CITATION REPORT List of articles citing

Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying

DOI: 10.1179/095066001225001049 International Materials Reviews, 2002, 47, 3-29.

Source: https://exaly.com/paper-pdf/34057783/citation-report.pdf

Version: 2024-04-10

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
659	Grain refinement of Al-7Si alloys and the efficiency assessment by recognition of cooling curves. 2003 , 34, 1175-1182		23
658	Influence of thermo-mechanical treatment of AlBTi master alloy on its grain refining performance on aluminium. 2003 , 351, 237-243		15
657	Influence of iron on castability and properties of aluminium silicon alloys: literature review. 2003 , 16, 451-465		115
656	Understanding mechanisms of grain refinement of aluminium alloys by inoculation. 2004 , 20, 1357-136	9	155
655	Effect of grain refinement on wear properties of Al and All Si alloy. 2004, 257, 148-153		87
654	Effect of grain refinement treatment on the microstructure of cast All SiBiCp composites. 2004 , 386, 54-60		17
653	The effect of isothermal mechanical stirring on an AlBi alloy in the semisolid condition. 2004 , 369, 275-2	283	80
652	Reaction of Sn-3.5Ag-0.7Cu-xSb solder with Cu metallization during reflow soldering. 2004 , 27, 77-85		39
651	Prediction of grain size of AlūSi Alloy by neural networks. 2005 , 391, 131-140		59
650	Influence of high-intensity ultrasound on grain refining performance of AlBTiIB master alloy on aluminium. 2005 , 405, 306-312		95
649	Grain refinement of superalloy K4169 by addition of refiners: cast structure and refinement mechanisms. 2005 , 394, 1-8		37
648	Thermodynamic aspects of grain refinement of AlBi alloys using Ti and B. 2005, 395, 10-21		67
647	Production and Mechanical Properties of In-Situ Ti Alloying A356 Alloys. 2005 , 475-479, 321-324		3
646	Role of calcium in aluminium based alloys and composites. <i>International Materials Reviews</i> , 2005 , 50, 216-238	16.1	27
645	Development of Alliil grain refiners and study of their grain refining efficiency on Al and Allisi alloy. <i>Journal of Alloys and Compounds</i> , 2005 , 396, 143-150	5.7	118
644	Effect of Vertical Electromagnetic Stirring on the Grain Refinement of A356 Aluminum Alloy Inoculated by Al-5Ti-B. 2006 , 116-117, 344-349		4
643	Heterogeneous grain initiation in solidification. 2006 , 86, 3665-3680		30

642	Thermodynamic evidence for a poisoning mechanism in the AlBiIIi system. 2006, 22, 1126-1134		34
641	An improved practice to manufacture AlliB master alloys by reacting halide salts with molten aluminium. <i>Journal of Alloys and Compounds</i> , 2006 , 420, 71-76	5.7	63
640	Effect of the salt addition practice on the grain refining efficiency of AlliB master alloys. <i>Journal of Alloys and Compounds</i> , 2006 , 420, 207-212	5.7	43
639	Grain refining efficiency of Allii alloys. <i>Journal of Alloys and Compounds</i> , 2006 , 422, 128-131	5.7	76
638	Grain Refinement of Titanium Due to Inclusion Control. 2006 , 14, 48-52		
637	Effect of B/Ti mass ratio on grain refining of low-titanium aluminum produced by electrolysis. 2006 , 416, 312-316		18
636	The grain refining action of fine TiB2 particles in the electrolytic low-titanium aluminum with Al\(B\) addition. 2006 , 427, 148-153		9
635	Effect of NiMg on the microstructure and properties of Al[AB]FeIIVIISi alloys. 2006, 433, 310-315		2
634	Microstructure and grain refining performance of AlBTiIB master alloy prepared under high-intensity ultrasound. 2006 , 430, 326-331		38
633	Microstructural and wear behavior of hypoeutectic AlBi alloy (LM25) grain refined and modified with AlIIIIIBr master alloy. 2006 , 261, 133-139		46
632	Effect of the addition of refiners and/or modifiers on the microstructure of die cast Ala2Si alloys. 2006 , 54, 943-947		54
631	Heterogeneous nucleation of MgAl alloys. 2006 , 54, 2197-2201		67
630	Microstructure and mechanical property developments in All 2Si gravity die castings after Ti and/or Sr additions. <i>Materials Characterization</i> , 2006 , 57, 218-226	3.9	31
629	Criteria for developing castable, creep-resistant aluminum-based alloys 🗚 review. 2006 , 97, 246-265		347
628	Microstructure and Grain Refining Performance of a Rapidly Solidified Al-5Ti-1B Master Alloy. 2007 , 546-549, 755-760		1
627	Influence of Reaction Temperature for the Manufacturing of Al-3Ti and Al-3B Master Alloys and their Grain Refining Efficiency on a Al-7Si Alloy. 2007 , 29-30, 111-115		2
626	Experimental Study of Grain Growth in Aluminium Melts under the Influence of Ultrasonic Melt Treatment. 2007 , 561-565, 987-990		7
625	Effects of Titanium Refining Methods on the Microstructure and Mechanical Properties of A356-0.1%Ti Alloys. 2007 , 546-549, 937-940		

624	Solidification of Iron and Steel on Single-crystal Oxide. 2007 , 47, 847-852		19
623	The effect of holding conditions in the conventional halide salt process on the performance of AlliB grain refiner alloys. <i>Journal of Alloys and Compounds</i> , 2007 , 427, 142-147	5.7	33
622	Production of AlliiB master alloys from Ti sponge and KBF4. <i>Journal of Alloys and Compounds</i> , 2007 , 440, 108-112	5.7	49
621	Production of AlliiB grain refining master alloys from B2O3 and K2TiF6. <i>Journal of Alloys and Compounds</i> , 2007 , 443, 94-98	5.7	46
620	Influences of melt treatment on grain sizes and morphologies of AZ9 1D alloy. 2007 , 17, 887-892		5
619	Metal foams⊞igh temperature colloids. 2007 , 309, 254-263		27
618	The grain refinement behavior of TiB2 particles prepared with in situ technology. 2007 , 459, 238-243		37
617	Nucleation and Precipitation Strengthening in Dilute Al-Ti and Al-Zr Alloys. 2007, 38, 2552-2563		112
616	The effect of AlBTiIB on the microstructure, hardness and tensile properties of Al2O3 and SiC-containing metalEnatrix composites. 2008 , 485, 210-217		26
615	Improved prediction of the grain size of aluminum alloys that includes the effect of cooling rate. 2008 , 486, 8-13		94
614	Macrosegregation in direct-chill casting of aluminium alloys. 2008, 53, 421-480		193
613	Microstructure and the wear mechanism of grain-refined aluminum during dry sliding against steel disc. 2008 , 264, 638-647		32
612	The influence of TiB2 particles on the effectiveness of AlBTiD.15C grain refiner. <i>Materials Characterization</i> , 2008 , 59, 1458-1465	3.9	15
611	Refinement performance and mechanism of an Al-50Si alloy. <i>Materials Characterization</i> , 2008 , 59, 1559-	-135,63	33
610	Influence of reaction temperature for the manufacturing of AlBTi and AlBB master alloys. <i>Journal of Alloys and Compounds</i> , 2008 , 453, 147-156	5.7	32
609	Production of Allīi B grain refining master alloys from Na2B4O7 and K2TiF6. <i>Journal of Alloys and Compounds</i> , 2008 , 458, 271-276	5.7	37
608	Development of A3003 Alloy Tube for Eco-Friendly Refrigerant Application. 2008, 569, 293-296		
607	Effect of Ti and B on the dry sliding wear behaviour of hypoeutectic Al-Si alloys. 2008 , 60, 46-55		5

(2009-2009)

606	Prediction of Solidification Microstructure and Columnar-to-equiaxed Transition of AlBi Alloy by Two-dimensional Cellular Automaton with Decentred Squarel Growth Algorithm. 2009, 49, 1000-1009		7	
605	Shear enhanced heterogeneous nucleation in some Mg- and Al-alloys. 2009 , 22, 318-322		41	
604	Temperature effects in aluminium melts due to cavitation induced by high power ultrasound. 2009 , 22, 26-29		12	
603	Segregation and grain refinement in cast titanium alloys. 2009 , 24, 1529-1535		49	
602	Influence of boron addition on the grain refinement and mechanical properties of AZ91 Mg alloy. 2009 , 525, 207-210		59	
601	Valence electron structure analysis of refining mechanism of Sc and Ti additions on aluminum. 2009 , 54, 836-841		4	
600	Influence of Al-Ti-B addition on the microstructure and mechanical properties of A356 alloys. 2009 , 28, 181-186		12	
599	Effects of individual and combined additions of phosphorus, boron and cerium on primary and eutectic silicon in an Al-30Si alloy. 2009 , 28, 651-655		11	
598	Effect of grain refinement and modification on the dry sliding wear behaviour of eutectic AlBi alloys. 2009 , 42, 59-65		85	
597	Enhanced heterogeneous nucleation in AZ91D alloy by intensive melt shearing. 2009 , 57, 4891-4901		194	
596	Production of Al B alloy by heating Al/KBF4 powder blends. <i>Journal of Alloys and Compounds</i> , 2009 , 481, 195-198	5.7	26	
595	Optimal holding temperatures and phosphorus additions for primary silicon refinement in Alligh Si alloys. 2009 , 25, 1183-1188		19	
594	Grain refinement response of LM25 alloy towards Allīilā and Allīilā grain refiners. <i>Journal of Alloys and Compounds</i> , 2009 , 472, 112-120	5.7	50	
593	Analysis of the response to thermal exposure of Al/K2TiF6 powder blends. <i>Journal of Alloys and Compounds</i> , 2009 , 478, 265-268	5.7	10	
592	AlliB grain refiners via powder metallurgy processing of Al/K2TiF6/KBF4 powder blends. <i>Journal of Alloys and Compounds</i> , 2009 , 480, 311-314	5.7	20	
591	An investigation on the effect of intensive shearing on the grain refinement of A5754 aluminium alloy. <i>Journal of Alloys and Compounds</i> , 2009 , 481, 358-364	5.7	15	
590	AlliitBr master alloyA melt inoculant for simultaneous grain refinement and modification of hypoeutectic AlBi alloys. <i>Journal of Alloys and Compounds</i> , 2009 , 480, L49-L51	5.7	27	
589	The effect of melting temperature and time on the TiC particles. <i>Journal of Alloys and Compounds</i> , 2009 , 484, 95-101	5.7	27	

588	Grain refinement of an Al🛮0% Mg alloy by intensive shearing in the liquid state. <i>Journal of Alloys and Compounds</i> , 2009 , 485, 807-811	5.7	19
587	A novel AlliB alloy for grain refining AlBi foundry alloys. <i>Journal of Alloys and Compounds</i> , 2009 , 486, 219-222	5.7	61
586	The research of Ti-rich zone on the interface between TiCx and aluminum melt and the formation of Ti3Al in rapid solidified Allii master alloys. <i>Journal of Alloys and Compounds</i> , 2009 , 488, 84-88	5.7	12
585	Grain refinement mechanism in A3003 alloy. 2009 , 144, 012091		
584	Numerical Simulation for Grain Refinement of Aluminum Alloy by Multi-phase-field Model Coupled with CALPHAD. 2009 , 49, 1019-1023		9
583	Effects of AlBTiIB master alloy on the microstructural evaluation of a highly alloyed aluminum alloy produced by SIMA process. 2010 ,		9
582	The effect of grain refiner and combined electro-magnetic field on grain evolution of horizontal direct chill casting 7075 aluminum alloy. <i>International Journal of Materials Research</i> , 2010 , 101, 380-385	0.5	1
581	Grain size and porosity of cast hypoeutectic aluminium-silicon alloys in hexachloroethane coated mould. 2010 , 51, 62-68		2
580	Heterogeneous nucleation of solid Al from the melt by Al3Ti: Molecular dynamics simulations. 2010 , 82,		35
579	Effect of Alloy Composition on the Dendrite Arm Spacing of Multicomponent Aluminum Alloys. 2010 , 41, 1528-1538		62
578	Criteria of Grain Refinement Induced by Ultrasonic Melt Treatment of Aluminum Alloys Containing Zr and Ti. 2010 , 41, 2056-2066		186
577	Understanding the Co-Poisoning Effect of Zr and Ti on the Grain Refinement of Cast Aluminum Alloys. 2010 , 41, 3412-3421		43
576	Effect of TiAl3 particles size and distribution on their settling and dissolution behaviour in aluminium. 2010 , 45, 2921-2929		12
575	Perfect wettability of carbon by liquid aluminum achieved by a multifunctional flux. 2010 , 45, 5177-5190)	31
574	Microstructural refinement of Al🛮 0.2%Si alloy by intensive shearing. 2010 , 64, 671-673		21
573	The characteristics of aluminum acandium alloys processed by ECAP. 2010 , 527, 1448-1452		9
572	The effect of Ti and Zr elements and cooling rate on the microstructure and tensile properties of a new developed super high-strength aluminum alloy. 2010 , 527, 5318-5325		53
571	First-principle study of the AlP/Si interfacial adhesion. 2010 , 405, 573-578		13

