Improvement of the photovoltaic performance of solidcomplexation of the sensitizer cis-bis(4,4â€²-dicarboxyruthenium(II)

Applied Physics Letters 81, 367-369 DOI: 10.1063/1.1490394

Citation Report

#	Article	IF	CITATIONS
1	Photovoltaics Literature Survey (No. 18). Progress in Photovoltaics: Research and Applications, 2002, 10, 511-512.	8.1	0
2	Hybrid Solar Cells Based on Nanoparticles of CuInS2 in Organic Matrices. Advanced Functional Materials, 2003, 13, 165-171.	14.9	270
3	Photoinduced Electron Transfer and Photovoltaic Response of a MDMO-PPV:TiO2 Bulk-Heterojunction. Advanced Materials, 2003, 15, 118-121.	21.0	260
4	Al2O3-coated nanoporous TiO2 electrode for solid-state dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 2003, 80, 315-326.	6.2	91
5	Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003, 4, 145-153.	11.6	4,007
6	A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature Materials, 2003, 2, 402-407.	27.5	1,466
7	Conductive and Transparent Multilayer Films for Low-Temperature-Sintered Mesoporous TiO2Electrodes of Dye-Sensitized Solar Cells. Chemistry of Materials, 2003, 15, 2824-2828.	6.7	83
8	Organic and Plastic Solar Cells. , 2003, , 483-511.		0
9	A New Ionic Liquid Electrolyte Enhances the Conversion Efficiency of Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2003, 107, 13280-13285.	2.6	607
10	Enhance the Performance of Dye-Sensitized Solar Cells by Co-grafting Amphiphilic Sensitizer and Hexadecylmalonic Acid on TiO2Nanocrystals. Journal of Physical Chemistry B, 2003, 107, 14336-14341.	2.6	672
11	Nondispersive hole transport in amorphous films of methoxy-spirofluorene-arylamine organic compound. Journal of Applied Physics, 2003, 93, 341-346.	2.5	327
12	TiO2 sensitized with an oligo(p-phenylenevinylene) carboxylic acid: a new model compound for a hybrid solar cell. Journal of Materials Chemistry, 2003, 13, 1054-1057.	6.7	34
13	Self-assembled InP Quantum Dot -TiO2 Solid GrÃæel Solar Cell. Materials Research Society Symposia Proceedings, 2003, 764, 1.	0.1	3
14	Unusual Phosphorescence Characteristics of Ir(ppy)3in a Solid Matrix at Low Temperatures. Japanese Journal of Applied Physics, 2004, 43, L937-L939.	1.5	58
15	Hybrid nanocrystalline TiO2 solar cells with a fluorene–thiophene copolymer as a sensitizer and hole conductor. Journal of Applied Physics, 2004, 95, 1473-1480.	2.5	185
16	Nanostructured <i>p–n</i> Junctions for Printable Photovoltaics. MRS Bulletin, 2004, 29, 43-47.	3.5	11
17	Amphiphilic Dye for Solid-State Dye-Sensitized Solar Cells. Materials Research Society Symposia Proceedings, 2004, 836, L1.4.1.	0.1	0
18	Highly Efficient Dye-Sensitized Solar Cells Using a Composite Electrolyte Consisting of Lil(CH 3 OH) 4 -I 2 , SiO 2 Nano-Particles and an Ionic Liquid. Chinese Physics Letters, 2004, 21, 1828 <u>-1830.</u>	3.3	14

