Discovery and development of antimitotic agents that i the treatment of cancer

Expert Opinion on Therapeutic Patents 12, 1663-1702 DOI: 10.1517/13543776.12.11.1663

Citation Report

#	Article	IF	CITATIONS
1	Tumor selective antivascular effects of the novel antimitotic compound ABT-751: an in vivo rat regional hemodynamic study. Cancer Chemotherapy and Pharmacology, 2004, 54, 273-81.	1.1	45
2	Recent advances in the discovery and development of stilbenes and lactones in anticancer therapy. Expert Opinion on Therapeutic Patents, 2004, 14, 819-835.	2.4	26
3	Arylthioindoles, Potent Inhibitors of Tubulin Polymerization. Journal of Medicinal Chemistry, 2004, 47, 6120-6123.	2.9	260
4	Synthesis and Structureâ^'Activity Relationships of 3-Aminobenzophenones as Antimitotic Agents. Journal of Medicinal Chemistry, 2004, 47, 2897-2905.	2.9	90
5	Synthesis and structure–activity relationships of 1,2,4-triazoles as a novel class of potent tubulin polymerization inhibitors. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 5154-5159.	1.0	68
6	Phase 1 Study of ABT-751, a Novel Microtubule Inhibitor, in Patients with Refractory Hematologic Malignancies. Clinical Cancer Research, 2005, 11, 6615-6624.	3.2	81
7	Plants as a source of anti-cancer agents. Journal of Ethnopharmacology, 2005, 100, 72-79.	2.0	1,517
8	Natural products to drugs: natural product derived compounds in clinical trials. Natural Product Reports, 2005, 22, 162.	5.2	488
9	Identification of Novel and Improved Antimitotic Agents Derived from Noscapine. Journal of Medicinal Chemistry, 2005, 48, 7096-7098.	2.9	56
10	Novel Benzopyridothiadiazepines as Potential Active Antitumor Agents. Journal of Medicinal Chemistry, 2005, 48, 7363-7373.	2.9	76
11	Quantitative Structureâ^'Activity Relationship (5D-QSAR) Study of Combretastatin-like Analogues as Inhibitors of Tubulin Assembly. Journal of Medicinal Chemistry, 2005, 48, 457-465.	2.9	71
12	Synthesis and Biological Evaluation of 2-(3â€`,4â€`,5â€`-Trimethoxybenzoyl)-3-Amino 5-Aryl Thiophenes as a New Class of Tubulin Inhibitors. Journal of Medicinal Chemistry, 2006, 49, 6425-6428.	2.9	53
13	Antitubulin agents for the treatment of cancer – a medicinal chemistry update. Expert Opinion on Therapeutic Patents, 2006, 16, 647-691.	2.4	76
14	Medicinal Chemistry of Combretastatin A4:Â Present and Future Directions. Journal of Medicinal Chemistry, 2006, 49, 3033-3044.	2.9	588
15	Medicinal plants: Traditions of yesterday and drugs of tomorrow. Molecular Aspects of Medicine, 2006, 27, 1-93.	2.7	1,398
16	Synthesis and in vitro cytotoxicity of haloderivatives of noscapine. Bioorganic and Medicinal Chemistry, 2006, 14, 6733-6736.	1.4	40
17	Oxadiazole derivatives as a novel class of antimitotic agents: Synthesis, inhibition of tubulin polymerization, and activity in tumor cell lines. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 1191-1196.	1.0	90
18	Design, synthesis, and biological evaluation of combretastatin nitrogen-containing derivatives as inhibitors of tubulin assembly and vascular disrupting agents. Bioorganic and Medicinal Chemistry, 2006, 14, 3231-3244.	1.4	73

#	Article	IF	CITATIONS
19	The synthesis of indanones related to combretastatin A-4 via microwave-assisted Nazarov cyclization of chalcones. Tetrahedron Letters, 2006, 47, 1637-1640.	0.7	43
20	Porphyridium cruentum A-408 and Planktothrix A-404 retain their capacity to produce biotechnologically exploitable metabolites after cryopreservation. Journal of Applied Phycology, 2006, 18, 1-7.	1.5	16
