Effects of low pass filtering on the intelligibility of speed without dead regions at high frequencies

Journal of the Acoustical Society of America 112, 1133-1144 DOI: 10.1121/1.1498853

Citation Report

#	Article	IF	CITATIONS
1	Dead Regions in the Cochlea: Diagnosis, Perceptual Consequences, and Implications for the Fitting of Hearing Aids. Trends in Amplification, 2001, 5, 1-34.	2.4	189
2	Articulation index predictions for hearing-impaired listeners with and without cochlear dead regions. Journal of the Acoustical Society of America, 2002, 111, 2545-2548.	0.5	28
3	Psychoacoustics of normal and impaired hearing. British Medical Bulletin, 2002, 63, 121-134.	2.7	28
4	Response to "Articulation index predictions for hearing-impaired listeners with and without cochlear dead regions―[J. Acoust. Soc. Am.111, 2545–2548 (2002)]. Journal of the Acoustical Society of America, 2002, 111, 2549-2550.	0.5	14
5	Application of the TEN test to hearing-impaired teenagers with severe-to-profound hearing loss: Aplicación de la prueba TEN en adolescentes con hipoacusias severas a profundas. International Journal of Audiology, 2003, 42, 465-474.	0.9	28
6	The effects of hearing loss on the contribution of high- and low-frequency speech information to speech understanding. Journal of the Acoustical Society of America, 2003, 113, 1706-1717.	0.5	59
7	The Best of 2002. Hearing Journal, 2003, 56, 47-50.	0.1	0
8	Do tests for cochlear dead regions provide important information for fitting hearing aids? (L). Journal of the Acoustical Society of America, 2004, 115, 1420-1423.	0.5	23
9	Interference and Enhancement Effects on Interaural Time Discrimination and Level Discrimination in Listeners With Normal Hearing and Those With Hearing Loss. American Journal of Audiology, 2004, 13, 80-95.	0.5	6
10	Dead Regions in the Cochlea: Conceptual Foundations, Diagnosis, and Clinical Applications. Ear and Hearing, 2004, 25, 98-116.	1.0	177
11	Limiting High-Frequency Hearing Aid Gain in Listeners with and without Suspected Cochlear Dead Regions. Journal of the American Academy of Audiology, 2004, 15, 498-507.	0.4	49
12	The effect on speech intelligibility of varying compression time constants in a digital hearing aid. International Journal of Audiology, 2004, 43, 399-409.	0.9	21
13	Quantifying and Responding to Patient Needs and Expectations. Journal of the American Academy of Audiology, 2005, 16, 789-808.	0.4	2
14	A Clinical Perspective on Cochlear Dead Regions: Intelligibility of Speech and Subjective Hearing Aid Benefit. Journal of the American Academy of Audiology, 2005, 16, 600-613.	0.4	47
15	Reassessment of cochlear dead regions in hearing-impaired teenagers with severe-to-profound hearing loss. International Journal of Audiology, 2005, 44, 470-477.	0.9	10
16	Multiple Looks in Speech Sound Discrimination in Adults. Journal of Speech, Language, and Hearing Research, 2005, 48, 922-943.	0.7	20
17	Preservation of residual hearing with cochlear implantation: How and why. Acta Oto-Laryngologica, 2005, 125, 481-491.	0.3	240
18	Deficits in speech perception predict language learning impairment. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14110-14115.	3.3	171

#	Article	IF	CITATIONS
19	Improvements in speech perception with an experimental nonlinear frequency compression hearing device. International Journal of Audiology, 2005, 44, 281-292.	0.9	123
20	Development of a fast method for determining psychophysical tuning curves. International Journal of Audiology, 2005, 44, 408-420.	0.9	87