#	Article	IF	Citations
19	Gel polymer electrolytes based on polyacrylonitrile and a novel quaternary ammonium salt for dye-sensitized solar cells. Materials Research Bulletin, 2004, 39, 2113-2118.	5.2	58
20	Factors limiting the efficiency of molecular photovoltaic devices. Physical Review B, 2004, 69, .	3.2	178
21	Charge Transport and Recombination in a Nanoscale Interpenetrating Network of n-Type and p-Type Semiconductors:Â Transient Photocurrent and Photovoltage Studies of TiO2/Dye/CuSCN Photovoltaic Cells. Journal of Physical Chemistry B, 2004, 108, 4342-4350.	2.6	265
22	Analysis of the photovoltaic efficiency of a molecular solar cell based on a two-level system. Applied Physics A: Materials Science and Processing, 2004, 79, 15-20.	2.3	8
23	Materials Screening and Combinatorial Development of Thin Film Multilayer Electro-Optical Devices. Macromolecular Rapid Communications, 2004, 25, 204-223.	3.9	29
24	Solid state dye sensitized solar cells using in situ polymerized PEDOTs as hole conductor. Electrochemistry Communications, 2004, 6, 71-74.	4.7	165
25	Slow interfacial charge recombination in solid-state dye-sensitized solar cell using Al2O3-coated nanoporous TiO2 films. Solar Energy Materials and Solar Cells, 2004, 81, 197-203.	6.2	106
26	Enhancement of photovoltaic characteristics using a PEDOT interlayer in TiO2/MEHPPV heterojunction devices. Solar Energy Materials and Solar Cells, 2004, 85, 31-31.	6.2	12
27	Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 3-14.	3.9	2,079
28	Solidifying liquid electrolytes with fluorine polymer and silica nanoparticles for quasi-solid dye-sensitized solar cells. Journal of Fluorine Chemistry, 2004, 125, 1241-1245.	1.7	105
29	Photo-sensitizing ruthenium complexes for solid state dye solar cells in combination with conducting polymers as hole conductors. Coordination Chemistry Reviews, 2004, 248, 1469-1478.	18.8	73
30	Ambient Temperature Plastic Crystal Electrolyte for Efficient, All-Solid-State Dye-Sensitized Solar Cell. Journal of the American Chemical Society, 2004, 126, 13590-13591.	13.7	196
31	Low bandgap polymers for photon harvesting in bulk heterojunction solar cells. Journal of Materials Chemistry, 2004, 14, 1077.	6.7	667
32	Solid state solar cell made from nanocrystalline TiO 2 with a fluorene-thiophene copolymer as a hole conductor. , 2004, , .		1
33	Tandem dye-sensitized solar cell for improved power conversion efficiencies. Applied Physics Letters, 2004, 84, 3397-3399.	3.3	184
34	Electrospun TiO2 electrodes for dye-sensitized solar cells. Nanotechnology, 2004, 15, 1861-1865.	2.6	287
35	Dye-sensitized solar cells employing a highly conductive and mechanically robust nanocomposite gel electrolyte. Synthetic Metals, 2004, 144, 291-296.	3.9	72
36	Organic solar cells: An overview. Journal of Materials Research, 2004, 19, 1924-1945.	2.6	2,242

#	Article	IF	CITATIONS
37	A Binary Ionic Liquid Electrolyte to Achieve ≥7% Power Conversion Efficiencies in Dye-Sensitized Solar Cells. Chemistry of Materials, 2004, 16, 2694-2696.	6.7	361
38	Solid-state dye-sensitized solar cells. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2005, 81, 33-42.	3.8	27
39	Improvement of photovoltaic performance of solid-state dye-sensitized solar cells by iodine doping in conjugated polymer. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 172, 135-139.	3.9	5
40	Temperature-dependent properties of organic-on-inorganic Ag/p-CuPc/n-GaAs/Ag photoelectric cell. Solar Energy Materials and Solar Cells, 2005, 87, 61-75.	6.2	100
41	Effect of Ar plasma treatment on the photo-electrical properties of nanocrystal TiO2 films. Solar Energy Materials and Solar Cells, 2005, 88, 293-299.	6.2	10
42	Efficient Light Harvesting by Using Green Zn-Porphyrin-Sensitized Nanocrystalline TiO2Films. Journal of Physical Chemistry B, 2005, 109, 15397-15409.	2.6	425
43	Zn-Porphyrin-Sensitized Nanocrystalline TiO2 Heterojunction Photovoltaic Cells. ChemPhysChem, 2005, 6, 1253-1258.	2.1	99
44	The Effect of Polymer Optoelectronic Properties on the Performance of Multilayer Hybrid Polymer/TiO2 Solar Cells. Advanced Functional Materials, 2005, 15, 609-618.	14.9	166
45	Infiltration of Regioregular Poly[2,2?-(3-hexylthiopene)] into Random Nanocrystalline TiO2 Networks. Advanced Functional Materials, 2005, 15, 677-682.	14.9	70
46	Organic Dye for Highly Efficient Solid-State Dye-Sensitized Solar Cells. Advanced Materials, 2005, 17, 813-815.	21.0	485
47	Field Emission from Carbon-Nanotube-Dispersed Conducting Polymer Thin Film and Its Application to Photovoltaic Devices. Japanese Journal of Applied Physics, 2005, 44, 636-640.	1.5	33
48	Organic and plastic solar cells. , 2005, , 419-447.		2
49	Applications of hybrid organic–inorganic nanocomposites. Journal of Materials Chemistry, 2005, 15, 3559.	6.7	2,350
50	Metal-Assembling Dendrimers with a Triarylamine Core and Their Application to a Dye-Sensitized Solar Cell. Journal of the American Chemical Society, 2005, 127, 13030-13038.	13.7	163
51	Novel Polysilsesquioxaneâ^'l-/l3-Ionic Electrolyte for Dye-Sensitized Photoelectrochemical Cells. Journal of Physical Chemistry B, 2005, 109, 14387-14395.	2.6	50
52	Hybrid molecular materials for optoelectronic devices. Journal of Materials Chemistry, 2005, 15, 3593.	6.7	39
53	A solid-state dye-sensitized photovoltaic cell with a poly(N-vinyl-carbazole) hole transporter mediated by an alkali iodide. Chemical Communications, 2005, , 1886.	4.1	69
54	Effect of Hydrocarbon Chain Length of Amphiphilic Ruthenium Dyes on Solid-State Dye-Sensitized Photovoltaics. Nano Letters, 2005, 5, 1315-1320.	9.1	152

