Characterization of a Chitinase Gene from Stenotropho Its Involvement in Biological Control

Applied and Environmental Microbiology 68, 1047-1054 DOI: 10.1128/aem.68.3.1047-1054.2002

Citation Report

#	Article	IF	CITATIONS
1	The C-terminal module of Chi1 fromAeromonas caviae CB101 has a function in substrate binding and hydrolysis. Proteins: Structure, Function and Bioinformatics, 2003, 53, 908-916.	2.6	19
2	A Novel Gene Encoding an Enzyme That Degrades a Polysaccharide from the Sheath ofSphaerotilus natans. Bioscience, Biotechnology and Biochemistry, 2003, 67, 2300-2303.	1.3	4
3	Functional genomics in forage and turf - present status and future prospects. African Journal of Biotechnology, 2003, 2, 521-527.	0.6	5
4	Enhancement of the antifungal activity ofBacillus subtilisF29-3 by the chitinase encoded byBacillus circulans chiAgene. Canadian Journal of Microbiology, 2004, 50, 451-454.	1.7	26
5	Diversity of bacteria associated with Collembola – a cultivation-independent survey based on PCR-amplified 16S rRNA genes. FEMS Microbiology Ecology, 2004, 49, 217-227.	2.7	43
6	Fungi, Bacteria, and Viruses as Pathogens of the Fungal Community. Mycology, 2005, , 399-421.	0.5	5
7	Synthesis of the compatible solutes glucosylglycerol and trehalose by salt-stressed cells of Stenotrophomonasstrains. FEMS Microbiology Letters, 2005, 243, 219-226.	1.8	66
8	Role of the N-terminal polycystic kidney disease domain in chitin degradation by chitinase A from a marine bacterium, Alteromonas sp. strain O-7. Journal of Applied Microbiology, 2005, 99, 551-557.	3.1	36
9	Endophytic bacteria inCoffea arabica L Journal of Basic Microbiology, 2005, 45, 371-380.	3.3	152
10	Enrichment of chitinolytic microorganisms: isolation and characterization of a chitinase exhibiting antifungal activity against phytopathogenic fungi from a novel Streptomyces strain. Applied Microbiology and Biotechnology, 2005, 66, 434-442.	3.6	128
11	The role of clp-regulated factors in antagonism against Magnaporthe poae and biological control of summer patch disease of Kentucky bluegrass by Lysobacter enzymogenes C3. Canadian Journal of Microbiology, 2005, 51, 719-723.	1.7	37
12	Roles of Four Chitinases (ChiA, ChiB, ChiC, and ChiD) in the Chitin Degradation System of Marine Bacterium Alteromonas sp. Strain O-7. Applied and Environmental Microbiology, 2005, 71, 1811-1815.	3.1	56
13	A clp Gene Homologue Belonging to the Crp Gene Family Globally Regulates Lytic Enzyme Production, Antimicrobial Activity, and Biological Control Activity Expressed by Lysobacter enzymogenes Strain C3. Applied and Environmental Microbiology, 2005, 71, 261-269.	3.1	95
14	Putative Exposed Aromatic and Hydroxyl Residues on the Surface of the N-Terminal Domains of Chi1 from Aeromonas caviae CB101 Are Essential for Chitin Binding and Hydrolysis. Applied and Environmental Microbiology, 2005, 71, 7559-7561.	3.1	11
15	Enrichment of bermudagrass genes associated with tolerance to the spring dead spot fungus Ophiosphaerella herpotricha. Physiological and Molecular Plant Pathology, 2006, 68, 105-118.	2.5	5
16	Recent Molecular and Genomic Studies on Stress Tolerance of Forage and Turf Grasses. Crop Science, 2006, 46, 497-511.	1.8	61
17	A Novel Bacteroidetes Symbiont Is Localized in Scaphoideus titanus , the Insect Vector of Flavescence Dore le in Vitis vinifera. Applied and Environmental Microbiology, 2006, 72, 1467-1475.	3.1	89
18	Crop improvement and root rot suppression by seed bacterization in chickpea. Archives of Agronomy and Soil Science, 2007, 53, 287-292.	2.6	11

