Cholesterol Modulates Interaction between an Amphipa and Phosphatidylcholine Bilayersâ€

Biochemistry 41, 4165-4172 DOI: 10.1021/bi011885+

Citation Report

#	Article	IF	CITATIONS
1	Effect of cholesterol on bilayer location of the class A peptide Ac-18A-NH 2 as revealed by fluorescence resonance energy transfer. European Biophysics Journal, 2003, 32, 703-709.	1.2	12
2	Evidence for Interpenetration of Core Triglycerides into Surface Phospholipid Monolayers in Lipid Emulsions. Langmuir, 2003, 19, 5192-5196.	1.6	18
3	Effects of plasma apolipoproteins on lipoprotein lipase-mediated lipolysis of small and large lipid emulsions. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2003, 1632, 31-39.	1.2	26
4	An Apolipoprotein Al Mimetic Peptide:  Membrane Interactions and the Role of Cholesterol,. Biochemistry, 2004, 43, 5073-5083.	1.2	48
5	Real-time measurement of solute partitioning to lipid monolayers. Analytical Biochemistry, 2005, 346, 139-149.	1.1	5
6	Effects of the Core Lipid on the Energetics of Binding of ApoA-I to Model Lipoprotein Particles of Different Sizesâ€. Biochemistry, 2005, 44, 10689-10695.	1.2	13
7	ROLES OF BILAYER MATERIAL PROPERTIES IN FUNCTION AND DISTRIBUTION OF MEMBRANE PROTEINS. Annual Review of Biophysics and Biomolecular Structure, 2006, 35, 177-198.	18.3	213
8	Membrane Interactions of Cell-Penetrating Peptides Probed by Tryptophan Fluorescence and Dichroism Techniques:  Correlations of Structure to Cellular Uptake. Biochemistry, 2006, 45, 7682-7692.	1.2	97
9	Detection of Peptideâ^'Phospholipid Interaction Sites in Bilayer Membranes by13C NMR Spectroscopy:Â Observation of2H/31P-Selective1H-Depolarization under Magic-Angle Spinning. Journal of the American Chemical Society, 2006, 128, 10654-10655.	6.6	18
10	Apolipoprotein A-I-mimetic peptides with antioxidant actions. Archives of Biochemistry and Biophysics, 2006, 451, 34-42.	1.4	13
11	Investigation of interaction of Leu-enkephalin with lipid membranes. Colloids and Surfaces B: Biointerfaces, 2006, 48, 148-158.	2.5	16
12	Functional Links between the Fusion Peptide-proximal Polar Segment and Membrane-proximal Region of Human Immunodeficiency Virus gp41 in Distinct Phases of Membrane Fusion*. Journal of Biological Chemistry, 2007, 282, 23104-23116.	1.6	73
14	Effect of Lipid Composition on the Topography of Membrane-Associated Hydrophobic Helices: Stabilization of Transmembrane Topography by Anionic Lipids. Journal of Molecular Biology, 2008, 379, 704-718.	2.0	27
15	Effect of cholesterol on the interaction of the amphibian antimicrobial peptide DD K with liposomes. Peptides, 2008, 29, 15-24.	1.2	45
16	Conformational Flexibility of the N-Terminal Domain of Apolipoprotein A-I Bound to Spherical Lipid Particles. Biochemistry, 2008, 47, 11340-11347.	1.2	47
17	Role of Amphipathic Helix of a Herpesviral Protein in Membrane Deformation and T Cell Receptor Downregulation. PLoS Pathogens, 2008, 4, e1000209.	2.1	24
18	Evaluation of lipidâ€binding properties of the Nâ€terminal helical segments in human apolipoprotein Aâ€l using fragment peptides. Journal of Peptide Science, 2009, 15, 36-42.	0.8	14
19	Influenza Virus M2 Ion Channel Protein Is Necessary for Filamentous Virion Formation. Journal of Virology, 2010, 84, 5078-5088.	1.5	161

CITATION REPORT

#	Article	IF	CITATIONS
20	Effects of cholesterol on thermal stability of discoidal high density lipoproteins. Journal of Lipid Research, 2010, 51, 324-333.	2.0	12
21	Influenza Virus M2 Protein Mediates ESCRT-Independent Membrane Scission. Cell, 2010, 142, 902-913.	13.5	440
22	Selective toxicity of antimicrobial peptide S-thanatin on bacteria. Peptides, 2010, 31, 1669-1673.	1.2	30
23	Membrane integration of a mitochondrial signal-anchored protein does not require additional proteinaceous factors. Biochemical Journal, 2012, 442, 381-389.	1.7	23
24	Effect of Cholesterol on Binding of Amphipathic Helices to Lipid Emulsions. Journal of Physical Chemistry B, 2012, 116, 476-482.	1.2	6
25	Comparative study on the interaction of cell-penetrating polycationic polymers with lipid membranes. Chemistry and Physics of Lipids, 2012, 165, 51-58.	1.5	37
26	Uptake of Sevoflurane Limited by the Presence of Cholesterol in the Lipid Bilayer Membrane: A Multinuclear Nuclear Magnetic Resonance Study. Journal of Oleo Science, 2014, 63, 1149-1157.	0.6	5
27	Metabolism and Modification of Apolipoprotein B-Containing Lipoproteins Involved in Dyslipidemia and Atherosclerosis. Biological and Pharmaceutical Bulletin, 2016, 39, 1-24.	0.6	122
28	Hepatitis C virus p7 mediates membrane-to-membrane adhesion. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1096-1101.	1.2	4
29	Effect of Phosphatidylserine and Cholesterol on Membrane-mediated Fibril Formation by the N-terminal Amyloidogenic Fragment of Apolipoprotein A-I. Scientific Reports, 2018, 8, 5497.	1.6	9
30	Biophysical characterization of peptide–membrane interactions. Advances in Physics: X, 2018, 3, 1408428.	1.5	7
31	Cholesterol and phosphatidylethanolamine lipids exert opposite effects on membrane modulations caused by the M2 amphipathic helix. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 201-209.	1.4	15
32	Effect of tetracaine on dynamic reorganization of lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183351.	1.4	8
33	The Effect of Cholesterol on Membrane Binding and Self-Assembly of Collagen Fibrils. Langmuir, 2020, 36, 7259-7267.	1.6	4
34	Cholesterol Alters the Orientation and Activity of the Influenza Virus M2 Amphipathic Helix in the Membrane. Journal of Physical Chemistry B, 2020, 124, 6738-6747.	1.2	22
35	A Photo-Activatable Peptide Mimicking Functions of Apolipoprotein A-I. Biological and Pharmaceutical Bulletin, 2019, 42, 1019-1024.	0.6	5
36	Propranolol induces large-scale remodeling of lipid bilayers: tubules, patches, and holes. RSC Advances, 2023, 13, 7719-7730.	1.7	1