	CITATION REPORT	
Article	IF	CITATIONS
Exciton Diffusion and Interfacial Charge Separation inmeso-Tetraphenylporphyrin/TiO2Bilayers:Â Ef of Ethyl Substituents. Journal of Physical Chemistry B, 2005, 109, 20166-20173.	fect 2.6	56
Comment on "The photocapacitor: An efficient self-charging capacitor for direct storage of sola energy―[Appl. Phys. Lett. 85, 3932 (2004)]. Applied Physics Letters, 2005, 86, 196101.	ar 3.3	10
Roles of Electrolytes on Charge Recombination in Dye-Sensitized TiO2Solar Cells (2):Â The Case of Cells Using Cobalt Complex Redox Couples. Journal of Physical Chemistry B, 2005, 109, 3488-3493	Solar 2.6 3. 2.6	102
New application of electrospun TiO2 electrode to solid-state dye-sensitized solar cells. Synthetic Metals, 2005, 153, 77-80.	3.9	63
Efficiency improvement in solid-state-dye-sensitized photovoltaics with an amphiphilic Ruthenium- Applied Physics Letters, 2005, 86, 013504.	dye. 3.3	200
Effect of Energy Disorder in Interfacial Kinetics of Dye-Sensitized Solar Cells with Organic Hole Transport Material. Journal of Physical Chemistry B, 2006, 110, 19406-19411.	2.6	71
Nondispersive hole transport in carbazole- and anthracene-containing polyspirobifluorene copolymers studied by the charge-generation layer time-of-flight technique. Journal of Applied Physics, 2006, 99, 033710.	2.5	24
Conductive polymer–carbon–imidazolium composite: a simple means for constructing solid-st dye-sensitized solar cells. Chemical Communications, 2006, , 1733-1735.	ate 4.1	94
An efficient organogelator for ionic liquids to prepare stable quasi-solid-state dye-sensitized solar cells. Journal of Materials Chemistry, 2006, 16, 2978-2983.	6.7	130
Porphyrin-rhodanine dyads for dye sensitized solar cells. Journal of Porphyrins and Phthalocyanines 2006, 10, 1007-1016.	, 0.8	59
Electron Transport Analysis for Improvement of Solid-State Dye-Sensitized Solar Cells Using Poly(3,4-ethylenedioxythiophene) as Hole Conductorsâ€. Journal of Physical Chemistry B, 2006, 11 25251-25258.	.0, 2.6	61
Solid-State Dye-Sensitized Solar Cells. , 2006, , 255-273.		4
Determination of electron and hole energy levels in mesoporous nanocrystalline TiO2 solid-state dy solar cell. Synthetic Metals, 2006, 156, 944-948.	ye 3.9	62
Positively charged polysilsesquioxane/iodide lonic liquid as a quasi solid-state redox electrolyte for dye-sensitized photo electrochemical cells: Infrared,29SiNMR, and electrical studies. International Journal of Photoenergy, 2006, 2006, 1-8.	2.5	9
In situ polymerization of amphiphilic diacetylene for hole transport in solid state dye-sensitized sol cells. Organic Electronics, 2006, 7, 546-550.	ar 2.6	13

70	Review of recent progress in solid-state dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2006, 90, 549-573.	6.2	628

Electrical and photovoltaic response of bulk hetero-junction device made from poly (3-phenyl azo) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 71 6.2 11 Solar Cells, 2006, 90, 1888-1904.