(2011-2010)

570	Effects of AlBTilB and AlBZr master alloys on the structure, hardness and tensile properties of a highly alloyed aluminum alloy. 2010 , 31, 200-209	43
569	The microstructure, hardness and tensile properties of a new super high strength aluminum alloy with Zr addition. 2010 , 31, 4450-4456	41
568	Influence of scandium on the microstructure and mechanical properties of A319 alloy. 2010 , 527, 6123-6132	15
567	Comparison of residual microstructures associated with impact craters in AlBc and AlIIi alloys. 2010 , 58, 2520-2526	17
566	Refinement of TiB2 in Al-Ti-B Grain Refiner Alloys by Ultrasound and the Effect on Al Grain Size. 2010 , 654-656, 958-961	8
565	The Effect of Al-5Ti-1B and Combination Electromagnetic Field on Grain Evolution of Die Casting Commercial Aluminum. 2010 , 97-101, 975-978	
564	Eco-Friendly Fabrication Process of AlTiC Grain Refiner. 2010 , 658, 312-315	
563	Shear Enhanced Heterogeneous Nucleation in AZ91D Alloy. 2010 , 649, 301-306	1
562	Electromagnetic Continuous Casting Process for Near Net Shape Aluminum Alloy Billet. 2010 , 654-656, 1400-1403	
561	Settling behaviour of TiAl3, TiB2, TiC and AlB2 particles in liquid Al during grain refinement. 2010 , 23, 193-204	21
560	Refinement of Solidification Microstructures by the MCAST Process. 2010 , 649, 315-323	1
559	Titanium as an endogenous grain-refining nucleus. 2010 , 90, 699-715	19
558	The effect of Al8Mn5 intermetallic particles on grain size of as-cast MgAlan AZ91D alloy. 2010 , 18, 1683-1689	79
557	A new approach to grain refinement of an MgIliAl cast alloy. <i>Journal of Alloys and Compounds</i> , 2010, 492, 95-98	48
556	Differences of grain-refining effect of Sc and Ti additions in aluminum by empirical electron theory analysis. 2010 , 20, 465-470	11
555	Grain refining action of Ti existing in electrolytic low-titanium aluminum with Al-4B addition for superheated Al melt. 2010 , 20, 950-957	3
554	Grain refinement of DC cast AZ91D Mg alloy by intensive melt shearing. 2011 , 27, 101-107	21
553	Microstructures of DC Cast Light Alloys under the Influence of Intensive Melt Shearing. 2011 , 690, 137-140	14

552	Grain Refinement in Alloys: Novel Approaches. 2011 , 1-7	1
551	On the mechanism of grain refinement in Al¤rII alloys. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 57-60	70
550	Production of Al-Ti-C Grain Refiners with the Addition of Elemental Carbon and K2TiF6. 2011 , 821-825	
549	Refining grain structure and porosity of an aluminium alloy with intensive melt shearing. 2011 , 64, 209-212	51
548	Grain refining potency of Al B master alloy on pure aluminum. 2011 , 64, 1121-1124	65
547	Effect of high-intensity ultrasonic irradiation on the modification of solidification microstructure in a Si-rich hypoeutectic AlBi alloy. 2011 , 125, 853-859	79
546	On microstructural refinement of an AA7449 aluminium alloy through shearing above liquidus temperature. 2011 , 65, 3230-3233	19
545	Influence of Vanadium on the Microstructure of A319 Alloy. <i>Transactions of the Indian Institute of Metals</i> , 2011 , 64, 447-451	10
544	Influence of Ti, B and Sr on the microstructure and mechanical properties of A356 alloy. 2011 , 46, 1622-1627	27
543	Influence of ultrasonic melt treatment on the formation of primary intermetallics and related grain refinement in aluminum alloys. 2011 , 46, 5252-5259	64
542	Microstructural refinement and tensile properties enhancement of MgBAl alloy using charcoal additions. 2011 , 528, 2502-2508	11
541	Grain refinement in a AlZnMgCuTi alloy by intensive melt shearing: A multi-step nucleation mechanism. 2011 , 314, 285-292	32
540	Effects of solute content on grain refinement in an isothermal melt. 2011 , 59, 2704-2712	102
539	Influence of Mg on Grain Refinement of Near Eutectic Al-Si Alloys. 2011 , 42, 2028-2039	14
538	Evaluation of Al-Ti-C Master Alloys as Grain Refiner for Aluminum and Its Alloys. 2011 , 42, 2862-2867	14
537	A quantitative study of solute diffusion field effects on heterogeneous nucleation and the grain size of alloys. 2011 , 59, 2135-2144	122
536	The Interdependence Theory: The relationship between grain formation and nucleant selection. 2011 , 59, 4907-4921	327
535	First-principles calculations on Al/AlB2 interfaces. 2011 , 257, 7831-7836	77

534	Grain Refinement by Laser Welding of AA 5083 with Addition of Ti/B. 2011 , 12, 123-133	4
533	Effects of pre-deformation and heat treatment conditions in the SIMA process on properties of an AlZnMgtu alloy modified by AlBB grain refiner. 2011 , 528, 4482-4490	27
532	Effect of grain refinement on the microstructure and tensile properties of thin 319 Al castings. 2011 , 32, 1542-1547	14
531	Influence of thermal rate treatment and low temperature pouring on microstructure and tensile properties of AlSi7Mg alloy. 2011 , 32, 2992-2996	8
530	Effects of AlBTillB on the structure and hardness of a super high strength aluminum alloy produced by strain-induced melt activation process. 2011 , 32, 4485-4492	22
529	Research on Microstructure and Refining Effect of Al-3Ti-0.5B Master Alloy Produced with Ti Sponge. 2011 , 66-68, 845-849	
528	Combined Effect of Electromagnetic Field and Grain Refiner on Microstructure of B10 Mm 7050 Aluminium Alloy Ingot. 2011 , 399-401, 1708-1711	1
527	The High Frequency Pulse Effect and Verification in the Welding Process for High-Strength Aluminum Alloy. 2011 , 130-134, 27-31	1
526	Effects of Electromagnetic Stirring Plus Single Pulse on the Microstructures and Properties of High Strength Al-Cu Alloy Welds. 2011 , 391-392, 1225-1229	
525	Grain Refinement of Direct Chill Cast 7050 Aluminium Alloy with Low Frequency Electromagnetic Field. 2011 , 402, 850-853	3
524	Preparation of Al-Ti-N Master Alloy Grain Refiner for Al. 2012 , 452-453, 721-725	1
523	Preparing Large Sized Billet of High Strength Aluminum Alloy with the Application of Low Frequency Electromagnetic Field. 2012 , 472-475, 723-726	
522	Development of Grain Refinement in Aluminium Field. 2012 , 706-709, 402-407	1
521	The Role of Fe on the Grain Refinement of High Purity Aluminium. 2012 , 538-541, 2264-2268	1
520	Effect of titaniumBoron additions on grain refinement of AA 2219 gas tungsten arc welds. 2012 , 17, 386-393	13
519	Preparation of Al-Ti-B-C Master Alloy and its Grain Refinement Effect for Pure Al. 2012 , 452-453, 778-781	1
518	Grain Refinement Mechanism in AlaB Master Alloy Added Pure Mg. 2012, 710, 161-166	2
517	Effect of intensive melt shearing on the formation of Fe-containing intermetallics in LM24 Al-alloy. 2012 , 27, 012075	3

516	Grain refinement of DC cast magnesium alloys with intensive melt shearing. 2012, 27, 012043		9
515	Influence of Reaction Temperature and Reaction Time for the Manufacturing of AlliB (Ti:B = 5:1, 1:3) Master Alloys and Their Grain Refining Efficiency on AllSi Alloys. <i>Transactions of the Indian Institute of Metals</i> , 2012 , 65, 637-645	1.2	1
514	Grain refinement of solidified MgAl alloys by limited angular oscillation. 2012, 28, 941-947		1
513	Effect of silicon content in grain refining hypoeutectic AlBi foundry alloys with boron and titanium additions. 2012 , 28, 385-389		49
512	Grain refinement of pure aluminium and AllISi with AlBB master alloy. 2012, 28, 363-367		36
511	Interaction of grain refinement with B and modification with Sr in aluminium foundry alloys. 2012 , 28, 70-76		19
510	Performance of AlTi5B1, AlTi3B3 and AlB3 master alloys in refining grain structure of aluminium foundry alloys. 2012 , 28, 481-486		52
509	Experimental visualization of inoculation using a charged colloidal model system. 2012 , 8, 11034		8
508	Grain refinement and tensile properties improvement of aluminum foundry alloys by inoculation with Al B master alloy. 2012 , 553, 32-36		28
507	A novel fading-resistant AlBTiBB grain refiner for AlBi alloys. <i>Journal of Alloys and Compounds</i> , 2012 , 511, 45-49	5.7	56
506	AlB3 master alloy to grain refine AlSi10Mg and AlSi12Cu aluminium foundry alloys. <i>Journal of Alloys and Compounds</i> , 2012 , 513, 150-153	5.7	66
505	Microstructural characterization and grain refinement of AA6082 gas tungsten arc welds by scandium modified fillers. 2012 , 137, 543-551		17
504	Influence of Melt Feeding Scheme and Casting Parameters During Direct-Chill Casting on Microstructure of an AA7050 Billet. 2012 , 43, 1565-1573		17
503	Characterization of a CuAlBe Alloy with Different Cr Contents. 2012 , 21, 2398-2406		12
502	RETRACTED ARTICLE: Microstructural evolution of AA7449 aerospace alloy refined by intensive shearing. <i>Metals and Materials International</i> , 2012 , 18, 777-782	2.4	2
501	Microstructure and Mechanical Properties of Squeeze Cast Semi-Solid Materials. 2012 , 192-193, 257-260)	1
500	Reconstruction of 2D Al3Ti on TiB2in an aluminium melt. 2012 , 27, 012004		3
499	Mechanisms of enhanced heterogeneous nucleation during solidification in binary AlMg alloys. 2012 , 60, 1528-1537		136

498	Effects of Sc content on the microstructure of As-Cast Al-7wt.% Si alloys. <i>Materials Characterization</i> , 2012 , 66, 104-110	51
497	The effect of AlBB grain refiner and heat treatment conditions on the microstructure, mechanical properties and dry sliding wear behavior of an AlaZZnBMga.5Cu aluminum alloy. 2012, 38, 64-73	14
496	Influence of titaniumBoron additions on grain refinement of AA6082 gas tungsten arc welds. 2012 , 40, 467-475	11
495	Determination of the growth restriction factor and grain size for aluminum alloys by a quasi-binary equivalent method. 2012 , 540, 63-69	28
494	Grain refinement mechanism of pure aluminum by inoculation with AlB master alloys. 2012 , 549, 136-143	27
493	The grain refinement mechanism of cast aluminium by zirconium. 2013 , 61, 5636-5645	133
492	Grain Refinement. 2013 , 103-143	
491	A Brief History of the Grain Refinement of Cast Light Alloys. 2013 , 765, 123-129	2
490	The effect of strain-induced melt activation process on the microstructure and mechanical properties of Ti-refined A6070 Al alloy. 2013 , 46, 824-831	11
489	Effect of a grain refiner cum modifier on mechanical properties of Al-7Si and Al-11Si alloys. <i>Metals and Materials International</i> , 2013 , 19, 171-181	17
488	Grain refining performance of Al-B master alloys with different microstructures on Al-7Si alloy. Metals and Materials International, 2013 , 19, 367-370	9
487	Microstructural Evolution and Grain Refining Efficiency of Al-10Ti Master Alloy Improved by Copper Mold Die Casting. 2013 , 22, 2012-2018	4
486	Design of an Ideal Grain-Refiner Alloy for Al-7Si Alloy Using Artificial Neural Networks. 2013 , 22, 696-699	7
485	Mechanism for Grain Refinement and Mechanical Properties of AZ91 Mg Alloy by Carbon Inoculation. 2013 , 55, 93-97	19
484	Crystallography of Zr poisoning of Al-Ti-B grain refinement using edge-to-edge matching model. 2013 , 20, 2635-2642	9
483	Effect of vanadium on the microstructures and mechanical properties of an AlMgBitutrii alloy of 6XXX series. <i>Journal of Alloys and Compounds</i> , 2013 , 573, 102-111	38
482	Enhanced grain refinement of cast aluminum alloy by thermal and mechanical treatment of Al-5Ti-B master alloy. 2013 , 23, 1563-1569	22
481	Microstructure of Al-Ti-B-Er refiner and its grain refining performance. <i>Journal of Rare Earths</i> , 2013 , 31, 622-627	28

