Use of a portable real-time reverse transcriptasepolyme detection of foot-and-mouth disease virus

Journal of the American Veterinary Medical Association 220, 1636-1642

DOI: 10.2460/javma.2002.220.1636

Citation Report

#	Article	IF	Citations
1	Bioterrorism: What can we do?. Journal of the Royal Society of Medicine, 2002, 95, 479-480.	1.1	3
2	Development of a novel quantitative real-time RT-PCR assay for the simultaneous detection of all serotypes of Foot-and-mouth disease virus. Archives of Virology, 2003, 148, 2005-2021.	0.9	96
3	The Pathogenesis and Diagnosis of Foot-and-Mouth Disease. Journal of Comparative Pathology, 2003, 129, 1-36.	0.1	660
4	Evaluation of automated RT-PCR to accelerate the laboratory diagnosis of foot-and-mouth disease virus. Journal of Virological Methods, 2003, 107, 129-139.	1.0	107
5	Validation of a LightCycler-based reverse transcription polymerase chain reaction for the detection of foot-and-mouth disease virus. Journal of Virological Methods, 2003, 113, 35-41.	1.0	50
6	Control and eradication of foot-and-mouth disease. Virus Research, 2003, 91, 101-144.	1.1	251
7	The history of research in foot-and-mouth disease. Virus Research, 2003, 91, 3-7.	1.1	91
8	Conceptual Foundations for Infectious Disease Surveillance. Journal of Veterinary Diagnostic Investigation, 2003, 15, 501-514.	0.5	56
9	Real-time PCR provides improved detection and titer determination of bacteriophage. BioTechniques, 2003, 35, 368-375.	0.8	34
10	Respiratory medical societies and the threat of bioterrorism. Thorax, 2004, 59, 265-267.	2.7	8
11	A practitioner's primer on foot-and-mouth disease. Journal of the American Veterinary Medical Association, 2004, 224, 1261-1268.	0.2	15
12	CRITICAL BEHAVIOR IN CELLULAR AUTOMATA ANIMAL DISEASE TRANSMISSION MODEL. International Journal of Modern Physics C, 2004, 15, 149-162.	0.8	4
13	Implementation in Australia of molecular diagnostic techniques for the rapid detection of foot and mouth disease virus. Australian Veterinary Journal, 2004, 82, 421-425.	0.5	11
14	Animal Genomics Australian Veterinary Journal, 2004, 82, 425-425.	0.5	0
15	Detection and quantitation of bovine respiratory syncytial virus using real-time quantitative RT-PCR and quantitative competitive RT-PCR assays. Journal of Virological Methods, 2004, 121, 1-6.	1.0	16
16	Foot-and-Mouth Disease. Clinical Microbiology Reviews, 2004, 17, 465-493.	5.7	1,179
17	Development and evaluation of a multiplex PCR for differentiation of foot-and-mouth disease virus strains native to India. Journal of Virological Methods, 2005, 126, 1-11.	1.0	74
18	Rapid, single-tube method for quantitative preparation and analysis of RNA and DNA in samples as small as one cell. BMC Biotechnology, 2005, 5, 2.	1.7	34

ITATION REDO

#	ARTICLE Constitutive Expression of Alpha Interferon by Skin Dendritic Cells Confers Resistance to Infection by	IF	CITATIONS
20	Foot-and-Mouth Disease Virus. Journal of Virology, 2005, 79, 4838-4847. Vaccination against foot-and-mouth disease virus confers complete clinical protection in 7 days and	1.5	47
21	Novel reverse transcription loop-mediated isothermal amplification for rapid detection of foot-and-mouth disease virus. Archives of Virology, 2006, 151, 1093-1106.	0.9	202
22	A one-step multiplex real-time RT-PCR for detection and typing of bovine viral diarrhea viruses. Veterinary Microbiology, 2006, 116, 37-44.	0.8	64
23	Foot-and-mouth disease virus: A first inter-laboratory comparison trial to evaluate virus isolation and RT-PCR detection methods. Veterinary Microbiology, 2006, 117, 130-140.	0.8	35
24	Detection of three porcine vesicular viruses using multiplex real-time primer-probe energy transfer. Journal of Virological Methods, 2006, 134, 176-182.	1.0	18
25	Armored RNA as Virus Surrogate in a Real-Time Reverse Transcriptase PCR Assay Proficiency Panel. Journal of Clinical Microbiology, 2006, 44, 67-70.	1.8	35
26	Detection of Foot-and-Mouth Disease Virus: Comparative Diagnostic Sensitivity of Two Independent Real-Time Reverse Transcription-Polymerase Chain Reaction Assays. Journal of Veterinary Diagnostic Investigation, 2006, 18, 93-97.	0.5	82
27	Human African Trypanosomiasis: Epidemiology and Control. Advances in Parasitology, 2006, 61, 167-221.	1.4	84
28	Non-systemic erosive stomatitis of unknown aetiology in a dairy cow herd in New Zealand. New Zealand Veterinary Journal, 2007, 55, 198-202.	0.4	0
29	Performance of a Foot-and-Mouth Disease virus Reverse Transcription-Polymerase Chain Reaction with Amplification Controls between Three Real-Time Instruments. Journal of Veterinary Diagnostic Investigation, 2007, 19, 9-20.	0.5	77
30	Reduction of foot-and-mouth disease (FMD) virus load in nasal excretions, saliva and exhaled air of vaccinated pigs following direct contact challenge. Vaccine, 2007, 25, 7806-7817.	1.7	32
31	Thermal Inactivation of Foot-and-Mouth Disease Virus in Milk Using High-Temperature, Short-Time Pasteurization. Journal of Dairy Science, 2007, 90, 3202-3211.	1.4	16
32	Degradation of Nuclear Factor Kappa B during Foot-and-Mouth Disease Virus Infection. Journal of Virology, 2007, 81, 12803-12815.	1.5	140
33	Implementation of a one-step real-time RT-PCR protocol for diagnosis of foot-and-mouth disease. Journal of Virological Methods, 2007, 143, 81-85.	1.0	144
34	Development of a novel recombinant encapsidated RNA particle: Evaluation as an internal control for diagnostic RT-PCR. Journal of Virological Methods, 2007, 146, 218-225.	1.0	16
35	Genetic characterization and molecular epidemiology of foot-and-mouth disease viruses isolated from Afghanistan in 2003–2005. Virus Genes, 2008, 36, 401-413.	0.7	31
36	Diagnosis of foot-and mouth disease by real time reverse transcription polymerase chain reaction under field conditions in Brazil. BMC Veterinary Research, 2008, 4, 53.	0.7	25

