Hydration of calcium sulfoaluminate cement at less that

Advances in Cement Research 14, 141-155 DOI: 10.1680/adcr.2002.14.4.141

Citation Report

#	Article	IF	CITATIONS
1	Investigation of the microstructure and carbonation of CSÂ ⁻ A-based concretes removed from service. Cement and Concrete Research, 2005, 35, 2252-2260.	4.6	78
2	Formulating a low-alkalinity, high-resistance and low-heat concrete for radioactive waste repositories. Cement and Concrete Research, 2006, 36, 2152-2163.	4.6	87
3	Calcium sulfoaluminate cement blended with OPC: A potential binder to encapsulate low-level radioactive slurries of complex chemistry. Cement and Concrete Research, 2009, 39, 740-747.	4.6	108
4	Hydration of calcium sulfoaluminate cement by a ZnCl2 solution: Investigation at early age. Cement and Concrete Research, 2009, 39, 1180-1187.	4.6	45
5	Calorimetric and thermogravimetric study on the influence of calcium sulfate on the hydration of ye'elimite. Journal of Thermal Analysis and Calorimetry, 2010, 101, 949-957.	2.0	250
6	Hydration of calcium sulfoaluminate cements — Experimental findings and thermodynamic modelling. Cement and Concrete Research, 2010, 40, 1239-1247.	4.6	602
7	Development and application of low-pH concretes for structural purposes in geological repository systems. , 2010, , 286-322.		13
8	Effect of gypsum content on sulfoaluminate mortars stability. European Journal of Environmental and Civil Engineering, 2010, 14, 579-597.	1.0	19
9	Stabilization of ZnCl2-containing wastes using calcium sulfoaluminate cement: Cement hydration, strength development and volume stability. Journal of Hazardous Materials, 2011, 194, 256-267.	6.5	21
10	Advances in alternative cementitious binders. Cement and Concrete Research, 2011, 41, 1232-1243.	4.6	1,232
11	Influence of a thermal cycle at early age on the hydration of calcium sulphoaluminate cements with variable gypsum contents. Cement and Concrete Research, 2011, 41, 149-160.	4.6	135
12	Thermodynamics and cement science. Cement and Concrete Research, 2011, 41, 679-695.	4.6	204
13	Early hydration of calcium sulfoaluminate cement through electrical resistivity measurement and microstructure investigations. Construction and Building Materials, 2011, 25, 1572-1579.	3.2	89
14	Hydration behavior of iron doped calcium sulfoaluminate phase at room temperature. MATEC Web of Conferences, 2012, 2, 01005.	0.1	5
15	Rheological and hydration characterization of calcium sulfoaluminate cement pastes. Cement and Concrete Composites, 2012, 34, 684-691.	4.6	96
16	Rietveld quantitative phase analysis of Yeelimite-containing cements. Cement and Concrete Research, 2012, 42, 960-971.	4.6	184
17	Beneficial use of limestone filler with calcium sulphoaluminate cement. Construction and Building Materials, 2012, 26, 619-627.	3.2	165
18	A constitutive model for micro-cracked bodies with growing inclusions. Continuum Mechanics and Thermodynamics, 2012, 24, 49-61.	1.4	Ο

		CITATION REPORT	
#	Article	IF	Citations
19	Leaching of calcium sulfoaluminate cement pastes by water at regulated pH and temperature: Experimental investigation and modeling. Cement and Concrete Research, 2013, 53, 211-220.	4.6	44
20	Beneficial use of a cell coupling rheometry, conductimetry, and calorimetry to investigate the ear age hydration of calcium sulfoaluminate cement. Rheologica Acta, 2013, 52, 177-187.	rly 1.1	19
21	Sulfoaluminate cement. , 2013, , 488-522.		51
22	Influence of heavy metals on the early hydration of calcium sulfoaluminate. Journal of Thermal Analysis and Calorimetry, 2014, 115, 1153-1162.	2.0	18
23	Compatibility between a polycarboxylate superplasticizer and the belite-rich sulfoaluminate ceme Setting time and the hydration properties. Construction and Building Materials, 2014, 51, 47-54		94
24	In-situ early-age hydration study of sulfobelite cements by synchrotron powder diffraction. Ceme and Concrete Research, 2014, 56, 12-19.	ent 4.6	52