#	Article	IF	CITATIONS
19	Se(VI) Reduction and the Precipitation of Se(0) by the Facultative Bacterium Enterobacter cloacae SLD1a-1 Are Regulated by FNR. Applied and Environmental Microbiology, 2007, 73, 1914-1920.	3.1	77
21	Cloning and phylogenetic analysis of the chitinase gene from the facultative pathogen Paecilomyces lilacinus. Journal of Applied Microbiology, 2007, 103, 2476-2488.	3.1	26
22	Bacillus thuringiensis beyond insect biocontrol: plant growth promotion and biosafety of polyvalent strains. Annals of Microbiology, 2007, 57, 481-494.	2.6	32
23	Community Structure of Actively Growing Bacterial Populations in Plant Pathogen Suppressive Soil. Microbial Ecology, 2007, 53, 399-413.	2.8	60
24	Cloning and high-level production of a chitinase from Chromobacterium sp. and the role of conserved or nonconserved residues on its catalytic activity. Applied Microbiology and Biotechnology, 2007, 74, 791-804.	3.6	10
25	The magic and menace of metagenomics: prospects for the study of plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 2007, 119, 279-300.	1.7	59
26	Isolation and characterization of mutants of Pseudomonas maltophila PM-4 altered in chitinolytic activity and antagonistic activity against root rot pathogens of clusterbean (Cyamopsis) Tj ETQq0 0 0 rgBT /Ove	rlo eb 710 Ti	f 5 0 497 Td (t
27	Endophytic Bacterial Diversity in Rice (Oryza sativa L.) Roots Estimated by 16S rDNA Sequence Analysis. Microbial Ecology, 2008, 55, 415-424.	2.8	299
28	Seawater-retting treatment of hemp and characterization of bacterial strains involved in the retting process. Process Biochemistry, 2008, 43, 1195-1201.	3.7	49
29	Identification and characterization of genes underlying chitinolysis in Collimonas fungivorans Ter331. FEMS Microbiology Ecology, 2008, 66, 123-135.	2.7	16
30	Bacterial mycophagy: definition and diagnosis of a unique bacterial–fungal interaction. New Phytologist, 2008, 177, 859-876.	7.3	150
31	Chitinolytic activity of endophytic <i>Streptomyces</i> and potential for biocontrol. Letters in Applied Microbiology, 2008, 47, 486-491.	2.2	104
32	The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil, 2009, 321, 341-361.	3.7	1,318
33	Detection of enzymatic activity and partial sequence of a chitinase gene in Metschnikowia pulcherrima strain MACH1 used as post-harvest biocontrol agent. European Journal of Plant Pathology, 2009, 123, 183-193.	1.7	56
34	Purification and characterization of a chitinase from Serratia proteamaculans. World Journal of Microbiology and Biotechnology, 2009, 25, 1955-1961.	3.6	30
35	Root-promoting rhizobacteria in Eucalyptus globulus cuttings. World Journal of Microbiology and Biotechnology, 2009, 25, 867-873.	3.6	21
36	Inter-kingdom encounters: recent advances in molecular bacterium–fungus interactions. Current Genetics, 2009, 55, 233-243.	1.7	95
37	The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nature Reviews Microbiology, 2009, 7, 514-525.	28.6	641