#	Article	IF	CITATIONS
37	Evaluation of a novel proximity ligation assay for the sensitive and rapid detection of foot-and-mouth disease virus. Veterinary Microbiology, 2008, 127, 227-236.	0.8	23
38	Diagnostic specificity of a real-time RT-PCR in cattle for foot-and-mouth disease and swine for foot-and-mouth disease and classical swine fever based on non-invasive specimen collection. Veterinary Microbiology, 2008, 132, 158-164.	0.8	8
39	The Importance of Quality Assurance/Quality Control of Diagnostics to Increase the Confidence in Global Foot-and-Mouth Disease Control. Transboundary and Emerging Diseases, 2008, 55, 35-45.	1.3	8
40	Improved Diagnosis for Nine Viral Diseases Considered as Notifiable By the World Organization for Animal Health. Transboundary and Emerging Diseases, 2008, 55, 215-225.	1.3	9
41	Rapid and differential diagnosis of foot-and-mouth disease, swine vesicular disease, and vesicular stomatitis by a new multiplex RT-PCR assay. Journal of Virological Methods, 2008, 147, 301-311.	1.0	47
42	Multiplexed molecular assay for rapid exclusion of foot-and-mouth disease. Journal of Virological Methods, 2008, 153, 61-69.	1.0	16
43	Pathogenic Characteristics of the Korean 2002 Isolate of Foot-and-Mouth Disease Virus Serotype O in Pigs and Cattle. Journal of Comparative Pathology, 2008, 138, 204-214.	0.1	33
44	Prospects for rapid diagnosis of footâ€andâ€mouth disease in the field using reverse transcriptaseâ€ <scp>pcr</scp> . Veterinary Record, 2008, 162, 315-316.	0.2	28
45	Detection of <i>Porcine reproductive and respiratory syndrome virus</i> infection in porcine oral fluid samples: a longitudinal study under experimental conditions. Journal of Veterinary Diagnostic Investigation, 2008, 20, 156-163.	0.5	147
46	Diagnostic Evaluation of Multiplexed Reverse Transcription-PCR Microsphere Array Assay for Detection of Foot-and-Mouth and Look-Alike Disease Viruses. Journal of Clinical Microbiology, 2008, 46, 1081-1089.	1.8	29
47	Recovery of infectious foot-and-mouth disease virus from full-length genomic cDNA clones using an RNA polymerase I system. Acta Biochimica Et Biophysica Sinica, 2009, 41, 998-1007.	0.9	13
48	Performance of Real-Time Reverse Transcription Polymerase Chain Reaction for the Detection of Foot-and-Mouth Disease Virus during Field Outbreaks in the United Kingdom in 2007. Journal of Veterinary Diagnostic Investigation, 2009, 21, 321-330.	0.5	49
49	Simple and Rapid Lateral-Flow Assay for the Detection of Foot-and-Mouth Disease Virus. Vaccine Journal, 2009, 16, 1660-1664.	3.2	36
50	Detection of foot-and-mouth disease virus infected cattle using infrared thermography. Veterinary Journal, 2009, 180, 317-324.	0.6	98
51	Development and laboratory validation of a lateral flow device for the detection of foot-and-mouth disease virus in clinical samples. Journal of Virological Methods, 2009, 155, 10-17.	1.0	77
52	A novel single-cell quantitative real-time RT-PCR method for quantifying foot-and-mouth disease viral RNA. Journal of Virological Methods, 2009, 155, 150-156.	1.0	15
53	Fluorescence-based multiplex real-time RT-PCR arrays for the detection and serotype determination of foot-and-mouth disease virus. Journal of Virological Methods, 2009, 161, 183-191.	1.0	26
54	Validation of two real-time RT-PCR methods for foot-and-mouth disease diagnosis: RNA-extraction, matrix effect, uncertainty of measurement and precision. Journal of Virological Methods, 2009, 160, 157-162.	1.0	29

#	Article	IF	CITATIONS
55	A review of RT-PCR technologies used in veterinary virology and disease control: Sensitive and specific diagnosis of five livestock diseases notifiable to the World Organisation for Animal Health. Veterinary Microbiology, 2009, 139, 1-23.	0.8	183
56	All-in-One Tube Method for Quantitative Gene Expression Analysis in Oligo-dT30 Immobilized PCR Tube Coated with MPC Polymer. Analytical Sciences, 2009, 25, 109-114.	0.8	1
57	A one-step real-time reverse transcription-polymerase chain reaction detection of classical swine fever virus using a minor groove binding probe. Veterinary Research Communications, 2010, 34, 359-369.	0.6	6
58	Early events in the pathogenesis of foot-and-mouth disease in cattle after controlled aerosol exposure. Veterinary Journal, 2010, 183, 46-53.	0.6	114
59	Domain disruptions of individual 3B proteins of foot-and-mouth disease virus do not alter growth in cell culture or virulence in cattle. Virology, 2010, 405, 149-156.	1.1	23
60	Options for Decentralized Testing of Suspected Secondary Outbreaks of Foot-and-mouth Disease. Transboundary and Emerging Diseases, 2010, 57, no-no.	1.3	13
61	Molecular Characterization of Foot-and-Mouth Disease Viruses Collected from Sudan. Transboundary and Emerging Diseases, 2010, 57, 305-314.	1.3	41
62	Pathogenicity and Molecular Characterization of Emerging Porcine Reproductive and Respiratory Syndrome Virus in Vietnam in 2007. Transboundary and Emerging Diseases, 2010, 57, 315-329.	1.3	44
63	Plant and veterinary disease diagnosis: a generic approach to the development of field tools for rapid decision making?. EPPO Bulletin, 2010, 40, 34-39.	0.6	8
64	The Early Pathogenesis of Foot-and-Mouth Disease in Cattle After Aerosol Inoculation. Veterinary Pathology, 2010, 47, 1048-1063.	0.8	134
65	Loss of Plasmacytoid Dendritic Cell Function Coincides with Lymphopenia and Viremia During Foot-and-Mouth Disease Virus Infection. Viral Immunology, 2010, 23, 29-41.	0.6	45
66	Specific Detection of Rinderpest Virus by Real-Time Reverse Transcription-PCR in Preclinical and Clinical Samples from Experimentally Infected Cattle. Journal of Clinical Microbiology, 2010, 48, 4094-4101.	1.8	7
67	Pan-serotypic detection of foot-and-mouth disease virus by RT linear-after-the-exponential PCR. Molecular and Cellular Probes, 2010, 24, 250-255.	0.9	14
68	Design and optimization of a novel reverse transcription linearâ€afterâ€theâ€exponential PCR for the detection of footâ€andâ€mouth disease virus. Journal of Applied Microbiology, 2010, 109, 180-189.	1.4	19
69	Foot and Mouth Disease : Etiology, Epidemiology and Control Measures. Infection and Chemotherapy, 2011, 43, 178.	1.0	6
70	A Brief Review on Diagnosis of Foot-and-Mouth Disease of Livestock: Conventional to Molecular Tools. Veterinary Medicine International, 2011, 2011, 1-17.	0.6	80
71	Rescue of Foot-and-Mouth Disease Viruses That Are Pathogenic for Cattle from Preserved Viral RNA Samples. PLoS ONE, 2011, 6, e14621.	1.1	31
72	Molecular Characterisation of Foot-and-Mouth Disease Viruses from Pakistan, 2005-2008. Transboundary and Emerging Diseases, 2011, 58, 166-172.	1.3	19

