Piezoresistive Cement-Based Materials for Strain Sensi:

Journal of Intelligent Material Systems and Structures 13, 599-609 DOI: 10.1106/104538902031861

Citation Report

#	Article	IF	CITATIONS
1	Propagation of the Cylindrical Ion-Beam Modes in a Double Plasma. Japanese Journal of Applied Physics, 1979, 18, 1543-1548.	0.8	6
2	Discussion of "Resistance Changes during Compression of Carbon Fiber Cement Composites―by Farhad Reza, Gordon B. Batson, Jerry A. Yamamuro, and Jong S. Lee. Journal of Materials in Civil Engineering, 2005, 17, 605-605.	1.3	0
3	Effects of Strain and Damage on Strain-Sensing Ability of Carbon Fiber Cement. Journal of Materials in Civil Engineering, 2006, 18, 355-360.	1.3	34
4	Self-sensing of flexural damage and strain in carbon fiber reinforced cement and effect of embedded steel reinforcing bars. Carbon, 2006, 44, 1496-1502.	5.4	105
5	The role of electronic and ionic conduction in the electrical conductivity of carbon fiber reinforced cement. Carbon, 2006, 44, 2130-2138.	5.4	128
6	Self-sensing of flexural strain and damage in carbon fiber polymer-matrix composite by electrical resistance measurement. Carbon, 2006, 44, 2739-2751.	5.4	172
7	Model of piezoresistivity in carbon fiber cement. Cement and Concrete Research, 2006, 36, 1879-1885.	4.6	69
8	Spatially resolved self-sensing of strain and damage in carbon fiber cement. Journal of Materials Science, 2006, 41, 4823-4831.	1.7	22
9	Numerical assessment of the methods of measurement of the electrical resistance in carbon fiber reinforced cement. Smart Materials and Structures, 2007, 16, 1164-1170.	1.8	27
10	Partial replacement of carbon fiber by carbon black in multifunctional cement–matrix composites. Carbon, 2007, 45, 505-513.	5.4	162
11	Electrical-resistance-based damage self-sensing in carbon fiber reinforced cement. Carbon, 2007, 45, 710-716.	5.4	103
12	Theory of piezoresistivity for strain sensing in carbon fiber reinforced cement under flexure. Journal of Materials Science, 2007, 42, 6222-6233.	1.7	47
13	Development and testing of a nodal resistance measurement (NRM) system for composite structures. Measurement: Journal of the International Measurement Confederation, 2008, 41, 763-773.	2.5	4
14	Electrical Resistivity, Pulse Velocity, and Compressive Properties of Carbon Fiber-Reinforced Cement Mortar. Journal of Materials in Civil Engineering, 2008, 20, 93-101.	1.3	40
15	Humidity sensing property of cements with added carbon. New Carbon Materials, 2008, 23, 382-384.	2.9	14
16	Cement-based piezoelectret. Materials and Structures/Materiaux Et Constructions, 2009, 42, 541-557.	1.3	11
17	A carbon nanotube/cement composite with piezoresistive properties. Smart Materials and Structures, 2009, 18, 055010.	1.8	253
18	Electrical-resistance-based Sensing of Impact Damage in Carbon Fiber Reinforced Cement-based Materials. Journal of Intelligent Material Systems and Structures, 2010, 21, 83-105.	1.4	68

#	Article	IF	CITATIONS
19	Electrical Properties. Engineering Materials and Processes, 2010, , 203-275.	0.2	0
20	Electrical resistivity as a measure of change of state in substrates: Design, development and validation of an automated system. Measurement: Journal of the International Measurement Confederation, 2011, 44, 159-163.	2.5	13
21	Nanomedicine. , 2012, , 1644-1644.		0
23	Nanostructures for Coloration (Organisms other than Animals). , 2012, , 1790-1803.		0
25	Effects of CNT concentration level and water/cement ratio on the piezoresistivity of CNT/cement composites. Journal of Composite Materials, 2012, 46, 19-25.	1.2	132
26	Nano-FET. , 2012, , 1543-1543.		0
27	Effect of aspect ratio on strain sensing capacity of carbon fiber reinforced cement composites. Materials & Design, 2013, 51, 1085-1094.	5.1	141
28	Self-Sensing Properties of Alkali Activated Blast Furnace Slag (BFS) Composites Reinforced with Carbon Fibers. Materials, 2013, 6, 4776-4786.	1.3	61