	CITATION RE	PORT	
#	Article	IF	CITATIONS
38	Efficacy of rhizobacteria for growth promotion in sorghum under greenhouse conditions and selected modes of action studies. Journal of Agricultural Science, 2009, 147, 17-30.	1.3	45
39	Control of Fusarium Wilt of Chili With Chitinolytic Bacteria. HAYATI Journal of Biosciences, 2010, 17, 5-8.	0.4	14
40	Molecular and Microscopical Investigation of the Microflora Inhabiting a Deteriorated Italian Manuscript Dated from the Thirteenth Century. Microbial Ecology, 2010, 60, 69-80.	2.8	94
41	Mycophagous mites and their internal associated bacteria cooperate to digest chitin in soil. Symbiosis, 2010, 52, 33-40.	2.3	35
42	Molecular characterization of an endochitinase from Bacillus thuringiensis subsp. konkukian. World Journal of Microbiology and Biotechnology, 2010, 26, 2171-2178.	3.6	5
43	Analysis of a change in bacterial community in different environments with addition of chitin or chitosan. Journal of Bioscience and Bioengineering, 2010, 109, 472-478.	2.2	27
44	Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen-suppressive soil. FEMS Microbiology Ecology, 2010, 71, 197-207.	2.7	96
45	<i>Stenotrophomonas</i> and <i>Lysobacter</i> : ubiquitous plantâ€associated <i>gammaâ€</i> proteobacteria of developing significance in applied microbiology. Journal of Applied Microbiology, 2010, 108, 756-770.	3.1	169
46	Gene expression and characterization of a novel GH family 18 chitinase from extremely halophilic archaeon Halobacterium salinarum NRC-1. Journal of Japanese Society for Extremophiles, 2010, 9, 19-24.	0.0	8
47	Plant Growth Promoting Rhizobacteria as Biocontrol Agents Against Soil-Borne Plant Diseases. Microbiology Monographs, 2010, , 211-230.	0.6	37
48	Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants. Critical Reviews in Biotechnology, 2010, 30, 231-241.	9.0	134
50	Endophytes of Forest Trees. Forestry Sciences, 2011, , .	0.4	30
51	The Genomes of Endophytic Bacteria. Forestry Sciences, 2011, , 107-136.	0.4	9
52	Screening for candidate bacterial biocontrol agents against soilborne fungal plant pathogens. Plant and Soil, 2011, 340, 505-520.	3.7	143
53	Isolation of Serratia marcescens SR1 as a Source of Chitinase Having Potentiality of Using as a Biocontrol Agent. Indian Journal of Microbiology, 2011, 51, 247-250.	2.7	20
54	Biotic Reactions. , 2012, , 53-184.		0
55	Isolation and characterization of a novel filamentous phage from Stenotrophomonas maltophilia. Archives of Virology, 2012, 157, 1643-1650.	2.1	22
57	EXAMINATION OF CHITINOLYTIC BACTERIA IN ALGINATE-CHITOSAN ENCAPSULATION ON CHILI SEED AGAINST DAMPING OFF CAUSED BY & lt;i>FUSARIUM OXYSPORUM. American Journal of Agricultural and Biological Science, 2012, 7, 461-467.	0.4	3

#	Article	IF	CITATIONS
58	Identification and characterization of a chitinase of Stenotrophomonas maltophilia, a bacterium that is antagonistic towards fungal phytopathogens. Journal of Bioscience and Bioengineering, 2012, 113, 30-35.	2.2	43
59	Selection of available suicide vectors for gene mutagenesis using chiA (a chitinase encoding gene) as a new reporter and primary functional analysis of chiA in Lysobacter enzymogenes strain OH11. World Journal of Microbiology and Biotechnology, 2012, 28, 549-557.	3.6	51
60	Bioinformatic evaluation of the secondary metabolism of antistaphylococcal environmental bacterial isolates. Canadian Journal of Microbiology, 2013, 59, 465-471.	1.7	6
61	Chitinase A from Stenotrophomonas maltophilia shows transglycosylation and antifungal activities. Bioresource Technology, 2013, 133, 213-220.	9.6	53
62	Bacterial Endophytes of Perennial Crops for Management of Plant Disease. , 2013, , 49-76.		6
63	Mechanisms of Action of Bacterial Biological Control Agents. , 2013, , 295-429.		4
64	Bacterial Chitinolytic Communities Respond to Chitin and pH Alteration in Soil. Applied and Environmental Microbiology, 2013, 79, 263-272.	3.1	79
65	Chitin Amendment Increases Soil Suppressiveness toward Plant Pathogens and Modulates the Actinobacterial and Oxalobacteraceal Communities in an Experimental Agricultural Field. Applied and Environmental Microbiology, 2013, 79, 5291-5301.	3.1	138
66	Both extracellular chitinase and a new cyclic lipopeptide, chromobactomycin, contribute to the biocontrol activity of <i><scp>C</scp>hromobacterium</i> sp. <scp>C61</scp> . Molecular Plant Pathology, 2014, 15, 122-132.	4.2	29
67	Bacterial communities in chitin-amended soil as revealed by 16S rRNA gene based pyrosequencing. Soil Biology and Biochemistry, 2014, 76, 5-11.	8.8	32
68	Highly efficient transformation of Stenotrophomonas maltophilia S21, an environmental isolate from soil, by electroporation. Journal of Microbiological Methods, 2014, 107, 92-97.	1.6	11
69	Virulence genes in clinical and environmental Stenotrophomas maltophilia isolates: A genome sequencing and gene expression approach. Microbial Pathogenesis, 2014, 67-68, 20-30.	2.9	34
70	Utilization of chitinolytic bacterial isolates to control anthracnose of cocoa leaf caused by Colletotrichum gloeosporioides. African Journal of Biotechnology, 2014, 13, 1631-1637.	0.6	13
71	Exploring the genomic traits of fungus-feeding bacterial genus Collimonas. BMC Genomics, 2015, 16, 1103.	2.8	57
72	Biodiversity of genes encoding anti-microbial traits within plant associated microbes. Frontiers in Plant Science, 2015, 6, 231.	3.6	56
73	Whole-Genome Sequence of Stenotrophomonas maltophilia ZBG7B Reveals Its Biotechnological Potential. Genome Announcements, 2015, 3, .	0.8	4
74	Biological Control of Chickpea Fusarium Wilts Using Rhizobacteria "PGPR― , 2016, , 147-162.		8
75	Endophytic bacteria from <i>Datura metel</i> for plant growth promotion and bioprotection against Fusarium wilt in tomato. Biocontrol Science and Technology, 2016, 26, 1139-1165.	1.3	40