72	TiO2 pore-filling and its effect on the efficiency of solid-state dye-sensitized solar cells. Thin Solid Films, 2006, 500, 296-301.	1.8	237
----	--	-----	-----

#

55

57

59

61

63

64

65

67

69

#	Article	IF	CITATIONS
73	Effect of the structure of substituents on charge separation in meso-tetraphenylporphyrin/TiO2 bilayers. Thin Solid Films, 2006, 511-512, 208-213.	1.8	8
74	Novel poly(3-methylthiophene)-TiO2 hybrid materials for photovoltaic cells. Thin Solid Films, 2006, 511-512, 199-202.	1.8	29
75	Different mesoporous titania films for solid-state dye sensitised solar cells. Thin Solid Films, 2006, 511-512, 187-194.	1.8	38
76	Effect of interfacial properties and film thickness on device performance of bilayer TiO2-poly(1,4-phenylenevinylene) solar cells prepared by spin coating. Reactive and Functional Polymers, 2006, 66, 13-20.	4.1	17
77	All-Solid-State Dye-Sensitized Nanoporous TiO2 Hybrid Solar Cells with High Energy-Conversion Efficiency. Advanced Materials, 2006, 18, 2579-2582.	21.0	122
78	Solid-State Dye-Sensitized Solar Cells Using Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene] as a Hole-Transporting Material. Japanese Journal of Applied Physics, 2006, 45, 8728-8732.	1.5	12
79	On the origin of increased open circuit voltage of dye-sensitized solar cells using 4-tert-butyl pyridine as additive to the electrolyte. Applied Physics Letters, 2006, 89, 061110.	3.3	93
80	Low Temperature Properties of Organic-Inorganic Ag / p-CuPc/ n-GaAs / Ag Photoelectric Sensor. , 2006, , .		2
81	Comparative study of hole transport in polyspirobifluorene polymers measured by the charge-generation layer time-of-flight technique. Journal of Applied Physics, 2006, 99, 023712.	2.5	42
82	Effect of nanocrystalline-TiO ₂ morphology on the performance of polymer heterojunction solar cells. Journal Physics D: Applied Physics, 2007, 40, 5034-5038.	2.8	17
83	Light Energy Conversion and Storage with Soft Carbonaceous Materials that Solidify Mesoscopic Electrochemical Interfaces. Chemistry Letters, 2007, 36, 480-487.	1.3	33
84	Plastic and Solid-state Dye-sensitized Solar Cells Incorporating Single-wall Carbon Nanotubes. Chemistry Letters, 2007, 36, 466-467.	1.3	42
85	Spiro Compounds for Organic Optoelectronics. Chemical Reviews, 2007, 107, 1011-1065.	47.7	915
86	Polymer Solar Cells. , 2007, , 1-86.		37
87	Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells. Applied Physics Letters, 2007, 91, .	3.3	388
88	Quantum-dot-sensitized solar cells: Assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition. Applied Physics Letters, 2007, 90, 143517.	3.3	224
89	BaCO3Modification of TiO2Electrodes in Quasi-Solid-State Dye-Sensitized Solar Cells:  Performance Improvement and Possible Mechanism. Journal of Physical Chemistry C, 2007, 111, 8075-8079.	3.1	56
90	A Reappraisal of the Electron Diffusion Length in Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2007, 111, 16100-16104.	3.1	82

	CHAHON R	CHANON REPORT	
# 91	ARTICLE Recent Advances in Dye-Sensitized Solar Cells. Advances in OptoElectronics, 2007, 2007, 1-10.	IF 0.6	Citations
92	A Thermoplastic Gel Electrolyte for Stable Quasiâ€Solidâ€State Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2007, 17, 2645-2652.	14.9	210
93	Filling of TiO ₂ Nanotubes by Selfâ€Doping and Electrodeposition. Advanced Materials, 2007, 19, 3027-3031.	21.0	290
94	A Novel Thermosetting Gel Electrolyte for Stable Quasiâ€5olidâ€5tate Dyeâ€5ensitized Solar Cells. Advanced Materials, 2007, 19, 4006-4011.	21.0	275
95	New Type High Efficient Quasiâ€Solidâ€State Ionic Liquid Electrolyte for Dyeâ€Sensitized Solar Cells. Chinese Journal of Chemistry, 2007, 25, 1601-1603.	4.9	3
96	Investigation of PEO-imidazole ionic liquid oligomer electrolytes for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2007, 91, 785-790.	6.2	82
97	Interactions of low-energy electrons with Ir(ppy)3 in the gas phase. Chemical Physics Letters, 2007, 434, 11-14.	2.6	13
98	Influence of molecular weight of PEG on the property of polymer gel electrolyte and performance of quasi-solid-state dye-sensitized solar cells. Electrochimica Acta, 2007, 52, 6673-6678.	5.2	62
99	Quasi-solid-state dye-sensitized solar cells: Pt and PEDOT:PSS counter electrodes applied to gel electrolyte assemblies. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 187, 395-401.	3.9	93
100	Novel counter electrodes based on NiP-plated glass and Ti plate substrate for dye-sensitized solar cells. Journal of Materials Science, 2007, 42, 5281-5285.	3.7	12
101	Recent Developments in Solid‧tate Dye‧ensitized Solar Cells. ChemSusChem, 2008, 1, 699-707.	6.8	286
102	Solidâ€State Organic/Inorganic Hybrid Solar Cells Based on Poly(octylthiophene) and Dyeâ€Sensitized Nanobrookite and Nanoanatase TiO ₂ Electrodes. European Journal of Inorganic Chemistry, 2008, 2008, 903-910.	2.0	42
103	Performance of a new polymer electrolyte incorporated with diphenylamine in nanocrystalline dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 2008, 92, 1718-1722.	6.2	82
104	Hydrazone based molecular glasses for solid-state dye-sensitized solar cells. Thin Solid Films, 2008, 516, 7260-7265.	1.8	29
105	A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors. Inorganica Chimica Acta, 2008, 361, 684-698.	2.4	276
106	Hybrid solar cells. Inorganica Chimica Acta, 2008, 361, 581-588.	2.4	279
108	A new study on solid-state cyanine dye-sensitized solar cells. Research on Chemical Intermediates, 2008, 34, 241-248.	2.7	8
109	Dye-sensitized solar cells: A safe bet for the future Energy and Environmental Science, 2008, 1, 655.	30.8	373

