Excited-State Proton Transfer:Â From Constrained Sys Superfast Proton Transferâ€

Accounts of Chemical Research 35, 19-27 DOI: 10.1021/ar990109f

Citation Report

#	Article	IF	CITATIONS
3	Excited State Proton Transfer of 1-Naphthol in a Hydroxypropylcellulose/Sodium Dodecyl Sulfate System. Langmuir, 2002, 18, 7867-7871.	1.6	25
4	Controlled Photochemical Release of Nitric Oxide fromO2-Naphthylmethyl- andO2-Naphthylallyl-Substituted Diazeniumdiolates. Journal of the American Chemical Society, 2002, 124, 12640-12641.	6.6	21
5	Controlled Photochemical Release of Nitric Oxide fromO2-Benzyl-Substituted Diazeniumdiolates. Journal of the American Chemical Society, 2002, 124, 9806-9811.	6.6	45
6	Picosecond Dynamics of the Photoreduction of 4,4â€~-Bipyridine by 1,4-Diazabicyclo[2.2.2]octane in Water. Journal of Physical Chemistry A, 2002, 106, 10222-10230.	1.1	4
7	Excited-State Proton Transfer in Chiral Environments. 1. Chiral Solvents. Journal of the American Chemical Society, 2002, 124, 9046-9047.	6.6	30
8	Intersecting-state model calculations on fast and ultrafast excited-state proton transfers in naphthols and substituted naphthols. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 154, 13-21.	2.0	29
9	Investigation of excited-state proton transfer in 2-naphthol derivatives containing a carboxyl group in organic solvents and in methanol–water mixtures. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 153, 89-100.	2.0	9
10	Intermolecular photochemical proton transfer in solution: new insights and perspectives. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 154, 3-11.	2.0	113
11	Excited-state proton transfer to solvent of protonated aniline derivatives in aqueous solution: a remarkable effect of ortho alkyl group on the proton-dissociation rate. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 154, 53-60.	2.0	13
12	Electronic and vibrational spectroscopy of jet-cooled complexes of o-cyanophenol. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 154, 41-52.	2.0	11
13	Title is missing!. Theoretical and Experimental Chemistry, 2002, 38, 135-155.	0.2	22
14	Substituent effects on ultrafast excited-state proton transfer of protonated aniline derivatives in aqueous solution. Chemical Physics Letters, 2003, 380, 673-680.	1.2	15
16	Excited-State Deprotonation and H/D Exchange of an Iridium Hydride Complex. Angewandte Chemie - International Edition, 2003, 42, 5492-5495.	7.2	52
17	Ground- and Excited-State Proton Transfer in Anthocyanins:Â From Weak Acids to Superphotoacids. Journal of Physical Chemistry A, 2003, 107, 4203-4210.	1.1	54
18	Photohydration of Benzophenone in Aqueous Acidâ€. Journal of Physical Chemistry A, 2003, 107, 3305-3315.	1.1	73
19	The Dynamics of Ultrafast Excited State Proton Transfer in Anionic Micellesâ€. Journal of Physical Chemistry A, 2003, 107, 3263-3269.	1.1	75
20	Hydroxystilbene Isomer-Specific Photoisomerization versus Proton Transfer. Journal of the American Chemical Society, 2003, 125, 4044-4045.	6.6	38
21	Solvation Dynamics and Proton Transfer in Supramolecular Assemblies. Accounts of Chemical Research, 2003, 36, 95-101.	7.6	446

#	Article	IF	CITATIONS
22	Development of Fluorescent Sensing of Anions under Excited-State Intermolecular Proton Transfer Signaling Mechanism. Organic Letters, 2003, 5, 2667-2670.	2.4	247
23	Theoretical investigations of proton and hydrogen atom transfer in the condensed phase. Russian Chemical Reviews, 2003, 72, 1-33.	2.5	34
24	Licht als Reagens: Protonentransfer im angeregten Zustand. Nachrichten Aus Der Chemie, 2003, 51, 1146-1151.	0.0	2
25	Influence of diffusion on the kinetics of excited-state association–dissociation reactions: Comparison of theory and simulation. Journal of Chemical Physics, 2004, 120, 6111-6116.	1.2	26
26	Controlled photochemical release of nitric oxide from O2-substituted diazeniumdiolates. Free Radical Biology and Medicine, 2004, 37, 745-752.	1.3	24
27	Acid-controlled photoreactivity of 9-(4'-azidophenyl)acridine. Mendeleev Communications, 2004, 14, 119-120.	0.6	8
28	Ultrafast chemistry in complex and confined systems. Journal of Chemical Sciences, 2004, 116, 5-16.	0.7	12
29	Photochemistry of Hydroxyarenes. ChemInform, 2004, 35, no.	0.1	0
30	Excited-state proton transfer of 1-[(dimethylamino)methyl]-2-naphthol in acetonitrile solvent: RISM-SCF and MRMP approach. Chemical Physics Letters, 2004, 386, 414-418.	1.2	10
31	Excited state proton transfer from pyranine to acetate in a CTAB micelle. Chemical Physics Letters, 2004, 399, 147-151.	1.2	70
32	Thermochromism of the disproportionation equilibrium of π-dimer radical anion complexes bridged by scandium ions. Organic and Biomolecular Chemistry, 2004, 2, 642-644.	1.5	7
33	Excited-State Proton Transfer Reactions of 10-Hydroxycamptothecin1. Journal of the American Chemical Society, 2004, 126, 12701-12708.	6.6	53
34	Identifiability of the Model of the Intermolecular Excited-State Proton Exchange Reaction in the Presence of pH Buffer. Journal of Physical Chemistry A, 2004, 108, 8180-8189.	1.1	25
35	Effect of protonation and hydrogen bonding on the fluorescent properties and exciplex formation of N-(4-pyridyl)-1,2-naphthalimide. Photochemical and Photobiological Sciences, 2004, 3, 389-395.	1.6	16
36	Positional effects of the hydroxy substituent on the photochemical and photophysical behavior of 3- and 4-hydroxystilbeneElectronic supplementary information (ESI) available: Data, figures, and experimental and theoretical details. See http://www.rsc.org/suppdata/pp/b4/b403661a/. Photochemical and Photobiological Sciences, 2004, 3, 660.	1.6	35
37	Protolytic Photodissociation and Proton-Induced Quenching of 1-Naphthol and 2-Octadecyl-1-Naphthol in Micelles. Journal of Physical Chemistry A, 2004, 108, 8212-8222.	1.1	16
38	Investigation of Excited-State Proton Transfer in 2-Naphthol Derivatives Included in Langmuirâ 'Blodgett Films. Journal of Physical Chemistry A, 2004, 108, 5308-5314.	1.1	10
39	Intramolecular Fluorescence Quenching of Tyrosine by the Peptide α-Carbonyl Group Revisited. Journal of Physical Chemistry A, 2004, 108, 2155-2166.	1.1	36

#	Article	IF	CITATIONS
40	Migration of Protons during the Excited-State Tautomerization of Aqueous 3-Hydroxyquinoline. Journal of Physical Chemistry A, 2004, 108, 5932-5937.	1.1	32
41	Excited-State Proton Transfer in Complexes of Poly(methacrylic acid) with Dodecyltrimethylammonium Chloride. Langmuir, 2004, 20, 6158-6164.	1.6	6
42	Study of the Long-Time Fluorescence Tail of the Green Fluorescent Protein. Journal of Physical Chemistry B, 2004, 108, 8043-8053.	1.2	25
43	Photochemical Acetalization of Carbonyl Compounds in Protic Media Using an in Situ Generated Photocatalyst. Journal of Organic Chemistry, 2004, 69, 8315-8322.	1.7	20
44	Ultrafast Guest Dynamics in Cyclodextrin Nanocavities. Chemical Reviews, 2004, 104, 1955-1976.	23.0	274
45	Femtosecond Studies of Solvation and Intramolecular Configurational Dynamics of Fluorophores in Liquid Solution. Chemical Reviews, 2004, 104, 1929-1954.	23.0	265
46	Photoaddition of Water and Alcohols to the Anthracene Moiety of 9-(2â€~-Hydroxyphenyl)anthracene via Formal Excited State Intramolecular Proton Transfer. Journal of the American Chemical Society, 2004, 126, 7890-7897.	6.6	62
47	Photochemical Activation of Functional Groups. Advances in Organic Synthesis, 2005, 1, 3-23.	0.5	6
48	Excited-State Proton Transfer Dynamics of 6-Hydroxypyrene-1-Sulfonic Acid at a Water/1,2-Dichloroethane Interface. Bunseki Kagaku, 2005, 54, 473-478.	0.1	0
49	Spectroscopic studies of inclusion complexes of 1-naphthol-4-sulfonate with β-cyclodextrin in aqueous solution. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 61, 2439-2443.	2.0	15
50	Effects of long-chain alkyl substituents on the protolytic reactions of naphthols. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 175, 178-191.	2.0	8
51	Study of protein–surfactant interaction using excited state proton transfer. Chemical Physics Letters, 2005, 404, 341-345.	1.2	59
52	Excited state proton transfer of pyranine in a γ-cyclodextrin cavity. Chemical Physics Letters, 2005, 412, 228-234.	1.2	103
53	Excited-state proton transfer and excited-state de-hydrogen bonding of the push–pull styryl system. Chemical Physics Letters, 2005, 415, 217-222.	1.2	20
54	Interaction of 2-Hydroxy-substituted Nile Red Fluorescent Probe with Organic Nitrogen Compounds. Photochemistry and Photobiology, 2005, 81, 1212.	1.3	8
55	Solvent-Dependent Photoacidity State of Pyranine Monitored by Transient Mid-Infrared Spectroscopy. ChemPhysChem, 2005, 6, 625-636.	1.0	94
56	The Excited-State Chemistry of Phycocyanobilin: A Semiempirical Study. ChemPhysChem, 2005, 6, 1259-1268.	1.0	34
57	Intramolecular Hydrogen-Bond-Assisted Planarization of Asymmetrically Functionalized Alternating Phenylene-Pyridinylene Copolymers. Chemistry - A European Journal, 2005, 11, 5889-5898.	1.7	46

	Cr	tation Report	
#	ARTICLE On the Role of the Solvent and Substituent on the Protonation Equilibria of Di-Substituted Anilines	IF	CITATIONS
58	in Dioxane–Water Mixed Solvents. Journal of Solution Chemistry, 2005, 34, 1283-1295.	0.6	15
59	Effect of acid on the quantum yield of photodissociation of 9-(4-azidophenyl)acridine. Russian Chemical Bulletin, 2005, 54, 2746-2751.	0.4	Ο
60	Understanding chemical reactions at the molecular level. , 2005, , 1-29.		0
61	Molecular collisions. , 2005, , 30-72.		0
62	Introduction to reactive molecular collisions. , 2005, , 73-108.		1
63	Scattering as a probe of collision dynamics. , 2005, , 109-147.		Ο
64	Introduction to polyatomic dynamics. , 2005, , 148-200.		2
65	Structural considerations in the calculation of reaction rates. , 2005, , 201-263.		1
66	Photoselective chemistry: access to the transition state region. , 2005, , 264-333.		1
67	Chemistry in real time. , 2005, , 334-355.		ο
68	State-changing collisions: molecular energy transfer. , 2005, , 356-393.		1
69	Stereodynamics. , 2005, , 394-426.		2
70	Dynamics in the condensed phase. , 2005, , 427-474.		0
71	Dynamics of gas–surface interactions and reactions. , 2005, , 475-499.		Ο
75	Photosensitive Precursors to Nitric Oxide. Current Topics in Medicinal Chemistry, 2005, 5, 637-647.	1.0	35
76	Excited-state deprotonation dynamics of 2-naphthol in NaX nanoreactors. Studies in Surface Science and Catalysis, 2005, , 741-746.	1.5	1
77	Organized Assemblies Probed by Fluorescence Spectroscopy. , 2005, , 1-23.		3
78	Excited-State Tautomerization Dynamics of 7-Hydroxyquinoline in β-Cyclodextrin. Journal of Physical Chemistry B, 2005, 109, 3938-3943.	1.2	53

#	Article	IF	CITATIONS
79	Control of Cellular Activity. , 2005, , 155-251.		9
80	A picosecond time-resolved study on prototropic reactions of electronically excited 1,5- and 1,8-diaminonaphthalenes in aqueous solution. Photochemical and Photobiological Sciences, 2005, 4, 287.	1.6	6
81	Absorption and Fluorescence of 2,5-Diarylidenecyclopentanones in Acidic Media:  Evidence for Excited-State Proton Transfer. Journal of Physical Chemistry A, 2005, 109, 8275-8279.	1.1	8
82	Elucidating excited state electronic structure and intercomponent interactions in multicomponent and supramolecular systems. Chemical Society Reviews, 2005, 34, 641.	18.7	160
83	Photoisomerization and photohydration of 3-hydroxystyrylnaphthalenes. Photochemical and Photobiological Sciences, 2005, 4, 862.	1.6	6
84	Thermochromism of Metal Ion Complexes of Semiquinone Radical Anions. Control of Equilibria between Diamagnetic and Paramagnetic Species by Lewis Acids. Journal of Physical Chemistry A, 2005, 109, 9356-9362.	1.1	22
85	Two Competitive Routes in the Lactimâ^'Lactam Phototautomerization of a Hydroxypyridine Derivative Cation in Water:  Dissociative Mechanism versus Water-Assisted Proton Transfer. Journal of Physical Chemistry A, 2005, 109, 10189-10198.	1.1	7
86	Proton Translocation in Monomolecular Langmuirâ^Blodgett Films Including 2-Naphthol and 1,4-Anthraquinone Derivatives. Journal of Physical Chemistry B, 2005, 109, 6215-6224.	1.2	0
87	Excited-State Proton Transfer:Â Indication of Three Steps in the Dissociation and Recombination Process. Journal of Physical Chemistry A, 2005, 109, 5965-5977.	1.1	140
88	An Experimental and Theoretical Investigation of the Photophysics of 1-Hydroxy-2-naphthoic Acid. Journal of Physical Chemistry A, 2005, 109, 2746-2754.	1.1	51
89	Three-State 2â€~,7â€~-Difluorofluorescein Excited-State Proton Transfer Reactions in Moderately Acidic and Very Acidic Media. Journal of Physical Chemistry A, 2005, 109, 8705-8718.	1.1	17
90	Testing the Three Step Excited State Proton Transfer Model by the Effect of an Excess Proton. Journal of Physical Chemistry A, 2005, 109, 9674-9684.	1.1	35
91	Ultrafast Proton Transfer Dynamics of Hydroxystilbene Photoacids. Journal of Physical Chemistry A, 2005, 109, 2443-2451.	1.1	40
92	Effect of Pressure on the Proton Transfer Rate from a Photoacid to a Solvent. 4. Photoacids in Methanol. Journal of Physical Chemistry A, 2005, 109, 4852-4861.	1.1	7
93	Excited-State Proton Transfer in Gas-Expanded Liquids:  The Roles of Pressure and Composition in Supercritical CO2/Methanol Mixtures. Journal of the American Chemical Society, 2005, 127, 11890-11891.	6.6	19
94	Intramolecular and intermolecular hydrogen-bonding effects on photophysical properties of 2′-aminoacetophenone and its derivatives in solution. Photochemical and Photobiological Sciences, 2005, 4, 367-375.	1.6	38
95	Elementary Steps in Excited-State Proton Transfer. Journal of Physical Chemistry A, 2005, 109, 13-35.	1.1	518
96	Excitation Wavelength Dependence of the Proton-Transfer Reaction of the Green Fluorescent Protein. Journal of Physical Chemistry B 2005, 109, 4241-4251	1.2	6

