Real-Time Observation of Photoinduced Adiabatic Elect Dye/Semiconductor Colloidal Systems with a 6 fs Time

Journal of Physical Chemistry B 106, 6494-6499 DOI: 10.1021/jp0155819

Citation Report

#	Article	IF	CITATIONS
1	Thermal effects in the ultrafast photoinduced electron transfer from a molecular donor anchored to a semiconductor acceptor. Israel Journal of Chemistry, 2002, 42, 213-224.	1.0	45
2	Organisation and Reactivity of Nanoparticles at Molecular Interfaces. Part II. Dye Sensitisation of TiO2 Nanoparticles Assembled at the Water 1,2-Dichloroethane Interface. ChemPhysChem, 2003, 4, 85-89.	1.0	22
3	Excited-State Metal-to-Ligand Charge Transfer Dynamics of a Ruthenium(II) Dye in Solution and Adsorbed on TiO2 Nanoparticles from Resonance Raman Spectroscopy. Journal of the American Chemical Society, 2003, 125, 15636-15646.	6.6	95
4	Bridge-Assisted Ultrafast Interfacial Electron Transfer to Nanocrystalline SnO2Thin Films. Journal of Physical Chemistry B, 2003, 107, 14231-14239.	1.2	79
5	Photoinduced Electron Transfer at Liquid Liquid Interfaces:  Dynamics of the Heterogeneous Photoreduction of Quinones by Self-Assembled Porphyrin Ion Pairs. Journal of the American Chemical Society, 2003, 125, 4862-4869.	6.6	43
6	Femtosecond Spectroscopy of Heterogeneous Electron Transfer:Â Extraction of Excited-State Population Dynamics from Pumpâ^'Probe Signals. Journal of Physical Chemistry B, 2003, 107, 607-611.	1.2	79
7	Ultrafast Stepwise Electron Injection from Photoexcited Ru-Complex into Nanocrystalline ZnO Film via Intermediates at the Surface. Journal of Physical Chemistry B, 2003, 107, 4162-4166.	1.2	99
8	Quantum Dynamics Simulations of Interfacial Electron Transfer in Sensitized TiO2Semiconductors. Journal of the American Chemical Society, 2003, 125, 7989-7997.	6.6	368
9	Femtosecond Dynamics of Interfacial and Intermolecular Electron Transfer at Eosin-Sensitized Metal Oxide Nanoparticles. Journal of Physical Chemistry B, 2003, 107, 3215-3224.	1.2	98
10	Beyond vibrationally mediated electron transfer: coherent phenomena in a sub-10-femtosecond reaction regime. , 0, , .		0
11	Excited-state charge transfer dynamics in systems of aromatic adsorbates on TiO2 studied with resonant core techniques. Journal of Chemical Physics, 2003, 119, 12462-12472.	1.2	48
12	<title>Beyond vibrationally mediated electron transfer: interfacial charge injection on a sub-10-fs
time scale</title> . , 2003, 5223, 121.		3
13	Laser pulse control of ultrafast heterogeneous electron transfer: A computational study. Journal of Chemical Physics, 2004, 121, 8039.	1.2	35
14	Thermally Assisted Sub-10 fs Electron Transfer in Dye-Sensitized Nanocrystalline TiO2 Solar Cells. Advanced Materials, 2004, 16, 240-244.	11.1	93
15	Kinetics and mechanism of electron injection and charge recombination in dye-sensitized nanocrystalline semiconductors. Coordination Chemistry Reviews, 2004, 248, 1195-1213.	9.5	171
16	Ultrafast electron injection from metal polypyridyl complexes to metal-oxide nanocrystalline thin films. Coordination Chemistry Reviews, 2004, 248, 1231-1246.	9.5	125
17	Theoretical study of ultrafast heterogeneous electron transfer reactions at dye–semiconductor interfaces. Chemical Physics, 2004, 304, 169-181.	0.9	79
18	Picosecond Relaxation of3MLCT Excited States of [Re(Etpy)(CO)3(dmb)]+and [Re(Cl)(CO)3(bpy)] as Revealed by Time-Resolved Resonance Raman, UVâ^'vis, and IR Absorption Spectroscopy. Journal of Physical Chemistry A 2004 108 2363-2369	1.1	94