#	Article	IF	CITATIONS
76	Feeding Patterns of <i>Tyrophagus putrescentiae</i> (Sarcoptiformes: Acaridae) Indicate That Mycophagy Is Not a Single and Homogeneous Category of Nutritional Biology. Journal of Insect Science, 2016, 16, 94.	1.5	13
77	Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food and Agriculture, 2016, 2, .	1.4	308
78	Production, characterization, gene cloning, and nematocidal activity of the extracellular protease from Stenotrophomonas maltophilia N4. Journal of Bioscience and Bioengineering, 2016, 121, 614-618.	2.2	29
79	Chestnut green waste composting for sustainable forest management: Microbiota dynamics and impact on plant disease control. Journal of Environmental Management, 2016, 166, 168-177.	7.8	74
80	Quorum sensing is a key regulator for the antifungal and biocontrol activity of chitinaseâ€producing <i>Chromobacterium</i> sp. C61. Molecular Plant Pathology, 2017, 18, 134-140.	4.2	11
81	Characterization of two novel bacterial type A exo-chitobiose hydrolases having C-terminal 5/12-type carbohydrate-binding modules. Applied Microbiology and Biotechnology, 2017, 101, 4533-4546.	3.6	5
82	Genome analysis reveals insights of the endophytic Bacillus toyonensis BAC3151 as a potentially novel agent for biocontrol of plant pathogens. World Journal of Microbiology and Biotechnology, 2017, 33, 185.	3.6	30
83	Role of Pseudomonas sp. in Sustainable Agriculture and Disease Management. , 2017, , 195-215.		18
84	Disease management of tomato through PGPB: current trends and future perspective. 3 Biotech, 2017, 7, 255.	2.2	135
86	Microbial and viral chitinases: Attractive biopesticides for integrated pest management. Biotechnology Advances, 2018, 36, 818-838.	11.7	107
87	Modulation of plant chemistry by beneficial root microbiota. Natural Product Reports, 2018, 35, 398-409.	10.3	89
88	The Genomes of Endophytic Bacteria. Forestry Sciences, 2018, , 141-176.	0.4	3
89	Influence of salts and metal nanoparticles on the activity and thermal stability of a recombinant chitinase from Stenotrophomonas maltophilia N4. Enzyme and Microbial Technology, 2018, 116, 6-15.	3.2	6
90	Effect of land use and soil organic matter quality on the structure and function of microbial communities in pastoral soils: Implications for disease suppression. PLoS ONE, 2018, 13, e0196581.	2.5	34
91	Isolation and Characterization of Antagonistic Bacteria <i> Paenibacillus jamilae</i> HS-26 and Their Effects on Plant Growth. BioMed Research International, 2019, 2019, 1-13.	1.9	41
92	PGPR Bioelicitors. , 2019, , 67-84.		21
93	Biocontrol efficiency of native plant growth promoting rhizobacteria against rhizome rot disease of turmeric. Biological Control, 2019, 129, 55-64.	3.0	61
94	In vitro inhibitory effect of the bacterium Serratia marcescens on Fusarium proliferatum growth and fumonisins production. Biological Control, 2020, 143, 104188.	3.0	10