21	Effects of α-substitutions on structure and biological activity of anticancer chalcones. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5844-5848.	1.0	135
22	Structure–Activity Relationship Studies of 3-Aroylindoles as Potent Antimitotic Agents. ChemMedChem, 2006, 1, 1106-1118.	1.6	44
23	Apoptotic pathway induced by noscapine in human myelogenous leukemic cells. Anti-Cancer Drugs, 2007, 18, 1139-1147.	0.7	31
24	Chapter 1 Molecular Modes of Action of Cytotoxic Alkaloids: From DNA Intercalation, Spindle Poisoning, Topoisomerase Inhibition to Apoptosis and Multiple Drug Resistance. The Alkaloids Chemistry and Biology, 2007, 64, 1-47.	0.8	65
25	Synthesis and SAR of [1,2,4]Triazolo[1,5-a]pyrimidines, a Class of Anticancer Agents with a Unique Mechanism of Tubulin Inhibition. Journal of Medicinal Chemistry, 2007, 50, 319-327.	2.9	192
26	Sulfonate Derivatives of Naphtho[2,3-b]thiophen-4(9H)-one and 9(10H)-Anthracenone as Highly Active Antimicrotubule Agents. Synthesis, Antiproliferative Activity, and Inhibition of Tubulin Polymerization. Journal of Medicinal Chemistry, 2007, 50, 6059-6066.	2.9	45
27	Synthesis and Antiâ€ŧumor Activities of Novel Methylthioâ€, Sulfinylâ€, and Sulfonylâ€8 <i>H</i> â€ŧhieno[2,3â€ <i>b</i>]pyrrolizinâ€8â€oximino Derivatives. Archiv Der Pharmazie, 2007, 3 416-423.	40,2.1	6
28	Indole, a core nucleus for potent inhibitors of tubulin polymerization. Medicinal Research Reviews, 2007, 27, 209-238.	5.0	326
29	The concise synthesis of chalcone, indanone and indenone analogues of combretastatin A4. Bioorganic and Medicinal Chemistry, 2007, 15, 3290-3298.	1.4	84
30	9-Benzylidene-naphtho[2,3-b]thiophen-4-ones and benzylidene-9(10H)-anthracenones as novel tubulin interacting agents with high apoptosis-inducing activity. European Journal of Pharmacology, 2007, 575, 34-45.	1.7	16
31	Design, synthesis, and biological evaluation of thiophene analogues of chalcones. Bioorganic and Medicinal Chemistry, 2008, 16, 5367-5376.	1.4	93
32	Synthesis and antitumor activity of benzils related to combretastatin A-4. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3266-3271.	1.0	96
33	Discovery of 4-Amino and 4-Hydroxy-1-aroylindoles as Potent Tubulin Polymerization Inhibitors. Journal of Medicinal Chemistry, 2008, 51, 4351-4355.	2.9	68
34	Molecular Modeling Approaches to Study the Binding Mode on Tubulin of Microtubule Destabilizing and Stabilizing Agents. Topics in Current Chemistry, 2008, 286, 279-328.	4.0	32
35	Molecular Features of the Interaction of Colchicine and Related Structures with Tubulin. , 2008, , 259-279.		1
36	Special Issue in Honor of Professor George Robert Pettit. Journal of Natural Products, 2008, 71, 297-299.	1.5	2

#	Article	IF	CITATIONS
37	Synthesis and Structureâ^'Activity Relationships of 2-Amino-1-aroylnaphthalene and 2-Hydroxy-1-aroylnaphthalenes as Potent Antitubulin Agents. Journal of Medicinal Chemistry, 2008, 51, 8163-8167.	2.9	29
38	6-Bromo-5-hydroxyindolyl-3-glyoxylate from the Far Eastern Ascidian Syncarpa oviformis. Natural Product Communications, 2008, 3, 1934578X0800301.	0.2	0
39	Synthesis and Structure–Activity Relationships of 1â€Benzylâ€4,5,6â€ŧrimethoxyindoles as a Novel Class of Potent Antimitotic Agents. ChemMedChem, 2009, 4, 588-593.	1.6	13
40	Synthesis and <i>Inâ€Vitro</i> Antitumor Activities of Some Mannich Bases of 9â€Alkylâ€1,2,3,4â€ŧetrahydrocarbazoleâ€1â€ones. Archiv Der Pharmazie, 2009, 342, 165-172.	2.1	29
41	Design, synthesis and structure–activity relationship of 2-(3′,4′,5′-trimethoxybenzoyl)-benzo[b]furan derivatives as a novel class of inhibitors of tubulin polymerization. Bioorganic and Medicinal Chemistry, 2009, 17, 6862-6871.	1.4	68
