Electrorheological effect coordinated by kaolinite–ca materials

Journal of Materials Chemistry 12, 2869-2871 DOI: 10.1039/b207566k

Citation Report

#	Article	IF	CITATIONS
1	Preparation and Electrorheological Activity of Mesoporous Rare-Earth-Doped TiO2. Chemistry of Materials, 2002, 14, 4633-4640.	6.7	141
2	Enhancing electrorheological behaviors with formation of β-cyclodextrin supramolecular complex. Polymer, 2003, 44, 4519-4526.	3.8	35
3	Preparation of kaolinite/titania coated nanocomposite particles and their electrorheological properties. Journal of Materials Chemistry, 2003, 13, 2248.	6.7	22
4	Supramolecular complex formation of b-cyclodextrin polymer with substituted salicylic acid or 3-hydroxy-2-naphthoic acid and their electrorheological behaviors. Science in China Series B: Chemistry, 2004, 47, 340.	0.8	3
5	Preparation and electrorheological characteristics of ?-cyclodextrin-epichlorohydrin-starch polymer suspensions. Journal of Applied Polymer Science, 2004, 93, 1681-1686.	2.6	23
6	Two roles of guest and crosslinked degree on hydrosoluble β-cyclodextrin polymer electrorheological fluids. Polymer, 2004, 45, 1609-1615.	3.8	18
7	Guest-controlling effects on ER behaviors of \hat{I}^2 -cyclodextrin polymer. Journal of Colloid and Interface Science, 2005, 289, 56-62.	9.4	8
8	Universal yield stress function for biocompatible chitosan based-electrorheological fluid: Effect of particle concentration. Polymer, 2005, 46, 12359-12365.	3.8	28
9	Electrorheological fluid of kaolinite-based ternary nanocomposite and its properties. Science in China Series D: Earth Sciences, 2005, 48, 496.	0.9	1
10	Wettability of Bionic Nanopapilla Particles and Their High Electrorheological Activity. Advanced Functional Materials, 2005, 15, 1815-1820.	14.9	79
11	ELECTRORHEOLOGICAL BEHAVIOR OF MECHANOCHEMICALLY ACTIVATED KAOLINITE/TITANIUM OXIDE COMPOSITE. International Journal of Modern Physics B, 2005, 19, 1409-1415.	2.0	2
12	Electrorheological properties of new mesoporous material with conducting polypyrrole in mesoporous silica. Microporous and Mesoporous Materials, 2006, 94, 193-199.	4.4	57
13	The influence of intercalation rate and degree of substitution on the electrorheological activity of a novel ternary intercalated nanocomposite. Journal of Solid State Chemistry, 2006, 179, 949-954.	2.9	16
14	The wettability, size effect and electrorheological activity of modified titanium oxide nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 295, 27-33.	4.7	54
15	Titanium oxide nanoparticle modified with chromium ion and its giant electrorheological activity. Composites Science and Technology, 2007, 67, 3031-3038.	7.8	27
16	Synthesis and electrorheological activity of a modified kaolinite/carboxymethyl starch hybrid nanocomposite. Journal of Applied Polymer Science, 2008, 108, 2833-2839.	2.6	22
17	Electrorheological properties of organically modified nanolayered laponite: influence of intercalation, adsorption and wettability. Journal of Materials Chemistry, 2009, 19, 1816.	6.7	103
18	Investigation of Biocomposites Containing Glycerol-Plasticized Soy Protein and Kaolin. Advanced Materials Research, 2011, 287-290, 1712-1717.	0.3	1

	Ст	TATION REPORT	on Report		
#	Article	IF	Citations		
19	Gelation of natural polymer dispersed suspensions under electric field. Soft Matter, 2012, 8, 253-259.	2.7	18		
20	Polymer–Clay Nanocomposites. Developments in Clay Science, 2012, 4, 201-241.	0.5	33		
21	Medium and high substituted carboxymethyl starch: Synthesis, characterization and application. Starch/Staerke, 2013, 65, 22-33.	2.1	107		
22	Formamide-modified titanium oxide nanoparticles with high electrorheological activity. RSC Advances, 2014, 4, 29622.	3.6	20		
23	Electrorheological properties of algae dispersed suspension: New application of harmful algae. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 539, 354-363.	4.7	9		
24	Electrospinning of carboxymethyl starch/poly(Lâ€lactide acid) composite nanofiber. Polymers for Advanced Technologies, 2018, 29, 1843-1851.	3.2	26		
25	Carboxymethyl Starch/Medium Chain Fatty Acid Compositions: Rheological Changes During Storage and Selected Film Properties. Starch/Staerke, 2020, 72, 1900240.	2.1	1		
26	Intercalated kaolinite with ammonium dihydrogen phosphate as an effective flame retardant to enhance the flame retardance and smoke suppression of epoxy resins. Journal of Applied Polymer Science, 2024, 141	2.6	1		