CITATION REPORT List of articles citing

The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases

DOI: 10.1098/rsta.2002.1027 Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2002, 360, 1705-19.

Source: https://exaly.com/paper-pdf/33558568/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper IF		Citations
576	The evolution of, and revolution in, land surface schemes designed for climate models. 2003 , 23, 479-510		561
575	Impact of urbanization and land-use change on climate. 2003 , 423, 528-31		1505
574	The climatic impacts of land surface change and carbon management, and the implications for climate-change mitigation policy. 2003 , 3, 149-157		151
573	Contrasting simulated past and future responses of the Amazonian forest to atmospheric change. 2004 , 359, 539-47		71
572	Soil ciliate species richness and abundance associated with the rhizosphere of different subtropical plant species. 2004 , 51, 582-8		14
571	Direct human influence of irrigation on atmospheric water vapour and climate. 2004 , 22, 597-603		240
570	Understanding land-use change to reconstruct, describe or predict changes in land cover. 2004 , 61, 305-307	7	6
569	Modification of growing-season surface temperature records in the northern great plains due to land-use transformation: verification of modelling results and implication for global climate change. 2004 , 24, 311-327		52
568	Geographic distribution of major crops across the world. 2004 , 18, n/a-n/a		436
567	Analyzing the effects of complete tropical forest removal on the regional climate using a detailed three-dimensional energy budget: An application to Africa. 2004 , 109, n/a-n/a		37
566	An extremum principle of evaporation. 2004 , 40,		31
565	A Conceptual Modeling Study on Biosphere Interactions and Its Implications for Physically Based Climate Modeling. <i>Journal of Climate</i> , 2004 , 17, 2572-2583	-	33
564	Key Aspects of Global Climate Change. 2004 , 15, 469-503		7
563	Extreme Weather Trends Vs. Dangerous Climate Change: A Need for Critical Reassessment. 2005 , 16, 327-331		
562	Cattle Grazing Mediates Climate Change Impacts on Ephemeral Wetlands. 2005 , 19, 1619-1625		78
561	Land degradation control and its global environmental benefits. 2005, 16, 99-112		153
560	Land use change and its corresponding ecological responses: A review. 2005 , 15, 305-328		14

(2006-2005)

559	Evidence and Implications of Recent Climate Change in Northern Alaska and Other Arctic Regions. 2005 , 72, 251-298	1074
558	Integrated approaches to climate-crop modelling: needs and challenges. 2005 , 360, 2049-65	53
557	The importance of land-cover change in simulating future climates. 2005 , 310, 1674-8	762
556	Global Land Cover Mapping and Characterization: Present Situation and Future Research Priorities. 2005 , 20, 35-42	8
555	Land cover mapping of Greater Mesoamerica using MODIS data. 2005, 31, 274-282	26
554	Sensitivity of extreme climate events to CO2-induced biophysical atmosphere-vegetation feedbacks in the western United States. 2005 , 32, n/a-n/a	14
553	Observational evidence of sensitivity of surface climate changes to land types and urbanization. 2005 , 32, n/a-n/a	90
552	Global consequences of land use. 2005 , 309, 570-4	7529
551	The impact of boreal forest fire on climate warming. 2006 , 314, 1130-2	615
550	CO2 and albedo climate impacts of extratropical carbon and biomass plantations. 2006 , 20, n/a-n/a	44
549	Estimation of the impact of land-surface forcings on temperature trends in eastern United States. 2006 , 111,	59
548	Comparative impact of climatic and nonclimatic factors on global terrestrial carbon and water cycles. 2006 , 20, n/a-n/a	25
547	Phenomenological solar signature in 400 years of reconstructed Northern Hemisphere temperature record. 2006 , 33,	29
546	Developing land use/land cover parameterization for climateland modelling in East Africa. 2006 , 27, 4227-4244	16
545	Energy partitioning and its biophysical controls above a grazing steppe in central Mongolia. 2006 , 137, 89-106	90
544	The influence of terrestrial ecosystems on climate. 2006 , 21, 254-60	98
543	Land use change effects on forest carbon cycling throughout the southern United States. 2006 , 35, 1348-63	27
542	Effects of Implementing MODIS Land Cover and Albedo in MM5 at Two Contrasting U.S. Regions. 2006 , 7, 1043-1060	25

541	Analysis of Mean Climate Conditions in Senegal (1971월8). 2006 , 10, 1-40	27
540	The underpinnings of land-use history: three centuries of global gridded land-use transitions, wood-harvest activity, and resulting secondary lands. 2006 , 12, 1208-1229	390
539	Characterizing a tropical deforestation wave: a dynamic spatial analysis of a deforestation hotspot in the Colombian Amazon. 2006 , 12, 1409-1420	49
538	Adaptive Governance and Climate Change in the Tropical Highlands of Western South America. 2006 , 78, 63-102	94
537	A multiyear evaluation of a Dynamic Global Vegetation Model at three AmeriFlux forest sites: Vegetation structure, phenology, soil temperature, and CO2 and H2O vapor exchange. 2006 , 196, 1-31	147
536	The GeoProfile metadata, exposure of instruments, and measurement bias in climatic record revisited. 2006 , 26, 1091-1124	35
535	The spatiotemporal climate variability over Senegal and its relationship to global climate. 2006 , 26, 2057-20	76 13
534	The emergence of land change science for global environmental change and sustainability. 2007 , 104, 20666-71	1281
533	The albedo climate impacts of biomass and carbon plantations compared with the CO2 impact. 72-83	
532	Climate system science. 1-4	
531	Effects of land use change on soil carbon cycling in the conterminous United States from 1900 to 2050. 2007 , 21, n/a-n/a	15
531		15 27
	2050. 2007 , 21, n/a-n/a	
530	2050. 2007, 21, n/a-n/a Moderating the impact of agriculture on climate. 2007, 142, 278-287 Biogeophysical effects of land use on climate: Model simulations of radiative forcing and	27
530 529	2050. 2007, 21, n/a-n/a Moderating the impact of agriculture on climate. 2007, 142, 278-287 Biogeophysical effects of land use on climate: Model simulations of radiative forcing and large-scale temperature change. 2007, 142, 216-233 Residue, respiration, and residuals: Evaluation of a dynamic agroecosystem model using eddy flux	27
530 529 528	Moderating the impact of agriculture on climate. 2007, 142, 278-287 Biogeophysical effects of land use on climate: Model simulations of radiative forcing and large-scale temperature change. 2007, 142, 216-233 Residue, respiration, and residuals: Evaluation of a dynamic agroecosystem model using eddy flux measurements and biometric data. 2007, 146, 134-158	27 268 80
530 529 528	Moderating the impact of agriculture on climate. 2007, 142, 278-287 Biogeophysical effects of land use on climate: Model simulations of radiative forcing and large-scale temperature change. 2007, 142, 216-233 Residue, respiration, and residuals: Evaluation of a dynamic agroecosystem model using eddy flux measurements and biometric data. 2007, 146, 134-158 Combined climate and carbon-cycle effects of large-scale deforestation. 2007, 104, 6550-5	27 268 80 620

(2008-2007)

523	Modeling the impact of historical land cover change on Australia's regional climate. 2007 , 34,	69
522	Phenomenological reconstructions of the solar signature in the Northern Hemisphere surface temperature records since 1600. 2007 , 112,	61
521	Quantifying the influence of anthropogenic surface processes and inhomogeneities on gridded global climate data. 2007 , 112,	36
520	Impacts of the agricultural Green Revolution [hduced land use changes on air temperatures in India. 2007 , 112,	70
519	The FORE-SCE model: a practical approach for projecting land cover change using scenario-based modeling. 2007 , 2, 103-126	96
518	An overview of regional land-use and land-cover impacts on rainfall. 2007 , 59, 587-601	322
517	The effect of Appalachian mountaintop mining on interior forest. 2007 , 22, 179-187	86
516	CDM Forestry and the Ultimate Objective of the Climate Convention. 2007 , 12, 275-302	8
515	Land use and land cover tools for climate adaptation. 2007 , 80, 239-251	27
514	Temporal change in fragmentation of continental US forests. 2008 , 23, 891	22
) -4	remporal change in fragmentation of continental 03 forests. 2006, 23, 69 f	22
513	The climate influence of anthropogenic land-use changes on near-surface wind energy potential in China. 2008 , 53, 2859-2866	12
	The climate influence of anthropogenic land-use changes on near-surface wind energy potential in	
513	The climate influence of anthropogenic land-use changes on near-surface wind energy potential in China. 2008 , 53, 2859-2866	12
513	The climate influence of anthropogenic land-use changes on near-surface wind energy potential in China. 2008, 53, 2859-2866 A comparison of tropical temperature trends with model predictions. 2008, 28, 1693-1701 Interaction of impacts of doubling CO2 and changing regional land-cover on evaporation,	12 64
513 512 511	The climate influence of anthropogenic land-use changes on near-surface wind energy potential in China. 2008, 53, 2859-2866 A comparison of tropical temperature trends with model predictions. 2008, 28, 1693-1701 Interaction of impacts of doubling CO2 and changing regional land-cover on evaporation, precipitation, and runoff at global and regional scales. 2008, 28, 1653-1679	12 64 18
513 512 511 510	The climate influence of anthropogenic land-use changes on near-surface wind energy potential in China. 2008, 53, 2859-2866 A comparison of tropical temperature trends with model predictions. 2008, 28, 1693-1701 Interaction of impacts of doubling CO2 and changing regional land-cover on evaporation, precipitation, and runoff at global and regional scales. 2008, 28, 1653-1679 Integrating diverse methods to understand climateland interactions in East Africa. 2008, 39, 898-911 Using the FORE-SCE model to project land-cover change in the southeastern United States. 2008,	12 64 18
513 512 511 510 509	The climate influence of anthropogenic land-use changes on near-surface wind energy potential in China. 2008, 53, 2859-2866 A comparison of tropical temperature trends with model predictions. 2008, 28, 1693-1701 Interaction of impacts of doubling CO2 and changing regional land-cover on evaporation, precipitation, and runoff at global and regional scales. 2008, 28, 1653-1679 Integrating diverse methods to understand climateland interactions in East Africa. 2008, 39, 898-911 Using the FORE-SCE model to project land-cover change in the southeastern United States. 2008, 219, 49-65 The changing landscape: ecosystem responses to urbanization and pollution across climatic and	12 64 18 61 66

