351	Low cost polymeric on-chip flow sensor with nanoliter resolution. <i>Sensors and Actuators B: Chemical</i> , 2016 , 235, 188-196	8.5	15
350	Recent Advances in Fabrication of Photocatalytic Micro-Reactor. 2016 , 855, 156-167		1
349	The upcoming 3D-printing revolution in microfluidics. <i>Lab on A Chip</i> , 2016 , 16, 1720-42	7.2	623
348	Contact-free thermal expansion measurement of very soft elastomers using digital image correlation. 2016 , 51, 181-189		20
347	Microfluidic-integrated DNA nanobiosensors. 2016 , 85, 247-260		48

346	Microfluidic-based photocatalytic microreactor for environmental application: a review of fabrication substrates and techniques, and operating parameters. 2016 , 15, 714-30	59
345	3D printed microfluidic devices: enablers and barriers. <i>Lab on A Chip</i> , 2016 , 16, 1993-2013 7.2	619
344	Toward a comprehensive microextraction/determination unit: A chip silicon rubber polyaniline-based system and its direct coupling with gas chromatography and mass spectrometry. 2016 , 39, 4227-4233	7
343	Introduction to Microfluidics. 2016 , 33-50	3
342	Sinusoidal Microchannels with High Aspect Ratios for CTC Selection and Analysis. 2016 , 85-126	3
341	Micro-ultrasonic welding using thermoplastic-elastomeric composite film. 2016 , 236, 183-188	15
340	Cross-flow microfluidic emulsification from a food perspective. 2016 , 49, 51-63	33
339	Deposition, patterning, and utility of conductive materials for the rapid prototyping of chemical and bioanalytical devices. 2016 , 141, 3511-25	14
338	Polymers. 2016 ,	3
337	A review on the importance of surface coating of micro/nano-mold in micro/nano-molding processes. 2016 , 26, 013002	40
336	Magnetic microparticle-polydimethylsiloxane composite for reversible microchannel bonding. 2016 , 17, 2-11	8
335	3D printing: an emerging tool for novel microfluidics and lab-on-a-chip applications. 2016 , 20, 1	179
334	Hybrid PDMS/glass microfluidics for high resolution imaging and application to sub-wavelength particle trapping. Lab on A Chip, 2016 , 16, 465-70 7.2	14
333	Biomedical microfluidic devices by using low-cost fabrication techniques: A review. 2016 , 49, 2280-2292	178
332	Plasma Nanotextured Polymeric Surfaces for Controlling Cell Attachment and Proliferation: A Short Review. 2016 , 36, 107-120	38
331	Facile fabrication of helical microfluidic channel based on rope coiling effect. 2017 , 23, 2957-2964	7
330	Thermoplastic microfluidic devices for targeted chemical and biological applications. 2017 , 7, 2884-2889	15
329	Microfabricated tools for quantitative plant biology. 2017 , 142, 835-848	7

328	Enabling Microfluidics: from Clean Rooms to Makerspaces. 2017 , 35, 383-392		83
327	EXPERIMENTAL INVESTIGATIONS ON THE INTERACTIONS BETWEEN LIQUIDS AND STRUCTURES TO PASSIVELY CONTROL THE SURFACE-DRIVEN CAPILLARY FLOW IN MICROFLUIDIC LAB-ON-A-CHIP SYSTEMS TO SEPARATE THE MICROPARTICLES FOR BIOENGINEERING		2
326	Experimental investigations and analytical modeling of multi-pass CO 2 laser processing on PMMA. 2017 , 49, 220-234		30
325	Recent lab-on-chip developments for novel drug discovery. 2017 , 9, e1381		38
324	Leaching gold by reactive flow of ammonium thiosulfate solution in high aspect ratio channels: Rate, passivation, and profile. 2017 , 169, 207-212		5
323	EXPERIMENTAL INVESTIGATIONS ON THE SURFACE-DRIVEN CAPILLARY FLOW OF AQUEOUS MICROPARTICLE SUSPENSIONS IN THE MICROFLUIDIC LABORATORY-ON-A-CHIP SYSTEMS. 2017 , 24, 1750107		О
322	Rapid prototyping of cyclic olefin copolymer (COC) microfluidic devices. <i>Sensors and Actuators B: Chemical</i> , 2017 , 247, 940-949	8.5	33
321	The lab-on-PCB approach: tackling the IIAS commercial upscaling bottleneck. <i>Lab on A Chip</i> , 2017 , 1388-1405	7.2	80
320	EFFECTS OF SURFACE PROPERTIES ON FLUID ENGINEERING GENERATED BY THE SURFACE-DRIVEN CAPILLARY FLOW OF WATER IN MICROFLUIDIC LAB-ON-A-CHIP SYSTEMS FOR BIOENGINEERING APPLICATIONS. 2017 , 24, 1750041		3
319	Non-traditional Micromachining Processes. 2017,		17
319	Non-traditional Micromachining Processes. 2017, Fabrication and optimisation of a fused filament 3D-printed microfluidic platform. 2017, 27, 035018		17 38
318	Fabrication and optimisation of a fused filament 3D-printed microfluidic platform. 2017 , 27, 035018		
318 317	Fabrication and optimisation of a fused filament 3D-printed microfluidic platform. 2017 , 27, 035018 Nanomechanical Properties of Nanostructures and Scale Effects. 2017 , 253-299 Nanotribology and Nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS Materials and Devices.		38
318 317 316	Fabrication and optimisation of a fused filament 3D-printed microfluidic platform. 2017, 27, 035018 Nanomechanical Properties of Nanostructures and Scale Effects. 2017, 253-299 Nanotribology and Nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS Materials and Devices. 2017, 797-907		38
318 317 316 315	Fabrication and optimisation of a fused filament 3D-printed microfluidic platform. 2017, 27, 035018 Nanomechanical Properties of Nanostructures and Scale Effects. 2017, 253-299 Nanotribology and Nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS Materials and Devices. 2017, 797-907 Micro thermoplastic forming of a Pd-based metallic glass: theory and applications. 2017, 24, 378-384 Magnetic field-assisted finishing of a mold insert with curved microstructures for injection molding	8.5	38 1 2
318 317 316 315 314	Fabrication and optimisation of a fused filament 3D-printed microfluidic platform. 2017, 27, 035018 Nanomechanical Properties of Nanostructures and Scale Effects. 2017, 253-299 Nanotribology and Nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS Materials and Devices. 2017, 797-907 Micro thermoplastic forming of a Pd-based metallic glass: theory and applications. 2017, 24, 378-384 Magnetic field-assisted finishing of a mold insert with curved microstructures for injection molding of microfluidic chips. 2017, 114, 306-314 Ionic polymer enhanced electrophoresis in plastic microchips for rapid and robust determination of	8.5	38 1 2 3 27