480	Microstructural design of hardfacing NittrBBitt alloys. 2013, 61, 6061-6070	31
479	Effect of nano TiN/Ti refiner on as-cast and hot-working microstructure of commercial purity aluminum. 2013 , 23, 1890-1897	4
478	Transformation from Al3BC phase to doped TiB2 or TiC particles in Allii melts. <i>Journal of Alloys and Compounds</i> , 2013 , 561, 48-53	5
477	Color metallography and electron microscopy techniques applied to the characterization of 413.0 aluminum alloys. 2013 , 19, 1019-26	3
476	The role of Al2Y in grain refinement in MgAla alloy system. 2013 , 1, 115-121	53
475	High-temperature mechanical properties investigation of Al-6.5 % Cu gas tungsten arc welds made with scandium modified 2319 filler. 2013 , 65, 1757-1767	3
474	Effect of Liquid Hot Isostatic Pressing on Structure and Mechanical Properties of a Sand-Cast A356.02 Alloy. 2013 , 44, 2369-2381	3
473	An Epitaxial Model for Heterogeneous Nucleation on Potent Substrates. 2013 , 44, 1409-1418	99
472	Investigation of the effect of AlbTibB grain refiner on dry sliding wear behavior of an AlbnMgDu alloy formed by strain-induced melt activation process. 2013 , 46, 766-775	31
471	An investigation on physical and chemical refinement of aerospace aluminium alloys. 2013 , 95, 121-124	4
470	RETRACTED: Direct-chill casting of wrought Al alloy under electromagnetic and ultrasonic combined fields. 2013 , 105, 213-215	20
469	Revisiting the role of peritectics in grain refinement of Al alloys. 2013 , 61, 360-370	128
468	Equiaxed Grain Count in Aluminum Alloy Castings: Theoretical Background and Experimental Verification. 2013 , 44, 5788-5795	8
467	Microstructure Refinement of Pure Aluminum by Inoculation with Stainless Steel Powders. 2013 , 421, 272-276	
466	Efficiency of binary and ternary alloys from AlliB system in grain refining aluminium foundry alloys. 2013 , 26, 283-288	10
465	Design of potent grain refiners for wrought aluminium alloys. 2013 , 26, 273-278	2
464	Research on High Strength Hypoeutectic Al-Si Alloy. 2013 , 873, 10-18	
463	Effect of Ti Addition on Mechanical Properties of High Pressure Die Cast Al-Mg-Si Alloys. 2013 , 765, 23-27	15

462	Effect of solute Si and Cu on grain size of aluminium alloys. 2013 , 26, 22-27	14
461	Real-Time Imaging of the Grain Refinement Process of Aluminum Alloys Inoculated by Al-5Ti-B Under Synchrotron Radiation X-Ray. 2013 , 2599-2605	
460	Routes to Spheroidal Starting Material for Semisolid Metal Processing. 2014 , 135-148	6
459	Effect of Electromagnetic Induction and Heat Treatment on the Mechanical and Wear Properties of LM25 Alloy. 2014 , 5, 550-557	3
458	Melt Conditioned Twin Roll Casting (MC-TRC) for Aluminium Alloys. 2014 , 794-796, 1115-1120	3
457	Twin-Roll Casting of Aluminum Alloys 🖾 Overview. 2014 , 29, 651-661	55
456	Grain count in castings: theoretical background and experimental verification. 2014 , 27, 15-25	2
455	Grain Refinement Mechanism of Al-5Ti-1B Master Alloy by Ab Initio Calculations. 2014 , 794-796, 746-751	
454	Microstructural Evaluation during Melt Conditioned Twin Roll Casting (MC-TRC) of Al-Mg Binary Alloys. 2014 , 790-791, 285-290	7
453	In Situ Al3Nb Formation in Liquid Al by Nb Particle Addition. 2014 , 790-791, 515-515	O
452	Effect of Ti and Zr Composite Refiner on Microstructure and Tensile Properties of Pure Aluminum. 2014 , 1056, 47-51	1
451	Effect of Modification and Cooling Rate on Primary Grain in Al-Cu Alloy. 2014 , 14, 21-24	
450	Effect of compound inoculants Ti and Zr on as cast microstructure and mechanical properties of Alluu alloy. 2014 , 18, S2-59-S2-63	4
449	A Comparison of the Effects of Al-Ti-B Type Grain Refiners from Different Makers on Pure Aluminum. 2014 , 945-949	2
448	Flow Control during Solidification of AlSi-Alloys by Means of Tailored AC Magnetic Fields and the Impact on the Mechanical Properties. 2014 , 790-791, 384-389	
447	Crystallographic study of grain refinement of Al by Nb addition. 2014 , 47, 770-779	25
446	Effect of grain refinement on mechanical properties and sliding wear resistance of extruded Sc-free 7042 aluminum alloy. 2014 , 54, 361-367	24
445	Development of TiB2 reinforced aluminum foundry alloy based in situ composites Part I: An improved halide salt route to fabricate AlBwt%TiB2 master composite. 2014 , 605, 301-309	63

444	Heterogeneous nucleation and microstructure formation in colloidal model systems with various interactions. 2014 , 223, 389-407	8
443	On the Liquid/Solid Phase Equilibria in the Al-Rich Corner of the Al-Si-Ti Ternary System. 2014 , 35, 137-145	18
442	Influence of nitrogen on the synthesis and nucleation ability of TiCx in Allīic master alloy. <i>Journal of Alloys and Compounds</i> , 2014 , 601, 267-273	9
441	An ab initio molecular dynamics study on the structural and electronic properties of AlB2, TiB2 and (Alx,Ti(1 M))B2 in Al \mathbb{I} iB master alloys. <i>Journal of Alloys and Compounds</i> , 2014 , 585, 529-534	11
440	Crystallographic study of Al3Zr and Al3Nb as grain refiners for Al alloys. 2014 , 24, 2034-2040	27
439	Effects of Al-Ti-B-RE grain refiner on microstructure and mechanical properties of Al-7.0Si-0.55Mg alloy. 2014 , 24, 2244-2250	19
438	Grain Refinement Efficiency of a New Oxide-Containing Master Alloy for Aluminium Casting Alloys. 2014 , 794-796, 155-160	4
437	A Comparison of Grain Refinement Efficiency by Shearing above and below the Liquidus. 2014 , 217-218, 23-28	
436	An ab initio study on the electronic structures of the solid/liquid interface between TiB 2 (0 0 0 1) surface and Al melts. <i>Journal of Alloys and Compounds</i> , 2014 , 615, 863-867	9
435	Grain refining AlSi7Mg0B foundry alloy with commercial AlBB master alloy. 2014 , 30, 465-470	4
434	The grain refining mechanism of cast zinc through silver inoculation. 2014 , 79, 315-326	51
433	RETRACTED ARTICLE: Comparison on grain refinement efficiency of peritectic and eutectic alloying elements on pure aluminium. <i>Metals and Materials International</i> , 2014 , 20, 713-717	3
432	Preparation and Characterization of Al-1Ti-3B Master Alloys by Salt Route and Evaluation of their Grain Refining Performance on Al-7Si Alloys. 2014 , 790-791, 173-178	1
431	Microstructure and Mechanical Properties of Al-8 pct Si Alloy Prepared by Direct Chill Casting Under Electromagnetic and Ultrasonic Fields. 2014 , 45, 2014-2022	7
430	Heterogeneous Nucleation of EAl Grain on Primary EAlFeMnSi Intermetallic Investigated Using 3D SEM Ultramicrotomy and HRTEM. 2014 , 45, 3971-3980	22
429	Predicting the Effect of Pouring Temperature on the Crystallite Density, Remelting, and Crystal Growth Kinetics in the Solidification of Aluminum Alloys. 2014 , 45, 1407-1417	5
428	Effect of Casting Temperature on Grain Size of Al-Si Alloys Refined by a Novel Grain Refiner. 2014 , 794-796, 77-82	
427	The influence of Ti on the microstructure and tensile properties of cast Al4.5Cu0.3Mg alloy. 2014 , 590, 161-167	12

426	The nucleation crystallography and wettability of Mg grains on active Al2Y inoculants in an Mg l 0 wt% Y Alloy. <i>Journal of Alloys and Compounds</i> , 2014 , 586, 39-44	54
425	Grain refinement and modification of AlBi foundry alloys with B and Sr additions. 2014 , 30, 1154-1161	13
424	Grain refinement of pure aluminum by direct current pulsed magnetic field and inoculation. 2014 , 24, 1295-1300	12
423	Microstructures and mechanical properties of La added AlBi casting alloys and mechanism of grain refinement. 2015 , 28, 375-381	4
422	Effects of low frequency electromagnetic field on efficiency of refiner and hydrogen concentration in pure aluminium. 2015 , 28, 208-212	2
421	Effect of In-Situ Titanium Boride Particle Addition and Friction Stir Processing on Wear Behavior of Aluminum Alloy 2219. 2015 , 81-91	
420	Effect of Al-5Ti-1B Grain Refiner on Microstructure and Mechanical Properties of 7075 Aluminum Alloy. 2015 , 817, 331-336	O
419	Fabrication of a New Al-Ti-C Master Alloy and its Refining Effect on AZ31. 2015 , 833, 28-32	
418	Effect of Material and Process Atmosphere in the Preparation of Al-Ti-B Grain Refiner by SHS. Metals, 2015 , 5, 1387-1396	7
417	A Precipitation Phenomenon of Titanium Compounds in Aluminum Melts and the Refinement Fading Mechanism of the Al-5Ti-0.62C Master Alloy. 2015 , 2015, 1-9	
416	Modification of microstructures for hypoeutectic, eutectic and hypereutectic Alបu binary alloys. 2015 , 28, 81-88	3
415	The Contribution of Constitutional Supercooling to Nucleation and Grain Formation. 2015, 46, 4868-4885	94
414	Understanding grain refinement in aluminium welding. 2015 , 59, 767-784	30
413	Investigation the Effect of Al-5Ti-1B Grain Refiner and T6 Heat Treatment on Tensile Properties of Al-8%Mg. 2015 , 11, 32-37	6
412	Relationships of diboride phases in Allīi(Zr) B alloys. 2015 , 31, 874-879	10
411	Effect of Titanium Addition and Cooling Rate on Primary (Al) Grains and Tensile Properties of Al-Cu Alloy. 2015 , 24, 1150-1156	9
410	The improved effects by the combinative addition of lanthanum and samarium on the microstructures and the tensile properties of high-pressure die-cast Mg&Al-based alloy. 2015 , 628, 319-326	22
409	Assessment of the influence of AlaNbaB master alloy on the grain refinement and properties of LM6 (A413) alloy. 2015 , 628, 230-237	27

408	Ultrasonic assisted grain refinement of AlMg alloy using in-situ MgAl2O4 particles. 2015 , 145, 328-331		30
407	Grain refining mechanism in the Al/AllīiB system. 2015 , 84, 292-304		295
406	Effect of magnesium and titanium on the cathodic behaviour of aluminium in nitric acid. 2015 , 47, 30-36		
405	Grain refinement of Al-Mg-Sc alloy by ultrasonic treatment. <i>Metals and Materials International</i> , 2015 , 21, 72-78	2.4	26
404	Effects of NaBF4 + NaF on the Tensile and Impact Properties of Al-Si-Mg-Fe Alloys. 2015 , 46, 2063-2072		1
403	In situ study the effect of refiner on the microstructure evolution of variable cross-section structure by synchrotron X-ray radiography. 2015 , 428, 1-7		5
402	Ti addition to enhance corrosion resistance of SnØn solder alloy by tailoring microstructure. Journal of Alloys and Compounds, 2015, 644, 113-118	5.7	48
401	Effect of AlBTiBB grain refiner on the microstructure, mechanical properties and acoustic emission characteristics of Al5052 aluminium alloy. 2015 , 4, 171-179		25
400	Crystallography of grain refinement in cast zincBopper alloys. 2015 , 48, 890-900		22
399	Influence of minor Zr and Ti on microstructures and properties of AlBI&ZnIIIBMgIII2Cu alloys. 2015 , 54, 136-141		1
398	Effect of nanoparticles formed in liquid melt on microstructure and mechanical property of high strength naval steel. 2015 , 222, 224-233		12
397	Melting and casting of lithium containing aluminium alloys. 2015 , 28, 1-8		18
396	Three dimensional microstructures and wear resistance of Al-Bi immiscible alloys with different grain refiners. 2015 , 58, 870-875		12
395	In Situ Al3Nb Formation in Liquid Al by Nb Particle Addition. 2015 , 812, 131-136		1
394	Grain refinement of cast zinc through magnesium inoculation: Characterisation and mechanism. Materials Characterization, 2015 , 106, 1-10	3.9	19
393	The effect of AlBTiBB on the microstructure, hardness and tensile properties of a new Zn rich aluminium alloy. 2015 , 636, 421-429		19
392	Refinement of the grain size of the LM25 alloy (A356) by 96Al@Nb@B master alloy. 2015 , 222, 219-223		18
391	Development of AlMbB master alloys using Nb and KBF4 Powders. 2015, 75, 40-46		28

