Setting of alkali-activated slag cement. Influence of acti

Advances in Cement Research 13, 115-121 DOI: 10.1680/adcr.2001.13.3.115

Citation Report

#	Article	IF	CITATIONS
1	DEVELOPMENT AND PERFORMANCE OF CEMENT KILN DUST-SLAG CEMENT. , 2002, , 403-410.		6
2	Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements. Advances in Cement Research, 2003, 15, 129-136.	0.7	197
3	Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate. Cement and Concrete Research, 2004, 34, 139-148.	4.6	287
4	Effects of type and dosage of alkaline activator and temperature on the properties of alkali-activated slag mixtures. Construction and Building Materials, 2007, 21, 1463-1469.	3.2	185
5	Life Cycle Analysis Incorporated Development of Geopolymer Binder / Ökobilanziell eingebettete Entwicklung von Geopolymerbindern. Restoration of Buildings and Monuments, 2008, 14, 271-282.	0.6	2
6	Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Construction and Building Materials, 2009, 23, 548-555.	3.2	479
7	Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cement and Concrete Research, 2010, 40, 898-907.	4.6	341
8	Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cement and Concrete Composites, 2011, 33, 46-54.	4.6	513
9	Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cement and Concrete Research, 2011, 41, 301-310.	4.6	720
10	The potential for using slags activated with near neutral salts as immobilisation matrices for nuclear wastes containing reactive metals. Journal of Nuclear Materials, 2011, 413, 183-192.	1.3	40
11	Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part II: Effect of Al2O3. Cement and Concrete Research, 2012, 42, 74-83.	4.6	406
12	Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Construction and Building Materials, 2013, 47, 1201-1209.	3.2	493
13	Alkali activation of blended cements containing oil shale ash. Construction and Building Materials, 2013, 40, 367-377.	3.2	22
14	Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation. Cement and Concrete Research, 2014, 57, 95-104.	4.6	300
15	The fate of iron in blast furnace slag particles during alkali-activation. Materials Chemistry and Physics, 2014, 146, 1-5.	2.0	36
16	Physico-chemical, mechanical, microstructure and durability characteristics of alkali activated Egyptian slag. Construction and Building Materials, 2014, 69, 60-72.	3.2	90
17	Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution. Cement and Concrete Composites, 2014, 53, 279-288.	4.6	189
18	Distinctive microstructural features of aged sodium silicate-activated slag concretes. Cement and Concrete Research, 2014, 65, 41-51.	4.6	80

TION REI

#	Article	IF	CITATIONS
19	Influence of different additives on the properties of sodium sulfate activated slag. Construction and Building Materials, 2015, 79, 379-389.	3.2	68
20	Setting, segregation and bleeding of alkali-activated cement, mortar and concrete binders. , 2015, , 113-131.		10
21	Reuse of urban and industrial waste glass as a novel activator for alkali-activated slag cement pastes: a case study. , 2015, , 75-109.		6
22	Crucial insights on the mix design of alkali-activated cement-based binders. , 2015, , 49-73.		25
23	An exploratory study on sodium sulfate activated slag modified with Portland cement. Materials and Structures/Materiaux Et Constructions, 2015, 48, 4085-4095.	1.3	25
24	Properties of alkali activated slag–fly ash blends with limestone addition. Cement and Concrete Composites, 2015, 59, 119-128.	4.6	179
25	Reaction kinetics, reaction products and compressive strength of ternary activators activated slag designed by Taguchi method. Materials and Design, 2015, 86, 878-886.	3.3	60
26	Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders. Materials and Structures/Materiaux Et Constructions, 2015, 48, 517-529.	1.3	186
27	Studying the Hydration of a Retarded Suspension of Ground Granulated Blast-Furnace Slag after Reactivation. Materials, 2016, 9, 933.	1.3	2
28	Alkali-activated slag cements produced with a blended sodium carbonate/sodium silicate activator. Advances in Cement Research, 2016, 28, 262-273.	0.7	78
29	Controlling the reaction kinetics of sodium carbonate-activated slag cements using calcined layered double hydroxides. Cement and Concrete Research, 2016, 81, 24-37.	4.6	213
30	Alkali activated slag foams: The effect of the alkali reaction on foam characteristics. Journal of Cleaner Production, 2017, 147, 330-339.	4.6	115
31	Sodium carbonate activated slag as cement replacement in autoclaved aerated concrete. Ceramics International, 2017, 43, 6039-6047.	2.3	51
32	Assessing the chemical involvement of limestone powder in sodium carbonate activated slag. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	37
33	Evaluation of slag characteristics on the reaction kinetics and mechanical properties of Na 2 CO 3 activated slag. Construction and Building Materials, 2017, 131, 334-346.	3.2	50
34	Alkali activated slag pastes with surface-modified blast furnace slag. Cement and Concrete Composites, 2017, 76, 39-47.	4.6	26
35	Time-dependent characterization of Na 2 CO 3 activated slag. Cement and Concrete Composites, 2017, 84, 188-197.	4.6	56
36	Circulating fluidized bed combustion ash as controlled low-strength material (CLSM) by alkaline activation. Construction and Building Materials, 2017, 156, 728-738.	3.2	39

