Uniform electron gas from the Colle-Salvetti functional

Physical Review A 63, DOI: 10.1103/physreva.63.032513

Citation Report

#	Article	IF	CITATIONS
1	Pair distribution function of the spin-polarized electron gas: A first-principles analytic model for all uniform densities. Physical Review B, 2002, 66, .	1.1	76
2	An accurate MGGA-based hybrid exchange-correlation functional. Journal of Chemical Physics, 2002, 116, 2335-2337.	1.2	20
3	Combining two-body density functionals with multiconfigurational wavefunctions: diatomic molecules. Molecular Physics, 2003, 101, 361-371.	0.8	35
4	Usefulness of the Colle–Salvetti model for the treatment of the nondynamic correlation. Journal of Chemical Physics, 2003, 118, 1054-1058.	1.2	21
5	Determination of a Wave Function Functional. Physical Review Letters, 2004, 93, 130401.	2.9	19
6	Correlation energy of many-electron systems: A modified Colle–Salvetti approach. Journal of Chemical Physics, 2004, 121, 7671.	1.2	33
7	Progress in the development of exchange-correlation functionals. , 2005, , 669-724.		108
8	The Colle–Salvetti Wavefunction Revisited: a Comparison Between Three Approaches for Obtaining the Correlation Energy. Theoretical Chemistry Accounts, 2006, 115, 334-342.	0.5	8
9	Fundamental importance of the Coulomb hole sum rule to the understanding of the Colle-Salvetti wave function functional. Journal of Chemical Physics, 2006, 125, 034103.	1.2	2
10	Orbital currents in the Colle-Salvetti correlation energy functional and the degeneracy problem. Journal of Chemical Physics, 2007, 127, 124103.	1.2	11
11	Why does the B3LYP hybrid functional fail for metals?. Journal of Chemical Physics, 2007, 127, 024103.	1.2	481
12	Interconfigurational energies and ionization potentials: Test of a correlation energy functional. Chemical Physics, 2007, 337, 161-167.	0.9	16
13	Normalization and Fermi–Coulomb and Coulomb hole sum rules for approximate wave functions. International Journal of Quantum Chemistry, 2007, 107, 816-823.	1.0	3
14	Application of the Colle–Salvetti model to the uniform electron gas. Theoretical Chemistry Accounts, 2007, 118, 631-635.	0.5	2
15	Colleâ€Salvettiâ€type correction for electron–nucleus correlation in the nuclear orbital plus molecular orbital theory. Journal of Computational Chemistry, 2008, 29, 735-740.	1.5	36
16	Orbital-dependent density functionals: Theory and applications. Reviews of Modern Physics, 2008, 80, 3-60.	16.4	1,069
17	Local correlation functional for electrons in two dimensions. Physical Review B, 2008, 78, .	1.1	25
18	Analytic form of the correlation energy of the uniform electron gas. Physical Review A, 2009, 79, .	1.0	7

CITATION REPORT

#	ARTICLE	IF	CITATIONS
19	Toward improved density functionals for the correlation energy. Journal of Chemical Physics, 2009, 131, 134109.	1.2	46
20	A variational density matrix approach with nonlocal effective potential. Theoretical Chemistry Accounts, 2009, 123, 183-187.	0.5	1
21	The self-interaction error and the description of non-dynamic electron correlation in density functional theory. Theoretical Chemistry Accounts, 2009, 123, 171-182.	0.5	51
22	Extension of Density Functional Theory to Nuclear Orbital plus Molecular Orbital Theory: Self-Consistent Field Calculations with the Colle–Salvetti Electron–Nucleus Correlation Functional. Bulletin of the Chemical Society of Japan, 2009, 82, 1133-1139.	2.0	22
23	Colle-Salvetti-type local density functional for the exchange-correlation energy in two dimensions. Physical Review A, 2010, 82, .	1.0	10
24	Stability of Hydrocarbons of the Polyhedrane Family Containing Bridged CH Groups: A Case of Failure of the Colleâ^'Salvetti Correlation Density Functionals. Journal of Chemical Theory and Computation, 2010, 6, 3442-3455.	2.3	16
25	A periodic hybrid DFT approach (including dispersion) to MgCl2-supported Ziegler–Natta catalysts – 1: TiCl4 adsorption on MgCl2 crystal surfaces. Journal of Catalysis, 2012, 286, 103-110.	3.1	103
26	Comparison of three methods for calculation of electron transfer probability in H++Ne. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 469-471.	0.9	12
27	Computational study of ammonia adsorption on the perfect and rippled graphene sheet. Physica B: Condensed Matter, 2013, 429, 52-56.	1.3	12
28	Hybrid Density Functionals Applied to Complex Solid Catalysts: Successes, Limitations, and Prospects. Catalysis Letters, 2016, 146, 861-885.	1.4	31
29	Kineticâ€energyâ€density dependent semilocal exchangeâ€correlation functionals. International Journal of Quantum Chemistry, 2016, 116, 1641-1694.	1.0	78
30	A study of accurate exchange-correlation functionals through adiabatic connection. Journal of Chemical Physics, 2017, 147, 144105.	1.2	9
31	Calculation of electron capture probability of energetic protons colliding with rare-gas atoms: A comparison study on four methods. Chemical Physics, 2021, 541, 111035.	0.9	1