25	Effect of raw mix design and of clinkering process on the formation and mineralogical composition of (ternesite) belite calcium sulphoaluminate ferrite clinker. Cement and Concrete Research, 201 87-95.	on 4, 59, 4.6	134
26	Microstructure of amorphous aluminum hydroxide in belite-calcium sulfoaluminate cement. Cem and Concrete Research, 2015, 71, 1-6.	ient 4.6	96
27	Synthesis of belite sulfoaluminate-ternesite cements with phosphogypsum. Cement and Concret Composites, 2015, 63, 67-75.	e 4.6	86
28	Hydration stage identification and phase transformation of calcium sulfoaluminate cement at ea age. Construction and Building Materials, 2015, 75, 11-18.	rly 3.2	140
29	Effect of calcium sulfate source on the hydration of calcium sulfoaluminate eco-cement. Cement Concrete Composites, 2015, 55, 53-61.	and 4.6	165
30	Production and hydration of calcium sulfoaluminate-belite cements derived from aluminium anodising sludge. Construction and Building Materials, 2016, 122, 373-383.	3.2	91
31	In-situ and continuous monitoring of pore evolution of calcium sulfoaluminate cement at early ag by electrical impedance measurement. Construction and Building Materials, 2016, 117, 8-19.	ge 3.2	34
32	Effect of retarders on the early hydration of calcium-sulpho-aluminate (CSA) type cements. Ceme and Concrete Research, 2016, 84, 62-75.	ent 4.6	130
33	Stability of ettringite in CSA cement at elevated temperatures. Advances in Cement Research, 20 251-261.	016, 28, 0.7	46
34	A reaction range for hydration of calcium sulfoaluminate with calcium sulfate and calcium hydroxide: theory and experimental validation. Advances in Cement Research, 2016, 28, 664-674	ł. 0.7	12
35	Hydration of calcium sulphoaluminate clinker with additions of different calcium sulphate source Materials and Structures/Materiaux Et Constructions, 2016, 49, 453-466.	es. 1.3	69
36	Characterization and calorimetric study of early-age hydration behaviors of synthetic ye'elim doped with the impurities in phosphogypsum. Journal of Thermal Analysis and Calorimetry, 2016 1545-1553.	ite , 123, 2.0	34

#	Article	IF	CITATIONS
37	Water purification characteristics of pervious concrete fabricated with CSA cement and bottom ash aggregates. Construction and Building Materials, 2017, 136, 1-8.	3.2	70
38	Influence of nano-SiO2 addition on properties of sulphoaluminate cement based material. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 106-112.	0.4	11
39	Active sulfate-rich belite sulfoaluminate cement. Advances in Cement Research, 2017, 29, 166-173.	0.7	7
40	Utilization of flue gas desulfurization gypsum for producing calcium sulfoaluminate cement. Journal of Cleaner Production, 2017, 161, 803-811.	4.6	92
41	Influence of phosphorus impurities on the performances of calcium sulfoaluminate cement. Construction and Building Materials, 2017, 149, 37-44.	3.2	44
42	Effects of ambient temperature and relative humidity on early-age shrinkage of UHPC with high-volume mineral admixtures. Construction and Building Materials, 2017, 144, 252-259.	3.2	95
43	Influence of curing temperatures on the hydration of calcium aluminate cement/Portland cement/calcium sulfate blends. Cement and Concrete Composites, 2017, 80, 298-306.	4.6	54
44	Physico-chemical mechanisms involved in the acceleration of the hydration of calcium sulfoaluminate cement by lithium ions. Cement and Concrete Research, 2017, 96, 42-51.	4.6	57
45	Using gypsum to control hydration kinetics of CSA cements. Construction and Building Materials, 2017, 155, 154-163.	3.2	116
46	Effect of Anhydrite on the Early Hydration Performance of Rapid Setting and Hardening Belite Sulfoaluminate Cement. Materials Science Forum, 0, 898, 1990-1995.	0.3	2
47	Hydration evolution and compressive strength of calcium sulphoaluminate cement constantly cured over the temperature range of 0 to 80 ŰC. Cement and Concrete Research, 2017, 100, 203-213.	4.6	113
48	Synthesis and calorimetric study of hydration behavior of sulfate-rich belite sulfoaluminate cements with different phase compositions. Journal of Thermal Analysis and Calorimetry, 2018, 133, 1281-1289.	2.0	16