21	Benefits of audibility for listeners with severe high-frequency hearing loss. Hearing Research, 2005, 210, 42-52.	0.9	26
22	Speech masking release in listeners with flat hearing loss: Effects of masker fluctuation rate on identification scores and phonetic feature reception. International Journal of Audiology, 2006, 45, 487-495.	0.9	48
23	Detecting dead regions using psychophysical tuning curves: A comparison of simultaneous and forward masking. International Journal of Audiology, 2006, 45, 463-476.	0.9	48
24	Linear and nonlinear hearing aid fittings – 2. Patterns of candidature. International Journal of Audiology, 2006, 45, 153-171.	0.9	134
25	Modification of the Threshold Equalising Noise (TEN) test for cochlear dead regions for use with steeply sloping high-frequency hearing loss. International Journal of Audiology, 2006, 45, 91-98.	0.9	14
26	Frequency-compression outcomes in listeners with steeply sloping audiograms. International Journal of Audiology, 2006, 45, 619-629.	0.9	91
27	Identifying dead regions in the cochlea through the TEN Test. Brazilian Journal of Otorhinolaryngology, 2006, 72, 673-682.	0.4	3
28	Residual Hearing Conservation and Electroacoustic Stimulation with the Nucleus 24 Contour Advance Cochlear Implant. Otology and Neurotology, 2006, 27, 624-633.	0.7	204
29	What'S new from NAL in hearing aid prescriptions?. Hearing Journal, 2006, 59, 10-16.	0.1	15
30	The Effects of High-Frequency Amplification on the Objective and Subjective Performance of Hearing Instrument Users With Varying Degrees of High-Frequency Hearing Loss. Journal of Speech, Language, and Hearing Research, 2006, 49, 616-627.	0.7	34
31	The effects of hearing loss on the contribution of high- and low-frequency speech information to speech understanding. II. Sloping hearing loss. Journal of the Acoustical Society of America, 2006, 119, 1752-1763.	0.5	74
32	Perceptual adaptation by normally hearing listeners to a simulated "hole―in hearing. Journal of the Acoustical Society of America, 2006, 120, 4019-4030.	0.5	34
33	Hearing Loss and the Limits of Amplification. Audiology and Neuro-Otology, 2006, 11, 2-5.	0.6	38
34	Using transposition to improve consonant discrimination and detection for listeners with severe high-frequency hearing loss. International Journal of Audiology, 2007, 46, 293-308.	0.9	71
35	Contribution of High Frequencies to Speech Recognition in Quiet and Noise in Listeners With Varying Degrees of High-Frequency Sensorineural Hearing Loss. Journal of Speech, Language, and Hearing Research, 2007, 50, 819-834.	0.7	63
36	Speech recognition as a function of high-pass filter cutoff frequency for people with and without low-frequency cochlear dead regions. Journal of the Acoustical Society of America, 2007, 122, 542-553.	0.5	30

#	Article	IF	CITATIONS
37	Repeatability of the TEN(HL) test for detecting cochlear dead regions. International Journal of Audiology, 2007, 46, 575-584.	0.9	16
38	Prevalence of Dead Regions in Subjects with Sensorineural Hearing Loss. Ear and Hearing, 2007, 28, 231-241.	1.0	69
39	Dead regions in the cochlea at high frequencies: implications for the adaptation to hearing aids. Brazilian Journal of Otorhinolaryngology, 2007, 73, 299-307.	0.4	5
40	Diagnosing Cochlear "Dead―Regions and Its Importance in the Auditory Rehabilitation Process. Brazilian Journal of Otorhinolaryngology, 2007, 73, 556-561.	0.4	3
41	Combined acoustic and electric hearing: Preserving residual acoustic hearing. Hearing Research, 2008, 242, 164-171.	0.9	127
42	Effects of moderate cochlear hearing loss on the ability to benefit from temporal fine structure information in speech. Journal of the Acoustical Society of America, 2008, 123, 1140-1153.	0.5	163