ARTICLE IF CITATIONS Absorption and Emission Study of 2â€~,7â€~-Difluorofluorescein and Its Excited-State Buffer-Mediated 1.1 51 97 Proton Exchange Reactions. Journal of Physical Chemistry A, 2005, 109, 734-747. 6-Hydroxyquinoline-N-oxides: A New Class of "Super―Photoacids1. Journal of the American Chemical 6.6 Society, 2005, 127, 8534-8544. ULTRAFAST CHEMISTRY: Using Time-Resolved Vibrational Spectroscopy for Interrogation of Structural 99 4.8 295 Dynamics. Annual Review of Physical Chemistry, 2005, 56, 337-367. Dynamics of Solvent and Spectral Relaxation., 2006, , 237-276. 100 A highly selective fluorescent sensor for fluoride through ESPT signaling transduction. New Journal 101 1.4 61 of Chemistry, 2006, 30, 1207. Photo-Induced Relaxation and Proton Transfer in Some Hydroxy Naphthoic Acids in Polymers. Journal of Physical Chemistry B, 2006, 110, 9387-9396. 1.2 Competing Excited State Intramolecular Proton Transfer Pathways from Phenol to Anthracene 103 1.7 46 Moieties. Journal of Organic Chemistry, 2006, 71, 2677-2686. General but Discriminating Fluorescent Chemosensor for Aliphatic Amines. Journal of Organic 104 1.7 Chemistry, 2006, 71, 1769-1776. Proton-Transfer Reaction of 4-Methyl 2,6-Diformyl Phenol in Cyclodextrin Nanocage. Journal of 105 29 1.1 Physical Chemistry A, 2006, 110, 12743-12751. Temperature Dependence of Excited-State Proton Transfer in Water Electrolyte Solutions and 1.1 Watera[^] Methanol Solutions. Journal of Physical Chemistry A, 2006, 110, 9039-9050. Excited state proton transfer (ESPT) from phenol to nitrogen and carbon in 107 36 1.6 (2-hydroxyphenyl)pyridines. Photochemical and Photobiological Sciences, 2006, 5, 656. An Organic White Light-Emitting Fluorophore. Journal of the American Chemical Society, 2006, 128, 6.6 198 14081-14092. Spectroscopic Determination of Proton Position in the Proton-Coupled Electron Transfer Pathways 109 of Donorâ[^]Acceptor Supramolecule Assemblies. Journal of the American Chemical Society, 2006, 128, 6.6 81 10474-10483. Effect of Electrolytes on the Excited-State Proton Transfer and Geminate Recombination. Journal of Physical Chemistry A, 2006, 110, 5573-5584. 1.1 Proton Antenna Effect of the Î³-Cyclodextrin Outer Surface, Measured by Excited State Proton 111 1.2 34 Transfer. Journal of Physical Chemistry B, 2006, 110, 26354-26364. Electrolyte Screening Effect on the Photoprotolytic Cycle of Excited Photoacid in Ice. Journal of Physical Chemistry A, 2006, 110, 13686-13695. Excited-State Proton Transfer from Pyranine to Acetate in Î³-Cyclodextrin and Hydroxypropyl 113 1.1 50 Î³-Cyclodextrin. Journal of Physical Chemistry A, 2006, 110, 13646-13652. Biphasic Tautomerization Dynamics of Excited 7-Hydroxyquinoline in Reverse Micelles. Journal of 114 1.2 Physical Chemistry B, 2006, 110, 11997-12004.

#	Article	IF	CITATIONS
115	A highly selective fluorescent sensor for Cu2+ based on 2-(2′-hydroxyphenyl)benzoxazole in a poly(vinyl chloride) matrix. Analytica Chimica Acta, 2006, 567, 189-195.	2.6	86
116	Photophysics and excited-state proton transfer of 2′-hydroxy-2-trans-styrylquinoline. Chemical Physics Letters, 2006, 418, 397-401.	1.2	17
117	Excited state proton transfer in 2,9-(di-2′-pyridyl)-4,7-di(t-butyl)carbazole. Chemical Physics Letters, 2006, 423, 288-292.	1.2	13
118	Supramolecular complexation studies of [60]fullerene with calix[4]naphthalenes—a reinvestigation. Tetrahedron, 2006, 62, 2036-2044.	1.0	35
119	The use of organophotoacids for deprotection reactions in organic synthesis. Tetrahedron Letters, 2006, 47, 8125-8128.	0.7	14
120	Photophysics of a Series of Efficient Fluorescent pH Probes for Dual-Emission-Wavelength Measurements in Aqueous Solutions. Chemistry - A European Journal, 2006, 12, 1097-1113.	1.7	51
121	Intra- and Intermolecular Proton Transfer and Related Processes in Confined Cyclodextrin Nanostructures. , 0, , 223-244.		0
122	Bimolecular Proton Transfer in Solution. , 0, , 443-458.		1
123	Design and Implementation of"Super―Photoacids. , 0, , 417-439.		0
125	A fluorescent chemical sensor for Fe3+ based on blocking of intramolecular proton transfer of a quinazolinone derivative. Talanta, 2007, 71, 171-177.	2.9	128
126	Proton-Coupled Electron Transfer. Chemical Reviews, 2007, 107, 5004-5064.	23.0	1,409
127	Absolute Rate Calculations. Proton Transfers in Solution. Journal of Physical Chemistry A, 2007, 111, 591-602.	1.1	22
128	Proton Reaction with a Mild Base in Ice Studied by Protonâ^'Photoacid Dynamicsâ€. Journal of Physical Chemistry C, 2007, 111, 8856-8865.	1.5	4
129	Conformation impact on spectral properties of bis(5,7-dimethyl-1,8-naphthyridin-2-yl)amine and its ZnII complex. New Journal of Chemistry, 2007, 31, 1785.	1.4	14
130	Hydroxy-cruciforms. Chemical Communications, 2007, , 2127-2129.	2.2	37
131	Solvent Effects on Intermolecular Proton Transfer:  The Rates of Nitrene Protonation and Their Correlation with Swain Acity. Organic Letters, 2007, 9, 5211-5214.	2.4	13
132	Photophysics of a Xanthenic Derivative Dye Useful as an "On/Off―Fluorescence Probe. Journal of Physical Chemistry A, 2007, 111, 13311-13320.	1.1	22
133	Ultrafast Proton Transfer to Solvent:Â Molecularity and Intermediates from Solvation- and Diffusion-Controlled Regimes. Journal of the American Chemical Society, 2007, 129, 5408-5418.	6.6	164

#	Article	IF	CITATIONS
134	Relative Ground and Excited-State pKaValues of Phytochromobilin in the Photoactivation of Phytochrome:Â A Computational Study. Journal of Physical Chemistry B, 2007, 111, 11554-11565.	1.2	38
135	Temperature Dependence of Excited State Proton Transfer in Ice. Journal of Physical Chemistry A, 2007, 111, 4998-5007.	1.1	15
136	Structurally Homologous β- and <i>meso</i> -Alkynyl Amidinium Porphyrins. Inorganic Chemistry, 2007, 46, 8668-8675.	1.9	25
137	Site-Selective Photoinduced Electron Transfer from Alcoholic Solvents to the Chromophore Facilitated by Hydrogen Bonding:  A New Fluorescence Quenching Mechanism. Journal of Physical Chemistry B, 2007, 111, 8940-8945.	1.2	696
138	Competition between proton and H-atom transfer: The role of the chromophore environment in the green fluorescent protein. Chemical Physics Letters, 2007, 443, 173-177.	1.2	5
139	Spatial distribution of dielectric shielding in the interior of Pyrococcus furiosus rubredoxin as sampled in the subnanosecond timeframe by hydrogen exchange. Biophysical Chemistry, 2007, 129, 43-48.	1.5	14
140	Photophysical properties of 1-acetoxy-8-hydroxy-1,4,4a,9a-tetrahydroanthraquinone: Evidence for excited state proton transfer reaction. Chemical Physics, 2007, 331, 189-199.	0.9	15
141	Colorimetric and highly selective "turn-on―fluorescent anion chemosensors with excited state proton transfer. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 191, 228-232.	2.0	7
142	Spectroscopic studies on the inclusion complex of 2-naphthol-6-sulfonate with β-cyclodextrin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 66, 732-738.	2.0	34
143	Energy Dissipation Processes of singletâ€excited 1â€Hydroxyfluorenone and its Hydrogenâ€bonded Complex with Nâ€methylimidazole [¶] . Photochemistry and Photobiology, 2004, 80, 119-126.	1.3	0
144	Ultrafast Proton Transfer of Pyranine in a Supramolecular Assembly:  PEOâ^'PPOâ^'PEO Triblock Copolymer and CTAC. Journal of Physical Chemistry B, 2007, 111, 13504-13510.	1.2	28
145	An alternative excitedâ€state proton transfer pathway in green fluorescent protein variant S205V. Protein Science, 2007, 16, 2703-2710.	3.1	70
146	Aqueous bimolecular proton transfer in acid–base neutralization. Chemical Physics, 2007, 341, 240-257.	0.9	69
147	Evidence of coupled photoinduced proton transfer and intramolecular charge transfer reaction in para-N,N-dimethylamino orthohydroxy benzaldehyde: Spectroscopic and theoretical studies. Chemical Physics, 2008, 354, 118-129.	0.9	17
148	Quantum chemical calculations of electronically excited states: formamide, its protonated form and alkali cation complexes as case studies. Monatshefte Für Chemie, 2008, 139, 319-328.	0.9	20
149	Hydroxycruciforms: Amineâ€Responsive Fluorophores. Chemistry - A European Journal, 2008, 14, 4503-4510.	1.7	82
150	Excitedâ€State Double Proton Transfer in Model Base Pairs: The Stepwise Reaction on the Heterodimer of 7â€Azaindole Analogues. ChemPhysChem, 2008, 9, 293-299.	1.0	34
151	Cyano Analogues of 7â€Azaindole: Probing Excitedâ€State Chargeâ€Coupled Proton Transfer Reactions in Protic Solvents. ChemPhysChem, 2008, 9, 2221-2229.	1.0	11

#	Article	IF	CITATIONS
152	Protolytic dissociation of cyanoanilines in the ground and excited state in water and methanol solutions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 71, 403-409.	2.0	5
153	Synthesis, spectroscopic and electronic characterizations of two half sandwich ruthenium(II) complexes with 2-(2′-hydroxyphenyl)-benzoxazole and 4-picolinic acid ligands. Journal of Organometallic Chemistry, 2008, 693, 1096-1108.	0.8	27
154	Excited-state proton transfer and geminate recombination in the molecular cage of β-cyclodextrin. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 194, 105-109.	2.0	15
155	The effect of pressure on the excited-state proton transfer in the wild-type green fluorescent protein. Chemical Physics Letters, 2008, 455, 303-306.	1.2	9
156	Excited state proton transfer in a â€~super' photoacid based on a phenol–pyridinium biaryl chromophore. Chemical Physics Letters, 2008, 455, 238-241.	1.2	13
157	Hydrogen bond induced twisted intramolecular charge transfer in 2-(4′-N,N-dimethylaminophenyl)imidazo[4,5-b]pyridine. Chemical Physics Letters, 2008, 460, 119-124.	1.2	61
158	Photolabile Protection of Alcohols, Phenols, and Carboxylic Acids with 3-Hydroxy-2-Naphthalenemethanol. Journal of Organic Chemistry, 2008, 73, 7611-7615.	1.7	40
159	Photoactive Proton Conductor:  Poly(4-vinyl pyridine) Gel. Journal of Physical Chemistry B, 2008, 112, 3662-3667.	1.2	15
160	Photochemical properties of amino and nitro derivatives of 2-and 4-styrylquinolines and their hydrochlorides. High Energy Chemistry, 2008, 42, 220-226.	0.2	7
161	Anomalous Photophysics of Bis(hydroxystyryl)benzenes: A Twist on the Para/Meta Dichotomy. Organic Letters, 2008, 10, 2429-2432.	2.4	25
162	Spectroscopy and Femtosecond Dynamics of Excited-State Proton Transfer Induced Charge Transfer Reaction. Journal of Physical Chemistry A, 2008, 112, 8323-8332.	1.1	86
163	Excited-state proton-transfer dynamics of 1-methyl-6-hydroxyquinolinium embedded in a solid matrix of poly(2-hydroxyethyl methacrylate). Physical Chemistry Chemical Physics, 2008, 10, 6703.	1.3	15
164	Indication of a Very Large Proton Diffusion in Ice I _h . 2. Fluorescence Quenching of Flavin Mononucleotide by Protons. Journal of Physical Chemistry C, 2008, 112, 18189-18200.	1.5	11
165	Photo-induced proton-transfer cycle of 2-naphthol in faujasite zeolitic nanocavities. Physical Chemistry Chemical Physics, 2008, 10, 153-158.	1.3	16
166	Direct and water-mediated excited state intramolecular proton transfer (ESIPT) from phenol OH to carbon atoms of extended ortho-substituted biaryl systems. Photochemical and Photobiological Sciences, 2008, 7, 1544-1554.	1.6	28
167	Photosensitized Tetrahydropyran Transfer. Journal of Organic Chemistry, 2008, 73, 4743-4745.	1.7	18
168	Origin of the Nonexponential Dynamics of Excited-State Proton Transfer in wt-Green Fluorescent Protein. Journal of Physical Chemistry B, 2008, 112, 7203-7210.	1.2	5
169	Photoacidâ^'Base Reaction in Ice via a Mobile L-Defect. Journal of Physical Chemistry A, 2008, 112, 3066-3078.	1.1	11

#	Article	IF	CITATIONS
170	Excited-State Proton Transfer in Methanol-Doped Ice in the Presence of KF. Journal of Physical Chemistry A, 2008, 112, 4415-4425.	1.1	8
171	Indication of a Very Large Proton Diffusion in Ice I _h . Journal of Physical Chemistry C, 2008, 112, 11991-12002.	1.5	22
172	Effect of Temperature on Excited-State Proton Tunneling in wt-Green Fluorescent Protein. Journal of Physical Chemistry B, 2008, 112, 1232-1239.	1.2	18
174	Isotope Effect of Proton/Deuteron Diffusion Constant in Ice. Israel Journal of Chemistry, 2009, 49, 235-249.	1.0	3
175	pHâ€Dependent Optical Properties of Synthetic Fluorescent Imidazoles. Chemistry - A European Journal, 2009, 15, 3560-3566.	1.7	34
176	Bis(4′â€dibutylaminostyryl)benzene: Spectroscopic Behavior upon Protonation or Methylation. Chemistry - A European Journal, 2009, 15, 13075-13081.	1.7	30
177	Study of the contact charge transfer behavior between cryptophanes (A and E) and fullerene by absorption, fluorescence and 1H NMR spectroscopy. Analytica Chimica Acta, 2009, 650, 118-123.	2.6	9
178	Theoretical studies on excited state proton transfer tautomerism reaction and spectroscopic properties of 8-hydroxyquinoline monomers and dimers. Journal of Structural Chemistry, 2009, 50, 606-612.	0.3	6
179	Tautomerization of lumichrome promoted by supramolecular complex formation with cucurbit[7]uril. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 207, 47-51.	2.0	33
180	Excited state dynamics in the green fluorescent protein. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 205, 1-11.	2.0	59
181	Backbone conformational dependence of peptide acidity. Biophysical Chemistry, 2009, 141, 124-130.	1.5	18
182	Probing the Inner Cavities of Hydrogels by Proton Diffusion. Journal of Physical Chemistry C, 2009, 113, 19500-19505.	1.5	29
183	Polarization and Polarizability Assessed by Protein Amide Acidity. Biochemistry, 2009, 48, 6482-6494.	1.2	32
184	Unusual Temperature Dependence of the Proton Transfer Rate from 8-Hydroxy-1,3,6-pyrenetrisulfonate Photoacid to Methanol-Doped Ice. Journal of Physical Chemistry C, 2009, 113, 17915-17926.	1.5	3
185	Indication of a Very Large Proton Diffusion in Ice I _h . III. Fluorescence Quenching of 1-Naphthol Derivatives. Journal of Physical Chemistry A, 2009, 113, 959-974.	1.1	13
186	Classification of Acids and Acidities in I _h Ice. Journal of Physical Chemistry C, 2009, 113, 7342-7354.	1.5	10
187	Triplet-State Acidâ^'Base Reactions of 1-Methyl-7-oxyquinolinium in Water. Journal of Physical Chemistry A, 2009, 113, 10589-10592.	1.1	7
188	Excited-State Proton Transfer and Proton Reactions of 6-Hydroxyquinoline and 7-Hydroxyquinoline in Water and Ice. Journal of Physical Chemistry C, 2009, 113, 20066-20075.	1.5	21