# 37	ARTICLE Autogenous and drying shrinkage of sodium carbonate activated slag altered by limestone powder incorporation. Construction and Building Materials, 2017, 153, 459-468.	IF 3.2	Citations
38	Chloride binding and mobility in sodium carbonate-activated slag pastes and mortars. Materials and Structures/Materiaux Et Constructions, 2017, 50, 252.	1.3	52
39	Alkali activated slag binder: effect of cations from silicate activators. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	25
40	8. Chemistry, design and application of hybrid alkali activated binders. , 2017, , 253-284.		0
41	Phase modification induced drying shrinkage reduction on Na2CO3 activated slag by incorporating Na2SO4. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	9
42	Alkali activation of a high MgO GGBS – fresh and hardened properties. Magazine of Concrete Research, 2018, 70, 1256-1264.	0.9	23
43	One-part geopolymer cement from slag and pretreated paper sludge. Journal of Cleaner Production, 2018, 185, 168-175.	4.6	126
44	Slag-Based Cements That Resist Damage Induced by Carbon Dioxide. ACS Sustainable Chemistry and Engineering, 2018, 6, 5067-5075.	3.2	39
45	Self-hydration characteristics of ground granulated blast-furnace slag (GGBFS) by wet-grinding treatment. Construction and Building Materials, 2018, 167, 96-105.	3.2	59
46	Alkali-activated slag concrete: Fresh and hardened behaviour. Cement and Concrete Composites, 2018, 85, 22-31.	4.6	151
47	Effects of processing on the mineralogy and solubility of carbonate-rich clays for alkaline activation purpose: mechanical, thermal activation in red/ox atmosphere and their combination. Applied Clay Science, 2018, 152, 9-21.	2.6	27
48	Effect of Dosage of Alkaline Activator on the Properties of Alkali-Activated Slag Pastes. Advances in Materials Science and Engineering, 2018, 2018, 1-12.	1.0	14
49	Some Progresses in the Challenges for Geopolymer. IOP Conference Series: Materials Science and Engineering, 0, 431, 022003.	0.3	10
50	Effects of Portland cement on activation mechanism of class F fly ash geopolymer cured under ambient conditions. Construction and Building Materials, 2018, 189, 1113-1123.	3.2	53
51	The effect of ultrahigh volume ultrafine blast furnace slag on the properties of cement pastes. Construction and Building Materials, 2018, 189, 438-447.	3.2	37
52	A critical review on application of alkali activated slag as a sustainable composite binder. Case Studies in Construction Materials, 2019, 11, e00268.	0.8	82
53	Effect of the activator on the performance of alkali-activated slag mortars with pottery sand as fine aggregate. Construction and Building Materials, 2019, 197, 83-90.	3.2	37
54	Microstructure and Strength Development of Sodium Carbonate–Activated Blast Furnace Slags. Journal of Materials in Civil Engineering, 2019, 31, .	1.3	19