49	Experimental study of calcium sulfoaluminate cement-based self-leveling compound exposed to various temperatures and moisture conditions: Hydration mechanism and mortar properties. Cement and Concrete Research, 2018, 108, 103-115.	4.6	38
50	Early hydration of calcium sulfoaluminate cement in the presence of hydroxyethyl methyl cellulose. Journal of Thermal Analysis and Calorimetry, 2018, 134, 1429-1438.	2.0	31
51	The effect of water and gypsum content on strÃ t lingite formation in calcium sulfoaluminate-belite cement pastes. Construction and Building Materials, 2018, 166, 712-722.	3.2	80
52	Enthalpy of formation of ye'elimite and ternesite. Journal of Thermal Analysis and Calorimetry, 2018, 131, 2345-2359.	2.0	14
53	Improvement of workability and early strength of calcium sulphoaluminate cement at various temperature by chemical admixtures. Construction and Building Materials, 2018, 160, 427-439.	3.2	75
54	Microstructure evolution and strength development of ultra rapid hardening cement modified with redispersible polymer powder. Construction and Building Materials, 2018, 192, 715-730.	3.2	24

#	Article	IF	CITATIONS
55	Influence of ternesite on the properties of calcium sulfoaluminate cements blended with fly ash. Construction and Building Materials, 2018, 193, 221-229.	3.2	29
56	Experimental design of a well cement slurry for rapid gel strength development. Construction and Building Materials, 2018, 191, 1093-1102.	3.2	20
57	Influence of fly ash blending on hydration and physical behavior of belite–alite–ye'elimite cements. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	1.3	10
58	Microstructural evolution of aluminum hydroxide gel during the hydration of calcium sulfoaluminate under different alkali concentrations. Construction and Building Materials, 2018, 180, 655-664.	3.2	26
59	The synthesis and hydration of ternesite, Ca5(SiO4)2SO4. Cement and Concrete Research, 2018, 113, 27-40.	4.6	26
60	Combined Effects of Set Retarders and Polymer Powder on the Properties of Calcium Sulfoaluminate Blended Cement Systems. Materials, 2018, 11, 825.	1.3	11
61	Characterisation and hydration process of synthetic Sr-bearing ye'elimite. Advances in Cement Research, 2018, 30, 245-255.	0.7	7
62	Effects of ordinary Portland cement on the early properties and hydration of calcium sulfoaluminate cement. Construction and Building Materials, 2018, 186, 1144-1153.	3.2	78
63	Effect of ternesite on the hydration and properties of calcium sulfoaluminate cement. Journal of Thermal Analysis and Calorimetry, 2019, 136, 687-695.	2.0	20
64	Effects of comb-like PCE and linear copolymers on workability and early hydration of a calcium sulfoaluminate belite cement. Cement and Concrete Research, 2019, 123, 105801.	4.6	55
65	Importance of Cation Species during Sulfate Resistance Tests for Alkali-Activated FA/GGBFS Blended Mortars. Materials, 2019, 12, 3547.	1.3	6
66	Effects of polycarboxylate superplasticizers on fluidity and early hydration in sulfoaluminate cement system. Construction and Building Materials, 2019, 228, 116711.	3.2	30
67	Effect of Gypsum on Hydration and Hardening Properties of Alite Modified Calcium Sulfoaluminate Cement. Materials, 2019, 12, 3131.	1.3	21
68	Experimental evidence on formation of ulexite in sulfoaluminate cement paste mixed with high concentration borate solution and its retarding effects. Construction and Building Materials, 2019, 215, 777-785.	3.2	20
69	Effects of Aluminum Sulfate and Quicklime/Fluorgypsum Ratio on the Properties of Calcium Sulfoaluminate (CSA) Cement-Based Double Liquid Grouting Materials. Materials, 2019, 12, 1222.	1.3	33
70	The role of boron during the early hydration of belite ye'elimite ferrite cements. Construction and Building Materials, 2019, 215, 252-263.	3.2	31
71	Effect of curing temperature and relative humidity on the hydrates and porosity of calcium sulfoaluminate cement. Construction and Building Materials, 2019, 213, 627-636.	3.2	48