505	Environmental and biological controls on water and energy exchange in Florida scrub oak and pine flatwoods ecosystems. 2008 , 113, n/a-n/a		31
504	Assessment of land use changes on woody cover and landscape fragmentation in the Orinoco savannas using fractal distributions. 2008 , 8, 224-238		14
503	Seasonal temperature responses to land-use change in the western United States. 2008, 60, 250-264		88
502	Radiative forcing over the conterminous United States due to contemporary land cover land use albedo change. 2008 , 35,		40
501	Surface temperature cooling trends and negative radiative forcing due to land use change toward greenhouse farming in southeastern Spain. 2008 , 113,		71
500	Enhancement of land surface information and its impact on atmospheric modeling in the Heihe River Basin, northwest China. 2008 , 113,		52
499	Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. 2008 , 22, n/a-n/a		1071
498	Future directions in conservation and development: Incorporating the reality of climate change. 2008 , 9, 106-113		21
497	The Effect of Irrigation on Regional Temperatures: A Spatial and Temporal Analysis of Trends in California, 1934\(\mathbb{\textit{2002}}\). Journal of Climate, 2008, 21, 2063-2071	4	123
496	The relationships between biomass burning, land-cover/-use change, and the distribution of carbonaceous aerosols in mainland Southeast Asia: a review and synthesis. 2008 , 3, 161-183		3
495	An Urban Parameterization for a Global Climate Model. Part I: Formulation and Evaluation for Two Cities. 2008 , 47, 1038-1060		193
494	Rising atmospheric carbon dioxide and plant biology: the overlooked paradigm. 2008, 27, 165-72		43
493	Impact of Vegetation Types on Surface Temperature Change. 2008, 47, 411-424		44
492	Vertical Velocities and Available Potential Energy Generated by Landscape VariabilityII heory. 2008 , 47, 397-410		21
491	Synoptic Circulation and Land Surface Influences on Convection in the Midwest U.S. Corn Belt during the Summers of 1999 and 2000. Part II: Role of Vegetation Boundaries. <i>Journal of Climate</i> , 4.2 2008 , 21, 3617-3641	4	22
490	Woody plants in grasslands: post-encroachment stand dynamics. 2008 , 18, 928-44		96
489	Numerical Studying of the Urban Scale and Layout Effect on Atmospheric Environment. 2008 , 51, 76-88		
488	Impact of Large Cities' Expansion on Air Pollution. 2008,		

487	Comparing apples with oranges. 2008 , 1, 7-8	9
486	A Simple State-Contingent Pricing Rule for Complex Intertemporal Externalities. <i>SSRN Electronic Journal</i> , 2008 ,	
485	Estimation of vegetation cover resilience from satellite time series. 2008 , 12, 1053-1064	35
484	Evaluating the effects of land-use development policies on ex-urban forest cover: An integrated agent-based GIS approach. 2009 , 23, 1211-1232	63
483	Impact of Urban Expansion on Summer Heat Wave in Beijing. 2009,	
482	TERRESTRIAL VEGETATION COVER ACTIVITY AS A PROBLEM OF FLUCTUATING SURFACES. 2009 , 23, 5444-5452	3
481	The Role of Landscape Processes within the Climate System. 2009 , 67-85	20
480	Changes in the Asian monsoon climate during 1700-1850 induced by preindustrial cultivation. 2009 , 106, 9586-9	66
479	Biophysical Evaluation of Land-Cover Products for Land limate Modeling. 2009, 13, 1-16	6
478	Observed 1970 2 005 Cooling of Summer Daytime Temperatures in Coastal California. <i>Journal of Climate</i> , 2009 , 22, 3558-3573	58
477	On the Proper Use of Satellite-Derived Leaf Area Index in Climate Modeling. <i>Journal of Climate</i> , 2009 , 22, 4427-4433	5
476	Modelling carbon storage in highly fragmented and human-dominated landscapes: Linking land-cover patterns and ecosystem models. 2009 , 220, 1325-1338	38
475	Effects of irrigation and vegetation activity on early Indian summer monsoon variability. 2009 , 29, 573-581	101
474	Climate impacts of land-use change in China and its uncertainty in a global model simulation. 2009 , 32, 473-494	28
473	Influence of modern land cover on the climate of the United States. 2009 , 33, 945-958	79
472	Sensitivity of surface air temperature change to land use/cover types in China. 2009 , 52, 1207-1215	36
471	Linear breeze scaling: from large-scale land/sea breezes to mesoscale inland breezes. 2009, 135, 1766-1775	18
470	Modelling interactions and feedback mechanisms between land use change and landscape processes. 2009 , 129, 157-170	79

469	The impact of agricultural intensification and irrigation on landEtmosphere interactions and Indian monsoon precipitation [A mesoscale modeling perspective. 2009 , 67, 117-128	151
468	Field validation of 1930s aerial photography: What are we missing?. 2009 , 73, 844-853	16
467	Deforestation and fragmentation of Chaco dry forest in NW Argentina (1972\(\mathbb{0}007\)). 2009 , 258, 913-921	186
466	Impact of historical land cover change on daily indices of climate extremes including droughts in eastern Australia. 2009 , 36,	68
465	Mesoscale vegetation-atmosphere feedbacks in Amazonia. 2009 , 114,	29
464	Development and Evaluation of a Coupled Photosynthesis-Based Gas Exchange Evapotranspiration Model (GEM) for Mesoscale Weather Forecasting Applications. 2009 , 48, 349-368	50
463	Impacts of urban expansion and future green planting on summer precipitation in the Beijing metropolitan area. 2009 , 114,	108
462	Climatic effects of 30 years of landscape change over the Greater Phoenix, Arizona, region: 1. Surface energy budget changes. 2009 , 114,	25
461	Radiative forcing from anthropogenic land cover change since A.D. 800. 2009 , 36, n/a-n/a	80
460	Regional Climate Change in Tropical and Northern Africa due to Greenhouse Forcing and Land Use Changes. <i>Journal of Climate</i> , 2009 , 22, 114-132	165
459	Including CO2-emission equivalence of changes in land surface albedo in life cycle assessment. Methodology and case study on greenhouse agriculture. 2010 , 15, 672-681	70
458	Impacts of Climate Change and Land Use Changes on Land Surface Radiation and Energy Budgets. 2010 , 3, 219-224	13
457	Impacts of land use land cover on temperature trends over the continental United States: assessment using the North American Regional Reanalysis. 2010 , 30, 1980-1993	146
456	Investigating the climate impacts of global land cover change in the community climate system model. 2010 , 30, 2066-2087	159
455	MODIS observed impacts of intensive agriculture on surface temperature in the southern Great Plains. 2010 , 30, 1994-2003	29
454	Temperature and equivalent temperature over the United States (1979\(\mathbb{0}\)005). 2010 , 30, 2045-2054	42
453	Assessing 20th century climateNegetation feedbacks of land-use change and natural vegetation dynamics in a fully coupled vegetationIlimate model. 2010 , 30, 2055-2065	56
452	Retrieving middle-infrared reflectance for burned area mapping in tropical environments using MODIS. 2010 , 114, 831-843	28

(2011-2010)

451	Contribution of Land Use Changes to Near-Surface Air Temperatures during Recent Summer Extreme Heat Events in the Phoenix Metropolitan Area. 2010 , 49, 1649-1664	138
450	Estimation of urbanization effect on climatic warming over the recent 30 years in Guangzhou, South China. 2010 ,	2
449	The Influence of Tropical Deforestation on the Northern Hemisphere Climate by Atmospheric Teleconnections. 2010 , 14, 1-34	61
448	Effects of interbasin water transfer on regional climate: A case study of the Middle Route of the South-to-North Water Transfer Project in China. 2010 , 115,	25
447	Effects of irrigation on global climate during the 20th century. 2010 , 115,	199
446	Radiative forcing over the conterminous United States due to contemporary land cover land use change and sensitivity to snow and interannual albedo variability. 2010 , 115,	33
445	Quantifying streamflow change caused by forest disturbance at a large spatial scale: A single watershed study. 2010 , 46,	108
444	Trends in global wildfire potential in a changing climate. 2010 , 259, 685-697	415
443	Observational evidence that agricultural intensification and land use change may be reducing the Indian summer monsoon rainfall. 2010 , 46,	114
442	Climatic Impact of Global-Scale Deforestation: Radiative versus Nonradiative Processes. <i>Journal of Climate</i> , 2010 , 23, 97-112	349
441	Mesoscale Associations Between Midwest Land Surface Properties and Convective Cloud Development in the Warm Season. 2010 , 31, 107-136	12
440	Alternative "global warming" metrics in life cycle assessment: a case study with existing transportation data. 2011 , 45, 8633-41	78
439	Radiative forcing impacts of boreal forest biofuels: a scenario study for Norway in light of albedo. 2011 , 45, 7570-80	50
438	Observed surface warming induced by urbanization in east China. 2011 , 116,	189
437	Past land use decisions have increased mitigation potential of reforestation. 2011, 38,	46
436	A sweetener for biofuels. 2011 , 1, 99-101	12
435	Boreal lichen woodlands: A possible negative feedback to climate change in eastern North America. 2011 , 151, 521-528	59
434	Irrigation induced surface cooling in the context of modern and increased greenhouse gas forcing. 2011 , 37, 1587-1600	77