310	Screen-printed graphene-based electrochemical sensors for a microfluidic device. 2017 , 9, 3689-3695	18
309	Inexpensive, rapid fabrication of polymer-film microfluidic autoregulatory valve for disposable microfluidics. 2017 , 19, 21	18
308	Non-traditional Micromachining Processes: Opportunities and Challenges. 2017 , 1-59	5
307	Paper-Based Microfluidic Devices: Emerging Themes and Applications. 2017 , 89, 71-91	342
306	Fabrication of microfluidic devices: improvement of surface quality of CO2laser machined poly(methylmethacrylate) polymer. 2017 , 27, 015021	23
305	Fabrication of metallic glass micro grooves by thermoplastic forming. 2017 , 27, 025009	7
304	DNA extraction on bio-chip: history and preeminence over conventional and solid-phase extraction methods. 2017 , 101, 8077-8088	13
303	Fabrication of single crystal diamond microchannels for micro-electromechanical systems. 2017 , 80, 64-68	5
302	Roadmap for optofluidics. 2017, 19, 093003	55
301	Zeta Potential of Poly(methyl methacrylate) (PMMA) in Contact with Aqueous Electrolyte-Surfactant Solutions. 2017 , 33, 10473-10482	29
300	Rapid Prototyping of Microfluidics Devices using Xurograhy Method. 2017 , 111, 01009	4
299	Patternable Solvent-Processed Thermoplastic Graphite Electrodes. 2017 , 139, 12623-12631	42
298	Microfluidic Devices and Their Applications. 2017 , 487-536	16
297	Nanomechanical Properties of Nanostructures and Scale Effects. 2017 , 1101-1137	
296	MEMS/NEMS and BioMEMS/BioNEMS: Tribology, Mechanics, Materials and Devices. 2017, 1331-1416	2
295	Packaging and Reliability Issues in Micro/Nano Systems. 2017 , 1505-1539	
294	Enhanced physicochemical properties of polydimethylsiloxane based microfluidic devices and thin films by incorporating synthetic micro-diamond. <i>Scientific Reports</i> , 2017 , 7, 15109 4·9	28
293	Roughness dependence of optical coefficient polarization on pixelsIdiffractive elements by stretching technique. 2017 , 1, 055028	

(2017-2017)

292	Polycaprolactone-polymethyl methacrylate electrospun blends for biomedical applications. 2017 , 59, 695-707		7
291	Recent Advances in Analytical Chemistry by 3D Printing. 2017 , 89, 57-70		200
290	Basic Concepts and Principles. 2017 , 1-32		
289	Analysis of proteins and peptides by electromigration methods in microchips. 2017 , 40, 228-250		44
288	Fabrication of microchannels in polycrystalline diamond using pre-fabricated Si substrates. 2017 , 122, 145303		4
287	Lab on a Chip Future Technology for Characterizing Biotechnology Products. 2017, 849-859		
286	Ultrafast Laser Fabrication of Functional Biochips: New Avenues for Exploring 3D Micro- and Nano-Environments. <i>Micromachines</i> , 2017 , 8, 40	3.3	11
285	Smart devices. 2017 , 331-369		2
284	Microchannel fabrication via direct laser writing. 2017 , 163-187		4
283	PMMA Solution Assisted Room Temperature Bonding for PMMA?PC Hybrid Devices. <i>Micromachines</i> , 2017 , 8,	3.3	12
282	A centrifugal microfluidic-based approach for multi-toxin detection for real-time marine water-quality monitoring. 2017 ,		3
281	CMOS Enabled Microfluidic Systems for Healthcare Based Applications. <i>Advanced Materials</i> , 2018 , 30, e1705759	24	28
280	Straightforward and Ultrastable Surface Modification of Microfluidic Chips with Norepinephrine Bitartrate Improves Performance in Immunoassays. 2018 , 90, 3697-3702		9
279	Hybrid Paper-Plastic Microchip for Flexible and High-Performance Point-of-Care Diagnostics. 2018 , 28, 1707161		30
278	Microfluidic Biosensor. 2018 , 263-293		2
277	Fabrication of whole-thermoplastic normally closed microvalve, micro check valve, and micropump. <i>Sensors and Actuators B: Chemical</i> , 2018 , 262, 625-636	8.5	35
276	Sensing Using Microfluidic Platform. 2018 , 115-136		1
275	Lab-on-a-chip device made by autohesion-bonded polymers. 2017 , 20, 7		6

274	Plastic fingerprint replica: solvent-assisted 3D molding and motion-promoted nano-spherulite formation. 2018 , 96, 431-435		2
273	Measurement of nanoscale molten polymer droplet spreading using atomic force microscopy. 2018 , 89, 033703		2
272	A review of centrifugal microfluidics in environmental monitoring. 2018, 10, 1497-1515		28
271	Microfab in a Microwave Oven: Simultaneous Patterning and Bonding of Glass Microfluidic Devices. 2018 , 27, 434-439		11
270	The microscale Weissenberg effect for high-viscosity solution pumping at the picoliter level. 2018 , 10, 7127-7137		11
269	A review of filled and pristine polycarbonate blends and their applications. 2018 , 34, 60-97		38
268	Microfluidic packaging of high-density CMOS electrode array for lab-on-a-chip applications. <i>Sensors and Actuators B: Chemical</i> , 2018 , 254, 542-550	8.5	9
267	Hydrogel micropost-based qPCR for multiplex detection of miRNAs associated with Alzheimer's disease. 2018 , 101, 235-244		20
266	Isotherm analysis of the solution-phase uptake of chlorotrimethyl silane on a photosensitive glass. 2018 , 10, 188-196		
265	Advances in paper-analytical methods for pharmaceutical analysis. 2018 , 111, 46-56		26
264	Microfluidics Based Point-of-Care Diagnostics. 2018 , 13, 1700047		125
263	Protein separation under a microfluidic regime. 2018 , 143, 606-619		17
262	Cardiac Cell Culture Technologies. 2018,		2
261	Lab-on-a-chip Systems for CellomicsMaterials and Technology. 2018 , 23-53		O
260	Accurate, predictable, repeatable micro-assembly technology for polymer, microfluidic modules. <i>Sensors and Actuators B: Chemical</i> , 2018 , 254, 1249-1258	8.5	11
259	A Disposable, Cyclo-Olefin Copolymer, RNA Microfluidic Sensor for Bacteria Detection. 2018 ,		1
258	Property Investigation of Replaceable PDMS Membrane as an Actuator in Microfluidic Device. 2018 , 7, 68		9