#	Article	IF	CITATIONS
189	Ground-State Proton Transfer of 7-Hydroxyquinoline Confined in Biologically Relevant Water Nanopools. Journal of Physical Chemistry C, 2009, 113, 16110-16115.	1.5	30
190	Temperature Dependence of Proton Diffusion in I _h Ice. Journal of Physical Chemistry C, 2009, 113, 10285-10296.	1.5	26
191	Classification of Acids and Acidities in <i>I</i> _{<i>h</i>} Ice II: Reversible Photoacids As a Probe for Proton Concentration. Journal of Physical Chemistry C, 2009, 113, 12901-12910.	1.5	7
192	Real-Time Observation of Carbonic Acid Formation in Aqueous Solution. Science, 2009, 326, 1690-1694.	6.0	255
193	C-Lysine Conjugates: pH-Controlled Light-Activated Reagents for Efficient Double-Stranded DNA Cleavage with Implications for Cancer Therapy. Journal of the American Chemical Society, 2009, 131, 11458-11470.	6.6	61
194	Excited-State Proton Transfer to Solvent from Phenol and Cyanophenols in Water. Journal of Physical Chemistry A, 2009, 113, 3021-3028.	1.1	31
195	Photoacid for Extremely Long-Lived and Reversible pH-Jumps. Journal of the American Chemical Society, 2009, 131, 9456-9462.	6.6	65
196	Photoreactions and dynamics of the green fluorescent protein. Chemical Society Reviews, 2009, 38, 2935.	18.7	115
197	Tuned lifetime, at the ensemble and single molecule level, of a xanthenic fluorescent dye by means of a buffer-mediated excited-state proton exchange reaction. Physical Chemistry Chemical Physics, 2009, 11, 5400.	1.3	20
198	Excited-state acidity of the 8-hydroxyacridizinium ion—a water-soluble photoacid. Photochemical and Photobiological Sciences, 2009, 8, 309.	1.6	7
199	Reconfigurable molecular logic gate operating in polymer film. Journal of Materials Chemistry, 2009, 19, 7721.	6.7	43
200	Solvent-dependent steady-state fluorescence spectroscopy for searching ESPT-dyes: solvatochromism of HPTS revisited. Physical Chemistry Chemical Physics, 2009, 11, 1416.	1.3	31
202	Conformational Electrostatics in the Stabilization of the Peptide Anion. Current Organic Chemistry, 2010, 14, 162-180.	0.9	6
203	Dual Reactivity of Hydroxy- and Methoxy- Substituted <i>o-</i> Quinone Methides in Aqueous Solutions: Hydration versus Tautomerization Journal of Organic Chemistry, 2010, 75, 7338-7346.	1.7	29
204	Photochemical Formation and Chemistry of Long-Lived Adamantylidene-Quinone Methides and 2-Adamantyl Cations. Journal of Organic Chemistry, 2010, 75, 102-116.	1.7	33
210	An Autoimmolative Spacer Allows Firstâ€Time Incorporation of a Unique Solidâ€State Fluorophore into a Detection Probe for Acyl Hydrolases. Chemistry - A European Journal, 2010, 16, 792-795.	1.7	56
211	2â€Hydroxyazobenzenes to Tailor pH Pulses and Oscillations with Light. Chemistry - A European Journal, 2010, 16, 8822-8831.	1.7	46
212	Excited‣tate Prototropic Equilibrium Dynamics of 6â€Hydroxyquinoline Encapsulated in Microporous Catalytic Faujasite Zeolites. Chemistry - A European Journal, 2010, 16, 12609-12615.	1.7	8

#	Article	IF	Citations
214	Artificial Lightâ€Gated Catalyst Systems. Angewandte Chemie - International Edition, 2010, 49, 5054-5075.	7.2	346
215	Integrating proton coupled electron transfer (PCET) and excited states. Coordination Chemistry Reviews, 2010, 254, 2459-2471.	9.5	155
216	Sidechain conformational dependence of hydrogen exchange in model peptides. Biophysical Chemistry, 2010, 151, 61-70.	1.5	9
217	Ultrafast excited-state dynamics of aminoperylene and of its protonated form observed by femtosecond absorption spectroscopy. Chemical Physics Letters, 2010, 487, 246-250.	1.2	15
218	Acid-base properties of N-methyl-substituted 1,2-dihydroquinolines in the ground and excited states. High Energy Chemistry, 2010, 44, 399-403.	0.2	6
219	Molecular recognition of organic ammonium ions in solution using synthetic receptors. Beilstein Journal of Organic Chemistry, 2010, 6, 32.	1.3	198
220	Accumulated Proton-Donating Ability of Solvent Molecules in Proton Transfer. Journal of the American Chemical Society, 2010, 132, 297-302.	6.6	62
221	New trends in the application of laser flash photolysis – case studies. Journal of Coordination Chemistry, 2010, 63, 2695-2714.	0.8	4
222	Unsymmetrical Cruciforms. Journal of Organic Chemistry, 2010, 75, 523-534.	1.7	54
223	Excited-State Intramolecular Proton Transfer (ESIPT) Fine Tuned by Quinolineâ^'Pyrazole Isomerism: Ĩ€-Conjugation Effect on ESIPT. Journal of Physical Chemistry A, 2010, 114, 7886-7891.	1.1	67
224	Photoinduced Coupled Charge and Proton Transfers in Gradually Twisted Phenolâ^'Pyridinium Biaryl Series. Journal of Physical Chemistry A, 2010, 114, 2401-2411.	1.1	11
225	Protic Properties of Water Confined in the Pores of Oxidized Porous Silicon Studied by Excited-State Proton Transfer from a Photoacid. Journal of Physical Chemistry C, 2010, 114, 2341-2348.	1.5	11
226	Excited-State Intermolecular Proton Transfer of the Firefly's Chromophore <scp>d</scp> -Luciferin. Journal of Physical Chemistry A, 2010, 114, 8075-8082.	1.1	44
227	Excited-State Intermolecular Proton Transfer of Lumazine. Journal of Physical Chemistry C, 2010, 114, 3634-3640.	1.5	31
228	A Combined Spectroscopic and ab Initio Investigation of Phenylacetyleneâ^'Methylamine Complex. Observation of σ and π Type Hydrogen-Bonded Configurations and Fluorescence Quenching by Weak Câ^'H··Ĥ·N Hydrogen Bondingâ€. Journal of Physical Chemistry A, 2010, 114, 11347-11352.	1.1	18
230	Proton and Hydride Affinities in Excited States: Magnitude Reversals in Proton and Hydride Affinities between the Lowest Singlet and Triplet States of Annulenyl and Benzannulenyl Anions and Cations. Journal of Organic Chemistry, 2010, 75, 2189-2196.	1.7	8
231	Excited-State Intermolecular Proton Transfer of Firefly Luciferin III. Proton Transfer to a Mild Base. Journal of Physical Chemistry A, 2010, 114, 13337-13346.	1.1	17
232	Organic Dyes with Excited-State Transformations (Electron, Charge, and Proton Transfers). Springer Series on Fluorescence, 2010, , 225-266.	0.8	17

#	Article	IF	CITATIONS
233	Excited-State Intermolecular Proton Transfer of the Firefly's Chromophore <scp>d</scp> -Luciferin. 2. Waterâ^'Methanol Mixtures. Journal of Physical Chemistry A, 2010, 114, 9471-9479.	1.1	33
234	Mechanism of H ₂ Evolution from a Photogenerated Hydridocobaloxime. Journal of the American Chemical Society, 2010, 132, 16774-16776.	6.6	211
235	Synthesis and Photophysical Properties of N-Fused Tetraphenylporphyrin Derivatives: Near-Infrared Organic Dye of [18]Annulenic Compounds. Journal of Organic Chemistry, 2010, 75, 8637-8649.	1.7	46
236	Photochemical deuterium exchange in phenyl-substituted pyrroles and indoles in CD3CN-D2O. Photochemical and Photobiological Sciences, 2010, 9, 779-790.	1.6	9
237	Ground-state proton-transfer dynamics governed by configurational optimization. Physical Chemistry Chemical Physics, 2011, 13, 3730-3736.	1.3	13
238	Photoinduced pH drops in water. Physical Chemistry Chemical Physics, 2011, 13, 6493.	1.3	34
239	Proton Transfer from 2-Naphthol to Aliphatic Amines in Supercritical CO ₂ . Journal of Physical Chemistry A, 2011, 115, 14243-14248.	1.1	4
240	Comparison of the Absorption, Emission, and Resonance Raman Spectra of 7-Hydroxyquinoline and 8-Bromo-7-Hydroxyquinoline Caged Acetate. Journal of Physical Chemistry A, 2011, 115, 11632-11640.	1.1	12
241	Diffusional effects on the reversible excited-state proton transfer. From experiments to Brownian dynamics simulations. Physical Chemistry Chemical Physics, 2011, 13, 14914.	1.3	34
242	Excited-State Intermolecular Proton Transfer of Firefly Luciferin V. Direct Proton Transfer to Fluoride and Other Mild Bases. Journal of Physical Chemistry A, 2011, 115, 7591-7601.	1.1	15
243	The O–H Stretching Mode of a Prototypical Photoacid as a Local Dielectric Probe. Journal of Physical Chemistry A, 2011, 115, 10511-10516.	1.1	15
244	Anomalously Slow Proton Transport of a Water Molecule. Journal of Physical Chemistry B, 2011, 115, 6023-6031.	1.2	10
245	A Genuine Intramolecular Proton Relay System Undergoing Excited-State Double Proton Transfer Reaction. Journal of Physical Chemistry Letters, 2011, 2, 3063-3068.	2.1	94
246	Modulation of Ground- and Excited-State Dynamics of [2,2′-Bipyridyl]-3,3′-diol by Micelles. Journal of Physical Chemistry B, 2011, 115, 1032-1037.	1.2	35
247	Solvent Effects in the Excited-State Tautomerization of 7-Azaindole: A Theoretical Study. Journal of Physical Chemistry B, 2011, 115, 15048-15058.	1.2	19
248	â€ [~] Remote' Adiabatic Photoinduced Deprotonation and Aggregate Formation of Amphiphilic <i>N</i> -Alkyl- <i>N</i> -methyl-3-(pyren-1-yl)propan-1-ammonium Chloride Salts. Journal of the American Chemical Society, 2011, 133, 19250-19256.	6.6	6
249	Theoretical Studies for Excited-State Tautomerization in the 7-Azaindole–(CH3OH)n(n= 1 and 2) Complexes in the Gas Phase. Journal of Physical Chemistry A, 2011, 115, 13743-13752.	1.1	20
250	Excited-State Intermolecular Proton Transfer of Firefly Luciferin IV. Temperature and pH Dependence. Journal of Physical Chemistry A, 2011, 115, 1617-1626.	1.1	26

		CITATION REPORT		
#	Article		IF	Citations
251	Near-Infrared Fluorescence Lifetime pH-Sensitive Probes. Biophysical Journal, 2011, 100, 2	063-2072.	0.2	56
252	Fluorescence of methylated derivatives of hydroxyphenylimidazopyridine. Resolution of st overlapping spectra and a new ESIPT dye showing very efficient radiationless deactivation Photochemical and Photobiological Sciences, 2011, 10, 1622-1636.		1.6	24
253	Apparent Stoichiometry of Water in Proton Hydration and Proton Dehydration Reactions CH ₃ CN/H ₂ O Solutions. Journal of Physical Chemistry A, 2011, 1		1.1	48
254	Competing photodehydration and excited-state intramolecular proton transfer (ESIPT) in derivatives of 2-phenylphenols. Canadian Journal of Chemistry, 2011, 89, 221-234.	adamantyl	0.6	22
255	Excited state intramolecular proton transfer in 1-hydroxypyrene. Canadian Journal of Cher 89, 433-440.	nistry, 2011,	0.6	18
256	Long-Lived Photoacid Based upon a Photochromic Reaction. Journal of the American Chen 2011, 133, 14699-14703.	nical Society,	6.6	242
257	Picosecond Dynamics of Proton Transfer of a 7-Hydroxyflavylium Salt in Aqueous–Orga Mixtures. Journal of Physical Chemistry A, 2011, 115, 10988-10995.	nic Solvent	1.1	19
258	Excited-State Proton Transfer via Hydrogen-Bonded Acetic Acid (AcOH) Wire for 6-Hydrox Journal of Physical Chemistry A, 2011, 115, 19-24.	yquinoline.	1.1	68
259	Quantum-chemical study of photoisomerization and photoinduced proton transfer in hydroxystyrylquinolines. High Energy Chemistry, 2011, 45, 273-280.		0.2	0
260	Spectral and photochemical properties of hydroxylated 2-styrylquinoline derivatives. High Chemistry, 2011, 45, 281-286.	Energy	0.2	1
261	Determination of ground and excited state dipole moments of some naphthols using solv shift method. Journal of Molecular Liquids, 2011, 163, 141-146.	atochromic	2.3	21
262	Fluorescence characteristics of 5-aminoquinoline in acetonitrile: Water. Journal of Molecu Liquids, 2011, 164, 197-200.	ar	2.3	8
263	Sterically congested quinone methides in photodehydration reactions of 4-hydroxybiphen derivatives and investigation of their antiproliferative activity. Photochemical and Photobi Sciences, 2011, 10, 1910-1925.	yl ological	1.6	29
264	Green fluorescent protein: A perspective. Protein Science, 2011, 20, 1509-1519.		3.1	188
265	Phenylacetylene: A Hydrogen Bonding Chameleon. ChemPhysChem, 2011, 12, 26-46.		1.0	29
266	Hydroxydialkylamino Cruciforms: Amphoteric Materials with Unique Photophysical Proper Chemistry - A European Journal, 2011, 17, 3112-3119.	ties.	1.7	21
267	Photochemical reagents for the study of metalloproteins by flash photolysis. Coordinatior Chemistry Reviews, 2011, 255, 737-756.	1	9.5	11
268	Photoinduced proton transfer of 6-hydroxynaphthalene-1-sulfonic acid in n-propanol/wate Chemical Physics Letters, 2011, 510, 73-77.	r mixtures.	1.2	0

#	Article	IF	CITATIONS
269	Effect of positional substitution of amino group on excited state dipole moments of quinoline. Journal of Luminescence, 2011, 131, 1869-1873.	1.5	24
270	Protolytic dissociation of cyanophenols in ground and excited states in alcohol and water solutions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 79, 451-455.	2.0	8
271	Gas phase solvatochromic effects of phenol and naphthol photoacids. Journal of Chemical Physics, 2011, 134, 244303.	1.2	5
272	When electrons and protons get excited. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8531-8532.	3.3	27
273	Concerted electron-proton transfer in the optical excitation of hydrogen-bonded dyes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8554-8558.	3.3	99
274	Synthesis and Photophysics of Fully π-Conjugated Heterobis-Functionalized Polymeric Molecular Wires via Suzuki Chain-Growth Polymerization. Journal of the American Chemical Society, 2012, 134, 17769-17777.	6.6	68
275	Water-wire catalysis in photoinduced acid–base reactions. Physical Chemistry Chemical Physics, 2012, 14, 8974.	1.3	27
276	Excited-state proton-relay dynamics of 7-hydroxyquinoline controlled by solvent reorganization in room temperature ionic liquids. Physical Chemistry Chemical Physics, 2012, 14, 218-224.	1.3	6
277	Excited-state proton transfer in N-methyl-6-hydroxyquinolinium salts: solvent and temperature effects. Physical Chemistry Chemical Physics, 2012, 14, 8964.	1.3	42
278	Excited-state proton transfer and ion pair formation in a Cinchona organocatalyst. Physical Chemistry Chemical Physics, 2012, 14, 13019.	1.3	26
279	Influence of pH on photophysical properties of (E)-1-(4-chlorobenzyl)-4-(4-hydroxystyryl)pyridinium chloride. Photochemical and Photobiological Sciences, 2012, 11, 1454-1464.	1.6	7
280	Ultrafast Vibrational Frequency Shifts Induced by Electronic Excitations: Naphthols in Low Dielectric Media. Journal of Physical Chemistry A, 2012, 116, 2775-2790.	1.1	29
281	Ultrafast Proton Transfer of Three Novel Quinone Cyanine Photoacids. Journal of Physical Chemistry A, 2012, 116, 7353-7363.	1.1	31
282	Kinetic Isotope Effects in Reductive Excited-State Quenching of Ru(2,2′-bipyrazine) ₃ ²⁺ by Phenols. Journal of Physical Chemistry Letters, 2012, 3, 70-74.	2.1	58
283	How and When Does an Unusual and Efficient Photoredox Reaction of 2-(1-Hydroxyethyl) 9,10-Anthraquinone Occur? A Combined Time-Resolved Spectroscopic and DFT Study. Journal of the American Chemical Society, 2012, 134, 14858-14868.	6.6	29
284	Photoinduced Dynamics of Oxyluciferin Analogues: Unusual Enol "Superâ€photoacidity and Evidence for Keto–Enol Isomerization. Journal of the American Chemical Society, 2012, 134, 16452-16455.	6.6	56
285	Iron(iii) selective molecular and supramolecular fluorescent probes. Chemical Society Reviews, 2012, 41, 7195.	18.7	688
286	A theoretical study of hemiacetal formation from the reaction of methanol with derivatives of CX ₃ CHO (X = H, F, Cl, Br and I). Journal of Physical Organic Chemistry, 2012, 25, 1286-1292	2.0.9	7