433	An alternative approach for quantifying climate regulation by ecosystems. 2011 , 9, 126-133		56
432	Analyzing Potential Evapotranspiration and Climate Drivers in China. 2011 , 54, 125-134		1
431	Global vegetation monitoring: toward a sustainable technobiosphere. 2011 , 9, 111-116		3
430	Distinct patterns of changes in surface energy budget associated with forestation in the semiarid region. 2011 , 17, 1536-1548		58
429	Global biodiversity research during 1900\(\mathbb{Q}\)009: a bibliometric analysis. 2011 , 20, 807-826		140
428	Harmonization of land-use scenarios for the period 1500\(\textit{1500}\) 100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. 2011, 109, 117-161		883
427	Assessment of dynamic downscaling of the extreme rainfall over East Asia using a regional climate model. 2011 , 28, 1077-1098		36
426	Land use/land cover changes and climate: modeling analysis and observational evidence. 2011 , 2, 828-	850	471
425	A simple state-contingent pricing rule for complex intertemporal externalities. 2011 , 33, 111-120		5
424	Afforestation cools more or less. 2011 , 4, 504-505		29
423	Evaluating Error Propagation in Coupled LandAtmosphere Models. 2011 , 15, 1-25		11
422	Modeling of Regional Hydroclimate Change over the Indian Subcontinent: Impact of the Expanding Thar Desert. <i>Journal of Climate</i> , 2011 , 24, 3089-3106	4.4	11
421	Vegetation Dynamics Enhancing Long-Term Climate Variability Confirmed by Two Models. <i>Journal of Climate</i> , 2011 , 24, 2238-2257	4.4	26
420	Exploring Surface Biophysical-Climate Sensitivity to Tropical Deforestation Rates Using a GCM: A Feasibility Study*. 2012 , 16, 1-23		5
419	Long-Term Trends in Air Temperature Distribution and Extremes, Growing Degree-Days, and Spring and Fall Frosts for Climate Impact Assessments on Agricultural Practices in Nebraska. 2012 , 51, 2060-2	.073	23
419 418		3.8	31
	and Fall Frosts for Climate Impact Assessments on Agricultural Practices in Nebraska. 2012 , 51, 2060-2 Assessment of global carbon dioxide concentration using MODIS and GOSAT data. <i>Sensors</i> , 2012 ,		

415	LULUCF in the post-2012 regime: fixing the problems of the past?. 2012 , 12, 341-355		9
414	Variation in water-mediated connectivity influences patch distributions of total N, total P, and TN:TP ratios in the Upper Mississippi River, USA. 2012 , 31, 1254-1272		11
413	REDD+ and climate: thinking beyond carbon. 2012 , 3, 457-466		2
412	Conceptualizing climate change in the context of a climate system: implications for climate and environmental education. 2012 , 18, 323-352		69
411	A Double-Canyon Radiation Scheme for Multi-Layer Urban Canopy Models. 2012 , 145, 439-468		41
410	Framing and Reframing Questions of Human E nvironment Interactions. 2012 , 102, 737-747		56
409	Energy exchange and evapotranspiration over two temperate semi-arid grasslands in North America. 2012 , 153, 31-44		93
408	RETRACTED: A review and modelling results of the simulated response of deforestation on climate extremes in eastern Australia. <i>Atmospheric Research</i> , 2012 , 108, 19-38	5.4	
407	A review of the methods available for estimating soil moisture and its implications for water resource management. 2012 , 458-459, 110-117		226
406	Climate-regulation services of natural and agricultural ecoregions of the Americas. 2012 , 2, 177-181		144
405	Research and Development Priorities Towards Recarbonization of the Biosphere. 2012 , 533-544		1
404	Surface energy partitioning over four dominant vegetation types across the United States in a coupled regional climate model (Weather Research and Forecasting Model 3LDommunity Land Model 3.5). 2012 , 117, n/a-n/a		25
403	A global map of the functionality of terrestrial ecosystems. 2012 , 12, 13-22		31
402	Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment. 2012 , 37, 2-11		109
401	Determining Robust Impacts of Land-Use-Induced Land Cover Changes on Surface Climate over North America and Eurasia: Results from the First Set of LUCID Experiments. <i>Journal of Climate</i> , 2012 , 25, 3261-3281	4.4	259
400	Climate change impacts and adaptation. 160-201		4
399	Invasion of shrublands by exotic grasses: ecohydrological consequences in cold versus warm deserts. 2012 , 5, 160-173		61
398	Ecosystem impacts of geoengineering: a review for developing a science plan. 2012 , 41, 350-69		51

397	Three distinct global estimates of historical land-cover change and land-use conversions for over 200 years. 2012 , 6, 122-139	90
396	Agriculture development-induced surface albedo changes and climatic implications across northeastern China. 2012 , 22, 264-277	20
395	A sensitivity study to global desertification in cold and warm climates: results from the IPSL OAGCM model. 2012 , 38, 1629-1647	7
394	Greenhouse gas (CO2, CH4, H2O) fluxes from drained and flooded agricultural peatlands in the Sacramento-San Joaquin Delta. 2012 , 150, 1-18	145
393	Management and climate effects on carbon dioxide and energy exchanges in a maritime grassland. 2012 , 158, 132-146	26
392	Terrestrial ecosystems from space: a review of earth observation products for macroecology applications. 2012 , 21, 603-624	76
391	Climate-regulating functions of terrestrial ecosystems and an <code>Bcologocentricleoncept</code> of nature management. 2012 , 2, 105-123	3
390	Modelling the effects of land-use/land-cover changes on the near-surface atmosphere in southern South America. 2012 , 32, 1206-1225	41
389	Formulation of Time Series Vegetation Index from Indian Geostationary Satellite and Comparison with Global Product. 2012 , 40, 1-9	10
388	A methodology for dealing with regional change in integrated water resources management. 2012 , 65, 1405-1414	22
387	High Variability in Sediment Characteristics of a Neotropical Stream Impacted by Surface Mining and Gully Erosion. 2012 , 223, 389-398	6
386	East African food security as influenced by future climate change and land use change at local to regional scales. 2012 , 110, 823-844	54
385	Influence of irrigated agriculture on diurnal surface energy and water fluxes, surface climate, and atmospheric circulation in California. 2012 , 38, 1017-1029	62
384	Climatic response to changes in vegetation in the Northwest Hetao Plain as simulated by the WRF model. 2013 , 33, 1470-1481	23
383	PAST AND PREDICTED FUTURE CHANGES IN THE LAND COVER OF THE UPPER MISSISSIPPI RIVER FLOODPLAIN, USA. 2013 , 29, 608-618	10
382	Impacts of Urbanization and Station-relocation on Surface Air Temperature Series in Anhui Province, China. 2013 , 170, 1969-1983	47
381	Detection and attribution of anthropogenic climate change impacts. 2013 , 4, 121-150	48
380	Climate and Energy Vulnerability in Coastal Regions. 2013 , 3-35	5

379	On the additivity of radiative forcing between land use change and greenhouse gases. 2013, 40, 4036-4041	37
378	The importance of land cover change across urban-rural typologies for climate modeling. 2013 , 114, 243-52	36
377	Canadian boreal forests and climate change mitigation. 2013 , 21, 293-321	99
376	Greenhouse Gas Policy Influences Climate via Direct Effects of Land-Use Change. <i>Journal of Climate</i> , 2013 , 26, 3657-3670	55
375	Impact of Congo Basin deforestation on the African monsoon. 2013 , 14, 45-51	44
374	Wind tunnel study on the morphological parameterization of building non-uniformity. 2013 , 121, 60-69	17
373	Influence of land use/land cover (LULC) changes on atmospheric dynamics over the arid region of Rajasthan state, India. 2013 , 88, 90-101	33
372	Grassland afforestation impact on primary productivity: a remote sensing approach. 2013 , 16, 390-403	16
371	Climate change adaptation through urban heat management in Atlanta, Georgia. 2013, 47, 7780-6	25
370	Long-term land cover changes and climate variations IA country-scale approach for a new policy target. 2013 , 30, 401-407	20
369	Projected surface radiative forcing due to 2000\(\overline{0}\)050 land-cover land-use albedo change over the eastern United States. 2013 , 8, 369-382	7
368	Did irrigation impact 20th century air temperature in the High Plains aquifer region?. 2013, 38, 11-21	10
367	AVHRR-NDVI-based crop coefficients for analyzing long-term trends in evapotranspiration in relation to changing climate in the U.S. High Plains. 2013 , 49, 231-244	27
366	Modelling the impact of urbanisation on regional climate in the Greater London Area. 2013 , 33, 2388-2401	42
365	Impacts of Future Urban Expansion on Regional Climate in the Northeast Megalopolis, USA. 2013 , 2013, 1-10	18
364	Scenario Analysis on Climate Change Impacts of Urban Land Expansion under Different Urbanization Patterns: A Case Study of Wuhan Metropolitan. 2013 , 2013, 1-12	7
363	Critical Studies on Integrating Land-Use Induced Effects on Climate Regulation Services into Impact Assessment for Human Well-Being. 2013 , 2013, 1-14	10
362	Modeling the Impacts of Urbanization on Regional Climate Change: A Case Study in the Beijing-Tianjin-Tangshan Metropolitan Area. 2013 , 2013, 1-8	17

361	Land Use and Land Cover Changes and Their Impacts on Hydroclimate, Ecosystems and Society. 2013 , 185-203	9
360	Systematic Modeling of Impacts of Land Use and Land Cover Changes on Regional Climate: A Review. 2013 , 2013, 1-11	68
359	Possible Influence of the Cultivated Land Reclamation on Surface Climate in India: A WRF Model Based Simulation. 2013 , 2013, 1-9	1
358	Modeling the Impacts of Boreal Deforestation on the Near-Surface Temperature in European Russia. 2013 , 2013, 1-9	10
357	Projected Impacts of Bioenergy-Demand-Induced Land Use and Cover Changes on Regional Climate in Central Europe. 2013 , 2013, 1-9	
356	Impacts of Future Grassland Changes on Surface Climate in Mongolia. 2013 , 2013, 1-9	4
355	Regional Climate Effects of Conversion from Grassland to Forestland in Southeastern China. 2013 , 2013, 1-9	6
354	Impacts of Vegetation Change on the Regional Surface Climate: A Scenario-Based Analysis of Afforestation in Jiangxi Province, China. 2013 , 2013, 1-8	9
353	Research on Land Surface Thermal-Hydrologic Exchange in Southern China under Future Climate and Land Cover Scenarios. 2013 , 2013, 1-12	3
352	Implications of biofuel policy-driven land cover change for rainfall erosivity and soil erosion in the United States. 2013 , 5, 713-722	17
351	Examining the relationships between land cover and greenhouse gas concentrations using remote-sensing data in East Asia. 2013 , 34, 4281-4303	9
350	Simulating the surface energy balance over two contrasting urban environments using the Community Land Model Urban. 2013 , 33, 3182-3205	23
349	Understanding Resilient Urban Futures: A Systemic Modelling Approach. Sustainability, 2013 , 5, 3202-32336	31
348	Land Use/Land Cover Change Analysis Using Object-Based Classification Approach in Munessa-Shashemene Landscape of the Ethiopian Highlands. <i>Remote Sensing</i> , 2013 , 5, 2411-2435	160
347	Coupling the high-complexity land surface model ACASA to the mesoscale model WRF. 2014 , 7, 2917-2932	29
346	ClimateHumanEand Interactions: A Review of Major Modelling Approaches. <i>Land</i> , 2014 , 3, 793-833	18
345	High-resolution land surface modeling utilizing remote sensing parameters and the Noah UCM: a case study in the Los Angeles Basin. 2014 , 18, 4791-4806	21
344	Changes in the Land Surface Energy Budget in Eastern China over the Past Three Decades: Contributions of Land-Cover Change and Climate Change. <i>Journal of Climate</i> , 2014 , 27, 9233-9252	16