256	Cell biology at the interface of nanobiosensors and microfluidics. 2018 , 148, 203-227		4
255	Cyclic Block Copolymer Microchannel Fabrication and Sealing for Microfluidics Applications. 2018 , 3, 49		4
254	Organs-on-a-Chip Module: A Review from the Development and Applications Perspective. Micromachines, 2018, 9,	3.3	97
253	Fabrication of a Malaria-Ab ELISA Bioassay Platform with Utilization of Syringe-Based and 3D Printed Assay Automation. <i>Micromachines</i> , 2018 , 9,	3.3	4
252	Disposable Optical Stretcher Fabricated by Microinjection Moulding. <i>Micromachines</i> , 2018 , 9,	3.3	13
251	Microfluidics and Nanofluidics: Science, Fabrication Technology (From Cleanrooms to 3D Printing) and Their Application to Chemical Analysis by Battery-Operated Microplasmas-On-Chips. 2018 ,		3
250	Microfluidic-Based Single-Cell Study: Current Status and Future Perspective. 2018, 23,		18
249	Performance optimization of single and two-stage micro/nano-scaled heat pumps with internal and external irreversibilities. 2018 , 232, 695-703		3
248	Design and Manufacturing of a Disposable, Cyclo-Olefin Copolymer, Microfluidic Biosensor. 2018 , 2, 810		2
247	Capillary Coatings: Flow and Drying Dynamics in Open Microchannels. 2018 , 34, 7624-7639		17
246	Micro-lithography on paper, surface process modifications for biomedical performance enhancement. 2018 , 555, 389-396		7
245	Experimental investigation and multi-objective optimization of Nd:YAG laser micro-channeling process of zirconia dental ceramic. 2018 , 98, 2213-2230		28
244	Fabrication of microchannels in single crystal diamond for microfluidic systems. 2018 , 22, 1		3
243	Gold-coated polydimethylsiloxane microwells for high-throughput electrochemiluminescence analysis of intracellular glucose at single cells. 2018 , 410, 4787-4792		14
242	Disposable luciferase-based microfluidic chip for rapid assay of water pollution. 2018 , 33, 1054-1061		8
241	Biosensors Based on Microfluidic Devices Lab-on-a-Chip and Microfluidic Technology. 2018 , 375-394		18
240	Microfluidics and hydrogel: A powerful combination. 2019 , 145, 104314		36
239	Circular microchannels inside bulk polymethylmethacrylate generated by femtosecond laser using slit beam shaping. 2019 , 31, 022603		6

238	Development of Micro Selective Laser Melting: The State of the Art and Future Perspectives. 2019 , 5, 702-720		76
237	Biosensors on chip: A critical review from an aspect of micro/nanoscales. 2019 , 2, 198-219		11
236	Geometrically Similar Rectangular Passive Micromixers and the Scaling Validity on Mixing Efficiency and Pressure Drops. 2019 , 69, 69-84		1
235	Label-free biosensing using a microring resonator integrated with poly-(dimethylsiloxane) microfluidic channels. 2019 , 90, 035004		9
234	Modelling of the Influence of Tool Runout on Surface Generation in Micro Milling. 2019, 32,		4
233	Rapid fabrication and characterization of PDMS microfluidics device using printed conductive silver ink. <i>Materials Today: Proceedings</i> , 2019 , 16, 1661-1667	1.4	2
232	Gradient-temperature hot-embossing for dense micropillar array fabrication on thick cyclo-olefin polymeric plates: An example of a microfluidic chromatography column fabrication. 2019 , 5, 100042		2
231	Digital Manufacturing for Microfluidics. 2019 , 21, 325-364		41
230	Advances in Fs-Laser Micromachining Towards the Development of Optofluidic Devices. 2019 , 119-144		
229	Microfluidic technology for in vitro fertilization (IVF). 2019 , 1, 1-11		6
228			
	3D printed microfluidic device for online detection of neurochemical changes with high temporal resolution in human brain microdialysate. <i>Lab on A Chip</i> , 2019 , 19, 2038-2048	7.2	26
227		7.2	26
227	resolution in human brain microdialysate. <i>Lab on A Chip</i> , 2019 , 19, 2038-2048	7.2 3.8	
·	Optics, Photonics and Laser Technology 2017. 2019 , Design and Manufacturing of a Disposable, Cyclo-Olefin Copolymer, Microfluidic Device for a	, 	1
226	Optics, Photonics and Laser Technology 2017. 2019, Design and Manufacturing of a Disposable, Cyclo-Olefin Copolymer, Microfluidic Device for a Biosensor. Sensors, 2019, 19,	, 	9
226	Optics, Photonics and Laser Technology 2017. 2019, Design and Manufacturing of a Disposable, Cyclo-Olefin Copolymer, Microfluidic Device for a Biosensor. Sensors, 2019, 19, Capillary flow in microchannel circuitry of scleral lenses 2019, 9, 11186-11193 Gas-assisted thermal bonding of thermoplastics for the fabrication of microfluidic devices. 2019,	, 	9
226 225 224	Optics, Photonics and Laser Technology 2017. 2019, Design and Manufacturing of a Disposable, Cyclo-Olefin Copolymer, Microfluidic Device for a Biosensor. Sensors, 2019, 19, Capillary flow in microchannel circuitry of scleral lenses 2019, 9, 11186-11193 Gas-assisted thermal bonding of thermoplastics for the fabrication of microfluidic devices. 2019, 25, 3923-3932 Crosslinking gradients of a photopolymerized multifunctional acrylate film control mechanical	, 	1 9 2 6

(2020-2019)