# 95	ARTICLE Purification, characterization and cloning of a chitinase from Stenotrophomonas rhizophila G22. 3 Biotech, 2020, 10, 16.	IF 2.2	CITATIONS
96	Development and Application of Low-Cost and Eco-Sustainable Bio-Stimulant Containing a New Plant Growth-Promoting Strain Kosakonia pseudosacchari TL13. Frontiers in Microbiology, 2020, 11, 2044.	3.5	23
97	Comparative Genomics of Stenotrophomonas maltophilia and Stenotrophomonas rhizophila Revealed Characteristic Features of Both Species. International Journal of Molecular Sciences, 2020, 21, 4922.	4.1	21
98	The Microbiome of Leonardo da Vinci's Drawings: A Bio-Archive of Their History. Frontiers in Microbiology, 2020, 11, 593401.	3.5	24
99	Pseudomonas. , 2020, , 133-148.		4
100	Advances in Plant Microbiome and Sustainable Agriculture. Microorganisms for Sustainability, 2020, ,	0.7	10
101	Stenotrophomonas. , 2020, , 427-442.		6
102	Microbial Enzymes: Roles and Applications in Industries. Microorganisms for Sustainability, 2020, , .	0.7	12
103	Cloning, expression, and characterization of a GH 19-type chitinase with antifungal activity from Lysobacter sp. MK9-1. Journal of Bioscience and Bioengineering, 2021, 131, 348-355.	2.2	17
104	Development of indigenous microbial consortium for biocontrol management. , 2021, , 91-104.		6
105	Plant Growth-Promoting Rhizobacteria (PGPR). Advances in Environmental Engineering and Green Technologies Book Series, 2021, , 332-357.	0.4	1
106	Biocontrol potential of plant growth-promoting rhizobacteria (PGPR) against Ralstonia solanacearum: Current and future prospects. , 2021, , 153-180.		7
107	Biotechnological potential of bacteria from genera Bacillus Paraburkholderia and Pseudomonas to control seed fungal pathogens. Brazilian Journal of Microbiology, 2021, 52, 705-714.	2.0	5
108	Outer Membrane Vesicle-Mediated Codelivery of the Antifungal HSAF Metabolites and Lytic Polysaccharide Monooxygenase in the Predatory <i>Lysobacter enzymogenes</i> . ACS Chemical Biology, 2021, 16, 1079-1089.	3.4	16
109	Antifungal Properties, Abiotic Stress Resistance, and Biocontrol Ability of Bacillus mojavensis PS17. Current Microbiology, 2021, 78, 3124-3132.	2.2	19
110	Distinct Compartmentalization of Microbial Community and Potential Metabolic Function in the Fruiting Body of Tricholoma matsutake. Journal of Fungi (Basel, Switzerland), 2021, 7, 586.	3.5	4
112	Rhizosphere Bacteria in Plant Growth Promotion, Biocontrol, and Bioremediation of Contaminated Sites: A Comprehensive Review of Effects and Mechanisms. International Journal of Molecular Sciences, 2021, 22, 10529.	4.1	149
113	Biological risk assessment in the History and Historical Documentation Library of the University of Milan. Science of the Total Environment, 2021, 790, 148204.	8.0	6