ARTICLE IF CITATIONS Molecular Characterization of Foot-and-Mouth Disease Virus: Implications for Disease Control in 73 1.324 Bangladesh. Transboundary and Emerging Diseases, 2011, 58, 240-246. Multiplex RT-PCR detection and microarray typing of vesicular disease viruses. Journal of Virological 74 1.0 Methods, 2011, 175, 236-245. Rapid typing of foot-and-mouth disease serotype Asia 1 by reverse transcription loop-mediated 75 1.4 23 isothermal amplification. Virology Journal, 2011, 8, 489. Estimating Disease Prevalence Using Inverse Binomial Pooled Testing. Journal of Agricultural, Biological, and Environmental Statistics, 2011, 16, 70-87. A highly sensitive detection for foot-and-mouth disease virus by gold nanopariticle improved 77 1.4 25 immuno-PCR. Virology Journal, 2011, 8, 148. Genetic diversity of foot-and-mouth disease virus serotype O in Pakistan and Afghanistan, 1997–2009. Infection, Genetics and Evolution, 2011, 11, 1229-1238. 1.0 Beyond the Consensus: Dissecting Within-Host Viral Population Diversity of Foot-and-Mouth Disease 79 1.5 127 Virus by Using Next-Generation Genome Sequencing. Journal of Virology, 2011, 85, 2266-2275. Detection of Foot-and-mouth Disease Serotype O by ELISA Using a Monoclonal Antibody. Hybridoma, 2012, 31, 462-464. Bovine Type III Interferon Significantly Delays and Reduces the Severity of Foot-and-Mouth Disease in 81 1.5 67 Cattle. Journal of Virology, 2012, 86, 4477-4487. Emergence of Foot-and-Mouth Disease Virus SAT 2 in Egypt During 2012. Transboundary and Emerging 1.3 Diseases, 2012, 59, 476-481. Early detection and visualization of human adenovirus serotype 5-viral vectors carrying foot-and-mouth disease virus or luciferase transgenes in cell'lines and bovine tissués. Vaccine, 2012, 83 1.7 5 30, 1690-1701. An alternate delivery system improves vaccine performance against foot-and-mouth disease virus (FMDV). Vaccine, 2012, 30, 3106-3111. Sensitivity of oral fluids for detecting influenza A virus in populations of vaccinated and 85 1.5 54 nonâ€vaccinated pigs. Influenza and Other Respiratory Viruses, 2012, 6, 110-118. Detection and genetic characterization of foot-and-mouth disease viruses in samples from clinically 1.3 healthy animals in endemic settings. Transboundary and Emerging Diseases, 2012, 59, 429-440. Rapid detection of foot-and-mouth disease virus using a field-portable nucleic acid extraction and 87 33 0.6 real-time PCR amplification platform. Veterinary Journal, 2012, 193, 67-72. Detection of foot-and-mouth disease virus RNA in pharyngeal epithelium biopsy samples obtained from infected cattle: Investigation of possible sites of virus replication and persistence. Veterinary Microbiology, 2012, 154, 230-239. Evolution of foot-and-mouth disease virus intra-sample sequence diversity during serial transmission 89 1.1 56 in bovine hosts. Veterinary Research, 2013, 44, 12. Characterization of Cytotoxic T Lymphocyte Function After Foot-and-Mouth Disease Virus Infection and Vaccination. Viral Immunology, 2013, 26, 239-249.

#	Article	IF	CITATIONS
91	Display of the VP1 epitope of foot-and-mouth disease virus on bacteriophage T7 and its application in diagnosis. Journal of Virological Methods, 2013, 193, 611-619.	1.0	15
92	Foot-and-mouth disease: past, present and future. Veterinary Research, 2013, 44, 116.	1.1	339
93	Surveillance of foot-and-mouth disease (FMD) in susceptible wildlife and domestic ungulates in Southeast of Bulgaria following a FMD case in wild boar. Veterinary Microbiology, 2013, 166, 84-90.	0.8	35
94	Detection of Foot-and-Mouth Disease Serotype O by ELISA Using a Monoclonal Antibody. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2013, 32, 47-49.	0.8	1
95	Development of a universal RT-PCR for amplifying and sequencing the leader and capsid-coding region of foot-and-mouth disease virus. Journal of Virological Methods, 2013, 189, 70-76.	1.0	35
96	Development and evaluation of multiplex RT-LAMP assays for rapid and sensitive detection of foot-and-mouth disease virus. Journal of Virological Methods, 2013, 192, 18-24.	1.0	54
97	Development and evaluation of a real-time reverse transcription-loop-mediated isothermal amplification assay for rapid serotyping of foot-and-mouth disease virus. Journal of Virological Methods, 2013, 187, 195-202.	1.0	26
99	A Portable Reverse Transcription Recombinase Polymerase Amplification Assay for Rapid Detection of Foot-and-Mouth Disease Virus. PLoS ONE, 2013, 8, e71642.	1.1	182
100	Rapid, sensitive and effective diagnostic tools for foot-and-mouth disease virus in Africa. Onderstepoort Journal of Veterinary Research, 2014, 81, E1-5.	0.6	12
101	Early Events in the Pathogenesis of Foot-and-Mouth Disease in Pigs; Identification of Oropharyngeal Tonsils as Sites of Primary and Sustained Viral Replication. PLoS ONE, 2014, 9, e106859.	1.1	40
102	Investigation of foot-and-mouth disease outbreaks in the Mbala and Kazungula districts of Zambia. Onderstepoort Journal of Veterinary Research, 2014, 81, E1-6.	0.6	4
104	A universal protocol to generate consensus level genome sequences for foot-and-mouth disease virus and other positive-sense polyadenylated RNA viruses using the Illumina MiSeq. BMC Genomics, 2014, 15, 828.	1.2	64
105	Animal Health: Foot-and-Mouth Disease. , 2014, , 327-345.		2
106	Epidemiological Analysis, Serological Prevalence and Genotypic Analysis of Foot-and-Mouth Disease in Nigeria 2008-2009. Transboundary and Emerging Diseases, 2014, 61, 500-510.	1.3	27
107	Foot-and-mouth disease virus virulence in cattle is co-determined by viral replication dynamics and route of infection. Virology, 2014, 452-453, 12-22.	1.1	33
108	A thiazepino[4,5-a]benzimidazole derivative hampers the RNA replication of Eurasian serotypes of foot-and-mouth disease virus. Biochemical and Biophysical Research Communications, 2014, 455, 378-381.	1.0	5
109	Infection with foot-and-mouth disease virus (FMDV) induces a natural killer (NK) cell response in cattle that is lacking following vaccination. Comparative Immunology, Microbiology and Infectious Diseases, 2014, 37, 249-257.	0.7	10
110	Development of tailored real-time RT-PCR assays for the detection and differentiation of serotype O, A and Asia-1 foot-and-mouth disease virus lineages circulating in the Middle East. Journal of Virological Methods, 2014, 207, 146-153.	1.0	41

#	Article	IF	CITATIONS
111	Type III Interferon Protects Swine Against Foot-and-Mouth Disease. Journal of Interferon and Cytokine Research, 2014, 34, 810-821.	0.5	19
112	In vitro surrogate models to aid in the development of antivirals for the containment of foot-and-mouth disease outbreaks. Antiviral Research, 2014, 105, 59-63.	1.9	9
113	Infection dynamics of foot-and-mouth disease virus in pigs using two novel simulated-natural inoculation methods. Research in Veterinary Science, 2014, 96, 396-405.	0.9	34
114	Proof of principle: Non-invasive sampling for early detection of foot-and-mouth disease virus infection in wild boar using a rope-in-a-bait sampling technique. Veterinary Microbiology, 2014, 172, 329-333.	0.8	32
115	Epidemiology of the 2010 Outbreak of Foot-and-Mouth Disease in Mongolia. Transboundary and Emerging Diseases, 2015, 62, e45-e51.	1.3	9
116	Characterization of Foot-And-Mouth Disease Viruses (FMDVs) from Ugandan Cattle Outbreaks during 2012-2013: Evidence for Circulation of Multiple Serotypes. PLoS ONE, 2015, 10, e0114811.	1.1	30
117	Development and Characterization of Probe-Based Real Time Quantitative RT-PCR Assays for Detection and Serotyping of Foot-And-Mouth Disease Viruses Circulating in West Eurasia. PLoS ONE, 2015, 10, e0135559.	1.1	21
118	Pathogenesis of Primary Foot-and-Mouth Disease Virus Infection in the Nasopharynx of Vaccinated and Non-Vaccinated Cattle. PLoS ONE, 2015, 10, e0143666.	1.1	46
119	Characterisation of recent foot-and-mouth disease viruses from African buffalo (Syncerus caffer) and cattle in Kenya is consistent with independent virus populations. BMC Veterinary Research, 2015, 11, 17.	0.7	19
120	Development of a non-infectious encapsidated positive control RNA for molecular assays to detect foot-and-mouth disease virus. Journal of Virological Methods, 2015, 220, 27-34.	1.0	16
121	Clinical and virological dynamics of a serotype O 2010 South East Asia lineage foot-and-mouth disease virus in sheep using natural and simulated natural inoculation and exposure systems. Veterinary Microbiology, 2015, 178, 50-60.	0.8	15
122	Detection of African swine fever, classical swine fever, and foot-and-mouth disease viruses in swine oral fluids by multiplex reverse transcription real-time polymerase chain reaction. Journal of Veterinary Diagnostic Investigation, 2015, 27, 140-149.	0.5	49
123	Use of recombinant capsid proteins in the development of a vaccine against the foot-and-mouth disease virus. Virus Adaptation and Treatment, 0, , 11.	1.5	10
124	Foot-and-Mouth Disease Virus Serotype SAT 3 in Long-Horned Ankole Calf, Uganda. Emerging Infectious Diseases, 2015, 21, 111-114.	2.0	21
125	Intra-serotype SAT2 chimeric foot-and-mouth disease vaccine protects cattle against FMDV challenge. Vaccine, 2015, 33, 2909-2916.	1.7	18
126	Fluorescence-based real-time quantitative polymerase chain reaction (qPCR) technologies for high throughput screening of pathogens. , 2015, , 219-248.		5
127	Challenges for Serology-Based Characterization of Foot-and-Mouth Disease Outbreaks in Endemic Areas; Identification of Two Separate Lineages of Serotype O FMDV in Uganda in 2011. Transboundary and Emerging Diseases, 2015, 62, 522-534.	1.3	15
128	MeltMan: Optimization, Evaluation, and Universal Application of a qPCR System Integrating the TaqMan qPCR and Melting Analysis into a Single Assay. PLoS ONE, 2016, 11, e0151204.	1.1	17