390	Effect of Al-5Ti-1B Grain Refiner Addition on the Formation of Intermetallic Compounds in Al-Mg-Si-Mn-Fe Alloys. 2015 , 828-829, 53-57		7
389	Microstructure of Al-5Ti-0.6C-1Ce master alloy and its grain-refining performance. <i>International Journal of Materials Research</i> , 2015 , 106, 1240-1243	0.5	5
388	Direct-Chill Casting of AA7449 Aerospace Alloy under Electromagnetic and Ultrasonic Combined Fields. 2015 , 828-829, 48-52		1
387	Grain refining effect of Mg by novel particle cluster-containing Allii master alloy. 2015 , 25, 1804-1810		3
386	Influence of Dendritic Growth of Equiaxed Grains on As-Cast Grain Size Prediction of Inoculated Aluminum Alloys. <i>Transactions of the Indian Institute of Metals</i> , 2015 , 68, 1013-1016	1.2	3
385	Preparation of in-situ TiB 2 and Mg 2 Si hybrid particulates reinforced Al-matrix composites. <i>Journal of Alloys and Compounds</i> , 2015 , 651, 521-527	5.7	40
384	Effect of Cr on Grain Refinement and Mechanical Properties of Al-Si-Mg Alloys. 2015 , 789-790, 95-99		2
383	Development of New Oxide Based Master Alloys and their Grain Refinement Potency in Aluminium Alloys. 2015 , 828-829, 23-28		1
382	Synthesis of AlMgAl2O4 Master Alloy and its Grain Refinement Studies in Pure Aluminium. <i>Transactions of the Indian Institute of Metals</i> , 2015 , 68, 1059-1063	1.2	9
381	Effect of TiC Addition on the Microstructure and Mechanical Properties of B319 Alloy. <i>Transactions of the Indian Institute of Metals</i> , 2015 , 68, 1173-1180	1.2	4
381		1.2	4
	of the Indian Institute of Metals, 2015 , 68, 1173-1180	1.2	
380	of the Indian Institute of Metals, 2015, 68, 1173-1180 A New Approach to Refine Grains in Al Alloys. 2015, 17, 796-801	1.2	4
380 379	of the Indian Institute of Metals, 2015, 68, 1173-1180 A New Approach to Refine Grains in Al Alloys. 2015, 17, 796-801 Compositional modification of Ni-base alloys for laser-deposition technologies. 2015, 137-162 Microstructure evolution and mechanical properties of Allu alloys inoculated by FeBSi metallic	1.2	4
380 379 378	A New Approach to Refine Grains in Al Alloys. 2015, 17, 796-801 Compositional modification of Ni-base alloys for laser-deposition technologies. 2015, 137-162 Microstructure evolution and mechanical properties of Allu alloys inoculated by FeBSi metallic glass. 2015, 67, 130-135 Grain refinement of AlBi alloys by NbB inoculation. Part II: Application to commercial alloys. 2015,	1.2	4 3 11
380 379 378 377	A New Approach to Refine Grains in Al Alloys. 2015, 17, 796-801 Compositional modification of Ni-base alloys for laser-deposition technologies. 2015, 137-162 Microstructure evolution and mechanical properties of Allu alloys inoculated by FeBSi metallic glass. 2015, 67, 130-135 Grain refinement of AlBi alloys by NbB inoculation. Part II: Application to commercial alloys. 2015, 66, 376-383 Grain refinement of AlBi alloys by NbB inoculation. Part I: Concept development and effect on	1.2	4 3 11 55
380 379 378 377 376	A New Approach to Refine Grains in Al Alloys. 2015, 17, 796-801 Compositional modification of Ni-base alloys for laser-deposition technologies. 2015, 137-162 Microstructure evolution and mechanical properties of Alliu alloys inoculated by FeBSi metallic glass. 2015, 67, 130-135 Grain refinement of AlBi alloys by NbB inoculation. Part II: Application to commercial alloys. 2015, 66, 376-383 Grain refinement of AlBi alloys by NbB inoculation. Part I: Concept development and effect on binary alloys. 2015, 66, 366-375 The Influence of the Effect of Solute on the Thermodynamic Driving Force on Grain Refinement of	1.2 5·7	4 3 11 55 74

372	Effect of electromagnetic vibration on the microstructure of direct chill cast Al-Zn-Mg-Cu alloy. 2016 , 117, 012047		1
371	Temperature Gradient Field Theory of Nucleation. 2016 , 114, 012099		1
370	Grain Refinement Efficiency in Commercial-Purity Aluminum Influenced by the Addition of Al-4Ti Master Alloys with Varying TiAllParticles. <i>Materials</i> , 2016 , 9,	3.5	5
369	Comparative Study on the Grain Refinement of Al-Si Alloy Solidified under the Impact of Pulsed Electric Current and Travelling Magnetic Field. <i>Metals</i> , 2016 , 6, 170	2.3	22
368	Degree of Undercooling and Wettability Behavior of Liquid Steel on Single-crystal Al2O3 and MgO Substrate Under Controlled Oxygen Partial Pressure. 2016 , 56, 1333-1341		8
367	Investigating the Relationships Between Structures and Properties of Al Alloys Incorporated With Ti and Mg Inclusions. 2016 , 138,		4
366	Engineering the heterogeneous nuclei in Al-Si alloys for solidification control. 2016 , 5, 255-259		18
365	Formation of equiaxed crystal structures in directionally solidified Al-Si alloys using Nb-based heterogeneous nuclei. 2016 , 6, 39554		20
364	Effect of Titanium and Boron on the Stability of Grain Refinement of Al-Cu Alloy. 2016 , 16, 35-38		4
363	Overview: Application of heterogeneous nucleation in grain-refining of metals. 2016 , 145, 211704		88
362	Effect of nano TiN/Ti refiner addition content on the microstructure and properties of as-cast Al-Zn-Mg-Cu alloy. <i>Journal of Alloys and Compounds</i> , 2016 , 675, 201-210	5.7	32
361	Effect of potent TiB2 addition levels and impurities on the grain refinement of Al. <i>Journal of Alloys and Compounds</i> , 2016 , 689, 401-407	5.7	18
360	Mechanism of Zirconium Poisoning Effect on TiB2 Inoculation in Aluminium Alloys. 2016 , 725-729		2
359	Experimental study on directional solidification of Al-Si alloys under the influence of electric currents. 2016 , 143, 012021		1
358	Grain Refinement Of Al-Si Hypoeutectic Alloys By Al3Ti1B Master Alloy And Ultrasonic Treatment. 2016 , 141-150		4
357	Effect of Sc addition and T6 aging treatment on the microstructure modification and mechanical properties of A356 alloy. 2016 , 674, 438-450		43
356	Grain refinement of hypoeutectic Al-Si alloys with B. 2016 , 120, 168-178		106
355	A Novel Method to Achieve Grain Refinement in Aluminum. 2016 , 47, 4788-4794		26

354	Use of Nano Seed Crystals To Control Peroxide Morphology in a Nonaqueous Li D 2 Battery. 2016 , 120, 18421-18427		19
353	Grain Refinement Mechanism Of Aluminum By AI-Ti-B Master Alloys. 2016 , 187-193		3
352	Effect of Ultrasound on Heterogeneous Nucleation in TIG Welding of Alli Alloy. 2016 , 29, 1081-1088		15
351	Effect of Duration on Ti Grain Refinement of A356 and Melt Quality. 2016 , 203-208		1
350	Cooling Rate Sensitivity of RE-Containing Grain Refiner and Its Impact on the Microstructure and Mechanical Properties of A356 Alloy. 2016 , 29, 414-421		6
349	Heterogeneous Nb-Based Nuclei for the Grain Refinement of Al-Si Alloys. 2016 , 68, 1301-1306		7
348	X-ray tomography studies on porosity and particle size distribution in cast in-situ Al-Cu-TiB2 semi-solid forged composites. <i>Materials Characterization</i> , 2016 , 118, 57-64	3.9	7
347	Preparation of in-situ 5 vol% TiB2 particulate reinforced Al4.5Cu alloy matrix composites assisted by improved mechanical stirring process. 2016 , 94, 79-86		66
346	Nanoparticle-inhibited growth of primary aluminum in AlfIOSi alloys. 2016 , 103, 252-263		72
345	Brazing of CBN grains with Ag-Cu-Ti/TiX composite filler - The effect of TiX particles on microstructure and strength of bonding layer. 2016 , 98, 243-253		51
344	The Interface of TiB2 and Al3Ti in Molten Aluminum. 2016 , 47, 3285-3290		9
343	Which wets TiB2 inoculant particles: Al or Al3Ti?. Journal of Alloys and Compounds, 2016, 664, 460-468	5.7	30
342	Recent advances in grain refinement of light metals and alloys. 2016 , 20, 13-24		160
341	The impact of melt conditioning on microstructure, texture and ductility of twin roll cast aluminium alloy strips. 2016 , 650, 365-373		23
340	Grain refining mechanism in pure aluminum with nanosized TiN/Ti composite refiner addition. <i>Journal of Alloys and Compounds</i> , 2017 , 699, 283-290	5.7	20
339	First-principles study of the Al(001)-Al3Nb(001) interfacial properties. 2017, 657, 104-110		15
338	Hypoeutectic AluminumBilicon Alloy Development for GMAW-Based 3-D Printing Using Wedge Castings. 2017 , 11, 843-856		8
337	Enhanced grain refinement of in situ CeB6/Al composite inoculant on pure aluminum by microstructure control. <i>Journal of Alloys and Compounds</i> , 2017 , 701, 926-934	5.7	18

336	Three-dimensional morphology of eutectic silicon in as-cast Al-20 wt% Si alloy with ultrasonic treatment. 2017 , 48, 177-182		3
335	Investigation of the correlation between growth restriction and grain size in Cu alloys. 2017 , 30, 251-255	5	4
334	Effect of external forces on microstructural evolution and mechanical properties of high pressure die cast AA5754 alloy. 2017 , 27, 282-288		2
333	Boosting Bifunctional Oxygen Electrolysis for N-Doped Carbon via Bimetal Addition. 2017 , 13, 1604103		97
332	Wear behavior of Al-Si alloy based metal matrix composite reinforced with TiB2. 2017 , 178, 012025		2
331	Influence of C/Ti stoichiometry in TiC x on the grain refinement efficiency of Allīil master alloy. <i>Journal of Materials Science and Technology</i> , 2017 , 33, 616-622	9.1	26
330	Effect of semi-solid forging on microstructure and mechanical properties of in-situ cast Al-Cu-TiB 2 composites. <i>Journal of Alloys and Compounds</i> , 2017 , 712, 460-467	5.7	25
329	Considerations on the effect of solutal on the grain size of castings from superheated melts. 2017 , 201, 9-12		4
328	Grain refinement of electronic solders: The potential of combining solute with nucleant particles. Journal of Alloys and Compounds, 2017 , 715, 471-485	5.7	24
327	Influence of pulse magneto-oscillation on the efficiency of grain refiner. 2017 , 5, 143-148		5
326	Study on the Effects of Squeeze Pressure on Mechanical Properties and Wear Characteristics of near-Eutectic AlBituMgNi Piston Alloy with Variable Cu Content. 2017 , 11, 831-842		6
325	The influence of heat treatment on the structure and tensile properties of thin-section A356 aluminum alloy casts refined by Ti, B and Zr. 2017 , 32, 3540-3547		2
324	A Review on Grain Refinement of Aluminum Alloys: Progresses, Challenges and Prospects. 2017 , 30, 409-432		101
323	Improvement of mechanical properties of Al-Si alloy with effective grain refinement by in-situ integrated Al2.2Ti1B-Mg refiner. <i>Journal of Alloys and Compounds</i> , 2017 , 710, 166-171	5.7	15
322	Influence of Strontium Addition on Microstructure and Mechanical Properties of an AlloSiBCu Alloy. <i>Transactions of the Indian Institute of Metals</i> , 2017 , 70, 2039-2046	1.2	3
321	Heterogeneous nucleation and grain growth of inoculated aluminium alloys: An integrated study by in-situ X-radiography and numerical modelling. 2017 , 140, 224-239		76
320	3D printing of high-strength aluminium alloys. 2017 , 549, 365-369		1133
319	Microstructure and Mechanical Properties of Ala2.6Si Eutectic Alloy Modified with AlBTi Master Alloy. 2017 , 19, 1700495		9