#	Article	IF	CITATIONS
287	Mechanisms of Formation of Hemiacetals: Intrinsic Reactivity Analysis. Journal of Physical Chemistry A, 2012, 116, 8250-8259.	1.1	30
288	Electrostatics of Hydrogen Exchange for Analyzing Protein Flexibility. Methods in Molecular Biology, 2012, 831, 369-405.	0.4	2
289	Excited-State Proton Transfer of Firefly Dehydroluciferin. Journal of Physical Chemistry A, 2012, 116, 10770-10779.	1.1	14
290	Base-Induced Phototautomerization in 7-Hydroxy-4-(trifluoromethyl)coumarin. Journal of Physical Chemistry B, 2012, 116, 14886-14891.	1.2	21
291	Pressure effect on the excited-state proton transfer from curcumin to monols. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 247, 42-51.	2.0	3
293	Zwitterionic biphenyl quinone methides in photodehydration reactions of 3-hydroxybiphenyl derivatives: laser flash photolysis and antiproliferation study. Photochemical and Photobiological Sciences, 2012, 11, 381-396.	1.6	25
294	Inverse design of molecules with optimal reactivity properties: acidity of 2-naphthol derivatives. Physical Chemistry Chemical Physics, 2012, 14, 16002.	1.3	24
295	Collapse and Recovery of Green Fluorescent Protein Chromophore Emission through Topological Effects. Accounts of Chemical Research, 2012, 45, 171-181.	7.6	108
296	Mechanistic Study of the Photochemical Hydroxide Ion Release from 9-Hydroxy-10-methyl-9-phenyl-9,10-dihydroacridine. Journal of the American Chemical Society, 2012, 134, 11301-11303.	6.6	22
297	Structural, electronic and acid/base properties of [Ru(bpy(OH)2)3]2+ (bpy(OH)2 =) Tj ETQq1 1 0.784314 rgBT /	Overlock 1 1.6	0
298	Mechanism of surface proton transfer doping in pentacene based organic thinâ€film transistors. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 181-192.	0.8	14
299	Sterically Congested Adamantylnaphthalene Quinone Methides. Journal of Organic Chemistry, 2012, 77, 4596-4610.	1.7	36
300	Conformationally Locked Chromophores as Models of Excited-State Proton Transfer in Fluorescent Proteins. Journal of the American Chemical Society, 2012, 134, 6025-6032.	6.6	164
301	Ultrafast Excited-State Intermolecular Proton Transfer of Cyanine Fluorochrome Dyes. Journal of Physical Chemistry A, 2012, 116, 85-92.	1.1	37
302	2-(2′-Hydroxyphenyl)-4(3H)-quinazolinone derivatives based fluorescent probes for mercury(II) via an intramolecular proton transfer mechanism. International Journal of Environmental Analytical Chemistry, 2012, 92, 810-820.	1.8	8
303	Organic Solid‣tate Fluorescence: Strategies for Generating Switchable and Tunable Fluorescent Materials. ChemPlusChem, 2012, 77, 518-531.	1.3	219
304	Comparative Study of the Photoprotolytic Reactions of <scp>d</scp> -Luciferin and Oxyluciferin. Journal of Physical Chemistry A, 2012, 116, 7452-7461.	1.1	41
305	Experimentally assessing molecular dynamics sampling of the protein native state conformational distribution. Biophysical Chemistry, 2012, 163-164, 21-34.	1.5	10

#	Article	IF	Citations
306	Absorption and Fluorescence Emission Attributes of a Fluorescent dye: 2,3,5,6-Tetracyano-p-Hydroquinone. Journal of Fluorescence, 2013, 23, 829-837.	1.3	7
307	Can the substituent in the para position of anilide ion influence the Nâ^'···H–FÂ→ÂN–H···Fâ^' switchin quantum chemical study. Structural Chemistry, 2013, 24, 1319-1330.	^{ng} i.ð	6
308	Controlling excited-state prototropism via the acidity of ionic liquids. RSC Advances, 2013, 3, 11621.	1.7	7
309	Excited-state proton transfer of photoexcited pyranine in water observed by femtosecond stimulated Raman spectroscopy. Chemical Physics, 2013, 422, 204-219.	0.9	67
310	Oxidation Reactions of 1- and 2-Naphthols: An Experimental and Theoretical Study. Journal of Physical Chemistry A, 2013, 117, 11261-11270.	1.1	52
311	Photochemical reactions of tetrachloro-1,4-benzoquinone (chloranil) with tricyclo[4.1.0.02,7]heptane (Moore's hydrocarbon) and bicyclo[4.1.0]hept-2-ene (2-norcarene). Organic and Biomolecular Chemistry, 2013, 11, 2811.	1.5	10
312	Proton Transfer in Nucleobases is Mediated by Water. Journal of Physical Chemistry A, 2013, 117, 6789-6797.	1.1	43
313	Excited-State Proton Transfer and Proton Diffusion near Hydrophilic Surfaces. Journal of Physical Chemistry C, 2013, 117, 25786-25797.	1.5	19
314	Ultrafast excited-state proton transfer from hydroxycoumarin-dipicolinium cyanine dyes. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 254, 45-53.	2.0	13
315	Ultrafast Solventâ€Assisted Electronic Level Crossing in 1â€Naphthol. Angewandte Chemie - International Edition, 2013, 52, 6871-6875.	7.2	24
316	Histidine-functionalized water-soluble nanoparticles for biomimetic nucleophilic/general-base catalysis under acidic conditions. Organic and Biomolecular Chemistry, 2013, 11, 6849.	1.5	19
317	Photosolvolysis of bulky (4-hydroxyphenyl)-naphthalene derivatives. Photochemical and Photobiological Sciences, 2013, 12, 2043-2056.	1.6	4
318	Dissociation of a Strong Acid in Neat Solvents: Diffusion Is Observed after Reversible Proton Ejection Inside the Solvent Shell. Journal of Physical Chemistry B, 2013, 117, 14065-14078.	1.2	24
319	Solvatochromism of pyranine-derived photoacids. Physical Chemistry Chemical Physics, 2013, 15, 19893.	1.3	50
320	Photochemistry between a ruthenium(ii) pyridylimidazole complex and benzoquinone: simple electron transferversusproton-coupled electron transfer. Photochemical and Photobiological Sciences, 2013, 12, 254-261.	1.6	11
321	Excited-state proton coupled charge transfer modulated by molecular structure and media polarization. Chemical Society Reviews, 2013, 42, 1379-1408.	18.7	604
322	Photoinduced Proton and Charge Transfer in 2-(2′-Hydroxyphenyl)imidazo[4,5- <i>b</i>]pyridine. Journal of Physical Chemistry B, 2013, 117, 884-896.	1.2	42
323	Assessing the chemical accuracy of protein structures via peptide acidity. Biophysical Chemistry, 2013, 171, 63-75.	1.5	8

#	Article	IF	CITATIONS
324	Proton-Coupled Electron Transfer with Photoexcited Metal Complexes. Accounts of Chemical Research, 2013, 46, 1517-1526.	7.6	147
325	<i>meta</i> versus <i>para</i> Substitution: How Does C–H Activation in a Methyl Group Occur in 3-Methylbenzophenone but Does Not Take Place in 4-Methylbenzophenone?. Journal of Organic Chemistry, 2013, 78, 4867-4878.	1.7	8
326	Ultrafast Photochemistry in Liquids. Annual Review of Physical Chemistry, 2013, 64, 247-271.	4.8	156
327	Excited-State Proton-Transfer Processes of DHICA Resolved: From Sub-Picoseconds to Nanoseconds. Journal of Physical Chemistry Letters, 2013, 4, 1383-1388.	2.1	37
328	Temperature Dependence of the Excited-State Proton-Transfer Reaction of Quinone-cyanine-7. Journal of Physical Chemistry A, 2013, 117, 3925-3934.	1.1	19
329	Ultrafast Excited-State Proton Transfer to the Solvent Occurs on a Hundred-Femtosecond Time-Scale. Journal of Physical Chemistry A, 2013, 117, 3405-3413.	1.1	57
330	Early Time Excited-State Structural Evolution of Pyranine in Methanol Revealed by Femtosecond Stimulated Raman Spectroscopy. Journal of Physical Chemistry A, 2013, 117, 6024-6042.	1.1	51
331	Solvent-dependent excited state intramolecular proton transfer (ESIPT) pathways from phenol to carbon in 2,5-dihydroxyphenyl arenes. Photochemical and Photobiological Sciences, 2013, 12, 1571-1588.	1.6	12
332	Toward Organic Photohydrides: Excited-State Behavior of 10-Methyl-9-phenyl-9,10-dihydroacridine. Journal of Physical Chemistry B, 2013, 117, 15290-15296.	1.2	20
333	Competitive intra- and inter-molecular proton transfer in hydroxynaphthyl benzothiazole: selective ratiometric sensing of acetate. Tetrahedron Letters, 2013, 54, 4215-4220.	0.7	38
334	A guanidine derivative of naphthalimide with excited-state deprotonation coupled intramolecular charge transfer properties and its application. Journal of Materials Chemistry C, 2013, 1, 4427.	2.7	51
335	Improved analysis of excited state proton transfer kinetics by the combination of standard and convolution methods. Photochemical and Photobiological Sciences, 2013, 12, 902-910.	1.6	14
336	Wagging motion of hydrogen-bonded wire in the excited-state multiple proton transfer process of 7-hydroxyquinolineA·(NH3)3 cluster. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 112, 257-262.	2.0	54
337	Photochemistry and excited state prototropic behaviour of 8-amino 2-naphthol. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 109, 164-172.	2.0	8
338	Theoretical studies on the effect of substituent in the proton transfer reaction of 4-substituted pyrazoles. Computational and Theoretical Chemistry, 2013, 1008, 67-73.	1.1	17
339	Properties of surface-cross-linked micelles probed by fluorescence spectroscopy and their catalysis of phosphate ester hydrolysis. Journal of Colloid and Interface Science, 2013, 390, 151-157.	5.0	26
340	Excited-state free energy surfaces in solution: Time-dependent density functional theory/reference interaction site model self-consistent field method. Journal of Chemical Physics, 2013, 138, 244101.	1.2	10
341	Chloride sensing via suppression of excited state intramolecular proton transfer in squaramides. Chemical Communications, 2013, 49, 1633.	2.2	29

#	Article	IF	CITATIONS
342	Physicochemical Study of a Metastable-State Photoacid. Journal of Physical Chemistry A, 2013, 117, 13101-13104.	1.1	56
343	Ultrafast Excited-State Proton-Transfer Reaction of 1-Naphthol-3,6-Disulfonate and Several 5-Substituted 1-Naphthol Derivatives. Journal of Physical Chemistry B, 2013, 117, 4594-4603.	1.2	72
344	Excited State Intramolecular Proton Transfer (ESIPT) from Phenol to Carbon in Selected Phenylnaphthols and Naphthylphenols. Journal of Organic Chemistry, 2013, 78, 1811-1823.	1.7	40
345	Effect of an external electric field on the diffusion-influenced geminate reversible reaction of a neutral particle and a charged particle in three dimensions. Ill. Ground-state ABCD reaction. Journal of Chemical Physics, 2013, 139, 194107.	1.2	4
346	Protonâ€Transfer Reactions of Acridine in Waterâ€Containing Ionicâ€Liquidâ€Rich Mixtures. ChemPhysChem, 2013, 14, 3944-3952.	1.0	10
347	Accelerating slow excited state proton transfer. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 876-880.	3.3	9
349	Photochemically Induced Proton Transfers Reactions. , 2014, , .		1
350	FLIM Strategies for Intracellular Sensing. Springer Series on Fluorescence, 2014, , 191-223.	0.8	7
351	Theoretical Study of Fluorescence Spectra Utilizing the p <i>K</i> _a Values of Acids in Their Excited States. Photochemistry and Photobiology, 2014, 90, 35-44.	1.3	9
352	Excited-State Proton Transfer Dynamics of Firefly's Chromophore <scp>D</scp> -Luciferin in DMSO–Water Binary Mixture. Journal of Physical Chemistry B, 2014, 118, 13946-13953.	1.2	14
353	Effect of an external electric field on the diffusion-influenced geminate reversible reaction of a neutral particle and a charged particle in three dimensions. IV. Excited-state ABCD reaction. Journal of Chemical Physics, 2014, 140, 064502.	1.2	1
354	Comparison of the rate of excited-state proton transfer from photoacids to alcohols and water. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 277, 90-101.	2.0	24
355	A DFT/TD-DFT study of thiazolidinedione derivative in dimethylformamide: Cooperative roles of hydrogen bondings, electronic and vibrational spectra. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 125, 131-137.	2.0	14
356	Theoretical studies on proton transfer reaction of 3(5)-substituted pyrazoles. Journal of Chemical Sciences, 2014, 126, 273-281.	0.7	13
357	Visibleâ€Lightâ€Responsive Reversible Photoacid Based on a Metastable Carbanion. Chemistry - A European Journal, 2014, 20, 689-692.	1.7	49
358	7-Hydroxyflavone Revisited: Spectral, Acid–Base Properties, and Interplay of the Protolytic Forms in the Ground and Excited States. Journal of Physical Chemistry A, 2014, 118, 3068-3080.	1.1	16
359	Ultrafast Phenomena in Molecular Sciences. Springer Series in Chemical Physics, 2014, , .	0.2	9
360	Effect of Acid on the Ultraviolet–Visible Absorption and Emission Properties of Curcumin. Journal of Physical Chemistry A, 2014, 118, 872-884.	1.1	38

#	Article	IF	CITATIONS
361	Hydrogen bonding tunes the early stage of hydrogen-atom abstracting reaction. Physical Chemistry Chemical Physics, 2014, 16, 17828-17834.	1.3	19
362	Highly photostable "super―photoacids for ultrasensitive fluorescence spectroscopy. Photochemical and Photobiological Sciences, 2014, 13, 548-562.	1.6	52
363	Synthesis and Photophysics of a New Family of Fluorescent 9â€Alkyl‣ubstituted Xanthenones. Chemistry - A European Journal, 2014, 20, 447-455.	1.7	16
364	Solvent dependence of excited-state proton transfer from pyranine-derived photoacids. Physical Chemistry Chemical Physics, 2014, 16, 9104.	1.3	65
365	8-Azapurines as isosteric purine fluorescent probes for nucleic acid and enzymatic research. Molecular BioSystems, 2014, 10, 2756-2774.	2.9	40
366	Photo-induced glycosylation using reusable organophotoacids. Chemical Communications, 2014, 50, 10695-10698.	2.2	46
367	Excited-State Proton Transfer and Phototautomerism in Nucleobase and Nucleoside Analogs: A Mini-Review. Nucleosides, Nucleotides and Nucleic Acids, 2014, 33, 626-644.	0.4	21
368	Visible Light Activated Ion Sensing Using a Photoacid Polymer for Calcium Detection. Analytical Chemistry, 2014, 86, 6184-6187.	3.2	59
369	Naked-Eye Detection of C1–C4 Alcohols Based on Ground-State Intramolecular Proton Transfer. Analytical Chemistry, 2014, 86, 2521-2525.	3.2	24
370	Superior Photoprotective Motifs and Mechanisms in Eumelanins Uncovered. Journal of the American Chemical Society, 2014, 136, 11626-11635.	6.6	85
371	Comprehensive Study of Ultrafast Excited-State Proton Transfer in Water and D ₂ 0 Providing the Missing RO [–] ···H ⁺ Ion-Pair Fingerprint. Journal of Physical Chemistry A, 2014, 118, 4425-4443.	1.1	31
372	Photoswitchable Hydride Transfer from Iridium to 1-Methylnicotinamide Rationalized by Thermochemical Cycles. Journal of the American Chemical Society, 2014, 136, 14718-14721.	6.6	70
373	Excited-State Proton Transfer from Quinone-Cyanine 9 to Protic Polar-Solvent Mixtures. Journal of Physical Chemistry A, 2014, 118, 1832-1840.	1.1	22
374	pH-Related and Site-Specific Excited-State Proton Transfer from Pterin to Acetate. Journal of Physical Chemistry B, 2014, 118, 11707-11714.	1.2	22
375	Vitamin B ₆ cofactor based fluorescent probe for sensing an anion (F ^{â^'}) and cation (Co ²⁺) independently in a pure aqueous medium. RSC Advances, 2014, 4, 25393-25397.	1.7	32
376	Solvent-Induced Red-Shifts for the Proton Stretch Vibrational Frequency in a Hydrogen-Bonded Complex. 1. A Valence Bond-Based Theoretical Approach. Journal of Physical Chemistry B, 2014, 118, 8330-8351.	1.2	14
377	Moderately Strong Photoacid Dissociates in Alcohols with High Transient Concentration of the Proton-Transfer Contact Pair. Journal of Physical Chemistry Letters, 2014, 5, 989-994.	2.1	13
378	Zn(<scp>ii</scp>)-coordination modulated ligand photophysical processes – the development of fluorescent indicators for imaging biological Zn(<scp>ii</scp>) ions. RSC Advances, 2014, 4, 20398-20440.	1.7	99