#	Article	IF	CITATIONS
129	A Tale of Tails: Dissecting the Enhancing Effect of Tailed Primers in Real-Time PCR. PLoS ONE, 2016, 11, e0164463.	1.1	6
130	Transmission of Foot-and-Mouth Disease Virus during the Incubation Period in Pigs. Frontiers in Veterinary Science, 2016, 3, 105.	0.9	21
131	Evaluation of the Flinders Technology Associates Cards for Storage and Temperature Challenges in Field Conditions for Foot-and-Mouth Disease Virus Surveillance. Transboundary and Emerging Diseases, 2016, 63, 675-680.	1.3	13
132	Detection of Foot-and-mouth Disease Virus RNA and Capsid Protein in Lymphoid Tissues of Convalescent Pigs Does Not Indicate Existence of a Carrier State. Transboundary and Emerging Diseases, 2016, 63, 152-164.	1.3	59
133	Detection of multiple viral infections in cattle and buffalo with suspected vesicular disease in Brazil. Journal of Veterinary Diagnostic Investigation, 2016, 28, 377-381.	0.5	17
134	Aerosol transmission of foot-and-mouth disease virus Asia-1 under experimental conditions. Veterinary Microbiology, 2016, 189, 39-45.	0.8	16
135	The Foot-and-Mouth Disease Carrier State Divergence in Cattle. Journal of Virology, 2016, 90, 6344-6364.	1.5	96
136	Constitutively Active IRF7/IRF3 Fusion Protein Completely Protects Swine against Foot-and-Mouth Disease. Journal of Virology, 2016, 90, 8809-8821.	1.5	11
137	Development and evaluation of tailored specific real-time RT-PCR assays for detection of foot-and-mouth disease virus serotypes circulating in East Africa. Journal of Virological Methods, 2016, 237, 114-120.	1.0	28
138	Infection Dynamics of Foot-and-Mouth Disease Virus in Cattle Following Intranasopharyngeal Inoculation or Contact Exposure. Journal of Comparative Pathology, 2016, 155, 314-325.	0.1	19
139	Systemic immune response and virus persistence after foot-and-mouth disease virus infection of naÃ ⁻ ve cattle and cattle vaccinated with a homologous adenovirus-vectored vaccine. BMC Veterinary Research, 2016, 12, 205.	0.7	27
140	Serotype Diversity of Footâ€andâ€Mouthâ€Disease Virus in Livestock without History of Vaccination in the Far North Region of Cameroon. Transboundary and Emerging Diseases, 2016, 63, e27-38.	1.3	40
141	FOOT-AND-MOUTH DISEASE IN A SMALL SAMPLE OF EXPERIMENTALLY INFECTED PRONGHORN (<i>ANTILOCAPRA AMERICANA</i>). Journal of Wildlife Diseases, 2016, 52, 862-873.	0.3	6
142	Investigating intra-host and intra-herd sequence diversity of foot-and-mouth disease virus. Infection, Genetics and Evolution, 2016, 44, 286-292.	1.0	17
143	Combination of Adt-O1Manisa and Ad5-boIFNλ3 induces early protective immunity against foot-and-mouth disease in cattle. Virology, 2016, 499, 340-349.	1.1	19
144	A Universal Next-Generation Sequencing Protocol To Generate Noninfectious Barcoded cDNA Libraries from High-Containment RNA Viruses. MSystems, 2016, 1, .	1.7	28
145	Alkaline hydrolysis to remove potentially infectious viral RNA contaminants from DNA. Virology Journal, 2016, 13, 88.	1.4	20
146	Development of a reverse transcription loop-mediated isothermal amplification assay for the detection of vesicular stomatitis New Jersey virus: Use of rapid molecular assays to differentiate between vesicular disease viruses, Journal of Virological Methods, 2016, 234, 123-131	1.0	20

#	Article	IF	CITATIONS
147	Unrecognized circulation of SAT 1 foot-and-mouth disease virus in cattle herds around Queen Elizabeth National Park in Uganda. BMC Veterinary Research, 2016, 12, 5.	0.7	19
148	Establishment and validation of two duplex one-step real-time RT-PCR assays for diagnosis of foot-and-mouth disease. Journal of Virological Methods, 2016, 235, 168-175.	1.0	10
149	Outbreaks of Footâ€andâ€Mouth Disease in Libya and Saudi Arabia During 2013 Due to an Exotic O/ <scp>ME</scp> ― <scp>SA</scp> /Indâ€2001 Lineage Virus. Transboundary and Emerging Diseases, 2016, 63, e431-5.	1.3	53
150	Robust Real-Time Reverse Transcription-PCR for Detection of Foot-and-Mouth Disease Virus Neutralizing Carryover Contamination. Journal of Clinical Microbiology, 2016, 54, 216-219.	1.8	2
151	Multiple efficacy studies of an adenovirus-vectored foot-and-mouth disease virus serotype A24 subunit vaccine in cattle using homologous challenge. Vaccine, 2016, 34, 3214-3220.	1.7	34
152	Detection and Molecular Characterization of Foot and Mouth Disease Viruses from Outbreaks in Some States of Northern Nigeria 2013-2015. Transboundary and Emerging Diseases, 2017, 64, 1979-1990.	1.3	20
153	Host microRNA-203a Is antagonistic to the progression of foot-and-mouth disease virus infection. Virology, 2017, 504, 52-62.	1.1	16
154	Foot-and-mouth disease virus serotype SAT1 in cattle, Nigeria. Transboundary and Emerging Diseases, 2017, 64, 683-690.	1.3	9
155	Evaluation of immune responses of stabilised SAT2 antigens of foot-and-mouth disease in cattle. Vaccine, 2017, 35, 5426-5433.	1.7	9
156	Laboratory validation of two real-time RT-PCR methods with $5\hat{a}\in^2$ -tailed primers for an enhanced detection of foot-and-mouth disease virus. Journal of Virological Methods, 2017, 246, 90-94.	1.0	12
157	Simple, quick and cost-efficient: A universal RT-PCR and sequencing strategy for genomic characterisation of foot-and-mouth disease viruses. Journal of Virological Methods, 2017, 246, 58-64.	1.0	24
158	A replication-competent foot-and-mouth disease virus expressing a luciferase reporter. Journal of Virological Methods, 2017, 247, 38-44.	1.0	6
159	Inter-laboratory validation of foot-and-mouth disease diagnostic capability in Germany. Veterinary Microbiology, 2017, 203, 62-67.	0.8	4
160	Defining the relative performance of isothermal assays that can be used for rapid and sensitive detection of foot-and-mouth disease virus. Journal of Virological Methods, 2017, 249, 102-110.	1.0	33
161	Molecular characterization of circulating Foot and mouth disease virus (FMDV) serotype O topotype EA-3 and serotype A (African topotype) genotype IV in Egypt, 2016. Veterinary Microbiology, 2017, 208, 89-93.	0.8	21
162	Pathogenesis of virulent and attenuated foot-and-mouth disease virus in cattle. Virology Journal, 2017, 14, 89.	1.4	21
163	Characterization of Foot-and-Mouth Disease Viruses Collected in Nigeria Between 2007 and 2014: Evidence for Epidemiological Links Between West and East Africa. Transboundary and Emerging Diseases, 2017, 64, 1867-1876.	1.3	16
164	Genetic Characterization of Serotypes A and Asia-1 Foot-and-mouth Disease Viruses in Balochistan, Pakistan, in 2011. Transboundary and Emerging Diseases, 2017, 64, 1569-1578.	1.3	21