43	Factors Affecting the Benefits of High-Frequency Amplification. Journal of Speech, Language, and Hearing Research, 2008, 51, 798-813.	0.7	27
44	High-Frequency Amplification and Sound Quality in Listeners With Normal Through Moderate Hearing Loss. Journal of Speech, Language, and Hearing Research, 2008, 51, 160-172.	0.7	81
45	Spectro-Temporal Characteristics of Speech at High Frequencies, and the Potential for Restoration of Audibility to People with Mild-to-Moderate Hearing Loss. Ear and Hearing, 2008, 29, 907-922.	1.0	92
46	Evaluation of an Aided TEN Test for Diagnosis of Dead Regions in the Cochlea. Ear and Hearing, 2008, 29, 392-400.	1.0	0
47	Compressão de freqüências e suas implicações no reconhecimento de fala. PrÃ3-fono: Revista De Atualização CientÁfica, 2009, 21, 149-154.	0.5	2
48	Voiced Initial Consonant Perception Deficits in Older Listeners With Hearing Loss and Good and Poor Word Recognition. Journal of Speech, Language, and Hearing Research, 2009, 52, 118-129.	0.7	3
49	Evaluation of a frequency transposition algorithm using wearable hearing aids. International Journal of Audiology, 2009, 48, 384-393.	0.9	27
50	Fast method for psychophysical tuning curve measurement in school-age children. International Journal of Audiology, 2009, 48, 546-553.	0.9	19
51	An Evaluation of Frequency Transposition for Hearing-impaired School-age Children. Deafness and Education International, 2009, 11, 62-82.	0.8	11
52	Frequency-Lowering Devices for Managing High-Frequency Hearing Loss: A Review. Trends in Amplification, 2009, 13, 87-106.	2.4	78
53	Factors Affecting Outcomes on the TEN (SPL) Test in Adults with Hearing Loss. Journal of the American Academy of Audiology, 2009, 20, 251-263.	0.4	11
55	Amplitude Modulation Detection by Listeners with Unilateral Dead Regions. Journal of the American Academy of Audiology, 2009, 20, 597-606.	0.4	1

#	Article	IF	CITATIONS
56	Perception of speech simulating different configurations of hearing loss in normal hearing individuals. Clinical Linguistics and Phonetics, 2009, 23, 680-687.	0.5	0
57	The Signalâ€Cognition interface: Interactions between degraded auditory signals and cognitive processes. Scandinavian Journal of Psychology, 2009, 50, 385-393.	0.8	98
58	Speechâ€perceptionâ€inâ€noise deficits in dyslexia. Developmental Science, 2009, 12, 732-745.	1.3	261
59	Effects of low-pass filtering on the judgment of vocal affect in speech directed to infants, adults and foreigners. Speech Communication, 2009, 51, 210-216.	1.6	25
60	Relative importance of different spectral bands to consonant identification: Relevance for frequency transposition in hearing aids. International Journal of Audiology, 2009, 48, 334-345.	0.9	9
61	Effect of presentation level on diagnosis of dead regions using the threshold equalizing noise test. International Journal of Audiology, 2009, 48, 55-62.	0.9	3
62	Dead zones: What are they and what do you do about them?. Hearing Journal, 2009, 62, 10-14.	0.1	2
63	Frequency Tuning Curves Derived from Auditory Steady State Evoked Potentials: A Proof-of-Concept Study. Ear and Hearing, 2009, 30, 43-53.	1.0	9
65	How Internet Telephony Could Improve Communication for Hearing-Impaired Individuals. Otology and Neurotology, 2010, 31, 1014-1021.	0.7	11
66	Temporal Resolution in Regions of Normal Hearing and Speech Perception in Noise for Adults with Sloping High-Frequency Hearing Loss. Ear and Hearing, 2010, 31, 115-125.	1.0	34
67	Diagnosing Cochlear Dead Regions in Children. Ear and Hearing, 2010, 31, 238-246.	1.0	15