#	Article	IF	CITATIONS
110	Enhancement in dye-sensitized solar cells based on MgO-coated TiO ₂ electrodes by reactive DC magnetron sputtering. Nanotechnology, 2008, 19, 215704.	2.6	74
111	Influence of Doped Anions on Poly(3,4-ethylenedioxythiophene) as Hole Conductors for Iodine-Free Solid-State Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2008, 130, 1258-1263.	13.7	263
112	An All-Solid-State Dye-Sensitized Solar Cell-Based Poly(<i>N</i> -alkyl-4-vinyl-pyridine iodide) Electrolyte with Efficiency of 5.64%. Journal of the American Chemical Society, 2008, 130, 11568-11569.	13.7	243
113	Effect of Doping Anions' Structures on Poly(3,4-ethylenedioxythiophene) as Hole Conductors in Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2008, 112, 11569-11574.	3.1	26
114	Assembly of CdS quantum dots onto mesoscopic TiO ₂ films for quantum dot-sensitized solar cell applications. Nanotechnology, 2008, 19, 045602.	2.6	128
115	Surface State Passivation Effect for Nanoporous TiO2Electrode Evaluated by Thermally Stimulated Current and Application to All-Solid State Dye-Sensitized Solar Cells. Japanese Journal of Applied Physics, 2008, 47, 505-508.	1.5	25
116	Fabrication of Double Layered Hybrid Solar Cells Consisting of Low-Temperature Anatase Titanium Oxide and Conducting Polymer. Japanese Journal of Applied Physics, 2008, 47, 509-512.	1.5	16
118	Metalâ€Free Organic Dyes for Dyeâ€Sensitized Solar Cells: From Structure: Property Relationships to Design Rules. Angewandte Chemie - International Edition, 2009, 48, 2474-2499.	13.8	2,545
119	Effect of Surface Treatment on the Efficiency of Bulk Hetero-Junction Solar Cells Prepared on Low-Temperature Processed Titanium Dioxide Fim. Molecular Crystals and Liquid Crystals, 2009, 504, 104-113.	0.9	10
120	ZnO solid-state dye sensitized solar cells using composite electrolyte of poly(3-hexylthiophene-2,5-diyl) and carbon nanotubes. Journal of Renewable and Sustainable Energy, 2009, 1, 033109.	2.0	16
121	Optimization the solid-state electrolytes for dye-sensitized solar cells. Energy and Environmental Science, 2009, 2, 283-291.	30.8	85
122	Template-free synthesis of closed-microporous hybrid and its application in quasi-solid-state dye-sensitized solar cells. Energy and Environmental Science, 2009, 2, 524.	30.8	66
123	Steady enhancement of organic solar cell performance by doping phosphorescent iridium complex. Proceedings of SPIE, 2010, , .	0.8	0
124	A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. , 2010, , 88-93.		0
125	PF127 aided preparation of super-porous TiO2 film used in highly efficient quasi-solid-state dye-sensitized solar cell. Journal of Materials Science: Materials in Electronics, 2010, 21, 1000-1004.	2.2	6
126	All-solid-state electrolytes consisting of ionic liquid and carbon black for efficient dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 8-14.	3.9	66
127	Efficient and Stable Solidâ€State Dyeâ€Sensitized Solar Cells Based on a Highâ€Molarâ€Extinctionâ€Coefficient Sensitizer. Small, 2010, 6, 319-324.	10.0	74
128	Solid State Photovoltaic Cells Using Poly-[2-Methoxy-5-(2-Ethylhexyloxy)-Phenylene Vinylene as Hole Transport Material. Materials Science Forum, 0, 663-665, 844-847.	0.3	0