#	Article	IF	CITATIONS
379	Photoinduced tautomerism of 2,6-dicarbomethoxyphenol in DMF–water mixtures: Perturbation from intermolecular processes. Journal of Luminescence, 2014, 150, 25-34.	1.5	3
380	Analysis of Photoexcitation Energy Dependence in the Photoluminescence of Firefly Luciferin. Photochemistry and Photobiology, 2014, 90, 820-828.	1.3	4
381	Evidence of lactim-lactam photo-tautomerization through four-member intramolecular hydrogen bonded network in 5-(4-fluorophenyl)-2-hydroxy-nicotinonitrile. Journal of Luminescence, 2014, 151, 176-187.	1.5	10
382	Multiple external field effects on diffusion-limited reversible reactions for a geminate pair with no interparticle interactions. Journal of Chemical Physics, 2015, 143, 084118.	1.2	0
383	Effects of Coulombic Interaction in Diffusionâ€influenced Reversible Proton Transfer Kinetics of Photoexcited Acids. Bulletin of the Korean Chemical Society, 2015, 36, 1992-1998.	1.0	1
384	Monitoring the Microscopic Molecular Mechanisms of Proton Transfer in Acidâ€base Reactions in Aqueous Solutions. Israel Journal of Chemistry, 2015, 55, 1240-1251.	1.0	15
385	Effective targeting of proton transfer at ground and excited states of ortho-(2′-imidazolyl)naphthol constitutional isomers. Physical Chemistry Chemical Physics, 2015, 17, 2404-2415.	1.3	13
386	Unraveling Ultrafast Photoinduced Proton Transfer Dynamics in a Fluorescent Protein Biosensor for Ca ²⁺ Imaging. Chemistry - A European Journal, 2015, 21, 6481-6490.	1.7	34
387	Effect of NaCl Salts on the Activation Energy of Excited-State Proton Transfer Reaction of Coumarin 183. Journal of Physical Chemistry B, 2015, 119, 15509-15515.	1.2	11
388	Excited-State Hydroxide Ion Transfer from a Model Xanthenol Photobase. Journal of Physical Chemistry B, 2015, 119, 2498-2506.	1.2	8
389	Ultrafast Hydrolysis of a Lewis Photoacid. Journal of Physical Chemistry B, 2015, 119, 2737-2748.	1.2	19
390	Bifunctional Photoacids: Remote Protonation Affecting Chemical Reactivity. Journal of Physical Chemistry B, 2015, 119, 2690-2701.	1.2	35
391	Unveiling the Eigen-Weller Ion Pair from the Excited State Proton Transfer Kinetics of 3-Chloro-4-methyl-7-hydroxycoumarin. Journal of Physical Chemistry B, 2015, 119, 2604-2610.	1.2	14
392	Acid–Base Strength and Acidochromism of Some Dimethylamino–Azinium Iodides. An Integrated Experimental and Theoretical Study. Journal of Physical Chemistry A, 2015, 119, 323-333.	1.1	23
393	Excited-State Proton Transfer of Weak Photoacids Adsorbed on Biomaterials: Proton Transfer to Glucosamine of Chitosan. Journal of Physical Chemistry A, 2015, 119, 641-651.	1.1	15
394	Secondâ€Generation Fluorescent Quadracyclic Adenine Analogues: Environmentâ€Responsive Probes with Enhanced Brightness. Chemistry - A European Journal, 2015, 21, 4039-4048.	1.7	22
395	Naked-eye-based selective detection of pyrophosphate with a Zn ²⁺ complex in aqueous solution and electrospun nanofibers. RSC Advances, 2015, 5, 25229-25235.	1.7	13
396	Observation of excited state proton transfer reactions in 2-phenylphenol and 2-phenyl-1-naphthol and formation of quinone methide species. Physical Chemistry Chemical Physics, 2015, 17, 9205-9211.	1.3	9

#	Article	IF	CITATIONS
397	Excited-State Proton Transfer of Weak Photoacids Adsorbed on Biomaterials: Proton Transfer on Starch. Journal of Physical Chemistry B, 2015, 119, 9795-9804.	1.2	5
398	Complexes of a naphthalimide photoacid with organic bases, and their excited-state dynamics in polar aprotic organic solvents. Physical Chemistry Chemical Physics, 2015, 17, 20715-20724.	1.3	20
399	Manipulating and Monitoring On-Surface Biological Reactions by Light-Triggered Local pH Alterations. Nano Letters, 2015, 15, 4758-4768.	4.5	35
400	Correlating Photoacidity to Hydrogen-Bond Structure by Using the Local O–H Stretching Probe in Hydrogen-Bonded Complexes of Aromatic Alcohols. Journal of Physical Chemistry A, 2015, 119, 4800-4812.	1.1	26
401	A DFT/TDDFT investigation of the excited state proton transfer reaction of fisetin chromophore. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 151, 368-374.	2.0	32
402	Excited-State Proton Transfer of Weak Photoacids Adsorbed on Biomaterials: 8-Hydroxy-1,3,6-pyrenetrisulfonate on Chitin and Cellulose. Journal of Physical Chemistry A, 2015, 119, 1973-1982.	1.1	29
403	Advanced Photon Counting. Springer Series on Fluorescence, 2015, , .	0.8	19
404	Excited-state intramolecular proton transfer to carbon atoms: nonadiabatic surface-hopping dynamics simulations. Physical Chemistry Chemical Physics, 2015, 17, 9687-9697.	1.3	52
405	Exotic Protonated Species Produced by UV-Induced Photofragmentation of a Protonated Dimer: Metastable Protonated Cinchonidine. Journal of Physical Chemistry A, 2015, 119, 10007-10015.	1.1	3
406	Photodeamination Reaction Mechanism in Aminomethyl <i>p</i> -Cresol Derivatives: Different Reactivity of Amines and Ammonium Salts. Journal of Organic Chemistry, 2015, 80, 10817-10828.	1.7	27
407	Protolytic dissociation of cyano derivatives of naphthol, biphenyl and phenol in the excited state: A review. Journal of Molecular Structure, 2015, 1099, 209-214.	1.8	6
408	Optically Triggered Stepwise Double-Proton Transfer in an Intramolecular Proton Relay: A Case Study of 1,8-Dihydroxy-2-naphthaldehyde. Journal of the American Chemical Society, 2015, 137, 14349-14357.	6.6	145
409	A Reversible Photoacid Functioning in PBS Buffer under Visible Light. Journal of the American Chemical Society, 2015, 137, 11282-11284.	6.6	71
410	The investigation of ESPT for 2,8-diphenyl-3,7-dihydroxy-4H,6H-pyrano[3,2-g]-chromene-4,6-dione: single or double?. RSC Advances, 2015, 5, 73619-73625.	1.7	87
411	The mechanism of excited-state proton transfer in 1-naphthol–piperidine clusters. Physical Chemistry Chemical Physics, 2015, 17, 25393-25402.	1.3	4
412	Cooperativity and Site-Selectivity of Intramolecular Hydrogen Bonds on the Fluorescence Quenching of Modified GFP Chromophores. Journal of Organic Chemistry, 2015, 80, 12431-12443.	1.7	14
413	Solvent-Induced O–H Vibration Red-Shifts of Oxygen-Acids in Hydrogen-Bonded O–H··ÂBase Complexes. Journal of Physical Chemistry B, 2015, 119, 679-692.	1.2	12
414	Anesthetic Diffusion Through Lipid Membranes Depends on the Protonation Rate. Scientific Reports, 2014, 4, 7534.	1.6	26

#	Article	IF	CITATIONS
415	Absorption and Emission Sensitivity of 2â€{2′â€Hydroxyphenyl)benzoxazole to Solvents and Impurities. Photochemistry and Photobiology, 2015, 91, 586-598.	1.3	26
416	TD-DFT Assessment of the Excited State Intramolecular Proton Transfer in Hydroxyphenylbenzimidazole (HBI) Dyes. Journal of Physical Chemistry B, 2015, 119, 2180-2192.	1.2	55
417	Excited-State Proton Transfer in Confined Medium. 4-Methyl-7-hydroxyflavylium and β-Naphthol Incorporated in Cucurbit[7]uril. Journal of Physical Chemistry B, 2015, 119, 2749-2757.	1.2	29
418	Synthesis, spectroscopic characterization and photophysics of a novel environmentally sensitive dye 3-naphthyl-1-phenyl-5-(4-carboxyphenyl)-2-pyrazoline. Journal of Luminescence, 2015, 159, 9-16.	1.5	26
419	Role of Zwitterions in Kindling Fluorescent Protein Photochemistry. Journal of Physical Chemistry B, 2015, 119, 2467-2474.	1.2	8
420	Stepwise versus Concerted Mechanism of Photoinduced Proton Transfer in <i>sec-</i> 1,2-Dihydroquinolines: Effect of Excitation Wavelength and Solvent Composition. Journal of Physical Chemistry B, 2015, 119, 2490-2497.	1.2	2
421	Theoretical Study of the Nontraditional Enolâ€Based Photoacidity of Firefly Oxyluciferin. ChemPhysChem, 2015, 16, 455-464.	1.0	18
422	How Fast Can a Proton-Transfer Reaction Be beyond the Solvent-Control Limit?. Journal of Physical Chemistry B, 2015, 119, 2253-2262.	1.2	96
423	TDDFT study of twisted intramolecular charge transfer and intermolecular double proton transfer in the excited state of 4′-dimethylaminoflavonol in ethanol solvent. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 137, 913-918.	2.0	55
424	A simple and effective 1,2,3-triazole based "turn-on―fluorescence sensor for the detection of anions. New Journal of Chemistry, 2015, 39, 295-303.	1.4	54
425	Excited State Proton Transfer in the Lysosome of Live Lung Cells: Normal and Cancer Cells. Journal of Physical Chemistry B, 2015, 119, 2149-2156.	1.2	44
426	Synthesis and Spectroscopic Characterization of 1,8-Naphthalimide Derived "Super―Photoacids. Journal of Physical Chemistry B, 2015, 119, 2515-2524.	1.2	18
427	Excited State Structural Events of a Dual-Emission Fluorescent Protein Biosensor for Ca2+ Imaging Studied by Femtosecond Stimulated Raman Spectroscopy. Journal of Physical Chemistry B, 2015, 119, 2204-2218.	1.2	26
428	Reversible dissolution/formation of polymer nanoparticles controlled by visible light. Nanoscale, 2016, 8, 14070-14073.	2.8	23
429	Solvent Polarity Effect on Nonradiative Decay Rate of Thioflavin T. Journal of Physical Chemistry A, 2016, 120, 5481-5496.	1.1	39
430	Reversible Excited-State Proton Geminate Recombination: Revisited. Journal of Physical Chemistry B, 2016, 120, 12615-12632.	1.2	37
431	Time-Dependent Density Functional Theoretical Investigation of Photoinduced Excited-State Intramolecular Dual Proton Transfer in Diformyl Dipyrromethanes. Journal of Physical Chemistry A, 2016, 120, 9894-9906.	1.1	10
432	Longâ€Range Proton Conduction across Freeâ€&tanding Serum Albumin Mats. Advanced Materials, 2016, 28, 2692-2698.	11.1	65

#	Article	IF	CITATIONS
433	Biexponential photon antibunching: recombination kinetics within the Förster-cycle in DMSO. Physical Chemistry Chemical Physics, 2016, 18, 10281-10288.	1.3	12
434	Photobasicity in Quinolines: Origin and Tunability via the Substituents' Hammett Parameters. Journal of Physical Chemistry Letters, 2016, 7, 2093-2099.	2.1	55
435	Excited-state proton transfer of 4-hydroxyl-1, 8-naphthalimide derivatives: A combined experimental and theoretical investigation. Journal of Luminescence, 2016, 177, 197-203.	1.5	15
436	Dormant acceptor activation of 10-hydroxybenzoquinline derivatives by excited-state intramolecular proton transfer. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 326, 89-99.	2.0	6
437	Controlling reactivity by remote protonation of a basic side group in a bifunctional photoacid. Physical Chemistry Chemical Physics, 2016, 18, 16106-16115.	1.3	15
438	Proton coupled electron transfer from the excited state of a ruthenium(ii) pyridylimidazole complex. Physical Chemistry Chemical Physics, 2016, 18, 11374-11382.	1.3	32
439	Reaction Pathways of Hydrogen-Evolving Electrocatalysts: Electrochemical and Spectroscopic Studies of Proton-Coupled Electron Transfer Processes. ACS Catalysis, 2016, 6, 3644-3659.	5.5	117
440	Enantioselective Protonation of Silyl Enol Ether Using Excited State Proton Transfer Dyes. Organic Letters, 2016, 18, 5416-5419.	2.4	36
441	Ultrafast intermolecular proton transfer to a proton scavenger in an organic solvent. Physical Chemistry Chemical Physics, 2016, 18, 26151-26160.	1.3	19
442	Photocontrolled proton transfer in solution and polymers using a novel photoacid with strong C–H acidity. RSC Advances, 2016, 6, 85420-85426.	1.7	32
443	Excited-state proton transfer in 4-2′-hydroxyphneylpyridine: full-dimensional surface-hopping dynamics simulations. RSC Advances, 2016, 6, 85574-85581.	1.7	7
444	Proton-Coupled Electron Transfer in a Hydrogen-Bonded Charge-Transfer Complex. Journal of Physical Chemistry B, 2016, 120, 10780-10785.	1.2	11
445	Excited-State Proton Transfer and Formation of the Excited Tautomer of 3-Hydroxypyridine-Dipicolinium Cyanine Dye. Journal of Physical Chemistry A, 2016, 120, 6184-6199.	1.1	7
446	Photoinduced strong acid–weak base reactions in a polar aprotic solvent. Methods and Applications in Fluorescence, 2016, 4, 024004.	1.1	16
447	Chlorinated 2â€hydroxynaphthalenoxazolines: Synthesis, Reaction Mechanism and Fluorescence Properties. ChemistrySelect, 2016, 1, 5647-5652.	0.7	5
448	Hydroxybenzo[b]quinolizinium Ions: Water-Soluble and Solvatochromic Photoacids. Journal of Organic Chemistry, 2016, 81, 10942-10954.	1.7	17
449	Alcohol Dimer is Requisite to Form an Alkyl Oxonium Ion in the Proton Transfer of a Strong (Photo)Acid to Alcohol. Chemistry - A European Journal, 2016, 22, 4340-4344.	1.7	18
450	Protons and Hydroxide Ions in Aqueous Systems. Chemical Reviews, 2016, 116, 7642-7672.	23.0	358