68	Evaluation of the CAMEQ2-HF Method for Fitting Hearing Aids With Multichannel Amplitude Compression. Ear and Hearing, 2010, 31, 657-666.	1.0	17
69	Advantages of a non-linear frequency compression algorithm in noise. European Archives of Oto-Rhino-Laryngology, 2010, 267, 1045-1053.	0.8	49
70	Optimisation of Service Provision for Adults with Severe and Profound Hearing Loss. Cochlear Implants International, 2010, 11, 37-42.	0.5	0
71	Psychophysical tuning curves and recognition of highpass and lowpass filtered speech for a person with an inverted V-shaped audiogram. Journal of the Acoustical Society of America, 2010, 127, 660-663.	0.5	5
72	Effect of spatial separation, extended bandwidth, and compression speed on intelligibility in a competing-speech task. Journal of the Acoustical Society of America, 2010, 128, 360-371.	0.5	71
73	Clinical Experience with the Active Middle Ear Implant Vibrant Soundbridge in Sensorineural Hearing Loss. Advances in Oto-Rhino-Laryngology, 2010, 69, 51-58.	1.6	18
74	The EarLens system: New sound transduction methods. Hearing Research, 2010, 263, 104-113.	0.9	25

#	Article	IF	CITATIONS
75	Effect of linear and warped spectral transposition on consonant identification by normal-hearing listeners with a simulated dead region. International Journal of Audiology, 2010, 49, 420-433.	0.9	13
76	Preliminary evaluation of a method for fitting hearing aids with extended bandwidth. International Journal of Audiology, 2010, 49, 741-753.	0.9	48
77	Electric-Acoustic Stimulation of the Auditory System: A Review of the First Decade. Audiology and Neuro-Otology, 2011, 16, 1-30.	0.6	166
79	Temporary off-frequency listening after noise trauma. Hearing Research, 2011, 282, 81-91.	0.9	10
80	Noise on, voicing off: Speech perception deficits in children with specific language impairment. Journal of Experimental Child Psychology, 2011, 110, 362-372.	0.7	40
81	Cochlear Dead Regions in Typical Hearing Aid Candidates: Prevalence and Implications for Use of High-Frequency Speech Cues. Ear and Hearing, 2011, 32, 339-348.	1.0	35
82	Effects of Degree and Configuration of Hearing Loss on the Contribution of High- and Low-Frequency Speech Information to Bilateral Speech Understanding. Ear and Hearing, 2011, 32, 543-555.	1.0	55
83	Preliminary results of a novel enhancement method for high-frequency hearing loss. Computer Methods and Programs in Biomedicine, 2011, 102, 277-287.	2.6	8
84	Relationship Between Age of Hearing-Loss Onset, Hearing-Loss Duration, and Speech Recognition in Individuals with Severe-to-Profound High-Frequency Hearing Loss. JARO - Journal of the Association for Research in Otolaryngology, 2011, 12, 519-534.	0.9	15
86	Transitioning Hearing Aid Users with Severe and Profound Loss to a New Gain/Frequency Response: Benefit, Perception, and Acceptance. Journal of the American Academy of Audiology, 2011, 22, 168-180.	0.4	6
87	The Effect of Frequency Transposition on Speech Perception in Adolescents and Young Adults with Profound Hearing Loss. Deafness and Education International, 2011, 13, 17-33.	0.8	3
88	Implications of High-Frequency Cochlear Dead Regions for Fitting Hearing Aids to Adults With Mild to Moderately Severe Hearing Loss. Ear and Hearing, 2012, 33, 573-587.	1.0	15
89	Agreement between psychophysical tuning curves and the threshold equalizing noise test in dead region identification. International Journal of Audiology, 2012, 51, 456-464.	0.9	6