#	Article	IF	CITATIONS
129	Quasi-Solid State Dye-sensitized Solar Cells Based on Polyvinylpyrrolidone With Ionic Liquid. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2010, 32, 1559-1568.	2.3	28
130	Nanostructured Solar Cells. Key Engineering Materials, 2010, 444, 229-254.	0.4	0
131	Solid-state dye-sensitized solar cells based on ZnO nanocrystals. Nanotechnology, 2010, 21, 205203.	2.6	45
132	Toward Plasmon-Induced Photoexcitation of Molecules. Journal of Physical Chemistry Letters, 2010, 1, 2470-2487.	4.6	99
133	All-solid-state dye-sensitized solar cells incorporating SWCNTs and crystal growth inhibitor. Journal of Materials Chemistry, 2010, 20, 3619.	6.7	63
135	lodine-free high efficient quasi solid-state dye-sensitized solar cell containing ionic liquid and polyaniline-loaded carbon black. Journal of Materials Chemistry, 2010, 20, 2356.	6.7	114
136	Dye-sensitized solar cell based on blood mimetic thixotropy sol–gel electrolyte. Chemical Communications, 2011, 47, 997-999.	4.1	14
137	Microwave assisted CdSe quantum dot deposition on TiO2 films for dye-sensitized solar cells. Nanoscale, 2011, 3, 2188.	5.6	35
138	One-Step Synthesis of CdS Sensitized TiO ₂ Photoanodes for Quantum Dot-Sensitized Solar Cells by Microwave Assisted Chemical Bath Deposition Method. ACS Applied Materials & Interfaces, 2011, 3, 1472-1478.	8.0	84
139	Photosensitizers in Solar Energy Conversion. , 2011, , 527-617.		2
140	Modification of nonlinear optical dyes for dye sensitized solar cells: a new use for a familiar acceptor. Journal of Materials Chemistry, 2011, 21, 4242.	6.7	21
142	Simple, Unambiguous Theoretical Approach to Oxidation State Determination via First-Principles Calculations. Inorganic Chemistry, 2011, 50, 10259-10267.	4.0	103
144	Solid-state dye-sensitized solar cell with a charge transfer layer comprising two ionic liquids and a carbon material. Journal of Materials Chemistry, 2011, 21, 15471.	6.7	28
145	Ionic Liquid Based Electrolytes for Dye-Sensitized Solar Cells. , 0, , .		2
146	Dye Sensitized Solar Cells as an Alternative Approach to the Conventional Photovoltaic Technology Based on Silicon - Recent Developments in the Field and Large Scale Applications. , 0, , .		5
147	Influence of Ion Induced Local Coulomb Field and Polarity on Charge Generation and Efficiency in Poly(3â€Hexylthiophene)â€Based Solidâ€5tate Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2011, 21, 2571-2579.	, 14.9	68
148	Enhanced Performance of I ₂ â€Free Solidâ€State Dyeâ€Sensitized Solar Cells with Conductive Polymer up to 6.8%. Advanced Functional Materials, 2011, 21, 4633-4639.	14.9	76
149	TiO ₂ Nanocrystals Synthesized by Laser Pyrolysis for the Upâ€Scaling of Efficient Solidâ€State Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2011, 1, 908-916.	19.5	29