#	Article	IF	CITATIONS
19	Slow Back Electron Transfer in Surface-Modified TiO2 Nanoparticles Sensitized by Alizarin. Journal of Physical Chemistry B, 2004, 108, 1701-1707.	1.2	85
20	Ultrafast Direct and Indirect Electron-Injection Processes in a Photoexcited Dye-Sensitized Nanocrystalline Zinc Oxide Film:Â The Importance of Exciplex Intermediates at the Surface. Journal of Physical Chemistry B, 2004, 108, 12583-12592.	1.2	121
21	Dynamics of Interfacial Electron Transfer from Photoexcited Quinizarin (Qz) into the Conduction Band of TiO2and Surface States of ZrO2Nanoparticles. Journal of Physical Chemistry B, 2004, 108, 4775-4783.	1.2	95
22	50-fs Photoinduced Intramolecular Charge Separation in Triphenylmethane Lactones. Journal of Physical Chemistry A, 2004, 108, 10763-10769.	1.1	25
23	Heterogeneous Photocatalytic Reduction of Chromium(VI) over TiO2Particles in the Presence of Oxalate:Â Involvement of Cr(V) Species. Environmental Science & Technology, 2004, 38, 1589-1594.	4.6	329
24	Ultrafast Conformational Dynamics in Cyclic Azobenzene Peptides of Increased Flexibility. Biophysical Journal, 2004, 86, 2350-2362.	0.2	79
25	Ultrafast interfacial electron transfer in dye-sensitized ZnO nanocrystalline films: comparison with other metal oxides (Invited Paper). , 2005, , .		0
26	Density functional study of the TiO2–dopamine complex. Chemical Physics Letters, 2005, 406, 306-311.	1.2	67
27	ULTRAFAST ELECTRON TRANSFER AT THE MOLECULE-SEMICONDUCTOR NANOPARTICLE INTERFACE. Annual Review of Physical Chemistry, 2005, 56, 491-519.	4.8	465
28	Surface Femtochemistry: Photocatalytic Reaction Dynamics of Methanol / TiO2(110). Springer Series in Chemical Physics, 2005, , 416-418.	0.2	0
29	Electron Transfer Dynamics from Organic Adsorbate to a Semiconductor Surface:  Zinc Phthalocyanine on TiO2(110). Journal of Physical Chemistry B, 2005, 109, 18018-18024.	1.2	33
30	Lithium Ion Effect on Electron Injection from a Photoexcited Coumarin Derivative into a TiO2 Nanocrystalline Film Investigated by Visible-to-IR Ultrafast Spectroscopy. Journal of Physical Chemistry B, 2005, 109, 16406-16414.	1.2	109
31	Rationale for Kinetic Heterogeneity of Ultrafast Light-Induced Electron Transfer from Ru(II) Complex Sensitizers to Nanocrystalline TiO2. Journal of the American Chemical Society, 2005, 127, 12150-12151.	6.6	213
32	Probing Inhomogeneous Vibrational Reorganization Energy Barriers of Interfacial Electron Transfer. Journal of Physical Chemistry B, 2005, 109, 16390-16395.	1.2	29
33	Calculated Structural and Electronic Interactions of the Ruthenium Dye N3 with a Titanium Dioxide Nanocrystal. Journal of Physical Chemistry B, 2005, 109, 11918-11924.	1.2	181
34	Nonadiabatic Molecular Dynamics Study of Electron Transfer from Alizarin to the Hydrated Ti4+ Ion. Journal of Physical Chemistry B, 2005, 109, 17998-18002.	1.2	48
35	Trajectory Surface Hopping in the Time-Dependent Kohn-Sham Approach for Electron-Nuclear Dynamics. Physical Review Letters, 2005, 95, 163001.	2.9	611
36	Influence of Thermal Fluctuations on Interfacial Electron Transfer in Functionalized TiO2 Semiconductors. Journal of the American Chemical Society, 2005, 127, 18234-18242.	6.6	196

#	Article	IF	CITATIONS
37	Electronic Structure and Spectra of Catechol and Alizarin in the Gas Phase and Attached to Titanium. Journal of Physical Chemistry B, 2005, 109, 365-373.	1.2	188
38	AbInitioNonadiabatic Molecular Dynamics of the Ultrafast Electron Injection across the Alizarinâ ^{~2} TiO2Interface. Journal of the American Chemical Society, 2005, 127, 7941-7951.	6.6	261
39	N4-Macrocyclic Metal Complexes. , 2006, , .		131
40	Femtosecond Fluorescence Dynamics of Porphyrin in Solution and Solid Films:Â The Effects of Aggregation and Interfacial Electron Transfer between Porphyrin and TiO2. Journal of Physical Chemistry B, 2006, 110, 410-419.	1.2	95
41	Escape dynamics of photoexcited electrons at catechol:TiO2(110). Physical Review B, 2006, 74, .	1.1	68
42	Solvated Electrons on Metal Oxide Surfaces. Chemical Reviews, 2006, 106, 4402-4427.	23.0	133
43	Quantum Chemical Calculations of the Influence of Anchor-Cum-Spacer Groups on Femtosecond Electron Transfer Times in Dye-Sensitized Semiconductor Nanocrystals. Journal of Chemical Theory and Computation, 2006, 2, 441-451.	2.3	249
44	Control of Electron Transfer Pathways in a Dye-Sensitized Solar Cell. Physical Review Letters, 2006, 97, 208301.	2.9	34
45	Theoretical Study of Ultrafast Heterogeneous Electron Transfer Reactions at Dyeâ^'Semiconductor Interfaces: Coumarin 343 at Titanium Oxideâ€. Journal of Physical Chemistry A, 2006, 110, 1364-1374.	1.1	80
46	Observation of pH-Dependent Back-Electron-Transfer Dynamics in Alizarin/TiO2Adsorbates:Â Importance of Trap States. Journal of Physical Chemistry B, 2006, 110, 8372-8379.	1.2	47
47	Inhomogeneity of Electron Injection Rates in Dye-Sensitized TiO2: Comparison of the Mesoporous Film and Single Nanoparticle Behaviorâ€. Journal of Physical Chemistry B, 2006, 110, 25314-25321.	1.2	31
48	Role of Molecular Anchor Groups in Molecule-to-Semiconductor Electron Transferâ€. Journal of Physical Chemistry B, 2006, 110, 25383-25391.	1.2	102
49	Femtosecond Pump: Supercontinuum Probe for Applications in Semiconductors, Biology, and Chemistry. , 2006, , 505-509.		0
50	pH-Dependent Reversible Switching of Fluorescence of Water-Soluble Porphyrin Adsorbed on Mesoporous TiO2Film. Bulletin of the Chemical Society of Japan, 2006, 79, 561-568.	2.0	11
51	Inhomogeneity of electron injection rates in dye-sensitized TiO 2 : continuous mesoporous films and single particle behavior. , 2006, , .		0
52	Ultrafast proton-coupled electron transfer in heterogenous photocatalysis. , 2006, , .		0
53	Electron donor-acceptor distance dependence of the dynamics of light-induced interfacial charge transfer in the dye-sensitization of nanocrystalline oxide semiconductors. , 2006, , .		3
54	Computational study of titanium (IV) complexes with organic chromophores. International Journal of Quantum Chemistry, 2006, 106, 1291-1303.	1.0	47