220	Electroanalytical cells pencil drawn on PVC supports and their use for the detection in flexible microfluidic devices. <i>Talanta</i> , 2019 , 199, 14-20	ó.2	11
219	Microfluidic study of sustainable gold leaching using glycine solution. 2019 , 185, 186-193		4
218	Factories of the Future. 2019 ,		25
217	A Reversible Spectrophotometric Method Based on a Coupled Microfluidic Chip for Highly Selective Ammonium Detection. 2019 , 2019, 1-8		1
216	A design pipeline for development of a multi-analyte marine bio-sensor lab-on-a-disc platform. 2019 ,		
215	3D Printing of UV-Curable Polyurethane Incorporated with Surface-Grafted Nanocellulose. Nanomaterials, 2019 , 9,	5.4	15
214	Wettability modification of cyclic olefin copolymer surface and microchannel using micromilling process. 2019 , 37, 168-176		4
213	Translocation of DNA and protein through a sequentially polymerized polyurea nanopore. 2019 , 11, 444-4	453	14
212	Lab-on-a-chip technology and microfluidics. 2019 , 3-36		7
211	Future of microfluidics in research and in the market. 2019 , 425-465		8
211	Clog-free and reliable solvent bonding of poly(methyl methacrylate) microdevice mediated by	3.5	8
	Clog-free and reliable solvent bonding of poly(methyl methacrylate) microdevice mediated by eco-friendly acetic acid at room temperature and its application for polymerase chain reaction and	3.5	
210	Clog-free and reliable solvent bonding of poly(methyl methacrylate) microdevice mediated by eco-friendly acetic acid at room temperature and its application for polymerase chain reaction and human cell culture. Sensors and Actuators B: Chemical, 2019, 282, 1008-1017 Experimental and theoretical investigation into simultaneous deburring of microchannel and	3.5	11
210	Clog-free and reliable solvent bonding of poly(methyl methacrylate) microdevice mediated by eco-friendly acetic acid at room temperature and its application for polymerase chain reaction and human cell culture. Sensors and Actuators B: Chemical, 2019, 282, 1008-1017 Experimental and theoretical investigation into simultaneous deburring of microchannel and cleaning of the cutting tool in micromilling. 2019, 233, 1761-1771 Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors and	3.5	11 3
210 209 208	Clog-free and reliable solvent bonding of poly(methyl methacrylate) microdevice mediated by eco-friendly acetic acid at room temperature and its application for polymerase chain reaction and human cell culture. Sensors and Actuators B: Chemical, 2019, 282, 1008-1017 Experimental and theoretical investigation into simultaneous deburring of microchannel and cleaning of the cutting tool in micromilling. 2019, 233, 1761-1771 Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors and Lab-on-a-Chip Performances: Recent Progress, Applications, and Future Perspective. 2019, 119, 120-194		11 3 271
210 209 208 207	Clog-free and reliable solvent bonding of poly(methyl methacrylate) microdevice mediated by eco-friendly acetic acid at room temperature and its application for polymerase chain reaction and human cell culture. Sensors and Actuators B: Chemical, 2019, 282, 1008-1017 Experimental and theoretical investigation into simultaneous deburring of microchannel and cleaning of the cutting tool in micromilling. 2019, 233, 1761-1771 Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors and Lab-on-a-Chip Performances: Recent Progress, Applications, and Future Perspective. 2019, 119, 120-194 Microfluidic immobilized enzyme reactors for continuous biocatalysis. 2020, 5, 9-32		11 3 271 49
210 209 208 207 206	Clog-free and reliable solvent bonding of poly(methyl methacrylate) microdevice mediated by eco-friendly acetic acid at room temperature and its application for polymerase chain reaction and human cell culture. Sensors and Actuators B: Chemical, 2019, 282, 1008-1017 Experimental and theoretical investigation into simultaneous deburring of microchannel and cleaning of the cutting tool in micromilling. 2019, 233, 1761-1771 Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors and Lab-on-a-Chip Performances: Recent Progress, Applications, and Future Perspective. 2019, 119, 120-194 Microfluidic immobilized enzyme reactors for continuous biocatalysis. 2020, 5, 9-32 Optimization of CO2 injection using multi-scale reconstruction of composition transport. 2020, 24, 819-8. Self-bonding of semi-crystalline PEEK by nano thin film polymer coatings facilitated by multiple	35	11 3 271 49

202	Organs-on-a-chip engineering. 2020 , 47-130		2
201	Dual-surface lens with ring-shaped structures for optical tuning of GaN ultraviolet photodetectors at low temperature. 2020 , 303, 111783		3
200	Design, fabrication and experimental characterization of whole-thermoplastic microvalves and micropumps having micromilled liquid channels of rectangular and half-elliptical cross-sections. 2020 , 301, 111713		7
199	Curing Temperature Effects on the Tensile Properties and Hardness of E e2O3 Reinforced PDMS Nanocomposites. 2020 , 2020, 1-11		4
198	Microfluidic Cell Stretching for Highly Effective Gene Delivery into Hard-to-Transfect Primary Cells. 2020 , 14, 15094-15106		15
197	Implementation of Microfluidics for Antimicrobial Susceptibility Assays: Issues and Optimization Requirements. 2020 , 10, 547177		4
196	Manufacturing conductive patterns on polymeric substrates: development of a microcontact printing process. 2020 , 30, 115008		1
195	Microbial Polyethylene Terephthalate Hydrolases: Current and Future Perspectives. 2020 , 11, 571265		29
194	Polymer Microchannel and Micromold Surface Polishing for Rapid, Low-Quantity Polydimethylsiloxane and Thermoplastic Microfluidic Device Fabrication. 2020 , 12,		2
193	Simulation of single particle flowing in a microfluidic device using molecular dynamics method. 2020 , 1505, 012062		
192	Inexpensive and nonconventional fabrication of microfluidic devices in PMMA based on a soft-embossing protocol. 2020 , 41, 1641-1650		3
191	Directly Printed Hollow Connectors for Microfluidic Interconnection with UV-Assisted Coaxial 3D Printing. 2020 , 10, 3384		4
190	Review of Microfluidic Devices and Imaging Techniques for Fluid Flow Study in Porous Geomaterials. <i>Sensors</i> , 2020 , 20,	3.8	13
189	. 2020,		2
188	Diffraction-Limited Imaging with a Graphene Metalens. 2020 , 37, 106801		2
187	Detection of Bacterial and Viral Pathogens Using Photonic Point-of-Care Devices. 2020 , 10,		9
186	Sensitivity analysis of tire-ice friction coefficient as affected by tire rubber compound properties. 2020 , 91, 319-328		4
185	Bonding of thermoplastic microfluidics by using dry adhesive tape 2020 , 10, 30289-30296		14

(2020-2020)