343	Spatial Variation of Surface Energy Fluxes Due to Land Use Changes across China. 2014 , 7, 2194-2206	13
342	Impacts of Irrigation on the Heat Fluxes and Near-Surface Temperature in an Inland Irrigation Area of Northern China. 2014 , 7, 1300-1317	18
341	Impact of Potential Large-Scale Irrigation on the West African Monsoon and Its Dependence on Location of Irrigated Area. <i>Journal of Climate</i> , 2014 , 27, 994-1009	37
340	Local sources of global climate forcing from different categories of land use activities. 2014,	
339	Climate warming feedback from mountain birch forest expansion: reduced albedo dominates carbon uptake. 2014 , 20, 2344-55	65
338	Impacts of forest harvest on cold season land surface conditions and land-atmosphere interactions in northern Great Lakes states. 2014 , 6, 923-937	6
337	The Impact of Urbanization on the Annual Average Temperature of the Past 60 Years in Beijing. 2014 , 2014, 1-9	9
336	TWENTIETH CENTURY LAND RESILIENCE IN MONTENEGRO AND CONSEQUENT HYDROLOGICAL RESPONSE. 2014 , 25, 336-349	14
335	Distance metric-based forest cover change detection using MODIS time series. 2014 , 29, 78-92	21
334	On the relationship between vegetation and climate in tropical and northern Africa. 2014 , 115, 341-353	22
333	Numerical simulation of the impact of land cover change on regional climate in China. 2014 , 115, 141-152	14
332	The biogeophysical effects of extreme afforestation in modeling future climate. 2014 , 118, 511-521	9
331	Perspectives in Modelling ClimateHydrology Interactions. 2014 , 35, 739-764	8
330	Pricing rainbow, green, blue and grey water: tree cover and geopolitics of climatic teleconnections. 2014 , 6, 41-47	24
329	Biophysical forcings of land-use changes from potential forestry activities in North America. 2014 , 84, 329-353	111
328	Biosphere-human feedbacks: a physical geography perspective. 2014 , 35, 50-75	4
327	SPOT-VEGETATION GEOV1 biophysical parameters in semi-arid agro-ecosystems. 2014 , 35, 2534-2547	8
326	Radiative forcing over China due to albedo change caused by land cover change during 1990\(\mathbb{0}\)010. 2014 , 24, 789-801	19

325	Modeling the relative roles of the foehn wind and urban expansion in the 2002 Beijing heat wave and possible mitigation by high reflective roofs. 2014 , 123, 105-114	31
324	Regional temperature change over the Huang-Huai-Hai Plain of China: the roles of irrigation versus urbanization. 2014 , 34, 1181-1195	51
323	Impact of land use change on water resource allocation in the middle reaches of the Heihe River Basin in northwestern China. 2014 , 6, 273-286	59
322	Measuring climatic impacts on energy consumption: A review of the empirical literature. 2014 , 46, 522-530	115
321	Land-Use Threats and Protected Areas: A Scenario-Based, Landscape Level Approach. <i>Land</i> , 2014 , 3, 362-389	29
320	Potential climate forcing of land use and land cover change. 2014 , 14, 12701-12724	49
319	Evaluation of the coupled COSMO-CLM/DCEP model with observations from BUBBLE. 2014 , 140, 2465-2483	10
318	Inferring anthropogenic trends from satellite data for water-sustainability of US cities near artificial reservoirs. 2015 , 133, 330-345	3
317	Comparison of dew point temperature estimation methods in Southwestern Georgia. 2015 , 36, 255-267	3
316	Impacts of land use and land cover changes on the climate over Northeast Brazil. 2015 , 16, 219-227	10
315	Land cover and land use changes in the oil and gas regions of Northwestern Siberia under changing climatic conditions. <i>Environmental Research Letters</i> , 2015 , 10, 124020	20
314	Pedoecological Modeling to Guide Forest Restoration using Ecological Site Descriptions. 2015 , 79, 1406-1419	10
313	Effects of regional afforestation on global climate. 2015 , 6, 191-199	3
312	The cumulative effects of urban expansion on land surface temperatures in metropolitan JingjinTang, China. 2015 , 120, 9932-9943	16
311	Remote Sensing based multi-temporal land cover classification and change detection in northwestern Ethiopia. 2015 , 48, 121-139	35
310	Combined impacts of land cover changes and large-scale forcing on Southern California summer daily maximum temperatures. 2015 , 120, 9208-9219	5
309	Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities. 2015 , 21, 3246-66	92
308	Projected land-cover change effects on East African rainfall under climate change. 2015 , 35, 1772-1783	3

(2015-2015)

307	Carbon Cycling, Climate Regulation, and Disturbances in Canadian Forests: Scientific Principles for Management. Land, 2015 , 4, 83-118 3.5	2
306	Quantifying Greenhouse Gas Emissions from Agricultural and Forest Landscapes for Policy Development and Verification. 2015 , 229-304	4
305	A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes. 2015 , 8, 2035-2065	57
304	Seasonal and Interannual Variation in Energy Balance in the Semiarid Grassland Area of China. 2015 , 2015, 1-8	5
303	Impact of Urbanization and Land-Use Change on Surface Climate in Middle and Lower Reaches of the Yangtze River, 1988\(\textbf{Q}\) 008. 2015 , 2015, 1-10	28
302	The integrated Earth system model version 1: formulation and functionality. 2015 , 8, 2203-2219	42
301	Ecologizing Our Cities: A Particular, Process-Function View of Southern California, from within Complexity. <i>Sustainability</i> , 2015 , 7, 11756-11776	4
300	Local sources of global climate forcing from different categories of land use activities. 2015 , 6, 175-194	11
299	Accounting for radiative forcing from albedo change in future global land-use scenarios. 2015 , 131, 691-703	25
298	Modelling the influence of land-use changes on biophysical and biochemical interactions at regional and global scales. 2015 , 38, 1931-46	44
297	Potential feedback of recent vegetation changes on summer rainfall in the Sahel. 2015 , 36, 449-470	16
296	Recent land-use/land-cover change in the Central California Valley. 2015, 10, 59-80	25
295	A system of systems approach to energy sustainability assessment: Are all renewables really green?. 2015 , 52, 194-206	95
294	Watershed- and island wide-scale land cover changes in Puerto Rico (1930s-2004) and their potential effects on coral reef ecosystems. <i>Science of the Total Environment</i> , 2015 , 506-507, 241-51	29
293	Aridity trend and response to vegetation restoration in the loess hilly region of northern Shaanxi Province. 2015 , 25, 289-300	13
292	Spatial and temporal variability in spectral-based surface energy evapotranspiration measured from Landsat 5TM across two mangrove ecotones. 2015 , 213, 304-316	14
291	Global warming caused by afforestation in the Southern Hemisphere. 2015 , 52, 371-378	4
290	Metrics for biogeophysical climate forcings from land use and land cover changes and their inclusion in life cycle assessment: a critical review. 2015 , 49, 3291-303	33

289	Land use change to bioenergy: A meta-analysis of soil carbon and GHG emissions. 2015, 82, 27-39	103
288	Geospatial Science and Technology for Understanding the Complexities of the Critical Zone. 2015 , 523-561	3
287	Comparison of three different methods to identify fractional urban signals for improving climate modelling. 2015 , 36, 3274-3292	2
286	An attack on two fronts: predicting how changes in land use and climate affect the distribution of stream macroinvertebrates. 2015 , 60, 1443-1458	51
285	Ghosts of the forest: Mapping pedomemory to guide forest restoration. 2015 , 247-248, 51-64	18
284	Vegetation dynamics and factor analysis in arid and semi-arid Inner Mongolia. 2015 , 73, 2343-2352	39
283	Projecting the spatiotemporal carbon dynamics of the Greater Yellowstone Ecosystem from 2006 to 2050. 2015 , 10, 7	1
282	Land use and land cover change impacts on the regional climate of non-Amazonian South America: A review. 2015 , 128, 103-119	125
281	Local-To-Regional Landscape Drivers of Extreme Weather and Climate: Implications for Water Infrastructure Resilience. 2015 , 20, 02515002	19
280	Virtual constellations for global terrestrial monitoring. 2015 , 170, 62-76	123
280 279	Virtual constellations for global terrestrial monitoring. 2015 , 170, 62-76 . 2015 , 3, 47-60	123
279	. 2015 , 3, 47-60 Surface wind pressure tests on buildings with various non-uniformity morphological parameters.	161
279 278	. 2015, 3, 47-60 Surface wind pressure tests on buildings with various non-uniformity morphological parameters. 2015, 137, 14-24	161
279 278 277	. 2015, 3, 47-60 Surface wind pressure tests on buildings with various non-uniformity morphological parameters. 2015, 137, 14-24 Potential future land use threats to California protected areas. 2015, 15, 1051-1064	161 10 15
279 278 277 276	. 2015, 3, 47-60 Surface wind pressure tests on buildings with various non-uniformity morphological parameters. 2015, 137, 14-24 Potential future land use threats to California protected areas. 2015, 15, 1051-1064 The role of regional climate projections in managing complex socio-ecological systems. 2015, 15, 1-12 Fragmentation rate and landscape structure of the Tillabry landscape (Sahel region) with reference	161 10 15 27
279 278 277 276 275	. 2015, 3, 47-60 Surface wind pressure tests on buildings with various non-uniformity morphological parameters. 2015, 137, 14-24 Potential future land use threats to California protected areas. 2015, 15, 1051-1064 The role of regional climate projections in managing complex socio-ecological systems. 2015, 15, 1-12 Fragmentation rate and landscape structure of the Tillabry landscape (Sahel region) with reference to desertification. 2016, 9, 77-86 978#37; Consequential Misperceptions: Ethics of Consensus on Global Warming. SSRN Electronic	161 10 15 27