318	Effect of pulsed magnetic field on the grain refinement and mechanical properties of 6063 aluminum alloy by direct chill casting. 2017 , 93, 3033-3042	12
317	Review of Grain Refinement of Cast Metals Through Inoculation: Theories and Developments. 2017 , 48, 4755-4776	30
316	Harnessing heterogeneous nucleation to control tin orientations in electronic interconnections. 2017 , 8, 1916	32
315	Dry Wear Behavior of Heat Treated A413 Alloy. 2017 , 4, 10714-10720	
314	Grain refinement of binary Al-Si, Al-Cu and Al-Ni alloys by ultrasonication. 2017, 249, 367-378	40
313	Direct Electrosynthesis of Fe-TiC Composite from Natural Ilmenite in Molten Calcium Chloride. 2017 , 164, D533-D542	5
312	Grain Refinement. 2017 , 211-234	
311	On the microstructural refinement in commercial purity Al and Al-10 wt% Cu alloy under ultrasonication during solidification. 2017 , 132, 266-274	41
310	Grain Refinement Mechanism and Effective Nucleation Phase of Al-5Ti-1B Master Alloy. 2017 , 898, 1231-1235	2
309	Grain Coarsening of Cast Magnesium Alloys at High Cooling Rate: A New Observation. 2017 , 48, 474-481	19
308	Potential of an Al-Ti-MgAl2O4 Master Alloy and Ultrasonic Cavitation in the Grain Refinement of a Cast Aluminum Alloy. 2017 , 48, 208-219	10
307	Effects of ultrasonic vibration treatment on particles distribution of TiB2 particles reinforced aluminum composites. 2017 , 680, 437-443	35
306	Effect of ingot grain refinement on the tensile properties of 2024 Al alloy sheets. 2017 , 682, 1-11	14
305	Improvement of particles distribution of in-situ 5½ol% TiB2 particulates reinforced Al-4.5Cu alloy matrix composites with ultrasonic vibration treatment. <i>Journal of Alloys and Compounds</i> , 2017 , 692, 1-9 5.7	70
304	Effect of Cooling Rate on Microstructure and Grain Refining Behavior of In Situ CeB6/Al Composite Inoculant in Aluminum. <i>Metals</i> , 2017 , 7, 204	11
303	Numerical and Experimental Investigation of the Influence of Growth Restriction on Grain Size in Binary Cu Alloys. <i>Metals</i> , 2017 , 7, 383	2
302	Microstructure and Mechanical Properties of Ti6Al4V Alloy Modified and Reinforced by In Situ Ti5Si3/Ti Composite Ribbon Inoculants. <i>Metals</i> , 2017 , 7, 267	6
301	Trace Al-Ti-C-Ce on Solidification Structure Transformation and Fracture Properties of Al-Cu-Mn Alloy. 2018 , 913, 69-76	

300	Revealing the heterogeneous nucleation behavior of equiaxed grains of inoculated Al alloys during directional solidification. 2018 , 149, 312-325		59	
299	Enhanced mechanical properties of pure aluminium: Experimental investigation of effects of different parameters. 2018 , 25, 561-569		4	
298	Effects of Cooling Rate and Grain Refiner on Semi-solid Rheocasting Slurries of Al᠒nMg Alloy. 2018 , 829-837		1	
297	Competitive Heterogeneous Nucleation Between Zr and MgO Particles in Commercial Purity Magnesium. 2018 , 49, 2182-2192		13	
296	Effects of Sr, Ce and P on the microstructure and mechanical properties of rapidly solidified Al 7Si alloys. <i>Materials Characterization</i> , 2018 , 140, 290-298	3.9	13	
295	Effects of Si and Cu contents on grain size of AlBillu alloys. 2018, 34, 1287-1294		7	
294	Effect of tungsten and zirconium on structure and properties of niobium. 2018, 37, 749-759		2	
293	Mechanism of microstructural refinement of deformed aluminum under synergistic effect of TiAl3 and TiB2 particles and impact on mechanical properties. 2018 , 716, 129-139		8	
292	Enhancement of High Temperature Strength of 2219 Alloys Through Small Additions of Nb and Zr and a Novel Heat Treatment. 2018 , 49, 3047-3057		14	
291	Al-Ti-C master alloy with nano-sized TiC particles dispersed in the matrix prepared by using carbon nanotubes as C source. <i>Journal of Alloys and Compounds</i> , 2018 , 748, 774-782	5.7	23	
290	Use of B4C powder for preparing in situ AllīiBL inoculant in Allīi melt and its refining effect on A356 alloy. 2018 , 5, 016509			
289	Effects of Ti and La Additions on the Microstructures and Mechanical Properties of B-Refined and Sr-Modified All 1Si Alloys. <i>Metals and Materials International</i> , 2018 , 24, 1133-1142	2.4	9	
288	AlSi2Sc2 intermetallic formation in Al-7Si-0.3Mg-xSc alloys and their effects on as-cast properties. Journal of Alloys and Compounds, 2018 , 731, 1159-1170	5.7	25	
287	The grain refinement performance of B-doped TiC on Zr-containing Al alloys. <i>Journal of Alloys and Compounds</i> , 2018 , 731, 774-783	5.7	17	
286	Nucleation Crystallography of Ni Grains on CrFeNb Inoculants Investigated by Edge-to-Edge Matching Model in an IN718 Superalloy. 2018 , 20, 1700568		4	
285	Enhancement of Mechanical properties of AlSi5Cu3 Aluminum alloy using TiB2 reinforcements. 2018 , 455, 012127		1	
284	Molecular dynamics study on the heterogeneous nucleation of liquid Al-Cu alloys on different kinds of copper substrates. 2018 , 20, 29856-29865		7	
283	Effect of timefhodulated magnetic fields on the solidification structure and extrusion properties of wrought aluminum alloys. 2018 , 424, 012039			

282	Direct chill casting with reversing rotational electromagnetic field. 2018 , 424, 012055		1
281	Solidification of Aluminium Alloys Under Ultrasonication: An Overview. <i>Transactions of the Indian Institute of Metals</i> , 2018 , 71, 2681-2686	1.2	5
280	Grain refinement of laser remelted Al-7Si and 6061 aluminium alloys with Tibor□ and scandium additions. 2018 , 35, 715-720		33
279	Microstructure characterization and grain morphology of alloy 625 with 0.4 wt% boron modification manufactured by laser wire deposition. 2018 , 24, 137-144		6
278	Basics of Solidification Processing of Metallic Alloys. 2018 , 1-17		1
277	Grain Refinement of B319 Alloy Using Spark Plasma Sintered Alliil Grain Refiners. <i>Transactions of the Indian Institute of Metals</i> , 2018 , 71, 2759-2763	1.2	2
276	Grain refinement of Al-3.5FeNb-1.5C master alloy on pure Al and Al-9.8Si-3.4Cu alloy. 2018, 15, 314-319)	2
275	Ultrasonic Processing of Aluminum?Magnesium Alloys. <i>Materials</i> , 2018 , 11,	3.5	6
274	Do rotating magnetic fields unconditionally lead to grain refinement? A case study for directionally solidified Al-10wt%Cu alloys. 2018 , 3, 326-337		4
273	Microstructural characterization of intermetallic phases in a solution-treated MgB.0SmD.6ZnD.5Zr (wt%) alloy. <i>Materials Characterization</i> , 2018 , 145, 329-336	3.9	16
273 272		3.9	16
	MgB.0SmD.6ZnD.5Zr (wt%) alloy. <i>Materials Characterization</i> , 2018 , 145, 329-336 Effects of Cu and Si Contents on the Fluidity, Hot Tearing, and Mechanical Properties of Al-Cu-Si	3.9	
272	MgB.0SmD.6ZnD.5Zr (wt%) alloy. <i>Materials Characterization</i> , 2018 , 145, 329-336 Effects of Cu and Si Contents on the Fluidity, Hot Tearing, and Mechanical Properties of Al-Cu-Si Alloys. 2018 , 49, 5137-5145	3.9	11
272 271	MgB.0SmD.6ZnD.5Zr (wt%) alloy. <i>Materials Characterization</i> , 2018 , 145, 329-336 Effects of Cu and Si Contents on the Fluidity, Hot Tearing, and Mechanical Properties of Al-Cu-Si Alloys. 2018 , 49, 5137-5145 Testing Baked Anodes with an Increased Vanadium Content. 2018 , 62, 62-69	3.9	11
272 271 270	MgB.0SmD.6ZnD.5Zr (wt%) alloy. <i>Materials Characterization</i> , 2018 , 145, 329-336 Effects of Cu and Si Contents on the Fluidity, Hot Tearing, and Mechanical Properties of Al-Cu-Si Alloys. 2018 , 49, 5137-5145 Testing Baked Anodes with an Increased Vanadium Content. 2018 , 62, 62-69 Density functional theory study of Al/NbB2 heterogeneous nucleation interface. 2018 , 456, 37-42	3·9 5·7	11
272 271 270 269	MgB.0SmD.6ZnD.5Zr (wt%) alloy. <i>Materials Characterization</i> , 2018 , 145, 329-336 Effects of Cu and Si Contents on the Fluidity, Hot Tearing, and Mechanical Properties of Al-Cu-Si Alloys. 2018 , 49, 5137-5145 Testing Baked Anodes with an Increased Vanadium Content. 2018 , 62, 62-69 Density functional theory study of Al/NbB2 heterogeneous nucleation interface. 2018 , 456, 37-42 Optimization of 6005 Aluminum Alloy Components. 2018 , 315-323 Effect of heat treatments on microstructure evolution and grain morphology of alloy 625 with 0.4 wt% boron modification fabricated by laser wire deposition. <i>Journal of Alloys and Compounds</i> ,		11 1 25
272 271 270 269 268	Effects of Cu and Si Contents on the Fluidity, Hot Tearing, and Mechanical Properties of Al-Cu-Si Alloys. 2018, 49, 5137-5145 Testing Baked Anodes with an Increased Vanadium Content. 2018, 62, 62-69 Density functional theory study of Al/NbB2 heterogeneous nucleation interface. 2018, 456, 37-42 Optimization of 6005 Aluminum Alloy Components. 2018, 315-323 Effect of heat treatments on microstructure evolution and grain morphology of alloy 625 with 0.4 wt% boron modification fabricated by laser wire deposition. Journal of Alloys and Compounds, 2018, 764, 815-823 A Novel Developed Grain Refiner (Allib Master Alloys) Using Yttrium and KBF4 Powders. 2018,		11 1 25 11

264	Abnormal Grain Refinement Behavior in High-Pressure Die Casting of Pure Mg with Addition of Zr as Grain Refiner. 2018 , 70, 2555-2560	2
263	Substrate-Induced Liquid Layering: A New Insight into the Heterogeneous Nucleation of Liquid Metals. <i>Metals</i> , 2018 , 8, 521	8
262	Processing Parameter Control of Lifetime-Limiting Failure Mechanisms in Al-Si Cast Alloys at Room and Elevated Temperatures. 2018 , 49, 2133-2144	1
261	X-Ray Tomography Study on Porosity and Particle Size Distribution in In Situ Al-4.5Cu-5TiB2 Semisolid Rolled Composites. 2019 , 71, 4050-4058	5
260	Development of AlNbB master alloy with high Nb/B ratio for grain refinement of hypoeutectic AlBi cast alloys. 2019 , 54, 14561-14576	25
259	An Investigation on Spark Plasma Sintering of a Carbon Black Grain Refiner for the Aluminum Alloy B319. <i>Transactions of the Indian Institute of Metals</i> , 2019 , 72, 1399-1403	
258	Microstructure evolution of the rapidly solidified alloy powders and composite powders. 2019 , 182, 108045	11
257	Microstructure and refinement mechanism of TiB2/TiAl3 in remelted Al-5Ti-1B system. 2019 , 35, 1563-1571	5
256	Microstructural modification of SnBi and SnBiAl immiscible alloys by shearing. 2019, 35, 2157-2164	
255	Towards industrial Al-Nb-B master alloys for grain refining Al-Si alloys. 2019 , 8, 5631-5638	11
254	Elucidating the Effect of TiB2 Volume Percentage on the Mechanical Properties and Corrosion Behavior of Al5083-TiB2 Composites. 2019 , 28, 6912-6920	3
253	Effects of AlBTiBBIY master alloy on the microstructure, mechanical properties and electrical properties of AlBSiD.5Mg casting alloy. 2019 , 6, 126523	2
252	Contactless Ultrasonic Cavitation in Alloy Melts. <i>Materials</i> , 2019 , 12, 3.5	8
251	Bulk ultrafine grained/nanocrystalline metals via slow cooling. 2019 , 5, eaaw2398	30
250	The grain refinement of 1070 alloy by different Al-Ti-B mater alloys and its influence on the electrical conductivity. 2019 , 14, 102482	10
249	Effect of cooling rate on the thermal and electrical conductivities of an A356 sand cast alloy. Journal of Alloys and Compounds, 2019 , 808, 151756 5-7	10
248	Joint effects of Ti and Cu additions on microstructure and mechanical properties of Zn-25Sn-xCu-yTi high-temperature Pb-free solders. 2019 , 765, 138323	5
247	Improve mechanical properties of high pressure die cast Al9Si3Cu alloy via dislocation enhanced precipitation. <i>Journal of Alloys and Compounds</i> , 2019 , 785, 1015-1022	17