	Сітатіс	CITATION REPORT	
#	Article	IF	CITATIONS
55	Recent progress in low-carbon binders. Cement and Concrete Research, 2019, 122, 227-250.	4.6	391
56	<i>In situ</i> quasi-elastic neutron scattering study on the water dynamics and reaction mechanisms in alkali-activated slags. Physical Chemistry Chemical Physics, 2019, 21, 10277-10292.	1.3	20
57	Understanding the roles of activators towards setting and hardening control of alkali-activated slag cement. Composites Part B: Engineering, 2019, 171, 34-45.	5.9	116
58	Effect of calcium hydroxide on fresh state behavior of sodium carbonate activated blast furnace slag pastes. Construction and Building Materials, 2019, 212, 388-399.	3.2	40
59	Effects of calcined dolomite addition on reaction kinetics of one-part sodium carbonate-activated slag cements. Construction and Building Materials, 2019, 211, 329-336.	3.2	29
60	Accelerating the reaction kinetics and improving the performance of Na2CO3-activated GGBS mixes. Cement and Concrete Research, 2019, 126, 105927.	4.6	42
61	Synthesis of Alkali-Activated Binary Blended Silico-Manganese Fume and Ground Blast Furnace Slag Mortar. Journal of Advanced Concrete Technology, 2019, 17, 728-735.	0.8	15
63	Experimental Investigation of Bond-Slip Performance of Reinforcement in Two Green Concretes. Journal of Materials in Civil Engineering, 2020, 32, .	1.3	3
64	Influence of different activators on microstructure and strength of alkali-activated nickel slag cementitious materials. Construction and Building Materials, 2020, 235, 117449.	3.2	40
65	Alkali-activated concrete systems: a state of art. , 2020, , 459-491.		5
66	Hardening evolution of geopolymers from setting to equilibrium: A review. Cement and Concrete Composites, 2020, 114, 103729.	4.6	76
67	Enhancing the performance of MgO-activated slag-fly ash mixes by accelerated carbonation. Journal of CO2 Utilization, 2020, 42, 101356.	3.3	14
68	Synthesis of kaolin-based alkali-activated cement: carbon footprint, cost and energy assessment. Journal of Materials Research and Technology, 2020, 9, 8367-8378.	2.6	37
69	Interpreting the early-age reaction process of alkali-activated slag by using combined embedded ultrasonic measurement, thermal analysis, XRD, FTIR and SEM. Composites Part B: Engineering, 2020, 186, 107840.	5.9	105
70	Use of industrial by-products as alkaline cement activators. Construction and Building Materials, 2020, 253, 119000.	3.2	16
71	Influence of activator type on reaction kinetics, setting time, and compressive strength of alkali-activated mineral wools. Journal of Thermal Analysis and Calorimetry, 2021, 144, 1129-1138.	2.0	24
72	Development of newer composite cement through mechano-chemical activation of steel slag. Construction and Building Materials, 2021, 268, 121147.	3.2	28
73	Influence of various factors on properties of geopolymer paste: A comparative study. Structural Concrete, 2021, 22, E315.	1.5	7