90	La transposición frecuencial. Incidencia en las habilidades de identificación y el reconocimiento auditivo en jóvenes con pérdidas auditivas profundas. Revista De Logopedia, Foniatria Y Audiologia, 2012, 32, 7-13.	0.4	0
91	Noise-Induced Hearing Loss. Springer Handbook of Auditory Research, 2012, , .	0.3	20
92	On the development of a frequency-lowering system that enhances place-of-articulation perception. Speech Communication, 2012, 54, 147-160.	1.6	12
93	Simulating psychophysical tuning curves in listeners with dead regions. International Journal of Audiology, 2013, 52, 533-544.	0.9	3
94	A Brief Overview of Factors Affecting Speech Intelligibility of People With Hearing Loss: Implications for Amplification. American Journal of Audiology, 2013, 22, 306-309.	0.5	26

#	Article	IF	CITATIONS
95	Individual Variability in Recognition of Frequency-Lowered Speech. Seminars in Hearing, 2013, 34, 086-109.	0.5	42
97	Psychophysics, Fitting, and Signal Processing for Combined Hearing Aid and Cochlear Implant Stimulation. Ear and Hearing, 2013, 34, 685-700.	1.0	55
98	Using a Vocoder-Based Frequency-Lowering Method and Spectral Enhancement to Improve Place-of-Articulation Perception for Hearing-Impaired Listeners. Ear and Hearing, 2013, 34, 300-312.	1.0	5
99	The Effect of Low-Pass Filtering on Identification of Nonsense Syllables in Quiet by School-Age Children With and Without Cochlear Dead Regions. Ear and Hearing, 2013, 34, 458-469.	1.0	11
100	Cochlear Dead Regions in Adults and Children: Diagnosis and Clinical Implications. Seminars in Hearing, 2013, 34, 037-050.	0.5	14
101	Repeatability, agreement, and feasibility of using the threshold equalizing noise test and fast psychophysical tuning curves in a clinical setting. International Journal of Audiology, 2014, 53, 745-752.	0.9	9
102	Effects of compression and onset/offset asynchronies on the detection of one tone in the presence of another. Journal of the Acoustical Society of America, 2014, 135, 2902-2912.	0.5	4
103	The perceptual significance of high-frequency energy in the human voice. Frontiers in Psychology, 2014, 5, 587.	1.1	89
104	Spatial Separation Benefit for Unaided and Aided Listening. Ear and Hearing, 2014, 35, 72-85.	1.0	28
105	Prevalence of Cochlear Dead Regions in New Referrals and Existing Adult Hearing Aid Users. Ear and Hearing, 2014, 35, e99-e109.	1.0	19
106	Effects of Nonlinear Frequency Compression on Speech Identification in Children With Hearing Loss. Ear and Hearing, 2014, 35, 353-365.	1.0	24
107	Cochlear Implantation With the Nucleus Slim Straight Electrode in Subjects With Residual Low-Frequency Hearing. Ear and Hearing, 2014, 35, e33-e43.	1.0	65
108	Reduction in High-Frequency Hearing Aid Gain Can Improve Performance in Patients With Contralateral Cochlear Implant: A Pilot Study. American Journal of Audiology, 2015, 24, 462-468.	0.5	9
109	Extended High-Frequency Bandwidth Improves Speech Reception in the Presence of Spatially Separated Masking Speech. Ear and Hearing, 2015, 36, e214-e224.	1.0	64
110	Study of the long-term effects of frequency compression by behavioral verbal tests in adults. CoDAS, 2015, 27, 37-43.	0.2	3
111	Spoken Word Recognition Errors in Speech Audiometry: A Measure of Hearing Performance?. BioMed Research International, 2015, 2015, 1-8.	0.9	4
112	Optimization of Frequency Lowering Algorithms for Getting the Highest Speech Intelligibility Improvement by Hearing Loss Simulation. Journal of Medical Systems, 2015, 39, 64.	2.2	0
113	Effects of wide dynamic-range compression on the perceived clarity of individual musical instruments. Journal of the Acoustical Society of America, 2015, 137, 1867-1876.	0.5	9