#	Article	IF	CITATIONS
55	Femtosecond fluorescence dynamics of zinc biphenylporphine in nanocrystalline TiO2 films: Evidence for interfacial electron transfer through space. Chemical Physics Letters, 2006, 432, 452-456.	1.2	10
56	Near-IR transient absorption study on ultrafast electron-injection dynamics from a Ru-complex dye into nanocrystalline In2O3 thin films: Comparison with SnO2, ZnO, and TiO2 films. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 182, 273-279.	2.0	39
57	Force field parameters for large-scale computational modeling of sensitized TiO 2 surfaces. , 2006, , .		0
58	Coherent control of tunnelling dynamics in functionalized semiconductor nanostructures: a quantum-control scenario based on stochastic unitary pulses. Journal of Modern Optics, 2006, 53, 2519-2532.	0.6	13
59	Primary photoexcitations and their interconversion in oligophenylenevinylene nanocrystals: Role of excess energy studied with sub-30femtosecondresolution. Physical Review B, 2006, 73, .	1.1	9
60	Theory of ultrafast photoinduced heterogeneous electron transfer. Molecular Simulation, 2006, 32, 765-781.	0.9	12
61	Correlated electron-nuclear dynamics in ultrafast photoinduced electron-transfer reactions at dye-semiconductor interfaces. Physical Review B, 2007, 76, .	1.1	40
62	Theoretical Studies of Photoinduced Electron Transfer in Dye-Sensitized TiO2. Annual Review of Physical Chemistry, 2007, 58, 143-184.	4.8	534
63	Theory of ultrafast heterogeneous electron transfer: Contributions of direct charge transfer excitations to the absorbance. Journal of Chemical Physics, 2007, 126, 134110.	1.2	21
64	Pathway-Dependent Electron Transfer for Rod-Shaped Perylene-Derived Molecules Adsorbed in Nanometer-Size TiO ₂ Cavities. Journal of Physical Chemistry C, 2007, 111, 13586-13594.	1.5	24
65	Chapter 11 Ab initio simulations of photoinduced molecule-semiconductor electron transfer. Theoretical and Computational Chemistry, 2007, , 275-300.	0.2	3
66	Electron Transfer from Axial Ligand to S1- and S2-Excited Phosphorus Tetraphenylporphyrin. Journal of Physical Chemistry A, 2007, 111, 10574-10579.	1.1	65
67	Time-Domainab InitioStudy of Charge Relaxation and Recombination in Dye-Sensitized TiO2. Journal of the American Chemical Society, 2007, 129, 8528-8543.	6.6	207
68	Dye-Sensitization of the TiO ₂ Rutile (110) Surface by Perylene Dyes:  Quantum-Chemical Periodic B3LYP Computations. Journal of Physical Chemistry C, 2007, 111, 12116-12123.	1.5	84
69	Quantum Dynamics of Photoinduced Electron-Transfer Reactions in Dyeâ^'Semiconductor Systems: First-Principles Description and Application to Coumarin 343â^'TiO ₂ . Journal of Physical Chemistry C, 2007, 111, 11970-11981.	1.5	157
70	Effect of steam treatment on photocurrent and dye–titania interaction in dye-doped titania gel. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 192, 220-225.	2.0	22
71	Ultrafast interfacial electron transfer from the excited state of anchored molecules into a semiconductor. Progress in Surface Science, 2007, 82, 355-377.	3.8	76
72	On the donor-acceptor interaction and electron transfer at the titanium oxide-organic dye interface. Physics of the Solid State, 2007, 49, 2004-2009.	0.2	5