42	Nature: a vital source of leads for anticancer drug development. Phytochemistry Reviews, 2009, 8, 313-331.	3.1	153
43	Structure elucidation by synthesis of four metabolites of the antitumor drug ENMD-1198 detected in human plasma samples. Tetrahedron, 2009, 65, 10535-10543.	1.0	10
44	10-(2-oxo-2-Phenylethylidene)-10H-anthracen-9-ones as Highly Active Antimicrotubule Agents: Synthesis, Antiproliferative Activity, and Inhibition of Tubulin Polymerization. Journal of Medicinal Chemistry, 2009, 52, 1284-1294.	2.9	26
45	Niementowski-type synthesis of pyrido[3,2-e][1,2,4]triazines: potent aza-analogs of pyrido[2,3-b]pyrazine fungicides. Tetrahedron Letters, 2010, 51, 2652-2654.	0.7	14
46	Hydrogenative desulphurization of thienopyrrolizinones: An easy and selective access to (Z)-phenethylidenepyrrolizinones with in vitro cytotoxic activity. European Journal of Medicinal Chemistry, 2010, 45, 1146-1150.	2.6	18
47	Synthesis, antiproliferative activity and inhibition of tubulin polymerization by anthracenone-based oxime derivatives. European Journal of Medicinal Chemistry, 2010, 45, 3354-3364.	2.6	17
48	Synthesis, antiproliferative activity and inhibition of tubulin polymerization by 1,5- and 1,8-disubstituted 10H-anthracen-9-ones bearing a 10-benzylidene or 10-(2-oxo-2-phenylethylidene) moiety. European Journal of Medicinal Chemistry, 2010, 45, 3420-3438.	2.6	20
49	Synthesis and fungicidal activity of tubulin polymerisation promoters. Part 1: pyrido[2,3â€ <i>b</i>]pyrazines. Pest Management Science, 2010, 66, 178-185.	1.7	25
50	Tumourâ€selective antivascular effects of the novel antiâ€mitotic compound Aâ€318315: An <i>in vivo</i> rat regional haemodynamic study. Clinical and Experimental Pharmacology and Physiology, 2010, 37, 636-640.	0.9	2
51	Terrestrial Plants as a Source of Novel Pharmaceutical Agents. , 2010, , 5-39.		5
52	5-Amino-2-Aroylquinolines as Highly Potent Tubulin Polymerization Inhibitors. Journal of Medicinal Chemistry, 2010, 53, 2309-2313.	2.9	69
53	<i>N</i> -Benzoylated Phenoxazines and Phenothiazines: Synthesis, Antiproliferative Activity, and Inhibition of Tubulin Polymerization. Journal of Medicinal Chemistry, 2011, 54, 4247-4263.	2.9	56
54	5-Amino-2-aroylquinolines as Highly Potent Tubulin Polymerization Inhibitors. Part 2. The Impact of Bridging Groups at Position C-2. Journal of Medicinal Chemistry, 2011, 54, 8517-8525.	2.9	45

#	Article	IF	CITATIONS
55	Protection from impulse noise-induced hearing loss with novel Src-protein tyrosine kinase inhibitors. Neuroscience Research, 2011, 71, 348-354.	1.0	17
56	Concise syntheses of N-aryl-5,6,7-trimethoxyindoles as antimitotic and vascular disrupting agents: application of the copper-mediated Ullmann-type arylation. Organic and Biomolecular Chemistry, 2011, 9, 3154.	1.5	20
57	Synthesis and Biological Evaluation of 4-Aroyl-6,7,8-Trimethoxyquinolines as a Novel Class of Anticancer Agents. Molecules, 2011, 16, 2274-2284.	1.7	3
58	The Discovery and Development of the Combretastatins. , 2011, , 27-64.		3
59	The Discovery and Development of the Combretastatins. , 2011, , 43-80.		9
60	Synthesis and cytotoxic evaluation ofN-(4-methoxy-1H-benzo[d]imidazol-7-yl)-arylsulfonamide andN-aryl-(4-methoxy-1H-benzo[d]imidazol)-7-sulfonamide analogs of combretastatin A-4. Journal of Asian Natural Products Research, 2011, 13, 330-340.	0.7	2