#	Article	IF	CITATIONS
114	Processing Complex Sounds Passing through the Rostral Brainstem: The New Early Filter Model. Frontiers in Neuroscience, 2016, 10, 136.	1.4	24
115	Multicenter clinical trial of the Nucleus Hybrid S8 cochlear implant: Final outcomes. Laryngoscope, 2016, 126, 962-973.	1.1	113
116	Nonlinear frequency compression: Influence of start frequency and input bandwidth on consonant and vowel recognition. Journal of the Acoustical Society of America, 2016, 139, 938-957.	0.5	21
117	TRADUCCIÓN ESTIMULACIÓN ELECTRO-ACÚSTICA UNA OPCIÓN CUANDO LOS AUDÃFONOS NO SON SUFICIENTE. Revista Médica ClÂnica Las Condes, 2016, 27, 787-797.	0.2	Ο
118	Brainstem Encoding of Aided Speech in Hearing Aid Users with Cochlear Dead Region(s). International Archives of Otorhinolaryngology, 2016, 20, 226-234.	0.3	2
120	Speech Perception and Hearing Aids. Springer Handbook of Auditory Research, 2016, , 151-180.	0.3	10
121	Clinical Verification of Hearing Aid Performance. Springer Handbook of Auditory Research, 2016, , 253-289.	0.3	3
122	A review of the perceptual effects of hearing loss for frequencies above 3 kHz. International Journal of Audiology, 2016, 55, 707-714.	0.9	37
123	The effect of presentation level on spectral weights for sentences. Journal of the Acoustical Society of America, 2016, 139, 466-471.	0.5	7
124	The Effect of Aging and the High-Frequency Auditory Threshold on Speech-Evoked Mismatch Negativity in a Noisy Background. Audiology and Neuro-Otology, 2016, 21, 1-11.	0.6	4
125	Adult hearing-aid users with cochlear dead regions restricted to high frequencies: Implications for amplification. International Journal of Audiology, 2016, 55, 20-29.	0.9	3
126	Reference thresholds for the TEN(HL) test for people with normal hearing. International Journal of Audiology, 2017, 56, 672-676.	0.9	5
128	Combined Electric and Acoustic Stimulation With Hearing Preservation: Effect of Cochlear Implant Low-Frequency Cutoff on Speech Understanding and Perceived Listening Difficulty. Ear and Hearing, 2017, 38, 539-553.	1.0	63
129	Magnified Neural Envelope Coding Predicts Deficits in Speech Perception in Noise. Journal of Neuroscience, 2017, 37, 7727-7736.	1.7	53
130	Evaluation of a Frequency-Lowering Algorithm for Adults With High-Frequency Hearing Loss. Trends in Hearing, 2017, 21, 233121651773445.	0.7	11
131	Quality ratings of frequency-compressed speech by participants with extensive high-frequency dead regions in the cochlea. International Journal of Audiology, 2017, 56, 106-120.	0.9	11
132	Current Profile of Adults Presenting for Preoperative Cochlear Implant Evaluation. Trends in Hearing, 2018, 22, 233121651875528.	0.7	77
133	Objective Test of Cochlear Dead Region: Electrophysiologic Approach using Acoustic Change Complex. Scientific Reports, 2018, 8, 3645.	1.6	5

#	Article	IF	CITATIONS
134	Minimum Reporting Standards for Adult Cochlear Implantation. Otolaryngology - Head and Neck Surgery, 2018, 159, 215-219.	1.1	76
135	Aggressive and agitated behavior recognition from accelerometer data using non-negative matrix factorization. Journal of Ambient Intelligence and Humanized Computing, 2018, 9, 1375-1389.	3.3	9
136	Speech Perception in Noise and Listening Effort of Older Adults With Nonlinear Frequency Compression Hearing Aids. Ear and Hearing, 2018, 39, 215-225.	1.0	12
137	Influencia de las zonas cocleares muertas sobre la autopercepción de las habilidades auditivas en adultos con hipoacusia sensorioneural bilateral. Revista De OtorrinolaringologÃa Y CirugÃa De Cabeza Y Cuello, 2018, 78, 369-377.	0.0	Ο