184	Modular Microphysiological System for Modeling of Biologic Barrier Function. 2020, 8, 581163		5
183	3D-Printed micro-optofluidic device for chemical fluids and cells detection. 2020 , 22, 37		8
182	Plasticizer-Free Thin-Film Sodium-Selective Optodes Inkjet-Printed on Transparent Plastic for Sweat Analysis. 2020 , 12, 25616-25624		14
181	Core-shell nanoparticles used in drug delivery-microfluidics: a review 2020 , 10, 18280-18295		25
180	An experimental approach to manufacturability assessment of microfluidic devices produced by stereolithography. 2020 , 234, 4905-4916		1
179	A one-step polymer screen-printing method for fabrication of microfluidic cloth-based analytical devices. 2020 , 158, 105078		3
178	Mixing characterization of binary-coalesced droplets in microchannels using deep neural network. 2020 , 14, 034111		7
177	Characterization Techniques for Polymer Coatings. 2020 , 359-370		
176	Microfluidic Devices with Patterned Wettability Using Graphene Oxide for Continuous LiquidLiquid Two-Phase Separation. 2020 , 3, 3471-3477		13
175	Paper-based microfluidics for rapid diagnostics and drug delivery. 2020 , 322, 187-199		25
174	An aptamer based microfluidic chip for impedimetric detection of Ranibizumab in a bioreactor. <i>Sensors and Actuators B: Chemical</i> , 2020 , 312, 127941	8.5	8
173	Bioreactors in tissue engineering: mimicking the microenvironment. 2020 , 709-752		2
172	Microfluidics in Haemostasis: A Review. 2020 , 25,		11
171	A novel abrasive water jet machining technique for rapid fabrication of three-dimensional microfluidic components. 2020 , 14, 044103		2
170	Accuracy Enhancement Technologies for Micromachining Processes. <i>Lecture Notes in Mechanical Engineering</i> , 2020 ,	0.4	1
169	Advances in diagnostic microfluidics. 2020 , 95, 1-72		12
168	Microfluidics in male reproduction: is ex vivo culture of primate testis tissue a future strategy for ART or toxicology research?. 2020 , 26, 179-192		8
	Fabrication of microwell plates and microfluidic devices in polyester films using a cutting printer.		6

166	An overview of microfluidic devices. 2021 , 1-22		3
165	Magnetic Actuation Methods in Bio/Soft Robotics. 2021 , 31, 2005137		34
164	Nucleic acid analysis on paper substrates (NAAPs): an innovative tool for Point of Care (POC) infectious disease diagnosis. 2021 , 146, 3422-3439		2
163	Materials and methods for microfabrication of microfluidic devices. 2021 , 1-78		2
162	All in OneEpoxy-Based Microfluidic Chips at Your Fingertips. 2021, 3, 801-810		1
161	A millifluidic chip for cultivation of fish embryos and toxicity testing fabricated by 3D printing technology 2021 , 11, 20507-20518		1
160	Phase Changing Materials Based Super Capacitors. 2021 ,		
159	Thermal and Electrochemical Properties of Solid Polymer Electrolytes Prepared via Lithium Salt-Catalyzed Epoxide Ring Opening Polymerization. 2021 , 11, 1561		3
158	Fabrication and Applications of Microfluidic Devices: A Review. 2021 , 22,		63
157	Development of a Microfluidic Platform for Trace Lipid Analysis. 2021 , 11,		2
156	A Review of Microfluidic Detection Strategies for Heavy Metals in Water. 2021, 9, 60		9
155	Microfluidic Modules Integrated with Microwave Components-Overview of Applications from the Perspective of Different Manufacturing Technologies. <i>Sensors</i> , 2021 , 21,	3.8	1
154	Characterization of PETG honeycomb core applied in energy absorbers as protection to vehicle lateral collisions.		
153	Fabrication Methods for Microfluidic Devices: An Overview. <i>Micromachines</i> , 2021 , 12,	3.3	38
152	Enhancing the stability of polymer nanostructures via ultrathin oxide coatings for nano-optical device applications. 2021 , 32,		1
151	Cellulose: A Contribution for the Zero e-Waste Challenge. 2000994		22
150	Durability Assessment of 15- to 20-Year-Old GFRP Bars Extracted from Bridges in the US. II: GFRP Bar Assessment. 2021 , 25, 04021008		3
149	Investigation of the Surface Passivation Effect on the Optical Properties of CsPbBr3 Perovskite Quantum Dots. 2021 , 23, 100948		7

148	Encapsulated Passivation of Perovskite Quantum Dot (CsPbBr3) Using a Hot-Melt Adhesive (EVA-TPR) for Enhanced Optical Stability and Efficiency. 2021 , 11, 419	3
147	Recent advances in the design of microfluidic technologies for the manufacture of drug releasing particles. 2021 , 333, 258-268	7
146	Aerodynamic behavior of a transonic axial flow compressor stage with self-recirculating casing treatment. 2021 , 112, 106587	5
145	A microfluidic interfacing connection system ((upmu)FICS) combining simplicity, minimalism, robustness, high-pressure, reusability and low cost. 2021 , 25, 1	1
144	Thermoplastic Elastomer (TPE)-Poly(Methyl Methacrylate) (PMMA) Hybrid Devices for Active Pumping PDMS-Free Organ-on-a-Chip Systems. 2021 , 11,	2
143	Cost-effective and rapid prototyping of PMMA microfluidic device via polymer-assisted bonding. 2021 , 25, 1	O
142	Facile Fabrication of Electrospun Nanofiber Membrane-Integrated PDMS Microfluidic Chip via Silver Nanowires-Uncured PDMS Adhesive Layer 2021 , 10, 965-970	2
141	Determining the suitable CO2 laser based technique for microchannel fabrication on PMMA. 2021 , 139, 107017	3
140	Bioprinting of Organ-on-Chip Systems: A Literature Review from a Manufacturing Perspective. 2021 , 5, 91	6
139	PDMS Bonding Technologies for Microfluidic Applications: A Review. 2021 , 11,	18
139	PDMS Bonding Technologies for Microfluidic Applications: A Review. 2021, 11, Excitation-frequency determination based on electromechanical impedance spectroscopy for a laser-microfabricated cavitation microstreaming micromixer. 2021, 326, 112730	18
	Excitation-frequency determination based on electromechanical impedance spectroscopy for a	
138	Excitation-frequency determination based on electromechanical impedance spectroscopy for a laser-microfabricated cavitation microstreaming micromixer. 2021 , 326, 112730 Design and Fabrication of a Cost-Effective, Electrochemical Detection-Based, Polymeric	3
138	Excitation-frequency determination based on electromechanical impedance spectroscopy for a laser-microfabricated cavitation microstreaming micromixer. 2021 , 326, 112730 Design and Fabrication of a Cost-Effective, Electrochemical Detection-Based, Polymeric Capillary-Electrophoresis Microfluidic Devices for Diverse Bioanalytical Functions. 2022 , 291-305	3
138 137 136	Excitation-frequency determination based on electromechanical impedance spectroscopy for a laser-microfabricated cavitation microstreaming micromixer. 2021, 326, 112730 Design and Fabrication of a Cost-Effective, Electrochemical Detection-Based, Polymeric Capillary-Electrophoresis Microfluidic Devices for Diverse Bioanalytical Functions. 2022, 291-305 CO laser fabrication of hydrogel-based open-channel microfluidic devices. 2021, 23, 47 Localized Surface Plasmon Resonance Sensors for Biomarker Detection with On-Chip Microfluidic	3
138 137 136	Excitation-frequency determination based on electromechanical impedance spectroscopy for a laser-microfabricated cavitation microstreaming micromixer. 2021, 326, 112730 Design and Fabrication of a Cost-Effective, Electrochemical Detection-Based, Polymeric Capillary-Electrophoresis Microfluidic Devices for Diverse Bioanalytical Functions. 2022, 291-305 CO laser fabrication of hydrogel-based open-channel microfluidic devices. 2021, 23, 47 Localized Surface Plasmon Resonance Sensors for Biomarker Detection with On-Chip Microfluidic Devices in Point-of-Care Diagnostics. 2022, 199-223	3 1
138 137 136 135	Excitation-frequency determination based on electromechanical impedance spectroscopy for a laser-microfabricated cavitation microstreaming micromixer. 2021, 326, 112730 Design and Fabrication of a Cost-Effective, Electrochemical Detection-Based, Polymeric Capillary-Electrophoresis Microfluidic Devices for Diverse Bioanalytical Functions. 2022, 291-305 CO laser fabrication of hydrogel-based open-channel microfluidic devices. 2021, 23, 47 Localized Surface Plasmon Resonance Sensors for Biomarker Detection with On-Chip Microfluidic Devices in Point-of-Care Diagnostics. 2022, 199-223 Microfluidics-based devices and their role on point-of-care testing. 2022, 197-224 Preparation of high-quality three-dimensional microstructures on polymethyl methacrylate	3 1 1