#	Article	IF	CITATIONS
73	Nonperturbative quantum simulation of time-resolved nonlinear spectra: Methodology and application to electron transfer reactions in the condensed phase. Chemical Physics, 2008, 347, 139-151.	0.9	45
75	Electronic Excited State of Alizarin Dye Adsorbed on TiO ₂ Nanoparticles: A Study by Electroabsorption (Stark Effect) Spectroscopy. Journal of Physical Chemistry C, 2008, 112, 10233-10241.	1.5	45
76	Natural Dyes Adsorbed on TiO ₂ Nanowire for Photovoltaic Applications: Enhanced Light Absorption and Ultrafast Electron Injection. Nano Letters, 2008, 8, 3266-3272.	4.5	198
77	Dynamical Simulation of Photoinduced Electron Transfer Reactions in Dyeâ^'Semiconductor Systems with Different Anchor Groups. Journal of Physical Chemistry C, 2008, 112, 12326-12333.	1.5	81
78	The Ultrafast Temporal and Spectral Characterization of Electron Injection from Perylene Derivatives into ZnO and TiO2 Colloidal Films. Journal of Physical Chemistry C, 2008, 112, 10542-10552.	1.5	42
79	MEASURING ULTRAFAST PHOTOINDUCED ELECTRON-TRANSFER DYNAMICS. Series on Photoconversion of Solar Energy, 2008, , 633-674.	0.2	0
80	Temperature Independence of the Photoinduced Electron Injection in Dye-Sensitized TiO ₂ Rationalized by Ab Initio Time-Domain Density Functional Theory. Journal of the American Chemical Society, 2008, 130, 9756-9762.	6.6	96
81	The use of microspectrofluorimetry for the characterization of lake pigments. Talanta, 2008, 74, 922-929.	2.9	91
82	Surface Modification of TiO ₂ by Phosphate:  Effect on Photocatalytic Activity and Mechanism Implication. Journal of Physical Chemistry C, 2008, 112, 5993-6001.	1.5	262
83	Dynamics of the Photoexcited Electron at the Chromophore–Semiconductor Interface. Accounts of Chemical Research, 2008, 41, 339-348.	7.6	123
84	Atomistic Simulation of Adiabatic Reactive Processes Based on Multi-State Potential Energy Surfaces. Journal of Chemical Theory and Computation, 2008, 4, 1083-1093.	2.3	65
85	Ultrafast Interfacial Charge Carrier Dynamics in ZnSe and ZnSe/ZnS Core/Shell Nanoparticles: Influence of Shell Formation. Journal of Physical Chemistry C, 2008, 112, 2703-2710.	1.5	39
86	Quenching of Triplet State Formation by Electron Transfer for Merocyanine/TiO2 Systems. Journal of Physical Chemistry C, 2008, 112, 11973-11977.	1.5	8
87	Photoinduced Reactivity of Strongly Coupled TiO ₂ Ligands under Visible Irradiation: An Examination of an Alizarin Red@TiO ₂ Nanoparticulate System. Journal of Physical Chemistry C, 2008, 112, 16532-16538.	1.5	43
88	Polarized pump-probe measurements of electronic motion via a conical intersection. Journal of Chemical Physics, 2008, 128, 144510.	1.2	47
89	LIGHT-INDUCED CHARGE SEPARATION ACROSS BIO-INORGANIC INTERFACE. International Journal of Modern Physics B, 2009, 23, 473-491.	1.0	7
90	Charge transfer dynamics in driven molecular ratchets: quantum Monte Carlo results and rate models. New Journal of Physics, 2009, 11, 035001.	1.2	7
91	Ultrafast Photoinduced Processes in Alizarinâ€Sensitized Metal Oxide Mesoporous Films. ChemPhysChem, 2009, 10, 384-391.	1.0	40

#	Article	IF	CITATIONS
92	Electron Transfer from Photoexcited TiO ₂ to Chelating Alizarin Molecules: Reversible Photochromic Effect in Alizarin@TiO ₂ under UV Irradiation. ChemPhysChem, 2009, 10, 1077-1083.	1.0	15
93	Test of theoretical models for ultrafast heterogeneous electron transfer with femtosecond two-photon photoemission data. Journal of Chemical Sciences, 2009, 121, 561-574.	0.7	22
94	Photoinduced electron dynamics at the chromophore–semiconductor interface: A time-domain ab initio perspective. Progress in Surface Science, 2009, 84, 30-68.	3.8	168
95	Stark spectroscopy of charge-transfer transitions in catechol-sensitized TiO2 nanoparticles. Chemical Physics Letters, 2009, 475, 272-276.	1.2	14
96	Evidence of Multiple Electron Injection and Slow Back Electron Transfer in Alizarin-Sensitized Ultrasmall TiO2 Particles. Journal of Physical Chemistry C, 2009, 113, 3593-3599.	1.5	51
97	Ab Initio Nonadiabatic Molecular Dynamics of Wet-Electrons on the TiO ₂ Surface. Journal of the American Chemical Society, 2009, 131, 15483-15491.	6.6	99
98	Optical description of solid-state dye-sensitized solar cells. II. Device optical modeling with implications for improving efficiency. Journal of Applied Physics, 2009, 106, .	1.1	15
99	Probing Interfacial Electron Transfer in Coumarin 343 Sensitized TiO ₂ Nanoparticles with Femtosecond Stimulated Raman. Journal of the American Chemical Society, 2009, 131, 15630-15632.	6.6	75
100	Interfacial Dynamics of Perylene Derivatives Attached to Metal Oxide Particle and Nanorod Films. Materials Research Society Symposia Proceedings, 2010, 1270, 1.	0.1	0
101	Beyond Photovoltaics: Semiconductor Nanoarchitectures for Liquid-Junction Solar Cells. Chemical Reviews, 2010, 110, 6664-6688.	23.0	716
102	Efficient Preparation of Photoswitchable Dithienyletheneâ€Linkerâ€Conjugates by Palladiumâ€Catalyzed Coupling Reactions of Terminal Alkynes with Thienyl Chlorides and Other Aryl Halides. Chemistry - an Asian Journal, 2010, 5, 1202-1212.	1.7	9
103	Real-Time TD-DFT Simulations in Dye Sensitized Solar Cells: The Electronic Absorption Spectrum of Alizarin Supported on TiO ₂ Nanoclusters. Journal of Chemical Theory and Computation, 2010, 6, 2856-2865.	2.3	170
104	Donor/Acceptor Adsorbates on the Surface of Metal Oxide Nanoporous Films: A Spectroscopic Probe for Different Electron Transfer Pathways. ChemPhysChem, 2010, 11, 2027-2035.	1.0	2
105	Organic Polyaromatic Hydrocarbons as Sensitizing Model Dyes for Semiconductor Nanoparticles. ChemSusChem, 2010, 3, 410-428.	3.6	20
106	Femtosecond fluorescence up-conversion studies of electron injection in dye sensitized solar cells. , 2010, , .		0
107	Electron Dynamics in Dye-Sensitized Solar Cells: Effects of Surface Terminations and Defects. Journal of Physical Chemistry B, 2010, 114, 17077-17083.	1.2	28
108	Visible Light Sensitization of TiO ₂ Surfaces with Alq3 Complexes. Journal of Physical Chemistry C, 2010, 114, 1317-1325.	1.5	37
109	Photoelectrochemical Behavior of Alizarin Modified TiO ₂ Films. Journal of Physical Chemistry C, 2010, 114, 11515-11521.	1.5	17