#	Article	IF	CITATIONS
165	Evaluation of Two Lyophilized Molecular Assays to Rapidly Detect Foot-and-Mouth Disease Virus Directly from Clinical Samples in Field Settings. Transboundary and Emerging Diseases, 2017, 64, 861-871.	1.3	50
166	Field-Deployable Reverse Transcription-Insulated Isothermal PCR (RT-iiPCR) Assay for Rapid and Sensitive Detection of Foot-and-Mouth Disease Virus. Transboundary and Emerging Diseases, 2017, 64, 1610-1623.	1.3	33
167	Adaption of FMDV Asia-1 to Suspension Culture: Cell Resistance Is Overcome by Virus Capsid Alterations. Viruses, 2017, 9, 231.	1.5	9
168	One-step real-time loop-mediated isothermal amplification (RT-LAMP): evaluation and its application for the detection of foot-and-mouth-disease virus and its serotypes. Turkish Journal of Veterinary and Animal Sciences, 2017, 41, 435-443.	0.2	6
169	Effect of vaccination on cattle subclinically infected with foot-and-mouth disease virus in Cameroon. Preventive Veterinary Medicine, 2018, 155, 1-10.	0.7	19
170	Use of ENABL® adjuvant to increase the potency of an adenovirus-vectored foot-and-mouth disease virus serotype A subunit vaccine. Vaccine, 2018, 36, 1078-1084.	1.7	16
171	Saigas on the brink: Multidisciplinary analysis of the factors influencing mass mortality events. Science Advances, 2018, 4, eaao2314.	4.7	92
172	A partial deletion within foot-and-mouth disease virus non-structural protein 3A causes clinical attenuation in cattle but does not prevent subclinical infection. Virology, 2018, 516, 115-126.	1.1	17
173	Systemic antibodies administered by passive immunization prevent generalization of the infection by foot-and-mouth disease virus in cattle after oronasal challenge. Virology, 2018, 518, 143-151.	1.1	6
174	Efficacy of a high-potency multivalent foot-and-mouth disease virus vaccine in cattle against heterologous challenge with a field virus from the emerging A/ASIA/G-VII lineage. Vaccine, 2018, 36, 1901-1907.	1.7	26
175	A canine adenovirus type 2 vaccine vector confers protection against foot-and-mouth disease in guinea pigs. Vaccine, 2018, 36, 2193-2198.	1.7	12
176	Genetic diversity and comparison of diagnostic tests for characterization of footâ€andâ€mouth disease virus strains from Pakistan 2008–2012. Transboundary and Emerging Diseases, 2018, 65, 534-546.	1.3	13
177	Development and evaluation of a novel real-time RT-PCR to detect foot-and-mouth disease viruses from the emerging A/ASIA/G-VII lineage. Journal of Virological Methods, 2018, 252, 37-41.	1.0	18
178	Rapid and simple detection of foot-and-mouth disease virus: Evaluation of a cartridge-based molecular detection system for use in basic laboratories. Transboundary and Emerging Diseases, 2018, 65, 578-584.	1.3	8
179	Direct detection and characterization of foot-and-mouth disease virus in East Africa using a field-ready real-time PCR platform. Transboundary and Emerging Diseases, 2018, 65, 221-231.	1.3	39
180	Molecular Epidemiology of Foot-and-Mouth Disease Virus in the Context of Transboundary Animal Movement in the Far North Region of Cameroon. Frontiers in Veterinary Science, 2018, 5, 320.	0.9	12
181	Molecular Detection of Foot and Mouth Disease Virus (FMDV) from 2017 Outbreaks in Punjab by RT-PCR and RT-LAMP Assays. Journal of Veterinary Science & Technology, 2018, 09, .	0.3	1
182	Field evaluation of two commercial RT-rtPCR assays for porcine reproductive and respiratory syndrome virus detection using sera from ill and healthy pigs, China. Journal of Veterinary Diagnostic Investigation, 2018, 30, 848-854.	0.5	1

#	Article	IF	CITATIONS
183	Versatility of the adenovirus-vectored foot-and-mouth disease vaccine platform across multiple foot-and-mouth disease virus serotypes and topotypes using a vaccine dose representative of the AdtA24 conditionally licensed vaccine. Vaccine, 2018, 36, 7345-7352.	1.7	13
184	A review of foot-and-mouth disease virus (FMDV) testing in livestock with an emphasis on the use of alternative diagnostic specimens. Animal Health Research Reviews, 2018, 19, 100-112.	1.4	23
185	Transmission of Foot-and-Mouth Disease from Persistently Infected Carrier Cattle to Naive Cattle via Transfer of Oropharyngeal Fluid. MSphere, 2018, 3, .	1.3	45
186	Molecular Characterization of the Viroporin Function of Foot-and-Mouth Disease Virus Nonstructural Protein 2B. Journal of Virology, 2018, 92, .	1.5	12
187	Multi-Target Strategy for Pan/Foot-and-Mouth Disease Virus (FMDV) Detection: A Combination of Sequences Analysis, in Silico Predictions and Laboratory Diagnostic Evaluation. Frontiers in Veterinary Science, 2018, 5, 160.	0.9	13
188	Efficacy of an adenovirus-vectored foot-and-mouth disease virus serotype A subunit vaccine in cattle using a direct contact transmission model. BMC Veterinary Research, 2018, 14, 254.	0.7	7
189	Visual and equipment-free reverse transcription recombinase polymerase amplification method for rapid detection of foot-and-mouth disease virus. BMC Veterinary Research, 2018, 14, 263.	0.7	22
190	Evaluation of PCR primers targeting the VP2 region of the foot-and-mouth disease virus for improved serotype detection. Turkish Journal of Veterinary and Animal Sciences, 2018, 42, 335-345.	0.2	2
191	Development of a droplet digital RT-PCR for the quantification of foot-and-mouth virus RNA. Journal of Virological Methods, 2018, 259, 129-134.	1.0	17
192	Five BoLA-DRB3 genotypes detected in Egyptian buffalo infected with Foot and Mouth disease virus serotype O. Journal of Genetic Engineering and Biotechnology, 2018, 16, 513-518.	1.5	10
193	An improved reverse transcription loop-mediated isothermal amplification assay for sensitive and specific detection of serotype O foot-and-mouth disease virus. Journal of Virological Methods, 2018, 260, 6-13.	1.0	21
194	Environmental Sampling as a Low-Technology Method for Surveillance of Foot-and-Mouth Disease Virus in an Area of Endemicity. Applied and Environmental Microbiology, 2018, 84, .	1.4	12
195	Rapid detection of foot-and-mouth disease virus using reverse transcription recombinase polymerase amplification combined with a lateral flow dipstick. Journal of Virological Methods, 2018, 261, 46-50.	1.0	21
196	Detection of foot-and-mouth disease virus in milk samples by real-time reverse transcription polymerase chain reaction: Optimisation and evaluation of a high-throughput screening method with potential for disease surveillance. Veterinary Microbiology, 2018, 223, 189-194.	0.8	18
197	A tailored reverse transcription loop-mediated isothermal amplification for sensitive and specific detection of serotype A foot-and-mouth disease virus circulating in pool 1 region countries. Transboundary and Emerging Diseases, 2018, 65, 1898-1908.	1.3	7
198	Characterization of naturally occurring, new and persistent subclinical footâ€andâ€mouth disease virus infection in vaccinated Asian buffalo in Islamabad Capital Territory, Pakistan. Transboundary and Emerging Diseases, 2018, 65, 1836-1850.	1.3	39
199	Development of gold nanoparticles biosensor for ultrasensitive diagnosis of foot and mouth disease virus. Journal of Nanobiotechnology, 2018, 16, 48.	4.2	55
200	First detection of foot-and-mouth disease virus O/ME-SA/Ind2001 in China. Transboundary and Emerging Diseases, 2018, 65, 2027-2031.	1.3	17