138	An effective frame-based high frequency speech transposition by using neural network. International Journal of Intelligent Systems Design and Computing, 2018, 2, 88.	0.3	0
139	A Hearing-Model-Based Active-Learning Test for the Determination of Dead Regions. Trends in Hearing, 2018, 22, 233121651878821.	0.7	7
140	Patterns of Aided Loudness Growth in Experienced Adult Listeners with Early-Onset Severe–Profound Hearing Loss. Journal of the American Academy of Audiology, 2018, 29, 457-476.	0.4	2
141	Investigation of Extended Bandwidth Hearing Aid Amplification on Speech Intelligibility and Sound Quality in Adults with Mild-to-Moderate Hearing Loss. Journal of the American Academy of Audiology, 2018, 29, 243-254.	0.4	11
142	Behavioral and electrophysiological investigation of speech perception deficits in silence, noise and envelope conditions in developmental dyslexia. Neuropsychologia, 2019, 130, 3-12.	0.7	17
143	Achieved Gain and Subjective Outcomes for a Wide-Bandwidth Contact Hearing Aid Fitted Using CAM2. Ear and Hearing, 2019, 40, 741-756.	1.0	18
144	Effects of signal bandwidth on listening effort in young- and middle-aged adults. International Journal of Audiology, 2019, 58, 116-122.	0.9	6
145	Comparison of Frequency Transposition and Frequency Compression for People With Extensive Dead Regions in the Cochlea. Trends in Hearing, 2019, 23, 233121651882220.	0.7	3
146	Hearing outcomes of cochlear implant recipients with pre-operatively identified cochlear dead regions. Cochlear Implants International, 2020, 21, 160-166.	0.5	0
147	Individualized estimation of the Speech Intelligibility Index for short sentences: Test-retest reliability. Journal of the Acoustical Society of America, 2020, 148, 1647-1661.	0.5	3
148	Effect of age, test frequency and level on thresholds for the TEN(HL) test for people with normal hearing. International Journal of Audiology, 2020, 59, 915-920.	0.9	3
149	Hearing-Impaired Listeners Show Reduced Attention to High-Frequency Information in the Presence of Low-Frequency Information. Trends in Hearing, 2020, 24, 233121652094551.	0.7	2
150	Key technologies of intelligent transportation based on image recognition. International Journal of Advanced Robotic Systems, 2020, 17, 172988142091727.	1.3	0
151	Effect of the number of amplitude-compression channels and compression speed on speech recognition by listeners with mild to moderate sensorineural hearing loss. Journal of the Acoustical Society of America, 2020, 147, 1344-1358.	0.5	7

ARTICLE IF CITATIONS Speech recognition, loudness, and preference with extended bandwidth hearing aids for adult 152 0.9 13 hearing aid users. International Journal of Audiology, 2020, 59, 780-791. Influence of aided audibility on speech recognition performance with frequency composition for children and adults. International Journal of Audiology, 2021, 60, 849-857. Audiologic outcomes and complications of active middle ear implantation in older adults. Acta 154 0.3 0 Oto-Laryngologica, 2021, 141, 702-706. The Relevance of Human Whistled Languages for the Analysis and Decoding of Dolphin 1.1 Communication. Frontiers in Psychology, 2021, 12, 689501. Cross-frequency weights in normal and impaired hearing: Stimulus factors, stimulus dimensions, and associations with speech recognition. Journal of the Acoustical Society of America, 2021, 150, 156 0.5 0 2327-2349. Simulated Annealing Algorithm-Based Inversion Model To Interpret Flow Rate Profiles and Fracture Parameters for Horizontal Wells in Unconventional Gas Reservoirs. SPE Journal, 2021, 26, 1679-1699. 