	CITATION	Report	
# 110	ARTICLE Ultrafast Interfacial Proton-Coupled Electron Transfer. Chemical Reviews, 2010, 110, 7082-7099.	IF 23.0	Citations
111	Theoretical Study of Photoinduced Electron-Transfer Processes in the Dyeâ~'Semiconductor System Alizarinâ~'TiO ₂ . Journal of Physical Chemistry C, 2010, 114, 18481-18493.	1.5	69
112	Electron and Hole Dynamics in Dye-Sensitized Solar Cells: Influencing Factors and Systematic Trends. Nano Letters, 2010, 10, 1238-1247.	4.5	137
113	Hydroxide Ions at the Water/Anatase TiO2(101) Interface: Structure and Electronic States from First Principles Molecular Dynamics. Langmuir, 2010, 26, 11518-11525.	1.6	76
114	Interrogating the ultrafast dynamics of an efficient dye for sunlight conversion. Physical Chemistry Chemical Physics, 2010, 12, 8098.	1.3	22
115	Ultrafast Excitation Energy Transfer in Vinylpyridine Terminated Silicon Quantum Dots. Journal of Physical Chemistry C, 2011, 115, 22781-22788.	1.5	18
116	Photophysical Study of Perylene/TiO ₂ and Perylene/ZnO Varying Interfacial Couplings and the Chemical Environment. Journal of Physical Chemistry C, 2011, 115, 5683-5691.	1.5	24
117	Sensitizer molecular structure-device efficiency relationship in dye sensitized solar cells. Chemical Society Reviews, 2011, 40, 1635-1646.	18.7	520
118	Direct vs Indirect Mechanisms for Electron Injection in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 11293-11301.	1.5	129
119	A photo-induced electron transfer study of an organic dye anchored on the surfaces of TiO2 nanotubes and nanoparticles. Physical Chemistry Chemical Physics, 2011, 13, 4032.	1.3	45
120	Direct vs. indirect mechanisms for electron injection in DSSC: Catechol and alizarin. Computational and Theoretical Chemistry, 2011, 975, 99-105.	1.1	49
123	Theoretical Model of Nanoparticle Detection Mechanism in Microchannel with Gating Probe Electrodes. Journal of Computational Science and Technology, 2011, 5, 78-88.	0.4	3
124	Al(III) complexation by alizarin studied by electronic spectroscopy and quantum chemical calculations. Polyhedron, 2011, 30, 2326-2332.	1.0	31
125	Dye J-aggregate—semiconductor nanocrystal hybrid nanostructures in reverse micelles: an experimental study. Russian Chemical Bulletin, 2011, 60, 1196-1202.	0.4	0
126	A surface science perspective on TiO2 photocatalysis. Surface Science Reports, 2011, 66, 185-297.	3.8	1,778
127	Open-boundary cluster model implemented in first-principles calculations for electronic excited states of an adsorbate-surface system. Physical Review B, 2011, 84, .	1.1	4
128	Regarding the validity of the time-dependent Kohn–Sham approach for electron-nuclear dynamics via trajectory surface hopping. Journal of Chemical Physics, 2011, 134, 024102.	1.2	178
129	Solvent Effects on Spectral Property and Dipole Moment of the Lowest Excited State of Coumarin 343 Dye. Chinese Journal of Chemical Physics, 2012, 25, 577-584.	0.6	8

#	Article	IF	CITATIONS
130	Charge separation dynamics at inorganic/organic nanostructured hybrid photovoltaic interfaces. Journal of Photonics for Energy, 2012, 2, 021003.	0.8	7
131	Perspectives on ab initio molecular simulation of excited-state properties of organic dye molecules in dye-sensitised solar cells. Physical Chemistry Chemical Physics, 2012, 14, 12044.	1.3	33
132	Femtosecond Time-Resolved ERE-CARS of CV670 Dye in Solutions. Journal of Physical Chemistry C, 2012, 116, 5881-5886.	1.5	7
133	Single-molecule charge transfer dynamics in dye-sensitized p-type NiO solar cells: influences of insulating Al ₂ O ₃ layers. Chemical Science, 2012, 3, 370-379.	3.7	41
134	Dynamics of ultrafast photoinduced heterogeneous electron transfer, implications for recent solar energy conversion scenarios. Chemical Physics Letters, 2012, 545, 35-39.	1.2	11
135	Photoinduced electron transfer processes in dye-semiconductor systems with different spacer groups. Journal of Chemical Physics, 2012, 137, 22A529.	1.2	41
136	Photo-induced Charge Separation across the Graphene–TiO ₂ Interface Is Faster than Energy Losses: A Time-Domain <i>ab Initio</i> Analysis. Journal of the American Chemical Society, 2012, 134, 14238-14248.	6.6	226
137	Chemistry and applications of flavylium compounds: a handful of colours. Chemical Society Reviews, 2012, 41, 869-908.	18.7	339
138	Ultrafast fluorescence studies of dye sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 7934.	1.3	75
139	Efficient charge transfer process in Coumarin 153–nanotubolar TiO2 hybrid system. Chemical Physics Letters, 2012, 531, 160-163.	1.2	10
140	Vibrational State Dependence of Interfacial Electron Transfer: Hot Electron Injection from the S ₁ State of Azulene into TiO ₂ Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 20485-20493.	1.5	19
141	Photoinduced ultrafast dynamics of the triphenylamine-based organic sensitizer D35 on TiO2, ZrO2 and in acetonitrile. Physical Chemistry Chemical Physics, 2013, 15, 3906.	1.3	42
142	Alizarin complexone: an interesting ligand for designing TiO2-hybrid nanostructures. New Journal of Chemistry, 2013, 37, 969.	1.4	9
143	Catecholâ€Based Biomimetic Functional Materials. Advanced Materials, 2013, 25, 653-701.	11.1	638
144	Ultrafast plasmon induced electron injection mechanism in gold–TiO2 nanoparticle system. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, 15, 21-30.	5.6	114
145	Quantum coherence controls the charge separation in a prototypical artificial light-harvesting system. Nature Communications, 2013, 4, 1602.	5.8	239
146	The influence of alizarin and fluorescein on the photoactivity of Ni, Pt and Ru-doped TiO2 layers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 383-390.	1.7	18
147	Theoretical Insights into Photoinduced Charge Transfer and Catalysis at Oxide Interfaces. Chemical Reviews, 2013, 113, 4496-4565.	23.0	455