29	Smart multifunctional cement mortar containing graphite nanoplatelet. Proceedings of SPIE, 2013, , .	0.8	26
30	Investigation on the Dielectric Properties of 0–3 Lead Zirconate Titanate-Geopolymer Composites. Ferroelectrics, 2013, 451, 84-89.	0.3	6
31	Effect of Surfactants on Pressure-Sensitivity of CNT Filled Cement Mortar Composites. Frontiers in Materials, 2014, 1, .	1.2	8
32	Electrical Resistivity of Cement-Based Sensors under a Sustained Load. Advanced Materials Research, 0, 931-932, 436-440.	0.3	3
33	Compositions of Self-Sensing Concrete. , 2014, , 13-43.		6
34	Sensing Mechanisms ofÂSelf-Sensing Concrete. , 2014, , 163-187.		5
35	Strain and damage sensing properties on multifunctional cement composites with CNF admixture. Cement and Concrete Composites, 2014, 46, 90-98.	4.6	210
36	Multifunctional materials and nanotechnology for assessing and monitoring civil infrastructures. , 2014, , 295-326.		1
37	Carbon-Nanotube-Based Self-Sensing Concrete. , 2014, , 315-359.		1
38	Structures ofÂSelf-Sensing Concrete. , 2014, , 1-11.		33

#	Article	IF	CITATIONS
39	Influence of micro-cracking on the composite resistivity of Engineered Cementitious Composites. Cement and Concrete Research, 2014, 58, 1-12.	4.6	154
40	Effect of fiber volume content on electromechanical behavior of strain-hardening steel-fiber-reinforced cementitious composites. Journal of Composite Materials, 2015, 49, 3621-3634.	1.2	57
41	Development of a portable electrical impedance tomography data acquisition system for near-real-time spatial sensing. , 2015, , .		1
42	The performance of stress-sensing smart fiber reinforced composites in moist and sodium chloride environments. Composites Part B: Engineering, 2015, 73, 89-95.	5.9	33
43	Smart cements and cement additives for oil and gas operations. Journal of Petroleum Science and Engineering, 2015, 129, 63-76.	2.1	84
44	Development of Carbon Nanotube Modified Cement Paste with Microencapsulated Phase-Change Material for Structural–Functional Integrated Application. International Journal of Molecular Sciences, 2015, 16, 8027-8039.	1.8	57
45	A 3D percolation model for conductive fibrous composites: application in cement-based sensors. Journal of Materials Science, 2015, 50, 5817-5821.	1.7	15
46	Comparative electromechanical damage-sensing behaviors of six strain-hardening steel fiber-reinforced cementitious composites under direct tension. Composites Part B: Engineering, 2015, 69, 159-168.	5.9	65
47	Intrinsic self-sensing concrete and structures: A review. Measurement: Journal of the International Measurement Confederation, 2015, 59, 110-128.	2.5	513
48	Nanoengineered Concrete. , 2016, , 2369-2379.		1
49	Reinforcement effect and mechanism of carbon fibers to mechanical and electrically conductive properties of cement-based materials. Construction and Building Materials, 2016, 125, 479-489.	3.2	168
50	Self-sensing structural composites in aerospace engineering. , 2016, , 295-331.		3
51	Structural health monitoring of carbon-material-reinforced polymers using electrical resistance measurement. International Journal of Precision Engineering and Manufacturing - Green Technology, 2016, 3, 311-321.	2.7	36
52	Experimental investigation on mechanical and piezoresistive properties of cementitious materials containing graphene and graphene oxide nanoplatelets. Construction and Building Materials, 2016, 127, 565-576.	3.2	123
53	Nanotube–Cement Composites. , 2016, , 579-602.		1
54	Effect of mixing methods on the electrical properties of cementitious composites incorporating different carbon-based materials. Construction and Building Materials, 2016, 104, 160-168.	3.2	160
55	Smart textile reinforcement with embedded stainless steel yarns for the detection of wetting and infiltration in TRC structures. Sensors and Actuators A: Physical, 2016, 243, 139-150.	2.0	13
56	Integrated self-monitoring of carbon based textile reinforced concrete beams under repeated loading in the un-cracked region. Carbon, 2016, 98, 238-249.	5.4	36