#	Article	IF	CITATIONS
74	Hydration mechanisms and durability of hybrid alkaline cements (HACs): A review. Construction and Building Materials, 2021, 266, 121039.	3.2	46
75	Monitoring the setting process of alkali-activated slag-fly ash cements with ultrasonic P-wave velocity. Construction and Building Materials, 2021, 271, 121592.	3.2	22
76	Effect of reactive MgO on hydration and properties of alkali-activated slag pastes with different activators. Construction and Building Materials, 2021, 271, 121608.	3.2	44
77	Factors Affecting Kinetics and Gel Composition of Alkali–Silica Reaction in Alkali-Activated Slag Mortars. International Journal of Civil Engineering, 2021, 19, 453-462.	0.9	3
78	Slag uses in making an ecofriendly and sustainable concrete: A review. Construction and Building Materials, 2021, 272, 121942.	3.2	116
79	Performance and sustainability overview of sodium carbonate activated slag materials cured at ambient temperature. Resources, Environment and Sustainability, 2021, 3, 100016.	2.9	17
80	Laboratory Evaluation for Utilization of Phosphogypsum through Carbide Slag Highly-Effective Activating Anhydrous Phosphogypsum. Journal Wuhan University of Technology, Materials Science Edition, 2021, 36, 392-399.	0.4	6
81	Fundamental understanding of the setting behaviour of the alkali activated binders based on ground granulated blast furnace slag and fly ash. Construction and Building Materials, 2021, 291, 123243.	3.2	28
82	The effects of calcium hydroxide and activator chemistry on alkali-activated metakaolin pastes. Cement and Concrete Research, 2021, 145, 106453.	4.6	42
83	Alkali-Activated Controlled Low-Strength Material Utilizing High-Calcium Fly Ash and Steel Slag for Use as Pavement Materials. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	36
84	Influence of Silica Modulus and Curing Temperature on the Strength of Alkali-Activated Volcanic Ash and Limestone Powder Mortar. Materials, 2021, 14, 5204.	1.3	5
85	Effect of organic alkali on hydration of GGBS-FA blended cementitious material activated by sodium carbonate. Ceramics International, 2022, 48, 1611-1621.	2.3	8
86	Investigation on the roles of solution-based alkali and silica in activated low-calcium fly ash and slag blends. Cement and Concrete Composites, 2021, 123, 104175.	4.6	26
87	Calcium carbide residue as auxiliary activator for one-part sodium carbonate-activated slag cements: compressive strength, phase assemblage and environmental benefits. Construction and Building Materials, 2021, 308, 125015.	3.2	42
88	Binder Chemistry – High-Calcium Alkali-Activated Materials. RILEM State-of-the-Art Reports, 2014, , 59-91.	0.3	41
89	Study on the influences of silica and sodium in the alkali-activation of ground granulated blast furnace slag. Construction and Building Materials, 2020, 257, 119514.	3.2	26
90	Highâ€Resolution <scp>X</scp> â€ray Diffraction and Fluorescence Microscopy Characterization of Alkaliâ€Activated Slagâ€Metakaolin Binders. Journal of the American Ceramic Society, 2013, 96, 1951-1957.	1.9	79
91	Advances in near-neutral salts activation of blast furnace slags. RILEM Technical Letters, 0, 1, 39-44.	0.0	63