130	Laser photonic nanojets triggered thermoplasmonic micro/nanofabrication of polymer materials for enhanced resolution. 2021 , 32, 145301	1
129	Micro/Nanotribology of MEMS/NEMS Materials and Devices. 2005 , 1031-1089	4
128	Micro/Nanotribology of MEMS/NEMS Materials and Devices. 2004 , 983-1021	4
127	Soft Lithography and Imprint-Based Techniques for Microfluidics and Biological Analysis. 2003, 305-330	4
126	Encyclopedia of Microfluidics and Nanofluidics. 2015 , 1723-1726	1
125	Plastic Lab-on-Chip for the Optical Manipulation of Single Cells. 2019 , 339-363	2
124	Nanotribology and Materials Characterization of MEMS/NEMS and BioMEMS/BioNEMS Materials and Devices. 2007 , 1575-1638	5
123	Nanotribology and Materials Characterization of MEMS/NEMS and BioMEMS/BioNEMS Materials and Devices. 2008 , 1199-1295	3
122	MEMS/NEMS and BioMEMS/BioNEMS: Materials, Devices, and Biomimetics. 2011, 833-945	7
121	Introduction to Nanotechnology. 2004 , 1-6	2
120	Microfluidic Lab-on-a-Chip Platforms: Requirements, Characteristics and Applications. 2010, 305-376	54
119	Evolution of Paper Microfluidics as an Alternate Diagnostic Platform. 2019 , 83-98	4
118	Novel Microfluidic Analytical Sensing Platform for the Simultaneous Detection of Three Algal Toxins in Water. 2018 , 3, 6624-6634	15
117	Chapter 3:Microfluidic 🛭 ab-on-a-Chip 🕒 ensing in Food Safety and Quality Analysis. 2017 , 61-94	2
116	Microfluidic device fabrication mediated by surface chemical bonding. 2020 , 145, 4096-4110	21
115	Effect of 3D printing raster angle on reversible thermo-responsive composites using PLA/paper bilayer. <i>Smart Materials and Structures</i> , 2020 , 29, 105016	8
114	Effects of Operating Parameters and Channel Structure on Formation of Water-in-Oil Droplets by Polymer Microchannels. 2004 , 5, 259-266	2
113	Polymeric LabChip real-time PCR as a point-of-care-potential diagnostic tool for rapid detection of influenza A/H1N1 virus in human clinical specimens. 2012 , 7, e53325	27

(2005-2020)

112	Microfluidics and organ-on-a-chip technologies: A systematic review of the methods used to mimic bone marrow. 2020 , 15, e0243840	7
111	Disposable microfluidic devices: fabrication, function, and application. 2005 , 38, 429-46	327
110	Design Techniques for Microfluidic Devices Implementation Applicable to Chemical Analysis Systems. 2019 , 195-222	1
109	A Generic Polycarbonate Based Microfluidic Tool to Study Crystal Nucleation in Microdroplets. 2018 , 08, 1-17	8
108	Simple Atmospheric-Pressure Nonthermal Plasma-Jet System for Poly(dimethylsiloxane) Bonding Process. 2012 , 51, 06FL15	8
107	Photochemical Properties of Side Chain Aurone Polymers. 2021 , 313-322	
106	Full-field optical Crazimeter.	
105	A conjoint multi metal-ion iminodiacetic acid monolith microfluidic chip for structural-based protein pre-fractionation. 2021 , 42, 2647-2655	
104	PDMS Microstructures Integrated with Detection Elements. 2002 , 392-394	
103	Micro/Nanotribology of MEMS/NEMS Materials and Devices. 2004 , 983-1021	1
102	Nanofluidics latructures and Devices. 2004 , 319-355	
101	Integration of Sub-Wavelength Nanofluidics With Photonic Crystals. 2005,	
100	LAB-ON-A-CHIP TECHNOLOGIES. 2005 , 37-45	
99	Two-Station Embossing Process for Rapid Fabrication of Polymer Microstructures. 2005,	
98	3-D Assembly Methods to Fabricate Multi-Metal Electrodes Implanted PDMS Structures for Micro Flow Devices. 2005 , 125, 393-397	1
98		1
	Flow Devices. 2005 , 125, 393-397	1