#	Article	IF	CITATIONS
149	CHAPTER 10. Time Resolved Infrared Spectroscopy of Metal Oxides and Interfaces. RSC Energy and Environment Series, 2013, , 281-300.	0.2	1
150	Nanoscale dynamics by short-wavelength four wave mixing experiments. New Journal of Physics, 2013, 15, 123023.	1.2	33
151	Photo-induced intramolecular electron transfer and intramolecular vibrational relaxation of rhodamine 6G in DMSO revealed by multiplex transient grating spectroscopy. Chinese Physics B, 2014, 23, 107802.	0.7	2
152	Direct Electron Transfer to Enzymes. , 2014, , 330-335.		0
153	Photoinduced intermolecular electron transfer and off-resonance Raman characteristics of Rhodamine 101/N,N-diethylaniline. Chemical Physics, 2014, 429, 12-19.	0.9	13
154	Environmental and complexation effects on the structures and spectroscopic signatures of organic pigments relevant to cultural heritage: the case of alizarin and alizarin–Mg(ii)/Al(iii) complexes. Physical Chemistry Chemical Physics, 2014, 16, 2897.	1.3	32
155	Predicting Energy Conversion Efficiency of Dye Solar Cells from First Principles. Journal of Physical Chemistry C, 2014, 118, 16447-16457.	1.5	115
156	Ground and excited state properties of alizarin and its isomers. Dyes and Pigments, 2014, 103, 202-213.	2.0	45
157	Heterogeneity in Dye–TiO ₂ Interactions Dictate Charge Transfer Efficiencies for Diketopyrrolopyrrole-Based Polymer Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 29650-29662.	1.5	5
158	Electron injection dynamics in dye-sensitized semiconductor nanocrystalline films. Surface Science Reports, 2014, 69, 389-441.	3.8	36
159	Coherent and Diffusive Time Scales for Exciton Dissociation in Bulk Heterojunction Photovoltaic Cells. Journal of Physical Chemistry C, 2014, 118, 27235-27244.	1.5	23
160	Kinetics of the Regeneration by lodide of Dye Sensitizers Adsorbed on Mesoporous Titania. Journal of Physical Chemistry C, 2014, 118, 17108-17115.	1.5	26
161	Photoinduced Ultrafast Heterogeneous Electron Transfer at Molecule–Semiconductor Interfaces. Journal of Physical Chemistry Letters, 2014, 5, 3498-3507.	2.1	26
162	Photoinduced electron transfer of Rhodamine 6G/N,N-diethylaniline revealed by multiplex transient grating and transient absorption spectroscopies. Applied Physics B: Lasers and Optics, 2014, 116, 271-277.	1.1	10
163	Minimizing Electron–Hole Recombination on TiO ₂ Sensitized with PbSe Quantum Dots: Time-Domain Ab Initio Analysis. Journal of Physical Chemistry Letters, 2014, 5, 2941-2946.	2.1	63
164	Bottom-Up Synthesis of Anatase Nanoparticles with Graphene Domains. ACS Applied Materials & Interfaces, 2014, 6, 10638-10648.	4.0	27
165	Effect of Sensitizer Structure and TiO ₂ Protonation on Charge Generation in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16927-16940.	1.5	33
166	Ultrafast multiphoton pump-probe photoemission excitation pathways in rutile <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>TiO</mml:mi><mml: Physical Review B, 2015, 91, .</mml: </mml:msub></mml:mrow></mml:math 	mn ı ≽₽ <td>ml#nn></td>	ml #n n>