271	Impacts of Climate Change on Allergen Seasonality. 92-112	9
270	The climatic impacts of land use and land cover change compared among countries. 2016 , 26, 889-903	19
269	The Impacts of Land-Use and Land-Cover Change on Tropospheric Temperatures at Global and Regional Scales. 2016 , 20, 1-23	10
268	The Role of CO2 and Dynamic Vegetation on the Impact of Temperate Land-Use Change in the HadCM3 Coupled Climate Model. 2016 , 20, 1-20	10
267	Improvements in Land-Use Classification for Estimating Daytime Surface Temperatures and Sea-Breeze Flows in Southern California. 2016 , 20, 1-32	7
266	Spatiotemporal dynamics of LUCC from 2001 to 2010 in Yunnan Province, China. 2016 , 41, 012033	
265	Weakening of Indian Summer Monsoon Rainfall due to Changes in Land Use Land Cover. 2016 , 6, 32177	103
264	Modeling the adaptation of the forest sector to climate change: A coupled approach. 2016,	
263	Assessing uncertainty in the profitability of prairie biomass production with ecosystem service compensation. 2016 , 21, 103-108	13
262	High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil. 2016 , 43, 9686-9695	80
261	Predicting Future Effects of Multiple Drivers of Extinction Risk in Perull Endemic Primate Fauna. 2016 , 315-349	3
260	Irrigation impacts on California's climate with the variable-resolution CESM. 2016 , 8, 1151-1163	27
259	Dynamics of water vapor and energy exchanges above two contrasting Sudanian climate ecosystems in Northern Benin (West Africa). 2016 , 121, 11,269-11,286	11
258	An examination of historical and future land use changes in Uganda using change detection methods and agent-based modelling. 2016 , 35, 247-271	16
257	The impact of historical land use change from 1850 to 2000 on secondary particulate matter and ozone. 2016 , 16, 14997-15010	17
256	Comparison of landEtmosphere interaction at different surface types in the mid- to lower reaches of the Yangtze River valley. 2016 , 16, 9875-9890	18
255	Influence of Meteorology and interrelationship with greenhouse gases (CO₂ and CH₄) at a suburban site of India. 2016 , 16, 3953-3967	40
254	A preliminary study to investigate the biogeophysical impact of desertification on climate based on different latitudinal bands. 2016 , 36, 945-955	

253	Atmospheric sensitivity to roughness length in a regional atmospheric model over the Ohiollennessee River Valley. 2016 , 128, 315-330	3
252	Towards an Understanding of the Twentieth-Century Cooling Trend in the Southeastern United States: Biogeophysical Impacts of Land-Use Change. 2016 , 20, 1-31	18
251	Using multi-model ensembles to improve the simulated effects of land use/cover change on temperature: a case study over northeast China. 2016 , 46, 765-778	26
250	Deforestation changes land@tmosphere interactions across South American biomes. 2016 , 139, 97-108	20
249	Environmental profile of green asparagus production in a hyper-arid zone in coastal Peru. 2016 , 112, 2505-2517	22
248	Accuracy assessment of approaches to spatially explicit reconstruction of historical cropland in Songnen Plain, Northeast China. 2016 , 26, 219-229	2
247	Europe's forest management did not mitigate climate warming. 2016 , 351, 597-600	232
246	Aging albedo model for asphalt pavement surfaces. 2016 , 117, 169-175	41
245	Quantification and monitoring of deforestation in India over eight decades (1930🛭 013). 2016 , 25, 93-116	113
244	Saving land to feed a growing population: consequences for consumption of crop and livestock products. 2016 , 21, 677-687	77
243	Potential impact of reforestation programmes and uncertainties in land cover effects over the loess plateau: a regional climate modeling study. 2017 , 144, 475-490	10
242	Land cover change during a period of extensive landscape restoration in Ningxia Hui Autonomous Region, China. <i>Science of the Total Environment</i> , 2017 , 598, 669-679	25
241	Use of major ions to evaluate the hydrogeochemistry of groundwater influenced by reclamation and seawater intrusion, West Nile Delta, Egypt. 2017 , 24, 3675-3704	22
240	Temperature changes in Three Gorges Reservoir Area and linkage with Three Gorges Project. 2017 , 122, 4866-4879	21
239	Local temperature response to land cover and management change driven by non-radiative processes. 2017 , 7, 296-302	140
238	A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. 2017 , 168, 94-116	465
237	Biophysical effects on temperature and precipitation due to land cover change. <i>Environmental Research Letters</i> , 2017 , 12, 053002	93
236	An ensemble of spatially explicit land-cover model projections: prospects and challenges to retrospectively evaluate deforestation policy. 2017 , 3, 1215-1228	8

235	Coupling of Community Land Model with RegCM4 for Indian Summer Monsoon Simulation. 2017 , 174, 4251-4270		15	
234	The Effects of Heat Advection on UK Weather and Climate Observations in the Vicinity of Small Urbanized Areas. 2017 , 165, 181-196		7	
233	Patterns and drivers of forest land cover changes in tropical semi-deciduous forests in Ghana. 2017 , 12, 71-86		16	
232	Impact of Abrupt Land Cover Changes by Tropical Deforestation on Southeast Asian Climate and Agriculture. <i>Journal of Climate</i> , 2017 , 30, 2587-2600	4.4	39	
231	Human influences on regional temperature change Lomparing adjacent plains of China and Russia. 2017 , 37, 2913-2922		4	
230	Essentials of Endorheic Basins and Lakes: A Review in the Context of Current and Future Water Resource Management and Mitigation Activities in Central Asia. 2017 , 9, 798		34	
229	Quantifying Streamflow Variations in Ungauged Lake Basins by Integrating Remote Sensing and Water Balance Modelling: A Case Study of the Erdos Larus relictus National Nature Reserve, China. <i>Remote Sensing</i> , 2017 , 9, 588	5	8	
228	The Biogeophysical Effects of Revegetation around Mining Areas: A Case Study of Dongsheng Mining Areas in Inner Mongolia. <i>Sustainability</i> , 2017 , 9, 628	3.6	11	
227	Temporal and Spatial Changes in Snow Cover and the Corresponding Radiative Forcing Analysis in Siberia from the 1970s to the 2010s. 2017 , 2017, 1-11		12	
226	Evaporation from cultivated and semi-wild Sudanian Savanna in west Africa. 2017 , 21, 4149-4167		4	
225	Land use options for staying within the Planetary Boundaries		63	
224	Application of Earth Observation Data for Estimation of Changes in Land Trajectories in Varanasi District, India. 2018 , 11, 5-18		6	
223	Comparative investigation on the decreased runoff between the water source and destination regions in the middle route of China South-to-North Water Diversion Project. 2018 , 32, 369-384		7	
222	Moisture Supply From the Western Ghats Forests to Water Deficit East Coast of India. 2018 , 45, 4337-	4344	23	
221	Differences in water balance between grassland and forest watersheds using long-term data, derived using the CoupModel. 2018 , 49, 72-89		7	
220	Dual-tree complex wavelet transform-based image enhancement for accurate long-term change assessment in coal mining areas. 2018 , 33, 1084-1094		3	
219	Intercomparison of surface energy fluxes, soil moisture, and evapotranspiration from eddy covariance, large-aperture scintillometer, and modeling across three ecosystems in a semiarid climate. 2018 , 248, 22-47		26	
218	Impacts of land cover transitions on surface temperature in China based on satellite observations. <i>Environmental Research Letters</i> , 2018 , 13, 024010	6.2	35	

217	Land cover, lightning frequency, and turbulent fluxes over Southern Louisiana. 2018, 90, 1-8		3
216	Dynamics of Land Use and Climate Change in Subhumid Region of Rajasthan, India. <i>Springer Geography</i> , 2018 , 157-173	0.4	
215	Biogeochemical potential of biomass pyrolysis systems for limiting global warming to 1.5 °C. Environmental Research Letters, 2018 , 13, 044036	6.2	33
214	Seasonal Local Temperature Responses to Paddy Field Expansion from Rain-Fed Farmland in the Cold and Humid Sanjiang Plain of China. <i>Remote Sensing</i> , 2018 , 10, 2009	5	13
213	Avoided land use conversions and carbon loss from conservation purchases in California. 2018 , 13, 391-	413	
212	An Assessment of CAMS-CSM in Simulating LandAtmosphere Heat and Water Exchanges. 2018 , 32, 862	-880	4
211	Simulating impacts of rapid forest loss on population size, connectivity and genetic diversity of Sunda clouded leopards (Neofelis diardi) in Borneo. 2018 , 13, e0196974		12
21 0	Diversity of large mammals in the Mara問出uallaga landscape, Peru: with notes on rare species. 2018 , 28, 313-328		3
209	FAIR v1.3: a simple emissions-based impulse response and carbon cycle model. 2018 , 11, 2273-2297		75
208	Biogeophysical Forcing of Land-Use Changes on Local Temperatures across Different Climate Regimes in China. <i>Journal of Climate</i> , 2018 , 31, 7053-7068	4.4	14
207	Legacy effects of land use on soil nitrous oxide emissions in annual crop and perennial grassland ecosystems. 2018 , 28, 1362-1369		13
206	Aerial and surface rivers: downwind impacts on water availability from land use changes in Amazonia. 2018 , 22, 911-927		16
205	The moderating or amplifying biophysical effects of afforestation on CO2-induced cooling depend on the local background climate regimes in China. 2018 , 260-261, 193-203		15
204	Simultaneous Regional Detection of Land-Use Changes and Elevated GHG Levels: The Case of Spring Precipitation in Tropical South America. 2018 , 45, 6262		10
203	Radiation Component Calculation and Energy Budget Analysis for the Korean Peninsula Region. <i>Remote Sensing</i> , 2018 , 10, 1147	5	9
202	Spatiotemporal Simulation of Future Land Use/Cover Change Scenarios in the Tokyo Metropolitan Area. <i>Sustainability</i> , 2018 , 10, 2056	3.6	36
201	Hydrochemistry, water quality and land use signatures in an ephemeral tidal river: implications in water management in the southwestern coastal region of Bangladesh. 2018 , 8, 1		12
200	Temporal and spatial variation of extreme temperatures in an agro-pastoral ecotone of northern China from 1960 to 2016. 2018 , 8, 8787		9