94	Laser replication process using photo-etchable glass-ceramics and polymers. 2006,		
93	Hot Embossing for Lab-on-a-Chip Applications. 2006 , 117-140		
92	Coupling Electrochemical Detection with Microchip Capillary Electrophoresis. 2006, 265-297		1
91	Culture-Based Biochip for Rapid Detection of Environmental Mycobacteria. 2006, 299-323		
90	Velocity Dependence of Nanoscale Friction, Adhesion and Wear. 2007, 1011-1050		
89	Mechanical Properties of Nanostructures. 2007 , 1305-1338		
88	Multiscale Processing of Polymers and Nanocomposites. 2007 , 30-1-30-32		
87	Characterization of Microfluidic Channels using DVD Pick-up Fluorescent Scanner. <i>Transactions of the Korean Society of Mechanical Engineers, A,</i> 2008 , 32, 1102-1106	1	
86	Determination of Quantitative Structure Property Relationships of Solvent Resistance of Polycarbonate Copolymers Using a Resonant Multisensor System. 2009 , 455-470		
85	Biochips. 2009 , 179-202		
84	Lab on a Chip. 2009 , 999-1016		
83	The Current State-of-the-Art Fabrication Methods of Electroformed Molds for Imprint Technology. <i>Seikei-Kakou</i> , 2009 , 21, 178-182	O	
82	Packaging and Reliability Issues in Micro-/Nanosystems. 2010 , 1835-1863		
81	Introduction to Microfluidic and Optofluidic Transport. 2010 , 1-1-1-22		
80	Microfabrication and Microfluidics and Their Application to Clinical Diagnostics. 2012, 443-468		
80 79	Microfabrication and Microfluidics and Their Application to Clinical Diagnostics. 2012 , 443-468 Encyclopedia of Microfluidics and Nanofluidics. 2014 , 1-5		1
		0.3	3

76 Microfluidic Systems with Functional Patterned Surface for Biomedical Applications. **2015**, 305-324

75	CONCEITOS E PRINC P IOS B S ICOS. 2015 , 1-37		
74	Encyclopedia of Nanotechnology. 2015 , 1-10		О
73	Control of the Multi-scale Structure of Scaffolds and Its Application in Tissue Engineering. 2015 , 295-3	22	
72	Encyclopedia of Nanotechnology. 2016 , 2187-2196		
71	Encyclopedia of Nanotechnology. 2016 , 2498-2508		
70	Encyclopedia of Nanotechnology. 2016 , 2859-2869		Ο
69	Microfluidic Devices and Their Application in Modern Agriculture System. 2019 , 659-681		
68	Wavelength-selective negative photoresist for photolithography suitable for generating microstructures with up to three distinct height levels. 2019 ,		
67	Laser-based Fabrication of Micro-channels. Lecture Notes in Mechanical Engineering, 2020, 95-107	0.4	
66	Microfluidic Devices: A New Paradigm in Toxicity Studies. <i>Hacettepe Journal of Biology and Chemistry</i> ,	Ο	
65	Thin-film plastics used in microfluidic channels for microscopy imaging in low resource settings. 2020 ,		
64	Systematic assessment of the biocompatibility of materials for inkjet-printed ozone sensors for medical therapy. <i>Flexible and Printed Electronics</i> , 2021 , 6, 043003	3.1	4
63	Polymer-based microfluidic devices: A comprehensive review on preparation and applications. <i>Polymer Engineering and Science</i> ,	2.3	2
62	Lab-on-a-Chip Devices with Organic Semiconductor-Based Optical Detection. 2008, 97-140		
61	Mechanical Properties of Nanostructures. 2008 , 741-789		
60	Biodegradable Bio-based Plastics Toward Climate Change Mitigation. 2021 , 1-43		1
59	A handy reversible bonding technology and its application on fabrication of an on-chip liquid metal micro-thermocouple. <i>Lab on A Chip</i> , 2021 , 21, 4566-4573	7.2	3

58	On PVC-PP composite matrix for 4D applications: Flowability, mechanical, thermal, and morphological characterizations. <i>Journal of Thermoplastic Composite Materials</i> , 089270572110597	1.9	3
57	Layer-by-Layer Engineered All-Liquid Microfluidic Chips for Enzyme Immobilization. <i>Advanced Materials</i> , 2021 , e2105386	24	4
56	Rapid assembly of PMMA microfluidic devices with PETE membranes for studying the endothelium. <i>Sensors and Actuators B: Chemical</i> , 2022 , 356, 131342	8.5	О
55	Fabrication of Simple and Low-cost Droplet Generator by Xurography Method. 2020,		O
54	Thin flexible lab-on-a-film for impedimetric sensing in biomedical applications <i>Scientific Reports</i> , 2022 , 12, 1066	4.9	
53	Micro-Optical Waveguides Realization by Low-Cost Technologies. <i>Micro</i> , 2022 , 2, 123-136		2
52	Truly 3D microfluidic heating system with iterative structure of coil heaters and fluidic channels. <i>Smart Materials and Structures</i> , 2022 , 31, 035016	3.4	1
51	Emerging technology for point-of-care diagnostics: Recent developments. 2022 , 15-42		
50	Water-Assisted Bonding of Thermoplastic Microfluidic Device for Biological Applications. <i>SSRN Electronic Journal</i> ,	1	
49	Multiplexed Anodic Stripping Voltammetry Detection of Heavy Metals in Water Using Nanocomposites Modified Screen-Printed Electrodes Integrated With a 3D-Printed Flow Cell <i>Frontiers in Chemistry</i> , 2022 , 10, 815805	5	O
48	Surface Functionalization and Bonding of Chemically Inert Parylene Microfluidics Using Parylene-A Adhesive Layer. <i>Biochip Journal</i> , 1	4	O
47	Microfluidic Point-of-Care (POC) Devices in Early Diagnosis: A Review of Opportunities and Challenges <i>Sensors</i> , 2022 , 22,	3.8	10
46	Recent Advances in Thermoplastic Microfluidic Bonding <i>Micromachines</i> , 2022 , 13,	3.3	1
45	Investigation of replication accuracy of embossed micro-channel through hot embossing using laser patterned copper mold. <i>Materials Today: Proceedings</i> , 2022 ,	1.4	1
44	Nanoscale aggregation of doxorubicin-short peptide conjugates for enzyme-responsive delivery with various MOF carriers: In-silico steps towards smart cancer chemotherapy <i>Computers in Biology and Medicine</i> , 2022 , 144, 105386	7	О
43	A Review on Additive Manufacturing of Micromixing Devices <i>Micromachines</i> , 2021 , 13,	3.3	O
42	Microfluidics Technology for the Design and Formulation of Nanomedicines <i>Nanomaterials</i> , 2021 , 11,	5.4	3
41	OSTE+ Polymer Composite with Rare Earth Hard Magnetic Particles for Flexible Reaction Injection-Moldable Microfluidic Actuators. 2021 ,		

