Mechanical Purification of Single-Walled Carbon Nanot Particles

Nano Letters

2, 1349-1352

DOI: 10.1021/nl025740f

Citation Report

#	Article	IF	CITATIONS
1	Synthesis and manipulation of carbon nanotubes. New Journal of Physics, 2003, 5, 120-120.	1.2	48
2	Purification of Single Wall Carbon Nanotubes Using Gelatin. Japanese Journal of Applied Physics, 2004, 43, 1227-1230.	0.8	6
3	Nondestructive and High-Recovery-Yield Purification of Single-Walled Carbon Nanotubes by Chemical Functionalization. Journal of Physical Chemistry B, 2004, 108, 8848-8854.	1.2	49
4	Alignment of TiO2 particles by electrophoretic deposition in a high magnetic field. Materials Research Bulletin, 2004, 39, 2155-2161.	2.7	17
5	Purification of Single-Wall Carbon Nanotubes by Electrochemical Oxidation. Chemistry of Materials, 2004, 16, 5744-5750.	3.2	149
6	Magnetic separation of Fe catalyst from single-walled carbon nanotubes in an aqueous surfactant solution. Carbon, 2005, 43, 1151-1155.	5.4	27
7	Spectroscopic study on the centrifugal fractionation of soluble single-walled carbon nanotubes. Carbon, 2005, 43, 2750-2759.	5.4	19
8	Centrifugal purification of chemically modified single-walled carbon nanotubes. Science and Technology of Advanced Materials, 2005, 6, 571-581.	2.8	39
9	NMR Detection of Single-Walled Carbon Nanotubes in Solution. Journal of the American Chemical Society, 2005, 127, 7517-7520.	6.6	66
10	Preparation and nanoscopic internal structure of single-walled carbon nanotube-ionic liquid gel. Synthetic Metals, 2005, 154, 189-192.	2.1	30
11	Controlled Multistep Purification of Single-Walled Carbon Nanotubes. Nano Letters, 2005, 5, 163-168.	4.5	130
12	Application of Centrifugation to the Large-Scale Purification of Electric Arc-Produced Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2006, 128, 9902-9908.	6.6	110
13	Purification strategies and purity visualization techniques for single-walled carbon nanotubes. Journal of Materials Chemistry, 2006, 16, 141-154.	6.7	210
14	Chemically Modified Carbon Nanotubes for Use in Electroanalysis. Mikrochimica Acta, 2006, 152, 187-214.	2.5	336
15	A microfluidic magnetophoresis chip for continuous single-walled carbon nanotube purification from magnetic force-induced superparamagnetic metal catalyst. , 2007, , .		1
16	Gas sensing improvement of carbon nanotubes by NH4OH–flash treatment: a nondestructive purification technique. Journal of Materials Chemistry, 2007, 17, 3581.	6.7	13
17	High-Purity Diamagnetic Single-Wall Carbon Nanotube Buckypaper. Chemistry of Materials, 2007, 19, 2982-2986.	3.2	39
18	Co-synthesis, purification and characterization of single- and multi-walled carbon nanotubes using the electric arc method. Carbon, 2007, 45, 132-140.	5.4	75

#	Article	IF	CITATIONS
19	Magnetophoretic Continuous Purification of Singleâ€Walled Carbon Nanotubes from Catalytic Impurities in a Microfluidic Device. Small, 2007, 3, 1784-1791.	5.2	48
20	Conceptual design of carbon nanotube processes. Clean Technologies and Environmental Policy, 2007, 9, 289-311.	2.1	51
21	Polymer nanocomposites containing carbon nanotubes and miscible polymer blends based on poly[ethyleneâ€∢i>co⟨ i>â€(acrylic acid)]. Journal of Applied Polymer Science, 2008, 108, 1462-1472.	1.3	10
22	Purification and separation of carbon nanocapsules as a magnetic carrier for drug delivery systems. Carbon, 2008, 46, 1523-1529.	5.4	59
23	Purification of carbon nanotubes. Carbon, 2008, 46, 2003-2025.	5 . 4	660
24	Sedimentation of nanocarbon materials in organic solvents. Materials Chemistry and Physics, 2008, 107, 322-327.	2.0	5
25	Comparative Studies on the Magnetic Separation of Carbon Nanotubes and Carbon Nanofibers Suspended in Aqueous Solution. Journal of Chemical Engineering of Japan, 2008, 41, 627-630.	0.3	1
26	The precise self-assembly of individual carbon nanotubes using magnetic capturing and fluidic alignment. Nanotechnology, 2009, 20, 325607.	1.3	19
27	A facile and efficient gas phase process for purifying single-walled carbon nanotubes. Current Applied Physics, 2010, 10, 1231-1235.	1,1	12
29	Flexible Chemical Sensors. , 2010, , 247-273.		2
31	Purification, Functionalization, and Bioconjugation of Carbon Nanotubes. Methods in Molecular Biology, 2011, 751, 505-532.	0.4	3
32	Single-walled carbon nanotubes fractionation via electrophoresis. Polish Journal of Chemical Technology, 2011, 13, 1-4.	0.3	3
33	Studies of Feâ€binding sites within multiwall carbon nanotubes using Mössbauer spectroscopy. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 1796-1800.	0.8	2
34	Near-infrared fluorescence spectroscopy of single-walled carbon nanotubes and its applications. TrAC - Trends in Analytical Chemistry, 2011, 30, 1109-1119.	5 . 8	24
35	Chemistry of Carbon Nanotubes for Everyone. Journal of Chemical Education, 2012, 89, 221-229.	1.1	35
36	Comparative Investigation of Chemical Vapor Deposition of Palladium Nanoparticles on Different Carbon Substrates. Fullerenes Nanotubes and Carbon Nanostructures, 2012, 20, 56-71.	1.0	7
37	Plasma-thermal purification and annealing of carbon nanotubes. Carbon, 2012, 50, 3934-3942.	5.4	60
38	Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arabian Journal of Chemistry, 2012, 5, 1-23.	2.3	450