199	Biophysical effect of conversion from croplands to grasslands in water-limited temperate regions of China. <i>Science of the Total Environment</i> , 2019 , 648, 315-324	10.2	19
198	Hydrological Response of Dry Afromontane Forest to Changes in Land Use and Land Cover in Northern Ethiopia. <i>Remote Sensing</i> , 2019 , 11, 1905	5	7
197	Evaluating landscape capacity to provide spatially explicit valued ecosystem services for sustainable coastal resource management. 2019 , 182, 104918		13
196	Impacts of Three Gorges Dam on Regional Circulation: A Numerical Simulation. 2019 , 124, 7813-7824		8
195	The Effect of Urban Expansion in Metro Manila on the Southwest Monsoon Rainfall. 2019, 1		5
194	Hydrologic balance, net primary productivity and water use efficiency of the introduced exotic Eucalyptus grandis Œucalyptus urophylla plantation in south-western China. 2019 ,		O
193	Investigating the feedbacks between CO2, vegetation and the AMOC in a coupled climate model. 2019 , 53, 2485-2500		3
192	Sensitivity of Extreme Temperature Events to Urbanization in the Pearl River Delta Region. 2019 , 55, 373-386		7
191	Sensitivity of Surface Temperature to Land Use and Land Cover Change-Induced Biophysical Changes: The Scale Issue. 2019 , 46, 9678-9689		15
190	Robust observations of land-to-atmosphere feedbacks using the information flows of FLUXNET. 2019 , 2,		16
189	Evaluating Land Use and Land Cover Change in the Gaborone Dam Catchment, Botswana, from 1984\(\bar{L}\) 015 Using GIS and Remote Sensing. Sustainability, 2019, 11, 5174	3.6	21
188	Assessment of coupled regional climate model (RegCM4.6LLM4.5) for Indian summer monsoon. 2019 , 53, 6543-6558		4
187	Land Surface Processes. 2019 , 349-370		6
186	Study of Champua watershed for management of resources by using morphometric analysis and satellite imagery. 2019 , 9, 1		7
185	Combining MODIS and National Land Resource Products to Model Land Cover-Dependent Surface Albedo for Norway. <i>Remote Sensing</i> , 2019 , 11, 871	5	2
184	Investigating the influence of urban land use and landscape pattern on PM2.5 spatial variation using mobile monitoring and WUDAPT. 2019 , 189, 15-26		37
183	Incorporating Multidimensional Probabilistic Information Into Robustness-Based Water Systems Planning. 2019 , 55, 3659-3679		23
182	Implications of land use/land cover dynamics and Prosopis invasion on ecosystem service values in Afar Region, Ethiopia. <i>Science of the Total Environment</i> , 2019 , 675, 354-366	10.2	68

181	Effects of urban expansion on environment by morphological study. 2019, 227, 052004		1
180	Comparison of energy partitioning between artificial pasture and degraded meadow in three-river source region on the Qinghai-Tibetan Plateau: A case study. 2019 , 271, 251-263		7
179	Assessing and mapping ecosystem services to support urban green infrastructure: The case of Barcelona, Spain. 2019 , 92, 59-70		35
178	Land Surface Temperature Response to Irrigated Paddy Field Expansion: a Case Study of Semi-arid Western Jilin Province, China. 2019 , 9, 5278		8
177	Rapid Changes in Land-Sea Thermal Contrast Across China's Coastal Zone in a Warming Climate. 2019 , 124, 2049-2067		4
176	Northern Hemisphere Extratropical Turbulent Heat Fluxes in ASRv2 and Global Reanalyses. <i>Journal of Climate</i> , 2019 , 32, 2145-2166	4.4	2
175	Assessment of future water provisioning and sediment load under climate and LULC change scenarios in a peninsular river basin, India. 2019 , 64, 405-419		10
174	Rapid urbanization and associated impacts on land surface temperature changes over Bhubaneswar Urban District, India. 2020 , 191, 790		5
173	Effect of Human-Induced Land Disturbance on Subseasonal Predictability of Near-Surface Variables Using an Atmospheric General Circulation Model. 2019 , 10, 725		3
172	A Temporal Data Analysis to Identify Land Cover Change Trends in NCT Delhi. 2019,		
172 171	A Temporal Data Analysis to Identify Land Cover Change Trends in NCT Delhi. 2019, The Impact of Artificial Wetland Expansion on Local Temperature in the Growing SeasonEhe Case Study of the Sanjiang Plain, China. Remote Sensing, 2019, 11, 2915	5	5
	The Impact of Artificial Wetland Expansion on Local Temperature in the Growing Seasonthe Case	5 3.6	5 7
171	The Impact of Artificial Wetland Expansion on Local Temperature in the Growing Seasonthe Case Study of the Sanjiang Plain, China. <i>Remote Sensing</i> , 2019 , 11, 2915 The Impact of Chinat Grain for Green Program on Rural Economy and Precipitation: A Case Study		
171	The Impact of Artificial Wetland Expansion on Local Temperature in the Growing SeasonEhe Case Study of the Sanjiang Plain, China. <i>Remote Sensing</i> , 2019 , 11, 2915 The Impact of China Grain for Green Program on Rural Economy and Precipitation: A Case Study of Yan River Basin in the Loess Plateau. <i>Sustainability</i> , 2019 , 11, 5336 Development of Land-Use/Land-Cover Maps Using Landsat-8 and MODIS Data, and Their	3.6	7
171 170 169	The Impact of Artificial Wetland Expansion on Local Temperature in the Growing SeasonEhe Case Study of the Sanjiang Plain, China. <i>Remote Sensing</i> , 2019 , 11, 2915 The Impact of ChinaE Grain for Green Program on Rural Economy and Precipitation: A Case Study of Yan River Basin in the Loess Plateau. <i>Sustainability</i> , 2019 , 11, 5336 Development of Land-Use/Land-Cover Maps Using Landsat-8 and MODIS Data, and Their Integration for Hydro-Ecological Applications. <i>Sensors</i> , 2019 , 19,	3.6	7
171 170 169	The Impact of Artificial Wetland Expansion on Local Temperature in the Growing SeasonEhe Case Study of the Sanjiang Plain, China. <i>Remote Sensing</i> , 2019 , 11, 2915 The Impact of China® Grain for Green Program on Rural Economy and Precipitation: A Case Study of Yan River Basin in the Loess Plateau. <i>Sustainability</i> , 2019 , 11, 5336 Development of Land-Use/Land-Cover Maps Using Landsat-8 and MODIS Data, and Their Integration for Hydro-Ecological Applications. <i>Sensors</i> , 2019 , 19, Anthropogenic Meso-Meteorological Feedbacks: A Review of a Recent Research. 2019 , 55, 573-590 A comprehensive analysis of interseasonal and interannual energy and water balance dynamics in	3.6	7 15 3
171 170 169 168	The Impact of Artificial Wetland Expansion on Local Temperature in the Growing SeasonEhe Case Study of the Sanjiang Plain, China. <i>Remote Sensing</i> , 2019 , 11, 2915 The Impact of China® Grain for Green Program on Rural Economy and Precipitation: A Case Study of Yan River Basin in the Loess Plateau. <i>Sustainability</i> , 2019 , 11, 5336 Development of Land-Use/Land-Cover Maps Using Landsat-8 and MODIS Data, and Their Integration for Hydro-Ecological Applications. <i>Sensors</i> , 2019 , 19, Anthropogenic Meso-Meteorological Feedbacks: A Review of a Recent Research. 2019 , 55, 573-590 A comprehensive analysis of interseasonal and interannual energy and water balance dynamics in semiarid shrubland and forest ecosystems. <i>Science of the Total Environment</i> , 2019 , 651, 381-398 Litter quality, land-use history, and nitrogen deposition effects on topsoil conditions across	3.6	7 15 3

163	Forced changes to twentieth century ENSO diversity in a last Millennium context. 2019 , 52, 7359-7374		13
162	Spatio-temporal patterns of energy exchange and evapotranspiration during an intense drought for drylands in Brazil. 2020 , 85, 101982		18
161	A modelling exploration of the sensitivity of the Indial climate to irrigation. 2020, 54, 1851-1872		11
160	Understanding interactions between urban development policies and GHG emissions: A case study in Stockholm Region. 2020 , 49, 1313-1327		41
159	Local biophysical effects of land use and land cover change: towards an assessment tool for policy makers. 2020 , 91, 104382		33
158	Major Consequences of Land-Use Changes for Ecosystems in the Future in the Agro-Pastoral Transitional Zone of Northern China. 2020 , 10, 6714		3
157	The impact of flash-floods on the adjacent marine environment: the case of Mandra and Nea Peramos (November 2017), Greece. 2020 , 24, 1		4
156	Effects of Green Space Patterns on Urban Thermal Environment at Multiple Spatial Temporal Scales. Sustainability, 2020 , 12, 6850	.6	13
155	A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems. <i>Land</i> , 2020 , 9, 238	.5	9
154	Tempospatial Pattern of Surface Wind Speed and the D rban Stilling Island I In Beijing City. 2020 , 34, 986-996		7
153	Trends and drivers of land cover changes in a tropical urban forest in Ghana. 2020 , 2, 100040		7
152	Including albedo in time-dependent LCA of bioenergy. 2020 , 12, 410-425		7
151	Land Use and Land Cover Change Detection and Prediction in the Kathmandu District of Nepal Using Remote Sensing and GIS. <i>Sustainability</i> , 2020 , 12, 3925	.6	37
150	Spatially-explicit modeling and intensity analysis of China's land use change 2000-2050. 2020 , 263, 11040	7	19
149	Assessment of urban heat island warming in the greater accra region. 2020 , 8, e00426		4
148	Characteristics of Soil Parameters of Agricultural Land Use Types, Their Location and Development Forecast. <i>Land</i> , 2020 , 9, 197	.5	2
147	Attribution of the land surface temperature response to land-use conversions from bare land. 2020 , 193, 103268		5
146	Land Use/Land Cover Change (2000\(\textit{2000} \) 1014) in the Rio de la Plata Grasslands: An Analysis Based on MODIS NDVI Time Series. <i>Remote Sensing</i> , 2020 , 12, 381		40