#	Article	IF	CITATIONS
167	Imaging the Ultrafast Photoelectron Transfer Process in Alizarin-TiO2. Molecules, 2015, 20, 13830-13853.	1.7	27
168	Quantum dynamical simulation of photoinduced electron transfer processes in dye–semiconductor systems: theory and application to coumarin 343 at TiO ₂ . Journal of Physics Condensed Matter, 2015, 27, 134202.	0.7	18
169	Electronic Structure of the Perylene–Zinc Oxide Interface: Computational Study of Photoinduced Electron Transfer and Impact of Surface Defects. Journal of Physical Chemistry C, 2015, 119, 18843-18858.	1.5	10
170	Time-resolved X-ray photoelectron spectroscopy techniques for the study of interfacial charge dynamics. Journal of Electron Spectroscopy and Related Phenomena, 2015, 200, 64-77.	0.8	41
171	Excited state intramolecular proton transfer of 1,2-dihydroxyanthraquinone by femtosecond transient absorption spectroscopy. Current Applied Physics, 2015, 15, 1492-1499.	1.1	41
172	Photopotential decay delay on TiO ₂ surface modified with <i>p</i> â€benzaldehydes: consequences and applications. Journal of Physical Organic Chemistry, 2015, 28, 191-198.	0.9	5
173	Ultrafast photoelectron migration in dye-sensitized solar cells: Influence of the binding mode and many-body interactions. Journal of Chemical Physics, 2016, 145, 174704.	1.2	19
174	Beyond Vibrationally Mediated Electron Transfer: Coherent Phenomena Induced by Ultrafast Charge Separation. Journal of Physical Chemistry C, 2016, 120, 8534-8539.	1.5	14
175	Inhomogeneous and Complex Interfacial Electron-Transfer Dynamics: A Single-Molecule Perspective. ACS Energy Letters, 2016, 1, 773-791.	8.8	10
176	Hot Hole Hopping in a Polyoxotitanate Cluster Terminated with Catechol Electron Donors. Journal of Physical Chemistry C, 2016, 120, 20006-20015.	1.5	14
177	Excited-state relaxation of the solar cell dye D49 in organic solvents and on mesoporous Al ₂ O ₃ and TiO ₂ thin films. Physical Chemistry Chemical Physics, 2016, 18, 26010-26019.	1.3	28
178	Physical Model for Interfacial Carrier Dynamics. Lecture Notes in Energy, 2016, , 67-91.	0.2	Ο
179	Charge Transfer-Induced State Filling in CdSe Quantum Dot–Alizarin Complexes. Journal of Physical Chemistry C, 2017, 121, 2613-2619.	1.5	14
180	Interfacial Charge Transfer in Photoelectrochemical Processes. Advanced Materials Interfaces, 2017, 4, 1600981.	1.9	40
181	Ultrafast Intramolecular Proton Transfer of Alizarin Investigated by Femtosecond Stimulated Raman Spectroscopy. Journal of Physical Chemistry B, 2017, 121, 4129-4136.	1.2	42
182	Photoaquation Mechanism of Hexacyanoferrate(II) Ions: Ultrafast 2D UV and Transient Visible and IR Spectroscopies. Journal of the American Chemical Society, 2017, 139, 7335-7347.	6.6	43
183	A quantum dynamics method for excited electrons in molecular aggregate system using a group diabatic Fock matrix. Journal of Chemical Physics, 2017, 147, 074110.	1.2	2
184	Nonlinear optical switching properties of dye-doped inorganic/organic nanocomposite films. Journal of Nonlinear Optical Physics and Materials, 2017, 26, 1750015.	1.1	8

#	Article	IF	CITATIONS
185	An openâ€source framework for analyzing <i>N</i> â€electron dynamics. II. Hybrid density functional theory/configuration interaction methodology. Journal of Computational Chemistry, 2017, 38, 2378-2387.	1.5	45
186	Ultrafast Electron Dynamics in Solar Energy Conversion. Chemical Reviews, 2017, 117, 10940-11024.	23.0	266
187	Principals of simulation of ultrafast charge transfer in solution within the multichannel stochastic point-transition model. Computer Physics Communications, 2017, 210, 172-180.	3.0	17
188	Dependence of hot electron transfer on surface coverage and adsorbate species at semiconductor–molecule interfaces. Physical Chemistry Chemical Physics, 2018, 20, 12986-12991.	1.3	6
189	Coherent Electron Transfer at the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mrow><mml:mi>Ag</mml:mi><mml:mo>/</mml:mo></mml:mrow><mml:m Heterojunction Interface. Physical Review Letters, 2018, 120, 126801.</mml:m </mml:mrow></mml:math>	i> @:ø phite	e #17ml:mi <
190	One-pot synthesis of TiO2/graphene nanocomposites for excellent visible light photocatalysis based on chemical exfoliation method. Carbon, 2018, 133, 109-117.	5.4	69
191	Synthesis of Nanocrystalline Photo-Active Semiconductors. Lecture Notes in Quantum Chemistry II, 2018, , 241-318.	0.3	0
192	Ultrafast Intramolecular Proton Transfer Reaction of 1,2- Dihydroxyanthraquinone in the Excited State. , 2018, , .		0
193	Chemical Functionalization and Photo-Induced Charge Transport. , 2018, , 573-581.		0
194	Dyeâ€Sensitized Solar Cell Based on Novel Starâ€Shaped Ruthenium Polypyridyl Sensitizer: New Insight into the Relationship between Molecular Designing and Its Outstanding Charge Carrier Dynamics. ChemistrySelect, 2018, 3, 6821-6829.	0.7	10
195	Donor Effect on the Photoinduced Interfacial Charge Transfer Dynamics of Dâ^'π–A Diketopyrrolopyrrole Dye Sensitizers Adsorbed on Titanium Dioxide. Journal of Physical Chemistry C, 2018, 122, 19359-19369.	1.5	7
196	An ultrasensitive photoelectrochemical platform for quantifying photoinduced electron-transfer properties of a single entity. Nature Protocols, 2019, 14, 2672-2690.	5.5	21
197	Analysis of transient-absorption pump-probe signals of nonadiabatic dissipative systems: "Ideal―and "real―spectra. Journal of Chemical Physics, 2019, 150, 204102.	1.2	19
199	Ultrafast photoinduced energy and charge transfer. Faraday Discussions, 2019, 216, 9-37.	1.6	5
200	Photophysical properties of 1,2-dihydroxyanthraquinone in AOT reverse micelles. Journal of Molecular Liquids, 2019, 279, 503-509.	2.3	9
201	Photoinduced Ultrafast Electron Transfer and Charge Transport in a Pbl ₂ /C ₆₀ Heterojunction. Journal of Physical Chemistry C, 2019, 123, 30791-30798.	1.5	3
202	Effects of solvents on the excited state intramolecular proton transfer and hydrogen bond mechanisms of alizarin and its isomers. Journal of Molecular Liquids, 2020, 301, 112415.	2.3	56
203	Engineering two-dimensional metal oxides <i>via</i> surface functionalization for biological applications. Journal of Materials Chemistry B, 2020, 8, 1108-1127.	2.9	50

