Effects of the temperature, humidity, and stress on the fiber polymer-matrix composites, studied by contact el

Journal of Adhesion 78, 189-200 DOI: 10.1080/00218460210384

Citation Report

#	Article	IF	CITATIONS
1	The interlaminar interface of a carbon fiber polymer-matrix composite as a resistance heating element. Composites Part A: Applied Science and Manufacturing, 2003, 34, 933-940.	3.8	44
2	Self-sensing of Damage and Strain in Carbon Fiber Polymer-Matrix Structural Composites by Electrical Resistance Measurement. Polymers and Polymer Composites, 2003, 11, 515-525.	1.0	37
3	Induction welding of thermoplastic composites—an overview. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1638-1651.	3.8	178
4	Through-thickness stress sensing of a carbon fiber polymer–matrix composite by electrical resistance measurement. Smart Materials and Structures, 2007, 16, 1320-1330.	1.8	29
5	Environmental degradation of carbon nanotube-modified composite laminates: a study of electrical resistivity. Mechanics of Composite Materials, 2009, 45, 21-32.	0.9	38
6	Carbon Nanotube Enhanced Aerospace Composite Materials. Solid Mechanics and Its Applications, 2013, , .	0.1	12
7	Environmental Degradation of Carbon Nanotube Hybrid Aerospace Composites. Solid Mechanics and Its Applications, 2013, , 337-376.	0.1	2
8	Current injection phase thermography for low-velocity impact damage identification in composite laminates. Materials & Design, 2014, 55, 429-441.	5.1	40
9	Effect of CNT modified matrix of epoxy CFRPs on hydrothermal behaviour of material. Evaluation of water uptake using electrical resistance measurements. Plastics, Rubber and Composites, 2014, 43, 122-129.	0.9	4
10	Nano-enhanced composite materials under thermal shock and environmental degradation: A durability study. Composites Part B: Engineering, 2015, 70, 206-214.	5.9	36
11	Remote strain sensing of CFRP using microwave frequency domain reflectometry. , 2016, , .		3
12	The Effect of <scp>CNT</scp> â€modified matrix of cyanate ester <scp>CFRP</scp> s on the hydrothermal behavior of the material. Evaluation of the water uptake using electrical resistance measurements. Polymer Composites, 2016, 37, 1072-1077.	2.3	0
13	Monitoring Moisture Damage Propagation in GFRP Composites Using Carbon Nanoparticles. Polymers, 2017, 9, 94.	2.0	23
14	Interlaminar contact resistivity and its influence on eddy currents in carbon fiber reinforced polymer laminates. NDT and E International, 2018, 94, 79-91.	1.7	37
15	A review of the research and advances in electromagnetic joining of fiberâ€reinforced thermoplastic composites. Polymer Engineering and Science, 2019, 59, 1965-1985.	1.5	28
16	Cyclic Olefin Copolymer Interleaves for Thermally Mendable Carbon/Epoxy Laminates. Molecules, 2020, 25, 5347.	1.7	10
17	A critical review of piezoresistivity and its application in electrical-resistance-based strain sensing. Journal of Materials Science, 2020, 55, 15367-15396.	1.7	97
18	Reinforcing carbon fibers as sensors: The effect of temperature and humidity. Composites Part A: Applied Science and Manufacturing, 2020, 131, 105819.	3.8	33

#	Article	IF	CITATIONS
19	Self-Sensing Materials. , 2021, , .		0
20	Thermal Mending of Electroactive Carbon/Epoxy Laminates Using a Porous Poly(ε-caprolactone) Electrospun Mesh. Polymers, 2021, 13, 2723.	2.0	6
21	Intrinsically smart structural composites. Engineering Materials and Processes, 2003, , 253-284.	0.2	0
22	Influence of polymer matrix on the induction heating behavior of CFRPC laminates. Composites Part B: Engineering, 2022, 231, 109561.	5.9	9