145	Climate changes in the Lhasa River basin, Tibetan Plateau: irrigation-induced cooling along with a warming trend. 2020 , 140, 1043-1054	1
144	Analyses of the relationship between drought occurrences and their causal factors in Tigray Region, Northern Ethiopia. 2020 , 72, 1-18	2
143	How well do the spring indices predict phenological activity across plant species?. 2020 , 64, 889-901	5
142	Trends in the National and Regional Transitional Dynamics of Land Cover and Use Changes in Romania. <i>Remote Sensing</i> , 2020 , 12, 230	16
141	Examining the impacts of future land use/land cover changes on climate in Punjab province, Pakistan: implications for environmental sustainability and economic growth. 2020 , 27, 25415-25433	12
140	Influence of land use on the performance of the WRF model in a humid tropical climate. 2020 , 141, 201-214	2
139	Evaluating long-term variability in precipitation and temperature in eastern plateau region, India, and its impact on urban environment. 2021 , 23, 3731-3761	4
138	A spatiotemporal structural graph for characterizing land cover changes. 2021 , 35, 397-425	4
137	The carbon sequestration potential of BnalogIForestry in Ecuador: an alternative strategy for reforestation of degraded pastures. 2021 , 94, 102-114	
136	Urban structure and its implication of heat stress by using remote sensing and simulation tool. 2021 , 65, 102632	4
135	Putting the Ecosystem Services idea at work: Applications on impact assessment and territorial planning. 2021 , 38, 100570	6
134	Assessing the impact of Land-use and Land-cover changes on the climate over India using a Regional Climate Model (RegCM4).	4
133	Arazi ftt¶Arazi Kullañm De¶mlerinin Farkl-Zamanl-Landsat Uydu Gffttleri ile Belirlenmesi: aramba Delta Ovas-fine[]	
132	Capturing urban heat island formation in a subtropical city of China based on Landsat images: implications for sustainable urban development. 2021 , 193, 130	6
131	Investigating Decadal Changes of Multiple Hydrological Products and Land-Cover Changes in the Mediterranean Region for 2009\(\mathbb{Q}\)018. 2021 , 5, 285	5
130	The Bowen Ratio of an Alpine Grassland in Three-River Headwaters, Qinghai-Tibet Plateau, from 2001 to 2018. <i>Journal of Resources and Ecology</i> , 2021 , 12,	
129	Reduction in human activity can enhance the urban heat island: insights from the COVID-19 lockdown. <i>Environmental Research Letters</i> , 2021 , 16, 054060	21
128	Detecting Winter Cover Crops and Crop Residues in the Midwest US Using Machine Learning Classification of Thermal and Optical Imagery. <i>Remote Sensing</i> , 2021 , 13, 1998	1

127	An In-Depth Analysis of Physical Blue and Green Water Scarcity in Agriculture in Terms of Causes and Events and Perceived Amenability to Economic Interpretation. 2021 , 13, 1693	11
126	Environmental and Social Risks to Biodiversity and Ecosystem Health Bottom-Up, Resource-Focused Assessment Framework. 2021 , 2, 440-456	4
125	CO₂-equivalence metrics for surface albedo change based on the radiative forcing concept: a critical review. 2021 , 21, 9887-9907	6
124	Application of variational calculus to parameter estimation in a real hydrological system. 2021 , 60, 11-19	
123	Impacts of Saline-Alkali Land Improvement on Regional Climate: Process, Mechanisms, and Implications. <i>Remote Sensing</i> , 2021 , 13, 3407	1
122	Land-use change and biodiversity: Challenges for assembling evidence on the greatest threat to nature. 2021 , 27, 5414-5429	7
121	Retrospective research on the interactions between land-cover change and global warming using bibliometrics during 1991 2018. 2021, 80, 1	3
120	Albedo-induced global warming impact of Conservation Reserve Program grasslands converted to annual and perennial bioenergy crops. <i>Environmental Research Letters</i> , 2021 , 16, 084059	2
119	Spatiotemporal analysis of land use land cover changes and built-up expansion projection in predominantly dystric nitosol of Ebonyi state, Southeastern, Nigeria. 2021 , 4, 100145	0
118	On the Influence of Vegetation Cover Changes and Vegetation-Runoff Systems on the Simulated Summer Potential Evapotranspiration of Tropical Africa Using RegCM4. 1	1
117	Biophysical Impacts of Historical Disturbances, Restoration Strategies, and Vegetation Types in a Peatland Ecosystem. 2021 , 126, e2021JG006532	1
116	Spatiotemporal variations of forest ecohydrological characteristics in the Lancang-Mekong region during 1992-2016 and 2020-2099 under different climate scenarios. 2021 , 310, 108662	1
115	Twenty years of change: Land and water resources in the Chindwin catchment, Myanmar between 1999 and 2019. <i>Science of the Total Environment</i> , 2021 , 798, 148766	2 2
114	Land use and land cover change detection and prediction in Bhutan's high altitude city of Thimphu, using cellular automata and Markov chain. 2021 , 2, 100017	20
113	What is the Scope of ⊞istoryûn Historical Ecology? Issues of Scale in Management and Conservation. 63-75	18
112	Climate Change and Ecology in Rural Lands. 2009 , 39-56	1
111	Remote Sensing of Urban Environmental Conditions. 2010 , 267-287	3
110	Coffee Shade Tree Management: An Adaptation Option for Climate Change Impact for Small Scale Coffee Growers in South-West Ethiopia. 2017 , 647-659	3

109	Urbanization and Climate Change. 2015 , 619-655		13
108	Urbanization and Climate Change. 2014 , 1-30		2
107	Perspectives in Modelling Climate⊞ydrology Interactions. 2013 , 739-764		2
106	The biophysical climate mitigation potential of boreal peatlands during the growing season. <i>Environmental Research Letters</i> , 2020 , 15, 104004	6.2	11
105	Tropical Forests and Global Atmospheric Change. 2005,		26
104	Late twentieth-century patterns and trends in the climate of tropical forest regions. 2005 , 3-16		13
103	Twenty-first century atmospheric change and deforestation: potential impacts on tropical forests. 2005 , 17-30		3
102	ForestElimate interactions in fragmented tropical landscapes. 2005 , 31-39		4
101	Predicting the impacts of global environmental changes on tropical forests. 2005, 41-56		1
100	Ecophysiological and biogeochemical responses to atmospheric change. 2005 , 57-66		1
99	The effects of drought on tropical forest ecosystems. 2005 , 75-84		12
98	Late twentieth-century patterns and trends in Amazon tree turnover. 2005, 107-128		2
97	Error propagation and scaling for tropical forest biomass estimates. 2005 , 155-164		5
96	Climate change and speciation in neotropical seasonally dry forest plants. 2005, 199-214		2
95	The prospects for tropical forests in the twenty-first-century atmosphere. 2005 , 215-226		1
94	Landslide Hazards and cLimate Change: A Perspective from the United States. 2016 , 479-523		6
93	Earthcasting the future Critical Zone. 2013 , 1,		16
92	Climate change or urbanization? Impacts on a traditional coffee production system in East Africa over the last 80 years. 2013 , 8, e51815		40

(2021-2015)

91	Vertical and Horizontal Vegetation Structure across Natural and Modified Habitat Types at Mount Kilimanjaro. 2015 , 10, e0138822	30
90	Retrospective Analysis of Land Use Land Cover Dynamics Using GIS and Remote sensing in Central Highlands of Ethiopia. 2018 , 11, 31-52	5
89	Effects of land use changes on climate in the Greater Horn of Africa. 2012 , 52, 77-95	29
88	DEVELOPING AN AUTOMATED METHOD FOR THE APPLICATION OF LIDAR IN IUMAT LAND-USE MODEL: ANALYSIS OF LAND-USE CHANGES USING BUILDING-FORM PARAMETERIZATION, GIS, AND ARTIFICIAL NEURAL NETWORKS. 2019 , 14, 1-30	6
87	An Analysis of Climate Impact on Landscape Design. 2016 , 06, 475-481	0
86	An Appraisal of Land Use/Land Cover Change Scenario of Tummalapalle, Cuddapah Region, India Remote Sensing and GIS Perspective. 2016 , 05, 232-245	5
85	Effects of Land Use on Greenhouse Gas Flux in Playa Wetlands and Associated Watersheds in the High Plains, USA. 2019 , 10, 181-201	1
84	Observed and model simulated 20th century Arctic temperature variability: Canadian Earth System Model CanESM2.	209
83	Estimation of biogenic volatile organic compound (BVOC) emissions from the terrestrial ecosystem in China using real-time remote sensing data.	11
82	Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI earth system model. 2010 , 7, 1383-1399	126
81	Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI earth system model.	3
80	Coupling the high complexity land surface model ACASA to the mesoscale model WRF.	2
79	A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes.	5
78	The integrated Earth System Model (iESM): formulation and functionality.	11
77	High resolution land surface modeling utilizing remote sensing parameters and the Noah-UCM: a case study in the Los Angeles Basin.	0
76	Estimation of vegetation cover resilience from satellite time series.	9
75	A Database for Long-Term Atmosphere-Surface Transfer Monitoring in Salento Peninsula (Southern Italy). 2013 , 2013, 1-4	6
74	A Review: Application and Implementation of Optic Fibre Sensors for Gas Detection. <i>Sensors</i> , 2021 , 21,	2