#	Article	IF	CITATIONS
92	Hormigón alternativo basado en escorias activadas alcalinamente. Materiales De Construccion, 2008, 58, .	0.2	29
93	Cementos petroleros con adición de escoria de horno alto. CaracterÃsticas y propiedades. Materiales De Construccion, 2011, 61, 185-211.	0.2	4
94	EFFECT OF THE CURING CONDITIONS ON THE CHARACTERISTICS OF CITROGYPSUM-CONTAINING ALKALI-ACTIVATED BINDERS. Construction Materials and Products, 2021, 4, 24-34.	0.1	0
95	Continuous Monitoring of the Early-Age Properties of Activated GCBFS with Alkaline Solutions of Different Concentrations. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	9
96	Flow Property of Alkali-Activated Slag with Modified Precursor. ACI Materials Journal, 2017, 114, .	0.3	4
97	Effect of Sodium Sulphate on Rheological Behaviour of Alkali Activated Slag Binders. RILEM Bookseries, 2020, , 71-78.	0.2	Ο
99	Rheology and microstructure of alkali-activated slag cements produced with silica fume activator. Cement and Concrete Composites, 2022, 125, 104303.	4.6	38
100	Investigation of effects of reactive MgO on autogenous and drying shrinkage of near-neutral salt activated slag cement. Ceramics International, 2022, 48, 5518-5526.	2.3	14
101	The utilization of waste incineration filter dust (WIFD) in sodium carbonate activated slag mortars. Construction and Building Materials, 2021, 313, 125494.	3.2	3
102	Modification of Carbonate-Activated Binder for Lead-Zinc Mine Tailings Based Cemented Paste Backfill. SSRN Electronic Journal, 0, , .	0.4	Ο
103	Alkali-activated fly ash-blast furnace slag blend rheology: Evaluation of yield and Maxwell responses. Cleaner Engineering and Technology, 2022, 6, 100398.	2.1	0
104	In-situ formation of layered double hydroxides (LDHs) in sodium aluminate activated slag: The role of Al-O tetrahedra. Cement and Concrete Research, 2022, 153, 106697.	4.6	20
105	Impact of Ca+ content and curing condition on durability performance of metakaolin-based geopolymer mortars. Case Studies in Construction Materials, 2022, 16, e00922.	0.8	20
106	Low CO2 reactive magnesia cements and their applications via nano-modification. , 2022, , 407-458.		1
107	Alkali Activation of Ground Granulated Blast Furnace Slag and Low Calcium Fly Ash Using "One-Part― Approach. Journal of Sustainable Metallurgy, 2022, 8, 511-521.	1.1	4
108	Effect of mechanical activation on reaction mechanism of one-part preparation fly ash/slag-based geopolymer. Advances in Cement Research, 2022, 34, 412-426.	0.7	3
109	Capturing the early-age physicochemical transformations of alkali-activated fly ash and slag using ultrasonic pulse velocity technique. Cement and Concrete Composites, 2022, 130, 104529.	4.6	10
110	Modification of carbonate-activated binder for lead-zinc mine tailings based cemented paste backfill. Construction and Building Materials, 2022, 326, 126871.	3.2	5

#	Article	IF	CITATIONS
111	Experimental Study of Slag Changes during the Very Early Stages of Its Alkaline Activation. Materials, 2022, 15, 231.	1.3	10
112	Investigation of the effect of commercial limestone on alkali-activated blends based on Algerian slag-glass powder. European Journal of Environmental and Civil Engineering, 2022, 26, 8049-8072.	1.0	4
113	Synergic Effect of Compositions and Processing Method on the Performance of High Strength Alkali Activated Slag Foam. SSRN Electronic Journal, 0, , .	0.4	0
114	The role of CaO and MgO incorporation in chloride resistance of sodium carbonate-activated slag. Cement and Concrete Composites, 2022, 132, 104625.	4.6	18
115	On the mechanisms of shrinkage reducing admixture in alkali activated slag binders. Journal of Building Engineering, 2022, 56, 104812.	1.6	9
116	The role of zinc sulphate as a retarder for alkali activated binders and its influence on the rheological, setting and mechanical behaviour. Construction and Building Materials, 2022, 344, 128128.	3.2	4
117	The reactive products and reactivity of modified red mud and ground granulated blast furnace slag at different alkalinities. Construction and Building Materials, 2022, 346, 128471.	3.2	4
118	The effect of composition on the dielectric properties of alkali activated materials: A next generation dielectric ceramic. Materials Today Communications, 2022, 32, 104087.	0.9	3
119	The effect of alkaline activators and sand ratio on the physico-mechanical properties of blast furnace slag based mortars. Journal of Building Engineering, 2022, 58, 104998.	1.6	8
120	Mix Proportion and Mechanical Properties of One-Part Alkali-Activated Geopolymer Concrete. SSRN Electronic Journal, 0, , .	0.4	1
121	The effect of sodium citrate on NaOH-activated BFS cement: Hydration, mechanical property, and micro/nanostructure. Cement and Concrete Composites, 2022, 133, 104703.	4.6	5
122	Synergic effect of compositions and processing method on the performance of high strength alkali activated slag foam. Construction and Building Materials, 2022, 352, 128991.	3.2	5
123	Correlation between porous structure analysis, mechanical efficiency and gamma-ray attenuation power for hydrothermally treated slag-glass waste-based geopolymer. Case Studies in Construction Materials, 2022, 17, e01505.	0.8	3
124	Recent progress in understanding setting and hardening of alkali-activated slag (AAS) materials. Cement and Concrete Composites, 2022, 134, 104795.	4.6	31
125	Evaluation on comprehensive properties and bonding performance of practical slag-fly ash blending based alkali-activated material. Journal of Building Engineering, 2022, 62, 105350.	1.6	2
126	Effects of anionic species of activators on the rheological properties and early gel characteristics of alkali-activated slag paste. Cement and Concrete Research, 2022, 162, 106968.	4.6	15
127	Effect of High-Range Water-Reducing Admixtures on Alkali-Activated Slag Concrete. ACI Materials Journal, 2022, , .	0.3	1
128	Effect of limestone on engineering properties of alkali-activated concrete: A review. Construction and Building Materials, 2023, 362, 129709.	3.2	8