#	Article	IF	CITATIONS
57	Performance of cement-based sensors with CNT for strain sensing. Advances in Cement Research, 2016, 28, 274-284.	0.7	51
58	Continuous and embedded solutions for SHM of concrete structures using changing electrical potential in self-sensing cement-based composites. Proceedings of SPIE, 2017, , .	0.8	7
59	Cements in the 21 st century: Challenges, perspectives, and opportunities. Journal of the American Ceramic Society, 2017, 100, 2746-2773.	1.9	168
60	Effect of the fringing electric field on the apparent electric permittivity of cement-based materials. Composites Part B: Engineering, 2017, 126, 192-201.	5.9	29
61	Assessment of self-sensing capability of Engineered Cementitious Composites within the elastic and plastic ranges of cyclic flexural loading. Construction and Building Materials, 2017, 145, 1-10.	3.2	112
62	Experimental Study on Strain and Damage Inspection of Cementitious Composites In-Filled with Graphene Nanoplatelets. Key Engineering Materials, 0, 727, 1041-1045.	0.4	Ο
63	Effect of matrix cracking on electrical resistivity of high performance fiber reinforced cementitious composites in tension. Construction and Building Materials, 2017, 156, 750-760.	3.2	26
64	Damage detection, localization and quantification in conductive smart concrete structures using a resistor mesh model. Engineering Structures, 2017, 148, 924-935.	2.6	66
65	Comparative study on piezoresistive properties of CFRP tendons prepared by two different methods. Composites Part B: Engineering, 2017, 129, 124-132.	5.9	12
67	Electrical and Self-Sensing Properties of Ultra-High-Performance Fiber-Reinforced Concrete with Carbon Nanotubes. Sensors, 2017, 17, 2481.	2.1	93
68	A Sustainable Graphene Based Cement Composite. Sustainability, 2017, 9, 1229.	1.6	55
69	Biphasic DC measurement approach for enhanced measurement stability and multi-channel sampling of self-sensing multi-functional structural materials doped with carbon-based additives. Smart Materials and Structures, 2017, 26, 065008.	1.8	77
70	Strain sensing ability of metallic particulate reinforced cementitious composites: Experiments and microstructure-guided finite element modeling. Cement and Concrete Composites, 2018, 90, 225-234.	4.6	17
71	High electric permittivity of polymer-modified cement due to the capacitance of the interface between polymer and cement. Journal of Materials Science, 2018, 53, 7199-7213.	1.7	9
73	Piezoresistive behavior of CF- and CNT-based reinforced concrete beams subjected to static flexural loading: Shear failure investigation. Construction and Building Materials, 2018, 168, 266-279.	3.2	100
74	Understanding the increase of the electric permittivity of cement caused by latex addition. Composites Part B: Engineering, 2018, 134, 177-185.	5.9	19
75	Electro-mechanical self-sensing response of ultra-high-performance fiber-reinforced concrete in tension. Composites Part B: Engineering, 2018, 134, 254-264.	5.9	62
76	Design and characterization of self-sensing steel fiber reinforced concrete. MATEC Web of Conferences, 2018, 199, 11008.	0.1	4

#	Article	IF	CITATIONS
77	Evaluating the Self-Sensing Ability of Cement Mortars Manufactured with Graphene Nanoplatelets, Virgin or Recycled Carbon Fibers through Piezoresistivity Tests. Sustainability, 2018, 10, 4013.	1.6	48
78	Assessment of Rheological and Piezoresistive Properties of Graphene based Cement Composites. International Journal of Concrete Structures and Materials, 2018, 12, .	1.4	44
79	Electromechanical Response of High-Performance Fiber-Reinforced Cementitious Composites Containing Milled Glass Fibers under Tension. Materials, 2018, 11, 1115.	1.3	7
80	Stainless Steel Microfibers for Strain-Sensing Smart Clay Bricks. Journal of Sensors, 2018, 2018, 1-8.	0.6	11
81	Effect of curing age on the self-sensing behavior of carbon-based engineered cementitious composites (ECC) under monotonic flexural loading scenario. MATEC Web of Conferences, 2018, 162, 01034.	0.1	11