#	Article	IF	CITATIONS
150	Quasi-gel-state ionic liquid electrolyte with alkyl-pyrazolium iodide for dye-sensitized solar cells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 996-1001.	3.5	19
151	In Situ Synthesis and Integration of Polymer Electrolytes in Nanostructured Electrodes for Photovoltaic Applications. Materials Research Society Symposia Proceedings, 2011, 1312, 1.	0.1	1
152	Diphenylamino-substituted derivatives of 9-phenylcarbazole as glass-forming hole-transporting materials for solid state dye sensitized solar cells. Synthetic Metals, 2012, 162, 1997-2004.	3.9	21
153	Solid-state dye-sensitized solar cells based on spirofluorene (spiro-OMeTAD) and arylamines as hole transporting materials. Physical Chemistry Chemical Physics, 2012, 14, 14099.	2.8	99
154	A comparative study of charge transport in quasi-solid state dye-sensitized solar cells using polymer or nanocomposite gel electrolytes. Journal of Electroanalytical Chemistry, 2012, 687, 45-50.	3.8	19
155	Recent Trends in High Efficiency Photo-Electrochemical Solar Cell Using Dye-Sensitised Photo-Electrodes and Ionic Liquid Based Redox Electrolytes. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2012, 82, 5-19.	1.2	10
156	Polymer-dispersed MWCNT gel electrolytes for high performance of dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 6982.	6.7	53
157	Efficiency enhancement in dye sensitized solar cells through co-sensitization of TiO2 nanocrystalline electrodes. Applied Physics Letters, 2012, 100, .	3.3	29
158	A solid-state CdSe quantum dot sensitized solar cell based on a quaterthiophene as a hole transporting material. Physical Chemistry Chemical Physics, 2012, 14, 5801.	2.8	37
159	Solidâ€state dyeâ€sensitized and bulk heterojunction solar cells using TiO ₂ and ZnO nanostructures: recent progress and new concepts at the borderline. Polymer International, 2012, 61, 355-373.	3.1	104
160	Iodine-free solid-state dye-sensitized solar cells with fullerene derivatives as hole transporting materials. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 231, 64-69.	3.9	4
161	Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell. Journal of Physical Chemistry Letters, 2013, 4, 2423-2429.	4.6	1,232
162	Monolithic all-solid-state dye-sensitized solar cells. Frontiers of Optoelectronics, 2013, 6, 359-372.	3.7	12
163	Co-sensitization of N719 and RhCL dyes on carboxylic acid treated TiO2 for enhancement of light harvesting and reduced recombination. Organic Electronics, 2013, 14, 3098-3108.	2.6	23
164	Photoinduced polymerization: An innovative, powerful and environmentally friendly technique for the preparation of polymer electrolytes for dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, 16, 1-21.	11.6	102
166	The preparation of carbon dots/ionic liquids-based electrolytes and their applications in quasi-solid-state dye-sensitized solar cells. Electrochimica Acta, 2013, 88, 100-106.	5.2	16
167	Molecular engineering of organic sensitizers for highly efficient gel-state dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 8226.	10.3	19
168	Effects of <scp><scp>Eu</scp></scp> ³⁺ and <scp><scp>Er</scp></scp> ³⁺ Doping on Photoelectrical Performance of Dyeâ€Sensitized Solar Cells. Journal of the American Ceramic Society, 2013, 96, 3108-3113	3.8	7

#	Article	IF	CITATIONS
169	Solid-State Ionic Liquid Based Electrolytes for Dye-Sensitized Solar Cells. , 0, , .		2
170	Aerosol assisted chemical vapour deposited (AACVD) of TiO2 thin film as compact layer for dye-sensitised solar cell. Ceramics International, 2014, 40, 8045-8052.	4.8	28
171	Insights into meso-structured photoanodes based on titanium oxide thin film with high dye adsorption ability. Journal of Alloys and Compounds, 2014, 609, 116-124.	5.5	13
172	Star-shaped carbazole derivative based efficient solid-state dye sensitized solar cell. Journal of Power Sources, 2014, 253, 230-238.	7.8	18
173	Organolead Halide Perovskite: New Horizons in Solar Cell Research. Journal of Physical Chemistry C, 2014, 118, 5615-5625.	3.1	616
174	Fabrication of Flexible Plastic Solid-State Dye-Sensitized Solar Cells Using Low Temperature Techniques. Journal of Physical Chemistry C, 2014, 118, 16352-16357.	3.1	17
175	List of Most-Cited Publications of Professor Michael GrÃæel. Journal of Physical Chemistry C, 2014, 118, 16311-16318.	3.1	1
176	Review on Schiff bases and their metal complexes as organic photovoltaic materials. Renewable and Sustainable Energy Reviews, 2014, 36, 220-227.	16.4	171
177	Beyond Efficiency: the Challenge of Stability in Mesoscopic Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1501066.	19.5	395
178	Applications of Mesoporous Ordered Semiconductor Materials $\hat{a} \in$ "Case Study of TiO2. , 0, , .		5
179	Air-Exposure Induced Dopant Redistribution and Energy Level Shifts in Spin-Coated Spiro-MeOTAD Films. Chemistry of Materials, 2015, 27, 562-569.	6.7	357
180	Modeling the Growth Kinetics of Anodic TiO ₂ Nanotubes. Journal of Physical Chemistry Letters, 2015, 6, 845-851.	4.6	26
181	Electrolytes in Dye-Sensitized Solar Cells. Chemical Reviews, 2015, 115, 2136-2173.	47.7	852
182	Dye Sensitized Solar Cells for Conversion of Solar Energy into Electricity. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2015, 37, 807-816.	2.3	13
183	Printable solar cells. Wiley Interdisciplinary Reviews: Energy and Environment, 2015, 4, 51-73.	4.1	10
184	Effects of polymer chemistry on polymer-electrolyte dye sensitized solar cell performance: A theoretical and experimental investigation. Journal of Power Sources, 2015, 274, 156-164.	7.8	25
185	An affordable green energy source—Evolving through current developments of organic, dye sensitized, and perovskite solar cells. International Journal of Green Energy, 2016, 13, 859-906.	3.8	4
186	Experimental and theoretical investigation of dye sensitized solar cells integrated with crosslinked poly(vinylpyrrolidone) polymer electrolyte using initiated chemical vapor deposition. Thin Solid Films, 2017, 635, 9-16.	1.8	11