#	Article	IF	CITATIONS
201	Genetic stability of foot-and-mouth disease virus during long-term infections in natural hosts. PLoS ONE, 2018, 13, e0190977.	1.1	8
202	Development of fast and sensitive protocols for the detection of viral pathogens using a small portable convection PCR platform. Molecular Biology Reports, 2019, 46, 5073-5077.	1.0	5
203	Clinical presentation of FMD virus SAT1 infections in experimentally challenged indigenous South African goats. Small Ruminant Research, 2019, 180, 15-20.	0.6	8
204	Genome Sequences of 18 Foot-and-Mouth Disease Virus Outbreak Strains of Serotype O Sublineage Ind2001d from India, 2013 to 2014. Microbiology Resource Announcements, 2019, 8, .	0.3	7
205	Reliable detection, sequencing, and transfection of foot-and-mouth disease virus RNA from badly preserved vesicular epithelium. Journal of Veterinary Diagnostic Investigation, 2019, 31, 778-782.	0.5	5
206	First Report of Near-Complete Genome Sequences of Foot-and-Mouth Disease Virus Serotype O Strains from Kenya. Microbiology Resource Announcements, 2019, 8, .	0.3	0
207	Genome Sequences of Foot-and-Mouth Disease Virus SAT1 and SAT2 Strains from Kenya in 2014 to 2016. Microbiology Resource Announcements, 2019, 8, .	0.3	2
208	First Detection and Genome Sequence of Senecavirus A in Vietnam. Microbiology Resource Announcements, 2019, 8, .	0.3	53
209	Serological and phylogenetic characterization of foot and mouth disease viruses from Uganda during crossâ€sectional surveillance study in cattle between 2014 and 2017. Transboundary and Emerging Diseases, 2019, 66, 2011-2024.	1.3	15
210	Footâ€andâ€mouth disease virus detection on a handheld realâ€ŧime polymerase chain reaction platform. Transboundary and Emerging Diseases, 2019, 66, 1789-1795.	1.3	18
211	Diagnostic comparison of serum and EDTA-stabilized blood samples for the detection of foot-and-mouth disease virus RNA by RT-qPCR. Journal of Virological Methods, 2019, 270, 120-125.	1.0	7
212	Serological and molecular epidemiology of footâ€andâ€mouth disease viruses in agroâ€pastoralist livestock herds in the kachia grazing reserve, Nigeria. Transboundary and Emerging Diseases, 2019, 66, 1575-1586.	1.3	7
213	Reverse transcriptionâ€₽CR using a primer set targeting the 3D region detects footâ€andâ€mouth disease virus with high sensitivity. Transboundary and Emerging Diseases, 2019, 66, 1776-1783.	1.3	5
215	Emergence of foot and mouth disease virus, Libâ€12 lineage of topotype <scp>VII</scp> , serotype <scp>SAT</scp> 2 in Egypt, 2018. Transboundary and Emerging Diseases, 2019, 66, 1105-1106.	1.3	9
216	Opportunities for enhanced surveillance of footâ€andâ€mouth disease in endemic settings using milk samples. Transboundary and Emerging Diseases, 2019, 66, 1405-1410.	1.3	14
217	Genome Sequences of Four Foot-and-Mouth Disease Virus SAT 1 Topotype X Isolates from Cameroon. Microbiology Resource Announcements, 2019, 8, .	0.3	0
218	Foot-and-Mouth Disease Virus Serotype A Genome Sequence from Kenya in 2016. Microbiology Resource Announcements, 2019, 8, .	0.3	1
219	Virulence beneath the fleece; a tale of foot-and-mouth disease virus pathogenesis in sheep. PLoS ONE, 2019, 14, e0227061.	1.1	8

#	Article	IF	CITATIONS
220	Rift Valley Fever Virus, Japanese Encephalitis Virus, and African Swine Fever Virus: Three Transboundary, Vector-Borne, Veterinary Biothreats With Diverse Surveillance, and Response Capacity Needs. Frontiers in Veterinary Science, 2019, 6, 458.	0.9	4
221	Footâ€andâ€mouth disease outbreaks due to an exotic virus serotype A lineage (A/AFRICA/Gâ€IV) in Algeria in 2017. Transboundary and Emerging Diseases, 2019, 66, 7-13.	1.3	12
222	Footâ€andâ€mouth disease outbreaks due to an exotic serotype Asia 1 virus in Myanmar in 2017. Transboundary and Emerging Diseases, 2019, 66, 1067-1072.	1.3	14
223	FOOT-AND-MOUTH DISEASE IN EXPERIMENTALLY INFECTED MULE DEER (ODOCOILEUS HEMIONUS). Journal of Wildlife Diseases, 2020, 56, 93.	0.3	4
224	Inactivation of foot-and-mouth disease virus in epithelium samples for safe transport and processing in low-containment laboratories. Journal of Virological Methods, 2020, 276, 113770.	1.0	7
225	Development and evaluation of multiplex realâ€time RTâ€PCR assays for the detection and differentiation of footâ€andâ€mouth disease virus and Seneca Valley virus 1. Transboundary and Emerging Diseases, 2020, 67, 604-616.	1.3	16
226	Evaluation of modified Vaccinia Ankara-based vaccines against foot-and-mouth disease serotype A24 in cattle. Vaccine, 2020, 38, 769-778.	1.7	1
227	Effects of Graphene Oxide-Gold Nanoparticles Nanocomposite on Highly Sensitive Foot-and-Mouth Disease Virus Detection. Nanomaterials, 2020, 10, 1921.	1.9	18
228	Targeted Modification of the Foot-And-Mouth Disease Virus Genome for Quick Cell Culture Adaptation. Vaccines, 2020, 8, 583.	2.1	1
229	Quantifying the Transmission of Foot-and-Mouth Disease Virus in Cattle via a Contaminated Environment. MBio, 2020, 11, .	1.8	23
230	Sequence Analysis of Egyptian Foot-and-Mouth Disease Virus Field and Vaccine Strains: Intertypic Recombination and Evidence for Accidental Release of Virulent Virus. Viruses, 2020, 12, 990.	1.5	8
231	Complex Circulation of Foot-and-Mouth Disease Virus in Cattle in Nigeria. Frontiers in Veterinary Science, 2020, 7, 466.	0.9	7
232	Advances in the Diagnosis of Foot-and-Mouth Disease. Frontiers in Veterinary Science, 2020, 7, 477.	0.9	35
233	Isolation, Serotyping, and Molecular Detection of Bovine FMD Virus from Outbreak Cases in Aba'ala District of Afar Region, Ethiopia. Veterinary Medicine International, 2020, 2020, 1-9.	0.6	2
234	Reduction of foot-and-mouth disease virus transmission in cattle vaccinated one or two weeks before challenge using a commercial polyvalent vaccine. Vaccine: X, 2020, 5, 100063.	0.9	1
235	Foot-and-Mouth Disease Surveillance Using Pooled Milk on a Large-Scale Dairy Farm in an Endemic Setting. Frontiers in Veterinary Science, 2020, 7, 264.	0.9	10
236	Extinction Dynamics of the Foot-and-Mouth Disease Virus Carrier State Under Natural Conditions. Frontiers in Veterinary Science, 2020, 7, 276.	0.9	10
237	Probeâ€based realâ€time reverse transcription loopâ€mediated isothermal amplification (RRTâ€LAMP) assay for rapid and specific detection of footâ€andâ€mouth disease virus. Transboundary and Emerging Diseases, 2020, 67, 2936-2945.	1.3	8