61	Phenylimino-10H-anthracen-9-ones as novel antimicrotubule agents—synthesis, antiproliferative activity and inhibition of tubulin polymerization. Bioorganic and Medicinal Chemistry, 2011, 19, 4183-4191.	1.4	16
62	Application of Suzuki arylation, Sonogashira ethynylation and Rosenmund–von Braun cyanation in the exploration of substitution effects on the anticancer activity of 2-aroylquinolines. Organic and Biomolecular Chemistry, 2012, 10, 9593.	1.5	4
63	Synthesis and biological evaluation of a series of podophyllotoxins derivatives as a class of potent antitubulin agents. Bioorganic and Medicinal Chemistry, 2012, 20, 6285-6295.	1.4	16
64	Drug Discovery in Africa. , 2012, , .		17
65	(<i>Z</i>)-1-Aryl-3-arylamino-2-propen-1-ones, Highly Active Stimulators of Tubulin Polymerization: Synthesis, Structure–Activity Relationship (SAR), Tubulin Polymerization, and Cell Growth Inhibition Studies. Journal of Medicinal Chemistry, 2012, 55, 5174-5187.	2.9	41
66	Synthesis and fungicidal activity of tubulin polymerisation promoters. Part 2: Pyridazines. Bioorganic and Medicinal Chemistry, 2012, 20, 2803-2810.	1.4	37
67	Synthesis of 3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-ol, a potent antineoplastic benzosuberene derivative for anti-cancer chemotherapy. Tetrahedron Letters, 2012, 53, 64-66.	0.7	11
68	Synthesis and antiproliferative evaluation of novel benzoimidazole-contained oxazole-bridged analogs of combretastatin A-4. European Journal of Medicinal Chemistry, 2013, 68, 222-232.	2.6	33
69	Synthesis and in vitro cytotoxic evaluation of novel \$\$N\$\$ -(3,4,5-trimethoxyphenyl)pyridin-2(\$\$1H\$\$) Tj ETQqQ) 0.0 rgBT	/Overlock 10
70	Synthesis, antiproliferative activity and tubulin targeting effect of acridinone andÂdioxophenothiazine derivatives. European Journal of Medicinal Chemistry, 2013, 59, 39-47.	2.6	21

71	Lipophilic prodrugs of a triazole-containing colchicine analogue in liposomes: Biological effects on human tumor cells. Russian Journal of Bioorganic Chemistry, 2013, 39, 543-552.	0.3	24
72	New cytotoxic benzosuberene analogs. Synthesis, molecular modeling and biological evaluation. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6688-6694	1.0	13

#	Article	IF	Citations
73	Synthesis and Structure–Activity Relationships of <i>N</i> -Methyl-5,6,7-trimethoxylindoles as Novel Antimitotic and Vascular Disrupting Agents. Journal of Medicinal Chemistry, 2013, 56, 1467-1477.	2.9	20
74	Phenylpropiophenone derivatives as potential anticancer agents: Synthesis, biological evaluation and quantitative structure–activity relationship study. European Journal of Medicinal Chemistry, 2013, 63, 239-255.	2.6	23
75	Design, Synthesis, and Biological Evaluation of (<i>E</i>)- <i>N</i> -Aryl-2-arylethenesulfonamide Analogues as Potent and Orally Bioavailable Microtubule-Targeted Anticancer Agents. Journal of Medicinal Chemistry, 2013, 56, 5562-5586.	2.9	22
76	3D-QSAR and docking studies of benzoyl urea derivatives as tubulin-binding agents for antiproliferative activity. Medicinal Chemistry Research, 2013, 22, 1415-1425.	1.1	10
77	Synthesis, biological evaluation, and structure–activity relationships of tri- and tetrasubstituted olefins related to isocombretastatin A-4 as new tubulin inhibitors. Organic and Biomolecular Chemistry, 2013, 11, 430-442.	1.5	55
78	Pentose Phosphate Pathway Function Affects Tolerance to the G-Quadruplex Binder TMPyP4. PLoS ONE, 2013, 8, e66242.	1.1	15
79	Target Based Designing of Anthracenone Derivatives as Tubulin Polymerization Inhibiting Agents: 3D QSAR and Docking Approach. International Journal of Medicinal Chemistry, 2014, 2014, 1-15.	2.2	3