72	Design of self-desiccating binders using CSA cement: influence of the cement composition and sulfate source. Advances in Cement Research, 2019, 31, 178-194.	0.7	6

#	Article	IF	CITATIONS
73	Early hydration of ye'elimite: Insights from thermodynamic modelling. Cement and Concrete Research, 2019, 120, 152-163.	4.6	26
74	The Effect of Elevated Curing Temperatures on High Ye'elimite Calcium Sulfoaluminate Cement Mortars. Materials, 2019, 12, 1072.	1.3	33
75	Shrinkage and creep of high-performance concrete based on calcium sulfoaluminate cement. Cement and Concrete Composites, 2019, 98, 61-73.	4.6	57
76	Hydration and performance evolution of belite–ye'elimite–ferrite cement. Advances in Cement Research, 2019, 31, 124-137.	0.7	30
77	Effects of limestone powder on the hydration and microstructure development of calcium sulphoaluminate cement under long-term curing. Construction and Building Materials, 2019, 199, 688-695.	3.2	55
78	Comparative study of two PCE superplasticizers with varied charge density in Portland cement and sulfoaluminate cement systems. Cement and Concrete Research, 2019, 115, 43-58.	4.6	95
79	The effect of polymer dispersions on the early hydration of calcium sulfoaluminate cement. Journal of Thermal Analysis and Calorimetry, 2020, 139, 319-331.	2.0	6
80	Effects of admixtures and accelerators on the development of concrete strength for horizontal form removal upon curing at 10°C. Construction and Building Materials, 2020, 237, 117652.	3.2	18
81	Phosphogypsum as a component of calcium sulfoaluminate cement: Hazardous elements immobilization, radioactivity and performances. Journal of Cleaner Production, 2020, 248, 119287.	4.6	42
82	Effect of alkalis content on calcium sulfoaluminate (CSA) cement hydration. Cement and Concrete Research, 2020, 128, 105953.	4.6	55
83	Autogenous and drying shrinkage of mortars based on Portland and calcium sulfoaluminate cements. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	1.3	23
84	Research on the Hydration Properties of C4A3S-CSH2 Cement System at Different Temperatures. Materials, 2020, 13, 4000.	1.3	7
85	Utilization of Carbide Slag by Wet Grinding as an Accelerator in Calcium Sulfoaluminate Cement. Materials, 2020, 13, 4526.	1.3	16
86	Synergistic use of industrial solid wastes to prepare belite-rich sulphoaluminate cement and its feasibility use in repairing materials. Construction and Building Materials, 2020, 264, 120201.	3.2	55
87	Phase development and hydration kinetics of belite-calcium sulfoaluminate cements at different curing temperatures. Ceramics International, 2020, 46, 29421-29428.	2.3	43
88	Utilization and performance evaluation of molasses as a retarder and plasticizer for calcium sulfoaluminate cement-based mortar. Construction and Building Materials, 2020, 243, 118201.	3.2	27
89	Microstructure and Properties of Sulfoaluminate Cement-Based Grouting Materials: Effect of Calcium Sulfate Variety. Advances in Materials Science and Engineering, 2020, 2020, 1-8.	1.0	4
90	Effects of Accelerators and Retarders in Early Strength Development of Concrete Based on Low-Temperature-Cured Ordinary Portland and Calcium Sulfoaluminate Cement Blends. Materials, 2020, 13, 1505.	1.3	13

#	ARTICLE	IF	CITATIONS
91	The formation process of aluminum hydroxide in calcium sulfoaluminate pastes. Chemical Papers, 2021, 75, 909-920.	1.0	2
92	Synthesis, characterisation and hydration of ternesite. Construction and Building Materials, 2021, 270, 121392.	3.2	9
93	The Incorporation of Steel Slag into Belite-Sulfoaluminate Cement Clinkers. Applied Sciences (Switzerland), 2021, 11, 1840.	1.3	3
94	Quantitative in Situ X-ray Diffraction Analysis of Early Hydration of Belite-Calcium Sulfoaluminate Cement at Various Defined Temperatures. Minerals (Basel, Switzerland), 2021, 11, 297.	0.8	6
95	Effect of Alkaline Salts on Calcium Sulfoaluminate Cement Hydration. Molecules, 2021, 26, 1938.	1.7	11
96	Highly ductile ultra-rapid-hardening mortar containing oxidized polyethylene fibers. Construction and Building Materials, 2021, 277, 122317.	3.2	13