#	Article	IF	CITATIONS
451	The critical size of hydrogen-bonded alcohol clusters as effective BrÃ,nsted bases in solutions. Physical Chemistry Chemical Physics, 2016, 18, 24880-24889.	1.3	13
452	How To Reach Intense Luminescence for Compounds Capable of Excitedâ€State Intramolecular Proton Transfer?. Chemistry - A European Journal, 2016, 22, 7485-7496.	1.7	60
453	Excited state intramolecular proton transfer (ESIPT) of 6-amino-2-(2′-hydroxyphenyl)benzoxazole in dichloromethane and methanol: A TD-DFT quantum chemical study. Journal of Luminescence, 2016, 172, 29-33.	1.5	73
454	Ultrafast Structural Evolution and Chromophore Inhomogeneity inside a Green-Fluorescent-Protein-Based Ca ²⁺ Biosensor. Journal of Physical Chemistry Letters, 2016, 7, 1225-1230.	2.1	28
455	Inhibition of the excited-state Rose Bengal (RB) nonradiative process by introducing DMSO for highly efficient photocatalytic hydrogen evolution. RSC Advances, 2016, 6, 29538-29544.	1.7	13
456	The mechanism of excited state proton dissociation in microhydrated hydroxylamine clusters. Physical Chemistry Chemical Physics, 2016, 18, 5564-5579.	1.3	2
457	Origin of ultraweak fluorescence of 8-hydroxyquinoline in water: photoinduced ultrafast proton transfer. RSC Advances, 2016, 6, 9812-9821.	1.7	25
458	The AIBLHiCoS Method: Predicting Aqueous p <i>K</i> _a Values from Gas-Phase Equilibrium Bond Lengths. Journal of Chemical Information and Modeling, 2016, 56, 471-483.	2.5	14
459	Controlling Proton Conductivity with Light: A Scheme Based on Photoacid Doping of Materials. Journal of Physical Chemistry B, 2016, 120, 1002-1007.	1.2	41
460	Photoacidic and Photobasic Behavior of Transition Metal Compounds with Carboxylic Acid Group(s). Journal of the American Chemical Society, 2016, 138, 3891-3903.	6.6	55
461	Mechanism for the Enhanced Excited-State Lewis Acidity of Methyl Viologen. Journal of the American Chemical Society, 2016, 138, 1868-1876.	6.6	24
462	A slowing down of proton motion from HPTS to water adsorbed on the MCM-41 surface. Physical Chemistry Chemical Physics, 2016, 18, 2658-2671.	1.3	19
463	Tri-color emission and colorimetric recognition of acetate using semicarbazide and thio-semicarbazide derivatives: Experimental and computational studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 155, 75-80.	2.0	2
464	Protonation of silylenol ether via excited state proton transfer catalysis. Chemical Communications, 2016, 52, 1350-1353.	2.2	30
465	Structural relevance of N2O2-donor naphthodiaza-crown macrocyclic ligands to selective fluorescence signaling behavior towards aliphatic tertiary amines. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 314, 42-51.	2.0	8
466	The effect of hydrogen bond strength on emission properties in 2-(2′-hydroxyphenyl)imidazo[1,2-a]pyridines. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 314, 198-213.	2.0	17
467	Hydrogen-bonded channel-dependent mechanism of long-range proton transfer in the excited-state tautomerization of 7-hydroxyquinoline: a theoretical study. Theoretical Chemistry Accounts, 2017, 136, 1.	0.5	12
468	Improved Complete Active Space Configuration Interaction Energies with a Simple Correction from Density Functional Theory. Journal of Chemical Theory and Computation, 2017, 13, 1130-1146.	2.3	26

#	Article	IF	CITATIONS
469	Ultrafast photochemical dynamics of the hexaaquairon(III) ion. Chemical Physics Letters, 2017, 683, 315-321.	1.2	9
470	Non-typical fluorescence studies of excited and ground state proton and hydrogen transfer. Methods and Applications in Fluorescence, 2017, 5, 014007.	1.1	3
471	Combined experimental and theoretical study of the photochemistry of 4- and 3-hydroxycoumarin. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 338, 23-36.	2.0	16
472	Ruthenium(II)–Pyridylimidazole Complexes as Photoreductants and PCET Reagents. European Journal of Inorganic Chemistry, 2017, 2017, 609-615.	1.0	13
473	Enhanced and Optically Switchable Proton Conductivity in a Melting Coordination Polymer Crystal. Angewandte Chemie - International Edition, 2017, 56, 4976-4981.	7.2	83
474	Deciphering the excited state behavior for 2-(4′-N,N-Dimethylaminophenyl)imidazo[4,5-b]pyridine. Journal of Luminescence, 2017, 188, 1-6.	1.5	51
475	The Excited-State Triple Proton Transfer Reaction of 2,6-Diazaindoles and 2,6-Diazatryptophan in Aqueous Solution. Journal of the American Chemical Society, 2017, 139, 6396-6402.	6.6	47
476	The theoretical study of excited-state intramolecular proton transfer of 2,5-bis(benzoxazol-2-yl)thiophene-3,4-diol. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 183, 37-44.	2.0	29
477	Direct local solvent probing by transient infrared spectroscopy reveals the mechanism of hydrogen-bond induced nonradiative deactivation. Chemical Science, 2017, 8, 5057-5066.	3.7	57
478	Excited-State Proton-Coupled Electron Transfer: Different Avenues for Promoting Proton/Electron Movement with Solar Photons. ACS Energy Letters, 2017, 2, 1246-1256.	8.8	79
479	A fresh look into the time-resolved fluorescence of 8-hydroxy-1,3,6-pyrenetrisulfonate with the use of the fluorescence up-conversion technique. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 344, 15-27.	2.0	13
480	Enhanced and Optically Switchable Proton Conductivity in a Melting Coordination Polymer Crystal. Angewandte Chemie, 2017, 129, 5058-5063.	1.6	21
481	New Phenol Benzoate Cyanine Picolinium Salt Photoacid Excited-State Proton Transfer. Journal of Physical Chemistry A, 2017, 121, 3079-3087.	1.1	10
482	Chemical Communication between Molecules. ChemPhysChem, 2017, 18, 1667-1677.	1.0	30
483	A pOH Jump Driven by Nâ•N Out-of-Plane Motion in the Photoisomerization of Water-Solvated Triazabutadiene. Journal of Physical Chemistry A, 2017, 121, 4939-4947.	1.1	1
484	An excited-state intramolecular photon transfer fluorescence probe for localizable live cell imaging of cysteine. Methods and Applications in Fluorescence, 2017, 5, 014012.	1.1	5
485	Photochemistry of 1―and 2â€Naphthols and Their Water Clusters: The Role of ¹ Ï€Ĩ€*(L _a) Mediated Hydrogen Transfer to Carbon Atoms. Chemistry - A European Journal, 2017, 23, 8244-8251.	1.7	18
486	Excited-State Hydroxide Ion Release From a Series of Acridinol Photobases. Journal of Physical Chemistry A, 2017, 121, 448-457.	1.1	11

#	Article	IF	CITATIONS
487	Dynamics of different steps of the photopyrolytic cycle of an eminent anticancer drug topotecan inside biocompatible lyotropic liquid crystalline systems. RSC Advances, 2017, 7, 379-388.	1.7	1
488	Photoprotolytic Processes of Lumazine. Journal of Physical Chemistry B, 2017, 121, 129-142.	1.2	7
489	Photoacidity of the N -salicylidene-5-chloroaminopyridine. Journal of Luminescence, 2017, 184, 268-272.	1.5	3
490	Ultrafast Elementary Photochemical Processes of Organic Molecules in Liquid Solution. Chemical Reviews, 2017, 117, 10826-10939.	23.0	327
491	Photochemistry and Photophysics in Silica-Based Materials: Ultrafast and Single Molecule Spectroscopy Observation. Chemical Reviews, 2017, 117, 13639-13720.	23.0	98
492	Photoactive antimicrobial nanomaterials. Journal of Materials Chemistry B, 2017, 5, 8631-8652.	2.9	152
493	Concerted Mechanisms of Excited-State Proton Intramolecular Transfer for Bis-2,4-(2-benzoxazolyl)-hydroquinone and Its Derivatives. Journal of Physical Chemistry A, 2017, 121, 8217-8226.	1.1	6
494	Picosecond sulfur K-edge X-ray absorption spectroscopy with applications to excited state proton transfer. Structural Dynamics, 2017, 4, 044021.	0.9	15
495	Chloro benzoate cyanine picolinium photoacid excited-state proton transfer to water. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 349, 230-237.	2.0	5
496	Anomalous H ⁺ and D ⁺ Excited-State Proton-Transfer Rate in H ₂ O/D ₂ O Mixtures. Journal of Physical Chemistry A, 2017, 121, 6917-6924.	1.1	7
497	Synergistic Configuration of Diols as BrÃ,nsted Bases. Chemistry - A European Journal, 2017, 23, 17179-17185.	1.7	4
498	Proton Capture Dynamics in Quinoline Photobases: Substituent Effect and Involvement of Triplet States. Journal of Physical Chemistry A, 2017, 121, 7099-7107.	1.1	28
499	Influence of Solvent Relaxation on Ultrafast Excited-State Proton Transfer to Solvent. Journal of Physical Chemistry Letters, 2017, 8, 4516-4521.	2.1	28
500	Carbon Capture Powered by Solar Energy. Energy Procedia, 2017, 114, 1-6.	1.8	13
501	Exploring the binding sites and proton diffusion on insulin amyloid fibril surfaces by naphthol-based photoacid fluorescence and molecular simulations. Scientific Reports, 2017, 7, 6245.	1.6	17
502	A TDDFT study on the excited-state double proton transfer reaction of 8-hydroxyquinoline along a hydrogen-bonded bridge. New Journal of Chemistry, 2017, 41, 8437-8442.	1.4	47
503	Direct Observation of Photoinduced Ultrafast Generation of Singlet and Triplet Quinone Methides in Aqueous Solutions and Insight into the Roles of Acidic and Basic Sites in Quinone Methide Formation. Journal of the American Chemical Society, 2017, 139, 18349-18357.	6.6	9
504	Unveiling Structural Motions of a Highly Fluorescent Superphotoacid by Locking and Fluorinating the GFP Chromophore in Solution. Journal of Physical Chemistry Letters, 2017, 8, 5921-5928.	2.1	40

#	Article	IF	CITATIONS
505	Excitedâ€State Proton Transfer Reaction of Pyranine in Aqueous Sugar and Alcohol Solutions Investigated by Fluorescence Spectroscopy. Bulletin of the Korean Chemical Society, 2017, 38, 1333-1339.	1.0	2
506	Design and Applications of Metastable-State Photoacids. Accounts of Chemical Research, 2017, 50, 1956-1964.	7.6	135
507	On the origin of chloride-induced emission enhancement in ortho substituted squaramides. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 344, 108-113.	2.0	9
508	Excitedâ€State Intramolecular Protonâ€Transfer Properties of Three Tris(<i>N</i> â€Salicylideneaniline)â€Based Chromophores with Extended Conjugation. Chemistry - A European Journal, 2017, 23, 917-925.	1.7	41
509	Photoinduced Chemistry in Fluorescent Proteins: Curse or Blessing?. Chemical Reviews, 2017, 117, 758-795.	23.0	203
510	Quinazolinone derivative: Model compound for determination of dipole moment, solvatochromism and metal ion sensing. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 171, 97-103.	2.0	15
511	Theoretical Investigation of the ESIPT Mechanism for the 1-Hydroxy-9H-fluoren-9-one and 1-Hydroxy-11H-benzo[b]fluoren-11-one Chromophores. Journal of Cluster Science, 2017, 28, 1191-1200.	1.7	20
512	Interactions between photoacidic 3-hydroxynaphtho[1,2- <i>b</i>]quinolizinium and cucurbit[7]uril: Influence on acidity in the ground and excited state. Beilstein Journal of Organic Chemistry, 2017, 13, 203-212.	1.3	3
513	Synthesis and properties of the para-trimethylammonium analogues of green fluorescence protein (GFP) chromophore: The mimic of protonated GFP chromophore. Bioorganic Chemistry, 2018, 77, 300-310.	2.0	6
514	Excited-State Proton Transfer of Phenol Cyanine Picolinium Photoacid. ACS Omega, 2018, 3, 2058-2073.	1.6	8
515	Femtosecond Time-Resolved Raman Spectroscopy Reveals Structural Evidence for meta Effect in Stilbenols. Journal of Physical Chemistry A, 2018, 122, 4601-4608.	1.1	7
516	Development of Photoactivatable Nitroxyl (HNO) Donors Incorporating the (3â€Hydroxyâ€2â€naphthalenyl)methyl Phototrigger. European Journal of Organic Chemistry, 2018, 2018, 1745-1755.	1.2	6
517	Guanidine Substitutions in Naphthyl Systems to Allow a Controlled Excited-State Intermolecular Proton Transfer: Tuning Photophysical Properties in Aqueous Solution. Journal of Physical Chemistry C, 2018, 122, 9363-9373.	1.5	13
518	Stereoselective Synthesis of 2â€Deoxyglycosides from Glycals by Visibleâ€Lightâ€Induced Photoacid Catalysis. Angewandte Chemie, 2018, 130, 6228-6232.	1.6	21
519	pH-related fluorescence quenching mechanism of pterin derivatives and the effects of 6-site substituents. Canadian Journal of Chemistry, 2018, 96, 404-410.	0.6	3
520	Effect of Bile Salt Aggregates on the Prototropic Equilibria of Harmine, a Fluorescent βâ€Carboline Alkaloid. ChemistrySelect, 2018, 3, 1697-1707.	0.7	1
521	The photoacidity of phenol chloro benzoate cyanine picolinium salt photoacid in alkanols. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 353, 546-556.	2.0	3
522	Anomalous Rate of H+ and D+ Excited-State Proton Transfer (ESPT) in H2O/D2O Mixtures: Irreversible ESPT in 1-Naphthol-4-sulfonate. Journal of Physical Chemistry A, 2018, 122, 209-216.	1.1	0

#	Article	IF	CITATIONS
523	An Approach to a Model Free Analysis of Excited-State Proton Transfer Kinetics in a Reverse Micelle. Journal of Physical Chemistry C, 2018, 122, 732-740.	1.5	12
524	Theoretical Insights Into the Excited State Double Proton Transfer Mechanism of Deep Red Pigment Alkannin. Journal of Physical Chemistry A, 2018, 122, 1200-1208.	1.1	159
525	The effect of protic solvents on the excited state proton transfer of 3-hydroxyflavone: A TD-DFT static and molecular dynamics study. Journal of Molecular Liquids, 2018, 252, 428-438.	2.3	36
526	Theoretical study on the substituent effect of halogen atom at different position of 7-azaindole-water derivatives: relative stability and excited-state proton-transfer mechanism. Structural Chemistry, 2018, 29, 1341-1350.	1.0	8
527	Enhanced Excited-State Proton Transfer via a Mixed Water–Methanol Molecular Bridge of 1-Naphthol-5-Sulfonate in Methanol–Water Mixtures. Journal of Physical Chemistry A, 2018, 122, 4704-4716.	1.1	13
528	Stereoselective Synthesis of 2â€Deoxyglycosides from Glycals by Visibleâ€Lightâ€Induced Photoacid Catalysis. Angewandte Chemie - International Edition, 2018, 57, 6120-6124.	7.2	106
529	Excited-state intramolecular proton transfer mechanism for 2-(quinolin-2-yl)-3-hydroxychromone: A detailed time-dependent density functional theory study. Journal of Molecular Liquids, 2018, 260, 447-457.	2.3	25
530	Synthesis and Properties of the p-Sulfonamide Analogue of the Green Fluorescent Protein (GFP) Chromophore: The Mimic of GFP Chromophore with Very Strong N–H Photoacid Strength. Organic Letters, 2018, 20, 1768-1772.	2.4	10
531	Cucurbit[n]uril Hostâ€Guest Complexes of Acids, Photoacids, and Super Photoacids. Israel Journal of Chemistry, 2018, 58, 230-243.	1.0	19
532	Synthetic green fluorescent protein chromophore analogues with a positive charge at the phenyl-like group. Amino Acids, 2018, 50, 141-147.	1.2	3
533	Theoretical Study on the Substituent Effect on the Excitedâ€State Proton Transfer in the 7â€Azaindoleâ€Water Derivatives. Photochemistry and Photobiology, 2018, 94, 27-35.	1.3	7
534	Photoacidity of vanillin derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 38-41.	2.0	5
535	A theoretical investigation on excited-state single or double proton transfer process for aloesaponarin I. Canadian Journal of Chemistry, 2018, 96, 83-88.	0.6	12
536	Conformational switching <i>via</i> an intramolecular H-bond modulates the fluorescence lifetime in a novel coumarin–imidazole conjugate. Physical Chemistry Chemical Physics, 2018, 20, 6060-6072.	1.3	10
537	Excitation-Dependent Multiple Fluorescence of a Substituted 2-(2′-Hydroxyphenyl)benzoxazole. Journal of Physical Chemistry A, 2018, 122, 9209-9223.	1.1	30
538	Excited-State Proton Transfer to H ₂ 0 in Mixtures of CH ₃ CN–H ₂ 0 of a Superphotoacid, Chlorobenzoate Phenol Cyanine Picolinium (CBCyP). Journal of Physical Chemistry A, 2018, 122, 8126-8135.	1.1	3
539	Photodriven Deprotonation of Alcohols by a Quinoline Photobase. Journal of Physical Chemistry A, 2018, 122, 7931-7940.	1,1	38
540	Ultrafast Dynamics of a "Super―Photobase. Angewandte Chemie, 2018, 130, 14958-14962.	1.6	7