82	Concrete with self-sensing properties. , 2018, , 501-530.		8
83	An Industry Survey on the use of Graphene-Reinforced Concrete for Self-Sensing Applications. , 2019, , .		4
84	Mechanical and Self-Sensing Properties of Multiwalled Carbon Nanotube-Reinforced ECCs. Advances in Materials Science and Engineering, 2019, 2019, 1-9.	1.0	10
85	State of the Art on Sensing Capability of Poorly or Nonconductive Matrixes with a Special Focus on Portland Cement–Based Materials. Journal of Materials in Civil Engineering, 2019, 31, .	1.3	5
86	Preparation and piezoresistive properties of carbon fiber-reinforced alkali-activated fly ash/slag mortar. Construction and Building Materials, 2019, 222, 738-749.	3.2	49
87	Graphene nanoplatelet reinforced concrete for self-sensing structures – A lifecycle assessment perspective. Journal of Cleaner Production, 2019, 240, 118202.	4.6	55
88	A review on material design, performance, and practical application of electrically conductive cementitious composites. Construction and Building Materials, 2019, 229, 116892.	3.2	91
89	Study on self-monitoring of multiple cracked concrete beams with multiphase conductive materials subjected to bending. Smart Materials and Structures, 2019, 28, 095003.	1.8	14
90	Self-stress sensing smart concrete containing fine steel slag aggregates and steel fibers under high compressive stress. Construction and Building Materials, 2019, 220, 149-160.	3.2	72
91	Piezoresistive Carbon Foams in Sensing Applications. Frontiers in Materials, 2019, 6, .	1.2	24
92	Enhancing Damage-Sensing Capacity of Strain-Hardening Macro-Steel Fiber-Reinforced Concrete by Adding Low Amount of Discrete Carbons. Materials, 2019, 12, 938.	1.3	15
93	Spatial damage sensing ability of metallic particulate-reinforced cementitious composites: Insights from electrical resistance tomography. Materials and Design, 2019, 175, 107817.	3.3	14
94	Fluctuation of electrical properties of carbon-based nanomaterials/cement composites: Case studies and parametric modeling. Cement and Concrete Composites, 2019, 102, 55-70.	4.6	23

#	Article	IF	CITATIONS
95	Study on pressure sensitivity of smart polymer concrete based on steel slag. Measurement: Journal of the International Measurement Confederation, 2019, 140, 14-21.	2.5	15
96	Effect of steel fiber and carbon black on the self-sensing ability of concrete cracks under bending. Construction and Building Materials, 2019, 207, 630-639.	3.2	67
97	Piezoresistive Load Sensing and Percolation Phenomena in Portland Cement Composite Modified with In-Situ Synthesized Carbon Nanofibers. Nanomaterials, 2019, 9, 594.	1.9	19
98	Effect of Multiwalled Carbon Nanotubes on Sensing Crack Initiation and Ultimate Strength of Cement Nanocomposites. Arabian Journal for Science and Engineering, 2019, 44, 1403-1413.	1.7	10
99	A microstructure-guided numerical approach to evaluate strain sensing and damage detection ability of random heterogeneous self-sensing structural materials. Computational Materials Science, 2019, 156, 195-205.	1.4	21
100	Study of hydration and hardening processes of self-sensing cement-based materials with carbon black content. Journal of Thermal Analysis and Calorimetry, 2020, 139, 807-815.	2.0	17
101	Nanotechnology Research and Development in Upstream Oil and Gas. Energy Technology, 2020, 8, 1901216.	1.8	28
102	Direct tensile self-sensing and fracture energy of steel-fiber-reinforced concretes. Composites Part B: Engineering, 2020, 183, 107714.	5.9	48
103	Self-sensing capabilities of cement-based sensor with layer-distributed conductive rubber fibres. Sensors and Actuators A: Physical, 2020, 301, 111763.	2.0	66
104	Detecting crack and damage location in self-sensing fiber reinforced cementitious composites. Construction and Building Materials, 2020, 240, 117973.	3.2	13