#	Article	IF	CITATIONS
129	The intrinsic role of network modifiers (Ca versus Mg) in the reaction kinetics and microstructure of sodium silicate-activated CaO-MgO-Al2O3-SiO2 glasses. Cement and Concrete Research, 2023, 164, 107058.	4.6	7
130	In Situ Spectroscopic Insights into the Setting Performance of Alkali-Activated Slag. Journal of Materials in Civil Engineering, 2023, 35, .	1.3	1
131	Mechanical and durability performance of alkali-activated slag cement concretes with carbonate and silicate activators. Sustainable Chemistry and Pharmacy, 2023, 31, 100896.	1.6	4
132	Effects of Na2CO3/Na2SiO3 Ratio and Curing Temperature on the Structure Formation of Alkali-Activated High-Carbon Biomass Fly Ash Pastes. Materials, 2022, 15, 8354.	1.3	5
133	Alkali-Activated Binary Binders with Carbonate-Rich Illitic Clay. Polymers, 2023, 15, 362.	2.0	5
134	Effect of Solution-to-Binder Ratio and Alkalinity on Setting and Early-Age Properties of Alkali-Activated Slag-Fly Ash Binders. Materials, 2023, 16, 373.	1.3	2
135	Utilization of sodium carbonate activator in strain-hardening ultra-high-performance geopolymer concrete (SH-UHPGC). Frontiers in Materials, 0, 10, .	1.2	35
136	Sulfate resistance of class C/class F fly ash geopolymers. Journal of Materials Research and Technology, 2023, 23, 1767-1780.	2.6	7
137	Production and evaluation of alkali-activated binders of low-calcium fly ash with slag replacement. Advances in Cement Research, 2023, 35, 358-372.	0.7	0
138	Microstructure and mechanical performance of alkali-activated tuff-based binders. Cement and Concrete Composites, 2023, 139, 105030.	4.6	4
139	Philosophy of rational mixture proportioning of alkali-activated materials validated by the hydration kinetics of alkali-activated slag and its microstructure. Cement and Concrete Research, 2023, 168, 107139.	4.6	12
140	Effect mechanism of slag activity on the basic tensile creep of alkali-activated slag mortar. Journal of Building Engineering, 2023, 68, 105903.	1.6	2
141	A state-of-the-art review on the setting behaviours of ground granulated blast furnace slag- and metakaolin-based alkali-activated materials. Construction and Building Materials, 2023, 368, 130389.	3.2	30
142	C-S-H Seeds Accelerate Early Age Hydration of Carbonate-Activated Slag and the Underlying Mechanism. Materials, 2023, 16, 1394.	1.3	5
143	Correlating Hydration of Alkali-Activated Slag Modified by Organic Additives to the Evolution of Its Properties. Materials, 2023, 16, 1908.	1.3	2
144	Analysis of reaction degree and factors of alkali-activated fly ash/slag. Magazine of Concrete Research, 0, , 1-10.	0.9	0
145	Shrinkage mitigation of alkali-activated fly ash/slag mortar by using phosphogypsum waste. Construction and Building Materials, 2023, 375, 130978.	3.2	4
146	Mitigation of autogenous shrinkage of alkali-activated slag mortar by stearate salts. Construction and Building Materials, 2023, 384, 131383.	3.2	3

ARTICLE

IF CITATIONS