ARTICLE IF CITATIONS Foot-and-mouth disease virus: Prospects for using knowledge of virus biology to improve control of 238 1.1 24 this continuing global threat. Virus Research, 2020, 281, 197909. Duration of Contagion of Foot-And-Mouth Disease Virus in Infected Live Pigs and Carcasses. Frontiers in Veterinary Science, 2020, 7, 334. Molecular characterization of footâ€andâ€mouth disease viruses circulating in Ethiopia between 2008 240 1.3 13 and 2019. Transboundary and Emerging Diseases, 2020, 67, 2983-2992. First isolation of foot and mouth disease virus from wild boars in the Middle East. Transboundary 241 1.3 and Emerging Diseases, 2020, 67, 1725-1729. Pathogenesis, biophysical stability and phenotypic variance of SAT2 foot-and-mouth disease virus. 242 0.8 2 Veterinary Microbiology, 2020, 243, 108614. Utilizing milk from pooling facilities as a novel approach for footâ€andâ€mouth disease surveillance. Transboundary and Emerging Diseases, 2020, 67, 1532-1542. 1.3 GoPrime: Development of an In Silico Framework to Predict the Performance of Real-Time PCR Primers 244 1.2 4 and Probes Using Foot-and-Mouth Disease Virus as a Model. Pathogens, 2020, 9, 303. Efficacy of a foot-and-mouth disease vaccine against a heterologous SAT1 virus challenge in goats. 1.7 Vaccine, 2020, 38, 4006-4015. Further development of a reverseâ€transcription loopâ€mediated isothermal amplification (RTâ€LAMP) assav 246 for the detection of footâ€andâ€mouth disease virus and validation in the field with use of an internal 1.3 17 positive control. Transboundary and Emerging Diseases, 2020, 67, 2494-2506. Quantitative analysis of infection dynamics of foot-and-mouth disease virus strain O/CATHAY in pigs 247 1.1 and cattle. PLoS ÓNE, 2021, 16, e0245781. Prevalence of tick-borne haemoparasites and their perceived co-occurrences with viral outbreaks of 248 3 1.4 FMD and LSD and their associated factors. Heliyon, 2021, 7, e06479. Development of multiplex realâ€time PCR assays for differential detection of capripoxvirus, parapoxvirus and footâ€andâ€mouth disease virus. Transboundary and Emerging Diseases, 2022, 69, 1.3 1326-1337. Footâ€andâ€mouth disease viruses of the O/MEâ€SA/Indâ€2001e sublineage in Pakistan. Transboundary and 250 1.3 10 Emerging Diseases, 2021, 68, 3126-3135. After nasopharyngeal infection, foot-and-mouth disease virus serotype A RNA is shed in bovine milk without associated mastitis. Journal of Veterinary Diagnostic Investigation, 2021, 33, 997-1001. The risk and mitigation of footâ€andâ€mouth disease virus infection of pigs through consumption of 252 1.3 8 contaminated feed. Transboundary and Emerging Diseases, 2021, , . Seroprevalence and Molecular Detection of Foot and Mouth Disease Virus in Dairy Cattle Around Addis Ababa, Central Ethiopia. Veterinary Medicine: Research and Reports, 2021, Volume 12, 187-197. Detection of Foot-and-Mouth Disease Virus in the Absence of Clinical Disease in Cattle and Buffalo in 254 0.9 3 South East Asia. Frontiers in Veterinary Science, 2021, 8, 691308. Environmental sampling for the detection of footâ€andâ€mouth disease virus and peste des petits 1.3 ruminants virus in a live goat market, Nepal. Transboundary and Emerging Diseases, 2022, 69, 3041-3046.

#	Article	IF	CITATIONS
256	Combining Multiple Assays Improves Detection and Serotyping of Foot-and-Mouth Disease Virus. A Practical Example with Field Samples from East Africa. Viruses, 2021, 13, 1583.	1.5	6
257	Two Cross-Protective Antigen Sites on Foot-and-Mouth Disease Virus Serotype O Structurally Revealed by Broadly Neutralizing Antibodies from Cattle. Journal of Virology, 2021, 95, e0088121.	1.5	3
258	Efficacy of SAT2 Foot-and-Mouth Disease Vaccines Formulated with Montanide ISA 206B and Quil-A Saponin Adjuvants. Vaccines, 2021, 9, 996.	2.1	5
259	Comparing surveillance approaches to support regaining free status after a foot-and-mouth disease outbreak. Preventive Veterinary Medicine, 2021, 194, 105441.	0.7	6
260	Simultaneous and Staggered Foot-and-Mouth Disease Virus Coinfection of Cattle. Journal of Virology, 2021, 95, e0165021.	1.5	16
261	Endemic persistence of a highly contagious pathogen: Foot-and-mouth disease in its wildlife host. Science, 2021, 374, 104-109.	6.0	23
262	High selectivity detection of FMDV- SAT-2 using a newly-developed electrochemical nanosensors. Biosensors and Bioelectronics, 2021, 191, 113435.	5.3	19
263	Carboxamide and N-alkylcarboxamide additives can greatly reduce non specific amplification in Loop-Mediated Isothermal Amplification for Foot-and-Mouth disease Virus (FMDV) using Bst 3.0 polymerase. Journal of Virological Methods, 2021, 298, 114284.	1.0	10
265	The role of African buffalo in the epidemiology of footâ€andâ€mouth disease in sympatric cattle and buffalo populations in Kenya. Transboundary and Emerging Diseases, 2020, 67, 2206.	1.3	14
266	Contact Challenge of Cattle with Foot-and-Mouth Disease Virus Validates the Role of the Nasopharyngeal Epithelium as the Site of Primary and Persistent Infection. MSphere, 2018, 3, .	1.3	32
267	Stepping Stones in Foot-and-Mouth Research. , 2004, , 1-17.		3
268	Bioterrorism: what can we do?. Journal of the Royal Society of Medicine, 2002, 95, 479-480.	1.1	7
269	Immunity of Foot-and-Mouth Disease Serotype Asia 1 by Sublingual Vaccination. PLoS ONE, 2013, 8, e63839.	1.1	3
270	Preliminary Validation of Direct Detection of Foot-And-Mouth Disease Virus within Clinical Samples Using Reverse Transcription Loop-Mediated Isothermal Amplification Coupled with a Simple Lateral Flow Device for Detection. PLoS ONE, 2014, 9, e105630.	1.1	60
271	Recovery of Viral RNA and Infectious Foot-and-Mouth Disease Virus from Positive Lateral-Flow Devices. PLoS ONE, 2014, 9, e109322.	1.1	18
272	Technology, public policy and control of transboundary livestock diseases in our lifetimes. OIE Revue Scientifique Et Technique, 2006, 25, 271-292.	0.5	9
274	Molecular Epidemiology of FMDV in Northern Egypt (2012-214). Alexandria Journal of Veterinary Sciences, 2014, 41, 120.	0.0	7
275	Vaccination Strategies against Foot-and-Mouth Disease. Japan Journal of Veterinary Informatics, 2008, 12, 27-35.	0.1	0