105	Strain sensitivity of steel-fiber-reinforced industrial smart concrete. Journal of Intelligent Material Systems and Structures, 2020, 31, 127-136.	1.4	23
106	Miniature Resistance Measurement Device for Structural Health Monitoring of Reinforced Concrete Infrastructure. Sensors, 2020, 20, 4313.	2.1	18
107	A Review of Microscale, Rheological, Mechanical, Thermoelectrical and Piezoresistive Properties of Graphene Based Cement Composite. Nanomaterials, 2020, 10, 2076.	1.9	41
108	About electrical resistivity variation during drying and improvement of the sensing behavior of carbon fiber-reinforced smart concrete. Construction and Building Materials, 2020, 264, 120699.	3.2	21
109	Self-Sensing Alkali-Activated Materials: A Review. Minerals (Basel, Switzerland), 2020, 10, 885.	0.8	21
110	Mechanical strength and self-sensing capacity of smart cementitious composite containing conductive rubber crumbs. Journal of Intelligent Material Systems and Structures, 2020, 31, 1325-1340.	1.4	29
111	Effects of steel slag aggregate size and content on piezoresistive responses of smart ultra-high-performance fiber-reinforced concretes. Sensors and Actuators A: Physical, 2020, 305, 111925.	2.0	33
112	Connecting concrete technology and machine learning: proposal for application of ANNs and CNT/concrete composites in structural health monitoring. RSC Advances, 2020, 10, 23038-23048.	1.7	13

#	Article	IF	CITATIONS
113	In situ-grown carbon nanotubes enhanced cement-based materials with multifunctionality. Cement and Concrete Composites, 2020, 108, 103518.	4.6	60
114	Mechanical and electrical properties of concrete incorporating an iron-particle contained nano-graphite by-product. Construction and Building Materials, 2021, 270, 121377.	3.2	20
115	A Comparison of Metaheuristic Algorithms for Solving the Piezoresistive Inverse Problem in Self-Sensing Materials. IEEE Sensors Journal, 2021, 21, 659-666.	2.4	9
116	Anisotropic electrical and piezoresistive sensing properties of cement-based sensors with aligned carbon fibers. Cement and Concrete Composites, 2021, 116, 103873.	4.6	33
117	Piezoelectric behaviour of hybrid engineered cementitious composites containing shape-memory alloy, steel, and carbon fibres under compressive stress cycles. Construction and Building Materials, 2021, 273, 121671.	3.2	11
118	Development of self-sensing cementitious composites incorporating CNF and hybrid CNF/CF. Construction and Building Materials, 2021, 273, 121659.	3.2	22
119	Strain sensing efficiency of hierarchical nano-engineered smart twill-weave composites: Evaluations using multiscale numerical simulations. Composite Structures, 2021, 255, 112905.	3.1	7
120	Piezoresistive carbon-containing ceramic nanocomposites – A review. Open Ceramics, 2021, 5, 100057.	1.0	24
121	Novel humidity sensors based on nanomodified Portland cement. Scientific Reports, 2021, 11, 8189.	1.6	8
122	Modifying self-sensing cement-based composites through multiscale composition. Measurement Science and Technology, 2021, 32, 074002.	1.4	8
123	Research on the self-sensing and mechanical properties of aligned stainless steel fiber-reinforced reactive powder concrete. Cement and Concrete Composites, 2021, 119, 104001.	4.6	62
124	Toward a better understanding of multifunctional cement-based materials: The impact of graphite nanoplatelets (GNPs). Ceramics International, 2021, 47, 20019-20031.	2.3	32
125	Noncontact stress measurement technique for concrete structure using photoluminescence piezospectroscopy. Journal of Civil Structural Health Monitoring, 2021, 11, 1189-1200.	2.0	0
126	Applications of Cement-Based Smart Composites to Civil Structural Health Monitoring: A Review. Applied Sciences (Switzerland), 2021, 11, 8530.	1.3	12
127	Self-Sensing Cementitious Composites: Review and Perspective. Nanomaterials, 2021, 11, 2355.	1.9	31
128	Self-localization of the flexural cracks of fiber reinforced concrete beams. Construction and Building Materials, 2021, 302, 124364.	3.2	5