#	Article	IF	CITATIONS
541	Oxazoline as acceptor moiety for excited-state intramolecular proton transfer. Tetrahedron, 2018, 74, 6866-6872.	1.0	2
542	Fluorescence turn-on detection of fluoride using HPQ-silyl ether reactive probes and its in vivo application. Dyes and Pigments, 2018, 158, 277-284.	2.0	21
543	Insights into the effect of different reverse micellar confinements on the photo-induced acidity of water soluble naphthol sulfonates: A detailed spectroscopic account. Chemical Physics, 2018, 510, 1-9.	0.9	2
544	pH switch for OH-photoacidity in 5-amino-2-naphthol and 8-amino-2-naphthol. Physical Chemistry Chemical Physics, 2018, 20, 21325-21333.	1.3	14
545	Photoacids as singlet oxygen photosensitizers: Direct determination of the excited state acidity by time-resolved spectroscopy. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 819-825.	2.0	10
546	Visible Light and Hydroxynaphthylbenzimidazoline Promoted Transition-Metal-Catalyst-Free Desulfonylation of <i>N-</i> Sulfonylamides and <i>N-</i> Sulfonylamines. Journal of Organic Chemistry, 2018, 83, 10813-10825.	1.7	38
547	Insights into Excited State Intramolecular Proton Transfer: An Alternative Model for Excited State Proton Transfer of Green Fluorescence Protein. Journal of Physical Chemistry A, 2018, 122, 5931-5944.	1.1	17
548	Excited-State Proton Transfer from the Photoacid 2-Naphthol-8-sulfonate to Acetonitrile/Water Mixtures. Journal of Physical Chemistry A, 2018, 122, 6166-6175.	1.1	25
549	Ultrafast Dynamics of a "Super―Photobase. Angewandte Chemie - International Edition, 2018, 57, 14742-14746.	7.2	36
550	Visible light-triggered fluorescence and pH modulation using metastable-state photoacids and BODIPY. Physical Chemistry Chemical Physics, 2018, 20, 26804-26808.	1.3	8
551	A Ratio-Analysis Method for the Dynamics of Excited State Proton Transfer: Pyranine in Water and Micelles. Journal of Physical Chemistry B, 2018, 122, 6610-6615.	1.2	12
552	5-Methoxyquinoline Photobasicity Is Mediated by Water Oxidation. Journal of Physical Chemistry A, 2019, 123, 6645-6651.	1.1	15
553	Delayed photoacidity produced through the triplet–triplet annihilation of a neutral pyranine derivative. Physical Chemistry Chemical Physics, 2019, 21, 16353-16358.	1.3	2
554	Interfacial and Nanoconfinement Effects Decrease the Excited-State Acidity of Polymer-Bound Photoacids. CheM, 2019, 5, 1648-1670.	5.8	20
555	Effect of Photoacid Strength on Fluorescence Modulation of 2-Naphthol Derivatives inside β-Cyclodextrin Cavity: Insights from Fluorescence, Isothermal Calorimetry, and Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2019, 123, 9291-9301.	1.2	2
556	A Novel Optical Method To Reversibly Control Enzymatic Activity Based On Photoacids. Scientific Reports, 2019, 9, 14372.	1.6	6
557	Chiral Induction on the Ultrafast Event of Excited State Proton Transfer Can Probe Its Mechanism. ChemistrySelect, 2019, 4, 12197-12201.	0.7	2
558	Kinetic Evidence for the Necessity of Two Proton Donor Molecules for Successful Excited State Proton Transfer by a Photobase. Journal of Physical Chemistry A, 2019, 123, 10372-10380.	1.1	10

#	Article	IF	CITATIONS
559	Time Evolution of Local pH Around a Photoâ€Acid in Water and a Polymer Hydrogel: Time Resolved Fluorescence Spectroscopy of Pyranine. ChemPhysChem, 2019, 20, 3221-3227.	1.0	14
560	Calculation of Free-Energy Barriers with TD-DFT: A Case Study on Excited-State Proton Transfer in Indigo. Journal of Physical Chemistry A, 2019, 123, 8485-8495.	1.1	16
561	Ground and excited state properties of furanoflavylium derivatives. Physical Chemistry Chemical Physics, 2019, 21, 21651-21662.	1.3	7
562	Donor–acceptor preassociation, excited state solvation threshold, and optical energy cost as challenges in chemical applications of photobases. Faraday Discussions, 2019, 216, 252-268.	1.6	20
563	Photoacids in biochemical applications. Journal of Cellular Biotechnology, 2019, 4, 23-30.	0.1	19
564	Thiolactim-Thiolactam photoisomerisation: Sulfur as proton donor for excited state proton transfer process. Chemical Physics Letters, 2019, 717, 112-118.	1.2	4
565	Interdependent Electronic Structure, Protonation, and Solvatization of Aqueous 2-Thiopyridone. Journal of Physical Chemistry B, 2019, 123, 5555-5567.	1.2	3
566	Heteroatom substitution effect on electronic structures, photophysical properties, and excited-state intramolecular proton transfer processes of 3-hydroxyflavone and its analogues: A TD-DFT study. Journal of Molecular Structure, 2019, 1195, 280-292.	1.8	19
567	Time-resolved photoluminescence of 6-thienyl-lumazine fluorophores in cellulose acetate nanofibers for detection of mercury ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 222, 117189.	2.0	3
568	Fate of the fluorescent state of p-amido analogue of green fluorescence protein chromophore. Journal of Luminescence, 2019, 213, 446-450.	1.5	5
569	Chirality and Excited State Proton Transfer: From Sensing to Asymmetric Synthesis. ChemPhotoChem, 2019, 3, 580.	1.5	9
570	Exploring the Possibility of Excited State Ketoâ€Enolate Transformation of the Oxyluciferinâ€Luciferase Complex with QM/MM Free Energy Simulations. ChemPhotoChem, 2019, 3, 804-813.	1.5	2
571	Following Bimolecular Excited-State Proton Transfer between Hydroxycoumarin and Imidazole Derivatives. Journal of Physical Chemistry B, 2019, 123, 4745-4756.	1.2	11
572	Delayed vibrational modulation of the solvated GFP chromophore into a conical intersection. Physical Chemistry Chemical Physics, 2019, 21, 9728-9739.	1.3	38
573	Acid Catalyzed Formation of C-C and C-S Bonds via Excited State Proton Transfer. Molecules, 2019, 24, 1318.	1.7	9
574	Photochemical mechanism of 1,5-benzodiazepin-2-one: electronic structure calculations and nonadiabatic surface-hopping dynamics simulations. Physical Chemistry Chemical Physics, 2019, 21, 10086-10094.	1.3	15
575	Visualizing Microglia with a Fluorescence Turnâ€On Ugt1a7c Substrate. Angewandte Chemie, 2019, 131, 8056-8060.	1.6	2
576	Visualizing Microglia with a Fluorescence Turnâ€On Ugt1a7c Substrate. Angewandte Chemie - International Edition, 2019, 58, 7972-7976.	7.2	24

#	Article	IF	CITATIONS
577	Divergent Hammett Plots of the Ground- and Excited-State Proton Transfer Reactions of 7-Substituted-2-Naphthol Compounds. Journal of Physical Chemistry B, 2019, 123, 4301-4310.	1.2	16
578	Neue Rollen für photoangeregtes Eosinâ€Y in photochemischen Reaktionen. Angewandte Chemie, 2019, 131, 384-386.	1.6	13
579	Photoinduced Proton Transfer of GFP-Inspired Fluorescent Superphotoacids: Principles and Design. Journal of Physical Chemistry B, 2019, 123, 3804-3821.	1.2	32
580	Coupled Excited-State Dynamics in N-Substituted 2-Methoxy-9-Acridones. Frontiers in Chemistry, 2019, 7, 129.	1.8	8
581	Competing photochemical reactions of bis-naphthols and their photoinduced antiproliferative activity. Photochemical and Photobiological Sciences, 2019, 18, 1197-1211.	1.6	3
582	Excited state structural dynamics of 4-cyano-4′-hydroxystilbene: deciphering the signatures of proton-coupled electron transfer using ultrafast Raman loss spectroscopy. Physical Chemistry Chemical Physics, 2019, 21, 22409-22419.	1.3	4
583	Divergent excited state proton transfer reactions of bifunctional photoacids 1-ammonium-2-naphthol and 3-ammonium-2-naphthol in water and methanol. Physical Chemistry Chemical Physics, 2019, 21, 24383-24392.	1.3	10
584	Excited state proton transfer based fluorescent molecular probes and their application in studying lipid bilayer membranes. Photochemical and Photobiological Sciences, 2019, 18, 2830-2848.	1.6	17
585	Unveiling coupled electronic and vibrational motions of chromophores in condensed phases. Journal of Chemical Physics, 2019, 151, 200901.	1.2	40
586	Synthesis and self-assembly of photoacid-containing block copolymers based on 1-naphthol. Polymer Chemistry, 2019, 10, 5602-5616.	1.9	8
587	Solvatochromism of 1-naphthol-4-sulfonate photoacid and its encapsulation in cyclodextrin derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 369, 202-211.	2.0	15
588	New Roles for Photoexcited Eosinâ€Y in Photochemical Reactions. Angewandte Chemie - International Edition, 2019, 58, 378-380.	7.2	125
590	Localized pH Pulses in PBS Buffer Repeatedly Induced by Visible Light. Journal of Physical Chemistry B, 2019, 123, 648-654.	1.2	7
591	Optical p <i>K</i> _a Control in a Bifunctional Iridium Complex. Organometallics, 2019, 38, 200-204.	1.1	14
592	Computer-aided design of short-lived phosphorescent Ru(II) polarity probes. Dyes and Pigments, 2019, 162, 168-176.	2.0	3
593	A Reversible Proton Generator with On/Off Thermoswitch. Macromolecular Rapid Communications, 2019, 40, 1800713.	2.0	6
594	Enhanced Excited-State Proton Transfer via a Mixed Methanol–Water Molecular Bridge of 1-Naphthol-3,6-disulfonate in Methanol–Water Mixtures. Journal of Physical Chemistry A, 2019, 123, 48-58.	1.1	9
595	Polymeric Photoacids Based on Naphthols—Design Criteria, Photostability, and Lightâ€Mediated Release. Chemistry - A European Journal, 2020, 26, 2365-2379.	1.7	10

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
596	Photo- and Redox-Driven Artificial Molecular Motors. Chemical Reviews, 2020, 120, 200-268.	23.0	355
597	A timeâ€dependent density functional theory study on the excited state behavior of a novel T 2 (OH)B molecule. Journal of the Chinese Chemical Society, 2020, 67, 54-61.	0.8	1
598	Excitedâ€state proton transfer via higher excited state in 2â€mercaptobenzothiazole: Absorption, fluorescence, Raman spectroscopic study, and theoretical calculation. Journal of Raman Spectroscopy, 2020, 51, 125-132.	1.2	2
599	Facilitating drug release in mesoporous silica coated upconversion nanoparticles by photoacid assistance upon near-infrared irradiation. Advanced Powder Technology, 2020, 31, 3860-3866.	2.0	15
600	Proton conducting behavior of a microporous metal-organic framework assisted by ligand isomerization. Journal of Solid State Chemistry, 2020, 290, 121570.	1.4	6
601	A NONLOCAL STRUCTURAL DERIVATIVE MODEL BASED ON THE CAPUTO FRACTIONAL DERIVATIVE FOR SUPERFAST DIFFUSION IN HETEROGENEOUS MEDIA. Fractals, 2020, 28, 2050122.	1.8	2
602	Thermodynamics and kinetics of protonated merocyanine photoacids in water. Chemical Science, 2020, 11, 8457-8468.	3.7	53
603	Effect of Moderate Hydrogen Bonding on Tautomer Formation via Excited-State Intermolecular Proton-Transfer Reactions in an Aromatic Urea Compound with a Steric Base. Journal of Physical Chemistry A, 2020, 124, 6617-6628.	1.1	13
604	Method for Passive Droplet Sorting after Photo-Tagging. Micromachines, 2020, 11, 964.	1.4	5
605	Structural Insights into How Protein Environments Tune the Spectroscopic Properties of a Noncanonical Amino Acid Fluorophore. Biochemistry, 2020, 59, 3401-3410.	1.2	7
606	Unusual Acetonitrile Adduct Formed via Photolysis of 4′-Chloro-2-Hydroxybiphenyl in Aqueous Solution. Journal of Organic Chemistry, 2020, 85, 11635-11640.	1.7	6
607	Proton Transport in Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8416-8467.	23.0	382
608	Mechanism of Color and Photoacidity Tuning for the Protonated Green Fluorescent Protein Chromophore. Journal of the American Chemical Society, 2020, 142, 11032-11041.	6.6	20
609	How does excited-state antiaromaticity affect the acidity strengths of photoacids?. Chemical Communications, 2020, 56, 8380-8383.	2.2	30
610	Excited-State Proton Transfer in 8-Azapurines I: A Kinetic Analysis of 8-Azaxanthine Fluorescence. Molecules, 2020, 25, 2740.	1.7	6
611	Reversible intermolecular-coupled-intramolecular (RICI) proton transfer occurring on the reaction-radius <i>a</i> of 2-naphthol-6,8-disulfonate photoacid. Journal of Chemical Physics, 2020, 152, 074205.	1.2	5
612	Discovering a rotational barrier within a charge-transfer state of a photoexcited chromophore in solution. Structural Dynamics, 2020, 7, 024901.	0.9	14
613	Structure–Photochemical Function Relationships in Nitrogen-Containing Heterocyclic Aromatic Photobases Derived from Quinoline. Journal of Physical Chemistry A, 2020, 124, 2537-2546.	1.1	7

#	Article	IF	CITATIONS
614	Rational design of in situ localization solid-state fluorescence probe for bio-imaging of intracellular endogenous cysteine. Talanta, 2020, 220, 121364.	2.9	22
615	Block Copolymers Featuring Highly Photostable Photoacids Based on Vinylnaphthol: Synthesis and Selfâ€Assembly. Macromolecular Rapid Communications, 2020, 41, 1900607.	2.0	5
616	Tunable luminescence of a synthesized furophenanthraquinone derivative: interactions with different solvents. Luminescence, 2020, 35, 709-720.	1.5	0
617	Role of Polar Protic Solvents in the Dissociation and Reactivity of Photogenerated Radical Ion Pairs. Journal of Physical Chemistry B, 2020, 124, 3083-3089.	1.2	5
618	Visible light-mediated ring-opening polymerization of lactones based on the excited state acidity of ESPT molecules. Polymer Chemistry, 2020, 11, 3709-3715.	1.9	15
619	The theoretical study of excited-state intramolecular proton transfer of N, N,-bis (salicylidene)-(2-(3″4′-diaminophenyl) benzothiazole). Journal of Luminescence, 2021, 230, 117741.	1.5	62
620	Quinoline Photobasicity: Investigation within Waterâ€6oluble Lightâ€Responsive Copolymers. Chemistry - A European Journal, 2021, 27, 1072-1079.	1.7	8
621	Discovery of a size-record breaking green-emissive fluorophore: small, smaller, HINA. Chemical Science, 2021, 12, 1392-1397.	3.7	9
622	Excited State Proton Transfer of Quinone Cyanine 9: Implications on the Origin of Superâ€Photoacidity. ChemPhotoChem, 2021, 5, 245-252.	1.5	2
623	A Reversible Photoacid Switched by Different Wavelengths of Light. ChemPhotoChem, 2021, 5, 376-380.	1.5	3
624	Competition between cyclization and unusual Norrish type I and type II nitro-acyl migration pathways in the photouncaging of 1-acyl-7-nitroindoline revealed by computations. Scientific Reports, 2021, 11, 1396.	1.6	4
625	Recent advances in quinazolinones as an emerging molecular platform for luminescent materials and bioimaging. Organic Chemistry Frontiers, 2021, 8, 1867-1889.	2.3	39
626	Competitive Desulfonylative Reduction and Oxidation of α-Sulfonylketones Promoted by Photoinduced Electron Transfer with 2-Hydroxyaryl-1,3-dimethylbenzimidazolines under Air. Journal of Organic Chemistry, 2021, 86, 2556-2569.	1.7	11
627	Visible light-regulated organocatalytic ring-opening polymerization of lactones by harnessing excited state acidity. Polymer Chemistry, 2021, 12, 885-892.	1.9	21
628	Photochemical Glycosylation. , 2021, , 327-364.		0
629	Hydroxyaromatic Fluorophores. ACS Omega, 2021, 6, 3447-3462.	1.6	7
630	Photoprotolytic Reactions in Systems Immobilized on Silica Gel Using a Cationic Polyelectrolyte. Moscow University Chemistry Bulletin, 2021, 76, 14-20.	0.2	3
631	Features of protolytic reactions in the ground and exited states in the presence of cationic polyelectrolyte. IOP Conference Series: Materials Science and Engineering, 2021, 1093, 012021.	0.3	0