80	Pharmacokinetic Evaluation of a Novel Benzopyridooxathiazepine Derivative as a Potential Anticancer Agent. Pharmacology, 2014, 94, 170-178.	0.9	2
82	Combretastatin A-4 inspired novel 2-aryl-3-arylamino-imidazo-pyridines/pyrazines as tubulin polymerization inhibitors, antimitotic and anticancer agents. MedChemComm, 2014, 5, 766-782.	3.5	44
83	Pyrazole–oxadiazole conjugates: synthesis, antiproliferative activity and inhibition of tubulin polymerization. Organic and Biomolecular Chemistry, 2014, 12, 7993-8007.	1.5	38
84	Concise syntheses of 7-anilino-indoline-N-benzenesulfonamides as antimitotic and vascular disrupting agents. Bioorganic and Medicinal Chemistry, 2014, 22, 4917-4923.	1.4	10
85	Synthesis, biological evaluation and molecular modeling of 1,3,4-thiadiazol-2-amide derivatives as novel antitubulin agents. Bioorganic and Medicinal Chemistry, 2014, 22, 4312-4322.	1.4	21
86	Antiproliferative and proapoptotic effects of a pyrrole containing arylthioindole in human Jurkat leukemia cell line and multidrug-resistant Jurkat/A4 cells. Cancer Biology and Therapy, 2015, 16, 1820-1829.	1.5	6
87	Synthesis and biological evaluation of thiabendazole derivatives as anti-angiogenesis and vascular disrupting agents. Bioorganic and Medicinal Chemistry, 2015, 23, 3774-3780.	1.4	34
88	Tubulin Inhibitor Identification by Bioactive Conformation Alignment Pharmacophoreâ€Guided Virtual Screening. Chemical Biology and Drug Design, 2015, 86, 998-1016.	1.5	6
89	4,5-Diaryl-3H-1,2-dithiole-3-thiones and related compounds as combretastatin A-4/oltipraz hybrids: Synthesis, molecular modelling and evaluation as antiproliferative agents and inhibitors of tubulin. European Journal of Medicinal Chemistry, 2016, 122, 520-529.	2.6	35
90	Novel Combretastatin-2-aminoimidazole Analogues as Potent Tubulin Assembly Inhibitors: Exploration of Unique Pharmacophoric Impact of Bridging Skeleton and Aryl Moiety. Journal of Medicinal Chemistry, 2016, 59, 3439-3451.	2.9	85
91	Early investigational tubulin inhibitors as novel cancer therapeutics. Expert Opinion on Investigational Drugs, 2016, 25, 917-936.	1.9	28

#	Article	IF	CITATIONS
92	Design, Synthesis and Antitumor Activity of Novel link-bridge and B-Ring Modified Combretastatin A-4 (CA-4) Analogues as Potent Antitubulin Agents. Scientific Reports, 2016, 6, 25387.	1.6	42
93	A synthetic 2,3-diarylindole induces cell death via apoptosis and autophagy in A549 lung cancer cells. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2119-2123.	1.0	18
94	New 3â€Substitutedâ€2â€(4â€hydroxyanilino)pyridine Derivatives: Synthesis, Antitumor Activity, and Tubulin Polymerization Inhibition. Archiv Der Pharmazie, 2017, 350, 1600256.	2.1	6
95	Combretastatin A-4 based thiophene derivatives as antitumor agent: Development of structure activity correlation model using 3D-QSAR, pharmacophore and docking studies. Future Journal of Pharmaceutical Sciences, 2017, 3, 71-78.	1.1	10
96	<i>N</i> -Heterocyclic (4-Phenylpiperazin-1-yl)methanones Derived from Phenoxazine and Phenothiazine as Highly Potent Inhibitors of Tubulin Polymerization. Journal of Medicinal Chemistry, 2017, 60, 749-766.	2.9	28
97	Synthesis, antiproliferative, anti-tubulin activity, and docking study of new 1,2,4-triazoles as potential combretastatin analogues. European Journal of Medicinal Chemistry, 2017, 141, 293-305.	2.6	47
98	Design and synthesis of new antitumor agents with the 1,7-epoxycyclononane framework. Study of their anticancer action mechanism by a model compound. Bioorganic and Medicinal Chemistry, 2018, 26, 3379-3398.	1.4	1