1.7 Detection, Speech Recognition, Loudness, and Preference Outcomes With a Direct Drive Hearing Aid: 158 0.7 3 Effects of Bandwidth. Trends in Hearing, 2021, 25, 233121652199913. Neural Coding of Sound with Cochlear Damage. Springer Handbook of Auditory Research, 2012, , 0.3 87-135. The Influence of Different Speech Processor and Hearing Aid Settings on Speech Perception Outcomes 160 1.0 45 in Electric Acoustic Stimulation Patients. Ear and Hearing, 2008, 29, 76-86. Zonas mortas na c \tilde{A}^3 clea em freq $\tilde{A}^1_4\tilde{A}^a$ ncias altas: implica \tilde{A} § \tilde{A} µes no processo de adapta \tilde{A} § \tilde{A} £o de pr \tilde{A}^3 tese 0.2 auditivas. Revista Brasileira De Otorrinolaringologia, 2007, 73, 299-307. Treatments for partial deafness using combined electric and acoustic stimulation of the auditory 164 0.1 5 system Blake S Wilson. Journal of Hearing Science, 2012, 2, 19-32. Speech Perception Benefits of Internet Versus Conventional Telephony for Hearing-Impaired 2.1 Individuals. Journal of Medical Internet Research, 2012, 14, e102. Edge frequency effect on speech recognition in patients with steep-slope hearing loss. The Egyptian 166 0.1 1 Journal of Otolaryngology, 2017, 33, 111-119. The Effect of Stimulus Bandwidth on Perception of Fricative /s/ among Individuals with Different 0.1 Degrees of Sensorineural Hearing Loss. Theory and Practice in Language Studies, 2011, 1, . 168 Hearing loss in the elderly and its compensation with hearing aids. Gerontechnology, 2002, 1, . 0.0 4 Assessment of Amplification Benefit for a Subject with Cochlear Dead Regions. Acta Physica Polonica A, 2010, 118, 155-158. Cochlear Dead Region and Word Recognition of Mandarin Chinese in Taiwan. Chinese Journal of 170 0.4 0 Physiology, 2013, 56, 129-37. Can you hear me? acoustic modifications in speech directed to foreigners and hearing-impaired people. 171 , 0, , .

#	Article	IF	Citations
172	Early Experience of Non-Linear Frequency Compression Technology in Patients with High-Frequency Hearing Loss. Korean Journal of Otorhinolaryngology-Head and Neck Surgery, 2016, 59, 96.	0.0	0
173	Factors Affecting the Intelligibility of Low-Pass Filtered Speech. , 0, , .		2
174	An effective frame-based high frequency speech transposition by using neural network. International Journal of Intelligent Systems Design and Computing, 2018, 2, 88.	0.3	0
175	The Objective Test of Cochlear Dead Region Using Acoustic Change Complex: A Preliminary Report. Korean Journal of Otorhinolaryngology-Head and Neck Surgery, 2018, 61, 573-579.	0.0	0
178	Adaptive Threshold and Modified Adaptive Gain Function based Speech Enhancement Algorithm for Digital Hearing Aid. , 2021, , .		1
179	Robust speech watermarking by a jointly trained embedder and detector using a DNN. , 2022, 122, 103381.		9
181	The effect of internet telephony and a cochlear implant accessory on mobile phone speech comprehension in cochlear implant users. European Archives of Oto-Rhino-Laryngology, 2022, 279, 5547-5554.	0.8	1
182	Evaluation of Digital Hearing Aids Using Speech Phonemes. Universal Journal of Biomedical Engineering, 2014, 2, 15-37.	0.4	0
183	Benefits of amplification for unaided speech discrimination in age-related hearing loss with flat type audiogram. Auris Nasus Larynx, 2022, , .	0.5	0
185	Guidelines for Best Practice in the Audiological Management of Adults Using Bimodal Hearing Configurations. , 2022, 2, e011.		5
186	SAMoSA. , 2022, 6, 1-19.		14
187	Self-assessment of cochlear health by cochlear implant recipients. Frontiers in Neurology, 0, 13, .	1.1	0