246	Effect of titanium powder on microstructure and mechanical properties of wire + arc additively manufactured Al-Mg alloy. 2019 , 241, 231-234		32
245	Determination some thermo-physical and metallurgical properties of aluminum alloys using their known chemical composition. 2019 , 139, 548-553		5
244	Grain Refining Effect of Al-5Ti-1B Master Alloy on Microstructures and Mechanical Properties of A356 Alloy. 2019 , 803, 17-21		2
243	Microstructure evolution of in-situ nanoparticles and its comprehensive effect on high strength steel. <i>Journal of Materials Science and Technology</i> , 2019 , 35, 1940-1950	9.1	22
242	Identification of nucleation mechanism in laser welds of aluminum alloy. 2019 , 125, 1		12
241	Effects of TiC Addition on Directionally Solidified Microstructure of Ti6Al4V. 2019 , 50, 3174-3185		1
240	Revealing the Heterogeneous Nucleation and Growth Behaviour of Grains in Inoculated Aluminium Alloys During Solidification. 2019 , 1665-1675		
239	Workpiece vibration augmented wire arc additive manufacturing of high strength aluminum alloy. 2019 , 271, 85-92		40
238	Electromagnetic Method to Control the Solidification of Al99.99. 2019 , 28, 3929-3934		1
237	Microstructure and Grain Refining Performance of High-Quality AlBTilB Master Alloy. 2019, 133-142		
236	An in situ investigation of the solute suppressed nucleation zone in an Al-15 wt% Cu alloy inoculated by Al-Ti-B. 2019 , 167, 6-10		28
235	Titanium carbonitride seeded crystallization of aluminum. 2019 , 6, 066565		1
234	In situ Investigation of the Heterogeneous Nucleation Sequence in Al-15 Weight Percent Cu Alloy Inoculated by Al-Ti-B. 2019 , 50, 1795-1804		13
233	Effect of Ultrasonication on the Solidification Microstructure in Al and Mg-Alloys. 2019 , 1589-1595		1
232	Segregation of Ca at the Mg/MgO interface and its effect on grain refinement of Mg alloys. 2019 , 529, 012048		4
231	Comparative studies of grain refinement of commercial purity Mg by CaO and Ca addition. 2019 , 32, 295-303		1
230	Optimization of Casting Process Parameters for Synthesis of Al-Nb-B Master Alloy. 2019 , 71, 397-406		
229	Microstructure, mechanical properties, and interfacial reaction with Cu substrate of Zr-modified SAC305 solder alloy. <i>Journal of Alloys and Compounds</i> , 2019 , 781, 633-643	5.7	16

228	Mechanism for Zr poisoning of Al-Ti-B based grain refiners. 2019 , 164, 428-439		56
227	Effect of Al-5Ti-B4C-Y refiner on the microstructure and properties of Al-Cu-Mn alloy. 2019 , 6, 016542		1
226	Microstructure and mechanical properties of as-cast and T6 treated Sc modified A356-5TiB2 in-situ composite. 2019 , 739, 383-394		19
225	Achievement in grain-refining hypoeutectic Al-Si alloys with Nb. 2019 , 160, 75-80		39
224	Interfacial energy between Al melt and TiB2 particles and efficiency of TiB2 particles to nucleate FAl. 2019 , 160, 25-28		16
223	Evaluation of Mechanical and Tribological Properties of Directionally Solidified Al-Si Based FG Composite. 2020 , 12, 701-713		3
222	Development and Characterization of In Situ AlSi5Cu3/TiB2 Composites. 2020 , 14, 59-68		13
221	Influence of a new AlTiC B master alloy on the casting and extruding behaviors of 7050 alloys. Journal of Alloys and Compounds, 2020 , 820, 153089	5.7	10
220	Grain size prediction and investigation of 7055 aluminum alloy inoculated by AlBTiIB master alloy. <i>Journal of Alloys and Compounds</i> , 2020 , 821, 153504	5.7	12
219	Processing and characterisation of modified strain-induced melt activation processed AlBi alloys. 2020 , 36, 181-193		4
218	Solidification orientation relationships between Al3Ti and TiB2. 2020 , 186, 149-161		4
217	Grain refinement in ultrasonicated binary aluminium alloys. 2020, 532, 125415		3
216	Development of duralumin alloy and its microstructural characterization by using grain refiner. 2020 , 25, 877-880		1
215	Quantified contribution of Band Bprecipitates to the strengthening of an aged AlMgBi alloy. 2020 , 774, 138776		35
214	On the grain refining efficacy of Ti-free hypoeutectic AlSi via AlTiB, AlB and AlNbB chemical inoculation. <i>Journal of Alloys and Compounds</i> , 2020 , 817, 152807	5.7	5
213	Investigation of the grain refining performance of Al-5Ti-1B master alloy on the recycling process of A356 alloy. 2020 , 51, 1346-1352		3
212	The Effect of Primary Phase Grain Refinement of Al-Si alloys on heat cracking. 2020 , 903, 012006		
211	An investigation on the precipitated phases and mechanical properties of cerium modified 2024 aluminum alloy. 2020 , 51, 1267-1273		

210	Mechanism for Si Poisoning of Al-Ti-B Grain Refiners in Al Alloys. 2020 , 51, 5743-5757		5
209	First-principle calculations on the Al/L12-Al3Zr heterogeneous nucleation interface. 2020 , 69, 101768		6
208	Design and manufacturing of a novel continuous casting technique for the addition of ceramic particulate reinforcement, alloying elements and grain refiners in Al-system. 2020 , 31, 342-350		4
207	Heterogeneous nucleation of ⊞Al on naturally formed MgAl2O4 particles during solidification of AlMgBiBeMn alloys. 2020 , 14, 100900		1
206	Structure Refinement Upon Ultrasonic Melt Treatment in a DC Casting Launder. 2020 , 72, 4071-4081		8
205	Enhancing tribological properties of WS2/NbC/Co-based self-lubricating coating via laser texturing and laser cladding two-step process. 2020 , 9, 9907-9919		12
204	Boron modified titanium alloys. 2020 , 111, 100653		47
203	Study on reaction productions and morphology of Al-Ti-C-SiC master alloy in self-propagating high temperature synthesis. 2020 , 1507, 042007		
202	Effect of Al-V-B grain refiner on refining aluminium alloys: estimation from ab initio calculations. 2020 , 861, 012047		
201	Precipitation Behavior and Strengthening Mechanism of Second Phases in AZ31-1.3Ca-1.0Sm-0.3La Alloy. 2020 , 993, 307-312		1
200	Influence the Filler Metal Containing Zirconium on the Weld Metal Porosity of The MIG Welded Aluminum Alloy 5083. 2020 , 924, 012018		О
199	Grain refinement of commercially pure aluminum with addition of Ti and Zr elements based on crystallography orientation. 2020 , 10, 16591		9
198	Motion and Distribution of Floating Grain in Direct-Chill Casting of Aluminum Alloys: Experiments and Numerical Modeling. <i>Materials</i> , 2020 , 13,	3.5	3
197	Molecular Origin of the Sign Preference of Ion- Induced Heterogeneous Nucleation in a Complex Ionic LiquidDiethylene Glycol System. 2020 , 124, 26944-26952		5
196	In Situ Observation of Deformation-Induced Spherical Grains in Semi-Solid State of C5191 Copper Alloy. <i>Materials</i> , 2020 , 13,	3.5	
195	Concurrent effects of various B additions on grain refinement, Fe intermetallics morphologies, and ductility evolution of Al-7.5Si-0.55 Mg (A357) cast alloy. 2020 , 2, 1		1
194	The Effects of Cr and Zr Additives on the Microstructure and Mechanical Properties of A356 Alloy. <i>Transactions of the Indian Institute of Metals</i> , 2020 , 73, 1273-1285	1.2	2
193	A comparative study of the primary phase formation in All wt% Si and All wt% Si alloys solidified by electromagnetic stirring processing. 2020 , 24, 101146		2

192	Impeding Nucleation for More Significant Grain Refinement. 2020 , 10, 9448	11
191	Effect of Nb micro-alloying on microstructure and properties of A7204-T4 aluminum alloy joints with fiber laser-VPTIG hybrid welding. 2020 , 64, 1459-1469	O
190	Enhanced Degradation in Grain Refinement of Inoculated 2024 Al Alloy in Steady Magnetic field. 2020 , 51, 4584-4591	O
189	Effect of electric current pulses on TiB2 particle dispersion in aluminum alloy melt. 2020 , 274, 127981	4
188	Progress in the development of a contactless ultrasonic processing route for alloy grain refinement. 2020 , 861, 012070	1
187	Assessing Grain Refining Performance of Al&B Master Alloys Produced Under Different Processing Conditions. 2020 , 101, 39-47	
186	Grain refinement of 24 karat gold (99.99 wt.% pure) and 22 karat gold (Au-5.8wt.%Cu-2.5wt.%Ag) by Au-6wt.%Ti grain refiner. 2020 , 53, 19-29	1
185	Study on the grain refinement of A356 alloy by AlB wt-% VN master alloy. 2020 , 36, 819-826	3
184	Effect of Minor Addition of Ni on the Microstructure and Properties of Zn-Based High-Temperature Solder. 2020 , 49, 3990-4001	1
183	Laser metal deposition for additive manufacturing of AA5024 and nanoparticulate TiC modified AA5024 alloy composites prepared with balling milling process. 2020 , 131, 106438	17
182	Electrochemical Performance of Aluminum Anodes with Different Grain Sizes for Al-Air Batteries. 2020 , 167, 040514	5
181	Acoustic resonance for contactless ultrasonic cavitation in alloy melts. 2020 , 63, 104959	10
180	Tribo-Mechanical Behaviour of Ti-Based Particulate Reinforced As-Cast and Heat Treated A359 Composites. 2020 , 12, 2769-2782	10
179	Insight into Si poisoning on grain refinement of Al-Si/Al-5Ti-B system. 2020 , 187, 51-65	97
178	Effect of ceramic particle size on densification behavior, microstructure formation, and performance of TiB2-reinforced Al-based composites prepared by selective laser melting. 2020 , 35, 559-570	6
177	Microstructural modification of recycled aluminium alloys by high-intensity ultrasonication: Observations from custom AlūSiūMgū.2Fe[D.5,1.0)Mn alloys. <i>Journal of Alloys and Compounds</i> , 5.7 2020, 823, 153833	7
176	Mechanism of Sc poisoning of Al-5Ti-1B grain refiner. 2020 , 180, 88-92	13
175	Heterogeneous Nucleation of Eutectic Structure in Al-Mg-Si Alloys. 2020 , 51, 2697-2702	3

174	The hot deformation behavior, microstructure evolution and texture types of as-cast MgIli alloy. <i>Journal of Alloys and Compounds</i> , 2020 , 831, 154868	5.7	17
173	The Effects of Zr Addition on the Microstructure and Mechanical Properties of A356BiC Composites. 2021 , 15, 169-181		3
172	Understanding grain refining and anti Si-poisoning effect in Al-10Si/Al-5Nb-B system. <i>Journal of Materials Science and Technology</i> , 2021 , 65, 190-201	9.1	52
171	Refinement of primary carbides in hypereutectic high-chromium cast irons: a review. 2021 , 56, 999-1038	:	8
170	Mechanical (compressive) form of driving force triggers the phase transformation from Ito I& II phases in metastable Iphase-field Ti-5553 alloy. <i>Journal of Materials Science and Technology</i> , 2021 , 78, 238-246	9.1	4
169	Microstructure and mechanical properties of a TiB2-modified Al¶u alloy processed by laser powder-bed fusion. 2021 , 799, 140209		25
168	Hot tensile deformation behavior of extruded LAZ532 alloy with heterostructure. 2021, 801, 140412		15
167	Investigation on Reinforcement Incorporation Factor and Microstructure of Al 7075/Submicron-TiB2 Metal Matrix Composites Processed through a Modified Liquid Metallurgy Technique. 2021 , 45, 179-193		5
166	Effect of Sc on solidification segregation and subsequent friction stir processing of aluminium alloy. 2021 , 44, 1050-1057		
			\
165	The Effect of Grain Refiner on Aluminium Filtration. 2021 , 803-809		
165 164	Characterization and Property Analysis of Heat-treated Functionally Graded Al8Si3Cu Alloy and TiC	1.2	2
	Characterization and Property Analysis of Heat-treated Functionally Graded Al8Si3Cu Alloy and TiC	1.2	2 O
164	Characterization and Property Analysis of Heat-treated Functionally Graded Al8Si3Cu Alloy and TiC reinforced Composite. <i>Transactions of the Indian Institute of Metals</i> , 2021 , 74, 459-471 Ultrasonic Melt Treatment in a DC Casting Launder: The Role of Melt Processing Temperature.	1.2	
164	Characterization and Property Analysis of Heat-treated Functionally Graded Al8Si3Cu Alloy and TiC reinforced Composite. <i>Transactions of the Indian Institute of Metals</i> , 2021 , 74, 459-471 Ultrasonic Melt Treatment in a DC Casting Launder: The Role of Melt Processing Temperature. 2021 , 850-857 Effect of Agglomeration on Nucleation Potency of Inoculant Particles in the Al-Nb-B Master Alloy:	1.2	O
164 163 162	Characterization and Property Analysis of Heat-treated Functionally Graded Al8Si3Cu Alloy and TiC reinforced Composite. <i>Transactions of the Indian Institute of Metals</i> , 2021 , 74, 459-471 Ultrasonic Melt Treatment in a DC Casting Launder: The Role of Melt Processing Temperature. 2021 , 850-857 Effect of Agglomeration on Nucleation Potency of Inoculant Particles in the Al-Nb-B Master Alloy: Modeling and Experiments. 2021 , 52, 1077-1094 Enhanced grain refinement and mechanical properties of a highEtrength Al@nMg@u@r alloy	1.2	o 8
164 163 162	Characterization and Property Analysis of Heat-treated Functionally Graded Al8Si3Cu Alloy and TiC reinforced Composite. <i>Transactions of the Indian Institute of Metals</i> , 2021, 74, 459-471 Ultrasonic Melt Treatment in a DC Casting Launder: The Role of Melt Processing Temperature. 2021, 850-857 Effect of Agglomeration on Nucleation Potency of Inoculant Particles in the Al-Nb-B Master Alloy: Modeling and Experiments. 2021, 52, 1077-1094 Enhanced grain refinement and mechanical properties of a high-litrength Alan Mgauar alloy induced by TiC nanoparticles. 2021, 806, 140852 The role of cooling rate on microstructure in a sand-cast Al-Cuag alloy containing high amounts of	1.2	o 8 11
164 163 162 161	Characterization and Property Analysis of Heat-treated Functionally Graded Al8Si3Cu Alloy and TiC reinforced Composite. <i>Transactions of the Indian Institute of Metals</i> , 2021, 74, 459-471 Ultrasonic Melt Treatment in a DC Casting Launder: The Role of Melt Processing Temperature. 2021, 850-857 Effect of Agglomeration on Nucleation Potency of Inoculant Particles in the Al-Nb-B Master Alloy: Modeling and Experiments. 2021, 52, 1077-1094 Enhanced grain refinement and mechanical properties of a highBtrength AllanMgauar alloy induced by TiC nanoparticles. 2021, 806, 140852 The role of cooling rate on microstructure in a sand-cast Al-Cuag alloy containing high amounts of TiB2. 2021, 60, 57-65 Study of Solidification Thermal Analysis, Microstructure and Mechanical Characteristics of A384 Cast Alloy Treated with Rare Earth (Sm, Tb, Ce and La) Elements. 2021, 30, 4466-4483 Multiphysics Modelling of Ultrasonic Melt Treatment in the Hot-Top and Launder during	2.3	08110