99	Potent combretastatin A-4 analogs containing 1,2,4-triazole: Synthesis, antiproliferative, anti-tubulin activity, and docking study. European Journal of Medicinal Chemistry, 2019, 183, 111697.	2.6	34
100	An overview on the synthetic and medicinal perspectives of indenopyrazoles. European Journal of Medicinal Chemistry, 2019, 178, 1-12.	2.6	22
101	Design, Synthesis, and Anticancer Activity of Amide Derivatives of Structurally Modified Combretastatin-A4. Russian Journal of General Chemistry, 2019, 89, 499-504.	0.3	24
102	Antitubulin sulfonamides: The successful combination of an established drug class and a multifaceted target. Medicinal Research Reviews, 2019, 39, 775-830.	5.0	25
103	1-Arylsulfonyl indoline-benzamides as a new antitubulin agents, with inhibition of histone deacetylase. European Journal of Medicinal Chemistry, 2019, 162, 612-630.	2.6	32
104	A synthetic 2,3-diarylindole induces microtubule destabilization and G2/M cell cycle arrest in lung cancer cells. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126777.	1.0	11
105	Dual-functional conjugates improving cancer immunochemotherapy by inhibiting tubulin polymerization and indoleamine-2,3-dioxygenase. European Journal of Medicinal Chemistry, 2020, 189, 112041.	2.6	11
106	Synthesis, biological evaluation, and molecular modelling of new naphthalene-chalcone derivatives as potential anticancer agents on MCF-7 breast cancer cells by targeting tubulin colchicine binding site. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 139-144.	2.5	59
107	Design and synthesis of 1,2,4-Thiadiazole linked combretastatin-A4 derivatives as promising anticancer agents. Chemical Data Collections, 2020, 28, 100481.	1.1	1
108	Synthesis, anticancer evaluation, and molecular docking studies of benzoxazole linked combretastatin analogues. Medicinal Chemistry Research, 2020, 29, 528-537.	1.1	7
109	Diverse Thiophenes as Scaffolds in Anti-cancer Drug Development: A Concise Review. Mini-Reviews in Medicinal Chemistry, 2021, 21, 217-232.	1.1	11

#	Article	IF	CITATIONS
110	The Discovery of Anticancer Drugs From Natural Sources. , 2005, , 129-168.		9
111	The National Cancer Institute and Natural Product-Based Drug Discovery in Africa. , 2012, , 29-52.		2
112	Design of Combretastatin A-4 Analogs as Tubulin Targeted Vascular Disrupting Agent with Special Emphasis on Their Cis-Restricted Isomers. Current Pharmaceutical Design, 2013, 19, 1923-1955.	0.9	59
113	Docking, CoMFA and CoMSIA Studies of a Series of N-Benzoylated Phenoxazines and Phenothiazines Derivatives as Antiproliferative Agents. Bulletin of the Korean Chemical Society, 2013, 34, 899-906.	1.0	10
114	The Discovery and Development of the Combretastatins. , 2005, , .		1
115	Molecular Classification of 5-Amino-2-Aroylquinolines and 4-Aroyl-6,7,8-Trimethoxyquinolines as Highly Potent Tubulin Polymerization Inhibitors. International Journal of Chemoinformatics and Chemical Engineering, 2013, 3, 1-26.	0.1	2
116	New Multi-Targeted Antiproliferative Agents: Design and Synthesis of IC261-Based Oxindoles as Potential Tubulin, CK1 and EGFR Inhibitors. Pharmaceuticals, 2021, 14, 1114.	1.7	10
117	Synthesis and characterization of novel combretastatin analogues of 1,1-diaryl vinyl sulfones, with antiproliferative potential via in-silico and in-vitro studies. Scientific Reports, 2022, 12, 1901.	1.6	6
118	Design, Synthesis and Anticancer Activity of New Benzofuranâ€Chalcone Hybrids and Their Water Soluble Sodium Salts. ChemistrySelect, 2023, 8, .	0.7	2