#	Article	IF	CITATIONS
204	<scp>Alizarinâ€TiO₂ LMCT</scp> Complex with Oxygen Vacancies: An Efficient Visible Light Photocatalyst for Cr(<scp>VI</scp>) Reduction. Chinese Journal of Chemistry, 2020, 38, 1332-1338.	2.6	8
205	Intermolecular interaction between anthraquinone dyes and TEMPO mediator in dye-sensitized photocatalytic systems. Journal of Photochemistry and Photobiology, 2020, 2, 100003.	1.1	0
206	Attosecond science based on high harmonic generation from gases and solids. Nature Communications, 2020, 11, 2748.	5.8	155
207	Electron Transfer in Rhodamine–TiO ₂ Complexes Studied as a Function of Chalcogen and Bridge Substitution. Journal of Physical Chemistry C, 2020, 124, 2851-2863.	1.5	2
208	The dynamics of light-induced interfacial charge transfer of different dyes in dye-sensitized solar cells studied by <i>ab initio</i> molecular dynamics. Physical Chemistry Chemical Physics, 2021, 23, 27171-27184.	1.3	9
209	Conformational and Binding Effects on Interfacial Electron Transfer from Dual-Linker Sensitizers. Journal of Physical Chemistry C, 2021, 125, 8667-8676.	1.5	4
210	Ground-state intramolecular proton transfer and observation of high energy tautomer in 1,4-Dihydroxyanthraquinone. Journal of Molecular Structure, 2021, 1232, 130050.	1.8	6
211	Stochastic Collision Photoelectrochemistry for Lightâ€Induced Electron Transfer Dynamics. ChemElectroChem, 2021, 8, 3221-3228.	1.7	8
212	Quantum Dynamics of Ultrafast Molecular Processes in a Condensed Phase Environment. Springer Series in Chemical Physics, 2007, , 195-221.	0.2	1
213	Ultrafast dynamics of photoinduced processes at surfaces and interfaces. , 2007, , 387-484.		2
214	Stepwise electron injection in the dye-sensitized nanocrystalline films of ZnO and TiO2 with novel coumarin dye. , 2004, , 525-528.		1
215	Coherent optical control of electronic excitations in functionalized semiconductor nanostructures. Quantum Information and Computation, 2005, 5, 318-334.	0.1	8
216	Electron transfer and triplet state formation in merocyanine/TiO2 systems. , 2006, , .		0
217	Intramolecular electron transfer beyond solvent control. , 2006, , 415-419.		0
218	Ultrafast Interfacial Carrier Dynamics in UV-Blue Photoluminescing ZnSe Nanoparticles. , 2006, , .		0
219	Photoexcitation Dynamics on the Nanoscale. Springer Series in Chemical Physics, 2007, , 5-30.	0.2	0
220	Ultrafast Interfacial Carrier Dynamics in UV-Blue Photoluminescing ZnSe Nanoparticles. Springer Series in Chemical Physics, 2007, , 698-700.	0.2	0
221	Electron transfer and triplet state formation in merocyanine/TiO2 systems. Springer Series in Chemical Physics, 2007, , 267-269.	0.2	0

#	Article	IF	CITATIONS
223	Research of fluorescent properties of photo-induced electron transfer of 5(6)-carboxyfluorescein dye-sensitized TiO2 nanoparticles. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 090505.	0.2	0
224	Dye-Sensitization. , 2014, , 357-363.		0
225	Selected Applications of QDs and QD-Based Nanoassemblies. , 2016, , 245-294.		1
226	Vibronic coherences in light harvesting nanotubes: unravelling the role of dark states. Journal of Materials Chemistry C, 2022, 10, 7216-7226.	2.7	8
227	Optical and electronic properties of the natural Alizarin dye: Theoretical and experimental investigations for DSSCs application. Optical Materials, 2022, 127, 112113.	1.7	14
228	Organisation and Photoelectrochemical Reactivity of Water-Soluble Metalloporphyrins at the Liquid/Liquid Interface. , 0, , 517-574.		1
229	The ESIPT-Steered Molecular Chameleon for Cations and Anions Based on Alizarin and Alizarin-S: A Comparative study. , 0, , .		0
231	Tuning the electron injection mechanism by changing the adsorption mode: the case study of Alizarin on TiO2. Materials Today Energy, 2022, 28, 101085.	2.5	3
232	Implications of strongly coupled catecholate-based anchoring functionality of a sensitizer dye molecule toward photoinduced electron transfer dynamics. Advances in Inorganic Chemistry, 2022, , .	0.4	1
237	An overview of bi-layered niobium pentoxide (Nb2O5)-based photoanodes for dye-sensitized solar cells. Advanced Composites and Hybrid Materials, 2023, 6, .	9.9	1