97	Hydration characteristics assessment of a binary calcium sulfoaluminate-anhydrite cement related with environment temperature. Journal of Thermal Analysis and Calorimetry, 2022, 147, 3053-3061.	2.0	6
98	Influence of exposure conditions on expansion characteristics of lime-rich calcium sulfoaluminate-belite blended cement. Cement and Concrete Composites, 2021, 118, 103932.	4.6	9
99	Dynamic compressive and flexural behaviors of ultra-rapid-hardening mortar containing polyethylene fibers. Archives of Civil and Mechanical Engineering, 2021, 21, 1.	1.9	7
100	Synthesis of Belite-Ye'elimite-Ternesite Cement Clinker. Materials Science Forum, 0, 1036, 223-229.	0.3	1
101	Pore characteristics of calcium sulfoaluminate cement paste with impact of supplementary cementitious materials and water to binder ratio. Powder Technology, 2021, 387, 146-155.	2.1	23
102	Developing strain-hardening ultra-rapid-hardening mortar containing high-volume supplementary cementitious materials and polyethylene fibers. Journal of Materials Research and Technology, 2021, 13, 1934-1945.	2.6	11
103	Early hydration and mechanical strength of calcite–ettringite seeds added cement mixture for 3D printing. Advances in Applied Ceramics, 2021, 120, 267-274.	0.6	2
104	Quantitative Rietveld analysis of the decomposition of hardened rapid sulphoaluminate cement after exposure to elevated temperatures. Archives of Civil and Mechanical Engineering, 2021, 21, 1.	1.9	6
105	Monitoring early hydration of calcium sulfoaluminate clinker. Construction and Building Materials, 2021, 295, 123578.	3.2	10
107	Influence of polycarboxylate superplasticizer, citric acid and their combination on the hydration and workability of calcium sulfoaluminate cement. Cement and Concrete Research, 2021, 147, 106513.	4.6	21
108	Effects of cyclic seawater exposure on the mechanical performance and chloride penetration of calcium sulfoaluminate concrete. Construction and Building Materials, 2021, 303, 124139.	3.2	23
109	Nanostructural evolution of Al(OH)3 gel formed by the cubic and orthorhombic ye'elimite clinkers of calcium sulfoaluminate cements in an ultra-wide hydration temperature range. Cement and Concrete Research, 2021, 150, 106607.	4.6	20

		15	2
#	ARTICLE Early Hydration Heat of Calcium Sulfoaluminate Cement with Influences of Supplementary	IF	CITATIONS
110	Cementitious Materials and Water to Binder Ratio. Materials, 2021, 14, 642.	1.3	18
111	HYDRATING CHARACTERISTICS OF MODIFIED PORTLAND WITH Ba-BEARING SULPHOALUMINATE MINERALS. Ceramics - Silikaty, 2016, , 12-18.	0.2	1
112	The Influence of Volume Changes in Portland and Calcium Sulfoaluminate Binary Cement. Springer Proceedings in Energy, 2018, , 767-772.	0.2	0
113	Analysis of Characteristics of Slurry and Thermal Insulation Materials Using Hauyne Cement. Journal of the Korean Ceramic Society, 2019, 56, 468-473.	1.1	0
114	The influence of calcium sulfate content on the hydration of belite-calcium sulfoaluminate cements with different clinker phase compositions. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	1.3	16
115	Binding Mechanism of CSA Cement on Premixed Clâ^ and Its Governing Parameters. Journal of Materials in Civil Engineering, 2022, 34, .	1.3	5
116	Low Energy/Low Carbon Eco-Cementitious Binders as an Alternative to Ordinary Portland Cement. , 2021, , 1-23.		1
117	Cement-based stabilization/solidification of radioactive waste. , 2022, , 407-431.		4
118	Experimental Study on the Rheology and Setting Behavior of Calcium Sulfoaluminate Cement Paste Modified with Styrene-Butadiene Copolymer Dispersion. Journal of Materials in Civil Engineering, 2022, 34, .	1.3	1
119	Influence of calcium hydroxide and calcium sulfate on early-age properties of non-expansive calcium sulfoaluminate belite cement. Cement and Concrete Composites, 2022, 128, 104444.	4.6	19
120	Investigation on Pulverized Coal Control Using Calcium Sulfoaluminate Cementitious Proppants in Coalbed Methane Fracturing. ACS Omega, 2022, 7, 8036-8045.	1.6	4