#	Article	IF	CITATIONS
276	Improved diagnostic strategy for foot-and-mouth disease in Bulgaria. Biotechnology in Animal Husbandry, 2010, 26, 155-165.	0.5	0
277	Diagnosis of Foot-and-Mouth Disease Virus by Real Time Reverse Transcription Polymerase Chain Reaction Assay in Iran. Iranian Journal of Virology, 2013, 7, 21-29.	0.0	0
278	Molecular Study on Foot and Mouth Disease Virus in Beheira Governorate, Egypt during 2014. Alexandria Journal of Veterinary Sciences, 2015, 45, 151.	0.0	2
279	Foot-and-Mouth Disease Virus Serotype SAT 3 in Long-Horned Ankole Calf, Uganda. Emerging Infectious Diseases, 2015, 21, .	2.0	0
280	Rapid Molecular Detection of Genetically Diverted Foot and Mouth Disease Virus Serotype O During the Outbreak of 2012 in Egypt. International Journal of Virology, 2015, 11, 96-111.	0.4	0
281	Molecular Epidemiology of Foot and Mouth Disease Virus during 2014 with References to Biochemical Changes in Egyptian Buffaloes. Journal of Animal Science Advances, 2016, 6, 1846.	0.1	0
282	Pathological and Molecular Investigations on Foot and Mouth Virus Outbreaks Among Cattle Herds in Dakahlia Governorate, Egypt. Zagazig Veterinary Journal, 2016, 44, 128-137.	0.1	3
284	Identification of the O/ME-SA/Ind-2001e Sublineage of Foot-and-Mouth Disease Virus in Cambodia. Frontiers in Veterinary Science, 2021, 8, 749966.	0.9	4
285	Characterization of Foot-and-Mouth Disease Viruses in Zambia-Implications for the Epidemiology of the Disease in Southern Africa. Viruses, 2021, 13, 2195.	1.5	2
286	Development of DNA aptamers to a foot-and-mouth disease peptide for competitive FRET-based detection. Journal of Biomolecular Techniques, 2008, 19, 109-15.	0.8	19
287	Loop-mediated isothermal amplification (RT-LAMP): a new approach for the detection of foot-and-mouth disease virus and its sero-types in Pakistan. Iranian Journal of Veterinary Research, 2015, 16, 331-4.	0.4	12
289	Molecular detection, phylogenetic analysis and genetic diversity of recently isolated foot-and-mouth disease virus serotype A African topotype,ÂGenotype IV. Virology Journal, 2022, 19, 1.	1.4	15
290	One-step SYBR green-based real-time RT-PCR assay for detection of foot-and-mouth disease virus circulating in India. Virus Genes, 2022, 58, 113.	0.7	3
291	Genotyping of footâ€andâ€mouth disease viruses collected in Sudan between 2009 and 2018. Transboundary and Emerging Diseases, 2022, 69, .	1.3	2
292	Development and evaluation of one-step real-time RT-PCR assay for improved detection of foot-and-mouth disease virus serotypes circulating in Egypt. Journal of Virological Methods, 2022, 306, 114525.	1.0	7
293	Risk Factor Assessment, Sero-Prevalence, and Genotyping of the Virus That Causes Foot-and-Mouth Disease on Commercial Farms in Ethiopia from October 2018 to February 2020. Agriculture (Switzerland), 2022, 12, 49.	1.4	7
294	Development and Evaluation of Molecular Pen-Side Assays without Prior RNA Extraction for Peste des Petits Ruminants (PPR) and Foot and Mouth Disease (FMD). Viruses, 2022, 14, 835.	1.5	0
302	Chemical inactivation of foot-and-mouth disease virus in bovine tongue epithelium for safe transport and downstream processing. Journal of Virological Methods, 2022, 305, 114539.	1.0	3

#	Article	IF	CITATIONS
303	Enhanced detection and serotyping of footâ€andâ€mouth disease virus serotype O, A, and Asia1 using a novel multiplex realâ€time RTâ€PCR. Transboundary and Emerging Diseases, 0, , .	1.3	3
304	Proof of Proficiency of Decentralized Foot-and-Mouth Disease Virus Diagnostics in Germany. Viruses, 2022, 14, 1098.	1.5	3
305	Emergence of foot and mouth disease virus, serotype O, Europe–South America topotype in Egypt, 2022. Transboundary and Emerging Diseases, 2022, 69, 2409-2411.	1.3	7
306	Viral dynamics and immune responses to foot-and-mouth disease virus in African buffalo (Syncerus) Tj ETQq1 1 (0.784314 1.1	rgBT /Overloo
307	Establishing an In Vitro System to Assess How Specific Antibodies Drive the Evolution of Foot-and-Mouth Disease Virus. Viruses, 2022, 14, 1820.	1.5	3
308	Genome Sequences of Foot-and-Mouth Disease Virus SAT1 Strains Purified from Coinfected Cape Buffalo in Kenya. Microbiology Resource Announcements, 0, , .	0.3	0
309	Full-Length Genomic RNA of Foot-and-Mouth Disease Virus Is Infectious for Cattle by Injection. Viruses, 2022, 14, 1924.	1.5	2
311	Genome Sequences of Foot-and-Mouth Disease Virus SAT2 Strains Purified from Coinfected Cape Buffalo in Kenya. Microbiology Resource Announcements, 0, , .	0.3	0
312	Determination of foot-and-mouth disease serotypes from naturally infected cattle by solid phase competitive ELISA (SPCE) techniques. , 2022, 6, 014-018.		0
313	Administration of the antiviral agent T-1105 fully protects pigs from foot-and-mouth disease infection. Antiviral Research, 2022, , 105425.	1.9	2
314	Investigation of foot and mouth disease virus and other animal pathogens in cattle, buffaloes and goats at the interface with Akagera National Park 2017 – 2020. BMC Veterinary Research, 2022, 18, .	0.7	1
315	Development of reverse-transcriptase, real-time PCR assays to distinguish the Southern African Territories (SAT) serotypes 1 and 3 and topotype VII of SAT2 of Foot-and-Mouth Disease Virus. Frontiers in Veterinary Science, 0, 9, .	0.9	1
316	Molecular detection and phylogenetic analysis of newly emerging foot-and-mouth disease virus type A, Lineage EURO-SA in Egypt in 2022. Virus Research, 2023, 323, 198960.	1.1	7
317	Advances in the differential molecular diagnosis of vesicular disease pathogens in swine. Frontiers in Microbiology, 0, 13, .	1.5	0
318	Comparison of Biosafety and Diagnostic Utility of Biosample Collection Cards. Viruses, 2022, 14, 2392.	1.5	2
321	FTA Cards as a Rapid Tool for Collection and Transport of Infective Samples: Experience with Foot-and-Mouth Disease Virus in Libya. Animals, 2022, 12, 3198.	1.0	2
322	Various Techniques for Molecular and Rapid Detection of Infectious and Epidemic Diseases. Letters in Organic Chemistry, 2023, 20, 779-801.	0.2	4