156	Application of solid processing routes for the synthesis of graphene-aluminum composites- a review. 2021 , 36, 1219-1235		3
155	Effect of solutes on grain refinement. 2021 , 123, 100809		9
154	Enhanced grain refinement of Al-Si alloys by novel Al-V-B refiners. <i>Journal of Materials Science and Technology</i> , 2021 ,	9.1	28
153	Grain refinement and crack inhibition of selective laser melted AA2024 aluminum alloy via inoculation with TiCIIiH2. 2021 , 813, 141171		16
152	First-Principles Study on Al/Al3Hf Heterogeneous Nucleation Interface. 2021 , 13, 787-793		4
151	Numerical modelling and experimental validation of the effect of ultrasonic melt treatment in a direct-chill cast AA6008 alloy billet. 2021 , 12, 1582-1596		3
150	The Interactions Between Oxide Film Inclusions and Inoculation Particles TiB2 in Aluminum Melt. 2021 , 52, 2497-2508		6
149	Refining performance and recession of AlliO2lla2O3 refiners. <i>International Journal of Materials Research</i> , 2021 , 112, 359-365	0.5	
148	Role of Ti and Y in the nucleation of the primary \exists Al of Al7075 \blacksquare i \blacksquare natural composites and influence of ultrasonic vibration. <i>International Journal of Materials Research</i> , 2021 ,	0.5	
147	Effects of Solidification Conditions on Grain Refinement Capacity of TiC in Directionally Solidified Ti6Al4V Alloy. 2021 , 52, 3609		1
146	Functional and Environmental Advantage of Cleaning Ti5B1 Master Alloy. 1		
145	Design approaches for printability-performance synergy in Al alloys for laser-powder bed additive manufacturing. 2021 , 204, 109640		26
144	Microstructure features and mechanical/electrochemical behavior of directionally solidified AlBwt.%CuBwt.%Ni alloy. 2021 , 31, 1529-1549		4
143	Effect of Alloying Powders on Microstructure and Mechanical Properties of Aluminum Alloy Arc Additive Manufacturing.		
142	Reprint: Boron modified titanium alloys. 2021 , 120, 100815		5
141	Effect of TiB2 and Al3Ti on the microstructure, mechanical properties and fracture behaviour of near eutectic Al-12.6Si alloy. 2021 , 28, 1174-1185		3
140	In Situ Investigation of Si-Poisoning Effect in Alนินซิเ Alloys Inoculated by AlซิTiปีB. 1		2
139	Determination Of The Effect Of Cooling Rate And Strontium Amount On Eutectic Si Modification Performance Of A356 Alloy Via Casting Simulation.		

138	Role of Ti and Y in the nucleation of the primary \triangle of Al7075 in natural composites and influence of ultrasonic vibration. <i>International Journal of Materials Research</i> , 2021 , 112, 652-664	0.5	
137	Effect of Zr and Sc micro-additions on the microstructure and mechanical properties of as-cast Al-5Ce alloy. 2021 , 822, 141654		4
136	Enhancement of Mechanical Properties of Pure Aluminium through Contactless Melt Sonicating Treatment. <i>Materials</i> , 2021 , 14,	3.5	2
135	Effects of Grain Refiners and Cooling Rates on the Microstructure and Tensile Properties of A357Alloy. 1		1
134	Effect of Adding Rare-Earth and Alkaline-Earth Metals to Aluminum-Based Master Alloys on the Structure and Properties of Hypoeutectic Silumines. 1		1
133	Optimising compression testing for strain uniformity to facilitate microstructural assessment during recrystallisation. 2021 , 11, 100218		1
132	Effects of Cooling Rate on Particle Size, Morphology, and Refining Effect of In-Situ NdB6-Al11Nd3/Al Inoculants. 1		
131	Achieving ultra-high hardness of Mg-Sm-Ca alloy with the unique nanostructure. 2021 , 825, 141929		3
130	Revealing the mechanism of grain refinement and anti Si-poisoning induced by (Nb, Ti)B2 with a sandwich-like structure. 2021 , 219, 117265		1
129	A review of Laser Powder Bed Fusion Additive Manufacturing of aluminium alloys: Microstructure and properties. 2021 , 46, 102155		14
128	The effect of hydrogen on the grain refinement and mechanisms for Ti6Al4V alloys during laser melting deposition. <i>Journal of Alloys and Compounds</i> , 2021 , 877, 160122	5.7	2
127	A grain refinement mechanism of cast commercial purity aluminium by vanadium. <i>Materials Characterization</i> , 2021 , 181, 111468	3.9	O
126	Alloy design strategy for microstructural-tailored scandium-modified aluminium alloys for additive manufacturing. 2022 , 207, 114277		8
125	Numerical simulations of solidification microstructure evolution process for commercial-purity aluminum alloys inoculated by Al-Ti-B refiner. 2021 , 70, 086402-086402		
124	Effect of Ultrasonic Melt Treatment on the Sump Profile and Microstructure of a Direct-Chill Cast AA6008 Aluminum Alloy. 2021 , 894-899		
123	Effects of AlBB Grain Refiner on the Structure, Hardness and Tensile Properties of a New Developed Super High Strength Aluminum Alloy. 309-320		3
122	Effects of Al-5Ti-1B Grain Refiner on the Structure, Hardness and Tensile Properties of a New Developed Super High Strength Aluminum Alloy. 833-842		3
121	Effect of Predeformation and Heat Treatment Conditions in the Modified SIMA Process on Microstructural of a New Developed Super High-Strength Aluminium Alloy Modified by Al-8B Grain Refiner. 843-853		3

120	Melt Conditioned DC (MC-DC) Casting of Magnesium Alloys. 155-160	1
119	Role of Solute and Transition Metals in Grain Refinement of Aluminum Alloys under Ultrasonic Melt Treatment. 1389-1394	2
118	Melt Flow and Grain Refinement in Al-Si Alloys Solidified Under the Influence of Applied Electric Currents. 33-38	2
117	Grain Refinement of Al-Si Hypoeutectic Alloys by Al3Ti1B Master Alloy and Ultrasonic Treatment. 2016 , 143-150	2
116	Effect of Duration on Ti Grain Refinement of A356 and Melt Quality. 2016, 203-208	1
115	Grain Refinement Mechanism of Aluminum by Al-Ti-B Master Alloys. 2016 , 189-193	3
114	Role of Solute and Transition Metals in Grain Refinement of Aluminum Alloys under Ultrasonic Melt Treatment. 2012 , 1389-1394	1
113	Wear behaviors of pure aluminum and extruded aluminum alloy (AA2024-T4) under variable vertical loads and linear speeds. <i>Metals and Materials International</i> , 2017 , 23, 1097-1105	9
112	First-Principles study on the nucleation of precipitates in ternary Al alloys doped with Sc, Li, Zr, and Ti elements. 2020 , 526, 146455	8
111	Unveiling the influence of interfacial bonding and dynamics on solid/liquid interfacial structures: An ab initio molecular dynamics study of (0001) sapphire-liquid Al interfaces. 2020 , 4,	7
110	Weld Metal Grain Refinement of Aluminium Alloy 5083 through Controlled Additions of Ti and B. 2011 , 53, 604-609	5
109	The combined effect of titanic carbide and aluminum phosphide on the refinement of primary silicon in Al-50Si alloy. <i>International Journal of Materials Research</i> , 2008 , 99, 1379-1383	1
108	Description of hypoeutectic Al-Si-Cu alloys based on their known chemical compositions. 2013 , 49, 340-350	4
107	Preparation of Al-5Ti Master Alloys for the In-Situ Processing of Al-TiC Metal Matrix Composites. 2009 , 08, 563-568	5
106	Investigation on Microstructure and Grain Refining Performance of a New Type of Al-3Ti-1C Master Alloy. 2014 , 04, 49-55	4
105	Effect of Ti, B, Zr Elements on Grain Refinement and Castability of Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe Casting Alloy. 2015 , 35, 120-127	1
104	An Investigation on the Microstructure and Mechanical Properties of Al-Zn-Mg-Cu/Ti Composite Produced by Compocasting. 1	4
103	Nucleation bursts of primary intermetallic crystals in a liquid Al alloy studied using in situ synchrotron X-ray radiography. 2021 , 221, 117389	1

102	Nucleation Catalysis Potency of Ceramic Nanoparticles in Aluminum Matrix Nanocomposites. 737-744	
101	The Effects of Al-5Ti-1B Grain Refiner and Heat Treatment on the Microstructure and Dry Sliding Wear Behavior of a New Developed Super High-Strength Aluminum Alloy. 855-865	
100	Melt Conditioned DC (MC-DC) Casting of Magnesium Alloys. 2012 , 155-160	
99	Real-Time Imaging of the Grain Refinement Process of Aluminum Alloys Inoculated by Al-5Ti-B Under Synchrotron Radiation X-Ray. 2013 , 2599-2605	
98	Discovering Heterogeneous Evolving Web Service Communities Using Semi-Supervised Non Negative Matrix Factorization. 2013 , 201-205	
97	Production of AlliB Grain Refining Master Alloys from B2O3 and K2TiF6 by Microwave Irradiation. 1013-1016	
96	Using of Thermal Analysis in the Industrial Practice - Consumption Reduction of Grain-Refinement Master Alloy and Optimization of Computer Simulation Results. 2013 , 13, 39-43	2
95	On the Mechanism of Grain Refinement by Ultrasonic Melt Treatment in the Presence of Transition Metals. 415-419	1
94	A Comparison of the Effects of Al-Ti-B Type Grain Refiners from Different Makers on Pure Aluminum. 2014 , 945-949	
93	Effect of In-Situ Titanium Boride Particle Addition and Friction Stir Processing on Wear Behavior of Aluminum Alloy 2219. 2015 , 81-91	
92	Melt Flow and Grain Refinement in Al-Si Alloys Solidified under the Influence of Applied Electric Currents. 2015 , 33-38	
91	On the Mechanism of Grain Refinement by Ultrasonic Melt Treatment in the Presence of Transition Metals. 2016 , 415-419	1
90	Cast Aluminum-Silicon AlloyPhase Constituents and Microstructure. 2016, 1-33	
89	Production of Al-Ti-B Grain Refining Master Alloys from B2O3 and K2TiF6 by Microwave Irradiation. 2016 , 1013-1016	
88	Mechanism of Zirconium Poisoning Effect on TiB2 Inoculation in Aluminium Alloys. 2016 , 725-729	
87	Effect of Ultrasonic Processing on a Direct Chill Cast AA6082 Aluminium Alloy. 2017 , 997-1003	2
86	Effect of AlErar Master Alloy on Grain Refinement After Heat Treatment. 2019, 231-240	
85	KUM KALIBA D K IIEN FARKLI AL MN YUM ALA I MLARININ D KMN DE Al5Ti1B VE Al10SR IIAVESNN MKROYAPI IZELLKLERE ETKSNN NCELENMESII 2019 , 7, 237-244	2