121	Improved early-age and late-age performances of calcium sulphoaluminate cement with the presence of calcium nitrate. Construction and Building Materials, 2022, 327, 126927.	3.2	11
122	Blending eco-efficient calcium sulfoaluminate belite ferrite cement to enhance the physico–mechanical properties of Portland cement paste cured in refrigerated and natural winter conditions. Cement and Concrete Composites, 2022, 129, 104469.	4.6	13
123	Effect of alkalinity on early-age hydration in calcium sulfoaluminate clinker. Cement and Concrete Research, 2022, 155, 106781.	4.6	11
124	Performance development of styrene-butadiene copolymer-modified calcium sulfoaluminate cement mortar under different curing conditions. Journal of Zhejiang University: Science A, 2021, 22, 1005-1026.	1.3	3
125	Effect of Curing Temperature on the Hydration of Calcium Sulfoaluminate Cement-Ground Granulated Blast Furnace Slag-Gypsum Mixture. Journal of Materials in Civil Engineering, 2022, 34, .	1.3	2
126	Influence of metakaolin and calcined montmorillonite on the hydration of calcium sulphoaluminate cement. Case Studies in Construction Materials, 2022, 16, e01104.	0.8	2
127	The Valorisation of Selected Quarry and Mine Waste for Sustainable Cement Production within the Concept of Circular Economy. Sustainability, 2022, 14, 6833.	1.6	3

#	Article	IF	CITATIONS
128	Development and application of low-pH concretes for structural purposes in geological repository systems. , 0, , 286-322.		0
129	Ternesite-calcium sulfoaluminate cement: Preparation and hydration. Construction and Building Materials, 2022, 344, 128187.	3.2	5
130	Sulfate-Induced Corrosion of Carbon Steel Reinforcement in Fresh Calcium Sulfoaluminate Binders. Corrosion, 2022, 78, 813-824.	0.5	1
131	Influence of cellulose ethers chemistry and substitution degree on the setting and early-stage hydration of calcium sulphoaluminate cement. Construction and Building Materials, 2022, 344, 128266.	3.2	8
132	Development of Underwater Mortar Using Belitic Calcium Sulfoaluminate Cement. Advances in Civil Engineering Materials, 2022, 11, 398-409.	0.2	0
133	Hydration characteristics of calcium sulfoaluminate-fly ash mixed with different alkalies. Case Studies in Construction Materials, 2022, 17, e01478.	0.8	1
134	Factors Influencing the Electrical Properties of Ettringite Binders as Repair Materials. MATEC Web of Conferences, 2022, 364, 02005.	0.1	0
135	Chemical shrinkage of ferrite-rich calcium sulfoaluminate clinkers with varied gypsum contents. Construction and Building Materials, 2022, 357, 128729.	3.2	3
136	Influence of tartaric acid dosage on the early-age and long-term properties of calcium sulfoaluminate belite cement composites. Construction and Building Materials, 2022, 356, 129257.	3.2	7
137	Investigation on Coalbed Methane Fracturing Using Supercritical CO2 Graphene Cement Slurry System. Energies, 2022, 15, 7624.	1.6	0
138	Low Energy/Low Carbon Eco-cementitious Binders as an Alternative to Ordinary Portland Cement. , 2022, , 2619-2640.		0
139	Microstructural characteristics and CO2 uptake of calcium sulfoaluminate cement by carbonation curing at different water-to-cement ratios. Cement and Concrete Research, 2023, 163, 107012.	4.6	24
140	EFFECT OF BORAX ON CALCIUM SULFOALUMINATE CEMENT PROPERTIES. Ceramics - Silikaty, 2022, , 0-0.	0.2	1
141	Recent progress and technical challenges in using calcium sulfoaluminate (CSA) cement. Cement and Concrete Composites, 2023, 137, 104908.	4.6	36
142	Mechanical Performance and Chloride Penetration of Calcium Sulfoaluminate Concrete in Marine Tidal Zone. Materials, 2023, 16, 2905.	1.3	2
143	Long-term performance of ferrite-rich calcium sulfoaluminate cement-based paste under seawater corrosion. Construction and Building Materials, 2023, 377, 131056.	3.2	4
145	Managing the Heat Release of Calcium Sulfoaluminate Cement by Modifying the Ye'elimite Content. Materials, 2023, 16, 2470.	1.3	2
163	Effect of Portland Cement Blending with Calcium Sulfoaluminate Belite Cement and Calcium Sulfate on Carbonation Resistance. RILEM Bookseries, 2024, , 917-926.	0.2	0