129	Integrating multiscale numerical simulations with machine learning to predict the strain sensing efficiency of nano-engineered smart cementitious composites. Materials and Design, 2021, 209, 109995.	3.3	11
130	Development of a smart concrete block with an eccentric load sensing capacity. Construction and Building Materials, 2021, 306, 124881.	3.2	8

#	Article	IF	CITATIONS
131	Enhancing self-stress sensing ability of smart ultra-high performance concretes under compression by using nano functional fillers. Journal of Building Engineering, 2021, 44, 102717.	1.6	13
132	The Strain Sensitivity of Coal Reinforced Smart Concrete by Piezoresistive Effect. Teknik Dergi/Technical Journal of Turkish Chamber of Civil Engineers, 2022, 33, 11507-11519.	O.5	5
133	Multifunctional and Smart Carbon Nanotube Reinforced Cement-Based Materials. , 2011, , 1-47.		70
134	Multifunctional Carbon Black Engineered Cementitious Composites for the Protection of Critical Infrastructure. RILEM Bookseries, 2012, , 99-106.	0.2	12
135	General Introduction of Smart and Multifunctional Concrete. , 2017, , 1-9.		2
136	Smart nano-engineered cementitious composite sensors for vibration-based health monitoring of large structures. Sensors and Actuators A: Physical, 2020, 311, 112088.	2.0	30
137	Effect of layer-distributed carbon nanotube (CNT) on mechanical and piezoresistive performance of intelligent cement-based sensor. Nanotechnology, 2020, 31, 505503.	1.3	22
138	Smart bricks for strain sensing and crack detection in masonry structures. Smart Materials and Structures, 2018, 27, 015009.	1.8	44
139	The effect of moisture and reinforcement on the self-sensing properties of hybrid-fiber-reinforced concrete. Engineering Research Express, 2020, 2, 025026.	0.8	8
140	Strain monitoring in masonry structures using smart bricks. , 2018, , .		3
141	Variables affecting strain sensing function in cementitious composites with carbon fibers. Computers and Concrete, 2011, 8, 229-241.	0.7	28
142	Effect of Moisture on Piezoresistivity of Carbon Fiber-Reinforced Cement Paste. ACI Materials Journal, 2008, 105, .	0.3	4
143	Carbon Fiber-Reinforced Cement-Based Composites for Tensile Strain Sensing. ACI Materials Journal, 2017, 114, .	0.3	10
144	Self-Sensing of Flexural Damage in Large-Scale Steel-Reinforced Mortar Beams. ACI Materials Journal, 2019, 116, .	0.3	15
145	Electrical Resistivity and Electrical Impedance Measurement in Mortar and Concrete Elements: A Systematic Review. Applied Sciences (Switzerland), 2020, 10, 9152.	1.3	50
146	Efecto de la adición de nanofibras de carbono en las propiedades mecánicas y de durabilidad de materiales cementantes. Materiales De Construccion, 2012, 62, 343-357.	0.2	32
148	Nanoengineered Concrete. , 2015, , 1-11.		0
149	Strain measurement in concrete using embedded carbon roving-based sensors. Materialpruefung/Materials Testing, 2016, 58, 767-771.	0.8	0

#	Article	IF	CITATIONS
150	Study on temperature and damage sensing capability of Portland cement paste through the thermoelectric measurements. Proceedings of SPIE, 2017, , .	0.8	0
151	Self-Sensing Health of Carbon Composite Pultrusion Strength Members. , 0, , .		0
152	Graphene and Its Composites. Engineering Materials, 2021, , 21-35.	0.3	1
153	Multifunctional behavior of composite beams incorporating hybridized carbon-based materials under cyclic loadings. Engineering Structures, 2022, 250, 113429.	2.6	8
154	Multiple Analytical Models to Evaluate the Impact of Carbon Nanotubes on the Electrical Resistivity and Compressive Strength of the Cement Paste. Sustainability, 2021, 13, 12544.	1.6	17
155	About the self-sensing behavior of smart concrete and its interaction with the carbon fiber percolation status, sand connectivity status and grain size distribution. Construction and Building Materials, 2022, 324, 126609.	3.2	14
156	Additive manufacturing of ceramic materials for energy applications: Road map and opportunities. Journal of the European Ceramic Society, 2022, 42, 3049-3088.	2.8	62