84	Possibility of As-Cast Applications on EType Titanium Alloys Proposed in the Newly Expanded Area of Bot-Mdt Diagram. 2020 , 61, 740-749		2
83	Hereditary Effect of the Structure of the Charge on Density, Gas Content, and Processes of Solidification of an AlBitu Alloy System. 2020 , 61, 265-270		
82	Hereditary effect of the charge structure on Al-Si-Cu alloy density, gas content and solidification processes. 2020 , 14-21		
81	Grain Refinement of Casting Aluminum Alloys of the AlMgBi System by Processing the Liquid Phase Using Nanosecond Electromagnetic Pulses. 2021 , 62, 522-530		1
80	Sc katk∰Al-5Cu ala∰hlar∰ mikro yap∰r∰ ve mekanik Øelliklerinin incelenmesi.		O
79	Crystal growth control of Ni-based alloys by modulation of the melt pool morphology in DED. <i>Journal of Alloys and Compounds</i> , 2021 , 162976	5.7	1
78	Effect of Grain Refiner on Microstructural Feature Influence Hardness and Tensile Properties of Al-7Si Alloy. 1		1
77	Requirements for Processing High-Strength AlZnMgCu Alloys with PBF-LB/M to Achieve Crack-Free and Dense Parts. <i>Materials</i> , 2021 , 14,	3.5	2
76	On the solidification behaviors of AlCu5MnCdVA alloy in electron beam freeform fabrication: microstructural evolution, Cu segregation and cracking resistance. 2022 , 51, 102606		O
75	Prediction of grain-size transition during solidification of hypoeutectic Al-Si alloys by an improved three-dimensional sharp-interface model. 2022 , 203, 111131		1
74	Comparative Analysis of Structure and Properties of Nb-B Inoculated Direct Chill Cast AA4032 Alloy Extruded from As-Cast and Homogenized Conditions. 2022 , 74, 1218		
73	Influence of Si, Cu, B, and Trace Alloying Elements on the Conductivity of the Al-Si-Cu Alloy <i>Materials</i> , 2022 , 15,	3.5	
72	Effect of Warm Rolling on the Grain-Refining Performance of Al-5Ti-1B Grain Refiner in Al. 2022 , 74, 12	10	1
71	Hot tensile deformation behaviour and microstructure evolution of Al3La phase reinforced Mg-5Li-3Al-2Zn alloy formed in-situ by La2O3 particle. <i>Materials Characterization</i> , 2022 , 185, 111772	3.9	O
70	Effects of Zr additions on structure and tensile properties of an Al-4.5Cu-0.3Mg-0.05Ti (wt.%) alloy. 2022 , 19, 9		0
69	Dry sliding wear characteristics, corrosion behavior, and hot deformation properties of eutectic AlBi piston alloy containing Ni-rich intermetallic compounds. 2022 , 279, 125758		1
68	Effect of Flow Management on Ultrasonic Melt Processing in a Launder upon DC Casting. 2022 , 649-654	1	1
67	X-ray Imaging of Alloy Solidification: Crystal Formation, Growth, Instability and Defects <i>Materials</i> , 2022 , 15,	3.5	O

66 Al/Nb2B In-Situ Kompozit Betimi ve Belliklerinin Beelenmesi. 891-900

65	Refinement of Microstructure of JIS A7204 and A6022 Aluminum Alloys Solidified by Electromagnetic Vibration Technique. 2022 ,		О
64	Investigating Metal Solidification with X-ray Imaging. Metals, 2022, 12, 395	2.3	О
63	Structure Refinement and Homogenization of Zn-Cu Alloys Induced by a High-Voltage Pulsed Magnetic Field During the Solidification Process. 1		
62	Design of a in-situ crystallization inoculant of Alfau alloys by addition of lanthanum. 2022 , 18, 852-858		0
61	Effect of AlaTiaB grain refiner on microstructure and properties of arc-additive-manufactured Alang alloy. 2022 , 200, 111012		O
60	Selective laser melting of 7075 aluminum alloy inoculated by AlliB: Grain refinement and superior mechanical properties. 2022 , 200, 111030		3
59	Enhanced strength and ductility in Al-Zn-Mg-Cu alloys fabricated by laser powder bed fusion using a synergistic grain-refining strategy. <i>Journal of Materials Science and Technology</i> , 2022 , 124, 41-52	9.1	4
58	Efficient grain refinement of Al alloys induced by in-situ nanoparticles. <i>Journal of Materials Science and Technology</i> , 2022 , 124, 14-25	9.1	0
57	Linear-superelastic Ti-Nb nanocomposite alloys with ultralow modulus via high-throughput phase-field design and machine learning. <i>Npj Computational Materials</i> , 2021 , 7,	10.9	2
56	Criteria for developing castable, creep-resistant aluminum-based alloys 🖪 review. <i>International Journal of Materials Research</i> , 2022 , 97, 246-265	0.5	46
55	Effects of Zn Contents on Microstructure and Mechanical Properties of Semisolid Rheo-Diecasting Al-xZn-2Mg-1.5Cu Alloys <i>Materials</i> , 2022 , 15,	3.5	
54	Effect of Strain Induced Melt Activation Process on the Microstructure and Mechanical Properties of Al-5Ti-1B Treated Al-7Si Alloy. <i>Metals and Materials International</i> , 1	2.4	1
53	Effect of Addition of Grain Refiner and Modifier on Microstructural and Mechanical Properties of Squeeze Cast A356 Alloy. <i>Transactions of the Indian Institute of Metals</i> ,	1.2	1
52	Effect of novel grain refiner and Ni alloying additions on microstructure and mechanical properties of Al-Si9.8-Cu3.4 HPDC castings loptimization using Multi Criteria Decision making approach. <i>Materials Science-Poland</i> , 2022 , 40, 9-24	0.6	
51	Nucleation and growth of L12 Al3RE particles in aluminum alloys: A first-principles study. <i>Journal of Rare Earths</i> , 2022 ,	3.7	O
50	Determining Alloy Nucleation Core Origin and Grain Refinement Strategy Based on the Dependence Degree of Content Difference. <i>Metals</i> , 2022 , 12, 946	2.3	
49	Photo- and Magneto-Responsive Highly Graphitized Carbon Based Phase Change Composites for Energy Conversion and Storage. <i>Materials Today Nano</i> , 2022 , 100234	9.7	1

48	Reactive introduction of oxide nanoparticles in additively manufactured 718 Ni alloys with improved high temperature performance. <i>Journal of Alloys and Compounds</i> , 2022 , 165846	5.7	О
47	Influence of the 1% Ti content on microstructure, friction coefficient and contribution to the strengthening mechanisms in the Al20Sn1Cu alloy. <i>Results in Engineering</i> , 2022 , 100506	3.3	1
46	Investigation of Ti1-X(Zr,Ta,V,W)Xb2 and Al3ti1-X(Zr,V)X Grain Refiners for Aluminium Alloys in Pbf by a High Throughput Method for 0.1<X<0.9. <i>SSRN Electronic Journal</i> ,	1	
45	Insight into the Precipitation Behavior and Mechanical Properties of Sc-Zr Micro-Alloying Tib2/Al-4.5cu Composites. <i>SSRN Electronic Journal</i> ,	1	
44	Effects of B Addition on the Microstructure and Microhardness of Melt-Spun Al-7075 Alloy. <i>Advances in Materials Science</i> , 2022 , 22, 5-18	1.8	O
43	Dual beam laser fusion-brazed Ti6Al4V/AA7075 dissimilar lap joint: Crack inhibition via inoculation with TiC nanoparticles. <i>Materials Characterization</i> , 2022 , 112127	3.9	1
42	Dual-modification effect of Ca element on the hypereutectic Al-40 wt.% Cu alloy. <i>Journal of Alloys and Compounds</i> , 2022 , 166409	5.7	
41	Characterization of the Interfacial Structures of Core/Shell CdSe/ZnS QDs. 2022 , 13, 7220-7227		1
40	Effect of Sc on microstructure and properties of A357 alloy under different casting conditions. 2022 , 20, 2051-2059		
39	Enhanced printability and strength of unweldable AA2024-based nanocomposites fabricated by laser powder bed fusion via nano-TiC-induced grain refinement. 2022 , 856, 144010		1
38	Investigation of Ti1½(Zr,Ta,V,W)xB2 and Al3Ti1½(Zr,V)x grain refiners in additively manufactured Al-2½vt%Cu alloys by a high throughput method. 2022 , 222, 111093		0
37	Insight into the precipitation behavior and mechanical properties of Sc-Zr micro-alloying TiB2/Al-4.5Cu composites. 2022 , 929, 167209		О
36	Hereditary Influence of Deformed Waste on the Efficiency of Modification of Alloy Systems AlBiMg and AlMg. 2022 , 63, 400-408		O
35	Competition for Nucleation and Grain Initiation during Solidification. 2022 , 12, 1512		O
34	Manipulating Nucleation Potency of Substrates by Interfacial Segregation: An Overview. 2022 , 12, 1636	5	1
33	Effects of Process Parameters on Microstructure and Mechanical Properties of Semi-Solid Al-7Si-0.5Mg Aluminum Alloy by Gas Induced Semi-Solid Process. 2022 , 12, 1600		О
32	Grain Initiation and Grain Refinement: An Overview. 2022 , 12, 1728		1
31	Understanding Fe-Containing Intermetallic Compounds in Al Alloys: An Overview of Recent Advances from the LiME Research Hub. 2022 , 12, 1677		O

30	Investigations on work hardening behaviour and relative slip distance in GTA welded AA 6063 plates using AA 5356-TiB2 filler rod. 2022 , 194, 112379	0
29	Break through the strength-ductility trade-off dilemma in aluminum matrix composites via precipitation-assisted interface tailoring. 2023 , 242, 118470	3
28	High strength Al-Cu-Mg based alloy with synchronous improved tensile properties and hot-cracking resistance suitable for laser powder bed fusion. 2022 ,	0
27	Efficiency of different commercial TiBAl grain refiners on refinement of pure aluminum cast structures. 2022 , 370, 04003	O
26	Solute Effect on Grain Refinement of Al- and Mg-Alloys: An Overview of the Recent Advances Made by the LiME Research Hub. 2022 , 12, 1488	Ο
25	Effects of TiB2 reinforcement proportion on structure and properties of stir cast A713 composites. 1-12	Ο
24	Effects of In Situ TiB2 Particles and (Ce + Yb) on the Microstructure and Mechanical Properties of AlBi Matrix Composites.	Ο
23	The influence of the modifying elements on the microstructure, mechanical, and deformation properties of aluminum alloys. 9,	O
22	Grain refinement in semi-solid metal processing: current status and recent development.	О
21	A review: Suppression of the solidification cracks in the laser welding process by controlling the grain structure and chemical compositions. 2023 , 100139	O
20	Grain refinement of A517 steel by inoculation with AlBTiB master alloy. 2023, 296, 127320	О
19	High-temperature in-situ synthesis and formation mechanism of VB2 substrates in Al-V-B grain refiner. 2023 , 34, 105281	O
18	Modification of AlMgBi casting aluminum alloys by liquid phase processing with nanosecond electromagnetic pulses. 2021 , 32-41	0
17	Hereditary influence of deformed waste on the efficiency of Alßißg and Alßg alloy modification. 2022 , 38-46	Ο
16	Achieving Improved/Reversed Tension ${\tt Compression}$ Asymmetry by Tailoring Extrusion Processing for MgBn(${\tt M}$) Alloy.	Ο
15	Selective Laser Melting of Commercially Pure Silicon. 2022 , 37, 1155-1165	1
14	Nanoscale ceramic reinforced Al-based nanocomposites by laser additive manufacturing. 2023, 37-70	0
13	Microstructure Evolution and Localized Corrosion Susceptibility of an Al-Zn-Mg-Cu-Zr 7xxx Alloy with Minor Cr Addition. 2023 , 16, 946	Ο

12	Recent Studies Using HR-TEM on the Fundamental Mechanism of Nucleation of a-Aluminum on TiB2 in TiB D High-Efficiency Grain Refiners. 2023 , 967-973	О
11	Effect of rare earth on morphology and dispersion of TiB2 phase in Al-Ti-B alloy refiner.	1
10	Growth of carbon nanotubes over carbon nanofibers catalyzed by bimetallic alloy nanoparticles as a bifunctional electrode for ZnBir batteries. 2023 , 13, 11591-11599	О
9	Toz Metalurjisi Yfitemi ile Tane ficeltici fetimi ve DRfh Performansfifi ficelenmesi. 2023 , 15, 151-163	O
8	Investigation of aluminium alloys to enhance their mechanical properties. 2023,	О
7	Effects of individual and combined additions of transition elements (Zr, Ti and V) on the microstructure stability and elevated-temperature properties of Alū 224 cast alloys. 2023 , 867, 144718	O
6	The Role of Ti and B Additions in Grain Refinement of AlMn Alloy During Laser Additive Manufacturing. 2023 , 493-499	О
5	AlMgTiB Alathਜ਼ਜ਼ Yapsal, Issal ve Mekanik ଅelliklerinin Ecelenmesi. 572-581	O
4	The motion and growth behaviors of nucleuses in Al melt solidified under supergravity condition holecular dynamics simulation. 2023 , 10, 036510	0
3	Synergistic Effect of RE (La, Er, Y, Ce) and Al-5Ti-B on the Microstructure and Mechanical Properties of 6111Aluminum Alloy. 2023 , 13, 606	O
2	Grain Refinement of Aluminum and Aluminum Alloys by Sc and Zr. 2023 , 13, 751	O
1	Segregation of Alkaline Earth Atoms Affects Prenucleation at L-Al/EAlumina Interfaces. 2023, 13, 761	O