#	Article	IF	CITATIONS
114	The magic and menace of metagenomics: prospects for the study of plant growth-promoting rhizobacteria. , 2007, , 279-300.		2
115	Functional Annotation of Agriculturally Important Fungi for Crop Protection: Current Research and Future Challenges. Fungal Biology, 2020, , 347-356.	0.6	13
116	Pseudomonas and other Microbes in Disease-Suppressive Soils. Sustainable Agriculture Reviews, 2012, , 93-140.	1.1	26
117	Soil: Microbial Cell Factory for Assortment with Beneficial Role in Agriculture. , 2019, , 63-92.		2
118	Microbial Enzymes in Biocontrol of Phytopathogens. Microorganisms for Sustainability, 2020, , 259-285.	0.7	15
119	Beneficial Effects of Weed Endophytic Bacteria: Diversity and Potentials of Their Usage in Sustainable Agriculture. , 2019, , 349-364.		2
120	In vitro and in vivo analyses of plant-growth-promoting potential of bacteria naturally associated with spruce trees growing on nutrient-poor soils. Applied Soil Ecology, 2020, 149, 103538.	4.3	36
121	Occurrence of chitinolytic bacteria in shrimp rusip and measurement of their chitin-degrading enzyme activities. Biodiversitas, 2017, 18, 1275-1281.	0.6	5
122	Effect of fruiting body bacteria on the growth of Tricholoma matsutake and its related molds. PLoS ONE, 2018, 13, e0190948.	2.5	36
123	Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea. PLoS ONE, 2018, 13, e0191761.	2.5	71
124	Hydrolytic Enzymes of Rhizospheric Microbes in Crop Protection. MOJ Cell Science & Report, 2016, 3, .	0.1	19
125	Vanilla Rhizobacteria as Antagonists against Fusarium oxysporum f. sp. vanillae. International Journal of Agriculture and Biology, 2015, 18, 23-30.	0.4	9
126	Characterization of a Chitinase Gene Exhibiting Antifungal Activity from a Biocontrol Bacterium Bacillus licheniformis N1. Plant Pathology Journal, 2009, 25, 344-351.	1.7	12
127	Insight Into Genes Involved in the Production of Extracellular Chitinase in a Biocontrol Bacterium Lysobacter enzymogenes C-3. Plant Pathology Journal, 2012, 28, 439-445.	1.7	4
128	Identification of an Antifungal Chitinase from a Potential Biocontrol Agent, Bacillus cereus 28-9. BMB Reports, 2005, 38, 82-88.	2.4	100
129	ALLEVIATION OF CADMIUM STRESS ON RADISH BY HUMIC ACID AND CHITOSAN AS SOIL ADDITIVES. Journal of Soil Sciences and Agricultural Engineering, 2010, 1, 597-612.	0.1	0
130	Improving the Rice Performance by Fermented Chitin Waste. International Journal of Agriculture and Biology, 2015, 18, 09-15.	0.4	0
131	Biofertilizers and Biopesticides: Microbes for Sustainable Agriculture. Microorganisms for Sustainability, 2020, , 257-279.	0.7	5

#	Article	IF	CITATIONS
133	Molecular analysis of genes involved in chitin degradation from the chitinolytic bacterium Bacillus velezensis. Antonie Van Leeuwenhoek, 2022, 115, 215-231.	1.7	15
135	Assessing hydrolytic enzyme production ability of bacterial strains from bovine manure as potential biowaste conversion candidates. Journal of Basic Microbiology, 2022, 62, 116-123.	3.3	Ο
137	Hydrolytic Enzymes from PGPR Against Plant Fungal Pathogens. Fungal Biology, 2022, , 211-238.	0.6	2
138	Hydrolytic Enzyme Producing Plant Growth-Promoting Rhizobacteria (PGPR) in Plant Growth Promotion and Biocontrol. , 2022, , 303-312.		6
139	Plant Beneficial Bacteria and Their Potential Applications in Vertical Farming Systems. Plants, 2023, 12, 400.	3.5	14
140	Evaluation of Endospore-Forming Bacteria for Suppression of Postharvest Decay of Apple Fruit. Microorganisms, 2023, 11, 81.	3.6	3
141	Rhizobacterial biomolecules for sustainable crop production and environmental management: plausible functions and molecular mechanisms. , 2023, , 1-30.		0
142	Multifaceted Impacts of Plant-Beneficial <i>Pseudomonas</i> spp. in Managing Various Plant Diseases and Crop Yield Improvement. ACS Omega, 2023, 8, 22296-22315.	3.5	10
143	Stenotrophomonas in diversified cropping systems: friend or foe?. Frontiers in Microbiology, 0, 14, .	3.5	2
144	A Unique Role of the Pyrimidine de novo Synthesis Enzyme ODCase in Lysobacter enzymogenes1. Journal of Integrative Agriculture, 2023, , .	3.5	0
145	Integrating Biological Control Agents for Enhanced Management of Apple Scab (Venturia inaequalis):		0

⁴⁵ Insights, Risks, Challenges, and Prospects. , 2024, 3, 118-146.