157	Effect of Gasification Char and Recycled Carbon Fibres on the Electrical Impedance of Concrete Exposed to Accelerated Degradation. Sustainability, 2022, 14, 1775.	1.6	4
159	Multifunctional cementitious composites with integrated self-sensing and self-healing capacities using carbon black and slaked lime. Ceramics International, 2022, 48, 19851-19863.	2.3	19
160	Electrical and Piezoresistive Properties of Steel Fiber Cement-based Composites Aligned by a Magnetic Field. Journal Wuhan University of Technology, Materials Science Edition, 2022, 37, 229-240.	0.4	4
161	Experimental study of the electrical resistance of graphene oxide-reinforced cement-based composites with notch or rebar. Journal of Building Engineering, 2022, 51, 104331.	1.6	2
162	Development of Multi-Scale Carbon Nanofiber and Nanotube-Based Cementitious Composites for Reliable Sensing of Tensile Stresses. Nanomaterials, 2022, 12, 74.	1.9	4
164	Textile-Based 3D Truss Reinforcement for Cement-Based Composites Subjected to Impact Loading - Part II: <i>In Situ</i> Stress Analysis under Quasistatic and Dynamic Tensile Loading. Materials Science Forum, 0, 1063, 111-119.	0.3	2
165	Study on self-sensing capabilities of smart cements filled with graphene oxide under dynamic cyclic loading. Journal of Building Engineering, 2022, 58, 104775.	1.6	8
166	An artificial intelligence-based conductivity prediction and feature analysis of carbon fiber reinforced cementitious composite for non-destructive structural health monitoring. Engineering Structures, 2022, 266, 114578.	2.6	8
167	Self-sensing performance of cement-based sensor with carbon black and polypropylene fibre subjected to different loading conditions. Journal of Building Engineering, 2022, 59, 105003.	1.6	8
168	Electrical impedance behaviour of carbon fibre reinforced cement-based sensors at different moisture contents. Construction and Building Materials, 2022, 353, 129049.	3.2	15
169	Multifunctional materials and nanocomposite sensors for civil infrastructure monitoring. , 2022, , 497-553.		0

#	Article	IF	CITATIONS
170	Mechanical properties and self-sensing ability of amorphous metallic fiber-reinforced concrete. MATEC Web of Conferences, 2022, 364, 02004.	0.1	0
171	Experimental Investigation of Electrical Resistance Properties of High Performance Concretes Produced With Different Types of Additives. Uluslararası Muhendislik Arastirma Ve Gelistirme Dergisi, 2022, 14, 958-966.	0.1	0
172	Electrical resistance and self-sensing properties of pressure-sensitive materials with graphite filler in Kuralon fiber concrete. Materials Science-Poland, 2022, 40, 223-239.	0.4	0
173	Effects of graphene nanoplatelets type on self-sensing properties of cement mortar composites. Construction and Building Materials, 2022, 359, 129488.	3.2	16
174	Nanocarbon black-based ultra-high-performance concrete (UHPC) with self-strain sensing capability. Construction and Building Materials, 2022, 359, 129496.	3.2	11
175	Smart Materials in Oil and Gas Industry: Application. , 2022, , 1689-1729.		0
176	Electromechanical response of strain-hardening fiber-reinforced cementitious composites (SH-FRCCs) under direct tension: A review. Sensors and Actuators A: Physical, 2023, 349, 114096.	2.0	3
177	Piezoresistivity and AC Impedance Spectroscopy of Cement-Based Sensors: Basic Concepts, Interpretation, and Perspective. Materials, 2023, 16, 768.	1.3	3
178	Effect of rGO/GNP on the electrical conductivity and piezoresistance of cement-based composite subjected to dynamic loading. Construction and Building Materials, 2023, 368, 130340.	3.2	12
179	New Materials and Technologies for Durability and Conservation of Building Heritage. Materials, 2023, 16, 1190.	1.3	2
180	Recent Advances in Properties and Applications of Carbon Fiber-Reinforced Smart Cement-Based Composites. Materials, 2023, 16, 2552.	1.3	6