#	Article	IF	CITATIONS
39	Carbon Nanotubes: A Review on Structure and Their Interaction with Proteins. Journal of Chemistry, 2013, 2013, 1-18.	0.9	420
40	Josephson Effect in Graphene: Comparison of Real and Pseudo Vector Potential Barriers. Chinese Physics Letters, 2014, 31, 037401.	1.3	3
41	Removing Aggregates from Single-Walled Carbon Nanotube Samples by Magnetic Purification. Journal of Physical Chemistry C, 2014, 118, 4489-4494.	1.5	16
42	Carbon nanotube based elastomer composites – an approach towards multifunctional materials. Journal of Materials Chemistry C, 2014, 2, 8446-8485.	2.7	163
43	A Review on Polymeric Nanocomposites of Nanodiamond, Carbon Nanotube, and Nanobifiller: Structure, Preparation and Properties. Polymer-Plastics Technology and Engineering, 2015, 54, 1379-1409.	1.9	55
44	Carbon Nanotubes: A Promising Carrier for Drug Delivery and Targeting. , 2016, , 465-501.		7
46	Efficient purification of single-walled carbon nanotube fibers by instantaneous current injection and acid washing. RSC Advances, 2016, 6, 97865-97872.	1.7	18
47	Bioengineering Applications of Carbon Nanostructures. Nanomedicine and Nanotoxicology, 2016, , .	0.1	5
48	Magnetic impurities in single-walled carbon nanotubes and graphene: a review. Analyst, The, 2016, 141, 2639-2656.	1.7	32
49	Synthesis, Purification and Functionalization of Carbon Nanotubes for Biotechnological Applications. Nanomedicine and Nanotoxicology, 2016, , 139-163.	0.1	1
50	Change of magnetic behaviour of nitrogenated carbon nanotubes on chlorination/oxidation. International Journal of Nanotechnology, 2017, 14, 356.	0.1	1
51	THE ROLE OF CARBON NANOTUBES IN NANOBIOMEDICINES. International Journal of Pharmacy and Pharmaceutical Sciences, 2017, 9, 235.	0.3	2
52	Indexing the Quality of Single-Wall Carbon Nanotube Dispersions Using Absorption Spectra. Journal of Physical Chemistry C, 2018, 122, 4681-4690.	1.5	12
55	Defects in carbon nanotubes. , 2018, , 87-136.		9
56	Carbon Nanotubes for the Synthesis of Ceramic Matrix Composites (Cleaning, Dispersion, Surface) Tj ETQq0 0 0	rgBT_/Ove	rlock 10 Tf 50
57	Engineering of Thermoplastic Elastomer with Graphene and Other Anisotropic Nanofillers. Engineering Materials, 2020, , .	0.3	6
58	Stupendous Nanomaterials: Carbon Nanotubes Synthesis, Characterization, and Applications. , 2020, , .		0
59	Magnetism and spintronics in carbon nanotubes. , 2020, , 75-102.		2

#	ARTICLE	IF	CITATIONS
60	Characteristics of Carbon Nanotubes. Springer Series in Materials Science, 2020, , 179-214.	0.4	20
61	Dynamics of paramagnetic and ferromagnetic ellipsoidal particles in shear flow under a uniform magnetic field. Physical Review Fluids, $2018,3,.$	1.0	8
62	Fabrication of self-assembled monolayer using carbon nanotubes conjugated 1-aminoundecanethiol on gold substrates. Natural Science, 2011, 03, 208-217.	0.2	3
64	Carbon nanotubes for the synthesis of ceramicmatrix composite (cleaning, dispersion, surface) Tj ETQq1 1 0.7843	314 rgBT / 0.1	Oyerlock 10
65	Anisotropic Nanofillers in TPE. Engineering Materials, 2020, , 17-99.	0.3	0
67	History of Carbon Nanotubes. , 2022, , 1-22.		O
68	History of Carbon Nanotubes. , 2022, , 3-24.		0