40	An Approach to Structural and Functional Modeling of the Surface Morphology of Materials Based on Fluorinated Polymers. <i>Russian Journal of General Chemistry</i> , 2021 , 91, 2667-2672	0.7	
39	Biodegradable Bio-based Plastics Toward Climate Change Mitigation. 2022 , 1987-2029		
38	Fabrication of Irregularity-Free, Highly Circular Cross-Sectional Microchannel. <i>Micro</i> , 2022 , 2, 325-333		
37	Engineering a sustainable future for point-of-care diagnostic and single-use microfluidic devices. <i>Lab on A Chip</i> ,	7.2	2
36	Perspectives on Microfluidics for the Study of Asphaltenes in Upstream Hydrocarbon Production: A Minireview. <i>Energy & Description of Asphaltenes in Upstream Hydrocarbon Production: A Minireview. Energy & Description of Asphaltenes in Upstream Hydrocarbon Production: A Minireview. Energy & Description of Asphaltenes in Upstream Hydrocarbon Production: A Minireview. Energy & Description of Asphaltenes in Upstream Hydrocarbon Production: A Minireview. Energy & Description of Asphaltenes in Upstream Hydrocarbon Production: A Minireview. Energy & Description of Asphaltenes in Upstream Hydrocarbon Production: A Minireview. Energy & Description of Asphaltenes in Upstream Hydrocarbon Production: A Minireview. Energy & Description of Asphaltenes in Upstream Hydrocarbon Production: A Minireview. Energy & Description of Asphaltenes in Upstream Hydrocarbon Production: A Minireview. Energy & Description of Asphaltenes in Upstream Hydrocarbon Production: A Minireview. Energy & Description of Asphaltenes in Upstream Hydrocarbon Production of As</i>	4.1	1
35	The potential of microbubbles as a cancer eradication theranostic agent. <i>Pharmaceutical Nanotechnology</i> , 2022 , 10,	4	
34	Prospects of Medical-Device-on-a-Chip. 2022 , 641-662		
33	Weibull reliability plots to study the strain rate effect on interfacial strengths of carbon fiber reinforced epoxy composites. <i>Polymer Composites</i> ,	3	1
32	Microwave-Assisted Solvent Bonding for Polymethyl Methacrylate Microfluidic Device. <i>Micromachines</i> , 2022 , 13, 1131	3.3	O
31	Highly efficient synthesis and application of aryl diazonium salts via femtosecond laser-tailored 3D flow microfluidic chips. <i>Chinese Chemical Letters</i> , 2022 ,	8.1	
30	Engineering Organ-on-a-Chip to Accelerate Translational Research. 2022 , 13, 1200		1
29	Origami Microfluidics: A Review of Research Progress and Biomedical Applications.		
28	Introducing Electric Field Fabrication: A Method of Additive Manufacturing Via Liquid Dielectrophoresis.		О
27	3D-Printing Graphene Scaffolds for Bone Tissue Engineering. 2022 , 14, 1834		1
26	Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components. 2022 , 12, 652		О
25	Biomedical applications of microfluidic devices: Achievements and challenges.		1
24	Nanofluidic Devices for the Separation of Biomolecules. 2022 , 463539		О
23	Bonding Strategies for Thermoplastics Applicable for Bioanalysis and Diagnostics. 2022 , 13, 1503		O

22	Ultraviolet irradiation modification of poly(methyl methacrylate) titanium grafted surface for biological purpose. 2022 , 655, 130295	O
21	Validation of HepG2/C3A Cell Cultures in Cyclic Olefin Copolymer Based Microfluidic Bioreactors. 2022 , 14, 4478	O
20	Effect of temperature and porosity on free vibration characteristics of a doubly-curved skew laminated sandwich composite structures with 3D printed PLA core. 2023 , 182, 110263	0
19	CMOS-based microanalysis systems. 2023 , 259-286	O
18	Green synthesis of zero-valent iron nanoparticles by Cleistocalyx operculatus leaf extract using microfluidic device for degradation of the Rhodamine B dye. 2022 , 13, 045007	0
17	Underwater laser texturing for enhanced adhesive joint bonding strength of Al-Mg alloy. 095440542211365	O
16	Correlation of brittle matrix powder properties to aerodynamic performance of inhaled nintedanib made by thin-film freezing. 2023 , 79, 104059	0
15	Zwitterionic surfactant as an additive for efficient electrophoretic separation of easily absorbed rhodamine dyes on plastic microchips. 2023 , 1688, 463716	O
14	Micro-channel reactor technology for syngas production. 2023 , 305-325	О
13	Microreactor modeling and simulation for syngas production. 2023 , 141-158	O
12	Methods to Measure Water Permeability. 2023 , 343-361	O
11	Grafting of proteins onto polymeric surfaces: A synthesis and characterization challenge. 2023 , 64, 108106	1
10	Microfabricated Parylene Electrospray Tips Integrated with Cyclo-Olefin Microchips for ESI-MS. 2008 , 129-148	O
9	On-line and Off-line MALDI from a Microfluidic Device. 2008 , 239-255	O
8	Effect of channel width on droplet generation inside T-junction microchannel. 2023, 35, 022107	O
7	Low-cost hybrid bonding between thermoplastics and PDMS with differential adhesive tape for microfluidic devices. 2023 , 34,	O
6	Advanced Technologies in the Fabrication of a Micro-Optical Light Splitter. 2023, 3, 338-352	Ο
5	2D Microfluidic Devices for Pore-Scale Phenomena Investigation: A Review. 2023 , 15, 1222	O

CITATION REPORT

Shrinkage Volume, Compressive Strength, and Surface Roughness Y-TTRIA Stabilized Tetragonal Zirconia Polycrystal (Y-TZP) Using Binders Variation PVA:PEG as an Alternative Dental Implants Materials.

A Laser-Micromachined PCB Electrolytic Micropump Using an Oil-Based Electrolyte Separation Barrier.

Commercial microfluidic devices and their cost analysis. 2023, 315-342

Novel design for a microfluidic-based platform for yeast replicative lifespan (RLS) analysis. 2023, 19, 100199