#	Article	IF	CITATIONS
187	Moving into the domain of perovskite sensitized solar cell. Renewable and Sustainable Energy Reviews, 2017, 72, 907-915.	16.4	20
189	Fabrication of dye sensitized solar cells with improved multi-layer photonodes of hydrothermally grown TiO2 nanocrystals in different autoclaving pHs. Journal of Materials Science: Materials in Electronics, 2017, 28, 9548-9558.	2.2	2
190	New-generation integrated devices based on dye-sensitized and perovskite solar cells. Energy and Environmental Science, 2018, 11, 476-526.	30.8	364
191	Polymer electrolyte integrated dye sensitized solar cells endow enhanced stability: Photoanode thickness and light intensity on cell performance. Solar Energy, 2018, 169, 159-166.	6.1	6
192	The researcher's guide to solid-state dye-sensitized solar cells. Journal of Materials Chemistry C, 2018, 6, 11903-11942.	5.5	87
193	Poly(ionic liquid)s for dye-sensitized solar cells: A mini-review. European Polymer Journal, 2018, 108, 420-428.	5.4	46
194	Progress in tailoring perovskite based solar cells through compositional engineering: Materials properties, photovoltaic performance and critical issues. Materials Today Energy, 2018, 9, 440-486.	4.7	58
195	Solar Cells Based on Sol-Gel Films. , 2018, , 2555-2572.		0
196	Dye-Sensitized Solar Cells. , 2018, , 183-239.		6
197	Progress on Electrolytes Development in Dye-Sensitized Solar Cells. Materials, 2019, 12, 1998.	2.9	152
198	Insights Into Dye-Sensitized Solar Cells From Macroscopic-Scale First-Principles Mathematical Modeling. , 2019, , 83-119.		2
199	A Review of Perovskites Solar Cell Stability. Advanced Functional Materials, 2019, 29, 1808843.	14.9	835
200	Dye-Sensitized Solar Cell. , 2021, , 325-372.		0
201	Self-Assembled Multinuclear Complexes for Cobalt(II/III) Mediated Sensitized Solar Cells. Applied Sciences (Switzerland), 2021, 11, 2769.	2.5	2
202	Recent progress in organic hole transport materials for energy applications. Dyes and Pigments, 2021, 193, 109465.	3.7	27
203	Optical properties of PVC composite modified during light exposure to give high absorption enhancement. Journal of Non-Crystalline Solids, 2021, 570, 120946.	3.1	18
204	Effect of Crystal Growth Inhibitors on Efficiency Enhancement of Dye-Sensitized Solar Cell. International Journal of Scientific and Engineering Research, 2018, 9, 1442-1446.	0.1	1
205	New Type High Efficient Quasi-Solid-State Ionic Liquid Electrolytes for Dye-Sensitized Solar Cells. , 2008, , 1345-1347.		0

#	ARTICLE	IF	CITATIONS
206	Next-Generation Hybrid Nanocomposite Materials Based on Conducting Organic Polymers: Energy Storage and Conversion Devices. , 2009, , 289-319.		3
208	Solid-State Polymer/ZnO Hybrid Dye Sensitized Solar Cell: A Review. Material Science Research India, 2012, 9, 69-80.	0.7	0
209	Photovoltaics: Organic-Based Solar Cells. , 2014, , 3657-3672.		0
210	FOTOVOLTAİK ÜRETİM TEKNOLOJİLERİ ÜZERİNE BİR ARAŞTIRMA. Muğla Journal of Science and 1, 27-27.	Fechnology 0.1	y, 2015, 0
211	Dye Sensitized Solar Cells. , 2016, , 873-873.		95
212	Solar Cells Based on Sol–Gel Films. , 2017, , 1-19.		0
214	Photovoltaic Performances of Dye-Sensitized Solar Cells Based on Modified Polybutadiene Matrix Electrolytes by Sol-Gel Process. Polymers, 2022, 14, 2347.	4.5	2
215	Ionic Liquidâ€Based Polymer Nanocomposites for Sensors, Energy, Biomedicine, and Environmental Applications: Roadmap to the Future. Advanced Science, 2022, 9, .	11.2	62

1.9

0

216 Molecular Engineering of Photosensitizers for Solidâ€State Dyeâ€Sensitized Solar Cells: Recent Developments and Perspectives. ChemistryOpen, 2023, 12, .