#	Article	IF	CITATIONS
632	Switching between Proton Vacancy and Excess Proton Transfer Pathways in the Reaction between 7-Hydroxyquinoline and Formate. Journal of Physical Chemistry A, 2021, 125, 1845-1859.	1.1	10
633	Theoretical insights of solvent effect on excited-state proton transfers of 2-aryl-3-hydroxyquinolone. Journal of Molecular Liquids, 2021, 325, 115035.	2.3	5
635	A timeâ€dependent density function theory study on the substituent effect on excitedâ€state intramolecular proton transfer of 4′â€methoxyâ€3â€hydroxyl flavone. Journal of Physical Organic Chemistry, 2021, 34, e4216.	0.9	5
636	Water-Mediated Excited State Proton Transfer of Pyranine–Acetate in Aqueous Solution: Vibrational Fingerprints from Ab Initio Molecular Dynamics. Journal of Physical Chemistry A, 2021, 125, 3569-3578.	1.1	11
637	Photo/Thermal Dual Responses in Aqueous-Soluble Copolymers Containing 1-Naphthyl Methacrylate. Macromolecules, 2021, 54, 4860-4870.	2.2	5
638	Chromic Ionic Liquids. ACS Applied Electronic Materials, 2021, 3, 2468-2482.	2.0	19
639	Protonâ€Transfer Dynamics of Photoacidic Merocyanines in Aqueous Solution. Chemistry - A European Journal, 2021, 27, 9160-9173.	1.7	14
640	Theoretical insights into the directionality of ESIPT behavior of BTHMB molecule with two proton acceptors in solution. Chemical Physics Letters, 2021, 775, 138670.	1.2	8
641	Enantioselective Photochemical Reactions Enabled by Triplet Energy Transfer. Chemical Reviews, 2022, 122, 1626-1653.	23.0	197
642	Structural Origins of Altered Spectroscopic Properties upon Ligand Binding in Proteins Containing a Fluorescent Noncanonical Amino Acid. Biochemistry, 2021, 60, 2577-2585.	1.2	3
643	Indications for an intermolecular photo-induced excited-state proton transfer of <i>p</i> -nitrophenol in water. Molecular Physics, 2021, 119, .	0.8	4
644	Lightâ€Modulated Cationic and Anionic Transport across Protein Biopolymers**. Angewandte Chemie - International Edition, 2021, 60, 24676-24685.	7.2	10
645	Lightâ€modulated cationic and anionic transport across protein biopolymers. Angewandte Chemie, 2021, 133, 24881.	1.6	0
646	Turning water into a protonic diode and solar cell via doping and dye sensitization. Joule, 2021, 5, 2380-2394.	11.7	9
647	Evaluating the merit of a syringol derived fluorophore as a charge transfer probe for detection of serum albumins. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 422, 113563.	2.0	3
648	Excited-state behavior and photoinduced electron transfer of pH-sensitive Ir(III) complexes with cyclometallation (C/N–) ratios between 0/6 and 3/3. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 405, 112957.	2.0	8
649	Clarification of mechanisms of protonic photovoltaic action initiated by photoexcitation of strong photoacids covalently bound to hydrated Nafion cation-exchange membranes wetted by aqueous electrolytes. Energy and Environmental Science, 2021, 14, 4961-4978.	15.6	9
650	Dynamics of proton, ion, molecule, and crystal lattice in functional molecular assemblies. Chemical Communications, 2021, 57, 8378-8401.	2.2	19

#	Article	IF	CITATIONS
651	Hybrid Glasses: From Metal Organic Frameworks and Co-ordination Polymers to Hybrid Organic Inorganic Perovskites. Springer Handbooks, 2019, , 719-770.	0.3	3
652	Proton Dissociation and Solute-Solvent Interactions Following Electronic Excitation of Photoacids. , 2002, , 155-184.		29
653	Analysis of excited state proton transfer dynamics of HPTS in methanol-water mixtures from time-resolved area-normalised emission spectrum (TRANES). Journal of Photochemistry and Photobiology A: Chemistry, 2019, 374, 138-144.	2.0	5
655	Evaluation of the role that photoacid excited-state acidity has on photovoltage and photocurrent of dye-sensitized ion-exchange membranes. , 2019, , .		2
656	The Kinetic Isotope Effect in the Photo-Dissociation Reaction of Excited-State Acids in Aqueous Solutions. , 2005, , 451-464.		10
657	Energy Dissipation Processes of Singlet-excited 1-Hydroxyfluorenone and its Hydrogen-bonded Complex with N-methylimidazole¶. Photochemistry and Photobiology, 2004, 80, 119.	1.3	4
658	Recent Progress in Photo-Acid Generators for Advanced Photopolymer Materials. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2020, 33, 15-26.	0.1	8
659	Trichodina sylhetensis sp. n. (Ciliophora:Trichodinidae) from the Mud Perch, Nandus nandus (Hamilton-Buchanan, 1822) (Nandidae) in Sylhet. Pakistan Journal of Biological Sciences, 2003, 6, 1774-1777.	0.2	5
660	An investigation of excited-state intramolecular proton transfer mechanism of new chromophore. The Journal of Atomic and Molecular Sciences, 2015, 6, 23-33.	0.1	12
661	The Kinetics of Joined Action of Triplet-Triplet Annihilation and First-Order Decay of Molecules in the State in the Case of Nondominant First-Order Process. ISRN Spectroscopy, 2012, 2012, 1-13.	0.9	1
662	Photochemistry of Hydroxyarenes. , 2003, , .		0
663	Nitrogen Acids. , 2013, , 77-92.		0
664	Biomolecules, Photostability and 1 πσ â^— States: Linking These with Femtochemistry. Springer Series in Chemical Physics, 2014, , 119-143.	0.2	0
665	Photoacid Catalyzed Reaction of Phenol with Styrene. Rapid Communication in Photoscience, 2016, 5, 13-15.	0.1	2
666	Electron-Induced Proton Transfer. Journal of Physical Chemistry B, 2021, 125, 12264-12273.	1.2	7
667	Photophysical Mechanisms of Signal Transduction in Sensing. , 2020, , 111-166.		0
668	Structure–Photochemical Function Relationships in the Photobasicity of Aromatic Heterocycles Containing Multiple Ring Nitrogen Atoms. Journal of Physical Chemistry A, 2021, 125, 13-24.	1.1	3
669	Visible-light-induced photoacid catalysis: application in glycosylation with <i>O</i> -glycosyl trichloroacetimidates. Chemical Communications, 2021, 57, 12659-12662.	2.2	10

#	Article	IF	CITATIONS
670	Molecular Design and Function of Photo-acid Generators Utilized for Advanced Industries. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 41-50.	0.0	0
671	Proton Transfer from a Photoacid to a Water Wire: First Principles Simulations and Fast Fluorescence Spectroscopy. Journal of Physical Chemistry B, 2021, 125, 12539-12551.	1.2	11
672	TDDFT investigation on electronically excited-state hydrogen-bonding properties and ESIPT mechanism for the 2-(1H-imidazol-2-yl)-phenol compound. Structural Chemistry, 2021, 32, 997-1003.	1.0	8
673	Reaction Mechanisms of Photoinduced Quinone Methide Intermediates Formed via Excited-State Intramolecular Proton Transfer or Water-Assisted Excited-State Proton Transfer of 4-(2-Hydroxyphenyl)pyridine. Journal of Physical Chemistry Letters, 2021, 12, 11666-11672.	2.1	4
674	Intramolecular Relaxation Dynamics Mediated by Solvent–Solute Interactions of Substituted Fluorene Derivatives. Solute Structural Dependence. Journal of Physical Chemistry B, 2021, 125, 12486-12499.	1.2	0
675	Reversible Photovoltage Generation Using Metastable-State Photoacids in the Solid State with Visible Light. Journal of Physical Chemistry C, 2021, 125, 25879-25885.	1.5	0
676	Excited-state intramolecular proton transfer with and without the assistance of vibronic-transition-induced skeletal deformation in phenol–quinoline. RSC Advances, 2021, 11, 37299-37306.	1.7	4
677	Electronic state of a fluoranthene–urea compound and the kinetics of its emissive tautomer state in the presence of acetate anions. New Journal of Chemistry, 2022, 46, 1741-1750.	1.4	4
678	Reversible photo control of proton chemistry. Physical Chemistry Chemical Physics, 2022, 24, 4116-4124.	1.3	19
679	Ultrafast transient absorption spectroelectrochemistry: femtosecond to nanosecond excited-state relaxation dynamics of the individual components of an anthraquinone redox couple. Chemical Science, 2022, 13, 486-496.	3.7	8
680	Superphotoacidic properties and pH-switched Stokes shifts in electron-deficient 5-hydroxyisoquinolone derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 427, 113808.	2.0	3
681	Dynamics of Excitons in Conjugated Molecules and Organic Semiconductor Systems. Chemical Reviews, 2022, 122, 8487-8593.	23.0	61
682	Acetalization of enol ethers with alcohols under visible light with BINOLs as a photoacid catalyst. Synlett, 0, 33, .	1.0	0
683	Excitedâ€ S tate Proton Transfer Dynamics of a Superâ€Photoacid in Acetoneâ€Water Mixtures. ChemPhotoChem, 2022, 6, .	1.5	5
685	Transient changes in aromaticity and their effect on excited-state proton transfer reactions. Physical Chemistry Chemical Physics, 2022, 24, 11496-11500.	1.3	3
686	Ultrafast Proton Transfer of the Aqueous Phenol Radical Cation. Physical Chemistry Chemical Physics, 2022, , .	1.3	1
687	Photoacid-induced aqueous acid–base reactions probed by femtosecond infrared spectroscopy. Photochemical and Photobiological Sciences, 2022, , .	1.6	1
688	Visible Light-Regulated Organocatalytic Ring-Opening Polymerization of Lactones Using Hydroxybenzophenones as Photocatalyst. ACS Applied Polymer Materials, 2022, 4, 3361-3368.	2.0	4

#	Article	IF	CITATIONS
689	Identification of Photoacidic Behavior Using AC and Open-Circuit Photoelectrochemical Techniques. ECS Journal of Solid State Science and Technology, 2022, 11, 105002.	0.9	1
690	Visible Light-Induced Regio- and Enantiodifferentiating [2 + 2] Photocycloaddition of 1,4-Naphthoquinones Mediated by Oppositely Coordinating 1,3,2-Oxazaborolidine Chiral Lewis Acid. Journal of Organic Chemistry, 2022, 87, 8071-8083.	1.7	3
691	Excited-State Deactivation Mechanism of 3,5-bis(2-hydroxyphenyl)-1 <i>H</i> -1,2,4-triazole: Electronic Structure Calculations and Nonadiabatic Dynamics Simulations. Journal of Physical Chemistry A, 2022, 126, 4002-4012.	1.1	5
692	Kinetic Evidence for Methanol Trimer Assisted Proton Transfer: A Transient Absorption Study on the Excited Triplet State of 4-Hydroxy-4'-nitrobiphenyl. Chinese Journal of Chemical Physics, 0, , .	0.6	1
693	Arylazo Sulfones as Nonionic Visible-Light Photoacid Generators. Journal of Organic Chemistry, 2023, 88, 6313-6321.	1.7	5
694	Application of Super Photoacids in Controlling Dynamic Processes: Light-Triggering the Self-Propulsion of Oil Droplets. Journal of Physical Chemistry B, 2022, 126, 6331-6337.	1.2	1
695	The invalidity of intermolecular proton transfer triggered twisted intramolecular charge transfer in excited state for 2â€(4′â€diethylaminoâ€2′â€hydroxyphenyl)â€1 <i>H</i> â€imidazoâ€[4,5â€b]pyridine. Jo Chinese Chemical Society, 2023, 70, 618-624.	urmoas of th	ie 4
696	Quantification of Excited-State BrÃ,nsted–Lowry Acidity of Weak Photoacids Using Steady-State Photoluminescence Spectroscopy and a Driving-Force-Dependent Kinetic Theory. Journal of the American Chemical Society, 2022, 144, 14477-14488.	6.6	5
697	Reliable experimental method for determination of photoacidity revealed by quantum chemical calculations. Physical Chemistry Chemical Physics, 2022, 24, 21714-21721.	1.3	2
698	Excited-state photochemistry dynamics of 2-(1-naphthyl) phenol: electronic structure calculations and non-adiabatic dynamics simulations. Physical Chemistry Chemical Physics, 2022, 24, 21358-21366.	1.3	2
699	Theoretical Study on the Photoacidity of Hydroxypyrene Derivatives in DMSO Using ADC(2) and CC2. Journal of Physical Chemistry A, 2022, 126, 5911-5923.	1.1	2
700	The Dual Use of the Pyranine (HPTS) Fluorescent Probe: A Ground-State pH Indicator and an Excited-State Proton Transfer Probe. Accounts of Chemical Research, 2022, 55, 2728-2739.	7.6	16
701	Ultrafast transient absorption and solvation of a super-photoacid in acetoneous environments. Photochemical and Photobiological Sciences, 0, , .	1.6	3
702	Substitution position effects of an electron-withdrawing group on the tautomer fluorescence of Coumarin–urea derivatives with an acetate anion. Dyes and Pigments, 2023, 208, 110811.	2.0	1
703	High Nâ€H Photoacidity of a Nitrogenâ€Rich Fused Ring Heteroaromatic Scaffold. ChemPhotoChem, 0, , .	1.5	0
704	The photoprotection mechanism in the black–brown pigment eumelanin. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	4
705	Molecular Z-Scheme for Solar Fuel Production via Dual Photocatalytic Cycles. Journal of the American Chemical Society, 2022, 144, 21568-21575.	6.6	5
706	Photochemical formation of hydride using transition metal complexes and its application to photocatalytic reduction of the coenzyme NAD(P)+ and its model compounds. Coordination Chemistry Reviews, 2023, 477, 214955.	9.5	2

#	Article	IF	CITATIONS
707	The Challenges and Joys of Moving Protons with Light and Undergraduates. ACS Symposium Series, 0, , 49-61.	0.5	0
708	Challenges and Opportunities in 3D Laser Printing Based on (1 + 1)-Photon Absorption. ACS Photonics, 2023, 10, 24-33.	3.2	15
709	Interplay of Dual-Proton Transfer Relay to Achieve Full-Color Panel Luminescence in Excited-State Intramolecular Proton Transfer (ESIPT) Fluorophores. ACS Applied Materials & Interfaces, 2023, 15, 3172-3181.	4.0	6
710	Computational investigation of explicit solvent effects and specific interactions of hydroxypyrene photoacids in acetone, DMSO, and water. Physical Chemistry Chemical Physics, 2023, 25, 11130-11144.	1.3	2
711	Proton transfer reactions: From photochemistry to biochemistry and bioenergetics. BBA Advances, 2023, 3, 100085.	0.7	8
712	Dual emission and its λ-ratiometric detection in analytical fluorimetry. Pt. I. Basic mechanisms of generating the reporter signal. Methods and Applications in Fluorescence, 2023, 11, 033002.	1.1	15