73	Land Use and Land Cover Change in the Yellow River Basin from 1980 to 2015 and Its Impact on the Ecosystem Services. <i>Land</i> , 2021 , 10, 1080	3.5	9
72	Dynamics of Open Green Areas in Polish and Romanian Cities during 2006\(\mathbb{Q}\)018: Insights for Spatial Planners. <i>Remote Sensing</i> , 2021 , 13, 4041	5	2
71	Ecological responses of Amazonian forests to El Ni ô -induced surface fires. 2005 , 87-96		
70	Late twentieth-century trends in tree-community composition in an Amazonian forest. 2005, 97-106		1
69	Late twentieth-century trends in the biomass of Amazonian forest plots. 2005, 129-142		2
68	Late twentieth-century trends in the structure and dynamics of South American forests. 2005 , 143-154		
67	The longevity and resilience of the Amazon rainforest. 2005 , 167-182		
66	Tropical forests dynamics in response to a CO2-rich atmosphere. 2005 , 67-74		
65	Amazonian ecosystems and atmospheric change since the last glacial maximum. 2005, 183-190		
64	Modelling the past and the future fate of the Amazonian forest. 2005 , 191-198		1
63	Introduction. Advances in Agroecology, 2006 , 1-8		
62	Atmospheric Oscillations do not Explain the Temperature-Industrialization Correlation. <i>SSRN Electronic Journal</i> ,	1	
61	The Influence of Realistic Vegetation Phenology on Regional Climate Modeling. <i>Taylor & Francis Series in Remote Sensing Applications</i> , 2011 , 409-438		
60	Land Use Changes and Climate Patterns in Southeast Korea. <i>Journal of the Korean Association of Geographic Information Studies</i> , 2013 , 16, 47-64		2
59	International Comparisons of the Modeled Climate Effects of Land Use Changes. <i>Springer Geography</i> , 2014 , 207-257	0.4	
58	Potential climate forcing of land use and land cover change.		1
57	Land-Use and Land-Cover Change (LULCC). 2014 , 328-337		

55	Simulating Agricultural Land Use Changes in Uganda Using an Agent-Based Model. <i>Communications in Computer and Information Science</i> , 2015 , 458-470	0.3	
54	Assessment of Land Use/Land Cover Change in Hirpora Wildlife Sanctuary, Kashmir. <i>Asian Journal of Earth Sciences</i> , 2015 , 8, 64-73	0.7	3
53	Influence of meteorology and interrelationship with greenhouse gases (CO ₂ and CH ₄) at a sub-urban site of India.		
52	Convulsive Flurry: Conspiracy, Consensus, Motivation: A Corollary to Lewandowsky et al (2015). <i>SSRN Electronic Journal</i> ,	1	
51	Understanding Resilient Urban Futures: A Systemic Modelling Approach. 2016, 3-38		
50	Watershed Hydrology and Land-Use and Land-Cover Change (LULCC). 892-895		
49	Influences of Temperature Change Rates and Impervious Surfaces on the Intra-City Climatic Patterns of Busan Metropolitan Area. <i>Journal of the Korean Association of Geographic Information Studies</i> , 2016 , 19, 199-217		
48	Population and Global Food Security. <i>Advances in Environmental Engineering and Green Technologies Book Series</i> , 2017 , 40-63	0.4	1
47	A Century of Forest Regrowth and Snow Loss Alters the Cooling Effect of Historical Land Use in the Upper Midwest. <i>Ecosystems</i> , 2020 , 23, 1056-1074	3.9	
46	Conservation of Tropical Agriculture in the Era of Changing Climate. 2020 , 185-195		
45	Impact of Grazing Exclusion on the Surface Heat Balance in North Tibet. <i>Journal of Resources and Ecology</i> , 2020 , 11, 283	0.5	1
44	Detection of pre-industrial societies on exoplanets. <i>International Journal of Astrobiology</i> , 2021 , 20, 73-	801.4	
43	Change in the Distribution of National Bird (Himalayan Monal) Habitat in Gandaki River Basin, Central Himalayas. <i>Journal of Resources and Ecology</i> , 2020 , 11, 223	0.5	О
42	A Simple Reclassification Method for Correcting Uncertainty in Land Use/Land Cover Data Sets Used with Land Surface Models. 2007 , 1789-1809		1
41	The Global Warming Debate: A Review of the State of Science. 1557-1586		1
40	Food Security and Climate Change. 2022 , 44-63		1
39	Identification of Soil Moisture B recipitation Feedback Based on Temporal Information Partitioning Networks. <i>Journal of the American Water Resources Association</i> ,	2.1	
38	Multi-temporal analysis of past and future land cover change in the highly urbanized state of Selangor, Malaysia. <i>Ecological Processes</i> , 2022 , 11,	3.6	2

37	Understanding Land Use/Land Cover Dynamics in and Surrounding the Ethiopian Church Forests. 2022 , 11-30		O
36	Weekly Monitoring and Forecasting of Hydropower Production Coupling Meteo-Hydrological Modeling with Ground and Satellite Data in the Italian Alps. <i>Hydrology</i> , 2022 , 9, 29	2.8	1
35	Preserving life on Earth. 2022 , 503-602		
34	Challenge of climate change. 2022 , 39-104		
33	Land-use/land-cover changes and implications in Southern Ethiopia: evidence from remote sensing and informants <i>Heliyon</i> , 2022 , 8, e09071	3.6	1
32	Potential impacts of climate, land use and land cover changes on hydropower generation in West Africa: a review. <i>Environmental Research Letters</i> , 2022 , 17, 043005	6.2	O
31	Predicting the Impact of Climate Change on Vulnerable Species in Gandaki River Basin, Central Himalayas. <i>Journal of Resources and Ecology</i> , 2022 , 13,	0.5	
30	The Synergy Green Innovation Effect of Green Innovation Subsidies and Carbon Taxes. <i>Sustainability</i> , 2022 , 14, 3453	3.6	2
29	Effects of heavy grazing on the microclimate of a humid grassland mountain ecosystem: Insights from a biomass removal experiment <i>Science of the Total Environment</i> , 2022 , 155010	10.2	O
28	Quantifying Temperature and Precipitation Change Caused by Land Cover Change: A Case Study of India Using the WRF Model. <i>Frontiers in Environmental Science</i> , 2021 , 9,	4.8	2
27	Vegetation greening, extended growing seasons, and temperature feedbacks in warming temperate grasslands of China. <i>Journal of Climate</i> , 2022 , 1-51	4.4	5
26	Albedo impacts of current agricultural land use: Crop-specific albedo from MODIS data and inclusion in LCA of crop production <i>Science of the Total Environment</i> , 2022 , 155455	10.2	O
25	Linkage of extreme temperature change with atmospheric and locally anthropogenic factors in China mainland. <i>Atmospheric Research</i> , 2022 , 277, 106307	5.4	О
24	Impacto observado das mudanês no uso e cobertura da terra na hidrologia de bacias com ĥfase em regiês tropicais. <i>Pesquisa Florestal Brasileira</i> , 42, 1-15	0.5	
23	Spatially Explicit River Basin Models for Cost-Benefit Analyses to Optimize Land Use. <i>Sustainability</i> , 2022 , 14, 8953	3.6	0
22	A spatiotemporal ensemble machine learning framework for generating land use/land cover time-series maps for Europe (2000 2 019) based on LUCAS, CORINE and GLAD Landsat. 10, e13573		O
21	Preface. 2005 , v-viii		
20	Contributors. 2005 , xiii-xvi		

19 Copyright Page. **2005**, iv-iv

18	Association of winter vegetation activity across the indo-gangetic plain with the subsequent Indian summer monsoon rainfall.	
17	Assessment of paddy expansion impact on regional climate using WRF model: a case study in Sanjiang Plain, Northeast China.	
16	Estimation of Forest Ecosystem Climate Regulation Service Based on Actual Evapotranspiration of New Urban Areas in Guanshanhu District, Guiyang, Guizhou Province, China. 2022 , 14, 10022	o
15	Identification of homogenous rainfall regions with trend analysis using fuzzy logic and clustering approach coupled with advanced trend analysis techniques in Mumbai city. 2022 , 46, 101306	1
14	Identifying data challenges to representing human decision-making in large-scale land-use models. 2022 , 115-126	O
13	Impact of Saline-Alkali Land Greening on the Local Surface Temperature Multiscale Assessment Based on Remote Sensing. 2022 , 14, 4246	O
12	Is Climate Change Restoring Historical Fire Regimes across Temperate Landscapes of the San Juan Mountains, Colorado, USA?. 2022 , 11, 1615	o
11	Investigating the relative contribution of anthropogenic increase in greenhouse gas and land use and land cover change to Asian climate: A dynamical downscaling study.	O
10	Land use and cover change (LUCC) impacts on Earth eco-environments: research progress and prospects. 2022 ,	o
9	Soil Analysis Software Tool for Smart Control of Agronomic Data. 2022,	O
8	Analysis of the Influence of Deforestation on the Microphysical Parameters of Clouds in the Amazon. 2022 , 14, 5353	O
7	The Relationship between the Built Environment and Climate Change: The Case of Turkish Provinces. 2023 , 15, 1659	0
6	Where did the forest go? Post-deforestation land use dynamics in the Dry Chaco region in Northwestern Argentina. 2023 , 129, 106650	O
5	Assessing the link between land use/land cover changes and land surface temperature in Himalayan urban center, Srinagar. 2023 , 30, 51191-51205	О
4	Vulnerability of protected areas to future climate change, land use modification, and biological invasions in C hina.	O
3	Unraveling diurnal asymmetry of surface temperature under warming scenarios in diverse agroclimate zones of India. 2023 , 152, 321-335	0
2	Competing effects of vegetation on summer temperature in North Korea.	O

Optical remotely sensed data for mapping variations in cashew plantation distribution and associated land uses in Ogbomoso, Nigeria Southwest.

О